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Abstract

Joints represent planes of discontinuity in homogeneous media. The purpose of this

investigation is to model joints and determine the effects on waves as they propagate

through joints in rock. Properties of interest include energy dissipation, energy

transmission, and changes in peak stress and impulse as waves propagate through

one or more joints. Rather than combining rock joints into the constitutive model of

the parent rock as typically done, this research seeks to model joints discretely. By

capturing the behavior of individual rock joints, discrete effects on wave propagation

are gathered. The ability to lump multiple joints into one equivalent joint is also

explored. The key result is that joints affect short duration pulses more than long

duration pulses. A single equivalent joint transmits less energy than a set of multiple

joints.
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Chapter 1

Introduction

This thesis presents the results of research done on the modeling of rock joints. A rock

joint is numerically considered a discontinuity of the rock medium. The published

constitutive models for rock do not discretely model the rock joints. Further, the

current literature does not seem to present any studies or findings on the interaction

of a joint with a propagating wave or explore a joint’s impact on wave propagation,

such as energy transmission or wave impulse.

The thesis work develops a discrete one-dimensional constitutive model for rock

joints that will be used in a study of the effects of rock joints on wave propagation

through rock media.

The thesis tasks are:

(a) Develop a one-dimensional discrete constitutive model for joints under normal

loading.

(b) Implement the one-dimensional model into a dynamic Material Point Method

code to study the result of the joint on wave propagation.

(c) Consider multiple joints and their impact on wave-propagation.

(d) Determine when it is reasonable, if ever, to replace a set of joints with one

equivalent joint in order to make numerical simulations simpler and less costly.
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The results are conclusions about how a single joint or multiple joints affect

the peak stress, the energy, and the impulse of a one-dimensional sinusoidal pulse.

This development provides the framework for a corresponding investigation of three-

dimensional wave impingement on a single joint or multiple joints oriented obliquely

to the direction of wave propagation.
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Chapter 2

Rock Joint Problem

The masters research problem is primarily a one-dimensional study of rock joints

and the impact of joints on wave propagation through rock. A one-dimensional

constitutive model has been developed to represent joint behavior under normal

loading. This model is used to characterize wave behavior and to quantify the effect

of joints on wave propagation in one dimension.

2.1 Rock Joints

Rocks often contain discontinuous planes of weakness which traverse the rock mass.

Planes of weakness depend on the length of discontinuity, ranging from small cracks

called fissures to joints to large faults. Fissures can be contained in handheld spec-

imens. Joints occur in larger rock masses. Faults span long distances and contin-

uously intersect rock and other types of discontinuities (Goodman [8]). Given the

large range in sizes of discontinuities that exist in rocks, the focus of this research is

limited to discontinuities associated with joints.

A joint is composed of two parallel faces of rock, which have fractured due to

external forces, such as folding, or cooling (in igneous rock). The faces are separated

by some length to leave a void. Over time, water flows through the void leaving be-
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hind mineral deposits and sediment, which forms gouge. Another joint characteristic

is asperities. Depending on how the initial fracture occurred, two rock faces could

have varying degrees of surface roughness. The asperities form the overall structure

of surface roughness. The essential characteristics of a joint are the asperities and

gouge. The joint has resistance to shear because of these characteristics. In normal

compressive loading, the joint exhibits nonlinear increase in stress with gap closure.

In normal tensile loading, the joint exhibits little or no strength.

Joints appear as parallel planar cracks. The spacing between cracks may vary

from centimeters to as much as 10 meters (Goodman [8]). Typically, joints appear in

sets, as opposed to sporadically spaced and oriented discontinuities. These parallel

discontinuities are uniformly spaced and end along an intersecting joint called a

terminating plane (Figure 2.1). A system of joints is more than one set of joints

contained in the rock mass. Jointed igneous and metamorphic rock usually have

systems of three or more joint sets. One set will have planes of weakness parallel to

the bedding planes of the rock. The subsequent sets form in other directions creating

a rock mass that is composed of individual blocks with discontinuities along their

surfaces (Figure 2.2).

Figure 2.1: Two sets of joints with terminating planes



Chapter 2. Rock Joint Problem 5

Figure 2.2: Jointed rock in Carlsbad Cavern. Photograph provided by Stephen
Bespalko.

Figure 2.3: The traction τ acting on the joint with shear and normal components
and the joint discontinuity [u]

The discontinuity [u] and τ represent the relative displacement and traction,

respectively, acting on the parent rock faces (Fig 2.3). These vectors have normal

and tangential components. The faces of the joint typically exhibit asperities which

inhibit shearing motions. Mathematical models typically idealize the joint faces as
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planes with the effects of asperities taken into account through a function for shear

resistance (Fig 2.4).

Figure 2.4: Rock joint and its numerical representation

2.2 Wave Propagation through Jointed Rock

The problem for the one-dimensional study of rock joint behavior is a compressive

wave propagating through a rock joint or joint set oriented normally to the direction

of wave travel (Figure 2.5). The study determines the characteristics of the wave

after propagating through a joint. The effects of a joint on a compressive wave are

energy dissipation, wave reflection, and change of shape. The parent rock, modeled

as a linear elastic medium, is assumed to contain either a single joint or sets of

joints. The effects of one, two, and three joints on wave propagation are analyzed.

For large-scale analyses, it is important to know when two or more joints can be

replaced with a single equivalent joint. This issue is also addressed.

The joint compresses as the wave propagates through it. This behavior is called

closure since the width of the discontinuity decreases with compressive stress. Clo-

sure requires energy, provided by the compressive wave. One result of joint-wave
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interaction is the dissipation of energy. The portion of the wave that reflects off

the joint travels opposite to the initial direction and becomes a tensile wave. This

reflected portion can also be calculated to properly determine the effects of joints.

A part of the wave propagates through the joint as a compressive wave.

The amount of energy dissipation is dependent on the joint properties. A weath-

ered joint filled with gouge and mineralization has a resistance to joint closure. En-

ergy is dissipated during closure because the gouge resists closure and does not allow

the intact rock faces to come fully into contact. A fresh joint, called a gap, with

no relative shear motion closes with no resistance because the asperities of the rock

faces line up. All of the energy remains in the parent rock. Some energy reflects off

the joint and some passes through the joint if the free surfaces come into contact.

Until the two faces of intact rock come into contact, a fresh, unfilled joint acts as a

free surface and the wave is reflected.

Figure 2.5: Wave propagating towards a joint set

2.3 Objective

The research objective is to numerically model the characteristics of wave-joint in-

teraction in jointed rock. The main focus is the proper representation of wave-joint

interaction for one-dimensional motion. The features that are studied include the
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amount of energy transmitted through a joint, the impulse of the transmitted wave

in comparison with the impulse provided by the initial wave, and the reduction of

peak stress in an initial wave altered by a joint. Then, the results of modeling sev-

eral joints sequentially are obtained and compared with modeling the joint set as one

equivalent joint.
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Chapter 3

Literature Survey

Rock is numerically modeled two ways. The first approach is to model individually,

or discretely, the behavior of the contiguous rock and the rock material between joints

and discontinuities. The second approach models large rock masses at the field scale

and incorporates the effect of joints and discontinuities as well as the intact rock into

an equivalent continuum (Bazant [2]). Which of the approaches used is largely based

on the scale of the problem. Contiguous rock models capture the micromechanics,

and large rock mass models capture the phenomenological effects of the contiguous

rock and all other structural aspects of rock.

3.1 Contiguous Rock Models

Within the scope of the contiguous rock approach, some formulations model the

behavior of the intact rock and others model the contact behavior of the contiguous

rock blocks.
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3.1.1 Intact Rock

Classically, intact rock models use a Mohr-Coulomb or a Hoek-Brown failure crite-

rion. The most recent advances use models based on the micromechanics of rock

(Bazant [2]). Hoek and Brown considered the uniaxial compressive strength of in-

tact rock and used a largely empirical approach to model rock based on their relation

between a rock mass rating and a geological strength index (Jing [11]).

In 2000, Shao and Rudnicki [15] developed a microcrack-based continuous dam-

age model . They modeled brittle geomaterials under a compression dominated stress

field. The approach combined micromechanical models with a damage evolution law.

But, they only considered the triaxial compression loading path. Another recent ad-

vancement is Bazant’s microplane model [3], which incorporates the pore collapse

of isotropic rock. The model addresses shear-enhanced compaction, a phenomenon

where compaction is enhanced as the deviatoric stress is increased. The model is

largely based on the microplane model already used for concrete and captures the

hardening and softening of porous rock. Fossum and Brannon [7] created a viscoplas-

tic model for rock. Over a broad range of strain rates at laboratory scale, they iden-

tified the key features of rock micromechanics to be pore collapse and microcracking.

Their idea is that pore collapse and microcracking cause the macroscale transition

from volumetric compaction to dilatation under triaxial compression. Their current

efforts are focused on applying the micromechanics model to field scale incorporating

rock joints. Hu [9] developed an approach for anisotropic plasticity and damage in

semi-brittle rocks based on a discrete thermodynamic approach. His approach is that

frictional sliding of weakness planes generate macroscopic plastic deformation. The

model captures more easily the coupling between anisotropic plasticity and induced

damage when compared with classical constitutive models.

These intact rock approaches reflect the micromechanics of rock. One point of

concern though is the scalability. Over a large rock mass, the models may not

accurately depict the behavior of jointed rock because of its many discontinuous

features. Also, these authors do not consider high-rate compressive waves as well as
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the possible tensile waves reflected off of free or failed surfaces.

3.1.2 Contact Behavior

The models for the contact between intact rock blocks consider either the asperities

of each rock surface or a granular fill between the two surfaces. These models in-

directly consider joint behavior but do not address joints directly. In 1972, Barton

[1] first introduced the Joint Roughness Concept and mathematically used fractals

to represent the surface roughness of intact rock blocks. Plesha [14] developed a

constitutive model for rock discontinuities with dilatancy and surface degradation.

He idealized surface microstructure as interlocking asperity surfaces. The key fea-

ture his model addressed was dilatancy. He defined dilatancy as “a tendency of two

contacting bodies to separate during relative tangential motion due to the sliding of

asperity surfaces of one body on those of another.” The model accounted for asperity

wear as a function of high compressive stress. The higher the compressive stress, the

quicker asperities would degrade resulting in a loss of strength after the initiation

of sliding. Huang’s microstructural constitutive model [10] considered rock surfaces

with regular asperities as triangle-shaped teeth. He identified three mechanisms to

influence the contact of rock surfaces to be sliding, separation of asperity contact-

faces, and shear fracture of asperities. He used a Mohr-Coulomb criterion with a

cohesion factor and focused on the properties of individual asperity faces. In 2010,

Trivedi [16] proposed a model that considered the contact between rock surfaces to

contain granular fill as opposed to the asperities of Plesha’s model. The strength and

dilatancy of joints followed the soil mechanics constitutive equations. He identified

a relationship between dilatancy and joint strength due to the progressive failure of

the granular media.

The contact models effectively predict joint surface sliding for both fresh joints

(contacting asperities) and filled joints (granular media). However, they do not

address joint closure or wave propagation due to compressive waves. These models

cannot be implemented on a large scale because each focuses on such a small scale.
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Individual asperities or granular characteristics would not be known for a jointed

rock mass of significant size.

3.2 Large Rock Mass Models

To model jointed rock on a larger scale, constitutive models are developed based

on a homogenization of the rock volume. The mathematical homogenization of the

rock mass smears the mechanical properties of joints and intact rock evenly over

the volume. Usik Lee [12] outlined a general smeared continuum damage mechanics

model based on constitutive equations of damaged material using a micromechanical

or phenomenological approach. He homogenizes (or averages) the mesostructural

field of defects within a representative volume element (RVE). The micromechanical

behavior of the RVE effectively becomes a continuum. Lee points out that most

models introduce internal variables to describe damage indirectly and are not always

physically interpretable. The basis for his model is the Strain Energy Equivalence

Principle (SEEP). According to Lee, the SEEP is “when the damaged material vol-

ume cell and its equivalent continuum model have identical displacements on their

boundaries, they contain equal strain energy.” Cai and Horii [5] present a model

using the same principle applied directly to highly jointed rock masses. They formu-

late the stress-strain relations of jointed rock masses by taking the volume average

of stress and strain within the RVE, where the relative displacement of the joints is

required. The mechanical behavior is then represented with a elasto-plastic consti-

tutive law based on classical plasticity theory. The approach calls for determining

the RVE, which is quite difficult as presented by Chalhoub [6]. Chalhoub proposes

a geometrical approach to determining the RVE rather than a more computation-

ally demanding mechanical approach. He proposes that the mechanical RVE can

be determined by analyses carried out on the geometrical parameters of the rock

mass. The most important geometrical parameter he identifies is the density of rock

joints. The downside is that his approach is based on the assumption that all joints

within the RVE have the same mechanical properties. At the 2010 Ground Shock
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and Faulted Media Workshop, Brannon [4] outlined her approach for a homogenized

rock-joint formulation. The homogenized formulation is aimed at a scale too large

to model joints explicitly. Similar to Cai, she proposed an “equivalent continuum.”

