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Abstract

An evaluation of the smeared crack representation of material failure using the

material-point method (MPM) as a feasible computational failure approach is per-

formed. The spatial descritization in MPM is defined by a grid of cells that represent

space and a set of points that represent the deformable solid. A grid orientation bias

in the numerical results is demonstrated. Solution accuracy is lost when failure sur-

face and grid line orientations are not aligned. Causes of the grid orientation depen-

dence are identified, but the problem remains unresolved. Limited use of the smeared

crack approach in MPM for solving problems of material failure is advised.
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Chapter 1. Introduction

Valid computational capabilities are necessary for accurately predicting the failure

of solid material for a wide range of critical engineering applications. Prediction of

quasi-brittle fracture in concrete structures is required for the design of safe and re-

liable structures. National defense applications require assessments of fragmentation

of structures due to impact and blast loading. Simulation of breakages can be used

to improve the successful production of parts in certain manufacturing processes.

Such capabilities could also provide assessments of landslide danger due to soil in-

stability. A number of computational fracture methods have been applied to the

aforementioned problems. These techniques differ from each other by the manner in

which material failure is represented. Although some methods have proven successful

for solving certain types of problems, there is no standard approach that is applica-

ble to all problems of material failure. Recently, a computational fracture method

has been utilized to simulate the formation of leads (cracks) in sea ice as part of a

larger climate modeling effort [70], [47]. The particular method employed for this

work is a smeared crack representation of material failure using the material-point

method (MPM) for solving solid mechanics problems. The focus of the present re-

search is to evaluate the smeared crack approach in MPM as a computational failure

method.

Any robust numerical solution method must demonstrate convergence of solutions

with respect to the discretization of the spatial domain of the problem. Further-

more, convergence must be observed regardless of how the spatial discretization is

structured. MPM incorporates two spatial discretizations. A grid of finite elements

represents space and a set of points corresponding to discrete point masses repre-

sent a deformable solid body. The goal of this study is to determine whether or not

smeared-crack MPM results are independent of the relative orientation between the

spatial grid and the body of material points. It is hypothesized that such a depen-

dence does exist based on findings for quasi-brittle fracture applications of the finite

element method (FEM) using a smeared crack failure representation [54].

2



Chapter 1. Introduction

This study demonstrates the existence of a mesh orientation bias in smeared crack

MPM results through the use of an elementary case study problem. Results show

that accuracy of numerical solutions is only obtained when the orientations of cracks

and grid element sides coincide. Further investigation reveals the reason for the pref-

erential behavior to be the inherent compatibility of the deformation imposed by the

spatial grid itself. This result presents a serious limitation of the method. In an at-

tempt to remedy the bias in smeared crack MPM results, an embedded discontinuity

representation of failure is implemented [41], [44]. However, this approach does not

prove to be a useful alternative. Numerical results of embedded discontinuities in

MPM share the same general grid orientation bias observed in smeared crack MPM

results. Ultimately, use of smeared crack MPM as a computational failure method

is cautioned.

Commonly used computational failure methods are discussed in the following chap-

ter. Chapter 3 presents the governing continuum equations used to define the prob-

lem of a deformable solid and the specific representation used to model material

failure. The numerical implementation of the governing equations is described in

chapter 4. A study of computational failure results for smeared crack MPM is pre-

sented in chapter 5. Conclusions of the study and a discussion of potential future

work are provided in chapter 6.

Preliminary findings of a different study are also presented in appendix C. The ob-

jective of this work is to simulate the experimentally observed size effect in mode I

fracture energy for concrete using a modified multiple smeared crack material failure

representation in MPM. Key differences between classical multiple smeared crack

models and the modified multiple smeared crack approach are presented. A phys-

ical basis for the modification is postulated and the feasibility of the approach for

simulating the size effect is demonstrated.

3
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Chapter 2. A Review of Various Computational Material Failure Approaches

2.1 Quasi-brittle Material Failure

Many geological materials, including concrete, rock and sea ice, are characterized

as quasi-brittle material due to the nature of their failure process. The process

of quasi-brittle failure is different from that of brittle and ductile materials and is

best described in terms of the widely accepted fracture process zone (FPZ) concept

[9], [5]. Consider the simple case of mode I failure illustrated in figure 2.1 using a

compact tension specimen (CTS) as an example. In general, the tip of a traction

free crack is surrounded by a zone of material that behaves nonlinearly. Outside

this nonlinear zone the material is considered to be elastic. The FPZ is the region

within the nonlinear zone located immediately ahead of a traction free crack in which

strain softening occurs. Strain softening is the decrease of stress accompanied by an

increase in strain which precedes material failure. Strain softening is the result of

localized deformations in the FPZ and is viewed as the direct result of the damage

mechanism from which a crack can grow.

The relative size of the FPZ with respect to the structure in question is the key feature

for characterizing fracture. Fracture of brittle materials can be characterized by

linear elastic fracture mechanics (LEFM) because the nonlinear zone, much less the

FPZ, is very small with respect to structure size. A relatively large zone of nonlinear

deformation is observed for a ductile material that is almost entirely due to plastic

hardening, while the FPZ remains small compared to the structure. Elastic-plastic

fracture mechanics encompasses the failure of such materials and defines critical

fracture quantities such as the crack tip opening displacement (CTOD) and the J

integral. In contrast, the relatively large nonlinear zone observed in quasi-brittle

material fracture is almost completely composed of the FPZ.

Experiments have demonstrated the strain softening nature of concrete in direct

tension [22], [51], [52]. As a tensile test specimen is loaded using displacement

5



Chapter 2. A Review of Various Computational Material Failure Approaches

control the stress-strain response is elastic up to a limit stress. The strain localizes

within the FPZ upon continued loading resulting in a gradual decrease of stress

with increasing strain. Outside the FPZ elastic unloading occurs. Experimental

observations support the commonly held view that the FPZ of concrete is composed

of diffuse micro-cracks and crack bridging between matrix and aggregates in front

of a traction free macro-crack which follows a tortuous path around aggregate [22],

[33], [14], [51]. The gradual decrease in strain is a result of microcracking and the

severing of bonds between the matrix and aggregates. The relatively large size of the

FPZ in concrete prohibits the use of LEFM as a fracture criterion [26]. This result is

supported by comparisons of data from concrete specimens with LEFM predictions

[74], [9]. A proper model for quasi-brittle fracture must capture the process of strain

softening in the fracture process zone.

!

!"#$%#&'()
*"#&)

+(',-.(&)/(",&00)
*"#&)1+/*2)

3.'0%45(%--$&))
1,"#,(&-&6)(",72)

8.,-%$&45(%--$&)
19&-'$02)

:%#&'()*"#&)

Figure 2.1: Illustration of FPZ for ductile (right) and quasi-brittle (left) materials
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Chapter 2. A Review of Various Computational Material Failure Approaches

2.2 Modeling Strain Softening in a Continuum

Modeling of strain localization in solids is often performed by incorporating strain

softening into constitutive models but important considerations for doing so must

be accounted for in order to maintain a physically and mathematically meaningful

description of the problem.

2.2.1 Physical Aspects of Strain Softening

The modeling of localization by incorporation of strain softening into local constitu-

tive models (stress is purely a function of strain) has been criticized on a physical

basis. Simple one-dimensional static analysis has shown that the use of strain soft-

ening leads to instability in the sense that work is always done by the structure for

a localization zone with an arbitrarily small thickness [3]. Similar conclusions are

drawn by examining the properties of the exact solution to one-dimensional wave

propagation in a strain softening bar [8]; mainly that localization occurs in a zone

of zero volume that absorbs zero energy. These analyses are used to support the

claim that strain softening in a classical continuum can not represent real material

response. Furthermore, since the results do not depend on the functional form of soft-

ening, softening can not be considered a material property of a classical continuum.

However, these results are at odds with physical reality because strain softening is

observed experimentally for concrete. It is a process that occurs in a localized zone

of finite volume and consumes a finite amount of energy. Arguments against the use

of strain softening as a material property have also been made on the basis that the

experimentally observed strain softening in concrete is a structural effect [50].

The scale at which softening is observed may be material dependent. As mentioned

before, the relative size of the strain localization zone (FPZ) with respect to the

size of the test sample (such as a compact tension sample in figure 2.1) determines

7



Chapter 2. A Review of Various Computational Material Failure Approaches

the nature of the observed failure process which leads to different fracture criteria.

From a material science point of view, the mechanisms driving localization generally

occur on the scale of the material inhomogeneities. On this basis, the contrast in

material behavior during failure observed on the scale of laboratory test specimens

has led to the different fracture mechanics approaches for different materials. The

size of the localization zone for metals is on the scale of millimeters. For geological

materials such as concrete the size of the localization zone is on the order of 0.5 m

for many applications [7]. Keeping along these same lines, if a concrete structure is

very large with respect to the size of the localization zone, then LEFM would be an

acceptable fracture criterion [9]. One might expect the opposite effect for very small

metallic samples as noted by [59] . This effect of the relative sizes of structure to the

FPZ is illustrated by Bazants size effect law [4], which roughly predicts the trend of

increased brittleness with increasing structural size. The law, which relates nominal

failure strength to structural size for geometrically similar structures for concrete and

rock, accounts for the energy consumed in the localization zone. It demonstrates a

gradual transition from a constant failure strength criterion for small structures to

the LEFM failure criterion for large structures.

The scale of many structural applications of concrete, such as beams and slabs,

demands that appropriate modeling techniques somehow incorporate softening be-

havior. Structural concrete design is not performed at the scale of the localization

zone, but the scale of the problem is usually small enough so that the effect of the

localization zone (softening) must be accounted for. The question is not whether or

not strain softening behavior exists. At a certain scale determined by the material,

it is observed. Observation of strain softening on a macroscopic scale is encountered

in direct tensile tests for concrete [52]. In these tests the global load-displacement

data recorded displays a post peak drop in load, from which a stress-strain curve is

directly mapped in the usual engineering way (average stress is obtained by dividing

the load by the original cross sectional area and the strain is obtained by dividing
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the measured displacement by the original gauge length). The question has to do

with whether or not the material can be considered a continuum at the scale of the

localization zone. The answer is probably no, but this does not mean that strain

softening is a physically meaningless concept for modeling heterogeneous materials

(such as concrete) as a homogeneous continuum. The lateral dimension of the local-

ization zone ahead of a crack is on the order of the maximum aggregate size, which is

nearly the same size as the representative volume of concrete necessary for averaging

micro-stresses over a volume of heterogeneous material to approximate a homoge-

neous material [9]. This characteristic dimension, which represents the width of the

localization zone in which softening occurs, can be regarded as a material property.

A physically meaningful context of a strain softening continuum is the modeling

of localization in a heterogeneous material that is approximated as a homogeneous

material through some representative volume, in which strain softening is permitted

and associated with a characteristic width of the localization zone.

2.2.2 Mathematical Aspects of Strain Softening

A strain softening continuum must lead to a sound mathematical description of the

problem. Implications of a straightforward incorporation of softening constitutive

models into the classical continuum description are known to be associated with

the loss of material stability, loss of ellipticity (or hyperbolicity) of the governing

partial differential equation (PDE), the appearance of a discontinuity in strain rate

(discontinuous bifurcation) or some combination of these things. A summary of the

criteria for the appearance of aforementioned issues can be found in [36] and [11].

Stability refers to the continuous dependence of the solution on the problem data

such as initial conditions and parameter values. Material stability specifically refers

to how stability of the problem changes with respect to the material parameters

(i.e. constitutive model). Violation of Hill’s postulated local stability criterion, that
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the second order work remain positive, requires the material tangent tensor to be

positive definite [24]. Application of a more mathematically consistent definition

of stability, namely that small perturbations of a system lead to small bounded

solutions of a system [79], [60], has been shown to require positive definiteness of

the acoustic tensor as the criterion for maintaining material stability. Hill’s analysis

of acceleration waves [25], following the developments of Hadamard in 1903, led

to a criterion for the appearance of a discontinuous bifurcation of the strain rate

field. A discontinuous bifurcation analysis assumes a kinematically admissible form

of the jump in strain rate across a surface that acts as a boundary between material

inside and outside a localization zone and continuity of traction across the surface.

The resulting criterion for the appearance of a discontinuous bifurcation is that the

acoustic tensor loose positive definiteness. This criterion also coincides with loss of

ellipticity of the rate boundary value problem [53]. The loss of strong ellipticity was

found to be the loss of positive definiteness of the symmetric part of the acoustic

tensor [11]. It is generally argued in the literature that the loss of ellipticity (or

hyperbolicity) is a critical point in the loading of a solid because the problem becomes

ill-posed and ceases to be meaningful in a mathematical sense [65], [21], [60]. Loss

of the form of the governing PDE is manifested in finite element simulations of

strain softening solids by a lack of convergence of the solution with mesh refinement

leading to physically meaningless numerical results [65], [60]. The mesh dependent

results display a decrease in energy dissipation with decreasing mesh size because

the volume of the localization zone decreases upon mesh refinement. These results

support the analytical findings for the one dimensional strain softening case in which

the localization zone reduces to a region of zero volume (a surface) that consumes

no energy [8]. Much analysis has been performed for obtaining the critical values

of softening parameters and orientations associated with discontinuous bifurcation

(loss of ellipticity) for specific constitutive models in order to determine their range

of applicability or to serve as an indication of material failure initiation [57], [46],
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[11], [60], [61]. Loss of ellipticity has been used as a criterion for determining the

initiation of localization or failure (discontinuity in displacement) and the orientation

of the region of localization (failure surface) [63], [40].

2.3 Discrete Constitutive Models

The nonlinear fracture mechanics approach for capturing the softening associated

with quasi-brittle material failure is to incorporate the fracture energy of the material

through a cohesive crack model (also known as a discrete constitutive model). The

idea of the cohesive crack model was introduced first by the original work of Hillerborg

[28] who used the model successfully in finite element simulations.

Discrete constitutive models intend to model the process of localization and failure

by idealizing the FPZ (strain localization zone of material softening) as a single

plane of material failure, referred to as a failure surface, and defined by the unit

normal vector n. A discontinuity in the displacement field, denoted by [[u]], develops

across the failure surface to model the formation of a crack . Figure 2.2 displays

a two dimensional body containing an arbitrarily oriented cohesive crack surface

defined by the unit normal and tangent basis vectors, {n, t}. The traction and

crack opening displacement are represented in terms of {n, t} as τ = τnn + τtt

and [[u]] = [[un]]n + [[ut]]t respectively. Discrete constitutive models are generally

associated with a failure initiation criterion, which predicts the orientation of the

failure surface, and a softening law, which describes the process of failure over the

failure surface.

For the case of mode I fracture the softening law relates the normal components of τ

and [[u]] on the cohesive crack surface such that τn is a decreasing function of [[un]].

As an example, a linear softening law is displayed in figure 2.3. Failure initiates on

a given surface, defined by n, when τn reaches the ultimate tensile strength of the
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material τnf . Upon subsequent loading, τn decreases gradually as [[un]] increases.

The failure surface retains its traction carrying capability up to a critical value of

separation, [[un]] = u0, for which τn = 0 and the failure surface is considered to be a

traction free crack. The softening relationship incorporates the material properties

that govern quasi-brittle failure which include the tensile strength, τnf , the shape of

the softening curve and the fracture energy, Gf , which is defined as the area under

the softening curve as follows:

Gf =

� u0

0

τndun (2.3.1)

Figure 2.2: Discrete crack surface and associated local crack basis

The use of discrete constitutive models has proved to be a physically realistic method

for modeling localization and fracture. Results of finite element analysis incorporat-

ing cohesive crack models, whether as a discrete crack or in a crack band, have

compared very well to experimental mode I concrete fracture data [28], [9], [56],

[54]. Numerical results not only match well to peak load and post peak behavior

12
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!

Figure 2.3: Linear softening law used for a discrete constitutive model

but capture the variation of nominal structural strength with the size of the test

sample. One especially important consequence of using the fracture energy criterion

is the obtainment of mesh independent results with regard to energy consumption.

As Wells points out [75], discrete models are more physically realistic from an en-

ergy consumption standpoint than continuum softening constitutive models. In a

continuum model, the energy dissipated in the localization zone is calculated as an

integral over a volume which is zero because the volume of the localization zone in a

classical softening continuum is zero. For the case of the discrete model a finite value

of energy dissipated in the localization zone is calculated as a surface integral over a

discrete failure surface. Thus the fracture energy of a material plays a key role in the

appropriate physical model of localization and failure through discrete constitutive

models and requires a precise quantification.

The key material properties of quasi-brittle fracture are obtained through experimen-

tal and computational means. The ultimate strength can be determined by direct

tensile tests. The typical experimental method for obtaining the fracture energy is
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the direct work of fracture method which initially utilized three-point bend tests of

notched concrete beams [48], [49]. In this method Gf is measured to be the area

under the load vs. displacement curve divided by the ligament area of the beam.

A large comparative study of the work of fracture test method determined that the

fracture energy does vary with the size of geometrically similar beams [27]. Simi-

lar findings using compact tension specimens indicate a trend of increasing fracture

energy with increasing size of the test sample up to a certain size limit after which

the value may be constant [78], [77]. This size effect with regard to Gf should be

distinguished from the size effect observed in nominal structural strength of concrete

(the peak load divided by the ligament area of the beam) [4], [6]. It has been demon-

strated that the variation of fracture energy with size has a negligible effect on the

calculations of nominal strength because the strength variation with fracture energy

is generally less than data scatter observed in strength measurements [27]. This

makes sense when considering the success of peak load predictions for geometrically

similar samples of different size provided by finite element analysis that employ a sin-

gle nominal fracture energy value. Wittmann et al. [77] postulate that the fracture

energy size effect occurs because the specimen boundaries prevent full development

of the FPZ. A similar claim is made by Rots et al. [56]. The shape of softening

law is also considered a material property. The most commonly used forms of the

softening curve are linear, bilinear or exponentially decaying functions. Numerical

means have also been employed to obtain the correct bilinear softening curve pa-

rameters [78]. Parameter studies have shown that the form of the softening function

has a significant effect on the global response (load vs. displacement) obtained from

finite element simulations and merits attention when analyzing a problem [54]. It is

appropriate to mention an additional fourth material parameter of crack band width

or smearing length, Lc. This length parameter is a characteristic dimension of the

softening zone that must be specified explicitly or inferred from the specific material

failure representation used for modeling.
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Discrete constitutive models take different forms but share the same two elements;

a criterion for determining the normal, n, to the potential failure surface and a cri-

terion for the initiation of failure on that surface. For mode I failure of quasi-brittle

materials the classical Rankine criterion is commonly used. The orientation of n

coincides with the direction of maximum principal stress and failure initiates on the

failure surface once τn = τnf , the tensile failure-initiation stress. Other classical cri-

teria include Tresca for mode II failure of ductile materials and Mohr-Columb for

mixed mode failure of geological materials. Recently a discrete constitutive model for

geological materials has been developed which can predict failure plane orientations

for mixed mode failure under triaxial compression in agreement with experimental

data for concrete [58]. Discrete models can also be induced from continuum soften-

ing models through the strong discontinuity analysis (SDA) [63]. Discrete models

obtained using SDA include models of continuum plasticity and damage for appli-

cations to concrete structures [40], [41] and finite strain [42]. This approach is used

extensively in the different computational failure modeling methods.

2.4 Continuous and Discontinuous Representation

of Material Failure

The representation of problems of localization and failure generally fall into one of

two categories; continuous or discontinuous. Here, continuous representations are

associated with a continuous displacement field. They include the smeared crack

approach and non-classical continuum descriptions. Discontinuous representations

explicitly incorporate discontinuities (jumps) in the displacement field which rep-

resent physical cracks. They employ discrete constitutive models which relate the

traction to displacement jump across a failure surface. The overwhelming majority

of the numerical implementations of continuous and discontinuous representations
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utilize the finite element method, so the computational advantages and disadvan-

tages of the methods are discussed in the context of finite elements unless otherwise

stated.

2.4.1 The Smeared Crack Approach

The smeared crack modeling approach utilizes a classical continuum description of

the problem. The first successful smeared crack approach is the crack band model

[9]. This model was inspired by Hillerborg’s cohesive crack model [28] but idealizes

the fracture process zone as a band of a finite width as opposed to a discrete surface.

The effect of localization within the band is represented by an inelastic strain con-

tribution. In this approach the effect of failure is “smeared” across the width of the

band. A thorough overview of smeared crack models is given by Rots [56], [54], [55].

The essential idea of the smeared crack model is the decomposition of total strain

into the sum of material strain and crack strain. The material strain is typically

considered to be only the elastic strain but it may also include other non-linear ef-

fects such as plasticity [17], [16]. The crack strain is an inelastic strain contribution

that models the effect of cracks as failure surfaces with a specific orientation. The

relationship between traction and crack strain is formulated in terms of the local fail-

ure plane basis, {n, t} (see figure 2.2). A softening relationship between τ and [[u]]

is applied on this surface like a discrete constitutive model except [[u]] is smeared

over a characteristic length, Lc (crack band width), as a crack strain. As mentioned

before, the characteristic length used in smeared crack models is considered to be

a material property, which for concrete, is on the order of the maximum aggregate

size [9]. In reality cracks can open during loading and close during unloading. A

crack that is in the process of opening or closing is said to be active. The smeared

crack approach represents crack opening and closing as an increase and decrease of

the crack strain respectively.
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There are three types of smeared crack models; fixed, multiple and rotating. As the

name implies, the fixed smeared crack model assumes a fixed orientation of the crack

surface throughout loading. Once a crack has initiated, the axis of principal stress

can rotate upon continued loading and the principal stress may exceed the mode

I criterion for failure initiation for a different orientation. This drawback for the

fixed smeared crack model can be remedied by allowing for multiple non-orthogonal

cracks [19], [20], [54]. The multiple smeared crack model allows for more than one

crack to initiate. The criterion for initiation of the first mode I crack is the usual

Rankine criterion. Subsequent crack initiation is based on the Rankine criterion as

well as a threshold angle. The threshold angle is the minimum allowable amount

of rotation of the principal stress axis permitted before a new crack can initiate.

Each crack surface contributes to the total crack strain. The rotating crack model is

obtained in the limit of a zero threshold angle. The three smeared crack models have

been evaluated for a combined loading of biaxial tension and shear up to failure and

their stress-strain responses compared [54], [55]. As expected, the fixed crack model

displays the stiffest response with no shear softening and the least amount of normal

traction softening. The multiple smeared crack model was evaluated for several

values of threshold angle. The stiffness of the response decreases as the threshold

angle decreases. The rotating crack model displayed the least stiff response of all

the models. These results demonstrate that the multiple and rotating crack models

maintain control over the magnitude of the principal stress for combined loading

situations where the axis of principal stress rotates.

Finite element codes commonly employ smeared crack approaches to simulate failure

in structures. The computational aspects of the smeared crack representation are well

documented [9], [17], [54]. The main issues of numerical analysis using smeared cracks

are the lack of independence of results with respect to mesh size and orientation and

the so called “stress locking” effect.
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Numerical smeared crack results display a crack pattern from which a macro-crack

path is deduced. These results are typically dependent on the finite element mesh

orientation because the cracks prefer to align themselves with the lines of the mesh

[56], [54], [35]. This is a very undesirable result from the standpoint of crack path

prediction. If the crack path is aligned with the mesh lines, as in the case of uncurved

crack paths for symmetrically loaded structures (i.e. three point beam bending,

compact tension or direct tension), then there is no problem. For curved crack paths,

the effect of the bias can be reduced by selecting specific mesh structures.

The smeared crack model incorporates strain softening in a classical continuum de-

scription by confining localization, and therefore energy dissipation, to a band of

fixed width. This is critical for overcoming the mesh size dependence observed for

classical strain softening constitutive models. It is generally recognized in the litera-

ture that the mesh size dependency of results are a manifestation of the ill-posedness

of the underlying problem. Although use of the smeared crack representation gen-

erally remedies this problem from a computational point of view, the mathematical

description is still considered to be ill-posed [65], [21], [18]. Furthermore, it is believed

that the previously mentioned mesh orientation bias is also a result of ill-posedness

of the governing problem [18]. This claim is probably overstated. Studies suggest

that the preferential crack alignment with mesh lines is attributed to the nature of

the finite element discritization [56], [54]. The mesh orientation bias was observed

to disappear with mesh refinement of quadrilateral elements but not for triangular

elements.

Numerical results of smeared crack models typically suffer from stress locking [54].

In many cases of fracture analysis a smeared crack pattern is meant to represent a

traction free macro-crack. However, upon failure of the structure, stresses have been

observed to build up across the failure surface represented by the smeared crack

pattern. These locked in stresses in a supposedly failed structure are nonphysical
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because they are inconsistent with traction free crack surface conditions. This prob-

lem, referred to as “stress locking” or spurious stiffening, is associated with curved

crack paths in smeared crack analysis. Stress locking is caused by displacement

compatibility between adjacent elements inside and outside of the localization zone.

Solutions in which stress locking is encountered display stiff global load-displacement

responses. Although the degree of problem varies with the type of smeared crack

model used (fixed, multiple or rotating), the problem persists due to the fact that the

kinematics of the failure surfaces are inadequately represented in the computational

approach (finite elements). The issue of spurious stiffening is a serious limitation

of smeared crack representation using finite elements and is a focus of the present

research using MPM.

The smeared crack method has been successful for analyzing localization and fail-

ure for a number of problems but remains highly criticized. Implementation of the

method is straightforward and can be done with minimal changes to existing codes.

Use of the smeared crack approach eliminates the mesh size dependence of numerical

results encountered for classical continuum softening models. The method has also

been validated through good experimental data comparisons. Limitations based on

mesh orientation bias and stress locking are clearly unacceptable computational dis-

advantages, but the dominant criticism is the potential ill-posedness of the underlying

continuum problem. In an attempt to remedy this problem non-classical continuum

theories have been developed for which the governing PDE form is maintained for

strain softening.

2.4.2 Non-Classical Continuum Descriptions

The main goals of the development of non-classical continuum descriptions are to

maintain the governing form of the partial differential equation (elliptic for the static

case or hyperbolic for dynamic loading) in the presence of strain softening and model
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zones of highly localized deformation. Several different models have been developed

and essentially all models are a result of a change in the form of the constitutive

model relating stress to strain based on phenomenological arguments of material

behavior. Within each model a length parameter characterizing the width of the

localization zone is introduced explicitly or implicitly. The specific non-classical con-

tinuum models described here are the non-local, gradient and Cosserat models. An

overview of the models and their computational aspects are available [65], [21].

Non-local continuum models are based on constitutive models for which stress is not

a function of the local strain but the spatial distribution of strain. The model is

physically based on the premise that the interaction of microstructural defects that

take place in a zone of localization is a non-local process. The internal variable

(equivalent plastic strain, damage variable, etc.) is averaged as a weighted integral

over the spatial domain in which a characteristic length is explicitly specified. This

approach generally leads to governing equations that remain elliptic during softening

for mode I or mode II type localization. Additional computational expenses are added

for carrying out the proper evolution of the internal variable. Questions still remain

regarding proper boundary conditions for the non-local approach. Recently a non-

local continuum damage model has been used in an attempt to capture the fracture

energy size effect trend observed in experiments [31]. Use of a non-local damage

model for providing this effect is based on the postulate that the boundary of small

specimens inhibits full development of the localization zone [77]. The idea is that

non-local models will naturally take the proximity of the boundary into account due

to the spatially averaged nature of the deformation. Numerical results of this study

show that the trend of increasing fracture energy with increasing structure size can

be simulated using a non-local damage model.

Gradient models, like non-local model, are physically based on the non-local mi-

crostructural argument of localization. However, the non-local effect is produced by
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stress as a function of spatial gradients of strain. Additional spatial derivative terms

enter into the governing equations which maintain elliptic and hyperbolic forms for

static and dynamic problems respectively. The width of the localization zone is ex-

plicitly specified in the constitutive model. The resulting discrete system of equations

incorporates the internal variable as a global unknown to be solved along with nodal

displacements. Additional non-standard boundary conditions are also introduced. In

general, gradient models are able to reproduce localization behavior in a continuum.

The numerical results of one-dimensional bar problems illustrate their performance

for static and dynamic cases [59], [65], [21]. Convergence of a solution with mesh

refinement is observed and localization within the specified band is represented along

with predefined stress-displacement curve. Results also display the increased brittle-

ness in the structural response as the ratio of the localization zone width to structure

size decreases.

The Cosserat (micro-polar) continuum model is physically based on the idea of mi-

crostructure interaction in a material [15]. The departure from classical continuum

theory is the additional kinematic quantity of micro-rotation. A microelement of

material is acted on by normal, shear and bending stresses that are related to nor-

mal, shear and curvature strains through an elasticity tensor. Two additional elastic

constitutive parameters are introduced; a rotational shear modulus and a length pa-

rameter that relates couples and curvatures. The length parameter provides the in-

ternal length scale necessary for modeling localization. Inelastic constitutive models

in Cosserat theory are applied much the same way as with classical continuum mod-

els. When strain softening models are used, loss of form of the governing equations

generally depends on the loading [65]. By applying the proper kinematic restrictions

for mode I loading, Sluys [65] shows that the governing dynamic equations reduce

to the classical softening continuum description for which the form of the governing

PDE is lost. Numerical simulations of a strain-softening Cosserat continuum for

mode II loading do result in converged solutions that are able to capture localized
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deformation indicating that the method is only adequate for modeling localization

in shear.

For the most part, the non-classical continuum descriptions discussed have been

successful for modeling localization while maintaining the form of the governing

PDE but have definite shortcomings. The most apparent disadvantage compared to

the smeared crack approach is the increased computational cost. All discrete non-

classical continuum models introduce more degrees of freedom which incur a higher

computational expense then smeared crack models. Additional cost is unavoidable

because the appropriate modeling of localized deformation requires highly refined

meshes in order to capture high strain gradients. The high computational cost alone

can be prohibitive for practical use of the methods. Uncertainty of how to handle

the additional boundary conditions introduced in non-local and gradient methods

also brings up doubt as to the validity of results.

2.4.3 The Embedded Discontinuity Approach

A widely used method for representing localization and failure is that of embedded

discontinuities. The embedded discontinuity model is intimately related to the finite

element method, so much, that it is difficult to separate modeling and computa-

tional aspects. An overview and comparison of embedded discontinuity models is

provided by Jirasek [30]. Generally speaking, the kinematic description of a stan-

dard finite element is enriched by an extra degree of freedom in order to represent a

zone of localization or discontinuity (jump) in displacement. This degree of freedom

is embedded in the element which is assumed to be crossed by a single band of lo-

calization (softening) or a plane of discontinuity (crack). The majority of embedded

discontinuity models are based on the three-node constant strain triangle element

or four-node bilinear elements (in two dimensions). Two basic forms of embedded

discontinuity models are available; symmetric and unsymmetric, which refer to the
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resulting symmetric and unsymmetric forms of the discrete system of equations for

the finite element approximation. Different methods, consistent with standard finite

element formulations, have been used to arrive at the various embedded discontinu-

ity models. The weak form of the governing equations originates from variational

principles such as the three-field (displacement, stress and strain) Hu-Washizu prin-

ciple or the virtual work principle. The main differences between models lie in the

different kinematic and traction continuity assumptions made at the element level of

the formulation.

In symmetric approaches an enrichment of the standard element interpolation basis

is made for either the strain [10] or displacement [41]. Either choice results in a

different internal equilibrium condition and kinematic representation of the local-

ization band or the discontinuity. The element equilibrium condition relates the

traction within the localization band or over the discontinuity surface to the internal

forces in the remaining element volume. If strain enrichment is chosen (statically

optimal symmetric formulation) a suitable element equilibrium relation is obtained

and equilibrium is guaranteed. However, the kinematics of the discontinuity is not

properly represented because free relative motion of element pieces separated by a

discontinuity is restricted. On the other hand, if displacement enrichment (kinemat-

ically optimal formulation) is used the resulting internal equilibrium conditions do

not guarantee continuity of traction across a displacement jump or localization band,

but the appropriate kinematic description of an element crossed by a discontinuity

is maintained.

The nonsymmetric embedded discontinuity model (statically and kinematically opti-

mal nonsymmetric formulation) remedies the problems encountered in both symmet-

ric formulations. Simo and Oliver developed this method in the assumed enhanced

strain (AES) framework [63], [41], [44], [64]. A discontinuity within an element is

modeled by introducing an additional term into the standard finite element approx-

23



Chapter 2. A Review of Various Computational Material Failure Approaches

imation of displacement over a single element containing a Heaviside function (step

function). The additional degree of freedom representing a jump in displacement (or

high strain gradient) is introduced at the element level. The resulting strain in an

enriched element is composed of a regular (continuous) component and a singular

component. The singular part of strain is an incompatible mode that is interpreted

in a distributional sense as a Dirac delta function acting over the surface of discon-

tinuity. The admissible displacement variation is approximated by a function from

a space that does not include a discontinuity. The Petrov-Galerkin approach is used

since different basis functions are used for displacement and displacement variation.

The resulting set of non-symmetric equations reflects satisfaction of the weak form

of the internal equilibrium equation with boundary conditions and the strong form

of traction continuity condition across the line of discontinuity or localization band.

The best part of both symmetric embedded models is obtained because enrichment

of the displacement allows for the relative motion between element pieces separated

by a discontinuity while traction continuity across the discontinuity is enforced.

For any embedded discontinuity model certain aspects of implementation must be

considered which affect performance. Discussions of important issues such as solution

method, numerical integration and crack path continuity are available [41], [75]. An

additional degree of freedom per element that represents localization or displacement

jump is introduced into the formulation as an unknown. If the AES format is utilized

then the additional degree of freedom can be solved at the element level and does not

enter into the global set of equations. In this case static condensation of the global set

of equations is used to solve for the continuous part of nodal displacements first. The

additional degrees of freedom are then solved separately at the element level which

saves computational cost if the crack path is confined to a relatively small number

of elements. The information required for the set of cracked elements includes the

orientation of the crack normal and the element sides crossed by the crack. A new

element must be added to this set when the crack initiation criterion is met within
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the element. The criteria for initiation and crack surface orientation are determined

from the particular discrete constitutive model used. If crack path continuity across

inter-element boundaries is desired, then an additional crack front tracking algorithm

is necessary.

Embedded discontinuity approaches offer some improvement over the smeared crack

representation of failure but retain some of the same numerical performance issues.

Unlike smeared models, from which a macrocrack must be deduced from a smeared

crack pattern, crack path continuity can be enforced via a crack front tracking al-

gorithm [41]. However, crack path continuity is only possible in two dimensions

and restricts the crack initiation to elements directly ahead of the crack tip. Con-

sequently the failure initiation criteria can be violated in other elements away from

the path resulting in a non-physical stress build up and the results can be sensi-

tive to the mesh structure [75]. The stress locking (spurious stiffening) observed in

smeared crack analysis of curved crack paths is overcome if the nonsymmetric em-

bedded model is utilized [44]. The use of the statically optimal symmetric embedded

model does result in stress locking due to an inappropriate kinematic representation

of the discontinuity through an element. However, embedded models that maintain

symmetry and reduce stress locking have been developed [44]. The result of mesh

alignment bias of failure surfaces does persist for the embedded discontinuity model.

In this respect the behavior of the nonsymmetric embedded model without crack

continuity and the classical smeared crack model have been shown to behave almost

identically [35].

2.4.4 Discontinuous Failure Representations

Discontinuous models of failure explicitly represent discontinuities in the displace-

ment field. In general, they employ discrete constitutive models that relate traction

to displacement jump across a failure surface. The difference between these models
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resides in how the discontinuity is represented in the computational method, so it

is more appropriate to talk about the different discontinuous computational failure

methods. The appeal of discontinuous methods is their ability to represent the phys-

ical reality of a crack as a geometrical discontinuity in a solid. The three methods

discussed are the use of interface elements, re-meshing, and the partition of unity

method (PUM).

The first discontinuous approaches involved the use of zero thickness interface el-

ements placed along inter-element boundaries [37], [23]. For concrete fracture the

discrete constitutive model (traction vs. displacement) is applied across the interface

element to model localization and fracture while regular elements in the mesh remain

elastic. A cohesive crack model for concrete fracture was first successfully applied

using interface elements [28]. A summary and comparison of continuous and lumped

interface elements is provided by Rots [54]. For continuous interface elements the

displacement over the surface separating two adjacent element faces (sides) varies as

a continuous function over the faces. In contrast, the lumped interface element treats

the displacement between two element faces as a constant vector quantity over the

surface. In a comparison study of continuous and lumped approaches the response

of an undamaged structure loaded in mode I is studied for various constant different

dummy stiffness values for the interface elements. The lumped element is shown

to behave better than its continuous counterpart because its response approached

the completely rigid response of the structure (no interface elements) as the dummy

stiffness increased. This was not the case for the continuous interface element and

caution should be taken for relatively high stiffness values. The use of interface ele-

ments for modeling fracture has proved to be successful overall and is commonly used

for fracture modeling at the macro scale [54] and micro scale [13]. Curved mode I

fracture of concrete compares well to test data and does not exhibit the stress locking

encountered in classical smeared methods since the discontinuity is modeled explic-

itly [54]. The downside of using interface elements is that the macro crack trajectory
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is restricted to follow the element boundaries. Consequently the results are always

mesh dependent. Theoretically a refined mesh (or at least locally refined mesh) is

needed to accurately capture the crack path. For predetermined crack paths inter-

face elements are only placed at the necessary locations. If the crack trajectory is

unknown a priori, which is usually the case, interface elements can be placed between

the shared edges of all elements. This can become computationally expensive as more

global degrees of freedom are added to the discrete system of equations.

Discontinuous computational methods based on automatic mesh generation have

also been utilized. Like the interface element method, cracks are confined to element

boundaries but the mesh structure changes throughout the computation to accom-

modate the changing crack path. The discontinuity is the result of the changing

mesh structure. The advance of a crack is accomplished by combining the prediction

of the change in crack face orientation and crack length increment with a re-meshing

procedure. The re-meshing only needs to be done locally near the crack tip. Ingraffea

and Saouma [29] have successfully used this method to predict crack trajectories in

concrete using LEFM . In this study the crack path discovered in the Fontana Dam

was closely simulated. The large structural size of the dam allowed for the use of

LEFM as a concrete fracture criteria and re-meshing near the crack tip required the

use of singularity elements to properly capture the stress field. Ortiz and Pandolfi

have also used similar approach to accurately reproduce crack trajectory results in a

simulation of a drop-weight dynamic fracture test [45]. The drawback of the method

is the complicated implementation of the automated meshing procedure and the po-

tentially high computational cost of re-meshing many times throughout the course

of the simulation.

Within the past decade a discontinuous fracture method known as the partition of

unity method (PUM) or the extended finite element method (X-FEM) has been

developed and applied successfully to fracture problems. The method exploits the
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partition of unity property of interpolation polynomials used in finite element ap-

proximations by incorporating an enhancement to the underlying standard basis

functions [1]. The enhancements are generally functions that provide desired prop-

erties to the approximate solution and are associated with additional degrees of

freedom at the nodes. Since enrichment is provided at the nodes the enhancements

to the solution takes place over the support of a node, thereby affecting the solution

locally over elements overlapped by the support. The additional degrees of freedom

are global unknowns and are added to a given node as needed throughout a compu-

tation. The solution enhancement to FEM for fracture problems is a discontinuous

function (Heaviside function). The resulting PUM exhibits significant improvement

over the mesh dependence shortcomings of the previously mentioned discontinuous

computational methods. Not only can a discontinuity cross through elements and

element boundaries but the displacement jump along the discontinuity is a continu-

ous function of the same polynomial order as the finite element. The formulation of

the discrete equations from the weak form of the governing equation and boundary

conditions follows the standard FEM procedure. The difference is that the trial and

test functions (displacement and its variation) contain a discontinuity. The strain is

interpreted in a distributional sense as a Dirac delta function acting along the discon-

tinuity so the weak form contains terms which are integrals over the discontinuity.

The Galerkin method is applied to preserve symmetry for the cases of symmetric

material tangent modulus. Details of the PUM formulation are provided by Wells

and Sluys [76], [75]. Fracture prediction results that utilize the PUM have compared

well to experimental observations and known analytical solutions. The method has

been used to model elastic crack growth for which the solution contains additional

enhancements of near-crack tip asymptotic solutions [34]. Discrete constitutive mod-

els have been applied to PUM fracture simulations for static and dynamic cases [76],

[75]. In the latter study mesh independence of results are demonstrated with respect

to mesh size and mesh line orientation.
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The PUM does come with its own special computational aspects and disadvantages.

Important issues regarding implementation include discontinuity propagation, track-

ing of the crack tip, the criteria for enhancing individual nodes and the proper

computation of the crack orientation from the stress field [75]. One particularly im-

portant aspect is the integration of an element crossed by a discontinuity. Usually,

the element is subdivided on both sides of the crack into sub-elements that are numer-

ically integrated. Gauss points must also lie on the discontinuity in order to evaluate

the surface or line integrals. Although the PUM has proved to be relatively superior

with respect to mesh independence of results, it is necessary to use locally refined

meshes in cracked areas in order to adequately predict crack trajectories. The two

biggest drawbacks of the method are the complex implementation and the increased

computational cost associated with the additional degrees of freedom.
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3.1 Introduction

The governing equations of a deformable solid continuum are presented. The kine-

matics of deformation is covered in section 3.2. Some preliminary mathematical

considerations for forming conservation laws are discussed in section 3.3. The con-

servation of mass is derived in section 3.4. Section 3.5 provides derivations of the

conservation of linear and angular momentum. Since material failure is of primary

interest, the kinematic representation of discontinuities in a displacement field are

given in section 3.5.2. The kinetic relationship presented in section 3.5.3 is the spe-

cific discrete constitutive model for material failure used for the present research.

Section 3.5.4 discusses the representation of a discontinuous displacement field in a

continuum for purposes of modeling failure. Section 3.6 summarizes the complete

set of equations that define problem, from which the discrete equations are formed

and solved numerically.

3.2 The Geometry of Deformation

The continuous deformation of a solid medium is considered. The two configurations

of a deformable body displayed in figure 3.1 represent the same solid body of material

points at two instances in time, denoted by t ∈ R+. The initial or reference configu-

ration of the body, at which t = 0, is a set of points Ω0 ∈ R3 . The position vector of a

material point in the initial configuration is denoted byX ∈ Ω0. At some time, t > 0,

the body has deformed relative to its initial state. This deformed state is referred

to as the current or spatial configuration of the body, and is represented by the set

of points denoted as Ω ∈ R3. The position vector of a material point in the current

configuration is denoted by x ∈ Ω. The vectors, X and x, represent the position of

material point at different times (see Figure 3.1). A one to one mapping exists be-

tween the material point positions such that x = x(X, t) and X = X(x, t). Initially
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(at t = 0), X = X(x, 0). The sets of basis vectors, {E1,E2,E3} and {e1, e2, e3}, are

associated with the reference and deformed configuration respectively.
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Figure 3.1: Illustration of a Deformation of a Solid Body

In terms of the their respective basis the initial and current positions of a material

point are

X = XAEA (3.2.1)

and

x = xiEi (3.2.2)

where XA represents the coordinates of X with respect to the {E1,E2,E3} basis,

xi represents the coordinates of x with respect to the {e1, e2, e3} basis and the

summation convention is used for A, i = 1, 2, 3. When describing vectors in terms

of coordinates and basis vectors, capitalized subscripts denote coordinates of the

{E1,E2,E3} basis and lower case subscripts denote coordinates with respect to the

{e1, e2, e3} basis. To emphasize the functional relationships of the vectors x =

x(X, t) and X = X(x, t) equations (3.2.1) and (3.2.2) are expanded as follows:

X = X1(x1, x2, x3, t)E1 +X2(x1, x2, x3, t)E2 +X3(x1, x2, x3, t)E3 (3.2.3)
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x = x1(X1X2, X3, t)e1 + x2(X1X2, X3, t)e2 + x3(X1X2, X3, t)e3 (3.2.4)

Consider an infinitesmal material fiber segment in the reference configuration, de-

noted by the vector dX, which deforms into the vector dx in the current configuration

(see figure 3.1). The relationship between the differentials is

dx = ∇0x · dX (3.2.5)

where the operation ∇0 indicates a gradient of a quantity with respect to the com-

ponents in the initial configuration XA (A = 1, 2, 3). The deformation gradient is

defined to be

F = ∇0x (3.2.6)

Equation (3.2.4) is substituted into (3.2.6) to give F in terms of its components. The

result is

F =
∂xi

∂XA
ei ⊗ EA (3.2.7)

where ⊗ denotes the tensor product and ei ⊗ EA is the mixed second order tensor

basis. Equation(3.2.5) is rewritten using (3.2.6) to obtain

dx = F · dX (3.2.8)

The deformation gradient F is a second order tensor that maps vectors embedded

in the material from the reference configuration to the deformed configuration. A

deformed material segment is mapped to the same reference segment as follows:
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dX = ∇X · dx (3.2.9)

In equation(3.2.9) the operation ∇ indicates the gradient of a quantity with respect

to the spatial components of position in the current configuration xi. It follows from

equations (3.2.8) and (3.2.9) that

F−1 = ∇X (3.2.10)

and

F−1 =
∂XA

∂xi
EA ⊗ ei (3.2.11)

Similarly, F−1 maps material line segments from the current configuration to the

reference configuration as follows:

dX = F−1 · dx (3.2.12)

It is important to note that existence of the one-to-one mapping x = x(X, t) and

X = X(x, t) requires that F−1 exists. An equivalent requirement is

J = det(F) �= 0 (3.2.13)

Since det(F) �= 0, we can assume without loss of generality that det(F) > 0.

Figure 3.2 illustrates the deformation of a differential volume element of material. In

the reference configuration the volume element is a box defined by the line segments

dX1, dX2 and dX2. The differential volume in the reference configuration dV0 is

computed as follows:
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!

Figure 3.2: Illustration of a Deformation of a Volume Element

dV0 = dX1 · (dX2 × dX3) (3.2.14)

In the current configuration the box has deformed into a parallelepiped that is defined

by the deformed line segments dx1, dx2 and dx2. The volume of the deformed element

dV is

dV = dx1 · (dx2 × dx3) (3.2.15)

Equation (3.2.8) is substituted into equation (3.2.15). The result is

dV = F · dX1 · (F · dX2 × F · dX3) (3.2.16)

For any second order tensor B, and vectors u, v and w the determinant of B is

defined by the following identity:

det(B)u · (v ×w) = B · u · (B · v ×B ·w) ∀u,v,w (3.2.17)

Using the identity in equation (3.2.17) and equation (3.2.13), equation (3.2.16) be-

comes
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dV = JdV0 (3.2.18)

which states that the change in differential volume from the initial and current con-

figurations is related by J . Since volume is always a positive quantity, J is also

required to be positive. In the context of describing a deformation the restriction on

J is

J = det(F) > 0 (3.2.19)

The change in differential surface area is illustrated in 3.3. The surface area element

in the reference configuration is a square defined by the material fiber segments dX1

and dX2. The differential area of the element in the initial configuration is considered

to be a vector quantity dA0 defined as follows:

dA0 = N0dA0 = dX1 × dX2 (3.2.20)

In (3.2.20) N0 is a unit normal vector perpendicular to the area element and dA0 is

the magnitude of dA0. Alternatively, dA0 is

dA0 = N0 · (dX1 × dX2) (3.2.21)

In the current configuration the area element deforms into a parallelogram defined

by the deformed differential line segments dx1 and dx2. The deformed differential

area element dA is expressed as follows:

dA = ndA = dx1 × dx2 (3.2.22)
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In (3.2.22), n is the unit normal vector perpendicular to the area element and dA is

the magnitude of dA which is expressed as follows:

dA = n · (dx1 × dx2) (3.2.23)

Substitution of (3.2.8) into (3.2.23) results in the following expression for dA:

dA = ndA = (F · dX1)× (F · dX2) (3.2.24)

The inner product of the vector F · N0 with equation (3.2.24) is made and the

following manipulations are performed:

(F ·N0) · ndA = (F ·N0) · (F · dX1)× (F · dX2)

= det(F)N0 · (dX1 × dX2)

= JN0 · (dX1 × dX2)

= JN0 · (N0dA0) (3.2.25)

The final result in (3.2.25) is restated to be

(N0 · FT ) · dA = JN0 · dA0 (3.2.26)

Since (3.2.26) holds for all N0, the differential area elements in the reference and

current configurations are related as follows:

dA = JF−T · dA0 (3.2.27)

The expression in equation (3.2.27) is referred to as Nanson’s relation, for which

F−T = (FT )−1.
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!

Figure 3.3: Illustration of a Deformation of an Area Element

Strain measures are generally expressed in terms of F. Two common measures of

strain are discussed here; the Lagrangian (or material) strain tensor, E, and the

Eulerian (or spatial) strain tensor, ε. Consider only the lengths of the material

fiber segments dS0 = |dX| and ds = |dx| in the reference and current configurations

respectively. The difference between the squares of dS0 and ds serve as a measure of

relative deformation and is expressed as the following:

ds
2 − dS

2
0 = dx · dx− dX · dX (3.2.28)

When equation (3.2.28) is expressed in terms of the reference material segment dX

using (3.2.8) the result is

ds
2 − dS

2
0 = (F · dX) · (F · dX)− dX · dX

= (dX · FT ) · (F · dX)− dX · dX

= dX · [FT · F− I] · dX

= 2dX · E · dX (3.2.29)

where the Lagrangian strain tensor E is defined as follows:
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E =
1

2
[FT · F− I] (3.2.30)

In terms of its components, E is

E = EABEA ⊗ EB =

�
∂xi

∂XA

∂xi

∂XB
− δAB

�
EA ⊗ EA (3.2.31)

If equation (3.2.28) is expressed in terms of the deformed material segment dx in the

current configuration using (3.2.12), the result is

ds
2 − dS

2
0 = dx · dx− (F−1 · dx) · (F−1 · dx)

= dx · dx− (dx · F−T ) · (F−1 · dx)

= dx · [I− F−T · F−1] · dx

= 2dx · ε · dx (3.2.32)

where the Eulerian strain tensor ε is defined as follows:

ε =
1

2
[I− F−T · F−1] (3.2.33)

In terms of its components, ε is

ε = εijei ⊗ ej =

�
δij −

∂XA

∂xi

∂XA

∂xj

�
ei ⊗ ej (3.2.34)

The strain tensors, E and ε, can also be expressed in terms of the displacement u of

a material point between initial and current configurations. Displacement is defined

as a function of x or X as follows:
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u(x, t) = x−X(x, t) or U(X, t) = x(X, t)−X (3.2.35)

The material displacement gradient ∇0U is

∇0U = F− I (3.2.36)

The Lagrangian strain is expressed in terms of∇0U by substituting equation (3.2.36)

into (3.2.30). The result is

E =
1

2
[(∇0U+ I)T · (∇0U+ I)− I]

= [∇0U+ (∇0U)T + (∇0U)T · (∇0U)] (3.2.37)

The spatial displacement gradient ∇u is

∇u = I− F−1 (3.2.38)

The Eulerian strain is expressed in terms of ∇u by substituting equation (3.2.38)

into (3.2.33). The result is

ε =
1

2
[(I− (I−∇u)T · (I−∇u)]

= [∇u+ (∇u)T + (∇u)T · (∇u)] (3.2.39)

If the displacement gradients are assumed to be small with respect to the identity

I (i.e. �∇u� � 1 and �∇0U� � 1) then the multiplicative terms, (∇0U)T · (∇0U)

and (∇u)T · (∇u), in (3.2.37) and (3.2.39) respectively can be ignored. In this

case, equations (3.2.36) and (3.2.38) lead to the approximation of the deformation
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gradient as the identity. If F ≈ I there is no distinction between material and spatial

gradients, and therefore ∇0U ≈ ∇u. This small displacement gradient assumption

leads to following small strain approximation:

ε = (∇u)S =
1

2
[∇u+ (∇u)T ] (3.2.40)

The superscript, S, denotes the symmetric part of a second order tensor which is

defined in equation (3.2.40) for ∇u. Only small strains are considered for the present

study. From this point forward any reference to strain, ε, is understood to be the

small strain approximation in equation (3.2.40).

3.3 Representation of Quantities and their Time

Derivatives

There are two ways to represent a continuum quantity. Consider an arbitrary scalar

quantity, φ. One representation of φ is the material representation for which φ is ex-

pressed as a function of the position of a material point in the reference configuration

and time as follows:

φ = φ(X, t) (3.3.1)

The interpretation of the material representation of any quantity, in this case φ(X, t),

is that the value of φ for a material point, X that started at time t. The other

representation of a continuum quantity is the spatial representation for which φ is

expressed as a function of a point in space as follows:

φ = φ(X(x, t), t) (3.3.2)
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The spatial representation, φ(x, t), is interpreted as observing the value of φ for the

material point that is currently at x at time t.

The material representation can be thought of as the perspective of being attached

to the material and observing the changes of quantities on that material in time. The

spatial representation is the perspective of observing a fixed point in space and the

changes of the quantities at that point as time goes by and material passes through

the space.

The velocity v(x, t) is the rate of change of position with respect to time at point x

at time t. This velocity is that of the material point currently located at x at time

t.

v(x, t) = v(x(X, t), t) = V(X, t) (3.3.3)

The velocity of a material point is the rate of change of that point’s position with

time as follows:

V(X, t) =
∂x(X, t)

∂t
(3.3.4)

Substitution of equation (3.3.3) in equation (3.3.4) results in the following:

∂x(X, t)

∂t
= v(x(X, t), t) (3.3.5)

Similarly, the acceleration of a material point is the time rate of change of the velocity

as follows:

A(X, t) =
∂V(X, t)

∂t
(3.3.6)
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Use of equation (3.3.3) and the chain rule, gives the following result for the acceler-

ation:

A(X, t) =
∂V(X, t)

∂t
=

∂v(x, t)

∂t
+ (v(x, t) ·∇)v(x, t) = a(x, t) (3.3.7)

The final result in equation (3.3.7) is the material (or substantial) time derivative

of the velocity. The material time derivative of the spatial representation of any

quantity (·) is defined by the following operator:

D(·)
Dt

=
∂(·)
∂t

+ (v ·∇)(·) (3.3.8)

For the sake of convenience, a superimposed dot over a quantity will also be used to

denote the material time derivative (e.g. φ̇ = dφ/dt).

The statement of conservation laws requires the total time derivative of an integral

of some function ψ = ψ(x, t) over the volume V of the current configuration, Ω, as

follows:

d

dt

�

Ω(t)

ψdV (3.3.9)

In equation (3.3.9) Ω = Ω(t) is used to emphasize the fact that the current configu-

ration volume is a function of time. In order to apply the material derivative to the

integrand a change of variables to the original configuration Ω0 is performed using

equation (3.2.18) as follows:
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d

dt

�

Ω(t)

ψdV =
d

dt

�

Ω0

ψJdV0

=

�

Ω0

d(ψJ)

dt
dV0

=

�

Ω0

�
ψ̇J + ψJ̇

�
dV0 (3.3.10)

It is apparent from equation (3.3.10) that an expression for the material time deriva-

tive J̇ is required. In order to obtain an expression for J̇ , it is necessary to express

J = detF in indicial notation as follows:

J = detF = εijkF1iF2jF3k = εijk
∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk
(3.3.11)

In (3.3.11) the third order alternating tensor εijk is defined to be

εijk =






1 if ijk = 123, 231 or 312

−1 if ijk = 132, 321 or 213

0 otherwise

(3.3.12)

Using the chain rule, the material time derivative of (3.3.11) is

J̇ = εijk

�
d

dt

�
∂x1

∂Xi

�
∂x2

∂Xj

∂x3

∂Xk
+

∂x1

∂Xi

d

dt

�
∂x2

∂Xj

�
∂x3

∂Xk
+

∂x1

∂Xi

∂x2

∂Xj

d

dt

�
∂x3

∂Xk

��

(3.3.13)

The partial derivatives of xp (for p = 1, 2, 3) with respect to space and time are

assumed to be continuous and the following holds:

d

dt

�
∂xp

∂Xq

�
=

∂

∂Xq

�
dxp

dt

�
=

∂

∂Xq

�
∂xp

∂t

�
=

∂vp

∂Xq
(3.3.14)
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Equation (3.3.13) is restated with the use of (3.3.14) to be

J̇ = εijk
∂v1

∂Xi

∂x2

∂Xj

∂x3

∂Xk
+ εijk

∂x1

∂Xi

∂v2

∂Xj

∂x3

∂Xk
+ εijk

∂x1

∂Xi

∂x2

∂Xj

∂v3

∂Xk
(3.3.15)

The gradient of velocity components vp (p = 1, 2, 3) with respect to the reference

configuration in equation (3.3.15) can be expressed as a gradient with respect to the

spatial configuration as follows:

∂vp

∂X1
=

∂vp

∂xn

∂xn

∂X1
(3.3.16)

Using equation (3.3.16), equation (3.3.15) is restated to be

J̇ = εijk
∂v1

∂xn

∂xn

∂Xi

∂x2

∂Xj

∂x3

∂Xk
+ εijk

∂x1

∂Xi

∂v2

∂xn

∂xn

∂Xj

∂x3

∂Xk
+ εijk

∂x1

∂Xi

∂x2

∂Xj

∂v3

∂xn

∂xn

∂Xk
(3.3.17)

A non-zero result for each term in (3.3.17) is obtained only when the following

restrictions are made to the dummy index, n:

J̇ = εijk
∂v1

∂x1

∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk
+ εijk

∂x1

∂Xi

∂v2

∂x2

∂x2

∂Xj

∂x3

∂Xk
+ εijk

∂x1

∂Xi

∂x2

∂Xj

∂v3

∂x3

∂x3

∂Xk

=

�
∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3

�
εijk

�
∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

�
(3.3.18)

It can be shown that

J = det(F) = εijk

�
∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

�
(3.3.19)

The final result in equation (3.3.18) is expressed in direct notation using equation

(3.3.19) as follows:

45



Chapter 3. The Governing Equations

J̇ = (∇ · v)J (3.3.20)

Equation (3.3.20) is substituted into equation (3.3.10). The result is

d

dt

�

Ω(t)

ψdV =

�

Ω0

�
ψ̇J + ψ(∇ · v)J

�
dV0

=

�

Ω0

�
ψ̇ + ψ(∇ · v)

�
JdV0 (3.3.21)

A change of variables from the reference configuration to the current configuration

is made for the final result in equation(3.3.21). The result is

d

dt

�

Ω(t)

ψdV =

�

Ω(t)

�
ψ̇ + ψ(∇ · v)

�
dV (3.3.22)

The relationship in equation (3.3.22) is used frequently in the derivation of conser-

vation laws in the following sections because the governing equations are formed in

terms of the spatial configuration.

3.4 Conservation of Mass

Mass is a positive scalar quantity that refers to an amount of physical matter. The

conservation of mass states that the total mass of a body, denoted by m, remains

constant with time. Consider an arbitrary subdomain of the current configuration,

B(t) ⊂ Ω(t), that has volume, ∆V , and mass, ∆m . In a continuum the mass density

function, denoted by ρ = ρ(x, t), is defined everywhere in B to be

ρ(x, t) = lim
∆V→0

∆m

∆V
(3.4.1)
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for which ρ(x, t) > 0.