Her formulation assumed joints to be parallel and evenly spaced.

The smeared continuum approach to jointed rock makes sense for large scale

applications. The downside to this approach is the scalability of either the microme-

chanics or phenomena the formulations predict. The homogenization of the rock

volume is based on the assumption that all rock joints have equivalent mechani-

cal and geometrical properties, which may not always be the case for jointed rock.

For the purposes of this proposal, joint behavior and its effect on wave propagation

cannot be discretely calculated within a smeared representative volume element.

3.3 Aperçu

Many jointed rock modeling approaches do not reflect specific constitutive features

of joints. Capturing parent rock and joint effects in the same model makes sense for

certain applications, especially large-scale computational analysis. But, the models

are unable to represent discrete joints for analysis.

In effort to address the current void of rock joint effects in the literature, the

objective of this research is to provide a basis for joint-specific constitutive models in

a numerical setting. The proposed models aim to capture the features of individual

rock joints. Once those features are addressed, computational analysis can ascertain

the impact of rock joints within the scope of numerical geomechanics.

The most closely related work to the proposed approach is Wang’s joint model

[17]. Wang used a classical plasticity formulation for a rock joint of thickness ap-

proaching zero. He modeled joint closure and normal loading. His approach is not

directly applicable to the scope of this research because a joint in the proposed re-

search context is considered to have a thickness and possibly gouge between the

parent rock faces.
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Chapter 4

One-Dimensional Constitutive

Models for Joints

The term “joint” will be used to describe a discontinuity of the parent rock that has

some resistance to closure of the discontinuity. A joint is physically understood as a

rock with fractures that have weathered and accumulated gouge and mineralization

between the two parent rock faces defining each fracture. This accumulated material

provides resistance if the fracture is compressed. The term “gap” will be used to

describe a discontinuity of the parent rock that has no resistance to closure. A gap

is a fresh rock fracture that has had no shearing motion. Therefore, the parent rock

faces of a gap can come into contact with no resistance to closure.

The subsequent sections of this chapter outline the formulation for the 1D joint

models. Experimental data are provided with the development of the 1D model.

4.1 1D Joint Modeling Formulation

This section outlines the model for handling joint closure and opening in which only

the component of traction in the normal direction is considered.

To begin, consider a linear elastic bar of rock material. Along the bar is an existing
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discontinuity of known initial length ug0. ug is defined to be the discontinuity length

at a certain time. Prior to any deformation, ug = ug0. This existing discontinuity

is a joint composed of gouge, which is sediment and mineral particles that coalesced

within the crack after its initial formation. The joint has strength in compression and

no strength in tension. First, nondimensionalize the length of the discontinuity ug0 by

proposing ūg =
ug

ug0
. In further discussion, ūg will be referred to as the dimensionless

discontinuity size. If the joint has opened beyond its initial size ug0, then ūg > 1

and the process is joint opening. If the joint has closed from its initial size ug0, then

ūg < 1 and the process is joint closure. At this point in the discussion, no loading

has been applied to the joint and neither joint closure nor opening has occurred.

Therefore, ūg has an initial dimensionless value of 1. A function F (σel, ūg) is defined

later to identify the state of joint closure, where σel is the stress. A joint “hardening”

function g(ūg) relates joint closure to stress. This function has parameters that will

be given values to match experimental data for normal loading of joints. The joint

function is chosen to be of the form

F = −σel + g(ūg). (4.1)

If F < 0, no joint closure occurs. If F = 0, the joint may close. And, F > 0 is not

allowed. A distinction must be made in regimes of joint closure or joint opening. As

noted earlier, joints resist compression but have no strength in tension.

4.1.1 Joint Closure

The state of joint closure is governed by the joint function F (σel, ūg) as defined in

Equation (4.1). The “hardening” function is chosen to be of the form

g(ūg) = σg

(
1− 1

ūm
g

)
eūgm, (4.2)

where σg is a material-based parameter with dimensions of stress and m is another

material based dimensionless parameter. Such a form gives qualitative joint closure

characteristics consistent with experimental data for a granular filled joint (Li and

Ma [13]). Assume the joint is at its initial state prior to any loading. For a given
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increment in joint closure ∆ūg < 0, ūg < 1. The stress in the joint is σjoint = g(ūg).

Figure 4.1 shows the characteristics of the joint closure function g(ūg). Li and Ma’s

publication will be used to calibrate the constitutive model to their published data.

The important difference between joint and gap behavior is that the joint “hardening”

function for a gap is

g(ūg) = 0. (4.3)
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Figure 4.1: The joint “hardening” function g(ūg) when ūg ≤ 1

An investigation was conducted to illustrate the effects of different values of m

in the joint closure function g(ūg). In Figure 4.2, various values of m are prescribed

to show the effect of the characteristic material parameter on the shape of g(ūg).

The importance of this investigation is to demonstrate that as the value of m grows

larger, the joint will have less resistance to closure. The parameter m can be used

to better match the constitutive model predictions to experimental data.
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Figure 4.2: Impact of m on the shape of the joint “hardening” function g(ūg)

4.1.2 Joint Opening

Joint opening is simpler than joint closure because the experimental data suggest

joints do not have any tensile strength. When a joint is put under a tensile load

from a zero stress state, the load cannot be sustained and the joint will immediately

open up. The need for a decohesion function is unnecessary whenever a tensile

load is applied from a zero stress state. The joint will open up immediately and

have zero stress. Suppose a joint is again at its initial size ug0 and a tensile load

is applied. Figure 4.3 illustrates this process and relates ūg to the stress σ, at the

gap. The notion that rock joints have zero tensile strength does not appear plausible

intuitively. However, the joint gouge between fractured rock faces is a granular media.

Granular media do have zero tensile strength. Yet, jointed rock can allow for tensile

waves to propagate through in physical testing. The hypothesis for this phenomenon

is that there is an “in situ” stress consisting of confining pressure so that rock joints
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do not simply open up during underground wave propagation. Further investigation

needs to be done in a 2D or 3D implementation to test this hypothesis, which is

beyond the scope of the proposed research.

Consider a joint under a compressive load that has intact rock on either side of

its plane of discontinuity. The numerical implementation of a joint spreads its effect

over a portion of the parent rock containing the joint, so the intact rock must also be

considered. If a positive (tensile) increment in strain is applied from a compressive

state, the magnitude of the strain increment matters. If the strain increment is large

enough that the intact rock returns to zero strain and the joint returns to its initial

joint size ug0, the element containing the joint will have zero stress. If the strain

increment is not large enough to unload the joint and intact rock to a zero stress

state, then the joint closure routine will be followed with a positive strain increment.
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Figure 4.3: Joint with prescribed positive strain increments
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4.2 Numerical Implementation of 1D Joint Model

Begin by considering a material point with a domain of length h. The material point

has an elastic region and a joint discontinuity of initial size ug0, where ug0 << h.

Within the material point domain, there is a continuous stress (σel) in the elastic

region and joint. There is both an elastic strain (εel) and a joint strain (εg). The

elastic region has a Young’s Modulus of Y. To describe the strain over the domain

in consideration, there is also a total strain εtot. The total strain and total strain

increments are given by

εtot = εel + εg (4.4)

∆εtot = ∆εel +∆εg. (4.5)

Every time step gives an increment in strain (∆εtot) at the material point under

consideration. For the purpose of explaining the numerical implementation, the

current time step is the k-th time step. The state of stress and strain of the material

point is known at the k-th time step. The numerical implementation will determine

the state of stress and strain at the material point at the (k+1)-th time step, the

next time step. Therefore, stress and strain values with an superscript k denote the

values at the current time step and values with an superscript k+1 denote the values

at the next time step. Also, the joint will be non-dimensionalized as shown earlier,

where ūk
g =

uk
g

ug0
.

Given the basic description of joint behavior under normal loading in 1D, the

numerical implementation of the joint model is detailed. The implementation for

the model is based upon the following premises:

(a) Every joint is contained within an element of length h. The element has nodal

displacements u2 and u1. The total strain across the element is εtot =
u2−u1

h .

(b) Every joint starts with an initial discontinuity size ug0. Under no loading, a

material point (or element using one material point per element) with a joint

has an associated strain due to the joint size. Therefore, the total strain across
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the material point domain is εtot =
ug0

h , where h is the material point (element)

domain length. The material point also has an equal initial joint strain εg =
ug0

h .

(c) During joint closure, the hardening function g(ūg) is followed.

(d) During joint opening, the joint assumes no stress and simply opens up for a

given strain increment.

(e) In the context of numerical modeling within the MPM, the stress within the

joint must be equal to that of the stress over the rest of the material point

domain, which is intact rock.

4.2.1 Joint Closure

For the material point under consideration at time tk, suppose an increment in total

strain ∆εktot is negative and that the material point’s domain was already under a

compressive load. Therefore, the material point would stay under a compressive load

and the joint would close further. To begin, assume that the full increment of total

strain is added to the elastic strain. If the increment in strain is fully specified to the

elastic strain, then the joint strain and the joint size stay the same as the previous

time step. The trial strain increments are as follows:

εk+1
el = εkel +∆εtot (4.6)

εk+1
g = εkg (4.7)

ūk+1
g = ūk

g . (4.8)

These values for strains are used for the first iteration of the Newton-Raphson scheme

to solve for the joint discontinuity over the material point domain. With the proposed

strains, the stresses are found using either an elastic assumption or the joint closure

function g(ūg).

σk+1
el = Yεk+1

el (4.9)

σk+1
joint = g(ūk+1

g ) (4.10)
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The decohesion function F (σel, ūg) is then calculated as follows:

F = −σk+1
el + g(ūk+1

g ). (4.11)

The stresses in the elastic and joint regions will not be equal. −σk+1
el will be greater

than g(ūk+1
g ), resulting in F being greater than zero. Now, the joint is allowed to

close in a procedure that forces F to zero. In the implementation, requiring F to

be zero is too strict for a reasonable number of iterations. The actual requirement

becomes that of enforcing F to be a very small positive number ε. This ensures

that the stresses in the elastic region and joint regions will be equal. Given the

current values of σk+1
el and σk+1

g , F will be positive. To find the values of σk+1
el

and ūk+1
g for which F is zero requires the Newton-Raphson scheme. Following the

Newton-Raphson scheme, the derivatives of g(ūk+1
g ) and σk+1

el are found to give Ḟ .

∂gk+1

∂ūk+1
g

=
σgm

eū
k+1
g m(ūk+1

g )(m+1)(ūk+1
g )(m+1)

(4.12)

∂σk+1
el

∂εk+1
el

= −Y (4.13)

Ḟ = −∂σk+1
el

∂εk+1
el

˙εk+1
el +

∂g(ūk+1
g )

∂ūg

˙̄ug (4.14)

Using (4.14), ūk+1
g is updated by

∆ūk+1
g = −F

Ḟ
(4.15)

ūk+1
g = ūk+1

g +∆ūk+1
g . (4.16)

For the new value of ūk+1
g , a new gap strain is found by

εk+1
g =

ūk+1
g ug0

h
. (4.17)

And, with a new value of gap strain, comes a new value in elastic strain.

εk+1
el = εk+1

tot − εk+1
g (4.18)

Using these new values of strain, the process can be repeated, whereby the stresses

in the elastic region and the joint region are found. Given a new value of F , if F

does not meet the requirement of having a value less than a small positive number,
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the process of using the Newton-Raphson scheme is repeated until F does meet

the requirement. The corresponding values for εk+1
g and εk+1

el become the strains

associated with the material point at time tk+1 once the Newton-Raphson scheme is

complete.

4.2.2 Joint Opening

For the material point under consideration at time tk, suppose an increment in total

strain ∆εktot is positive and that the material point’s only strain comes from the

joint discontinuity. Therefore, εktot = εkg = ug0

h and εkel = 0. Because joints cannot

withstand any tensile loading, the stress across the material point will be initially

discontinuous and must be resolved. The elastic region of the material point’s domain

will have zero stress because all of the strain increment is automatically put onto

the joint and the stress is continuous. In summary, given a positive total strain

increment from an initial zero stress, all strain will be applied to the jointed region

of the material point.

εk+1
tot = εktot +∆εktot (4.19)

εk+1
el = 0 (4.20)

εk+1
g = εkg +∆εktot (4.21)

4.2.3 Other loading scenarios and summary

Consideration must be given to the loading scenario where a joint is in compression

and a positive strain increment is prescribed at time tk+1. Assume the total pre-

scribed increment in strain ∆εk+1
tot has a large enough magnitude that when initially

prescribed to the elastic region εk+1
el is greater than zero (under tension). This could

satisfy the condition that F ≤ 0 but there would be a discontinuity in stress between

the elastic and joint regions of the material point. Therefore, a check is performed

at the end of the Newton-Raphson scheme to check if σk+1 = Yεk+1
el > 0. Assuming
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σk+1 > 0, the strains are modified as follows:

εk+1
g = εk+1

g + εk+1
el ≥ ug0

h
(4.22)

εk+1
el = 0 (4.23)

σk+1 = 0. (4.24)

4.2.4 Results of Driver Program for 1D Joint Model

A driver program was used to prescribe increments in strain for a joint and it’s

associated elastic region. A load-unload-load path was prescribed to demonstrate

how the model deals with unloading. The results of the run are shown in Figure 4.4.
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Figure 4.4: Stress as a function of displacement discontinuity for a joint going through
a load-unload-load cycle.

The results demonstrate that the joint constitutive model unloads vertically, as

outlined in Section 4.2.2. The physical meaning is that all of the joint deformation

is plastic deformation. The joint unloads vertically from the value of stress when the
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function F = 0 and then loads vertically back to the value of stress when F = 0.

During unloading, all of the positive strain increments (∆εtot) are allocated to the

strain (∆εel) of the elastic region.

4.3 Gap Constitutive Model

A gap is a discontinuity in displacement with no resistance to closure. A gap is

simply a joint that has not had any coalescence of gouge or mineralization to resist

closure back to its initial state prior to the initial fracturing. For one-dimension,

with no resistance to closure or opening, a gap simply closes or opens based on the

the increment in strain ∆εk+1
tot .

To simplify the explanation of the implementation of the gap constitutive model,

consider the parameters used to describe the behavior of a joint in Section 4.1. The

gap has an initial size ug0. A dimensionless gap size describes the gap at a time tk

as ūk
g =

uk
g

ug0
. The initial total strain in the gap is ε0g = ug0

h , where h is the element

size that the gap is in. The total strain in the element εktot is the sum of the gap

strain and elastic strain (εkg + εkel). A decohesion function F governs the gap and

is the same as the function used in a joint (Equation 4.1). The difference is the

“hardening” function g(ūg) for a gap is

g(ūg) = 0. (4.25)

The modification to the “hardening” function is the only difference between a joint

and a gap. The formulation and numerical implementation is otherwise identical to

the joint formulation show in Sections 4.1 and 4.2.

4.3.1 Results of Driver Program for 1D Gap Model

The gap constitutive model was used through the same load-unload-load cycle in

Figure 4.4. The gap cannot sustain any load whether in tension or compression (Fig
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4.5). The different legs of the loading path overlap because until the gap fully closes,

it cannot withstand any load.
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Figure 4.5: Driver program results, gap going through load-unload-load cycle, the
first leg is labeled 1, second leg 2, third leg 3

4.4 1D Joint Model with Plasticity and Linear

Elasticity

The 1D Joint Model of Section 4.1 is altered to allow for a portion of joint closure

to be associated with linear elasticity. For a joint without linear elasticity, the di-

mensionless joint size ūg closes along the “hardening” function g(ūg) and unloads

vertically. All of the initial strain increment ∆εktot at time tk is first allocated to the

elastic region of the element with which the joint is associated. With the decohesion

function (4.1), the constraints on the decohesion function are not violated when the

total increment in strain is allocated to the elastic region of the joint. This constitu-

tive algorithm represents a plastic joint. Its formulation will be modified to create a

constitutive algorithm for an elastic-plastic joint.
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Based on the formulation of the 1D joint model, consider an initial joint discon-

tinuity ug0 within an element of length h. The element also has a linearly elastic

continuum of length hc = h− ug0. At time tk, the continuum portion of the element

has a strain εc and the joint has a current discontinuity of length uk
g . The stress

in the element is σk = Ecε
k
c and continuity of the stress across the element σk is

maintained. Ec is the modulus of elasticity for the the continuum portion of the

element. In other words, the stress at the joint is also σk. The kinematic condition

for strain across the element is

εktoth = εkchc + εkgug0. (4.26)

The strains are defined as

εkg =
uk
g

ug0
(4.27)

εkc =
hc − uk

c

hc
, (4.28)

where uk
c is the amount of displacement that has occurred within the linearly elastic

continuum portion of the element.

For the next time step, an increment in total strain ∆εk+1
tot is prescribed. The

increment in total strain in terms of an increment in displacement ∆uk+1
tot and the

length of the element h is

εk+1
tot =

∆uk+1
tot

h
. (4.29)

The total strain increment is a sum of the increment in continuum strain as well as

joint strain (4.30).

∆εk+1
tot =

∆εk+1
c hc +∆εk+1

g ug0

h
(4.30)

Assume a linearly elastic constitutive relation for both the continuum and the joint.

The modulus of elasticity of the joint Eg is not necessarily equal to the modulus

of elasticity of the continuum Ec. To maintain continuity of stress, the following is

enforced

∆σ = Ec∆εk+1
c = Eg∆εk+1

g . (4.31)
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Propose a dimensionless parameter αg derived from (4.30) and (4.31), where

∆εk+1
g =

∆εk+1
tot h

(1 + αg) ug0
. (4.32)

αg expresses the strain in the continuum as,

∆εk+1
c = αg

∆εk+1
g ug0

hc

=
αg

1 + αg

∆εk+1
tot h

hc
. (4.33)

From Equations (4.31), (4.32), and (4.33), the dimensionless parameter αg is,

αg =
Eg

Ec

hc

ug0
. (4.34)

Propose an effective modulus E! for the entirety of the element, such that ∆σ =

E!∆εk+1
tot . To find E!, solve the stress continuity equation of ∆σ for the entire

element and the continuum.

E!∆εk+1
tot = Ec∆εk+1

c (4.35)

Substitute (4.33) into (4.35) and solve for E!. The expression for E! is,

E! =
αg

1 + αg

h

hc
Ec. (4.36)

4.4.1 Numerical Implementation of the Elastic-Plastic Joint

Model

To implement the elastic-plastic joint model, the process is almost the same as that

of the plastic-only joint model implementation in Section 4.2. The difference is that

before calculating the value of the decohesion F function, the trial increments in

strain for both the joint and the continuum regions are calculated. This differs

from the fully plastic joint, where the total increment in strain is initially allocated

to the elastic region. Assume an increment in total strain ∆εk+1
tot is prescribed at

time tk+1. First, the equivalent modulus of elasticity is calculated following (4.36).

The equivalent modulus E! is then used from this point forward as the modulus of
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elasticity Y used in Section 4.2. The term αg is calculated following (4.34). The trial

increments in strain for the joint and the continuum region are

∆εk+1
g =

1

1 + αg
∆εk+1

tot , (4.37)

∆εk+1
c =

αg

1 + αg
∆εk+1

tot . (4.38)

With these as the trial increments in strain, the F function is calculated and the

Newton-Raphson solver is followed if necessary just as outlined in Section 4.2. The

modulus of elasticity used for the Newton-Raphson solver is E!.

4.4.2 Calculation of Eg

The modulus of elasticity for the joint can be allowed to vary with closure or be

held constant. This is an option specifically implemented so as to better match the

experimental data. Non-linear elasticity has been allowed but won’t be presented.

Eg can be a constant prescribed initially as a function of the joint function g(ūg,pres),

where ūg,pres is a prescribed value of ūg. Then, Eg is

Eg =
∂g(ūg,pres)

∂ūg,pres
. (4.39)

Another possibility, in holding Eg constant is setting it to the modulus of elasticity

for the continuum.

Eg = Ec (4.40)

The reasoning is that the elastic behavior of a joint composed of fractured parent

rock particulate would have the same elastic behavior as the parent rock.

Also, Eg can be calculated to change through joint deformation based on the

minimum joint size reached. As a joint closes, the minimum value of ūg is captured

as ūg,min. The joint modulus is calculated as

Eg = b
∂g(ūg,min)

∂ūg,min
. (4.41)
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b is a non-dimensional factor that can be used to better fit experimental data and

ensure that both elastic and plastic closure is occurring. If the joint was to unload,

then Eg would be held constant during unloading. After the joint then has been

closed again past ūg,min, Eg would change.

4.4.3 Results of Driver Program for 1D Elastic-Plastic Joint

Model

A driver program was used to prescribe increments in strain for a joint and its

associated elastic region. A load-unload-load routine was prescribed to demonstrate

how the elastic-plastic model unloads. The results of the run are shown in Figure

4.6.
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Figure 4.6: Driver program results for an elastic-plastic joint going through a load-
unload-load cycle.

The results demonstrate that the elastic-plastic joint unloads linear elastically.

The physical meaning is that as the joint closes both elastic and plastic deformation

occurs. Elastic unloading will occur within the joint because of the equivalent mod-
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ulus E!. For the second load cycle, once the deformation causes F to increase to

the value F = 0, then elastic-plastic deformation will resume. The elastic unloading

is the reason for the difference between the elastic-plastic joint model and the joint

model shown in Figure 4.4.

4.5 Experimental Validation of 1D Joint Model

The parameters used in the constitutive model have been chosen based on experi-

mental data from a published experimental study of wave propagation across a filled

rock joint (Li and Ma [13]). The authors used a Split-Hopkinson bar with a granular-

filled joint between the incident and transmission bars confined by a PVC sleeve. The

experimental set up is shown in Figure 4.7. The properties of the incident and trans-

mission bars are a Young’s modulus of 60 GPa, a density ρ of 2650 kg
m3 , length L of

2 m, and a diameter of 50 mm. The material properties will be used in subsequent

numerical simulations.

Sand Layer
Plastic Tube

Incident Granite Bar Transmitter Granite Bar

Hammer

Swing-angle

97 cm 100.5 cm

Figure 4.7: Experimental configuration

Using different hammer swing angles, Li and Ma found the stress-strain data

lies on the same curve regardless of swing angle. The curve fit provided by the

experimentalists is shown in Figure 4.8.

The developed constitutive model coincides with experimental data for a closure

function g(ūg) of the form:

g(ūg) = σg

(
1− 1

ūm
g

)(
e−ūgm

)
. (4.42)
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The parameters σg and m best fit at values of 3.75 Gpa and 7.1, respectively.

Using a driver program prescribing strain increments, the stress-strain curve was

recreated with the constitutive model (Fig 4.8).
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ūm

)
(e−mū)
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Figure 4.8: Driver output

These values of σg andm are used in the subsequent studies of joints with strength

in closure. The experimental data do not give an indication of the joint behavior

during unloading, so it is assumed that a joint could be modeled accurately with ei-

ther an elastic-plastic model (linear joint unloading) or a fully plastic model (vertical

joint unloading).

4.6 MPM Code, Gap Model, and

Analytical Solution

Each of the three different constitutive models has been implemented into a one-

dimensional Material Point Method (MPM) dynamic code. The studies conducted

on these different models use the same code. To test the code and gap model, a

one-dimensional solution was found for a bar with a gap in the middle. The bar

is initially at rest with zero initial stress. The problem set up is that shown in

Figure 4.9. A single gap exists at the middle of the bar, and the gap has an initial
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discontinuity of u0. A sinusoidal velocity v(t) is prescribed at the left boundary. The

assumed function is

v(t) =
vmax

2

(
1− cos(

2πt

twave
)

)
H[twave − t]H[t]. (4.43)

H[t] denotes a Heaviside function. twave is the time span of the pulse, and vmax is

the peak particle velocity of the pulse. The function has zero derivative at t = 0 and

t = twave. This “smoothness” tends to reduce numerical error.