Conservation of mass in B is stated to be

m =

�

B

ρ(x, t)dV = constant (3.4.2)

An equivalent statement of conservation of mass is that the material time derivative

of mass is equal to zero as follows:

dm

dt
=

d

dt

�

B

ρ(x, t)dV = 0 (3.4.3)

Equation (3.3.22) is used in equation (3.4.3) to give the following result:

d

dt

�

B

ρ(x, t)dV =

�

B

(ρ̇+ ρ(∇ · v))dV = 0 (3.4.4)

Now consider any scalar, vector or tensor valued function ψ(x) that is defined ev-

erywhere in B ⊂ Ω. If the subregion B is arbitrary and ψ(x) is continuous the

localization theorem states that

�

B

ψ(x)dV = 0 =⇒ ψ(x) = 0 (3.4.5)

Using the localization theorem in equation (3.4.4) the local form of conservation of

mass (continuity) is

ρ̇+ ρ(∇ · v) = 0 (3.4.6)
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3.5 Conservation of Momentum

The total linear momentum in B(t) ⊂ Ω(t) is denoted by P, and defined to be

P =

�

B

ρvdV (3.5.1)

The time rate change of linear momentum is obtained by use of equation (3.3.22) as

follows:

Ṗ =

�

B

�
d(ρv)

dt
+ ρ(∇ · v)vdV

�

=

�

B

(ρ̇v + ρv̇ + ρ(∇ · v)v) dV

=

�

B

(v(ρ̇+ ρ(∇ · v) ) + ρv̇) dV (3.5.2)

The final result in equation (3.5.2) is simplified using the conservation of mass in

equation(3.4.6) to be

Ṗ =

�

B

ρv̇dV (3.5.3)

Newton’s second law states that the time rate change of linear momentum is equal

to the sum of external forces, f , as follows:

Ṗ = f (3.5.4)

The sum of external forces is assumed to have two contributions; forces from tractions

that act over the surface of B and body forces that act over the volume of B (such

as gravitational or magnetic forces). The traction vector (or stress vector) function,

τ = τ (x, t), is defined as the force per unit area that acts over the surface of the
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arbitrary subdomain B(t) ⊂ Ω(t). Recall that the surface of B, denoted by ∂B, is

defined by the normal vector n to that surface. The traction vector is defined by the

following linear transformation of n:

τ = σ · n (3.5.5)

In equation (3.5.5) σ = σ(x, t) is the second order Cauchy stress tensor. The total

body force per unit mass is denoted as b = b(x, t). The sum of external forces on B

is stated in terms of its volume and surface contributions to be

f =

�

∂B

τdA+

�

B

ρbdV (3.5.6)

Where the surface integral in equation (3.5.6) is restated using equation (3.5.5) to

be

�

∂B

τdA =

�

∂B

σ · ndA (3.5.7)

By use of the divergence theorem, equation (3.5.7) becomes

�

∂B

σ · ndA =

�

B

∇ · σdV (3.5.8)

Equations (3.5.4), (3.5.6) and (3.5.8) are combined to give the following integral form

of the conservation of momentum:

�

B

(ρv̇ −∇ · σ − ρb)dV = 0 (3.5.9)

It follows from equation (3.4.5) that the local form of the conservation of linear

momentum is
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ρv̇ = ∇ · σ + ρb (3.5.10)

Equation (3.5.10) is restated in indicial notation for later reference to be

ρv̇k =
∂σkl

∂xl
+ ρbk (3.5.11)

The total angular momentum, L , in B(t) ⊂ Ω(t) is defined to be

L =

�

B

(x× ρv)dV (3.5.12)

The time rate change of angular momentum is obtained by the use of equation

(3.3.22) as follows:

L̇ =

�

B

�
d

dt
(x× ρv) + (∇ · v)(x× ρv)

�
dV

=

�

B

(ẋ× ρv + x× (ρ̇v + ρv̇) + (∇ · v)(x× ρv)) dV

=

�

B

((v × ρv) + x× (ρ̇+ ρ(∇ · v))v + x× ρv̇) dV (3.5.13)

The final result in equation (3.5.13) is simplified by using the conservation of mass

in equation (3.4.6) and the fact that the cross product of any vector with itself is the

zero vector. The result is

L̇ =

�

B

x× ρv̇dV (3.5.14)

The balance of angular momentum states that the material time derivative of angular

momentum is equal to the sum of all moments (with respect to the origin) produced
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by the traction, τ = τ (x, t, ), acting over the surface of B and body force, b = b(x, t),

acting over the volume of B . The balance of angular momentum is

�

B

x× ρv̇dV =

�

∂B

x× τdA+

�

B

x× ρbdV (3.5.15)

Equation (3.5.7) and the divergence theorem are employed to simplify equation

(3.5.15) to the following form:

�

B

(x× ρv̇ −∇ · (x× σ)− x× ρb) dV = 0 (3.5.16)

In order to simplify further manipulations, equation (3.5.16) is restated in indicial

notation as follows:

�

B

�
εijkxjρv̇k −

∂

∂xl
(εijkxjσkl)− εijkxjρbk

�
dV = 0 (3.5.17)

Equation (3.5.17) is restated by the following series of steps:

0 =

�

B

�
εijkxjρv̇k −

�
εijk

∂xj

∂xl
σkl + εijkxj

∂σkl

∂xl

�
− εijkxjρbk

�
dV

=

�

B

�
εijkxjρv̇k −

�
εijkδjlσkl + εijkxj

∂σkl

∂xl

�
− εijkxjρbk

�
dV

=

�

B

�
εijkxjρv̇k −

�
εijkσkj + εijkxj

∂σkl

∂xl

�
− εijkxjρbk

�
dV

=

�

B

�
εijkxj

�
ρv̇k −

∂σkl

∂xl
− ρbk

�
− εijkσkj

�
dV (3.5.18)

The steps leading to the final result in (3.5.18) utilize the fact that ∂xi/∂xj = δij

where the Kroneker delta function is defined to be
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δij =



 1 for j = i

0 for j �= i



 (3.5.19)

The final result in equation (3.5.18) is simplified further using the conservation of

linear momentum in equation (3.5.10). The result is

�

B

εijkσkjdV = 0 (3.5.20)

Equation (3.5.20) requires that the following symmetry condition holds:

σkj = σjk (3.5.21)

In direct notation equation (3.5.21) is

σ = σT (3.5.22)

Equation (3.5.22) is the final consequence of the balance of angular momentum which

requires symmetry of the Cauchy stress tensor.

3.5.1 Weak Form of the Linear Momentum Balance

The weak form, or variational form, of the linear momentum balance is obtained for

future use in computational developments. Equation (3.5.10) is also known as the

strong form of the linear momentum balance. The weak form is obtained by inte-

grating the product of equation (3.5.10) with an admissible variation of the solution,

denoted by w = w(x, t), over the volume of Ω as follows:

�

Ω

w · (ρv̇ −∇ · σ − ρb)dV = 0 (3.5.23)
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In equation (3.5.23) the function, w = w(x, t) (also known as the test funciton), is

required to be zero on the portion of the boundary, ∂Ω (see figure 3.1), where the

displacement is prescribed.

By the product rule, the following holds:

�

Ω

∇ · (w · σ)dV =

�

Ω

∇w : σ +w(∇ · σ)dV (3.5.24)

Equation (3.5.24) is expressed alternatively using the divergence theorem and equa-

tion (3.5.5) to be

�

Ω

∇ · (w · σ)dV =

�

∂Ω

w · σ · ndA =

�

∂Ω

w · τdA (3.5.25)

Equations (3.5.24) and (3.5.25) are combined and substituted into (3.5.23) to give

the following weak form of the conservation of linear momentum:

�

Ω

ρw · v̇dV = −
�

Ω

∇w : σdV +

�

∂Ω

w · τdA+

�

Ω

ρw · bdV (3.5.26)

3.5.2 Strong Discontinuity Kinematics

Discrete constitutive models can be applied to problems of fracture in the context

of strong discontinuities. The discussion of strong discontinuity kinematics follows

from [40, 43] and references therein for the case of infinitesimal strain. Consider

a discontinuity in the body Ω denoted by the surface Γ with normal vector n and

tangential vector t depicted in figure 3.4 . The two regions Ω+, and Ω−, are separated

by Γ. The displacement field, u(x, t), in Ω is written in terms of a continuous and a

discontinuous part as follows:

53



Chapter 3. The Governing Equations

u(x, t) = ū(x, t)� �� �
continuous part

+ HΓ[[u]](x, t)� �� �
discontinuous part

(3.5.27)

In equation (3.5.27), ū(x, t) represents the regular continuous part of the displace-

ment field, [[u]](x, t) is the jump in the displacement field and HΓ(x) is the Heaviside

function defined as follows:

HΓ(x) =



 0 for x ∈ Ω−

1 for x ∈ Ω+



 (3.5.28)

The small strain tensor, ε(x, t), is computed from equation (3.2.40) to be

ε(x, t) = (∇u)S = (∇ū)S +∇HΓ ⊗ [[u]] +HΓ(∇[[u]])S (3.5.29)

The gradient of the Heaviside function in equation (3.5.29) is defined in the sense of

distributions to be ∇HΓ = δΓ(x)n where δΓ(x) is the Dirac delta function, defined

in terms of any smooth function φ(x, t) with compact support as follows:

�

Ω

φ(x, t)δΓ(x)dV =

�

Γ

φ(x, t)dA (3.5.30)

It follows that the expression for strain in equation (3.5.29) becomes

ε(x, t) = (∇ū)S +HΓ(∇[[u]])S + δΓ([[u]]⊗ n)S (3.5.31)

The regular part of the small strain tensor, defined as ε̄(x, t) = (∇ū)S+HΓ(∇[[u]])S,

is bounded. The singular and unbounded part of the strain is δΓ([[u]]⊗n)S. In terms

of its regular and singular contributions the strain tensor is
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ε(x, t) = ε̄(x, t)� �� �
regular and bounded part

+ δΓ([[u]]⊗ n)S� �� �
singular and unbounded part

(3.5.32)

!

Figure 3.4: Illustration of strong discontinuity kinematics concept

For practical purposes a regularization of the kinematics in equation (3.5.32) is used

in order to keep the singular part of the strain bounded. A regularized Dirac delta

function is defined to be

δ
L
Γ =

1

Lc
µΓ(x) (3.5.33)

where Lc is the smearing length (or band width) and µΓ(x) is a collocation function

defined as follows:

µΓ(x) =



 0 for x ∈ Ω/Γ

1 for x ∈ Γ



 (3.5.34)

The regularized strain field is
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ε(x, t) = ε̄(x, t) +
1

Lc
µΓ([[u]]⊗ n)S (3.5.35)

where the regularized term becomes unbounded as Lc → 0.

3.5.3 Elastic De-cohesive Constitutive Model for Geological

Materials

The relationship between stress and strain is called the constitutive equation and

is denoted generally as σ = σ(ε). In a classical continuum σ = σ(ε) is defined

everywhere in Ω. However, in the presence of a discontinuity, represented by the

surface Γ with normal vector n in figure 3.4, a discrete constitutive model is imposed

on Γ which relates the traction, τ = σ · n, on Γ to the displacement discontinuity

across Γ. The traction-displacement discontinuity relationship associated with the

discrete constitutive model is denoted generally as τ = τ ( [[u]]). In general terms,

the application of the constitutive model to a body Ω that has a discontinuity across

a surface Γ is stated as the following:

σ = σ (ε) x ∈ Ω/Γ (3.5.36)

σ · n = τ = τ ( [[u]] ) x ∈ Γ (3.5.37)

The discrete constitutive model used for this study is presented. The model is a

modification to the elastic de-cohesive model for geological materials [58]. Prior to

the initiation of failure the material is considered to be linear elastic for which stress

σ and strain ε are related through the fourth order isotropic elasticity tensor C as

follows:

56



Chapter 3. The Governing Equations

σ = C : εe (3.5.38)

In equation (3.5.38) the superscript e is used on the strain tensor to emphasize that

the deformation is purely elastic. Elastic deformation of the material continues until

the initiation of failure.

The material failure process initiates on a discrete surface, defined by the unit normal

vector n and referred to as the failure surface. The determination of n depends on

the local stress σ at a point in the deformable body. The traction on a potential

failure surface defined by n is τ = σ · n. A de-cohesion function of τ , denoted by

Fn = Fn(τ ), is also defined. Material failure initiates on the surface defined by n if

the following criterion is met:

F = max
∀n

Fn (τ ) = 0 (3.5.39)

Equation (3.5.39) states that the potential failure surface orientation corresponds to

the normal vector n that maximizes Fn = Fn(τ ). Classical failure criteria associated

with specific forms of Fn include the Rankine, Tresca, and Mohr-Coulomb criteria.

Each criterion predicts the failure stress as well as the failure plane orientation. The

Rankine failure criterion is typically used for tensile stress states of brittle materials

and incorporates the normal component of traction on a failure surface, denoted by

τn = τ · n. The failure planes predicted by the Rankine criteria correspond to the

direction of the maximum principal stress. The de-cohesion function associated with

Rankine failure is

Fn =
τn

τnf
− 1 (Rankine) (3.5.40)

where τnf is the ultimate tensile strength of the material. From equation (3.5.40) it

is obvious that the failure surface initiation occurs when τn = τnf .
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The Tresca criterion predicts failure planes corresponding to the maximum shear

stress on a potential failure surface, and is used for ductile materials such as metals.

The shear stress on a surface with normal n is

τs =
�
||τ ||2 − τ

2
n

� 1
2 (3.5.41)

The form of Fn associated with Tresca is

Fn =
τs

τsf
− 1 (Tresca) (3.5.42)

where τsf is the shear strength of the material. The failure surface initiation criterion

for Tresca is τs = τsf on a plane with normal n that is oriented 45◦ from the plane

of maximum principal stress.

Geological material failure is often predicted by the Mohr-Coulomb criterion, which

predicts failure planes at a fixed angle relative to the direction of maximum principal

stress. The de-cohesion function associated with Mohr-Coulomb incorporates both

the normal and shear traction components as follows:

Fn =
τs

τsf
+

τn

τnf
− 1 (Mohr − Coulomb) (3.5.43)

All three classical models are useful for certain materials and loadings but none of

them are able to reproduce realistic predictions of failure planes for all stress states

of a given material.

The failure criteria that results from the specific form of the de-cohesion function

Fn used for this study predicts the value of failure initiation stress and the failure

surface orientation (crack orientation) for all states of stress, which are in good

agreement with experimental failure data for geological materials such as concrete

and sea ice [58]. A specific advantage over classical failure criteria is the ability of the
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model to correctly predict failure plane orientations for triaxial compression stress

states, including axial splitting. However, before presenting the specific form of Fn

it is necessary to discuss how the failure process is modeled by discrete constitutive

models once a failure surface has initiated.

Discrete constitutive models are associated with a traction-displacement relation-

ship, τ = τ ( [[u]] ), that is applied on the failure surface defined by n. The function

τ = τ ( [[u]] ) incorporates the effect of softening into the model that is observed

during the material failure process. This relationship is often referred to as the

softening law because the magnitude of traction decreases as the displacement dis-

continuity magnitude increases. The model of interest utilizes a linear softening

law which relates the normal components of traction and displacement, defined as

τn = n ·σ · n = τ · n and [[un]] = [[u]] · n respectively. The function, τn = τn ([[un]]),

illustrated in figure 2.3, is associated with mode I type failures. The material proper-

ties governing failure are incorporated into the softening law and include the ultimate

tensile strength τnf and the mode I fracture energy Gf , which is the area under the

traction-displacement function. The quantity, u0, is referred to as the critical crack

opening and is defined as the value of [[un]] for which τn = 0. Complete failure is

reached once [[un]] = u0, and the failure surface is interpreted to be a crack with two

traction free surfaces that are unable to sustain tensile load. For a linear softening

law, the critical crack opening is computed to be

u0 =
2Gf

τnf
(3.5.44)

The specific form of the de-cohesion function Fn is expressed in terms of stress

components in the local orthonormal failure plane basis {n, t,p} where n is the unit

normal vector to the failure surface, t is a unit vector in the failure plane that is

chosen to be perpendicular to n and p = n× t. In terms of a standard orthonormal

global vector basis {e1, e2, e3}, n = n1e1 + n2e2 + n3e3, t = t1e1 + t2e2 + t3e3 and
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p = p1e1+p2e2+p3e3. A second-order orthogonal transformation tensor A is defined

as follows:

A =





n1 t1 p1

n2 t2 p2

n3 t3 p3




(3.5.45)

In terms of the local failure plane basis, the stress is

σl = AT · σg ·A (3.5.46)

where σg contains the components of stress in the global {e1, e2, e3} basis and σl

contains the stress components in the local {n, t,p} basis. The components of σl

are

σl =





σnn σnt σnp

σnt σtt σtp

σnp σtp σpp




(3.5.47)

For simplicity the following convention is adopted:

τn = σnn, τt = σnt, τp = σpn (3.5.48)

The form of the de-coheison function is

Fn (σ, [[u]]) = τ̄
2
s − 1

Cf/m
tanh [ψ (1 + Cψψ)] (3.5.49)

where
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ψ = −Cf/m
Bn�

1 + Csσ̄
2
f

� (3.5.50)

Bn = τ̄n

�
1 + Cnσ̄

2
f

�
+ σ̄

2
f

�
1 +

τ̄n

P̄sm

�
− fn (3.5.51)

σ̄
2
f = fnσ̄

2 (3.5.52)

P̄sm = 2− (τn + σtt + σpp)

3τnf
(3.5.53)

fn = 1− [[un]]

u0
(3.5.54)

χ =

�
f

�
c

f
�
b

�2

− 2 (3.5.55)

σ̄
2 =

1

(f �
c)

2

�
σ
2
tt + χσttσpp + σ

2
pp + (2− χ) σ2

tp

�
(3.5.56)

τ̄n =
τn

τnf
τ̄s =

τs

τsf

Cf/m =
τ
2
sf

τ 2sm

(3.5.57)

The function fn, referred to as the softening function, incorporates softening into

the de-cohseion function by introducing the normal component of displacement dis-

continuity [[un]] which evolves with loading. The quantity τs is the magnitude of

the shear stress in the failure plane. The material parameters in equations (3.5.49) -

(3.5.57) include the ultimate tensile stress τnf , the uniaxial compressive strength f
�
c,

the biaxial compressive failure stress f
�
b, shear strength τsf , shear strength with large
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mean pressure τsm, coupling parameters Cψ, Cn , Cs and the critical crack opening

u0.

The preceding form of Fn was developed to predict failure of geological materials

for all stress states, but for the purposes of this study only brittle mode I failure

is considered. In this case, the critical orientation, n, is only associated with a

positive traction τn , requiring that τ̄s = 0, σtt = σpp = σtp = 0 and σ̄ = 0. This

simplification results in the following forms of ψ and Fn in equations (3.5.50) and

(3.5.49) respectively:

ψ = −Cf/m (τ̄n − fn) (3.5.58)

Fn = − 1

Cf/m
tanh

�
−Cf/m (τ̄n − fn)− CψC

2
f/m (τ̄n − fn)

2� (3.5.59)

The shear strength ratio is always chosen so that Cf/m = τ
2
sf/τ

2
sm � 1. In this

case the second order term in Cf/m of (3.5.59) is neglected. Equation (3.5.59) be-

comes

Fn = − 1

Cf/m
tanh

�
−Cf/m (τ̄n − fn)

�
(3.5.60)

Since the argument of the hyperbolic tangent function is small, the following approx-

imation is made:

Fn = τ̄n − fn (3.5.61)

If failure has not initiated, [[un]] = 0, fn = 1, and equation (3.5.61) reduces to the

form of Fn associated with the Rankine criteria for brittle failure in tension (equation

62



Chapter 3. The Governing Equations

(3.5.40)). Substitution of the expressions for τ̄n and fn in equations (3.5.57) and

(3.5.54) into equation (3.5.61) results in the following form of Fn:

Fn =
τn

τnf
+

[[un]]

u0
− 1 (3.5.62)

By applying the failure initiation criterion, Fn = 0, equation (3.5.62) yields the linear

relationship for τn = τn ([[un]]), depicted in figure 2.3 as follows:

τn = τnf

�
1− [[un]]

u0

�
(3.5.63)

The linear form of τn = τn ([[un]]) in (3.5.63) is selected for simplicity but other forms

are commonly used [54].

In the present model a failure state is defined by σ and [[u]]. The failure model is

formulated as a direct analogy to rate independent plasticity models [62] for which

the de-cohesion function, Fn (σ, [[u]]), plays the role of a yield function and the

displacement discontinuity, [[u]], is treated as an internal variable. During the ma-

terial failure process [[u]] is assumed to evolve according to following associated flow

rule:

[[u̇]] = ω̇
∂Fn

∂τ
(3.5.64)

In equation (3.5.64) the parameter, ω̇, is required to be positive and is obtained by

enforcing the consistency condition as follows:

Ḟn = 0 (3.5.65)

The components of [[u̇]] are assumed to follow an associative evolution equa-

tion:
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u̇n = ω̇
∂Fn

∂τn
, u̇t = ω̇

∂Fn

∂τt
, u̇p = ω̇

∂Fn

∂τp
(3.5.66)

The particular forms of the partial derivatives, ∂Fn/∂τn, ∂Fn/∂τt and ∂Fn/∂τp, in

equation (3.5.66) are derived. In doing so, the expression for Ḟn is obtained, which

will prove to be useful later for numerical implementation of the constitutive model.

The expression for Ḟn is obtained by taking the time derivative of equation (3.5.49).

The result is

Ḟn =
∂

∂t

�
τ̄
2
s

�
−Dψψ̇ (3.5.67)

where

Dψ =
(1 + 2Cψψ)

Cf/m

�
1− tanh2 [ψ (1 + Cψψ)]

�
(3.5.68)

ψ̇ = −Cf/m
Ḃn�

1 + Csσ̄
2
f

� +
Cf/mBn�
1 + Csσ̄

2
f

�2Cs
∂

∂t

�
σ̄
2
f

�
(3.5.69)

Ḃn = ˙̄τn
�
1 + Cnσ̄

2
f

�
+ τ̄nCn

∂

∂t

�
σ̄
2
f

�
+

∂

∂t

�
σ̄
2
f

� �
1 +

τ̄n

P̄sm

�
+ σ̄

2
f

˙̄τn
P̄sm

− σ̄
2
f

τ̄n

P̄ 2
sm

˙̄
Psm− ḟn

(3.5.70)

The time derivative of P̄sm is

˙̄
Psm = −1

3
˙̄τn −

(σ̇tt + σ̇pp)

3τnf
(3.5.71)

Substitution of equation (3.5.71) into the expressions for Ḃn and ψ̇ in equations

(3.5.70) and(3.5.69) respectively results in the following:
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Ḃn = ˙̄τn

�
1 + Cnσ̄

2
f +

σ̄
2
f

P̄sm
+

1

3

τ̄n σ̄
2
f

P̄ 2
sm

�
+

∂

∂t

�
σ̄
2
f

� �
1 + τ̄nCn +

τ̄n

P̄sm

�

+
1

3

τ̄n σ̄
2
f

P̄ 2
sm

(σ̇tt + σ̇pp)

τnf
− ḟn (3.5.72)

ψ̇ = −
Cf/m�

1 + Csσ̄
2
f

�
�
˙̄τn

�
1 + Cnσ̄

2
f +

σ̄
2
f

P̄sm
+

1

3

τ̄n σ̄
2
f

P̄ 2
sm

�

+
∂

∂t

�
σ̄
2
f

�
�
1 + τ̄nCn +

τ̄n

P̄sm
− CsBn�

1 + Csσ̄
2
f

�
�

+
1

3

τ̄n σ̄
2
f

P̄ 2
sm

(σ̇tt + σ̇pp)

τnf
− ḟn

�
(3.5.73)

For the purposes of compactness, the following quantities are defined:

Dψσ =
Cf/m�

1 + Csσ̄
2
f

�Dψ =
(1 + 2Cψψ)�
1 + Csσ̄

2
f

�
�
1− tanh2 [ψ (1 + Cψψ)]

�
(3.5.74)

Dτn = 1 +
σ̄
2
f

P̄sm

�
1 + CnP̄sm +

τ̄n

3P̄sm

�
(3.5.75)

Dσ̄ = 1 +
τ̄n

P̄sm

�
1 + CnP̄sm

�
− CsBn�

1 + Csσ̄
2
f

� (3.5.76)

Dttpp =
1

3

τ̄n σ̄
2
ffc

P̄ 2
smτnf

(3.5.77)

σ̄tt =
σtt

fc
σ̄pp =

σpp

fc
(3.5.78)

Substitution of equations (3.5.74) - (3.5.78) into (3.5.73) yield the following result

for ψ̇:
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ψ̇ = −
Cf/m�

1 + Csσ̄
2
f

�
�
Dτn ˙̄τn +Dσ̄

∂

∂t

�
σ̄
2
f

�
+Dttpp ( ˙̄σtt + ˙̄σpp)− ḟn

�
(3.5.79)

The quantity, ∂σ̄2
f/∂t, in equation (3.5.79) is obtained from the material time deriva-

tive of equation (3.5.56) as follows:

∂

∂t

�
σ̄
2
f

�
= ḟnσ̄

2 + fn
∂

∂t

�
σ̄
2
�

(3.5.80)

Equation (3.5.80) is substituted into equation (3.5.79). The result is

ψ̇ = −
Cf/m�

1 + Csσ̄
2
f

�
�
Dτn ˙̄τn +Dσ̄

∂

∂t

�
σ̄
2
�
fn +Dttpp ( ˙̄σtt + ˙̄σpp)−

�
1−Dσ̄σ̄

2
�
ḟn

�

(3.5.81)

The material time derivative of σ̄2 is

∂ (σ̄2)

∂t
=

1

(f �
c)

2

�
σ̇tt (2σtt + χσpp) + σ̇pp (2σpp + χσtt) + 2 (2− χ) σ̇tpσtp

�
(3.5.82)

Equation (3.5.82) is substituted into (3.5.81) to give the following result for ψ̇:

ψ̇ = −
Cf/m�

1 + Csσ̄
2
f

�





Dτn ˙̄τn +



 Dσ̄�
f

�

c

�2 (2σtt + χσpp) fn +
Dttpp

f
�

c



 σ̇tt

+



 Dσ̄�
f

�

c

�2 (2σpp + χσtt) fn +
Dttpp

f
�

c



 σ̇pp

+ Dσ̄�
f

�

c

�22 (2− χ) σtpσ̇tp

− (1−Dσ̄σ̄
2) ḟn





(3.5.83)
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An alternative expression for τ̄ 2s is

τ̄
2
s =

1

τ
2
sf

�
τ
2
t + τ

2
p

�
(3.5.84)

The time derivative of equation (3.5.84) is

∂

∂t

�
τ̄
2
s

�
=

2

τ
2
sf

�
τtτ̇t + τpτ̇p

�
(3.5.85)

Equation (3.5.83) and (3.5.85) are substituted into the expression for Ḟn in equation

(3.5.67). The result is.

Ḟn =
2

τ
2
sf

τtτ̇t +
2

τ
2
sf

τpτ̇p +Dψσ





Dτn
τnf

τ̇n +



 Dσ̄�
f

�

c

�2 (2σtt + χσpp) fn +
Dttpp

f
�

c



 σ̇tt

+



 Dσ̄�
f

�

c

�2 (2σpp + χσtt) fn +
Dttpp

f
�

c



 σ̇pp

+ Dσ̄�
f

�

c

�22 (2− χ) σtpσ̇tp

− (1−Dσ̄σ̄
2) ḟn





(3.5.86)

A time derivative of Fn is also expressed in general terms by use of the chain rule,

as follows:

Ḟn =
∂Fn

∂τt
τ̇t +

∂Fn

∂τp
τ̇p +

∂Fn

∂τn
τ̇n +

∂Fn

∂σtt
σ̇tt +

∂Fn

∂σpp
σ̇pp +

∂Fn

∂σtp
σ̇tp +

∂Fn

∂fn
ḟn (3.5.87)

The expressions in equations (3.5.86) and (3.5.87) are equated, and by inspection,

the partial derivatives in equation (3.5.86) are deduced to be
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∂Fn

∂τn
=

DψσDτn

τnf
,

∂Fn

∂τt
=

2

τ
2
sf

τt,
∂Fn

∂τp
=

2

τ
2
sf

τp (3.5.88)

∂Fn

∂σtt
=

Dψσ

(f �
c)

2

�
Dσ̄ (2σtt + χσpp) fn + f

�

cDttpp

�
(3.5.89)

∂Fn

∂σpp
=

Dψσ

(f �
c)

2

�
Dσ̄ (2σpp + χσtt) fn + f

�

cDttpp

�
(3.5.90)

∂Fn

∂σtp
=

DψσDσ̄

(f �
c)

2 2 (2− χ) σtp (3.5.91)

∂Fn

∂fn
= −Dψσ

�
1−Dσ̄σ̄

2
�

(3.5.92)

Equations (3.5.88) - (3.5.92) are substituted into the equations in (3.5.66) to give

the following result for the evolution of the components of [[u̇]]:

u̇n = ω̇
DψσDτn

τnf
, u̇t = ω̇

2

τ
2
sf

τt, u̇p = ω̇
2

τ
2
sf

τp (3.5.93)

The discrete constitutive model for geological materials is summarized. The traction

on a surface with normal n is defined to be τ = σ · n. A de-cohesion function of

stress Fn (σ ) is defined in equations (3.5.49) - (3.5.57) such that initiation of a failure

plane with normal n coincides with a zero value for Fn (σ ) when maximized over

all possible orientations. A traction-displacement relationship in equation (3.2.28)

is used to relate τ to [[u]] on the failure surface defined by n. The displacement

discontinuity [[u]] evolves according to the associative flow rule in (3.5.64) while the

consistency condition is maintained. In general, the complete set of equations is as

follows:

68



Chapter 3. The Governing Equations

F = max
∀n

Fn (σ ) = 0 (failure initiation criterion)

τ = τ ( [[u]] ) (traction− separation law)

[[u̇]] = ω̇
∂Fn

∂τ
(evolution of displacement jump)

Ḟn (σ, [[u]]) = 0 (consistency condition)

(3.5.94)

3.5.4 A Continuum Representation of Material Failure

Although the set of equations in (3.5.94) only apply to a discrete failure surface

of material defined by n, discrete constitutive models can be applied to continuum

problems of material failure within the framework of strong discontinuity kinematics

(see section 3.5.2). Recall the composition of strain in the presence of a displacement

discontinuity across the failure region, Γ ∈ Ω (see figure 3.4), stated in equation

(3.5.35) and repeated below for convenience.

ε(x, t) = ε̄(x, t) +
1

Lc
µΓ([[u]]⊗ n)S

The strain field in Ω is

ε = ε̄ ∀ x ∈ Ω/Γ

ε = ε̄+
1

Lc
([[u̇]]⊗ n)S ∀ x ∈ Γ

(3.5.95)

The effect of material failure is incorporated into a continuum problem through the

use of an inelastic strain. In analogy to small deformation inelasticity, an additive

decomposition of elastic and inelastic strain contributions is assumed as follows:
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ε = εe + εdc (3.5.96)

The inelastic strain component, εdc, referred to as the de-cohesion strain, repre-

sents the deformation due to failure in Γ. The strain contributions within Ω are as

follows:

ε = εe ∀ x ∈ Ω/Γ

ε = εe + εdc ∀ x ∈ Γ
(3.5.97)

Compatibility of the continuum strain representation of failure in equation (3.5.97)

with the strong discontinuity kinematics in equation (3.5.95) requires the following

relationship for the de-cohesion strain:

εdc =
1

Lc
([[u]]⊗ n)S (3.5.98)

Stress is computed from linear elasticity everywhere in Ω to be

σ = C : (ε− εdc) (3.5.99)

The evolution of the displacement discontinuity, [[u̇]], is governed by equation (3.5.64)

as follows:

[[u̇]] = ω̇
∂Fn

∂τ

It follows from equation (3.5.98) that the rate of de-cohesion strain, ε̇dc, is

ε̇dc =
1

Lc
([[u̇]]⊗ n)S (3.5.100)
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while the consistency condition of equation (3.5.65) is enforced for the de-cohesion

function Fn(σ) as follows:

Ḟn (σ) = 0

Equations (3.5.99), (3.5.64), (3.5.100) and (3.5.65) comprise the complete set of

equations equations governing the continuum representation of the elastic de-cohesive

constitutive model of section 3.5.3.

3.6 The Initial Boundary Value Problem

The complete set of equations for the initial boundary value problem are presented

for the deformable solid body Ω with boundary ∂Ω depicted in figure 3.1. The local

form of the conservation of linear momentum from equation (3.5.10) is restated as

follows:

ρv̇ = ∇ · σ + ρb ∀ x ∈ Ω, t ≥ 0 (3.6.1)

Initial and boundary conditions must be specified for a well-posed problem. At t = 0,

x = X and the following initial conditions are prescribed for the displacement u and

velocity v:

u(x, 0) = u0(X) ∀ X ∈ Ω0

v(x, 0) = v0(X) ∀ X ∈ Ω0 (3.6.2)

The boundary is divided into two sets of points such that, ∂Ω = ∂Ωu ∪ ∂Ωt. The

displacement (or essential) boundary conditions are applied to ∂Ωu and the traction
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boundary conditions are applied to ∂Ωt as follows:

u(x, t) = g(t) ∀ x ∈ ∂Ωu
, t ≥ 0

τ (x, t) = h(t) ∀ x ∈ ∂Ωt
, t ≥ 0 (3.6.3)

The constitutive model (or kinetic relations) completes the set of equations for the

initial boundary value problem by relating stress σ to strain ε. In order to incor-

porate the failure region Γ ⊂ Ω (see figure 3.4), the elastic de-cohesive constitutive

model of section 3.5.3 is applied to the continuum problem within the framework of

strong discontinuity kinematics as discussed in section 3.5.4. The constitutive model

is summarized in rate form as follows:

σ̇ = C : ε̇ ∀x ∈ Ω/Γ

σ̇ = C : (ε̇− ε̇dc)

[[u̇]] = ω̇
∂Fn

∂τ

ε̇dc =
1

Lc
([[u̇]]⊗ n)S

Ḟn (σ, [[u]]) = 0






∀x ∈ Γ

(3.6.4)

The specific form of the de-cohesion function Fn(σ) in equation (3.6.4) is taken from

equations (3.5.49) - (3.5.57).

Equations (3.6.1) - (3.6.4) complete the closed set of equations that form the initial

boundary value problem. The numerical solution method to the initial boundary

value problem is presented next.
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4.1 Introduction

The material-point method (MPM) is a computational particle-in-cell based method

of solving solid mechanics problems that uses both material and spatial representa-

tions of the problem. MPM was developed at the University of New Mexico [67],

[71], [68] as an extension of the FLIP method, developed and used at Los Alamos Na-

tional Laboratory to simulate fluid flow [12]. A solid body is represented by discrete

material points that move relative to a computational grid that represents space.

Material quantities are carried by the material points and are transferred between

material points and grid nodes throughout the computation. The grid does not re-

tain any information, but provides an updated material reference frame that is used

to update the motion of the material points and compute spatial gradients.

MPM extends the range of application of computational solid mechanics to encom-

pass large deformation dynamic problems that can pose difficulty to purely La-

grangian computational solid mechanics methods. An advantage is gained from

the use of both Lagrangian and Eulerian representations. The use of a Lagrangian

description to solve the momentum equation eliminates the nonlinear convective ac-

celeration terms that arise in Eulerian methods. The Eulerian grid serves only as an

updated Lagrangian frame for updating the material point quantities. Interpenetra-

tion of material points is precluded. These advantages allow for robust simulations of

large deformation processes encountered in problems of penetration and impact [71],

[68], contact between multiple deformable bodies [2] and manufacturing problems

such as metal forming and upsetting [66] that cause severe mesh tangling in purely

Lagrangian methods.

Particular attributes of MPM make the method attractive for simulating material

separation. There is no connectivity imposed between material points, so the sepa-

ration of material can be handled naturally by the method. Since interpenetration of
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material points is not allowed, the method would not require additional algorithms

for treating contact between already failed material surfaces. Successful explicit

MPM simulations of dynamic material failure has been demonstrated using both

smeared crack representations of failure [69] and explicit crack representation [38].

Recently implicit dynamic MPM has been used to simulate the process of lead for-

mation (cracks) associated with the motion of sea ice [70], [47] using a smeared crack

failure representation. This work has motivated the present study of the smeared

crack approach to computational failure in MPM.

The computational method is presented in this chapter. The discrete MPM mo-

mentum equations are derived in section 4.2. A general MPM implementation is

described in section 4.3. Specific considerations for a 2D and an axisymmetric MPM

implementation are provided in section 4.4. Section 4.5 presents the implementation

of the discrete constitutive model for failure.

4.2 The Discrete MPM Equations

MPM involves the discritization of space, denoted by x ∈ R3, and the body of solid

material Ω ⊂ R3. Space is discritezed by a set of grid cells connected by the set

of Nn grid node positions {xi}Nn
i=1. The solid body is discretized by the set of Np

material points {Xp}Np

p=1 ⊂ Ω. The subscripts i and p will be used to denote quantities

associated with gird nodes and material points respectively.

Each material point is associated with a discrete mass Mp that remains constant

through time, t. The total mass, m, of the body Ω is simply m =
�Np

p=1 Mp. In

MPM the mass density, ρ (x, t), is represented as a distribution of discrete material

point masses using the Dirac delta distribution δ (x) as follows:
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ρ (x, t) =

Np�

p=1

Mpδ (x−Xp) (4.2.1)

The total mass, m, of the body Ω is obtained by the integration of the mass density

over the volume V of the body Ω. By use of the integration property of δ (x), m is

obtained by integration of (4.2.1) as follows:

�

Ω

ρ (x, t) dV =

�

Ω

Np�

p=1

Mpδ (x−Xp) dV

=

Np�

p=1

Mp

�

Ω

δ (x−Xp) dV

=

Np�

p=1

Mp

= m (4.2.2)

The discrete set of MPM equations are obtained from the weak form of the conser-

vation of momentum in equation (3.5.26). The weak form of momentum is restated

below to be

�

Ω

ρw · v̇dV = −
�

Ω

ρ∇w : σs
dV +

�

∂Ω

w · τdA+

�

Ω

ρw · bdV (4.2.3)

where the specific stress σs is defined to be σs = σ/ρ.

Substitution of (4.2.1) into (4.2.3) replaces the integrals in (4.2.3) with sums of

material quantities evaluated at the material point positions Xp at any time t as

follows:
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Np�

p=1

Mpw(Xp, t) · v̇(Xp, t) = −
Np�

p=1

Mpσ
s(Xp, t) : ∇w(Xp, t)

+

�

∂Ω

w(x, t) · τ (x, t)dA

+

Np�

p=1

Mpw(Xp, t) · b(Xp, t) (4.2.4)

Some quantities in equation (4.2.4) are approximated with standard finite element

nodal basis functions, Ni (x), i = 1, 2, . . . , Nn which satisfy the partition of unity

property,
�Ni

i=1 Ni(x) = 1. The velocity v, acceleration v̇ and the test function w

approximations are

v(x, t) =
Nn�

i=1

vi (t) Ni(x) (4.2.5)

v̇(x, t) =
Nn�

i=1

v̇i (t) Ni(x) (4.2.6)

w(x, t) =
Nn�

i=1

wi (t) Ni(x) (4.2.7)

The approximations in equations (4.2.5) - (4.2.7) are substituted into (4.2.4). The

result is

Nn�

i=1

Nn�

j=1

Np�

p=1

Mpwi · v̇jNi(Xp)Nj(Xp) = −
Nn�

i=1

Np�

p=1

Mpσ
s
p : (wi ⊗∇Ni(Xp))

+
Nn�

i=1

�

∂Ω

wi · τ (x, t)Ni(x)dA

+
Nn�

i=1

Np�

p=1

Mpwi · b(Xp, t)Ni(Xp) (4.2.8)
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Further simplification of (4.2.8) results in the following:

Nn�

i=1

wi ·
Nn�

j=1

Np�

p=1

Mpv̇jNi(Xp)Nj(Xp) = −
Nn�

i=1

wi ·
Np�

p=1

Mpσ
s
p ·∇Ni(Xp)

+
Nn�

i=1

wi ·
�

∂Ω

τ (x, t)Ni(x)dA

+
Nn�

i=1

wi ·
Np�

p=1

Mpb(Xp, t)Ni(Xp) (4.2.9)

Since (4.2.9) holds for all wi, discrete MPM equations reduce to the following:

Nn�

j=1

Np�

p=1

Mpv̇jNi(Xp)Nj(Xp) = −
Np�

p=1

Mpσ
s
p ·∇Ni(Xp)

+

�

∂Ω

τ (x, t)Ni(x)dA

+

Np�

p=1

Mpb(Xp, t)Ni(Xp) (4.2.10)

The mass matrix, mij, is defined to be

mij =

Np�

p=1

MpNi (Xp) Nj (Xp) (4.2.11)

The internal forces at the nodes are defined as follows:

f inti = −
Np�

p=1

Mpσ
s
p ·∇Ni (Xp) (4.2.12)

The external forces at the nodes are
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f exti = bi + τ̂ i (4.2.13)

where τ̂ i represents the external force contribution from the traction applied on the

boundary and is computed to be

τ̂ i =

�

∂Ω

τ (x, t)Ni(x)dA (4.2.14)

and bi is the external force contribution from body forces computed to be

bi =

Np�

p=1

Mpb(Xp, t)Ni (Xp) (4.2.15)

Equation (4.2.10) is simplified using (4.2.11) – (4.2.15). The resulting grid node

equation is

Nn�

j=1

mij v̇j = f inti + f exti (4.2.16)

A simplification is made to the mass matrix mij by using a mass lumping technique.

Using row sums of mij and the partition of unity property of the basis functions

Ni(Xp), a simpler diagonalized mass matrix mi is obtained. This simplification leads

to the following:

mi =

Np�

p=1

MpNi (Xp) (4.2.17)

The mass lumping approximation in equation (4.2.17), is used to simplify equation

(4.2.16) to the following:

mi v̇i = f inti + f exti (4.2.18)
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Equation (4.2.18) can also be rewritten in terms of momentum as the following:

ṗi = f inti + f exti (4.2.19)

The system of MPM grid node equations represented by equations (4.2.18) and

(4.2.19) must be discretized temporally in order to obtain solutions at discrete times.

A discrete time is denoted by t
k (k = 1, 2, . . .), and the time step is computed to be

∆t = t
k+1 − t

k. Quantities associated with a discrete time t
k are denoted with the

superscript k. Each discrete time, tk, corresponds to a discrete configuration, Ω(tk),

of the solid body.

MPM is an updated Lagrangian numerical method. In this type of approach the grid

solution to (4.2.18) or (4.2.19) at the current time step is computed with respect to an

updated Lagrangian (material) reference frame. Quantities associated with the cur-

rent time step are denoted by the superscript L. The material quantities associated

with Ω(tL) are functions of material positions in the previous discrete configuration,

Xk ∈ Ω(tk). For this reason the method is considered to be updated.

Formulation of the discrete MPM equations in terms of momentum is preferable over

a velocity formulation because it leads to a more robust computational method [71].

Consequently, equation (4.2.19) is utilized for time discritization. The following

time integration scheme, taken from Sulsky and Kaul [66], is applied to equation

(4.2.19):

ṗL
i
∼=

pL
i − pk

i

∆t
= (µ fLi + (1− µ) fki ) (4.2.20)

In equation (4.2.20) fLi and fki are defined to be

f L
i = f int Li + f extLi , fki = f int ki + f ext ki (4.2.21)
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The quantity µ in equation (4.2.20) is a weighting factor for which 0 ≤ µ ≤ 1.

If µ = 0 then the integration scheme is purely explicit. If µ = 1 then the time

integration scheme is purely implicit.

4.3 General Implementation of MPM

Numerical implementation of the MPM algorithm is summarized. A single MPM

computational cycle (time step) incorporates three phases; the initialization phase,

the Lagrangian phase and the convective phase. The material point quantities avail-

able from the previous (kth ) time step are Xk
p, V

k
p , ε

k
p and σs,k

p . Solution to these

quantities at the next k+1 time step are obtained at the end of the computational

cycle.

During the initialization phase the grid node quantities pk
i , f

int k
i and f ext ki are com-

puted for time tk. The grid momentum, pk
i , is obtained by mapping the momentum

from the material points to the grid. The mapping is based on the following mass

weighted least squares relationship between the material points and nodal veloci-

ties:

m
k
i v

k
i =

Np�

p=1

MpV
k
pNi

�
Xk

p

�
(4.3.1)

The grid momentum, pk
i , is taken to be the left hand side of equation (4.3.1) as

follows:

pk
i = m

k
i v

k
i (4.3.2)

The material point momentum, Pk
p, is
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Pk
p = MpV

k
p (4.3.3)

Upon substitution of (4.3.2) and (4.3.3) into (4.3.1), the grid momentum is computed

to be

pk
i =

Np�

p=1

Pk
pNi

�
Xk

p

�
(4.3.4)

The internal and external forces on the grid, f int ki and f ext ki , are computed from

equations (4.2.12) and (4.2.13) respectivily. The nodal lumped mass matrix, mk
i , is

computed from equation (4.2.17).

During the Lagrangian phase of the computational cycle equation (4.2.20) is solved

for pL
i . The updated Lagrangian grid solution is then used to update the material

point positions and velocities. Since the momentum of points within the grid cells

can be represented by the nodal momentum and element basis functions the material

point positions are updated as follows:

XL
p = Xk

p +∆t

Nn�

i=1

1

m
k
i

pL
i Ni

�
Xk

p

�
(4.3.5)

The material point velocity is updated in a similar manner by using the time rate of

change of momentum (total force) as follows:

VL
p = Vk

p +∆t

Nn�

i=1

1

m
k
i

ṗL
i Ni

�
Xk

p

�
(4.3.6)

The material point position and velocity updates in equations (4.3.5) and (4.3.6) are

computed within single-valued continuous velocity and acceleration fields provided

by the nodal solutions. This type of update precludes interpenetration of material
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points and ensures that the material points move in proportion to the motion of the

grid cells.

Increments of material point strain are computed from gradients of the updated

Lagrangian velocity field. The nodal values of the updated velocity field, denoted by

vL
i , are obtained by mapping the updated velocity on material points, VL

p , to grid

nodes using equation (4.3.1) as follows:

vL
i =

1

m
k
i

Np�

p=1

MpV
L
pNi

�
Xk

p

�
(4.3.7)

The strain increment is computed by multiplying the symmetric gradient of the

Lagrangian velocity solution in equation (4.2.5) by the time step. The result is

∆εp =
∆t

2

Nn�

i=1

�
∇Ni

�
Xk

p

�
⊗ vL

i +
�
∇Ni

�
Xk

p

�
⊗ vL

i

�T�
(4.3.8)

The material point strain is updated as follows:

εLp = εkp +∆εp (4.3.9)

The increment in stress is computed by evaluation of the constitutive model. This

computation is presented in the following section but for now the stress increment

computation is expressed symbolically as the following:

∆σs
p = ∆σs

p(∆εp) (4.3.10)

The updated stress is

σs,L
p = σs,k

p +∆σs
p (4.3.11)
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For this study the solution to the discrete set MPM equations in (4.2.20) is obtained

using methods of implicit dynamics in MPM [66]. In general equation (4.2.20) is non-

linear in pL
i and requires an iterative solution involving equations (4.3.6) - (4.3.11).

The details of the solution method and procedure are provided in Appendix A.

The convective phase of the computational step is when the material points are held

fixed and the grid nodes move relative to the material. During this phase, the grid

is redefined. Typically the nodal positions are moved back to their original position.

The material point quantities at the k+1 time step are equal to the updated material

point quantities at the end of the Lagrangian step. The result is

Xk+1
p = XL

p , Vk+1
p = VL

p , εk+1
p = εLp , σs,k+1

p = σs,L
p (4.3.12)

4.4 Two Dimensional & Axisymmetric Imple-

mentation of MPM

Two-dimensional and axisymmetric MPM implementations are based on a logically

rectangular background grid containing four-node elements. In two dimensions the

rectangular Cartesian coordinates, (x, y) define a plane. Many three dimensional

problems in cylindrical coordinates (r, θ, z) are reduced to plane problems due to

the symmetrical nature of the geometry and loading about the axis of symmetry

z, for which the solution is identical for all θ. As a result, only the axisymmetric

plane (r, z) is considered. Throughout the developments of the present section, the

two-dimensional coordinates (x, y) are used but can be replaced by the axisymmetric

coordinates (r, z) without loss of generality. For certain quantities, the out of plane

θ components enter into the formulation, and are treated explicitly in cylindrical

coordinates.
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The master element for the four node quad elements are shown in figure 4.1 in terms

of the local element coordinates, (ξ, η), for which −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1.

!

!"

#!

"#$%#$&! "$%#$&!

"$%!$&!"#$%!$&!

$" %"

&"'"

Figure 4.1: 2-D Master Element

The nodal basis functions corresponding to the node numbering in figure 4.1 are

N1 (ξ, η) =
1
4 (1− ξ) (1− η)

N2 (ξ, η) =
1
4 (1 + ξ) (1− η)

N3 (ξ, η) =
1
4 (1 + ξ) (1 + η)

N4 (ξ, η) =
1
4 (1− ξ) (1 + η)

(4.4.1)

During the convective phase of the computation, elements in which material points

reside must be updated. The domain of a home element for a given material

point Xp at the k
th time step is denoted by Ωk

e . If the updated material point

position at the current time k + 1 does not lie within the domain of the its

home element at the previous time Ωk
e (i.e.

�
ξ
�
Xk+1

p

�
, η

�
Xk+1

p

� �k+1

p
/∈ Ωk

e =

{−1 ≤ ξ ≤ 1 − 1 ≤ η ≤ 1}ke), then a neighboring element is searched for the up-

dated coordinate. The choice of which neighbor element to search is based on the
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position (in natural coordinates ( ξ , η )) of the material point with respect to the

element center of Ωk
e . The neighbor search process continues until Ωk+1

e is located,

for which
�
ξ
�
Xk+1

p

�
, η

�
Xk+1

p

� �k+1

p
∈ Ωk+1

e = {−1 ≤ ξ ≤ 1 − 1 ≤ η ≤ 1}k+1
e is

satisfied. Once the residing elements have been located for all material points the

convective phase of the computation is concluded.

The element search algorithm requires element neighbor data for each element. The

necessary information is stored in two arrays. One array contains integers identifying

the home element number of each material point at the previous time step. This array

is updated at the end of the convective phase of each time step. The other array

stores the element neighbor numbers for each element. In the 2-D (or axisymmetric)

and four node quadrilateral element case this element neighbor array contains a

set of four integers for each possible element neighbor for each element (there are

fewer than four neighbors for elements on the computational grid boundary). The

element neighbor array does not change at any point in the computation and it

must be generated during preprocessing. An element search based on knowledge of

the neighboring elements incurs a much lower computational cost compared to an

element by element search for material points. The use of an element neighbor array

allows for a robust search algorithm that does not depend on how the background

mesh is generated. The use of a neighbor element array is essential for problems that

utilize meshes with areas of local refinement.

Other considerations for the numerical implementation include the evaluation of

basis functions and their gradients. Evaluation of nodal basis functions at Xk
p is

required for much of the computations. Since the basis functions are evaluated in

terms of local element coordinates, the material point coordinates must be mapped

to the local coordinates. The corresponding local coordinates are computed as ξp =

ξ
�
Xk

p

�
= ξ

�
xp, yp

�
and ηp = η

�
Xk

p

�
= η

�
xp, yp

�
.

Newton’s method is used to obtain the local element coordinates of material points.

86



Chapter 4. Numerical Modeling with the Material-point Method

For the sake of brevity, the subscript p and superscript k are dropped from the

material point coordinates. An isoparametric formulation is assumed for which the

global material point coordinates, (x, y), are expressed in terms of the element basis

functions as follows:

x =
Nn�

i=1

xi Ni (ξ, η) , y =
Nn�

i=1

yi Ni (ξ, η) (4.4.2)

A Taylor expansion of xp about a point (ξ0, η0) is performed. The function is first

expanded about ξ0, resulting in the following:

x (ξ0 +∆ξ, η0 +∆η) = x (ξ0, η0 +∆η) +
∂x

∂ξ
(ξ0, η0 +∆η)∆ξ + · · · (4.4.3)

where . . . denotes higher order terms. Next, equation (4.4.3) is expanded about η0

to give the following result:

x (ξ0 +∆ξ, η0 +∆η) =

�
x (ξ0, η0) +

∂x

∂η
(ξ0, η0)∆η + · · ·

�

+

�
∂x

∂ξ
(ξ0, η0)∆ξ +

∂
2
x

∂ξ∂η
(ξ0, η0)∆ξ∆η + · · ·

�
(4.4.4)

The same procedure for the y coordinate gives the following:

y (ξ0 +∆ξ, η0 +∆η) =

�
y (ξ0, η0) +

∂y

∂η
(ξ0, η0)∆η + · · ·

�

+

�
∂y

∂ξ
(ξ0, η0)∆ξ +

∂
2
y

∂ξ∂η
(ξ0, η0)∆ξ∆η + · · ·

�
(4.4.5)

If only first order terms are retained in (4.4.4) and (4.4.5), the following system of

equations remains
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x (ξ0 +∆ξ, η0 +∆η)− x (ξ0, η0) ≈
∂x

∂ξ
(ξ0, η0)∆ξ +

∂x

∂η
(ξ0, η0)∆η (4.4.6)

y (ξ0 +∆ξ, η0 +∆η)− y (ξ0, η0) ≈
∂y

∂ξ
(ξ0, η0)∆ξ +

∂y

∂η
(ξ0, η0)∆η (4.4.7)

In order to locate ξp and ηp for a given Xk
p =

�
x
k
p, y

k
p

�
, the following system of

equations are solved iteratively via Newton’s method.



 xp − x (ξ0, η0)

yp − y (ξ0, η0)



 =





4�

i=1

xi
∂Ni

∂ξ
(ξ0, η0)

4�

i=1

xi
∂Ni

∂η
(ξ0, η0)

4�

i=1

yi
∂Ni

∂ξ
(ξ0, η0)

4�

i=1

yi
∂Ni

∂η
(ξ0, η0)







 ∆ξ

∆η



 (4.4.8)

ξ = ξ0 +∆ξ, η = η0 +∆η (4.4.9)

A solution to equations (4.4.8) and (4.4.9) is obtained when the norm of the LHS of

(4.4.8) is within an acceptably small tolerance.

The basis function gradients are evaluated for computation of internal grid forces

and strain increments. Using the chain rule, partial derivative of the basis functions

with respect to the local element coordinates are expressed as the following:

∂Ni

∂ξ
=

∂Ni

∂x

∂x

∂ξ
+

∂Ni

∂y

∂y

∂ξ

∂Ni

∂η
=

∂Ni

∂x

∂x

∂η
+

∂Ni

∂y

∂y

∂η
(4.4.10)

From (4.4.10) the basis function gradient ∇Ni can be expressed in matrix form as

follows:
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∇Ni =





∂Ni

∂x

∂Ni

∂y




= J−1





∂Ni

∂ξ

∂Ni

∂η




(4.4.11)

The Jacobian matrix J in (4.4.11) is

J =





4�

i=1

xi
∂Ni

∂ξ
(ξp, ηp)

4�

i=1

yi
∂Ni

∂ξ
(ξp, ηp)

4�

i=1

xi
∂Ni

∂η
(ξp, ηp)

4�

i=1

yi
∂Ni

∂η
(ξp, ηp)




(4.4.12)

For ease of implementation, several of the computations are expressed in matrix

form. The internal forces on the grid nodes are computed as follows:

fki =



 fx

fy




k

i

= −
Np�

p=1

Mp





∂Ni

∂x
0

∂Ni

∂y

0
∂Ni

∂y

∂Ni

∂x





k

p





σ
s
xx

σ
s
yy

σ
s
xy





k

p

(plane) (4.4.13)

fki =



 fr

fz




k

i

= −
Np�

p=1

Mp





∂Ni

∂r
0

Ni

r

∂Ni

∂z

0
∂Ni

∂z
0

∂Ni

∂r





k

p





σ
s
rr

σ
s
zz

σ
s
θθ

σ
s
rz





k

p

(axisymmetric)

(4.4.14)

The strain increment evaluation on the material points is expressed as follows:
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∆εp =





∆εxx

∆εyy

2∆εxy





p

= ∆t

Nn�

i=1





∂Ni

∂x
0

0
∂Ni

∂y

∂Ni

∂y

∂Ni

∂x





k

p



 vx

vy




L

i

(plane) (4.4.15)

∆εp =





∆εrr

∆εzz

∆εθθ

∆εrz





p

= ∆t

Nn�

i=1





∂Ni

∂r
0

0
∂Ni

∂z
Ni

r
0

∂Ni

∂z

∂Ni

∂r





k

p



 vr

vz




L

i

(axisymmetric) (4.4.16)

The specific stress increment ∆σs
p for isotropic linear elastic materials is computed

as follows:

∆σs
p =





∆σ
s
xx

∆σ
s
yy

∆σ
s
xy





p

=
C

ρ





∆εxx

∆εyy

2∆εxy





p

(plane) (4.4.17)

∆σs
p =





∆σ
s
rr

∆σ
s
zz

∆σ
s
θθ

∆σ
s
rz





p

=
C

ρ





∆εrr

∆εzz

∆εθθ

∆εrz





p

(axisymmetric) (4.4.18)

The elastic modulus Y and Poisson’s ratio ν are used to form the of isotropic elasticity

matrix C. For two dimensional problems C has the following form:
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C =
Y

(1 + ν) (1− 2ν)





1− ν ν 0

ν 1− ν 0

0 0
1− 2ν

2




(plane strain) (4.4.19)

C =
Y

(1− ν2)





1 ν 0

ν 1 0

0 0
1− ν

2

2(1 + ν)




(plane stress) (4.4.20)

For axisymmetirc problems C is

C =
Y

(1 + ν) (1− 2ν)





1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0
1− 2ν

2




(axisymmetric) (4.4.21)
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4.5 Numerical Implementation of the Elastic De-

cohesive Constitutive Model

The numerical evalutation of the elastic de-cohesive constitutive model of section

3.5.3 is presented. The computation of stress as a function of strain, σk
p = σk

p(ε
k
p),

is made for a discrete time t
k on a material point Xp. For the sake of brevity, the

subscript p and superscript k are dropped from material point quantities from this

point forward with the understanding that the constitutive model is computed locally

at a material point at a discrete time.

The continuum representation of the discrete elastic de-cohesion model presented in

section 3.5.4 is implemented into MPM. This type of representation, also known as

a smeared crack representation, is based on the strong discontinuity kinematics (see

section 3.5.2) for which the strain field ε(x, t) in a deformable body Ω is composed

of regular and singular parts that account for a jump in the displacement field, [[u]],

across a failure surface Γ ⊂ Ω with normal vector n (see figure 3.4). The strain field

given by equation (3.5.95) is below for convenience.