For the run, a gap of initial discontinuity u0 = 3mm was chosen. The peak

particle velocity vmax is 1m/s. The time span of the wave twave = 2.1e−4s (or 1/2

the length of time for a wave front to travel from one end of the bar to the other).

The bar is discretized using 50 elements and one material point per element.

! !""

# $ % # $ &

!"#$

'%
#((($(&)*+,-

USNCCM 11 Pres

Tyler Baker July 23, 2011
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ūm

)(
e−ū
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Figure 4.9: Verification run where the green dot represents a gap in the middle of
the bar.

4.6.1 Gap Model Analysis

The behavior of a gap should be full wave reflection until total closure occurs. Until

the gap width reduces to 0, none of the pulse should propagate past the gap. The

gap behaves as a free surface because it has no resistance to closure (Fig 4.10(a)).
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Figure 4.10: Response of the bar due to a velocity pulse as defined in Equation
(4.43). Figure 4.10(a) is a plot of stress as a function of x for various times. Figure
4.10(b) is a plot of displacement as a function of x for various times. Figure 4.10(c)
is a plot of various measures of energy as a function of time.

No displacement occurs at material points located beyond the joint because none

of the wave propagates through (Fig 4.10(b)). The energy in the bar does not

decrease because a gap has no resistance to closure so no energy is dissipated during

closure (Fig 4.10(c)). Referring to the legend of Figure 4.10(c), the input energy is

the energy introduced into the bar by the velocity boundary condition. The strain

energy is the elastic energy in the material point summed along the bar, including

the elastic energy in the parent rock for the region associated with the gap. The
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kinetic energy is calculated using the velocity of each material point. The closure

energy is the energy dissipated at the gap due to the a resistance to closure and

is zero. The results in Figure 4.10 substantiate the intuitive behavior of the gap

constitutive model, discussed below.

4.6.2 Analytical Solution to Determine Closure Potential

The analytical solution to a contiguous elastic bar is used to determine the maximum

displacement that will occur for a sinusoidal wave reflecting off a free surface of a one-

dimensional bar. This maximum displacement is then compared to the maximum

closure of a gap having the same sinusoidal wave reflection. The gap closes the same

amount as the motion of the free surface if the initial gap is large enough.

The governing partial differential equation to the one-dimensional elastic bar

problem without body forces is

(Yu,x),x = ρu,tt. (4.44)

The analytical solution to Equation (4.44) for the problem set up shown in Figure

4.9 (ignoring the gap) is

u(x, t) = vmax

{
(t− x

c
)− 1

ω
sin

(
ω(t− x

c
)
)}{

H[t− x

c
]− H[t− 2π

ω
− x

c
]

}

+vmax

{
(t+

x

c
) +

1

ω
sin

(
ω(t+

x

c
)
)}{

H[t− 2L

c
+

x

c
]− H[t− 2L

c
− 2π

ω
+

x

c
]

}
,

(4.45)

where

ω =
2π

twave
, (4.46)

c =

√
Y

ρ
. (4.47)

This solution is valid for time 0 ≤ t ≤ 2tprop, where tprop =
L
c .



Chapter 4. One-Dimensional Constitutive Models for Joints 35

The maximum displacement up at x = L occurs at time tprop+ twave and is called

the closure potential where

up = vmax(2π)
ω (4.48)

or

up = vmaxtwave. (4.49)

The expression in Equation (4.49) is also valid for an open gap. The displacement

up is a function of the velocity boundary condition and can be used to characterize

the initial velocity pulse. As long as the gap does not fully close, the maximum

displacement at the gap after wave reflection is equal to up. For the boundary

condition of Eq. (4.43), up is calculated to be 2.1E− 4m. If the initial gap width is

larger than this value, no portion of the wave is transmitted through the gap.

Further, the analytical peak stress of the rightward propagating compressive wave

is σmax = −ρcvmax. Using the imposed boundary condition, the peak stress is -12.6

MPa. This value agrees with the peak compressive stress of the sinusoidal wave

before interacting with the gap in Figure 4.10(a).

4.6.3 Proposed Boundary Condition Characterization

The expression for up from Equation (4.49) is proposed to be the closure potential of

the input wave. A gap of size ug0 with no resistance to closure will close an amount

up for one sinusoidal wave reflecting off of it when ug0 > up. If
up

ug0
> 1, the gap will

fully close and some energy will be transmitted. If up

ug0
< 1, the gap will not close

in a single wave reflection. Considering a joint of initial discontinuity ug0, the same

rule holds true. The resistance to closure of a joint implies that if up is equal to

ug0, the joint will still not fully close because a portion of the wave is reflected off of

the joint, another portion is propagated past the joint, and the remaining portion is

dissipated in closing the joint.

up

ug0
is used as a non-dimensional variable to characterize the potential for closure

for both gaps and joints. For subsequent studies, this expression is used to relate



Chapter 4. One-Dimensional Constitutive Models for Joints 36

the potential for closure possible from the velocity boundary condition to the initial

joint size.
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Chapter 5

Basic Features of Wave

Propagation through a Joint

Three constitutive models are proposed in Chapter 4. The gap, plastic joint, and

elastic plastic joint constitutive algorithms have each been implemented into a dy-

namic MPM code. The one-dimensional bar is discretized using elements with each

element containing one material point. The location of the material points within

cells is discussed further in Appendix D because it has an impact on the smoothness

of the results. The purpose of the basic features study is to determine the qualitative

characteristics of a gap or joint on wave propagation.

5.1 One-Dimensional Bar Problem

With use of the one-dimensional dynamic code, numerical solutions are obtained for

the bar problem shown in Figure 5.1. Whether single or multiple discontinuities

are prescribed, the first discontinuity will be located in the middle of the bar at

xg = L
2 . A discontinuity of length ug0 is prescribed as a single discontinuity or the

sum of multiple discontinuities. The bar has a velocity boundary condition imposed

at x = 0 and a free surface boundary condition imposed at x = L. Initially, the bar

is at rest with no prestress. The velocity boundary condition is imposed in the form
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Figure 5.1: Notation for the problem of a bar with a single discontinuity

of a sinusoidal pulse as follows:

v(t) =
vmax

2

(
1− cos(

2πt

twave
)

)
H[twave − t]H[t]. (5.1)

The prescribed velocity pulse contains two parameters consisting of: vmax, the peak

particle velocity of the imposed wave, and twave, the duration of the sinusoidal pulse.

As given in Eq. (4.49), up is the potential for closure as reflected through the dimen-

sionless variable ug0

up
.

The parameters of the bar are:

• Length L = 2 m,

• Density ρ = 2650 kg/m3,

• Youngs modulus Y = 60 GPa,

• Circular cross-sectional area A = 2 mm2,

• Elastic wave speed c =
√

Y
ρ = 4758m/s,

• Location of the joint is xg = L
2 . For multiple joint studies, the first joint is

located at xg and subsequent joints are at specified points greater than xg,

• The spatial domain of the bar is discretized using 125 elements with one mate-

rial point per element. 125 elements presents reasonable convergence with less

noise, as shown in Appendix A.

The results of each study and bar parameters are nondimensionalized based on

the scheme in Appendix C. Parameters with an over bar denote the dimensionless
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value. For example, t̄ is the dimensionless time. The nondimensionalizing scheme

results in a dimensionless elastic wave speed, c̄, of unit value and the dimensionless

length of the bar, L̄, of unit value. This ensures the dimensionless propagation time,

t̄prop, of an elastic wave traveling from one end of the bar to the other is also of unit

value.

t̄prop =
L̄

c̄
= 1 (5.2)

The parameters m and σg for g(ūg) and the stated values of both are shown in

Figure 4.8 and used for each numerical solution.

5.2 Gap, Plastic Joint, and Elastic-Plastic Joint

Comparison

To illustrate the effects of the constitutive equations on the solution, consider a bar

with a single discontinuity in the middle, as presented in Figure 5.1 and Section 5.1.

The discontinuity can be characterized as a gap, a plastic joint, or an elastic plastic

joint. The initial size of the discontinuity, ug0, is 1 mm. An imposed sinusoidal

velocity boundary condition has a peak particle velocity, vmax, of 8.31 m/s and a

dimensionless wave time t̄wave = 0.43. The dimensionless wave time is large enough

so that numerical dispersion is minimal for the numerical solution. The potential for

closure of a discontinuity up is 1.5 mm for this boundary condition (Eqn (4.49)). This

implies that a gap with no resistance to closure of initial discontinuity 1 mm will fully

close from the propagated wave. A series of four computational runs, including a bar

without a discontinuity, are presented to illustrate the impact of each constitutive

algorithm on discontinuity behavior and wave propagation. The discontinuity is

located halfway along the bar length at approximately x̄ = 1.5. The dimensionless

bar length is of unit value and is centered in a computational domain of length 3.
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5.2.1 No Discontinuity

Figures 5.2(a) and 5.2(b) show results for the elastic bar with no discontinuity. The

compressive wave travels the length of the bar with no interruption, as one would

expect. The sum of the kinetic and strain energies in the bar remain constant after

the wave is fully into the bar. The red line of Figure 5.2(b) is the energy that would

be dissipated in closing a discontinuity and is zero throughout the run because of

the homogenous elastic bar.
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(b) Energy in Bar

Figure 5.2: Results of wave propagation through a bar without a discontinuity

5.2.2 Gap Discontinuity

Figure 5.3 is the result of a bar with a gap. The gap has no resistance to closure

and is identical to a free surface. The compressive wave will reflect off of it as a

leftward traveling tensile wave until full closure occurs (Fig 5.3(a)). At time t̄ ≈ 0.8,

the discontinuity fully closes and no longer acts as a free surface. The remaining

portion of the wave can then propagate through the discontinuity continuing as a

compressive wave. The abruptness of this change and the nature of the dynamic code

made for noisy results after gap closure (plotted times t̄ ≈ 0.8 and 1(the black and

red lines)). The tail end of the reflected tensile wave moving left of t̄ ≈ 0.8 oscillates
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over a zero stress because of the abruptness. Therefore, once the joint fully closes,

the tail of the reflected tensile wave will drop to zero and whatever remains of the

initial compressive wave will propagate through the gap. The rightward portion of

the compressive wave at t̄ of 0.8 is noisy but has the form of the pulse with an almost

vertical front face and a tail that has the sinusoidal form of the initial compressive

wave. When full closure of the gap occurs, the wave is split at the discontinuity. The

front portion of the wave that was reflected as a tensile wave sharply drops to zero

stress but its front moving face maintains the shape of the initial pulse. The front

face of the continuing compressive wave is steep but the tail assumes the shape of

the initial pulse.
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(d) Discontinuity vs. Time

Figure 5.3: Results of wave propagation through a bar with a gap
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The energy plot behaves as expected, as shown in Figure 5.3(b). The sum of the

kinetic and strain energies remain constant after the wave is fully introduced and

equal to that of the input energy. The reflection of the wave at the discontinuity

starting initially at t̄ ≈ 0.5 causes equal increases in kinetic and decreases in strain

energy so that the sum of the two values remains constant. This is identical to

free surface reflection. The closure energy remains zero throughout because the gap

dissipates no energy from the compressive wave.

Figure 5.3(c) is the plot of stress versus dimensionless discontinuity ū. The dis-

continuity is initially equal to 1. As the compressive wave interacts with it, the gap

closes while not withstanding any compressive load. During this period, the wave is

fully reflecting off of the discontinuity in the form of a leftward traveling tensile wave.

At a discontinuity size ū equal to zero, the bar becomes continuous, which allows the

remainder of the initial compressive wave to propagate past the gap. Figure 5.3(d)

is a plot of ū versus time and is more insightful than Figure 5.3(c). At time t̄ ≈ 0.5,

the gap begins closing, and when t̄ ≈ 0.75, the gap is completely closed.