ε = ε̄ ∀ x ∈ Ω/Γ

ε = ε̄+
1

Lc
([[u̇]]⊗ n)S ∀ x ∈ Γ

The regular bounded strain contribution in equation (3.5.95) is ε̄ = (∇ū)S +

HΓ(∇[[u]])S. The implementation of the model assumes that the displacement dis-

continuity [[u]] is constant over grid cells. Consequently, ∇ [[u]] = 0, and ε̄ = (∇ū)S

in Ω/Γ.

The smeared crack treatment of the elastic de-cohesive model is analogous to any

rate independent inelastic constitutive model for which the total strain is composed

of the sum of elastic and inelastic contributions. In this case the inelastic strain is
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the de-cohesion strain εdc. The rate of the total strain is obtained from equation

(3.5.96) to be

ε̇ = ε̇e + ε̇dc (4.5.1)

The continuum representation (smeared crack representation) of the discrete elastic

de-cohesive constitutive model is summarized in equation (3.6.4) and repeated below

for convenience.

σ̇ = C : (ε̇− ε̇dc) (elasticity)

[[u̇]] = ω̇
∂Fn

∂τ
(evolution of displacement jump)

ε̇dc =
1

Lc
([[u̇]]⊗ n)S (evolution of de− cohesion strain)

Ḟn (σ, [[u]]) = 0 (consistency condition)

A general numerical algorithm for evaluation of a non-linear constitutive model is

presented. The procedure described is similar to that for rate independent plasticity

[62]. The displacement discontinuity [[u]] across a failure surface with normal n, and

consequently the de-cohesion strain εdc, is allowed to evolve so that the consistency

condition in equation (3.6.4) is maintained. In practice the consistency condition is

maintained by enforcing the following conditions:

Fn < 0 elastic behavior

Fn = 0 [[u]] is evolving

Fn > 0 not allowed

(4.5.2)

When Fn < 0 elastic deformation occurs and [[u]] does not evolve. Loading continues
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until the initiation of failure on a discrete failure surface with normal n. Continued

loading on a failure plane requires evolution of the displacement discontinuity while

maintaining the condition, Fn = 0. In actuality a trial elastic state of deforma-

tion is assumed for which Fn > 0, and then [[u]] evolves in order to satisfy the

Fn = 0 condition. The solution to Fn (σ, [[u]] ) = 0 is obtained iteratively using

the Newton-Raphson algorithm. Recall that ω is required to be a monotonically

increasing parameter (i.e. ω̇ ≥ 0). The parameter ω is allowed to evolve throughout

the iteration. The general procedure is executed by the following steps:

1. Let k ∈ N+ represent the Newton iteration, set k = 0 and choose a small

tolerance value, ε. The value of the de-cohesion function for the trial elastic

state is F k
n = F

0
n > ε.

2. Evaluate

∂F
k
n

∂ω

3. Compute the increment in ω to be

∆ω = − F
k
n

∂F
k
n

∂ω

4. Increment ω as follows:

ω
k+1 = ω

k +∆ω

5. Evaluate F
k+1
n = Fn

�
ω
k+1

�
.

6. If F k+1
n > ε increase the iteration by overwriting k → k + 1 and return to

step 2. If
��F k+1

n

�� < ε then a solution has been obtained and the procedure is

terminated.
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The preceding algorithm is referred to as a general procedure because the specific

form of the de-cohesion function Fn and its partial derivative ∂Fn/∂ω are not explicit

functions of ω. In the case of the elastic de-cohesive model algorithm, only the

increment ∆ω is computed. The parameter ω is never explicitly updated during the

iteration, but is reflected in the evolution of the displacement discontinuity [[u]] and

de-cohesive strain εdc. Within the iteration, the de-cohesion function Fn is evaluated

using the updated displacement discontinuity and stress. However, the algorithm

requires that the function ∂Fn/∂ω be evaluated.

Recall the form of Ḟn in equation (3.5.86), displayed below for convenience.

Ḟn =
2

τ
2
sf

τtτ̇t +
2

τ
2
sf

τpτ̇p +Dψσ





Dτn
τnf

τ̇n +



 Dσ̄�
f

�

c

�2 (2σtt + χσpp) fn +
Dttpp

f
�

c



 σ̇tt

+



 Dσ̄�
f

�

c

�2 (2σpp + χσtt) fn +
Dttpp

f
�

c



 σ̇pp

+ Dσ̄�
f

�

c

�22 (2− χ) σtpσ̇tp

− (1−Dσ̄σ̄
2) ḟn





During the evolution of [[u]] the total strain is assumed to remain constant and the

following condition holds:

ε̇ = 0 (while [[u]] is evolving) (4.5.3)

As [[u]] evolves, it follows from the elastic stress-strain relationship in (3.6.4) that

the stress rate is

σ̇ = −C : ε̇dc (while [[u]] is evolving) (4.5.4)
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Equation (4.5.4) is expressed alternatively in indicial notation as follows:

σ̇ij = − Y

(1 + ν) (1− 2ν)

�
(1− 2ν) ε̇dcij + νε̇

dc
kkδij

�
(i, j = n, t, p) (4.5.5)

The non-zero components of ε̇dc in equation (4.5.5) are

ε̇
dc
nn =

ω̇

Lc

DψσDτn

τnf
, ε̇

dc
nt =

ω̇

Lc

τt

τ
2
sf

, ε̇
dc
pn = ω̇

τp

τ
2
sf

(4.5.6)

Equations (4.5.5) and (4.5.6) are combined to obtain the components of σ̇ as [[u]]

evolves. The result is

σ̇nn = −ω̇
E1

Lc

DψσDτn

τnf
, σ̇tt = −ω̇

E2

Lc

DψσDτn

τnf
, σ̇pp = −ω̇

E2

Lc

DψσDτn

τ

σ̇nt = −ω̇
2G

Lc

τt

τ
2
sf

, σ̇tp = 0, σ̇pn = −ω̇
2G

Lc

τp

τ
2
sf

(4.5.7)

where the elastic constants in equation (4.5.7) are defined as follows:

E1 =
Y (1− ν)

(1 + ν) (1− 2ν)
, E2 =

Y ν

(1 + ν) (1− 2ν)
, 2G =

Y

(1 + ν)
(4.5.8)

The components of σ̇ in equation (4.5.7) are substituted into equation (3.5.86). The

result is
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Ḟn = −ω̇
2

τ
2
sf

τt

2G

Lc

τt

τ
2
sf

− ω̇
2

τ
2
sf

τp

2G

Lc

τp

τ
2
sf

+Dψσ





−ω̇
Dτn
τnf

�
E1
Lc

DψσDτn
τnf

�

−ω̇



 Dσ̄�
f

�

c

�2 (2σtt + χσpp) fn +
Dttpp

f
�

c



 E2
Lc

DψσDτn
τnf

−ω̇



 Dσ̄�
f

�

c

�2 (2σpp + χσtt) fn +
Dttpp

f
�

c



 E2
Lc

DψσDτn
τnf

+ω̇ (1−Dσ̄σ̄
2) 1

u0

DψσDτn
τnf





(4.5.9)

An alternative expression for Ḟn is

Ḟn =
∂Fn

∂ω
ω̇ (4.5.10)

Equations (4.5.9) and (4.5.10) are combined and the factor ω̇ can be eliminated. The

following expression for ∂Fn/∂ω is induced:

∂Fn

∂ω
= − 4G

τ
4
sfLc

�
τ
2
t + τ

2
p

�
+D

2
ψσDτn





−DτnE1

τ
2
nfLc

− Dσ̄ fnE2

(f �
c)

2
Lcτnf

(2 + χ) (σtt + σpp)

−2DttppE2

f
�
cLcτnf

+
�
1−Dσ̄σ̄

2
� 1

u0τnf





(4.5.11)

The following material parameters are defined:

CTG =
2G

τ
2
sfLc

, CE1 =
E1

τ
2
nfLc

, CE2 =
E2

f
�
cτnfLc

(4.5.12)
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Equation (4.5.11) is simplified to the following form with the use of equation

(4.5.12):

∂Fn

∂ω
= −2CTG

τ
2
sf

�
τ
2
t + τ

2
p

�
+D

2
ψσDτn





−CE1Dτn −
CE2Dσ̄ fn

f
�
c

(2 + χ) (σtt + σpp)

−2CE2Dttpp +
�
1−Dσ̄σ̄

2
� 1

u0τnf





(4.5.13)

The specific constitutive model algorithm used to evaluate stress at material point

is presented. The smeared crack implementation of the elastic de-cohesion model

treats multiple failure surfaces at a material point. Each failure surface is handled

individually and it is assumed that the failure surfaces do not interact with each

other. The multiple smeared crack concept is illustrated in figure 4.2. Failure of

a representative volume of heterogeneous material, such as concrete, is considered

to have contributions from multiple failure surfaces that may evolve simultaneously.

The representative volume is idealized by a homogeneous sub-volume of material

represented by a material point. Within each discrete sub-volume of material multi-

ple discrete failure surfaces are permitted to initiate. The displacement discontinuity

across each failure surface evolves according to the prescribed loading up to the point

of complete failure. Evolution of the displacement discontinuities provides the soft-

ening behavior associated with localized deformation of material and failure.
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!

Smeared crack idealization of real cracks within a material point sub-domain 
in a representative volume 

!" #" #"

!" #" #"

Actual cracks within a representative volume of material 
in a representative volume 

Figure 4.2: Multiple smeared crack concept

The effect of material failure on multiple failure surfaces is captured through the

inelastic de-cohesive strain εdc. If J failure surfaces have initiated over a material

point sub-volume (J = 3 for the case in figure 4.2), then
� ��

uj

��
,nj j = 1, . . . , J

�

represents the set of failure surface normal vectors nj and associated displacement

discontinuity vectors
��
uj

��
. The de-cohesive strain associated with the j

th failure

surface is computed from equation (3.5.98) as follows:

εdcj =
1

Lc
( [[uj]]⊗ nj)

S (4.5.14)

The total de-cohesive strain εdc is the sum of the de-cohesive strain contributions

from all J failure surfaces. It follows that εdc is

εdc =
J�

j=1

εdcj =
J�

j=1

1

Lc
( [[uj]]⊗ nj)

S (4.5.15)

It is important to note that the value of the smearing length Lc in equation (4.5.14)

plays a critical role in the computation of εdc. The criterion for choosing a value
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for Lc varies. The quantity Lc is sometimes viewed as a material parameter [9] with

a definite value that can be measured. Consistent methods for computing Lc have

also been established and are widely used [39], [69]. Neither view is advocated here.

However, the value of Lc is required to satisfy certain theoretical considerations.

An upper bound on the value of Lc is established on a simple theoretical basis. Recall

that the parameter ω is required to be a monotonically increasing quantity. It follows

that increment ∆ω computed in the general algorithm must also be positive. Since

Fnis always positive during the iteration, it is required that ∂Fn/∂ω < 0. Consider

the simple loading situation of uniaxial tension for which the only non-zero stress

component is σnn. In this case, τt = τp = σtt = σpp = 0, σ̄2 = 0, Dttpp = 0 and

Dτ n = 1. If ∂Fn/∂ω < 0 is enforced for uniaxial tension, then equation (4.5.13)

becomes

−CE1 +
1

u0τnf
< 0 (4.5.16)

Recall from equations (4.5.12) and (3.5.44) that CE1 = E1

� �
τ
2
nfLc

�
and u0 =

2Gf

�
τnf . The inequality in equation (4.5.16) is manipulated to establish an up-

per bound on the value of Lc in terms of the other independent material parameters

as follows:

Lc <
2GfE1

τ
2
nf

(4.5.17)

Equation (4.5.17) is the well known criteria necessary for maintaining a negative

softening modulus for σnn that precludes local stress reversal.

The following procedure for evaluation of the elastic de-cohesion constitutive model

applies to the initiation and evolution of cracking on multiple failure surfaces up

to the point of complete failure (loss of traction carrying capability). The infor-
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mation available for each material point from the previous computational cycle in-

cludes the stress σ0, total strain ε0 and the set of de-cohesion history variables
� ��

u0
j

��
, nj j = 1, . . . , J

�
for J failure surfaces that have already initiated. A

total strain increment ∆ε is available. The procedure for computing a solution for

the stress σL at the current computational cycle (time step) is given by the following

steps:

1. Compute a stress increment ∆σ to be ∆σ = C : ∆ε.

2. Compute the trial stress to be σtr = σ0 +∆σ.

3. Let j ∈ N+ denote the discrete failure surface. If J = 0 procede to step 4. If

J > 0 perform the following steps for j = 1, . . . , J only if
��
u0
j

��
· nj < u0:

(a) Construct tj such that tj · nj = 0 and compute pj = nj × tj.

(b) Construct the transformation tensor Aj using equation (3.5.45).

(c) Transform the components of the trail stress from the global basis

{e1, e2, e3} to the local failure surface basis {nj, tj,pj} by computing

σtr l
j = AT

j · σtr g
j ·Aj as follows:
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σnn = n1n1σ11 + n2n2σ22 + n3n3σ33 + 2n1n2σ12 + 2n2n3σ23 + 2n3n1σ31

σtt = t1t1σ11 + t2t2σ22 + t3t3σ33 + 2t1t2σ12 + 2t2t3σ23 + 2t3t1σ31

σpp = p1p1σ11 + p2p3σ22 + p3p3σ33 + 2p1p2σ12 + 2p2p3σ23 + 2p3p1σ31

σnt = n1t1σ11 + n2t2σ22 + n3t3σ33 + (n1t2 + n2t1) σ12 + (n2t3 + n3t2) σ23

+ (n3t1 + n1t3) σ31

σtp = t1p1σ11 + t2p2σ22 + t3p3σ33 + (t1p2 + t2p1) σ12 + (t2p3 + t3p2) σ23

+ (t3p1 + t1p3) σ31

σpn = p1n1σ11 + p2n2σ22 + p3n3σ33 + (p1n2 + p2n1) σ12 + (p2n3 + p3n2) σ23

+ (p3n1 + p1n3) σ31

Evaluate Fn

�
σtr

j ,
��
u0
j

�� �
using the expressions in equations (3.5.49) -

(3.5.57).

(d) If Fn

�
σtr

j ,
��
u0
j

�� �
< 0 then the intermediate stress solution for crack j,

σj = σtr
j has been obtained. If j ≤ J , overwrite j → j + 1 and return

to step 3. If j = J , a solution for the material point stress σL = σJ has

been obtained and the procedure is terminated.

(e) If Fn

�
σtr

j ,
��
u0
j

�� �
> 0 perform the Newton Raphson algorithm to find

σj and
��
uL
j

��
that satisfy Fn

�
σj,

��
uL
j

�� �
= 0. Let the index k ∈ N+

represent the Newton iteration. Initiate the procedure by setting k = 0,

σtr k
j = σtr

j ,
��
uj

�� k
=

��
u0
j

��
, F k

n = Fn

�
σtr k

j ,
��
uj

�� k�
, and selecting

a small tolerance value ε. In the following steps the superscript k is

placed on a function to denote the evaluation of that function at the k
th

Newton iterate of trail stress σtr k
j and displacement discontinuity

��
uj

�� k

associated with failure surface j.

(f) For k = 1, 2, . . . perform the following steps:
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i. Evaluate
∂F

k
n

∂ω
=

∂Fn

∂ω

�
σtr k

j

�
using the expressions in equations

(4.5.13), (3.5.74) - (3.5.77) and (3.5.50) - (3.5.57).

ii. Compute the increment in the parameter ω to be

∆ω = − F
k
n

∂F
k
n

∂ω

iii. Compute the increment in the components of ∆ [[uj]] using equations

(3.5.74) and (3.5.75) as follows:

∆ [[un]] = ∆ω
D

k
ψσD

k
τ n

τnf
, ∆ [[ut]] = ∆ω

2

τ
2
sf

τ
tr k
t , ∆ [[up]] = ∆ω

2

τ
2
sf

τ
tr k
p

iv. Increment the displacement discontinuity [[uj]] as follows:

[[uj]]
k+1 = [[uj]]

k +∆ [[uj]]

v. Compute the increment in the components of ∆εdcj using equations

(3.5.74) and (3.5.75) as follows:

∆ε
dc
nn j =

∆ω

Lc

D
k
ψσD

k
τ n

τnf
, ∆ε

dc
nt j =

∆ω

Lc

τ
tr k
t

τ
2
sf

, ∆ε
dc
pn j = ∆ω

τ
tr k
p

τ
2
sf

vi. Compute the increment of the components of the trial stress ∆σtr
j =

−C : ∆εdcj using equations (4.5.7) and (4.5.8) as follows:

∆σ
tr
nn j = −E1∆ε

dc
nn j, ∆σ

tr
tt j = −E2∆ε

dc
nn j, ∆σ

tr
pp j = −E2∆ε

dc
nn j

∆σ
tr
nt j = −2G∆ε

dc
nt j, ∆σ

tr
tp j = 0, ∆σ

tr
pn j = −2G∆ε

dc
pn j

103



Chapter 4. Numerical Modeling with the Material-point Method

vii. Update the (k + 1)th trial stress iterate as follows:

σtr k+1
j = σtr k

j +∆σ

viii. Evaluate F
k+1
n = Fn

�
σtr k+1

j ,
��
uj

�� k+1
�

using the expressions in

equations (3.5.49) - (3.5.57).

ix. If F k+1
n > ε, increase the iteration by overwriting k → k+1 and return

to step i. If
��F k+1

n

�� < ε then the solution for
��
uL
j

��
=

��
uj

�� k+1
and

an intermediate stress solution for crack j, σj = σtr k+1
j , have been

obtained and the procedure is terminated.

x. Transform the components of σj from the local failure surface basis

{nj, tj,pj} to the global basis {e1, e2, e3} by computing σg
j = Aj ·

σl
j ·AT

j as follows:

σ11 = n1n1σnn + t1t1σtt + p1p1σpp + 2n1t1σnt + 2t1p1σtp + 2p1n1σpn

σ22 = n2n2σnn + t2t2σtt + p2p3σpp + 2n2t2σnt + 2t2p2σtp + 2p2n2σpn

σ33 = n3n3σnn + t3t3σtt + p3p3σpp + 2n3t3σnt + 2t3p3σtp + 2p3n3σpn

σ12 = n1n2σnn + t1t2σtt + p1p2σpp + (n1t2 + n2t1) σnt + (t1p2 + t2p1) σtp

+ (p1n2 + p2n1) σpn

σ23 = n2n3σnn + t2t3σtt + p2p3σpp + (n2t3 + n3t2) σnt + (t2p3 + t3p2) σtp

+ (p2n3 + p3n2) σpn

σ31 = n3n1σnn + t3t1σtt + t3t1σpp + (n3t1 + n1t3) σnt + (t3p1 + t1p3) σtp

+ (p3n1 + p1n3) σpn

(g) If j ≤ J , overwrite j → j + 1, set σtr = σg
j and return to step (a). If

j = J , a solution for the material point stress σL = σJ has been obtained
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and the procedure is terminated.

4. Determine if another failure surface has initiated by evaluating the failure sur-

face initiation criteria in equation (3.5.39)

(a) Solve for F and n such that F = max
∀n

Fn.

(b) If F > 0 then overwrite J → J + 1. Set nJ = n and [[uJ ]] = 0.

The preceding constitutive algorithm only considers the failure process for a given

n for which [[un]] < u0. Post failure treatment of the motion and loading of failure

surfaces addresses cases for which [[un]] ≥ u0 and τn ≤ 0 for a given n. A post failure

value of τn = 0 for n indicates crack opening. In this case, [[un]] increases and ∆[[u]]

is computed by assuming that ∆εdc = ∆ε. A post failure value of τn < 0 indicates

compressive traction between the surfaces of a closed crack. In this case [[un]] = u0

is enforced while adjusting τ on the failure surface according to a Columb friction

law.

The determination of the failure surface initiation criteria requires the numerical

evaluation of F = max
∀n

Fn. In general, this is done by assuming that failure surface

normal, n, lies in the plane defined by the principal stress directions corresponding

to the maximum and minimum principal stress. This assumption is based on ob-

servations that n is defined by a linear combination of the two eigenvectors of σ

corresponding to the minimum and maximum eigenvalues for many different stress

states. The actual algorithm is a bisection method that computes the angle between

n and the maximum principal stress direction which satisfies the failure surface ini-

tiation criteria.
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5.1 Introduction

The results of this study are presented in this chapter. The overall objective of

this research is to study the grid dependence of computational fracture results using

a smeared crack approach in MPM. The specific aims are to determine how the

numerical results vary with the orientation of the grid, what are the causes of the grid

orientation bias of results and what, if any, simple approaches are available to remedy

the problem. The simple 2D problem of a bar in uniaxial tension, used to study the

behavior of the numerical method, is discussed in section 5.2. A preliminary study

of mesh orientation bias in MPM results is presented in section 5.3 for an elastic

constitutive model. A baseline failure simulation of the tensile bar is established

in section 5.4. Section 5.5 presents findings of the grid dependence investigation for

smeared crack MPM. The causes of the problems are provided and potential remedies

are also explored.

5.2 Case Study Problem: 2-D Elastic De-cohesive

Bar in Tension

A simple problem is chosen for the purposes of studying the behavior of numerical

results using a smeared crack representation of fracture in MPM. A 2D elastic de-

cohesive bar in tension is utilized as the case study. The advantage of such a problem

is the prior knowledge of the global response and stress state. When a problem’s

solution is well known, it is usually easier to identify the effects in the numerical

solution caused by the computational method itself. An exact solution for the global

response of the bar is derived in section 5.2.1. The preprocessing of the problem in

MPM is discussed in section 5.2.2.
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5.2.1 The Analytical Solution

Consider the two dimensional bar in tension depicted in figure 5.1. The bar is subject

to an axial tensile force P at the right end while the left end remains fixed. The

displacement of the point of load application, designated as δ, is the total elongation

of the bar. At some point during the loading of the bar a failure surface initiates which

has a normal vector n. As the material separates accross the surface the magnitude

of the displacement discontinuity [[u]] increases . The vector basis {n, t} is attached

to the bar and does not necessarily coincide with the global unit vector basis { ex, ey}.

In two dimensions n is defined in terms of the parameter α as follows:

n = cosα ex + sinα ey (5.2.1)

The material of the bar is described by an elastic de-cohesive constitutive model.

The goal of the present analysis is to obtain the analytical expression, P = P (δ), for

the elastic de-cohesive bar in tension. The P vs. δ response of the bar is illustrated

in figure 5.1

!

""#$%%!!"

#"

! 

&!

'!

$%"

$&"

(!

)!

Figure 5.1: Illustration of the elastic de-cohesive tensile bar problem
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!

Figure 5.2: Illustration of P−δ response of the elastic de-cohesive tensile bar problem

For a smeared crack representation of failure the total strain, ε, in the bar is composed

of elastic and inelastic (de-cohesive) contributions as follows:

ε = εe + εdc (5.2.2)

The stress is related to the elastic strain as follows:

σ = C : εe (5.2.3)

In (5.2.3) C is the fourth order isotropic elasticity tensor. Plane strain is assumed

for which the stress and strain components are related as follows:

σnn =
Y

(1 + ν) (1− 2ν)
[ (1− ν) εnn + ν εtt]

σtt =
Y

(1 + ν) (1− 2ν)
[ (1− ν) εtt + ν εnn]

σnt =
Y

(1 + ν)
εnt (5.2.4)
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Since the bar is in uniaxial tension the following conditions must hold:

σtt = 0

εnt = 0 (5.2.5)

The conditions in (5.2.5) are used and the stress strain relationship becomes

σnn = E
∗
ε
e
nn (5.2.6)

where

E
∗ =

Y

(1− ν2)
(5.2.7)

During the initial elastic loading the total strain is equal to the elastic strain contri-

bution and the axial stress is related to the elongation as follows:

σnn =
E

∗

L
δ (elastic loading) (5.2.8)

The axial stress σnn increases linearly up to a peak value that coincides with the

ultimate tensile strength τnf . Upon continued loading softening occurs due to crack

opening across a discrete failure surface with unit vector normal n (see figure 5.1).

Since pure mode I fracture is occurring in the bar the displacement discontinuity

across the failure surface is [[u]] = [[un]]n. The normal component of [[u]], [[un]], is

related to the axial stress by the following linear softening relationship:

σnn = τnf

�
1− [[un]]

u0

�
(5.2.9)
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The development of inelastic de-cohesive strains εdc is due to the evolution of un.

The axial component of the de-cohesive strain contribution is

ε
dc
nn =

[[un]]

L
(5.2.10)

The total axial strain component in the bar is

εnn =
δ

L
= ε

e
nn + ε

dc
nn (5.2.11)

Equations (5.2.6), (5.2.10) and (5.2.11) are combined to give the following:

δ

L
=

σnn

E∗ +
[[un]]

L
(5.2.12)

Equation (5.2.12) is rearranged as follows:

[[un]] = u0

�
1− σnn

τnf

�
(5.2.13)

The function σnn (δ) is obtained by substituting (5.2.13) into (5.2.12) and rearranging

terms. The final result is

σnn =
E

∗
�
L− E

∗
u0

τnf

� (δ − u0) (softening) (5.2.14)

Equation (5.2.14) describes the softening relationship between axial stress in the bar

and the total elongation for loading past the peak stress. It is important to note

that in order to maintain softening behavior in (5.2.14) the following condition must

hold:
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L <
E

∗
u0

τnf
(5.2.15)

In general the stress is

σnn =
E

∗

L
δ [ 1−H (δ − δ0)] +

E
∗

�
L− E

∗
u0

τnf

� (δ − u0)H (δ − δ0) (5.2.16)

where

δ0 =
τnf

E∗ L (5.2.17)

and σnn (δ0) = τnf is satisfied. The Heaviside functionH (δ − δ0) in (5.2.16) is defined

as follows:

H (δ − δ0) =





1 δ ≥ δ0

0 δ < δ0




 (5.2.18)

It is desired to obtain the analytical expression, P = P (δ), for the elastic de-cohesive

bar in tension. The P vs. δ response of the bar is illustrated in 5.2. The load P is

computed to be the axial stress multiplied by the cross sectional area of the bar WD.

It follows that the P = P (δ) relationship for the elastic de-cohesive bar is

P =
WDE

∗

L
δ [ 1−H (δ − δ0)] +

WDE
∗

�
L− E

∗
u0

τnf

� (δ − u0)H (δ − δ0) (5.2.19)

The work of fracture Wf is defined to be

Wf =

� δ

0

P (δ) dδ (5.2.20)
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Substitution of (5.2.19) into (5.2.20) gives

Wf =
WDE

∗

L

�� δ

0

δ dδ −
� δ

0

δH (δ − δ0) dδ

�

+
WDE

∗
�
L− E

∗
u0

τnf

�
�� δ

0

δH (δ − δ0) dδ −
� δ

0

u0 H (δ − δ0) dδ

�
(5.2.21)

The following change of variables is made:

s = δ − δ0, −δ0 ≤ s ≤ δ − δ0 (5.2.22)

The expression in (5.2.21) becomes

Wf =
WDE

∗

L

�� δ

0

δ dδ −
� δ−δ0

−δ0

(s+ δ0) H (s) ds

�

+
WDE

∗
�
L− E

∗
u0

τnf

�
�� δ−δ0

−δ0

(s+ δ0) H (s) ds−
� δ−δ0

−δ0

u0 H (s) ds

�
(5.2.23)

By definition of the Heaviside function, (5.2.23) becomes

Wf =
WDE

∗

L

�� δ

0

δ dδ −H (s)

� δ−δ0

0

(s+ δ0) ds

�

+
WDE

∗
�
L− E

∗
u0

τnf

�H (s)

�� δ−δ0

0

(s+ δ0) ds−
� δ−δ0

0

u0 ds

�
(5.2.24)

The integrals in (5.2.24) are evaluated to give the following result:
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Wf =
WDE

∗

2L
δ
2 +

WDE
∗

L

�
(δ − δ0)

2

2
+ δ0 (δ − δ0)

�
H (δ − δ0)

+
WDE

∗
�
L− E

∗
u0

τnf

�
�
(δ − δ0)

2

2
+ (δ0 − u0) (δ − δ0)

�
H (δ − δ0) (5.2.25)

After some simplification of (5.2.25) the work of fracture relationship becomes

Wf =
WDE

∗

2L
δ
2 +

WDE
∗

2L

�
δ
2 − δ

2
0

�
H (δ − δ0)

+
WDE

∗
�
L− E

∗
u0

τnf

�
�
1

2

�
δ
2 − δ

2
0

�
− u0 (δ − δ0)

�
H (δ − δ0) (5.2.26)

The analytical results of the preceding analysis (equations (5.2.19) & (5.2.26)) are

used in the following computational studies of the elastic de-cohesion tensile bar

problem for the purposes of determining numerical solution accuracy.
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5.2.2 Problem Setup and Other Computational Considera-

tions

MPM descretizations of the tensile bar problem are displayed in figure 5.3 and figure

5.4 for cases of α = 0 and α �= 0 respectively. For all the computations performed the

global basis, { ex, ey}, is taken to coincide with the grid lines while the unit vector

basis, {n, t}, is fixed to the bar. The case of α = 0 is referred to as the baseline case.

For the baseline case the material points are uniformly distributed within the square

cells using four material points per cell (see figure 5.3). The α �= 0 configuration in

figure 5.4 is generated by simply applying a rotation to the the material points of the

baseline case about the center of bar. The red material points represent deformable

material and the green points represent rigid material points.

The velocity boundary conditions are applied to the bar through the use of the rigid

material points. The velocity of the rigid points must be transferred to the nodes

of the grid because the discrete equations of motion are solved on the grid. During

the MPM computational cycle the velocity of a grid node is overwritten with the

velocity of a rigid material point if the rigid point resides in the support of that

particular grid node. Because the velocity (or displacement) boundary conditions

are applied in such a manner in MPM, the boundary of a body of material points is

considered to be a set of grid nodes that surround the deformable material points. It

is important to note that these points are not defined explicitly, but rather deduced

from the position of the rigid material points. Therefore, the correct positioning of

rigid material points becomes an important consideration which will be addressed

later. The velocity of the rigid material points are prescribed. For this problem a

zero velocity is applied to the rigid points at the left end of the bar and a constant

velocity of Vp = vLn is applied to the rigid points at the right end of the bar.

Values of material parameters for concrete are selected for the tensile bar simulation.
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The material parameters associated with the elastic de-cohesion constitutive model

and their values are listed in table 5.1 along with other relevant problem data.

The bar problem is set up to initiate the ideal macroscopic failure surface with

normal, n, depicted in 5.1. This is accomplished by prescribing different material

regions in the bar as illustrated by the configuration of material points in figure 5.5.

Elastic material, represented by red material points, surrounds a region of elastic

de-cohesive material in the central region of the bar, which are represented by blue

material points. Within this potential failure region, lies a subregion of weakened

material represented by yellow material points. This weak material serves as the

intended failure initiation region. The macroscopic failure surface (crack) that forms

across the bar is deduced from the pattern of failed material points. Because the bar

geometry is uniform, a weak region of failure initiation must be specified in order

to avoid uniform failure over all material in the failure region, and consequently

an inaccurate representation of the failure of the tensile bar. The tensile strength

of the weakened material points is 90% of the τnf of the surrounding material. A

single failure surface with normal n is prescribed to all material points within the

failure region and only one failure surface is allowed to initiate throughout loading.

Formation of the correct macroscopic crack surface across the bar depends on the size

and placement of the weakened material region. The effects of varying the weakened

region is addressed in later sections.
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Figure 5.3: Baseline (α = 0◦) MPM configurations of tensile bar problem

Figure 5.4: MPM configurations of bar problem for α = 45◦
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Table 5.1: Bar problem data

problem data Symbol Value Unit
mass density ρ 2350 kg/m

3

Young’s modulus E 24.9 GPa

Poisson’s ratio ν 0.18 dimensionless
ultimate tensile strength τnf 2.7 MPa

shear strength τsf 14.9 MPa

shear strength for large mean pressure τsm 90.0 MPa

compressive strength f
�
c 42.7 MPa

fracture energy Gf 61.35 N/m

coupling parameter Cn 0.2 dimensionless
coupling parameter Cs 0.1 dimensionless
coupling parameter Cψ 5.0 dimensionless
bar length L 20 cm

bar width W 6 cm

bar depth D 6 cm

load velocity vL 0.01 m/s

material points per cell N/A 4 N/A

Figure 5.5: MPM configuration key
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Several important quantities are computed throughout the simulation which include

the load point elongation δ, the axial load in the bar P , the elastic strain energy, U ,

the energy dissipated by mode I fracture, Ef and the work of fracture Wf .

The discrete load point displacement (elongation) of the bar at the k + 1 time step

is computed to be

δ
k+1 = δ

k +∆tvL (5.2.27)

The axial load computed at the k
th time step, denoted as P k, is obtained from the

reaction forces at a set of grid nodes that cuts through the bar. Consider the cutting

plane that is coincident with a set of grid nodes located at xi = constant depicted by

the vertical lines of black grid nodes in figure 5.5. The set of cutting plane grid nodes

indices is designated as {ix} = {i | xi = constant}. Equilibrium of internal forces in

the bar requires that f int ki = 0 for all i. It follows that the sum of internal force

contributions from all grid nodes, i ∈ {ix}, also be equal to zero as follows:

�

i∈{ix}

f int ki = 0 (5.2.28)

In equation (5.2.28), f int ki is the internal force at a grid node i ∈ {ix}. Recall that the

entire set of material points is {Xp}Np

p=1. A subset of material points in {Xp}Np

p=1 for

which Xp > xi = constant is designated as {px} = {p |Xp > xi = constant}. Since

{Xp}Np

p=1 = {px}∪C{px}, where C{px} is the complement of {px}, the expression for

f int ki in equation (5.2.28) is rewritten using equation (4.2.12) as follows:

f int ki = −
�

p∈{px}

Mpσ
s k
p ·∇Ni

�
Xk

p

�
−

�

p∈C{px}

Mpσ
s k
p ·∇Ni

�
Xk

p

�
(5.2.29)

Equation (5.2.29) is substituted into (5.2.28). The result is
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−
�

i∈{ix}




�

p∈{px}

Mpσ
s k
p ·∇Ni

�
Xk

p

�


−
�

i∈{ix}




�

p∈C{px}

Mpσ
s k
p ·∇Ni

�
Xk

p

�


 = 0

(5.2.30)

The two terms in equation (5.2.30) are equal and opposite forces that act over the

line of grid nodes defined by i ∈ {ix} . Define the reaction force fR over the grid

nodes i ∈ {ix} to be

fR = −
�

i∈{ix}




�

p∈{px}

Mpσ
s k
p ·∇Ni

�
Xk

p

�


 (5.2.31)

The axial force in the bar P k is simply the component of fR resolved in the n direction

as follows:

P
k = fR · n (5.2.32)

The elastic strain energy U in the body Ω is defined to be

U =
1

2

�

Ω

σ : εedV (5.2.33)

In indicial notation equation (5.2.33) is

U =
1

2

�

Ω

σij : ε
e
ijdV (5.2.34)

The relationship for isotropic elasticity is

σij = − Y

(1 + ν) (1− 2ν)

�
(1− 2ν) εeij + νε

e
kkδij

�
(5.2.35)
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Equations (5.2.34) and (5.2.35) are combined. The 2D result in terms of the { ex, ey}

global basis components is

U =
1

2

�

Ω

�
1

2E
(σ2

xx + σ
2
yy)−

ν

E
σxxσyy +

1

2G
σ
2
xy

�
dV (5.2.36)

In MPM the computation of Uk approximates the integral in (5.2.36) as a discrete

sum over all material points p with discrete volumes Vp = Mp/ρ at time t
k as fol-

lows:

U =
1

2

Np�

p=1

Mp

ρ

�
1

2E
(σ2

xx + σ
2
yy)−

ν

E
σxxσyy +

1

2G
σ
2
xy

�k

p

(5.2.37)

Let AΓ be the failure surface associated with the region of discontinuity Γ in the

body Ω (as depicted in figure 3.4). The energy dissipated by mode I fracture in Γ

is

Ef =

�

AΓ

�� [[un]]

0

τn ([[un]]) d [[un]]

�
dAΓ (for [[un]] ≤ u0) (5.2.38)

Recall the linear softening relationship of equation (3.5.63) rewritten below.

τn = τnf

�
1− [[un]]

u0

�

Equation (3.5.63) is substituted into (5.2.38) and the inner integral is evaluated. The

result is

Ef =

�

AΓ

τnf [[un]]

�
1− [[un]]

2u0

�
dAΓ

�
for [[un]]

k ≤ u0

�
(5.2.39)
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Let the discrete failure surfaces across a material point be approximated as DLc.

The integral in (5.2.39) is approximated as a finite sum over material points p to

be

E
k
f = DLc

Np�

p=1

τnf [[un]]
k
p

�
1−

[[un]]
k
p

2u0

� �
for [[un]]

k
p ≤ u0

�
(5.2.40)

In equation (5.2.40) the characteristic length is computed to be

Lc =
h

2
(5.2.41)

where h is the side length of a square grid cell. The value of Lc is dependent on

the spatial discritization with the following restriction from equation (5.2.15) which

precludes local stress reversal:

Lc <
2E∗

Gf

τ
2
nf

The amount of available energy that can be dissipated from complete failure of a

single crack on a single material point is reached once [[un]]p = u0. It follows from

equations (5.2.40) and (3.5.44) that the energy dissipated by complete failure of a

crack per material point is

Efp = DLc
τnfu0

2
= DLcGf (5.2.42)

Not surprisingly, the energy required for mode I failure of one crack over one material

point is just the product of the discrete failure surface area (DLc) and the fracture

energy Gf . The total energy dissipated by complete failure of the bar across the

idealized failure surface in figure 5.1 is simply DWGf .
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The integral definition of the work of fracture, Wf , in equation (5.2.20) is approxi-

mated numerically to compute W
k
f at time t

k as follows:

W
k
f =

�

k

P
k(δk − δ

k−1) (5.2.43)

The quantity DWGf is the exact solution for the work of fracture energy required for

complete failure of the bar and is used for comparisons against numerical solutions

of W k
f .

The numerical solution error of the computed load P
k with respect to the exact

solution P (δ) in equation (5.2.19) is computed as follows

Ep =
|P k − P

�
δ
k
�
|

|P (δk) | (5.2.44)

The error computed from equation (5.2.44) is used for the convergence studies in the

following section.

The error is computed from a solution obtained on the grid rather than material

points because the discrete MPM equations are solved on the grid nodes. For this

reason grid quantity error is considered to be the more appropriate error measure.

Other measures of solution error were considered during the course of this study

which include error in the elastic strain energy computed on material points Uk and

the error in the velocity solution computed on the grid nodes.

Although measuring grid quantity error is appropriate for MPM computations, mea-

suring nodal velocity error presented problems for non-baseline cases for which α �= 0.

The velocity solution error was measured with respect to the corresponding baseline

solution at grid nodes, which was demonstrated to converge with mesh refinement.

Measuring error for α �= 0 cases was problematic due to the incompatibility of node

sets between the α = 0 and α �= 0 cases. To remedy the incompatibility problem the
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material point configurations of the α �= 0 cases were rotated back to the baseline

solution, the material point velocity was mapped to the corresponding baseline grid

configuration and the grid velocity error was computed. A measure of grid velocity

error was obtained for which solution convergence was generally observed. However,

the axial load computation error was selected over the velocity solution error as the

best error measure because it is computed directly and represents a solution that is

computed on the actual grid whereas the velocity error requires a significant amount

of post processing as well as other questionable assumptions.

Solution error based on the elastic energy, Uk, computed on material points, was

ultimately abandoned because the MPM solution is not computed on the material

points. Use of solution errors in U
k presented other problems as well. The computa-

tion of error in U
k is straightforward. The error is measured with respect to an exact

solution U(δ). However, this error measure seems to magnify the inherent MPM

error associated with material points crossing grid cell boundaries or being located

very close to grid cell boundaries. As a result, the convergence behavior was severely

affected by the position of material points. This problem was compounded by the

placement of rigid material points used to apply velocity boundary conditions.

Recall the application of essential boundary conditions for which the velocity of a

grid node is taken to be the velocity of a rigid material point that resides in the

support of that particular grid node. Figure 5.6 displays two different placements

of rigid material points for loading the right end of the bar. The arrows placed at

grid nodes indicate the direction of the boundary velocity applied to that node by

the rigid material points. As the pictures indicate, the placement of the rigid points

produces different velocity boundary conditions at the nodes. The top figure depicts

the placement of rigid points at the visible boundary of the bar. The consequence is

that the boundary velocity is applied to grid nodes that reside within the deformable

domain of the body of material points. In this case some cells near the boundary
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will have the same boundary velocity prescribed at all their nodes. Any deformable

material points within such cells are located within a constant velocity field that

does not produce any strain, and therefore have zero stress. Obviously, the zero

stress material points have a definite adverse affect on the solution error in U
k,

strengthening the case to discard this error measurement for MPM results.

Placement of rigid material points at the visible boundary does not properly represent

the tensile bar problem. Convergence studies were performed using this boundary

condition representation and the grid solution error measure, Ep. In general, solu-

tion accuracy in Ep does not decrease with increasing grid resolution because the

boundary conditions of the bar problem are not correctly represented.

The bottom plot in figure 5.6 displays an appropriate placement of rigid material

points for the bar problem. The velocity boundary conditions are correctly applied

only to nodes that lie outside the deformable material domain by placing the rigid

points slightly offset from the right end of the bar. Offsetting the rigid points from

the end of the bar prevents the occurrence of zero stress material points near the

boundary where velocity is prescribed. As a result, the problem is represented cor-

rectly and an increase in numerical solution accuracy with increasing grid resolution

is obtained and is shown in the following section.
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Figure 5.6: Comparison of the placement of rigid material points for applying velocity
boundary conditions
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5.3 A Preliminary Study of Mesh Orientation

Bias in MPM Results

A preliminary study of mesh orientation bias of MPM results was performed using an

isotropic elastic material for the tensile bar. The objet of this part of the investigation

is to obtain a general idea of how the orientation of the grid relative to the body

of material points affects the convergence rate of the numerical solution with mesh

refinement.

Figure 5.7 displays baseline configurations of the problem for the four grid resolutions

used in the convergence study. The solution error in axial load is measured using

equation (5.2.44). The exact solution to P (δ) for the elastic problem is obtained

from (5.2.19) for an infinitely strong material (τnf → ∞) to be

P (δ) =
WDE

∗

L
δ (5.3.1)

Convergence results for the baseline case are displayed in figure 5.8. The plot on the

left displays the solution error percentage vs. the inverse side length of a square grid

cell, denoted by h
−1. Convergence of the numerical solution for the baseline case is

observed with mesh refinement because Ep decreases with decreasing h (increasing

h
−1). The plot on the right of figure 5.8 is of logEp vs. h−1. The rate of convergence

denoted by, mp, is estimated by a least squares fit to the logEp vs. h
−1 data. For

the baseline case a convergence rate value of mp = 1.44 is computed.

Error results for α = 15◦, 30◦, 45◦ are plotted in figure 5.9. In general, the numerical

solution error is observed to increase with increasing value of α for a given grid reso-

lution. Estimated values of convergence rates are displayed in table 5.2. Convergence

is observed for all α �= 0 cases. However a significant decrease in convergence rate

relative to the baseline simulation is also observed.
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! (a) h−1 = 50m−1 ! (b) h−1 = 100m−1

! (c) h−1 = 200m−1 ! (d) h−1 = 400m−1

Figure 5.7: MPM configurations of baseline elastic bar in tension problem
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Figure 5.8: MPM convergence study for the baseline configuration elastic bar
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Figure 5.9: Convergence behavior comparison of elastic bar problem in MPM with
different α

Table 5.2: Convergence rate results for elastic tensile bar problem

α mp

0◦ -1.4354
15◦ -0.9482
30◦ -0.8573
45◦ -0.8982
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5.4 The Baseline Failure Simulation

Baseline case results for the MPM failure simulation of an elastic de-cohesive bar in

tension are presented. A general idea of the accuracy of the simulations is provided

by visual comparisons of numerical results with the analytical solutions for axial

load, P (δ), and work of fracture, Wf (δ) (equations (5.2.19) and (5.2.26)). Results are

obtained for four different grid resolutions, h. When considering problems of material

failure, accurate numerical solutions capture not only the correct global response, but

the correct global failure surface. In the case of the bar problem the failure surface is

idealized by a transverse plane with surface normal, n (see figure 5.1). Three different

configurations of weakened material are utilized as failure initiation locations in order

to determine which configurations lead to failure patterns resembling correct results

for the global failure surface. Patterns of weak material points include material

points within a square of fixed area, a transverse line of material points and a single

material point. Material points are within a weakened region of material have a value

of τnf that is 10% lower than the surrounding material.

Figure 5.10 displays baseline configurations of the tensile bar problem with a fixed

square area of weakened material points. Upon complete failure of the bar, the failure

pattern is visualized by the contour plots of normalized displacement discontinuity,

[[un]] /u0 in figure 5.11. Completely failed material is associated with [[un]] /u0 ≥

1. The global failure pattern resulting from each grid resolution not only initiates

within the weakened region of material, but represents the correct global failure

surface expected from the exact solution. As h increases the failure pattern localizes

into a narrow band resembling a macro-crack. Figure 5.12 displays comparisons of

numerical and analytical global response results. Three numerical results for P vs. δ,

corresponding to the three node sets where the reaction force is computed (see figure

5.5), are plotted along with the exact solution. For each grid resolution, all three

computed P vs. δ response curves fall on top of each other and match very closely to
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the analytical solution. The plots of energy also display closely matched comparisons

of numerical and analytical results of Wf vs. δ responses. These responses consist

of contributions of elastic potential energy, U , and energy dissipated by fracture,

Ef , that are also computed and displayed in the energy plots. During the initial

elastic loading of the bar U increases and Ef = 0 as expected. Softening of the

material occurs for loading beyond the peak load. Post peak loading is characterized

by a gradual drop in U and an increase in Ef . Upon complete failure U = 0 and

Wf = Ef = WDGf which corresponds to the expected energy that is dissipated

from complete failure of the bar, and is plotted as a constant value of energy.

Favorable results are also obtained for the MPM configurations of the tensile bar

problem with a transverse line of weakened material points displayed in figure 5.13.

Contour plots of [[un]] /u0 in figure 5.14 display failure patterns that also initiate from

the weakened region of material and reproduce the correct global failure surface. As

the grid is refined the failure pattern resembles the ideal global macro-crack surface.

The analytical and numerical solutions of the P vs. δ and Wf vs. δ responses,

displayed in figure 5.15, compare very well. Initiating the problem with a weakened

transverse line of material points is essentially imposing the idealized failure surface

for the bar displayed in figure 5.1. Failure initiation of the weak material occurs

simultaneously on the failure surface at a slightly lower ultimate tensile stress than

that of the surrounding material. This can be seen in the P vs. δ responses for each

value of h because the numerically computed peak load is slightly lower than the

peak load predicted by the analytical solution.

Mixed results are observed for material point configurations of the bar problem with

a single weak material point serving as an intended failure initiation location (figure

5.16). Figure 5.17 shows that the failure patterns for simulations with low grid reso-

lution initiate from the weakened material point while those of high grid resolution

initiate at the boundary of the de-cohesion and elastic material regions. Figure 5.18
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displays the corresponding numerical and analytical comparisons of the P vs. δ and

Wf vs. δ responses. Very good comparisons are observed for the h
−1 = 50m−1 and

h
−1 = 100m−1 cases in figures 5.18a and 5.18b respectively. However, the numer-

ically computed global responses for the h
−1 = 200m−1 and h

−1 = 400m−1 cases,

displayed in figures 5.18c and 5.18d respectively, clearly deviate from the exact so-

lution.

In summary, the baseline MPM simulation of the elastic de-cohesive bar in tension

is performed for three different regions of initially weakened material. Very good

agreement is observed between analytical and numerical results of both global re-

sponse and failure pattern for cases where material weakness is imposed within a

fixed square area of material points or a transverse line of material points. Use of

a single weak material point does not guarantee failure initiation at the location

of the weak material point. The MPM configuration associated with a transverse

line of material points is the most ideal representation of the elastic de-cohesive bar

problem because the global failure surface is predetermined. For this reason, this

case is selected to perform the grid orientation bias study presented in the following

section.
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(a) h−1 = 50m−1 (b) h−1 = 100m−1

(c) h−1 = 200m−1 (d) h−1 = 400m−1

Figure 5.10: Baseline MPM configurations of tensile bar with area of weakness

(a) h−1 = 50m−1 (b) h−1 = 100m−1

(c) h−1 = 200m−1 (d) h−1 = 400m−1

Figure 5.11: Post failure [[u]]n/u0 plots of tensile bar with area of weakness
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! (a) h−1 = 50m−1 ! (b) h−1 = 100m−1

! (c) h−1 = 200m−1 ! (d) h−1 = 400m−1

Figure 5.12: MPM solutions of baseline tensile bar problem with area of weakness
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(a) h−1 = 50m−1 (b) h−1 = 100m−1

(c) h−1 = 200m−1 (d) h−1 = 400m−1

Figure 5.13: Baseline MPM configurations of tensile bar with plane of weakness

(a) h−1 = 50m−1 (b) h−1 = 100m−1

(c) h−1 = 200m−1 (d) h−1 = 400m−1

Figure 5.14: Post failure [[u]]n/u0 plots of tensile bar with plane of weakness
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! (a) h−1 = 50m−1 ! (b) h−1 = 100m−1

! (c) h−1 = 200m−1 ! (d) h−1 = 400m−1

Figure 5.15: MPM solutions for baseline tensile bar problem with plane of weakness
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(a) h−1 = 50m−1 (b) h−1 = 100m−1

(c) h−1 = 200m−1 (d) h−1 = 400m−1

Figure 5.16: Baseline MPM configurations of tensile bar with one weak point

(a) h−1 = 50m−1 (b) h−1 = 100m−1

(c) h−1 = 200m−1 (d) h−1 = 400m−1

Figure 5.17: Post failure [[u]]n/u0 plots of tensile bar with one weak point
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! (a) h−1 = 50m−1 ! (b) h−1 = 100m−1

! (c) h−1 = 200m−1 ! (d) h−1 = 400m−1

Figure 5.18: MPM solutions for baseline tensile bar problem with one weak point
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5.5 Mesh Dependency in Smeared Crack MPM

Results

Any robust computational method must demonstrate solution convergence as the

spatial discretization of the problem is resolved, regardless the discretization struc-

ture. This capability has been demonstrated for an isotropic linear elastic body in

MPM with regard to the effect of relative orientation between the grid and the body

of material points (see section 5.3). The existence of some type of mesh orienta-

tion bias in smeared crack MPM results is hypothesized based on past findings for

smeared crack analysis in FEM [54]. How does the orientation of the computational

grid effect material failure simulation results in MPM using the smeared crack ap-

proach? Are the effects significant, and if so, what are their causes? Is there a simple

remedy to the problem? Obtaining answers to the aforementioned questions lies at

the heart of this research and is the focus of this section.

5.5.1 The Mesh Orientation Bias

The bias due to grid orientation in computational fracture results using a smeared

crack approach in MPM is demonstrated using the two configurations of the bar

problem displayed in figures 5.19 and 5.20. Only the h
−1 = 400m−1 grid resolution

is used for the baseline (α = 0◦) and α = 45◦ cases. The correct global failure surface

is imposed by prescribing a weakened transverse line of material points across the

width of the bar that have a reduced value of τnf from the surrounding material.

The global responses for P vs. δ and Wf vs. δ are displayed in figures 5.21 and 5.22

for the baseline and α = 45◦ cases respectively. The difference between results for

the two grid orientations is immediately apparent. Numerical results for the baseline

case agree well with the exact solution. An extreme stiffening of the P vs. δ response
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is observed for the α = 45◦ case during post peak loading. Consequently, the Wf vs.

δ response differs significantly from the exact solution. Although some softening is

occurs, the elastic energy, U , does not decrease after the peak load is reached and

the energy dissipated from fracture, Ef , continues to increase.

The various plots of energy in figure 5.22 provide two pieces of information that could

explain the cause of the troubling result of the stiff P vs. δ response for the α = 45◦

case. These clues are the continuously increasing value of Ef and constant value of

U throughout loading.

In order to gain further insight to the cause of the continuous increase in Ef , the

failure patterns for the final configurations are examined. Contour plots of [[un]] /u0

are displayed in figures 5.23 and 5.24 for the baseline and α = 45◦ cases respectively.

Complete failure is observed for the baseline case. The failure is confined to a very

narrow region that resembles the ideal global failure surface consistent with the exact

solution. In the case of α = 45◦, complete failure does not occur anywhere. The

failure region develops at the center of the bar and is spread several element widths

along the length of the bar. Although no material points completely fail, the diffusion

of the failure pattern in the α = 45◦ case is enough to significantly increase the global

energy dissipated by fracture, Ef .

The constant value of elastic potential energy, U , observed for the α = 45◦ case (figure

5.22) suggests that a constant state of stress remains in the bar during softening. For

this reason, stress component contours are examined for the baseline and α = 45◦

cases at both pre and post load peak loading states. Figures 5.25 - 5.30 display

normalized stress contours of the σnn, σtt and σnt components of σ for baseline and

α = 45◦ cases at a point during the initial elastic loading just prior to the peak load.

For the most part the stress components are uniform throughout the bar for the

baseline case and represent a nearly uniaxial stress state. Some non-uniformity of

the stress field is observed near the ends of the bar and are attributed to the stress

140



Chapter 5. Evaluation of the Smeared Crack Approach in MPM

concentrations caused by no-slip boundary conditions imposed. The value of σxx/τnf

is nearly equal to 1 everywhere in the bar as expected (see figure 5.25). The values

of σyy/τnf (figure 5.27) and σxy/τnf (figure 5.29) are zero everywhere except near the

no-slip boundary. The contours of stress components for α = 45◦ are not uniform

across the bar, but can be described as having a distinct uniform grid pattern. The

plot of σnn/τnf in figure 5.26 shows that the extreme values of tension are located on

the lines of the grid pattern, while material points between the lines have a slightly

lower value. Figures 5.28 and 5.30 display a similar trend for the σtt/τnf and σnt/τnf

stress components respectively. In can be argued that σtt/τnf and σnt/τnf are zero

throughout the bar in an average sense. The overall behavior of the α = 45◦ case

is uniaxial tension for elastic loading; a result confirmed by the convergence studies

preformed in section 5.3. The specific cause of the patterns observed in the stress

field for α = 45◦ is addressed in a later section.

Figures 5.31 - 5.36 display contours plots of σnn/τnf , σtt/τnf and σnt/τnf for baseline

and α = 45◦ cases at a point during the softening portion of loading. As expected, a

nearly uniaxial state of stress is maintained in the bar for the baseline case throughout

failure. The value of σxx/τnf displayed in figure 5.31 has dropped to a value lower

than 1. The values of σyy/τnf (figure 5.33) and σxy/τnf (figure 5.35) remain nearly

zero throughout the bar with small variations near the failure region. The contour

plot of σnn/τnf for α = 45◦ retains the same uniform grid pattern (figure 5.32). Some

softening has occurred but the decrease in σnn/τnf is obviously not uniform over the

bar. A distinct difference in the values of stress ore observed for the elastic and

de-cohesion material regions. Although material is failing, values of σnn/τnf = 1 still

persist in the elastic region. A generally lower value of σnn/τnf is observed in the

de-cohesive material region with the lowest values located inside the diffuse band of

failure. While values of σtt/τnf remain nearly zero in the elastic material region, the

magnitude of σtt/τnf increase to values greater than one in the de-cohesion region

(see figure 5.34). However, the most notable result for the α = 45◦ case is the shear
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stress component, σnt, displayed in figure 5.36 which increases to magnitudes of more

than twice the value of τnf near the failure region.

Comparison of the baseline (α = 0◦) and α = 45◦ cases reveal a definite grid orien-

tation bias in results for smeared crack analysis in MPM. A close look at [[un]] /u0

and the components of σ in the bar provide some insight into the unfavorable global

response results for α = 45◦ (see figure 5.22). The continuous increase in Ef is due

to a spreading of the failure pattern (see figure 5.24). The reason that the elastic po-

tential energy, U , is maintained at a constant value during post-peak loading seems

to be the nature of the non-uniform development in stress over the bar during soft-

ening. In general, all stress components remain unchanged within the elastic region

while σnn decreases and the σtt and σnt components increase within the de-cohesive

material. This non-physical stiffening of material surrounding the failure region is

ultimately the reason for the stiffening in the P vs. δ response for the α = 45◦ case,

and could be the cause of the observed spreading of the failure pattern. The follow-

ing analysis of the MPM stress computation in the presence of failure is intended to

provide an explanation for the difference in stress results observed for baseline and

non-baseline simulations.
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Figure 5.19: Baseline configuration of tensile bar

Figure 5.20: α = 45◦ configuration of tensile bar
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Figure 5.21: P and Wf vs. δ response for baseline tensile bar case

Figure 5.22: P and Wf vs. δ response for α = 45◦ tensile bar case
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Figure 5.23: [[un]]/u0 for baseline tensile bar case at failure

Figure 5.24: [[un]]/u0 for α = 45◦ tensile bar case at failure
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Figure 5.25: σxx/τnf for baseline tensile bar case during elastic deformation

Figure 5.26: σnn/τnf for α = 45◦ tensile bar case during elastic deformation
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Figure 5.27: σyy/τnf for baseline tensile bar case during elastic deformation

Figure 5.28: σtt/τnf for α = 45◦ tensile bar case during elastic deformation
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Figure 5.29: σxy/τnf for baseline tensile bar case during elastic deformation

Figure 5.30: σnt/τnf for α = 45◦ tensile bar case during elastic deformation
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Figure 5.31: σxx/τnf for baseline tensile bar case during softening

Figure 5.32: σnn/τnf for α = 45◦ tensile bar case during softening
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Figure 5.33: σyy/τnf for baseline tensile bar case during softening

Figure 5.34: σtt/τnf for α = 45◦ tensile bar case during softening

150



Chapter 5. Evaluation of the Smeared Crack Approach in MPM

Figure 5.35: σxy/τnf for baseline tensile bar case during softening

Figure 5.36: σnt/τnf for α = 45◦ tensile bar case during softening
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5.5.2 Analysis of the Stress Computation

In the preceding section it was observed that very different stress states are obtained

for baseline and non-baseline grid orientations using smeared crack MPM for even

the simple case of mode I failure of a bar in tension. A non-physical increase in

stress around the failure region occurs for the α �= 0 case, leading to a very stiff

global response. However, the baseline simulation produces results consistent with

analytical predictions for failure of the bar in uniaxial stress. The purpose of the

analysis in this section is to provide an explanation for the difference in stress results

observed for baseline and non-baseline simulations at the local level of a material

point. A simplified analysis of a material point stress computation in the presence

of mode I failure is performed. The hope is that the analysis can provide a simple

remedy to the problem.