5.2.3 Plastic Joint Discontinuity

Figure 5.4 is the result of wave propagation through a plastic joint. The discon-

tinuity has resistance to closure and allows part of the initial compressive wave to

propagate through before the joint is fully closed. The stress plot in Figure 5.4(a)

shows the wave propagating through the joint with very little attenuation. The peak

compressive stress after the joint appears to be approximately the same as the peak

stress before the joint. A portion of the wave is reflected off of the joint as a tensile

wave but the behavior is much smoother than the results for the gap shown in Fig-

ure 5.3(a). The majority of the tensile reflection occurs when the wave first interacts

with the joint. The nonlinear resistance to closure is much less for a joint closing

from ūg = 1 to ūg = 0.9 compared to a joint closing from ūg = 0.7 to ūg = 0.6.

Therefore, more of the front of the compressive wave will reflect off of the joint as a

tensile wave because of the initially weaker resistance to closure of the joint.
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(c) Discontinuity

Figure 5.4: Results of wave propagation through a bar with a plastic joint

Once the joint has closed enough to resist any further closure, the majority of

the compressive wave will propagate through the joint with little reflection. The

length of the wave propagated through the joint is approximately the same length as

the initial wave. The reflected tensile wave is much shorter because the joint closed

quickly to a state of stress allowing the majority of the wave to continue through

as a compressive wave with no further tensile reflection and no further increase in

closure.

The plot of energy shown in Figure 5.4(b) demonstrates that the joint dissipates

some energy during closure. The blue dotted line is the sum of the strain and kinetic

energies in the bar. At dimensionless time t̄ ≈ 0.5, the wave first interacts with the
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joint. The joint begins to close but not until t̄ ≈ 0.6 does the dissipated energy

accumulate enough to be visualized on the plot. For t̄ between 0.5 and 0.6, the

joint is closing but its resistance to closure is small enough that some of the wave

reflects off of the joint as a tensile wave. The joint continues closing which requires

an increase in energy dissipation until the stiffness of the joint is large enough that

no more closure occurs. The closure energy increases while the sum of the strain

and kinetic energies decreases. The total energy in the bar defined as the sum of

the elastic, kinetic and closure energies remains constant during the joint interaction

(the magenta dashed line in Fig 5.4(b)).

Figure 5.4(c) plots the stress at the joint as a function of ū. As the joint closes,

the stress follows the gap function g(ūg). The joint closes to a minimum value

of ū ≈ 0.76 and then unloads to a zero stress state. The unloading is plastic (ū

remains constant), which produces a vertical unloading path. Correspondingly, the

surrounding parent rock unloads elastically until zero stress is reached. The peak

stress of the gap prior to unloading is σ̄ ≈ −0.027. This is also the peak value of

stress for the wave after propagating through the joint (Fig 5.4(a)).

5.2.4 Elastic-Plastic Joint Discontinuity

For the elastic-plastic joint, the modulus of elasticity for the joint was taken to be

constant and is the slope of the function g(ūg) when ūg is 0.7. The reason for this

choice is that for the assumed force on the boundary, the joint will not close below

ūg = 0.7 and an unloading curve with a tangent to the loading cycle seems to agree

with the experimental behavior of joints. The ratio of the elastic modulus of the

parent rock to the joint modulus is,

Ej

Ec
= 0.091. (5.3)
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(c) Discontinuity

Figure 5.5: Results of wave propagation through a bar with an elastic-plastic joint

Figure 5.5 provides plots of results obtained with an elastic-plastic joint in the

bar. The elastic-plastic behavior is very similar to the plastic joint in Section 5.2.3.

Comparing the stress plots of Figures 5.4(a) and 5.5(a), the compressive wave prop-

agates towards the joint with a portion of the wave reflecting off of it and another

portion propagating past and continuing on as a compressive wave. The peak values

of the waves in each scenario are approximately the same. The key difference is

the plastic joint does not have a compressive wave trailing the reflected tensile wave

from the joint. However, the elastic-plastic joint at time t̄ ≈ 1 has a leftward mov-

ing compressive wave traveling behind the reflected tensile wave, indicated in Figure

5.5(a). The source of this phenomenon is likely the joint unloading elastically. The
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modulus of elasticity of the joint is less than the modulus of the parent rock. The

discontinuity in moduli might create a separate wave during unloading. Nonetheless,

the impact of specifying an elastic-plastic joint as opposed to a plastic joint appears

to be minimal.

The energy plot of Figure 5.5(b) does have some slight variance from the plastic

joint energy plot. The total energy does move slightly above the input energy of the

bar after the wave propagates through the joint. The scheme of using an effective

modulus might be the source of the discrepancy. Nonetheless, the discrepancy is

minimal.

The joint behavior in Figure 5.5(c) is almost identical to the plastic joint (Fig

5.4(c)). The peak stress at the joint and the shape of the loading curve is the same.

Elasticity causes non-vertical unloading. The joint length ū does not remain constant

due to elasticity as the joint stress unloads fully to zero strain.
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Chapter 6

Effects of Parameters on Wave

Propagation through Single Joint

6.1 Program of Single Joint Study

The focus of the one-dimensional study is to qualitatively determine the impact of

each constitutive model on wave propagation for a single joint. Figure 6.1 illustrates

the single joint study. A joint is placed in the middle of the bar with an initial

discontinuity length ug0. A wave is propagated down the bar as shown in Figure 5.1.

The wave impulse, peak stress, and energy transmitted through the discontinuity are

considered to determine the impact of the discontinuity on wave propagation. The

form of the pulse is varied by the wave time t̄wave and peak particle velocity vmax to

give the same potential for closure up. Also, the initial discontinuity size is varied.

The values of the size of initial joint width and parameters of the propagated wave

are shown in Table 6.1.
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Figure 6.1: Single Discontinuity Study
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(a) Boundary Conditions,
up = 1.5mm

Set vmax t̄wave

1 7.14 m/s 0.5
2 7.68 m/s 0.465
3 8.31 m/s 0.43
4 9.04 m/s 0.395
5 9.92 m/s 0.36
6 10.99 m/s 0.325
7 12.32 m/s 0.29
8 14.01 m/s 0.255
9 16.23 m/s 0.22
10 19.31 m/s 0.185
11 23.81 m/s 0.15

(b) Initial Disconti-
nuity Size ug0

Set ug0

1 0 mm
2 0.15 mm
3 0.3 mm
4 0.45 mm
5 0.6 mm
6 0.75 mm
7 0.9 mm
8 1.05 mm
9 1.2 mm
10 1.35 mm
11 1.5 mm

Table 6.1: Inputs used for the single joint sets

Study Outputs

Each study uses the same outputs to draw conclusions about wave-joint interaction.

The outputs considered are the peak stress, the impulse of the wave, and the energy

transmitted past the discontinuity. The peak stress past the discontinuity is related

to the peak stress before the discontinuity by

σ̄ratio =
σ̄min,right

σ̄min,left
. (6.1)

σ̄min,right is the minimum peak stress after the wave has propagated beyond the

discontinuity. σ̄min,left is the minimum peak stress before the wave has propagated

through the discontinuity. Each of these is non-dimensionalized. The impulse value

is calculated as

Iratio =
Īright
Īleft

. (6.2)

Again, the subscript left and right denote the value before propagating past the

discontinuity and after propagating past the discontinuity. Both the impulse and

peak stress are values found at the material points and are more likely have unrealistic

values because of numerical dispersion. The energy summed across the entire bar is

Ētotal and is the sum of the kinetic and strain energies for each material point in the
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bar. The transmitted energy Ētrans is the sum of the kinetic and strain energies only

for the material points to the right of the discontinuity. The energy is plotted with

the expression

Eratio =
Ētrans

Ētotal
. (6.3)

The energy values are less susceptible to dispersion because energy is a summed

quantity of the the material point values.

6.2 Single Discontinuity Study

The first study is a single discontinuity. The gap, plastic joint, and elastic-plastic

joint constitutive algorithms are each used for the discontinuity in the middle of the

bar. The problem layout is shown in Figure 6.1. The input parameters in Table 6.1

are used for the closure potential up of 1.5 mm and the initial joint sizes.

6.2.1 Gap

The single discontinuity study begins with the gap. The corresponding results are

shown in Figure 6.2. The gap enables intuitive expectations of the discontinuity

behavior to be confirmed. When the initial discontinuity ug0 is zero, all of the wave

energy should propagate past the gap. The peak stress and impulse should be the

same on either side of the gap. Conversely, when ug0 is equal to up, the wave should

not propagate past the gap. The impulse and peak stress should be zero past the

gap. And, no energy should be transmitted through the gap.

In Figure 6.2(a), when ug0

up
is equal to one no energy is transmitted because total

gap closure occurs at the end of the wave reflection. For ug0

up
= 0, all of the energy is

transmitted past the gap. This behavior is the same for the impulse and peak stress

in Figures 6.2(c) and 6.2(b), respectively.

The wave characteristics seem to have little impact on the amount of transmitted

energy. Regardless of vmax and t̄wave, the results of transmitted energy plot on top
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of one another (Fig 6.2(a)). This does not hold for the impulse or peak stress. The

results for peak stress and impulse of each run are not fully shown in Figure 6.2. The

wave impulse for each wave input lay close to one another (Fig 6.2(c)). But, the peak

stress does not. For smaller t̄wave values, a larger peak stress occurs past the gap

than before the gap. These results do not seem plausible and are due to numerical

dispersion associated with a jump in stress once the gap closes. Individual material

point quantities are particularly susceptible to numerical dispersion and make the

results without much dispersion difficult to interpret on the same axis. The forcing

function with small values of t̄wave result in significant dispersion. Peak stress and

impulse are plotted for every run and shown in Figure E.1 in Appendix E.
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Ī r
i
g
h
t
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Ī r
i
g
h
t
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(d) Legend

Figure 6.2: Plots of results for wave propagation through a single gap with up =
1.5mm
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Conclusions of Single Gap Study

• The significant parameter for wave propagation through a single gap is ug0

up
.

• The energy transmitted past a gap is approximately constant regardless of the

wave characteristics. As long as up is the same for a sinusoidal pulse, vmax and

t̄wave do not impact the transmitted energy.

• The peak stress is very close to one when ug0

up
is less than one. This only applies

to waves of t̄wave ≥ 0.395.

6.2.2 Plastic Joint

The inputs of the single plastic joint study are the same as the single gap study.

The results are presented in the same manner as well, shown in Figure 6.3. For an

initial gap size of zero, the transmitted energy, peak stress, and wave impulse are

the same for each wave input and are either one or close to one. These results are

expected. The energy plot of Figure 6.3(a) shows that more energy is transmitted

past the plastic joint for a longer wave time t̄wave for all values of
ug0

up
. This conclusion

is expected because a long wave interacts with a joint for a longer period of time

allowing it to propagate more energy as opposed to reflecting off the joint quickly.

The peak stress curves in Figure 6.3(b) lie on top of one another for the input

parameters of t̄wave 0.5, 0.465, 0.43, and 0.395. The peak stress drops slightly as ug0

up

is closer to one. The result is intuitive because the larger the joint, the more energy

will be dissipated in closing it before a large portion of the energy can propagate

through. However, for other input parameters, the peak stress result is greater than

one. This should not occur with the constitutive algorithm. The behavior comes

from numerical dispersion and the results are omitted. The full results are shown

in Figure E.2. The peak stress grows for smaller wave times and appears to peak

when ug0

up
is between 0.6 and 0.8 for the smaller wave times. The wave impulse

decreases with larger ug0 (Fig 6.3(c)). The longer the wave the larger the impulse
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transmitted for wave times between 0.5 and 0.36. For wave times shorter than this,

the characteristic breaks down due to numerical error.

The results for peak stress and impulse of each run are not fully shown in Figure

E.2 of Appendix E. Individual material point quantities are particularly susceptible

to numerical dispersion, which can skew the results. The input boundary conditions

with small values of t̄wave result in significant errors. For t̄wave less than 0.36, the

characteristic features break down due to dumerical error.
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(d) Legend

Figure 6.3: Plots of results for a wave transmitted through a single plastic joint with
up = 1.5mm.
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Conclusions of Single Plastic Joint Study

• The longer the wave time, the more energy is transmitted past the plastic joint.

• The larger the initial discontinuity size, the less the peak stress transmitted

past the joint. This only holds for wave times greater than 0.395 because

numerical error makes determining the characteristics difficult.