Consider the single four node square element displayed in figure 5.37 that comprises

the spatial 2-D MPM mesh. The local element coordinates of the element are (ξ, η)

for which −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1. Each node position is denoted by xi

(i = 1, 2, 3, 4) . The element sides are aligned with the global unit vector basis

{ ex, ey} and the length of the element side is h. The velocity of each node is denoted

as vi. A material point, denoted as Xp = (Xp, Yp), lies within the element and is

represented by a discrete square sub-volume within the element. The set (ξp, ηp) in

(4.4.2) denotes the local element coordinates of Xp. The global coordinates (Xp, Yp)

of Xp are expressed in terms of the nodal basis functions Ni as follows from equation

(4.4.2):

Xp =
Nn�

i=1

xi Ni (ξp, ηp) , Yp =
Nn�

i=1

yi Ni (ξp, ηp)

Figure 5.37 depicts a general mode I fracture scenario of a material point in MPM.

A single failure plane has formed over the material point with surface normal n.
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A discontinuity, denoted by [[u]] = [[un]]n, is evolving over the sub-volume. For

simplicity it is assumed that the nodal velocities are vi = vin (i = 1, 2, 3, 4) where

vi denotes the magnitude of the velocity at node i. This simplification represents

pure mode I fracture on the failure surface because the motion of the failure plane is

assumed to correspond exactly to the motion produced by the velocity field provided

by the nodes.

!

Figure 5.37: Illustration of a general pure mode I failure for a single material point
in 2-D

Recall that the mode I fracture is parameterized by the angle, α, such that the failure

plane normal vector from equation (5.2.1) is

n = cosα ex + sinα ey

An additional constraint is imposed on the velocity field in order to achieve the

approximate motion in the 2-D MPM tensile bar simulation. The requirement is
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that the directional derivative of the velocity field in the transverse t direction must

be zero as follows:

dv

dt
= ∇v · t = 0 (5.5.1)

The spatial velocity gradient in equation (5.5.1) ∇v is

[∇v] =





∂vx

∂x

∂vx

∂y

∂vy

∂x

∂vy

∂y



 (5.5.2)

and

t = − sinα ex + cosα ey (5.5.3)

In MPM the spatial velocity gradient is computed from equation (4.2.5) as fol-

lows:

∇v =
4�

i=1

�
vi ⊗∇Ni

�
Xp

��
(5.5.4)

where ∇Ni is the spatial gradient of the nodal basis function Ni (i = 1, 2, 3, 4) com-

puted from equation (4.4.11) to be

∇Ni =





∂Ni

∂x

∂Ni

∂y




= J−1





∂Ni

∂ξ

∂Ni

∂η





The Jacobian matrix in equation (4.4.11) is taken from equation (4.4.12) to be
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J =





4�

i=1

xi
∂Ni

∂ξ
(ξp, ηp)

4�

i=1

yi
∂Ni

∂ξ
(ξp, ηp)

4�

i=1

xi
∂Ni

∂η
(ξp, ηp)

4�

i=1

yi
∂Ni

∂η
(ξp, ηp)





Equation (4.4.2) is used to evaluate the partial derivatives of global coordinates with

respect to local element coordinates. The basis functions are restated from equation

(4.4.1) as follows:

N1 (ξ, η) =
1
4 (1− ξ) (1− η)

N2 (ξ, η) =
1
4 (1 + ξ) (1− η)

N3 (ξ, η) =
1
4 (1 + ξ) (1 + η)

N4 (ξ, η) =
1
4 (1− ξ) (1 + η)

The partial derivatives of the basis functions with respect to the local element coor-

dinates are

∂N1

∂ξ
=

1

4
(η − 1)

∂N1

∂η
=

1

4
(ξ − 1)

∂N2

∂ξ
=

1

4
(1− η)

∂N2

∂η
= −1

4
(1 + ξ)

∂N3

∂ξ
=

1

4
(1 + η)

∂N3

∂η
=

1

4
(1 + ξ)

∂N4

∂ξ
= −1

4
(1 + η)

∂N4

∂η
=

1

4
(1− ξ)

(5.5.5)

Equation (5.5.5) are used to evaluate the components of J in (4.4.11). The result

is
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∂Xp

∂ξ
=

4�

i=1

xi
∂Ni

∂ξ
(ξp, ηp) =

h

4
(1− η) +

h

4
(1 + η) =

h

2

∂Xp

∂η
=

4�

i=1

xi
∂Ni

∂η
(ξp, ηp) = −h

4
(1 + ξ) +

h

4
(1 + ξ) = 0

∂Yp

∂ξ
=

4�

i=1

yi
∂Ni

∂ξ
(ξp, ηp) =

h

4
(1 + η)− h

4
(1 + η) = 0

∂Yp

∂η
=

4�

i=1

yi
∂Ni

∂η
(ξp, ηp) =

h

4
(1 + ξ) +

h

4
(1− ξ) =

h

2

(5.5.6)

It follows from equation (4.4.12) that J−1 is computed for an arbitrary material point

position (ξ, η) to be

J−1 (ξ, η) =
2

h



 1 0

0 1



 (5.5.7)

Since the nodal velocities are vi = vin (i = 1, 2, 3, 4), the velocity gradient in equation

(5.5.4) is expressed as follows:

∇v =
4�

i=1

�
vin⊗∇Ni

�
Xp

��
(5.5.8)

Equation (5.5.8) is expressed in matrix form for vi = vin = vi (cosα ex + sinα ey).

The result is

[∇v] =
4�

i=1

vi





cosα
∂Ni

∂x
cosα

∂Ni

∂y

sinα
∂Ni

∂x
sinα

∂Ni

∂y




(5.5.9)

The terms of the sum in (5.5.9) are evaluated by using equations (4.4.11), (5.5.5)

and (5.5.7) as follows:
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[∇v] =
2v1
h



 cosα (η − 1) cosα (ξ − 1)

sinα (η − 1) sinα (ξ − 1)





+
2v2
h



 cosα (1− η) − cosα (1 + ξ)

sinα (1− η) − sinα (1 + ξ)





+
2v3
h



 cosα (1 + η) cosα (1 + ξ)

sinα (1 + η) sinα (1 + ξ)





+
2v4
h



 − cosα (1 + η) cosα (1− ξ)

− sinα (1 + η) sinα (1− ξ)





(5.5.10)

The components of ∇v are

∂vx

∂x
=

2

h
cosα [ (1− η) (v2 − v1) + (1 + η) (v3 − v4)]

∂vy

∂y
=

2

h
sinα [ (1− ξ) (v4 − v1) + (1 + ξ) (v3 − v2)]

∂vx

∂y
=

2

h
cosα [ (1− ξ) (v4 − v1) + (1 + ξ) (v3 − v2)]

∂vy

∂x
=

2

h
sinα [ (1− η) (v2 − v1) + (1 + η) (v3 − v4)] (5.5.11)

For compactness the following parameters are defined:

A = [ (1− η) (v2 − v1) + (1 + η) (v3 − v4)]

B = [ (1− ξ) (v4 − v1) + (1 + ξ) (v3 − v2)]
(5.5.12)

Using (5.5.11) and (5.5.12), ∇v is expressed in matrix form to be
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[∇v] =
2

h



 cosαA cosαB

sinαA sinαB



 (5.5.13)

The directional derivative in equation (5.5.1) is computed to be

�
dv

dt

�
=

2

h



 cosα (− sinαA+ cosαB)

sinα (− sinαA+ cosαB)



 (5.5.14)

From (5.5.14) it is apparent that a pure mode I motion requires the following con-

straint on the velocity field:

sinαA = cosαB (5.5.15)

The strain increment on a material point is computed from equation (4.3.8) to

be

∆εp =
∆t

2

4�

i=1

�
∇Ni

�
Xp

�
⊗ vi +

�
∇Ni

�
Xp

�
⊗ vi

�T�
(5.5.16)

Equation (5.5.16) is constructed from the symmetric part of ∇v in equation (5.5.10)

as follows:
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∆ [εp]

= ∆t
2v1
h



 cosα (η − 1) 1
2 (cosα (ξ − 1) + sinα (η − 1))

1
2 (cosα (ξ − 1) + sinα (η − 1)) sinα (ξ − 1)





+∆t
2v2
h



 cosα (1− η) 1
2 (sinα (1− η)− cosα (1 + ξ))

1
2 (sinα (1− η)− cosα (1 + ξ)) − sinα (1 + ξ)





+∆t
2v3
h



 cosα (1 + η) 1
2 (cosα (1 + ξ) + sinα (1 + η))

1
2 (cosα (1 + ξ) + sinα (1 + η)) sinα (1 + ξ)





+∆t
2v4
h



 − cosα (1 + η) 1
2 (cosα (1− ξ)− sinα (1 + η))

1
2 (cosα (1− ξ)− sinα (1 + η)) sinα (1− ξ)





(5.5.17)

In terms of the { ex, ey} basis the components of the strain increment are

∆εxx =
2∆t

h
cosα [ (1− η) (v2 − v1) + (1 + η) (v3 − v4)] (5.5.18)

∆εyy =
2∆t

h
sinα [ (1− ξ) (v4 − v1) + (1 + ξ) (v3 − v2)] (5.5.19)

∆εxy =
∆t

h
cosα [ (1− ξ) (v4 − v1) + (1 + ξ) (v3 − v2)]

+
∆t

h
sinα [ (1− η) (v2 − v1) + (1 + η) (v3 − v4)] (5.5.20)

Using equation (5.5.12), equations (5.5.18) - (5.5.20) are expressed in compact form

as follows:
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∆εxx =
2∆t

h
cosαA (5.5.21)

∆εyy =
2∆t

h
sinαB (5.5.22)

∆εxy =
∆t

h
cosαB +

∆t

h
sinαA (5.5.23)

It will prove to be useful to express the strain increment in terms of the failure surface

basis vectors {n, t} by using the following transformation relationships:

∆εnn = cos2 α∆εxx + 2 cosα sinα∆εxy + sin2
α∆εyy

∆εtt = sin2
α∆εxx − 2 cosα sinα∆εxy + cos2 α∆εyy

∆εnt = (∆εyy −∆εxx) cosα sinα +∆εxy

�
cos2 α− sin2

α
�

(5.5.24)

Equations (5.5.23) and (5.5.24) are combined to give the following result:

∆εnn =
2∆t

h
[cosαA+ sinαB] (5.5.25)

∆εtt = 0 (5.5.26)

∆εnt =
∆t

h
[cosαB − sinαA] (5.5.27)

The mode I velocity field constraint in equation (5.5.15) is imposed on the strain

increment components in equations (5.5.25) - (5.5.27). After some manipulations

the final result is
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∆εnn =
2∆t

h cosα
A (5.5.28)

∆εtt = 0 (5.5.29)

∆εnt = 0 (5.5.30)

It should be noted that mode I velocity field constraint in equation (5.5.15) is identical

to requiring that ∆εnt = 0 in equation (5.5.27).

The total strain increment on a material point, ∆ε, is composed of elastic and de-

cohesive contributions as follows:

∆ε = ∆εe +∆εdc (5.5.31)

The de-cohesion strain increment ∆εdc in equation (5.5.31) represents opening of the

failure surface and is evaluated from equation (3.5.98) to be

∆εdc =
1

2Lc
[∆ [[u]]⊗ n+ n⊗∆ [[u]] ] (5.5.32)

A characteristic length of Lc = h/2 is used in (5.5.32) for a single material point. In

terms of the {n, t} basis, the components of ∆εdc are

∆ε
dc
nn =

2

h
∆ [[un]] (5.5.33)

∆ε
dc
tt = 0 (5.5.34)
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∆ε
dc
nt = 0 (5.5.35)

The stress increment on a material point, ∆σ, is computed from isotropic linear

elasticity as follows:

∆σ = C : ∆εe (5.5.36)

The stress increment components in the {n, t} basis are obtained by combining equa-

tions (5.5.28)-(5.5.31) and (5.5.33)-(5.5.36) with the matrix relationships in equations

(4.4.17) and (4.4.21). The final result is

∆σnn =
2

h

E (1− ν)

(1 + ν) (1− 2ν)

�
∆t A

cosα
−∆ [[un]]

�
(5.5.37)

∆σtt =
2

h

E ν

(1 + ν) (1− 2ν)

�
∆t A

cosα
−∆ [[un]]

�
(5.5.38)

∆σnt = 0 (5.5.39)

The increment in the normal component of displacement discontinuity, ∆ [[un]], is

obtained from softening relationship in (3.5.63) to be

∆ [[un]] = u0

�
1− ∆σnn

τnf

�
(5.5.40)

Equation (5.5.40) and the relationships for u0 and E1 in equations (3.5.44) and (4.5.8)

respectively are substituted into (5.5.37). The result is

∆σnn =
2E1

h

�
∆t A

cosα
− 2Gf

τnf

�
1− ∆σnn

τnf

��
(5.5.41)
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Equation (5.5.41) is rearranged to obtain the following result for ∆σnn:

∆σnn = 2E1

�
h− 4E1Gf

τ
2
nf

�−1 �
∆t A

cosα
− 2Gf

τnf

�
(5.5.42)

The expression for A in (5.5.12) is substituted into (5.5.42), which leads to the

following result:

∆σnn = 2E1

�
h− 4E1Gf

τ
2
nf

�−1 �
∆t

cosα
[ (1− η) (v2 − v1) + (1 + η) (v3 − v4)]−

2Gf

τnf

�

(5.5.43)

Equation (5.5.43) is the general form of the stress increment at a material point for

the simple mode I failure depicted in figure 5.37. In general, ∆σnn is a function of

the local position of the material point within the element and the orientation angle

of the failure plane normal, α.

The baseline MPM simulation of the elastic de-cohesion bar in tension corresponds

to α = 0, which is illustrated in figure 5.38 for a single material point in a cell. Since

cosα = 1 and sinα = 0 for this case, the pure mode I motion restriction in equation

(5.5.15) requires that B = 0. It is also assumed that the material point lies within

the bounds of the element such that −1 < ξ < 1 and −1 < η < 1. As a consequence

the following restrictions apply for the nodal velocity magnitude when α = 0:

v4 = v1, v3 = v2 (5.5.44)
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!

Figure 5.38: Illustration of a pure mode I failure for a single material point in 2-D
for α = 0

It follows from equation (5.5.43) that the form of the stress increment for the baseline

case of α = 0 is

∆σnn = 2E1

�
h− 4E1Gf

τ
2
nf

�−1 �
2∆t (v2 − v1)−

2Gf

τnf

�
(5.5.45)

The magnitude of the displacement increment of node i is taken to be

∆ui = ∆t vi (5.5.46)

Substitution of (5.5.46) into (5.5.45) results in the following:

∆σnn = 2E1

�
h− 4E1Gf

τ
2
nf

�−1 �
2 (∆u2 −∆u1)−

2Gf

τnf

�
(5.5.47)

The relative displacement increment ∆u2−∆u1 in equation (5.5.47) is the increment
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in elongation of the element in the n direction (or ex in this case), and is defined as

follows:

∆δelem = ∆u2 −∆u1 (5.5.48)

By using (5.5.48) and recalling the expression for u0 in equation (3.5.44), equation

(5.5.47) can be expressed as the following:

∆σnn = E1

�
h

2
− E1u0

τnf

�−1

( 2∆δelem − u0) (5.5.49)

Equation (5.5.49) is the increment of the normal stress component for a single ma-

terial point that is softening due to a pure mode I failure for the case of α = 0. This

is a special case because ∆σnn is independent of the material point location within

the element. Equation (5.5.49) is compared to the exact solution of axial stress

in the elastic de-cohesive tensile bar during softening in (5.2.14) restated below for

convenience.

σnn = E
∗
�
L− E

∗
u0

τnf

�−1

(δ − u0)

The forms of equations (5.2.14) and (5.5.49) are very similar. In light of this com-

parison, it is no surprise that the baseline (α = 0) case accurately reproduces the

exact solution for the elastic de-cohesion bar in tension.

For a non-baseline case where α �= 0 the issue is not so clear. Obviously, accuracy

of the numerical MPM solution is lost. As previously discussed, there are two ob-

servations regarding the mesh dependence of smeared crack computational fracture

simulation results in MPM based on this simple problem. The first is a stiffening of

the global P = P (δ) (σnn (δ)) response and the second is a dispersion of the fail-
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ure (de-cohesion) pattern. Can these issues be explained by simply analyzing ∆σnn

locally for α �= 0?

The general expression for ∆σnn on a material point that is softening due to a mode

I failure is

∆σnn = H̄

�
1

cosα
[ (1− η) (∆u2 −∆u1) + (1 + η) (∆u3 −∆u4)]−

2Gf

τnf

�
(5.5.50)

where H̄ is the softening modulus defined to be

H̄ = E1

�
h

2
− 2E1Gf

τ
2
nf

�−1

(5.5.51)

The criterion or ensuring softening in equation (5.2.15) is applied to the case in

(5.5.50) . The length restriction on h becomes

h

2
<

2E1Gf

τ
2
nf

(5.5.52)

The dependence of ∆σnn on α in equation (5.5.50) is examined. The softening

modulus is essentially divided by a factor of cosα . Since increasing α from a

value of zero (the baseline case) decreases cosα , division by cosα should decrease

the softening modulus (because it is always negative). Keeping along these lines,

the expected global response should be associated with a steeper softening slope.

However this is not the case. The expected behavior predicted by the local functional

dependence of stress on α directly contradicts the observed stiffening behavior of the

global response upon increasing α from a value of zero.

There is a chance that elimination of the α dependence of stress altogether could

remedy the bias of results. Although this type of thinking is completely counter-

intuitive to the preceding analysis, it requires only a simple numerical experiment.
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By inspection of (5.5.50), division of h and Gf by cosα , will eliminate α from the

expression for ∆σnn in equation (5.5.50). This experiment does not work (results

not shown). The stiffened global response of the bar for α �= 0 persists as well as

the dispersion of the failure pattern. Adjustment of other parameters such as the

smearing length Lc or the fracture energy Gf have no effect on the stiffening behavior

or spreading of the failure pattern.

In conclusion, a local analysis of stress for a pure mode I failure at a material point

leads to some insight but fails to provide a simple remedy to the mesh orientation bias

observed in results of smeared crack fracture computations in MPM. The similarity

between the exact solution for the elastic de-cohesion bar in tension and the axial

stress component computation is clear and demonstrates analytically the reason for

the high accuracy of MPM results for the baseline case. However, analytical results

of local stress computations do not explain the stiffening of the global response with

increased values of α, but lead one to believe that a softer global response would be

obtained by increasing α from the baseline value. As a result the analysis does not

provide a basis for simply adjusting fracture parameters which would lead to more

favorable results. An adjustment of material parameters based on the analysis in

order to eliminate α proves to not help the matter either.

167



Chapter 5. Evaluation of the Smeared Crack Approach in MPM

5.5.3 Stiffening and Crack Pattern Dispersion Effects

In this section, potential global effects leading to the problems of stiffening and failure

pattern dispersion observed in smeared crack MPM results are considered. An even

closer examination of the stress field in the presence of material failure is performed

in order to determine the causes of these problems.

Prior to exploring the details of the stress field in the bar during material failure, it

is necessary to revisit the issue of the general non-uniformity of stress observed over

the bar for α �= 0 (see section 5.5.1). Recall the stress contours displayed for elastic

loading in figures 5.25 - 5.30. The uniaxial stress condition of the bar is reproduced

for α = 0 with a uniform stress field across the bar. Although the global response

of an elastic bar in uniaxial stress is reproduced for α �= 0, the stress fields are not

uniform over the bar. In the case of α = 45◦, the contours of stress components

resemble a uniform grid pattern. This result presents an added difficulty to the

analysis of stress results and a more accurate representation of the stress field result

is desired.

Uniformity of the stress field within the bar is obtained from an initial configuration of

material points that are uniformly distributed within grid cells. Figure 5.39 displays

a close up view in the potential failure zone for the α = 45◦ configuration of the

tensile bar with a non-uniform in-cell material point distribution. This configuration

is produced by rotating the baseline configuration of the bar by α. Note that the

position of some material points coincide with the lines of the grid. The α = 45◦

configuration of the bar displayed in figure 5.40 is descritized by material points

that are uniformly distributed within grid cells. This configuration is generated

directly from a grid that is completely filled with material points that are uniformly

distributed within the cells.

A comparison between the stress fields resulting from uniform and non-uniform in-
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cell material point distributions is displayed in figures 5.41 - 5.46 for α = 45◦ at the

same point during elastic loading. A dramatic improvement in stress field uniformity

is realized when material points are distributed uniformly within grid cells. A clear

state of uniaxial stress is observed for which the value of σnn/τnf < 1 is nearly

uniform throughout the bar (see figure 5.41 ). The values of σtt/τnf and σnt/τnf ,

displayed in figures 5.44 and 5.46 respectively, are essentially zero. As mentioned

before, some non-uniformity in stress is present due to stress concentrations near the

near no-slip boundaries. However, a uniaxial stress state is simulated in the interior

of the bar where material failure occurs.

A close-up view of the σnn/τnf contour resulting from a non-uniform in-cell distri-

bution of material points is displayed in figure 5.47. The non-uniformity of σnn is

attributed to the close proximity of material points to cell boundaries. It is observed

that material points of high stress that form the lines of the pattern lie within grid

cells whose borders coincide with material point positions. When the in-cell distribu-

tion of material points is uniform, a more accurate stress field is computed because

errors due to material points crossing grid cells is eliminated. In fact, the preliminary

study of the elastic bar performed in section 5.3 not only demonstrates independence

of MPM results with respect to by grid orientation, but the in-cell distribution of

material points as well (see figure 5.9). By electing a uniform in-cell distribution

for the simulation, the effect of grid orientation is isolated. For this reason, such

a distribution is used to study smeared crack MPM results of the stress field for

α �= 0.

Figure 5.48 displays a comparison of convergence behavior between cases of different

α for the elastic bar problem with a uniform in-cell distribution of material points.

The same comparison for a non-uniform in-cell material point distribution is dis-

played in figure 5.9 and repeated again in figure 5.49 for the sake of convenience.

Obviously, a uniform in-cell material point distribution results in a more accurate
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numerical solution for any given α �= 0 and grid resolution h. Unlike the case of

non-uniform in-cell material point distributions, the error values for α �= 0 cases do

not differ much from those of the baseline case. Comparison between the behavior of

the two material point distributions leads the conclusion that the observed difference

in error between the different α �= 0 cases in figure 5.49 is due mostly to the cell

crossing error associated with the non-uniform distribution of material points, and

not the difference in orientation angle α.
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Figure 5.39: α = 45◦ configuration of tensile bar with a non-uniform in-cell material
point distribution

Figure 5.40: α = 45◦ configuration of tensile bar with a uniform in-cell material
point distribution
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Figure 5.41: σnn/τnf for α = 45◦ configuration with a non-uniform in-cell material
point distribution during elastic deformation

Figure 5.42: σnn/τnf for α = 45◦ configuration with a uniform in-cell material point
distribution during elastic deformation
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Figure 5.43: σtt/τnf for α = 45◦ configuration with a non-uniform in-cell material
point distribution during elastic deformation

Figure 5.44: σtt/τnf for α = 45◦ configuration with a uniform in-cell material point
distribution during elastic deformation
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Figure 5.45: σnt/τnf for α = 45◦ configuration with a non-uniform in-cell material
point distribution during elastic deformation

Figure 5.46: σnt/τnf for α = 45◦ configuration with a uniform in-cell material point
distribution during elastic deformation
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Figure 5.47: σnn/τnf for α = 45◦ configuration with a non-uniform in-cell material
point distribution during elastic deformation
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Figure 5.48: Convergence behavior comparison of elastic bar problem in MPM with
a uniform in-cell material point distribution for different α
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Figure 5.49: Convergence behavior comparison of elastic bar problem in MPM with
a non-uniform in-cell material point distribution for different α
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The global responses for the elastic de-cohesive tensile bar for α = 45◦ are displayed in

figures 5.50 and 5.51 for non-uniform and uniform in-cell material point distributions

respectively. There are some minor differences but the same general behavior is

observed. Results for the uniform in-cell grid distribution appear to be more accurate

with respect to the exact solution for the initial elastic portion of the loading. Both

simulations exhibit the same stiff post-peak loading response. Figure 5.52 displays

the same dispersion of the failure pattern that occurs for simulations with non-

uniform in-cell material point distributions. The use of a uniform in-cell material

point distribution offers no improvement to failure simulation results of the tensile bar

for the α = 45◦ case. The utility of the uniform in-cell material point distribution for

this research is the clear picture of stress that it provides for investigating potential

causes of the grid orientation bias of results.

Figures 5.53 - 5.55 display contours of stress components in the α = 45◦ bar config-

uration with a uniform in-cell material point distribution during post peak loading.

The development of stress during failure is generally non-uniform across the bar.

The value of σnn/τnf is uniform everywhere in the bar except within the narrow

band of weakened material where some softening takes place (figure 5.53). Despite

some softening, the value of σnn/τnf within material points that surround the narrow

band remains nearly one. The stress appears to be ”locked in” near the failure region

which explains the level post peak P vs. δ response in figure 5.51. A Small variation

in σtt/τnf from a value of zero is also observed within the failure region (figure 5.54).

Extreme stiffening in the material surrounding the narrow band of weak material is

apparent in the σnt/τnf contour displayed in figure 5.55. The value of σnt is zero

everywhere including the weakened band of material where σnn is decreasing due to

failure. Bands of high failure surface shear stress, σnt, form around the softening

zone. This effect will be referred to as shear stiffening.

The cause of global stiffening and the dispersion of the failure region associated with
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smeared crack MPM results for α �= 0 configurations of the bar is postulated to be

the compatibility of deformation enforced by the grid cells themselves. Proof of this

claim is provided by a heuristic argument. Consider the square group of four elements

within the failure zone indicated by the bold outline in figure 5.56. Material points

in the upper right element belong to the weak band of material points for which

failure initiates on a failure surface defined by n. Softening is occurring on these

points which lead to a decrease in σnn. Consider the illustration of an incremental

deformation of the same group of four elements pictured in figure 5.57. The general

motion of the nodes in the n direction is depicted by the arrows. The element

deformation resulting from this motion is essentially shear. If only material in the

upper right element is softening, then a decrease in the stress of that element is

realized. Connectivity of the grid nodes requires the other three elastic elements to

deform in a compatible manner to the element that is softening. The elastic elements

deform in shear, but since they are undamaged the elastic deformation actually leads

to an increase in the shear stress, σnt. This effect is observed in the close up view of

σnt results displayed in figure 5.58. Since failure initiates in the upper right element,

σnt remains zero on the failure surface. As it deforms and softens, an unphysical

increase in σnt is induced in the elastic (undamaged) elements by the compatibility

of the deformation imposed by the grid. The shear stiffening also spreads away from

the weak material band of initial failure forming a wide zone. An increase in σnt

within the shear stiffening zone causes unphysical material failure to initiate and

develop, leading to the dispersion of the material failure zone. Note that the size of

the entire shear stiffening zone is comparable to that of the failure zone displayed

in figure 5.56. The effect of unphysical shear stiffening and subsequent spreading of

failure seems to be a self sustaining process caused primarily by the compatibility of

deformation imposed by the grid.

The same effect was discovered by Rots over twenty years ago for smeared crack

analysis in FEM [54]. In his studies, he used the term ”stress locking” to describe
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the unphysical increase in stress that occurs around material failure regions that are

supposed to represent traction free crack surfaces. The stress locking effect ultimately

leads to stiff global responses in smeared crack FEM results. Although a number

of disadvantages were identified for smeared crack analysis is FEM, the problem

of stiffening due to ”stress locking” seems to be the most serious. A literature

review by the author reveals that smeared crack FEM was ultimately abandoned as

a computational fracture method in pursuit of better ways for representing material

failure in FEM. Other more successful fracture simulation methods in FEM have

been developed over the past twenty years and include the method of embedded

discontinuities [41, 30, 44] and the extended finite element method (XFEM) [76].

In general, each method improved on the representation of fracture in the smeared

crack approach by using a more accurate representation of the kinematics of the

discontinuity in displacement in the numerical method.

If a smeared crack failure representation is used in either FEM or MPM, the result is

unphysical stiffening as a result of the inherent compatibility in deformation enforced

by the computational grid. Mesh independent results can not be obtained using

smeared crack MPM due to the stiffening associated with material failure simulations

for which the orientations of failure surfaces do not coincide with the orientation

of grid cell lines. This conclusion is reached even for the elementary case study

problem provided by this research. It is also important to note that the accurate

results obtained in previous smeared-crack MPM studies using explicit dynamics

only reflect the favorable case of failure surface and grid cell alignment [69]. The

mesh orientation bias observed in smeared crack MPM results represents a serious

limitation of its use as a computational fracture method in general. For the method

to be considered a valid approach for solving material failure problems, a remedy to

the grid dependence must be developed. A simple remedy has not presented itself

through the analysis performed for this study.
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Figure 5.50: P and Wf vs. δ response for α = 45◦ tensile bar case with a non-uniform
in-cell material point distribution

Figure 5.51: P and Wf vs. δ response for α = 45◦ tensile bar case with a uniform
in-cell material point distribution
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Figure 5.52: [[un]] /u0 for α = 45◦ configuration with a uniform in-cell material point
distribution during softening

Figure 5.53: σnn/τnf for α = 45◦ configuration with a uniform in-cell material point
distribution during softening
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Figure 5.54: σtt/τnf for α = 45◦ configuration with a uniform in-cell material point
distribution during softening

Figure 5.55: σnt/τnf for α = 45◦ configuration with a uniform in-cell material point
distribution during softening
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Figure 5.56: Close up of [[un]] /u0 for α = 45◦ configuration during softening
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Figure 5.57: Illustration of a compatible deformation of grid cells
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Figure 5.58: Close up of σnt/τnf in softening region for α = 45◦ configuration during
softening
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5.5.4 Use of Embedded Discontinuities in MPM

As an alternative to using smeared crack MPM for computational fracture, an em-

bedded discontinuity approach is implemented into MPM. This effort is an attempt

to overcome the mesh orientation bias of smeared crack MPM results. It is ulti-

mately unsuccessful because the embedded discontinuity method in MPM has the

same mesh-dependent behavior as the smeared crack approach. However, the method

is summarized in this section for completeness.