• The wave impulse decreases with larger initial discontinuity size for wave times

greater than 0.36.

6.2.3 Elastic-Plastic Joint

The characteristic behavior of the single elastic-plastic joint is very similar to the

plastic joint. The results of Figure 6.4 present similar qualitative characteristics as

Figure 6.3.

Conclusions of Single Elastic-Plastic Joint Study

• The wave-joint interaction of an elastic-plastic joint has similar characteristics

of a plastic joint.

• Slightly less energy is transmitted past an elastic-plastic joint than a plastic

joint. The qualitative characteristics of both are the same.

• Slightly less peak stress is transmitted past an elastic-plastic joint than a plastic

joint. The impact of wave characteristics on peak transmitted stress is the

same.

• Slightly less impulse is transmitted past an elastic-plastic joint than a plastic

joint. The impact of wave characteristics on wave impulse is the same.
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(d) Legend

Figure 6.4: Plots of results for a wave transmitted through a single, elastic-plastic
joint with up = 1.5mm.

6.3 Single Joint Conclusions

Overall, the study of single gaps and single joints yielded several conclusive results.

The goal of the study was to determine the impact of wave parameters and initial

joint size on energy transmission, impulse, and peak stress. Due to numerical errors

introduced that are more pronounced by small values of t̄wave, the impulse and peak

stress could not be concretely determined because each value is calculated at a ma-

terial point. This was the case for a gap, a plastic joint, and an elastic-plastic joint.

The results for energy transmission were less effected by numerical error because the



Chapter 6. Effects of Parameters on Wave Propagation through Single Joint 55

energy is summed over multiple material points. For a gap, energy transmission was

the same for values of ug0

up
, and the wave parameters vmax and t̄wave had no impact.

For a plastic joint, more energy was transmitted through the discontinuity for larger

values of t̄wave. The reason for this is that a longer wave spends a longer period of

time interacting with the joint. Because the joint has nonlinear resistance to closure,

a longer wave-joint interaction time forces the joint to a stress state that can allow

the remainder of the wave to propagate past. For an elastic-plastic joint, the results

led to the same conclusion. The elastic-plastic joint does not behave significantly

different from a plastic joint. The key difference between the two is that the amount

of energy transmitted through an elastic-plastic joint is slightly less than that of a

plastic joint for identical values of initial discontinuity size and wave parameters t̄wave

and vmax.
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Chapter 7

Effects of Parameters on Wave

Propagation through Two Joints

Appendices F and G present two studies (and numerical results), which motivate

this chapter. The intent of those studies was to find the impact of lumping joints

into fewer joints and the spacing of two joints on wave propagation. After analyzing

the results of the lumping gaps (Fig F.1), the issue arose that n gaps of equal initial

size up

n allowed energy to be transmitted through the gaps. Whereas, a single gap of

initial size up does not allow any energy to be transmitted past. Intuitively, whether

a gap with no resistance to closure or two gaps with no resistance to closure, one

would expect that no energy would be transmitted past them.

The results of the lumping gap study are plotted in Figure 7.1 (also included

in Appendix F). One would expect no energy to propagate past the set of gaps

when the sum of initial gap sizes ug0 is equal to the potential for closure of the

input wave up. For a single gap, the results are as expected and satisfactory, as the

entire compressive wave is reflected off of the gap. But, for multiple gaps, energy

does propagate past the gaps. Further exploration is conducted to understand the

impact of these unexpected results by increasing the distance between two gaps and

analyzing the propagating wave.
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(b) Legend

Figure 7.1: Transmitted energy results for multiple gap study

Lumping Joints Study

As discussed above, the study of lumping multiple joints illustrated in Figure F.1

warranted further exploration. The results are provided in Appendix F. The key

result is that more energy is transmitted through multiple joints than transmitted

through one equivalent joint with the same total potential for closure. The study

was conducted on gaps, plastic joints, and elastic-plastic joints with prescribed ug0 =

1.5mm and ug0 = 0.5mm.

Joint Spacing Study

The numerical solutions to the study are provided in Appendix G. Two joints were

prescribed in the middle of the bar, and the distance between the two was varied

for each run. The tentative conclusion is that the more spacing between gaps, the

less energy is transmitted. The results for plastic joints are not as susceptible to

spacing issues as gaps. However, these results may not be conclusive because of
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wave trapping discussed below.

7.1 Two Gaps Study

To produce clearer numerical results, 250 material points and one material point per

cell were prescribed to discretize the bar (rather than the previously proposed 125).

The finer mesh was chosen because dispersion introduced by two discontinuities is less

prominent with 250 versus 125 material points (Appendix B presents a convergence

study for two gaps). The spacing between two gaps is varied by specifying the number

of material points between the two gaps. The gaps have equal initial discontinuities

of size ug0

2 , where ug0 is 1.5mm. The sinusoidal pulse is defined by parameter values

of vmax = 9.92m/s and t̄wave = 0.36, which produces a value of up = 1.5mm. The

initial total discontinuity size is ug0 = 1.5mm. The value of t̄wave was chosen to allow

the full length of the wave to fit in the length of the bar to the right of the second

discontinuity. The value of vmax produces a wave that has a potential for closure equal

to the total initial discontinuity size. These values are reported in Table 7.0(a). The

gaps are spaced by specifying the number of material points separating them. As

shown in Table 7.0(b), the material point spacing is equivalent to ∆x̄gap, which is

the dimensionless length between the two material points with prescribed gaps. The

dimensionless value ∆x̄gap

t̄wave
relates the gap spacing to the length of the wave. This

value was chosen to better determine the relationship between gap spacing and wave

length.

(a) Boundary Condi-
tions, up = 1.5mm

vmax t̄wave

9.92 m/s 0.36

(b) Discontinuity Spacing

MP Spacing ∆x̄gap
∆x̄gap

t̄wave

10 0.04 0.111
20 0.08 0.222
30 0.12 0.333
40 0.16 0.444

Table 7.1: Inputs used for gap spacing
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Stress at each material point is plotted at various times for each spacing in Fig-

ure 7.2. In each run, the results are similar regardless of gap spacing. The initial

compressive pulse propagates to the first gap as expected. The first (left-most) gap

will close upon wave-joint interaction. The closure introduces numerical dispersion

because of the discontinuity in stress. The first portion of the wave reflects off the

gap as a leftward traveling tensile pulse and the remainder propagates through the

gap. The continuing compressive wave interacts with the second gap. Because the

size of initial discontinuity of both gaps is up

2 , the second gap also closes. During

closure of the second gap, the compressive wave is reflected as a tensile wave traveling

left. Gaps have no strength in tension, therefore, the now leftward traveling wave

between the two gaps will reflect off of the first gap, which opens, and the pulse be-

comes a rightward traveling compressive wave. This event will be referred to as wave

trapping. At this point, the right gap is already closed, and the trapped compressive

wave propagates through it without disturbance. Wave trapping between gaps is

the reason wave propagation was occurring through the sets of gaps for the lumping

gap study. There is a noticeable slowing of the wave front due to the reflections.

The greater the distance between gaps, the more time is required for the wave to

propagate through the gaps to the right end of the bar. For ∆x̄gap

t̄wave
values of 0.333

and 0.444, t̄ > 1.3 when the wave front gets to the right end. Further, wave trapping

increases the length of wave travel as it propagates from one end of the bar to other.
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(d) ∆x̄gap
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= 0.444

Figure 7.2: Plots of stress for different gap spacings (blue dots denote locations of
gaps)

The energy transmitted through the gaps was also analyzed. Figure 7.3 shows

the plots of energy transmitted through the gaps versus dimensionless time. Figures

7.3(b), 7.3(c), and 7.3(d) each show approximately 0.5 of total energy transmitted

through the gaps at the end of each run. The run with a ∆x̄gap

t̄wave
of value 0.111 is only

0.45 at the final time, which may be due to numerical error. When the gaps are

close to one another, the discretization is not able to properly represent the wave.

Nonetheless, if half of the total energy gets through the gaps, half of the wave energy

is reflected off of the first gap. The second half of the wave is trapped in between
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the gaps then eventually propagates through the second gap. Only half of the wave

is reflected in closing the first gap of size up

2 . And, half of the wave is reflected at

the second gap. But after wave trapping, the wave can propagate through the closed

second gap.
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Figure 7.3: Results for transmitted energy due to gap spacing

7.1.1 Two Gaps In-Depth

The results of wave propagation through two gaps with a spacing value ∆x̄gap = 0.16

is shown in greater detail in Figure 7.4. Each plot is the material point stress at

various times. (1) is the earliest plotted time, and (6) is the latest plotted time.

Beginning with (1), the process of wave propagation is:
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(1) The compressive pulse A originates at the left end of the bar and propagates left

towards the first gap.

(2) Wave A closes the first gap, splitting the wave in half. Wave B reflects off of

the first gap as a leftward traveling tensile wave. Wave A propagates through

the closed first gap.

(3) Wave B propagates towards the left end of the bar. Wave A closes the second

gap and reflects off of it as a leftward traveling tensile pulse.

(4) Wave B begins to reflect off of the left end of the bar. Wave A reflects off of the

first gap and becomes a rightward traveling compressive pulse. The reflection of

the tensile wave on the closed gap causes the first gap to open.

(5) Wave B reflects off the left end of the bar. Wave A propagates through the

closed gap.

(6) Wave B and wave A are rightward traveling compressive pulses. The entirety of

wave A has propagated through both gaps.

The close-open cycle of the first (left) gap is shown in Figure 7.5(a). The first

gap opens because of the tensile reflection in Figure 7.4 at (3) after initially closing

at (2). Figure 7.5(b) illustrates the closing of the second (right) gap versus time.

The right gap closes at (2) in Figure 7.4 and remains closed.
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Figure 7.4: Stress plots at various time of wave propagation through two gaps spaced
40 material points apart (blue dots denote gap locations)
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Figure 7.5: ū versus time for each gap
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7.2 Two Plastic Joints Study

Runs with identical wave inputs to those shown in Section 7.1 were gathered for

two plastic joints as well. Rather than analyzing a bar with two joints spaced by

∆x̄joint = 0.04 (the first run in the two gap study), a bar with a single joint was

analyzed. Comparing the single joint results with joint spacing results can give

clearer insight into the possibility of joint lumping.
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Figure 7.6: Plots of material point stress for multiple joint spacing (blue dots denote
joint locations)

Figure 7.6 shows the plots of material point stress at various times. A single joint

behaves as expected. The compressive wave is split into a tensile reflection off of the
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joint and a continuing compressive pulse. For two joints, wave splitting occurs twice.

Therefore, the original wave will split into three separate waves after propagating

through both joints. For each run, there’s an initial reflection off of the first joint

and a continuing compressive wave. The continuing compressive wave propagates

through the second joint but part of the wave is reflected as a tensile pulse. The

tensile pulse is trapped between the two joints and reflects off of the first to continue

through the second joint as a compressive pulse. At this point, there are two distinct

waves that have propagated through the joints. The closer the joints are to one

another, the more indistinguishable the two separate waves become. Also, the time

required for the wave front to reach the right end of the bar is slightly greater than

the elastic propagation time because of the increase in travel distance of the wave

due to wave trapping

The energy plots were not considered for the two gap study because no energy

dissipation occurs in closing gaps. For the two joint study, energy plots are important

because energy is dissipated through joint closure. Figure 7.8 shows the plots of

different energies versus time for each run. In each run, the kinetic and strain energy

both began to alter at t̄ = 0.5. This is when the wave interacts with the first joint.

For the spaced joints, a similar kinetic and strain energy attenuation occurs slightly

thereafter because of the second joint. During these wave-joint interactions, the

closure energy increases because the joints are being closed. Also, the sum of the

kinetic and strain energies decrease, which is a result of the dissipated closure energy.

Table 7.2 displays the ratio of maximum closure energy for each run in relation

to the maximum closure energy for a single equivalent joint. For a single joint, this

value is one. For two joints of the prescribed spacings, the closure energy is 0.68%

greater than the single joint. This implies that regardless of joint spacing, the same

amount of energy will be dissipated in closing the joints. Also, if two joints only

dissipate 0.68% more energy than a single joint, certain computations may warrant

lumping multiple joints into fewer discontinuities to increase computing efficiency.



Chapter 7. Effects of Parameters on Wave Propagation through Two Joints 66

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

!8

Time t̄

E
n
er
g
y

1 Joint

 

 

Input Work

K+S

Kinetic

Strain

Closure

Total

Student Version of MATLAB

(a) 1 Joint

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

!8

Time t̄

E
n
er
g
y

Joints Spaced by 20 Material Points

 

 

Input Work

K+S

Kinetic

Strain

Closure

Total

Student Version of MATLAB

(b) ∆x̄joint

t̄wave
= 0.222

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

!8

Time t̄

E
n
er
g
y

Joints Spaced by 30 Material Points

 

 

Input Work

K+S

Kinetic

Strain

Closure

Total

Student Version of MATLAB

(c) ∆x̄joint

t̄wave
= 0.333

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

!8

Time t̄

E
n
er
g
y

Joints Spaced by 40 Material Points

 

 

Input Work

K+S

Kinetic

Strain

Closure

Total

Student Version of MATLAB

(d) ∆x̄joint

t̄wave
= 0.444

Figure 7.7: Energy versus time plots for multiple joint spacings

MP Spacing Ēclose

Ēclose,1joint

1 Joint 1
20 MP 1.0068
30 MP 1.0068
40 MP 1.0068

Table 7.2: Energy dissipated in closing the joints

While the energy dissipated in propagating a wave through two joints is close

to the energy dissipated through a single equivalent joint, the amount of energy

transmitted through two joints is not the same as a single equivalent joint. Figure

7.8 illustrates the energy transmitted through the joints during wave propagation.
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A single joint allows approximately 73% of the total energy to be transmitted. Two

joints transmit 81% to 96% of the total energy, depending on spacing. The reason

is that less of the wave is reflected off of the first joint (as compared to the single

joint) and the portion of the wave reflected off of the second joint is trapped between

the two joints and eventually propagates through the second joint after reflecting off

the first. Multiple joints split up portions of the wave multiple smaller waves which

become trapped between joints and eventually propagate through. Whereas, a single

joint reflects a larger portion of the wave that will not reflect back through the initial

joint because there isn’t another joint for the tensile wave to reflect off of again. In

other words, a single joint does not produce the wave trapping effects of multiple

joints.
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Figure 7.8: Energy transmission of multiple joint spacings
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7.2.1 Two Joints In-Depth

The run with a spacing value ∆x̄joint = 0.16 study is further analyzed in a manner

identical to the multiple gaps result of Section 7.1.1. Figure 7.9 shows the material

point stress plotted at different times. (1) is the first time plotted. (6) is the last

time plotted.

Beginning with (1), the process of wave propagation through two joints is:

(1) The compressive pulse A propagates towards the first joint.

(2) A portion of the compressive pulse A propagates through the joint. A smaller

portion is reflected off of the joint and becomes the tensile leftward traveling

wave B. The first joint closes to a stress state that allows wave transmission.

(3) WaveB continues propagating. WaveA interacts with the second joint and again

is broken into a continuing compressive wave A and a reflected wave C. At this

current time, C has not reflected off of the joint fully and is still compressive.

The second joint closes.

(4) Wave B continues propagating. Wave A has propagated through the second

joint and is continuing as a compressive wave. Wave C has reflected off of the

second joint and is traveling left as a tensile pulse.

(5) Wave B begins reflection off of the left end of the bar. Wave A continues

propagating down the bar. Wave C reflects off of the first joint because joints

have no strength in tension. Wave C is now a rightward traveling compressive

pulse. The first joint opens because of this reflection.

(6) Wave B reflects off of the end of the left bar and is traveling left as a compressive

pulse. Wave A makes initial contact with the right end of the bar. Wave C

propagates through the second joint with little attenuation because the joint has

already closed to a stress state allowing the earlier transmission of wave A.
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An interesting observation is that the peak stress of the tensile wave B is less

than that of tensile wave C. This is most likely due to the altering of wave A after

propagating through the first joint.
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Figure 7.9: Material point stress plotted at different times (blue dots denote joint
locations)

Figure 7.10 shows plots of the first and second joint sizes ū versus time. The left

joint closes to approximately 0.75 from the initial propagation through the joint (Fig

7.10(a)). The wave then has a tensile reflection off of the second joint (wave C in

Fig 7.9). When this tensile wave continues to the first joint, the joint opens up. This

occurs at t̄ ≈ 0.85. The second joint closes at t̄ ≈ 0.8. Wave C propagates through

the second joint without closing it further.
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ū

t̄

Joints Spaced by 40 MP, Left Joint

Student Version of MATLAB

(a) Left Joint

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.7

0.75

0.8

0.85

0.9

0.95

1

ū
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Figure 7.10: ū versus time for each joint

7.3 Summary of Multiple Joints

The analysis of two joints in this chapter clearly indicates that wave trapping occurs

between two discontinuities, whether joints or gaps. The splitting of the initial wave

at the second joint produces a tensile reflection that interacts with the first joint

before propagating through the second. This phenomenon cannot be captured by a

single joint. A single joint only has one tensile reflection which is not redirected back

through the joint. For two joints, the second tensile reflection at the second joint

does get reflected at the first joint and continues nearly uninterrupted propagation

through the second joint. Therefore, more energy is transmitted through two joints

than a single joint. The closure energy dissipated in two joints is very close to the

energy dissipated in closing a single equivalent joint. Further, the closure energy of

two joints is independent of joint spacing. Overall, the impact of two joints on wave

propagation cannot be captured with a single joint.
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Chapter 8

Conclusion

8.1 Summary

Rock joints are understood to be failures of the parent rock medium. Joints can

either be filled with gouge and resist closure or be fresh and not resist closure (gaps).

Typically, rock joints are characterized within a constitutive model that captures the

effects of parent rock and joints as one. While reasonable for some simulations, this

approach does not give a concrete indication of how individual joints interact and

affect wave propagation. This research proposed several one-dimensional constitutive

models suitable for normal loading of joints consisting of plasticity, elastic-plasticity,

and gaps. With these models, the interactions of rock joints and wave propagation

were explored.

The key results are the effects of wave parameters and the drawbacks of lumping

multiple joints into an equivalent joint. A gap is shown to be indifferent to wave

parameters and is only influenced by the closure potential up of the wave. A plastic

joint transmits more energy for longer waves than shorter waves when both have

equal values of the potential, up, for gap closure. The behavior of elastic-plastic and

plastic joints is quite similar. Elastic unloading does not have a significant effect on

wave propagation.
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The work done with multiple joints shows that lumping joints does not capture the

nuances of wave propagation. As a wave propagates through individual joints, it is

attenuated and split. This can trap portions of the wave between joints until a certain

amount of closure occurs, allowing the reflection to propagate through. Multiple

joints have a net effect of allowing more of the original pulse to be transmitted in

comparison with a single joint. Two joints have been shown to dissipate less than

1% more energy than a single joint. However, an equivalent single joint does not

transmit as much energy as multiple joints because wave trapping does not occur.

8.2 Future Work

A continuation of the one-dimensional work to provide a deeper understanding of

the impact of wave time on joint spacing would be helpful. Intuitively, a long wave

has less reflected energy than a short wave. However, when multiple joints are

prescribed, does wave length impact energy transmission as much it does for a single

joint? Also, finding an effective manner to lump multiple joints while still capturing

their overall effect may be beneficial for developing an efficient numerical algorithm.

Implementation of a three-dimensional model to conduct studies similar to the one-

dimensional study would be enlightening. Such studies could ascertain the impact

of joint shearing on dynamic wave propagation in addition to the effects of normal

joint closure reported herein.
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Appendix A

Convergence Study with a Single

Gap

The dynamic one-dimensional MPM code is specified to have a single gap in the

middle of the bar. The bar is discretized with one material point per cell. Three

runs are used to show convergence of the code by specifying 50, 125, and 250 material

points to discretize the bar. The input wave is the sinusoidal pulse of vmax = 7.14m/s

and t̄wave = 0.5. The wave has a closure potential up = 1.5mm. The discontinuity

has an initial size ug0 = 0.5mm. The gap fully closes and a portion of the pulse

propagates beyond the gap. The results of each run are illustrated in Figures A.1,

A.2, A.3, and A.4.

The material point stress is plotted at different times along the bar for each

mesh size in Figure A.1. As the number of material points is increased, the solution

converges to the expected results of zero stress after the reflected tensile wave and

the abrupt face of the continuing compressive wave through the gap after closure

occurs.

The energy plot converges towards a constant total energy during the initial

reflection of the wave off of the gap in Figure A.2. As the mesh is refined, less

of a attenuation in total bar energy occurs. This is referring to the slight increase
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Figure A.1: Mesh refinement for wave propagation through a gap, 1 material point
per cell

then decrease in total bar energy at time t̄ from 0.5 to 0.8. Also, the closure energy

remains at zero because the gap has no resistance to closure.

The energy transmitted beyond the gap versus time in Figure A.3 is almost

identical for each mesh refinement. Smoothing of the curve is noticeable between the

50 material point and 125 material point meshes during the period of energy being

tranmitted (Figs A.3(a) and A.3(b), respectively). For each mesh, the transmitted

energy levels off to a constant value of approximately 0.72.

The gap size versus time in Figure A.4 is almost identical for each mesh refine-

ment. The gap begins to close at t̄ ≈ 0.5 and closes fully at t̄ ≈ 0.7.
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Figure A.2: Mesh refinement for wave propagation through a gap, 1 material point
per cell
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Figure A.3: Mesh refinement for wave propagation through a gap, 1 material point
per cell
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Figure A.4: Mesh refinement for wave propagation through a gap, 1 material point
per cell



77

Appendix B

Convergence Study with Two Gaps

A second convergence study was conducted to show convergence with two prescribed

gaps. The input wave has parameters vmax = 9.92m/s and t̄wave = 0.36. Figure

B.1 shows convergence of stress plots when the bar discretization is refined from 125

to 250 to 500 material points. The energy plots also show smoother results due to

refinement (Fig B.2). The plots of ū versus time for both the left and right gaps also

converge when more material points are used (Fig B.3 and Fig B.4).
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Figure B.1: Mesh refinement for wave propagation through two gaps, 1 material
point per cell
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Figure B.2: Mesh refinement for wave propagation through 2 gaps, 1 material point
per cell
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ū

t̄

250 Material Points

Student Version of MATLAB

(b) 250 Material Points

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

G
a
p
si
ze

ū
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Figure B.3: ū versus time for first gap
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Figure B.4: ū versus time for second gap
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Appendix C

Nondimensionalization Scheme

The following Appendix outlines the scheme to nondimensionalize quantities for the

numerical studies.

C.1 Dimensioned Quantities

The dimensioned variables of the governing equation for the one-dimensional bar

problem are as follows:

(a) x, the cartesian coordinate along the length of the bar with dimension meters

[m]

(b) u, the displacement along the length of the bar with dimension meters [m]

(c) t, time with dimension seconds [s]

(d) ρ, density of the bar with dimensions
[
kg
m3

]

(e) Y, Young’s modulus of the bar with dimensions
[

kg
m s2

]

(f) σ, the stress in the bar with dimensions
[

kg
m s2

]
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Also, , is the partial derivative operator. The partial derivative of u with respect

to x is symbolically u,x. The second partial derivative of u with respect to x is

symbolically u,xx.

C.2 Equations

Ignoring body forces, the governing equation for the motion of a bar in 1D is

σ,x = ρu,tt. (C.1)

The linear elastic constitutive equation in one-dimension is

σ = Yε, (C.2)

where ε is the strain in the bar. The kinematic relationship for strain in terms of

displacement is

ε = u,x. (C.3)

When Equations (C.1), (C.2), and (C.3) are combined, the 1D wave equation is

(Yu),x = ρu,tt. (C.4)

C.3 Proposed Dimensionless Quantities

The reference dimension quantities are

(a) xref = L, the length of the bar

(b) σref = σg

1000 , the value σg comes from the gap closure “hardening” function

g(ūg)

(c) Yref = σg, the proposed reference Young’s modulus

(d) tref = L
c , the reference time, where c is the elastic wave speed

√
Y
ρ
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(e) εref = 1000, the reference strain

When the reference values are combined with the variables of the wave equation,

the dimensionless quantities follow

(a) x̄ = x
L

(b) ū = u
uref

(c) t̄ = t
tref

(d) Ȳ = Y
σg

(e) σ̄ = σ
σg

(f) ρ̄ = ρ
ρref

The undefined reference values uref and ρref are determined for convenience later

on.

Substitute the expressions involving reference values and dimensionless variables into

Equation(C.1) to get a dimensionless equation

σ̄,x̄ = ρ̄ū,t̄t̄. (C.5)

Upon substitution of dimensionless values, Equation (C.1) reduces to

1

1000L
σg(σ̄),x̄ =

ρrefuref

t2ref
ρ̄(ū),t̄t̄. (C.6)

So that Equation (C.6) reduces to Equation (C.5), the the reference density ρref

comes out as,

ρref =
σgt2ref

1000Luref
. (C.7)

Then with Equation (C.2) following a similar substitution procedure, the constitutive

equation reduces to

σg

1000
σ̄ =

(σguref

L

)
Ȳū,x̄. (C.8)
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uref is conveniently chosen to be

uref =
L

1000
, (C.9)

which gives an equation of the form

σ̄ = Ȳū,x̄. (C.10)

Substitute uref into (C.7) and simplify to get the reference density ρref (C.11).

ρref =
t2refσg

L2
(C.11)

By non-dimensionalizing the governing equation in this manner, the dimensionless

elastic wave speed c̄, which is
√

Ȳ
ρ̄ , reduces to,

c̄ = 1. (C.12)

A elastic wave speed of unit value gives a dimensionless wave propagation time t̄prop

of,

t̄prop =
L̄

c̄
(C.13)

=
L/L

c̄
(C.14)

= 1. (C.15)

A unit dimensionless wave speed and wave propagation time is easy to interpret in

the plots of results.
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Appendix D

Material Point Placement

The material point method allows for any number of material points to be located

within a cell (or element). For the one-dimensional computations exploring the effects

of joints, only one material point is used per cell. Typically, the single material

point is placed initially in the middle of the cell. In developing the one-dimensional

material point method code, the material points were inadvertently placed a distance

ε from the left node of the cell. ε is a value slightly larger than machine precision.

This placement results in unusually smooth numerical results. The effects of such a

placement were further investigated compared to the typical placement of material

points centered within the cells.

Considering discontinuities, the cell boundary material point locations is helpful.

For small deformations, the material points map the majority of their values to a

single node because the unit hat basis functions are≈ 1 for a node and≈ 0 for another

node when evaluated at the material points. Therefore, material point information

does not get mapped in front of the elastic wave as it propagates and helps to clearly

identify existing discontinuities with minimal noise.

Four runs demonstrate the impact of material point location. The last two runs

shown in Figures D.3 and D.4 have a zero strength gap in the middle of the bar

showing the features when the material points are placed in the middle of the cells.

For a zero strength gap, the wave should just reflect off of the gap. These are all one
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material point per cell and the values are plotted at material points (not mapped to

the cells).

Also, the dimensionless times listed in the legend are t̄ = t
tpropagation

• Bar length L = 2 m

• Density ρ = 2000kg/m3

• Young’s modulus Y = 50Gpa

• Cross sectional area A = 1m2

• Number of elements, either 50 or 128 depending on where the material points

are placed in the cell, 50 when the material point is close to cell boundary, 128

when the material point is in middle of cell boundary

• 1 material point per cell

• Total run time is 1.5 wave propagations or tf = 0.0006s

• Velocity boundary condition, left boundary vleft =
vmax
2 (1 − cos (2πt)

tinput
), where

vmax = 1m/s and tinput = 0.0002s

• ∆t = 0.9hcell
c where c =

√
Y
ρ

Figures D.1 and D.2 are the results for a bar without a gap in the middle. When

the material point is on the cell boundary, numerical results are much smoother (Fig

D.1). When the material point is centered in the cell, the results are not nearly as

smooth as the cell boundary-placed material points (Fig D.2). The conclusion of

this investigation is that computational results are significantly smoother when the

material point is placed on the cell boundary.

Figures D.3 and D.4 are the results of placing a gap in the middle of the bar.

Figure D.3 shows that material points close to the cell boundaries allow for gap

behavior without noticeable numerical values passing through the open gap. But,
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Figure D.4 does have unrealistic numerical values to the right of the gap. When

material points are centered in the cells, material point quantities will map to two

nodes equally. Similarly, nodal quantities map to two material points. This allows for

quantities to propagate past the gap and allow for non-zero stresses to the right of the

gap. When material points are placed on cell boundaries, the majority of material

point quantities only map to one node and vice-versa. Therefore, numerical errors

from the mapping are not as apparent. For this reason, the joint and gap studies

place the material points close to cell boundaries during numerical discretization of

the bar.
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Figure D.1: Stress as a function of x for different times using 50 material points
located close to the cell boundary to discretize the bar
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Figure D.2: Stress as a function of x for different times using 128 material points
centered in the cells to discretize the bar
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Figure D.3: Stress as a function of x for different times using 50 material points
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Figure D.4: Stress as a function of x for different times using 128 material points
centered in the cells to discretize the bar with a gap in the center of the bar
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Appendix E

Complete Figures

The following figures include all of runs from the single discontinuity study. In the

main text, certain runs with large amounts of numerical dispersion were removed.
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E.1 Single Gap
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(b) Single Gap, Peak Stress
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(c) Single Gap, Impulse
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Figure E.1: Results of single gap study, up = 1.5mm
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E.2 Single Plastic Joint
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Ē
t
o
t
a
l

Single Plastic Joint, up = 1.5mm

Student Version of MATLAB

(a) Single Plastic Joint, Energy
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(b) Single Plastic Joint, Peak Stress
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(c) Single Plastic Joint, Impulse
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(d) Legend

Figure E.2: Results of single plastic joint study, up = 1.5mm
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E.3 Single Elastic-Plastic Joint
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(a) Single Elastic-Plastic Joint, Energy
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(b) Single Elastic-Plastic Joint, Peak
Stress
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(c) Single Elastic-Plastic Joint, Impulse
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Figure E.3: Results of single elastic-plastic joint study, up = 1.5mm
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Appendix F

Lumping Joints Study

Figure F.1 illustrates the investigation of the effects of multiple joints with the re-

striction that the sum of the initial joint lengths is a constant. This process is called

lumping the joints. In this context, lumping joints places multiple discontinuities

into fewer or a single discontinuity. Conversely, smearing discontinuities places a

single discontinuity into multiple discontinuities. One issue of interest in connection

with computing efficiency on a large scale is whether or not several joints can be

modeled as one “equivalent” joint. The study will consider 16 individual discontinu-

ities (whose initial discontinuities sum to ug0) and their impact on wave propagation.

Then, for the same sum of initial discontinuity, use only 14 discontinuities. The pat-

tern continues until only one discontinuity is used with an initial size of ug0. Table

F.1 provides a summary of values for parameters defining the sizes of the initial joint

and forcing function.
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ū =
u

u0
(1)

F = −σ + g(ū) (2)
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)m
(3)

εel = εtot − εdec (4)

v(t) (5)

x = 0 (6)

u0 (7)

xjoint =
L

2
(8)

x = L (9)

up = vmax

(
2π

ω

)
(10)

ω =
2π

twave
(11)

up = vmaxtwave (12)

u0

up
= 2 (13)

u0

up
=

1

2
(14)

u0

up
=

2

3
(15)

1

USNCCM 11 Pres

Tyler Baker July 23, 2011
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g(ū) = σg

(
1− 1

ūm
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g(ū) = σg

(
1− 1

ūm
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)m
(3)

εel = εtot − εdec (4)

v(t) (5)

x = 0 (6)

u0 (7)

xjoint =
L

2
(8)

x = L (9)

twave = 2.1E − 4s (10)

vmax = 1m/s (11)

tprop = 4.2E − 4s (12)

ω = 29897/s (13)

up = 2.1E − 4m (14)

up = vmax

(
2π

ω

)
(15)

ω =
2π

twave
(16)

up = vmaxtwave (17)

u0

up
= 2 (18)

u0

up
=

1

2
(19)

u0

up
=

2

3
(20)

1

Figure F.1: Layout of Discontinuity Lumping Study
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(a) Boundary Conditions,
up = 1.5mm

Set vmax t̄wave

1 9.92 m/s 0.36
2 10.99 m/s 0.325
3 12.32 m/s 0.29
4 14.01 m/s 0.255
5 16.23 m/s 0.22
6 19.31 m/s 0.185
7 23.81 m/s 0.15

(b) Initial Discon-
tinuity Size ug0

Set ug0

1 1.5 mm
2 0.5 mm

Table F.1: Inputs used for multiple joints

The following figures are the full results of the joint lumping study. The results

indicate that the fewer discontinuities used, the less energy is transmitted through.

This trend applies to gaps, plastic joints, and elastic-plastic joints.
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F.1 Gaps, ug0 = 1.5mm
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Ē
t
o
t
a
l

up = 1.5mm, Smeared Gaps

Student Version of MATLAB

(a) Energy

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Joints

σ̄
m

i
n
,
r
i
g
h
t

σ̄
m

i
n
,
l
e
f
t

up = 1.5mm, Smeared Gaps

Student Version of MATLAB

(b) Peak Stress

2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Joints
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Figure F.2: Results of lumping multiple gaps, ug0 = 1.5mm
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F.2 Gaps, ug0 = 0.5mm
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Figure F.3: Results of lumping multiple gaps, ug0 = 0.5mm
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F.3 Plastic Joints, ug0 = 1.5mm
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Figure F.4: Results of lumping multiple plastic joints, ug0 = 1.5mm
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F.4 Plastic Joints, ug0 = 0.5mm
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Figure F.5: Results of lumping multiple plastic joints, ug0 = 0.5mm
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F.5 Elastic-Plastic Joints, ug0 = 1.5mm
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Figure F.6: Results of lumping multiple elastic-plastic joints, ug0 = 1.5mm
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F.6 Elastic-Plastic Joints, ug0 = 0.5mm

2 4 6 8 10 12 14 16

0.975

0.98

0.985

0.99

0.995

Number of Joints

Ē
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(d) Legend

Figure F.7: Results of lumping multiple elastic-plastic joints, ug0 = 0.5mm
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Appendix G

Joint Spacing Study

The joint spacing study seeks to indicate the relationship between joint spacing and

wave time t̄wave. The dimensionless parameter to relate joint spacing and wave time

is as follows:

∆x̄/
t̄wavec̄

L̄
. (G.1)

Because the non-dimensionalizing scheme sets c̄ and L̄ to unit values, the parameter

∆x̄/ t̄wavec̄
L̄

is equal to ∆x̄
t̄wave

Figure G.1 illustrates the study. Two discontinuities with the same initial size are

spaced equidistant from one another starting in the middle of the bar. The distance

is increased to determine the impact of spacing on wave propagation. Table F.1

provides the initial total discontinuity sizes and sinusoidal wave parameters for the

runs in the study.

x̄joint is the distance between joints. And, t̄wavec̄
L̄

is the spatial length of the input

velocity pulse.
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ūm

)(
e−ū
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ū =
u

u0
(1)

F = −σ + g(ū) (2)
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ū =
u

u0
(1)

F = −σ + g(ū) (2)
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ūm

)(
e−ū
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ūm

)(
e−ū
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ūm

)(
e−ū
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g(ū) = σg

(
1− 1

ūm
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Figure G.1: Layout of Discontinuity Spacing Study

(a) Boundary Conditions,
up = 1.5mm

Set vmax t̄wave

1 9.92 m/s 0.36
2 10.99 m/s 0.325
3 12.32 m/s 0.29
4 14.01 m/s 0.255
5 16.23 m/s 0.22
6 19.31 m/s 0.185
7 23.81 m/s 0.15

(b) Initial Discon-
tinuity Size ug0

Set ug0

1 1.5 mm

Table G.1: Inputs used for joint spacing

A tentative conclusion of these results is that the more space between gaps, the

less energy is transmitted through the gaps. However, these results were collected

before thoroughly understanding the implications of multiple joint wave propagation

discussed in Chapter 7. The energy transmitted may increase if each simulation ran

for a long enough time to allow the wave front to propagate to the end of the bar.
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Ē
t
r
a
n
s

Ē
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Figure G.2: Results of spacing two gaps, ug0 = 1.5mm
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Figure G.3: Results of spacing two plastic joints, ug0 = 1.5mm
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