A complete description of the embedded discontinuity method, used for this study, is

provided by Oliver [41], [44]. Recall the strong discontinuity kinematics representa-

tion of material failure presented in section 3.5.2. Now consider the slightly different

representation of material failure illustrated in figure 5.59. The displacement field,

u(x), in Ω is defined as follows:

u(x) = ū(x) +MΓ[[u]](x) (5.5.53)

The first term of equation (5.5.53), ū(x), is the regular (continuous) part of the

displacement field. The second term corresponds to the jump in the displacement

field, [[u]](x). The function, MΓ(x), is a unit jump function whose support is the

domain, Ωh, which contains Γ (see figure 5.59). It is defined to be

MΓ(x) = HΓ(x)− φ(x, t) (5.5.54)

where HΓ(x) is the Heaviside function defined in equation (3.5.28) and φ(x) is any

continuous function defined such that the following conditions are satisfied:

φ(x) =



 0 ∀ x ∈ Ω−
/Ωh

1 ∀ x ∈ Ω+
/Ωh



 (5.5.55)
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The small strain tensor, ε(x), is computed from equation (3.2.40) to be

ε(x) = (∇u)S = ε̄(x) + (∇MΓ[[u]])
S (5.5.56)

where ε̄(x) is the regular part of the strain field and the (∇MΓ[[u]])S term is en-

hancement to the strain field.

The embedded discontinuity method is used to simulate material failure for the quasi-

static problem (see Appendix B for details). The set of equations governing the

boundary value problem of the quasi-static deformable solid, Ω, with discontinuity,

Γ, depicted in 5.59, include the equilibrium of forces in Ω/Γ, the continuity of traction

across Γ, boundary conditions and the constitutive relationship. In the absence of

body forces , the equilibrium of internal forces is stated as follows:

∇ · σ = 0 ∀x ∈ Ω/Γ (5.5.57)

The boundary is divided into two sets of points such that, ∂Ω = ∂Ωu ∪ ∂Ωt. The

displacement (or essential) boundary conditions are applied to ∂Ωu and the traction

boundary conditions are applied to ∂Ωt as follows:

u(x) = g(x) ∀ x ∈ ∂Ωu

τ (x) = t(x) ∀ x ∈ ∂Ωt (5.5.58)

The condition of traction continuity is

σ · n|Ω+ = σ · n|Ω− = σ · n|Γ ∀x ∈ Γ (5.5.59)

where σ ·n|Ω+ (σ ·n|Ω−) represents the value of stress in Ω+ (Ω−) in the neighborhood

of Γ. The constitutive relationship is denoted symbolically as σ = σ(ε).
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Figure 5.59: Illustration of strong discontinuity kinematics concept
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The use of embedded discontinuities to model fracture requires an explicit represen-

tation of the failure surface, Γ. A set of ne grid cells that is intersected by Γ, and

defined as J = {e |Ωe ∈ Ω∩Γ �= ∅}ne
e=1, is continuously tracked throughout the sim-

ulation. An example of J is displayed in figure 5.60. A 2D illustration of a single

element e ∈ J is depicted in in figure 5.61. The domain of the element, Ωe, is sepa-

rated into Ω−
e and Ω+

e by an elemental discontinuity, Γe with length, �e. Continuity

of Γe across element boundaries is enforced for all e ∈ J so that Γ =
�

e∈J Γe.

Figure 5.60: Illustration of the set of elements, J , intersected by the discontinuity
taken from [44]
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Figure 5.61: Illustration of an element with an embedded discontinuity, e ∈ J
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The development and implementation of quasi-static analysis in MPM is described

in detail in Appendix B. The incremental solution for the quasi-static problem is the

displacement increment at the nodes, ∆ui. The solution approximation is enhanced

by additional degrees of freedom that are ”embedded” in the ne elements and cor-

respond to increments in the displacement discontinuity, ∆[[u]]e, which are constant

over an element e ∈ J . The enhanced solution approximation is

∆u(x) =
Nn�

i=1

∆uiNi(x) +
�

e∈J

MΓe(x)∆[[u]]e (5.5.60)

For a given element, e, the function, MΓe(x) is defined to be

MΓe(x) =



 0 ∀ e /∈ J

HΓe(x)− φe(x) ∀ e ∈ J



 (5.5.61)

where , φe(x) is chosen to be the sum of nodal basis functions corresponding to the

n
+
e nodes that belong to Ω+

e (see figure 5.61) as follows:

φe(x) =
n+
e�

i+=1

Ni+(x) (5.5.62)

Since ∆[[u]]e is constant over an element, ∇(∆[[u]]e) = 0. It follows from equations

(5.5.56), (5.5.60) and (5.5.61) that the increment in strain, ∆ε is

∆ε (x) =
Nn�

i=1

(∆ui ⊗∇Ni (x))
S +

�

e∈J

δΓe(x)(∆[[u]]e ⊗n)S −
�

e∈J

(∇φe(x)⊗∆[[u]]e)
S

(5.5.63)

where δΓe(x) = ∇HΓe(x) is the Dirac delta function defined in equation (3.5.30). For

computational purposes the Dirac delta in equation (5.5.63) is replaced by the reg-
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ularized Dirac delta function, δLΓ , defined in equation (3.5.33). The strain increment

becomes

∆ε (x) =
Nn�

i=1

(∆ui⊗∇Ni (x))
S+

�

e∈J

1

Lc
µΓe(x)(∆[[u]]e⊗n)S−

�

e∈J

(∇φe(x)⊗∆[[u]]e)
S

(5.5.64)

where µΓe is the collocation function in element, e, defined using equation (3.5.34)

as follows:

µΓe(x) =



 0 for x /∈ Γe

1 for x ∈ Γe



 (5.5.65)

The traction continuity condition in equation (5.5.59) is satisfied in an average sense

over each element e ∈ J . Equation (5.5.59) is restated by equating the mean value

of the traction in Ωe/Γe to the average traction on Γe. The result is

1

Ωe

�

Ωe

σ · n dV =
1

�e

�

Γe

σ · n dΓ ∀ e ∈ J (5.5.66)

Equation (5.5.66) is rearranged using the definition of δLΓ in equation (3.5.33) to give

the following result:

�
µΓe

1

Lc
− �e

Ωe

��

Ωe

σ · n dV = 0 ∀ e ∈ J (5.5.67)

Equation (5.5.67) is satisfied if the following condition holds:

Lc =
Ωe

�e
∀ e ∈ J (5.5.68)

Equation (5.5.68) is the condition used to satisfy average traction continuity for

embedded discontinuities.
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Implementation of embedded discontinuities in MPM is discussed. All material

points, Xp, are considered to be elastic. Since failure only occurs on Γ, the dis-

crete material failure model is evaluated at the points, Xe, for e ∈ J , where Xe

is chosen to be the midpoint of Γe (see figure 5.61). The coordinates of Xe are as-

sumed to remain fixed throughout the simulation. This assumption is appropriate

for the present case of small deformations. In the case of large deformations, the

displacement of the position, Xe must be considered.

The values of ∆σe and ∆[[u]]e are obtained implicitly using the elastic de-cohesion

constitutive algorithm in section 4.5 for all e ∈ J . Since µΓe(Xe) = 1, the total

strain increment, ∆εe at Xe, is computed from equation (5.5.64) to be

∆εe =
Nn�

i=1

(∆ui ⊗∇Ni (Xe))
S +

�

e∈J

1

Lc
(∆[[u]]e ⊗ n)S −

�

e∈J

(∇φe(Xe)⊗∆[[u]]e)
S

(5.5.69)

In order to initialize the material failure algorithm, ∆εe, is computed from equation

(5.5.69) with ∆[[u]]e = 0.

Once ∆[[u]]e is computed for all e ∈ J , the material point strain increments, ∆εp,

are computed. Since µΓe(Xp) = 0, the total strain increment, ∆εp at Xp, is obtained

from equation (5.5.64) to be

∆εp =
Nn�

i=1

(∆ui ⊗∇Ni (Xp))
S −

�

e∈J

(∇φe(Xp)⊗∆[[u]]e)
S (5.5.70)

The material point stress increment, ∆σp, is obtained from isotropic linear elasticity

as follows:

∆σp = C : ∆εp (5.5.71)
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In general, numerical implementation of the embedded discontinuity method requires

tracking the set, J . Tracking algorithms are needed to identify the elements in

which failure may occur next and what orientation will initiate, given the continuity

of Γ and stress states. Specific methods have been developed for FEM [41], [44].

For simplicity, the use of such algorithms is avoided in this study by pre-specifying

the set, J , where failure can initiate and develop. This simplification is sufficient

for the 2D embedded discontinuity MPM analysis of the tensile bar problem. The

prescribed J for the bar problem corresponds to a set of elements that is intersected

by a transverse line across the middle of the bar with normal vector, n.

Computational fracture results using embedded discontinuities in MPM are very

similar those obtained using a smeared crack representation of fracture. Results

from the baseline (α = 0) simulation of the bar problem match very well to the

analytical solution. Stiffening of global P vs. δ results is observed in α �= 0 cases for

relatively small values of α (i.e α = 5◦). Convergence of solutions is not obtained

during post-peak loading once α becomes sufficiently large. It should be noted that,

although some embedded discontinuity FEM results for the bar problem do not

display post-peak stiffening [44], the irregular grid structure utilized may actually

accommodate a tortuous global crack path over J for which failure surface and

grid lines align. In this case the overall good result may only be a consequence of

the randomly generated grid. A problem leading to stiffening could still persist in

embedded discontinuity FEM using a logically generated rectangular mesh whose

lines do not necessarily align with the bar geometry.

Unfortunately, the use of embedded discontinuities in MPM does not provide a rem-

edy to the mesh orientation bias in smeared crack MPM results. The same general

conclusion is reached. The method of embedded discontinuities in MPM is only suc-

cessful when failure surface orientations coincide with the orientation of the grid cell

lines.
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It is important that computational tools be valid methods for solving problems of

an intended application, and that their limitations be understood. For this reason

the smeared crack material failure representation using MPM has been evaluated as

a computational material failure method in general. It has been demonstrated by

this research that its use for solving problems of failure in solid mechanics is very

limited.

Numerical results of smeared crack MPM analysis suffer from a gird orientation

bias. Solution accuracy is achieved only for cases in which the orientations of failure

surfaces coincide with the orientations of grid cell lines. This result was demonstrated

by a highly idealized problem of mode I fracture of a tensile bar in two dimensions.

Good agreement between analytical and numerical results for the case of failure

surface and grid line alignment is explained by the similarity between the analytical

result for the smeared crack MPM stress computation and the analytical solution

of the problem. When failure surfaces and grid cell lines do not align the loss of

numerical solution accuracy is manifested as a stiffening of the global response and

a spreading of the smeared crack pattern. This unphysical result was determined by

a close examination of the stress to be caused by the inherent compatibility of the

deformation imposed by the grid cells. Not surprisingly, this problem is identical to

the so called ”stress locking” observed in smeared crack FEM results. In conclusion,

care should be taken for use of smeared crack MPM analysis of problems of material

failure due to grid dependence of numerical results.

A remedy to the problem of gird orientation bias in smeared crack MPM results

was not obtained from this research. An embedded discontinuity representation of

failure was implemented into MPM in an attempt to improve upon the shortcomings

of smeared crack MPM analysis. However, the same grid orientation bias is observed

for embedded discontinuity results in MPM.

Grid orientation bias is a problem of smeared crack MPM and does not present a
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problem for MPM simulations of deformable solids without failure. A study of an

elastic tensile bar demonstrates independence of results with respect to the relative

orientation between the body of material points and grid cell lines. Changes in

the relative orientation appear only to effect convergence rates for cases in which

non-uniform in-cell material point distributions are used. The use of uniform in-cell

material point distributions for the elastic tensile bar problem appears to improve

solution accuracy, but this effect was not thoroughly explored.

There is no claim of exhaustive research into the possible remedies to the problems

of smeared crack MPM analysis, although the findings are not encouraging. In the

opinion of the author, future work should focus on the development of new com-

putational fracture representations in MPM, and that any further attempt to fix

smeared crack MPM is probably a waste of resources. One possible approach would

be to accommodate the grid bias effect and enforce alignment between failure planes

and grid cell lines throughout the computation by appropriately changing the grid.

This method would be equivalent to re-meshing in FEM from a numerical point of

view. The use of element types other than four-node quadrilateral elements (e.g.

three-node triangles) could be used in the smeared-crack MPM approach to improve

results. It may also be possible to use a smeared mixed-mode failure criterion to

generate an overall mode I response when mesh lines and failure surface orienta-

tions do not coincide. Failure simulations using MPM could also follow the same

developmental path of computational fracture in FEM. A different approach is to

adopt the current state of the art failure representations used in the extended fi-

nite element method (XFEM). Although direct, this approach is not necessarily the

best. MPM is well-suited for simulating problems of failure in solid mechanics, but

research to determine a well-suited representation of material failure in MPM is still

required.
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A.1 Implicit Solution of Non-linear MPM Equa-

tions

The solution method for the implicit non-linear system of discrete MPM equations is

presented here and follows from the solution methods for implicit dynamics in MPM

[66] . An alternative expression for equation (4.2.20) is

pL
i = ∆tµ∆fi + pk

i +∆tfki

where ∆fi = fLi − fki .

The non-linearity in (4.2.20) is due to non-linear constitutive models that relate

stress to strain. Strain is updated from the nodal velocity (equation (4.3.8) ) and the

internal forces at the nodes are computed from the stresses (equation (4.2.12) ). As

a result the quantity ∆fi is generally a non-linear function of the current momentum

pL
i . From this point forward, the subscript, i, denoting nodal quantities is dropped

from equation (4.2.20) and the external forces are assumed to be zero for the sake of

simplicity. Equation (4.2.20) is restated to be

pL = ∆tµ∆f + pk +∆tfk (A.1.1)

A non-linear function of pL , denoted by F(pL) , is defined from (A.1.1) to be

F(pL) = pL −∆tµ∆f(pL) + pk +∆tfk (A.1.2)

The problem is now to find the unknown quantity pL that satisfies

F(pL) = 0 (A.1.3)
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Newton’s method is employed to find a solution to (A.1.3). In this approach the

value of F, evaluated at some arbitrary value of the independent variable p, is ap-

proximated by a Taylor series expansion of F about some reference point, denoted

by p0. The Taylor series approximation for F(p) is then substituted into (A.1.3) and

the resulting linearized system of equations is

J(p0)s = −F(p0) (A.1.4)

where J is the Jacobian matrix of F and s = p− p0. The solution to (A.1.4), s , is

an update to the unknown variable p . Newton’s method for solving (A.1.3) is an

iterative process. The algorithm is summarized next. The subscript n ≥ 0 refers to

a single Newton iteration step.
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Newton Algorithm:

1. Initialize the Newton iteration. Select p0, set n = 0 and choose an acceptable

error tolerance γ.

2. Evaluate F(pn). If ||F(pn)|| ≤ γ then the solution pL = pn has been obtained

and the iteration is terminated. Otherwise continue.

3. Compute J(pn)

4. Solve the linear system J(pn)s = −F(pn) for s.

5. Update the independent variable pn+1 = pn + s, increase the Newton iteration

n → n+ 1 and return to step 2.

Certain methods are employed in order to simplify the evaluation of specific quanti-

ties and reduce the computational cost of the non-linear solution. The GMRES linear

solution method (discussed in the next section) is used to solve the linear problem

in step 4. GMRES is an iterative method, which generally requires fewer compu-

tations than direct solution methods such as LU or QR factorizations. In addition,

GMRES does not require the explicit computation of J(pn), but only the matrix

vector product J(pn)s. The procedure is also simplified by the use of a difference

approximation for the directional derivative of F in the direction of the solution s.

The approximation is

J(pn)s ≈ DhF(pn, s) =






0 s = 0

||s||F(pn + h||pn||s/||s||)− F(pn)

h||pn||
s �= 0, pn �= 0

||s||F(hs/||s||)− F(0)

h
s �= 0, pn = 0






(A.1.5)

where h is the difference approximation parameter. Equation (A.1.5) provides a

reasonable approximation to J(pn)s for small h. In general (and confirmed by the
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authors experience) h is problem dependent and an appropriate range of h is ob-

tained by trial and error. An additional benefit of using DhF(pn, s) is realized when

used with complicated constitutive models, for which analytical expressions for the

material tangent tensor are unavailable to be evaluated numerically. By replacing

J(pn)s in (A.1.4) by the approximation in (A.1.5), the linear equation in (A.1.4)

becomes

DhF(pn, s) = −F(pn) (A.1.6)

The solution method to (A.1.6) is discussed next.
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A.2 GMRES

The Generalized Minimum Residual method (GMRES) is a Krylov space method

that can be used to solve a non-symmetric n × n linear system of equations of the

general form Ax = b in which A ∈ Rn×n and b ∈ Rn×1 are known and x ∈ Rn×1 is

the desired solution. GMRES is an iterative method where k denotes the iteration

and the k
th Krylov subspace is defined to be Kk = span

�
b,Ab,A2b, . . . ,Ak−1b

�
.

In general, GMRES minimizes the residual r = Ax−b by obtaining an approximate

solution to the following least squares problem:

min
x∈Kk

||Ax− b|| (A.2.1)

The material presented here follows from [66, 72] and references therein. A set of

orthonormal basis vectors Qk of Kk is sought such that Kk = span(Qk) . The

set Qk is defined to be Qk = {q1,q2,q3, . . . ,qk} where qT
i · qj = δij for i, j ≤ k.

The matrix of orthogonal basis vectors of Kk is denoted by Qk and defined to be

Qk = [q1|q2|q3| . . . |qk]. The object is to find an approximate solution xk to (A.2.1)

that is an orthogonal projection into Kk. The approximate solution is

xk = Qky (A.2.2)

where y ∈ Rk×1. Using (A.2.2) the least squares problem of (A.2.1) is restated as

follows:

min
x∈Rk×1

||AQky − b|| (A.2.3)

It is necessary to construct the basis Qk. Consider the following orthogonal similarity

transformation of the matrix A to a Hessenberg matrix H ∈ Rn×n:
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A = QHQT (A.2.4)

It is also useful to rewrite (A.2.4) as follows:

AQ = QH (A.2.5)

The column space of the orthogonal matrix Q ∈ Rn×n spans the complete Krylov

space Kk, but since n is usually very large, the formation of Q is impractical and not

necessary to find xk to satisfy (A.2.3) within a reasonable tolerance. Only k basis

vectors are needed. In terms of the orthogonal set of vectors in Qk, equation (A.2.5)

can be expressed as follows:

AQk = Qk+1Hk (A.2.6)

The Hessnburg matrix Hk ∈ Rk+1×k in (A.2.6)) has the following form:

Hk =





H11 H12 . . . H1k

H21 H22 . . . H2k

0 H32
. . .

...
... 0

. . . Hkk

0 . . . 0 Hk+1k





(A.2.7)

Equation (A.2.6) can be rewritten in matrix form as follows:
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A [q1 q2 q3 . . .qk] = [q1 q2 . . .qk qk+1]





H11 H12 . . . H1k

H21 H22 . . . H2k

0 H32
. . .

...
... 0

. . . Hkk

0 . . . 0 Hk+1k





(A.2.8)

Consider only the k
th column of equation (A.2.8). The result is

Aqk = H1kq1 +H2kq2 + . . .+Hkkqk +Hk+1kqk+1 (A.2.9)

A recursive relationship for constructing the (k+1)th orthonormal Krylov basis vector

qk+1 is obtained by rearranging (A.2.9) as follows:

Hk+1kqk+1 = Aqk −H1kq1 −H2kq2 − . . .−Hkkqk (A.2.10)

The process of obtaining qk+1 is called Arnoldi iteration. The Arnoldi algorithm,

obtained from (A.2.10) for k iterations, is

qk+1 =

Aqk −
k�

j=1

Hjkqj

Hk+1k
(A.2.11)

Hk+1k =

�����

�����Aqk −
k�

j=1

Hjkqj

�����

����� (A.2.12)

The basis vectors in Qk do in fact form an orthonormal basis for Kk and the vectors

in Qk are generated by Arnoldi iteration [32]. The vectors {q1,q2,q3, . . . ,qk} are

constructed from the successive Krylov spaces that are generated by A and b , as

illustrated in (A.2.10). It is also noted that the algorithm in (A.2.11) and (A.2.12) is
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just the Gram-Schmidt process for computing an orthogonal set of basis vectors from

an arbitrary set of basis vectors. At first the use of a QR factorization of the Krylov

matrix Kk =
�
b,Ab,A2b, . . . ,Ak−1b

�
may seem to be the most straightforward

approach to constructing an orthogonal basis for Kk . However, this process is

unstable because the matrix Kk is ill-conditioned.

Using (A.2.6) the least squares problem is restated as follows:

min
x∈Rk×1

||Qk+1Hky − b|| (A.2.13)

Since the norm of a vector is unaltered by multiplication with an orthogonal matrix,

equation (A.2.13) can be rewritten as follows:

min
x∈Rk×1

||Hky −QT
k+1b|| (A.2.14)

The Arnoldi iteration for computing of basis vectors in Qk is initiated by setting

q1 = b/||b||. As a result the problem in (A.2.14) becomes

min
x∈Rk×1

||Hky − β|| (A.2.15)

where β = ||b||e1 , e1 ∈ Rk+1×k and e1 = [1 0 . . . 0]T .

The first step to solving (A.2.15) is to obtain a QR factorization of Hk such that

Hk = VkRk where V−1
k = VT

k , Vk ∈ Rk+1×k+1 and Rk ∈ Rk+1×k. The upper

triangular matrix Rk is expressed as Rk = VT
kHk and the orthogonal matrix Vk is

formed by the product of Givens rotation matrices, VT
k = Gk . . .G2G1 for which

G−1
j = GT

j and j = 1, ..., k. The matrix Gj is constructed to annihilate the Hj+1j

element in the Hk matrix and has the following form:
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Gj =





1 0 . . . 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0 . . . 0
...

. . . . . . 0 0
...

0 . . . 0 Gjj Gjj+1 0 . . . 0

0 . . . 0 Gj+1j Gj+1j+1 0 . . . 0
... 0 0

. . .
...

...
... 1 0

0 0 . . . 0 0 . . . 1





(A.2.16)

The only entries in Gj that are not equal to 0 or 1 in (A.2.16) are set to Gj+1j+1 =

Gjj = cj, Gjj+1 = sj and Gj+1j = −sj where

cj =
Hjj�

H
2
jj +H

2
j+1j

, sj =
Hj+1j�

H
2
jj +H

2
j+1j

(A.2.17)

In practice Given’s rotation matrices are not explicitly computed. Instead only the

quantities cj and sj are computed and stored.

Once Rk is formed the problem of (A.2.15) becomes

min
x∈Rk×1

||Rky − g|| (A.2.18)

where g = VT
k ||b||e1. By design the Rk+1k entry in Rk is zero, and the k × k upper

triangular sub-system of Rky = g can be solved to obtain y and the estimate of the

residual is |gk+1|. If |gk+1| is within a specified tolerance then the approximate solu-

tion is computed to be xk = Qky. If the minimum tolerance is not met then another

iteration is performed and k is increased by 1. GMRES is designed to be an efficient

iterative solver. In practice the matrices Gj, Rk and g are not explicitly constructed
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in order to minimize computational effort. Concise algorithms are presented next for

the general case and for the specific case in the MPM computational cycle.
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GMRES Algorithm (General)

The iterative GMRES algorithm for obtaining a solution to a n× n linear system of

equations is presented here for the general case of Ax = b for which A ∈ Rn×n and

b ∈ Rn×1 are known and x ∈ Rn×1 is the desired solution.

1. Initialize and store the first orthonormal basis vector to q1 = b/||b|| and set

β = ||b||e1. Choose an appropriate tolerance ε and the maximum number of

GMRES iterations kmax. Compute first residual error to be |βk+1| = ||b||. Set

k = 1.

2. Check residual error. If |βk+1| ≤ ε or k ≥ kmax then terminate the procedure

and proceed to step 3. Otherwise continue.

(a) Perform k steps of Arnoldi iteration as follows using algorithm in equations

(A.2.11) and (A.2.12):

i. Compute qk+1 = Aqk

ii. for j = 1, . . . , k compute Hjk = qT
j qk+1 and overwrite qk+1 → qk+1−

Hjkqj

iii. Compute Hk+1k = ||qk+1||

iv. Overwrite and store qk+1 → qk+1/Hk+1k

(b) Compute and store components of Given’s rotation matrices

cj =
Hjj�

H
2
jj +H

2
j+1j

, sj =
Hj+1j�

H
2
jj +H

2
j+1j

(c) For j = 1, . . . , k overwrite the components of the kth column of Hessenburg

matrix Hk. 



Hjk

Hj+1k




 →



 cj sj

−sj cj









Hjk

Hj+1k
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(d) Overwrite the k
th and (k + 1)th components of the β vector as follows:





βk

βk+1




 →



 cj sj

−sj cj









βk

βk+1






(e) Increase GMRES iteration k → k + 1

(f) Return to step 2 to check error tolerance and the number of iterations

3. Solve the upper triangular system Hky = β using back substitution.

(a) Compute yk = βk/Hkk

(b) For j = 1, . . . , k + 1 perform the following computations:

i. Compute yk−j = βk−j

ii. For i = (k − j + 1), . . . , k overwrite yk−j → yk−j −Hk−j i yi

iii. Overwrite yk−j → yk−j/Hk−j k−j

4. Compute the solution xk =
k�

j=1

yjqj
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GMRES Algorithm (MPM)

The iterative GMRES algorithm for obtaining a solution to a linear system of equa-

tions is presented here for the specific case of the linearized equations encountered in

a single non-linear solution step of the following discrete system of MPM equations

in equation (A.1.6) displayed again below:

DhF(pn, s) = −F(pn)

In (A.1.6) the subscript n refers to the Newton iteration, pn is the current iterate of

the global momentum vector and the solution vector is the update to the momentum

in the non-linear iteration.

1. Set b = −F(pn). Initialize and store the first orthonormal basis vector to

q1 = b/||b|| and set β = ||b||e1. Choose an appropriate tolerance ε and the

maximum number of GMRES iterations kmax. Compute first residual error to

be |βk+1| = ||b||. Set k = 1.

2. Check residual error. If |βk+1| ≤ ε or k ≥ kmax then terminate the procedure

and proceed to step 3. Otherwise continue.

(a) Perform k steps of Arnoldi iteration as follows using algorithm in equations

(A.2.11) and (A.2.12):

i. Compute qk+1 = DhF(pn, qk)

ii. for j = 1, . . . , k compute Hjk = qT
j qk+1 and overwrite qk+1 → qk+1−

Hjkqj

iii. Compute Hk+1k = ||qk+1||

iv. Overwrite and store qk+1 → qk+1/Hk+1k
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(b) Compute and store components of Given’s rotation matrices

cj =
Hjj�

H
2
jj +H

2
j+1j

, sj =
Hj+1j�

H
2
jj +H

2
j+1j

(c) For j = 1, . . . , k overwrite the components of the kth column of Hessenburg

matrix Hk. 



Hjk

Hj+1k




 →



 cj sj

−sj cj









Hjk

Hj+1k






(d) Overwrite the k
th and (k + 1)th components of the β vector as follows:





βk

βk+1




 →



 cj sj

−sj cj









βk

βk+1






(e) Increase GMRES iteration k → k + 1

(f) Return to step 2 to check error tolerance and the number of iterations

3. Solve the upper triangular system Hky = β using back substitution.

(a) Compute yk = βk/Hkk

(b) For j = 1, . . . , k + 1 perform the following computations:

i. Compute yk−j = βk−j

ii. For i = (k − j + 1), . . . , k overwrite yk−j → yk−j −Hk−j i yi

iii. Overwrite yk−j → yk−j/Hk−j k−j

4. Compute the solution xk =
k�

j=1

yjqj
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A.3 Evaluation of the Implicit Non-linear Func-

tion and its Directional Derivative

Within the Newton-GMRES iterations it is necessary to evaluate the non-linear

function F. For the Newton algorithm F(pn) is required (see section A.1) for each

Newton iteration n. For the GMRES algorithm, the evaluation of F is necessary to

form its directional derivative DhF(pn,qk) for each GMRES iteration k (see section

A.2). Quantities associated with the current and previous time step are denoted

by superscripts L and 0 respectively. The quantities X0
p, V

0
p, ε

0
p, σ

0
p, p

0
i , f0i and

m
0
i are available from the previous time step. The only quantity that is actually

updated during the Newton-GMRES procedure is the momentum for the current

time step pL
i . All other quantities computed for the current time step during the

solver iterations are placeholder quantities that are overwritten at every iteration and

are denoted by a tilde. Let θ be the argument for the function F. The evaluation of

F(θ) is summarized in the following steps:

1. Compute material point velocity update using equations (4.2.20) and (4.3.6)

as follows:

ṼL
p = V0

p +∆t

Ni�

i=1

1

m
0
i

�
θ − p0

i

∆t

�
Ni(X

0
p)

2. Compute nodal grid velocity update using equation (4.3.7)

ṽL
i =

1

m
0
i

Np�

p=1

MpṼ
L
pNi(X

0
p)

3. Apply boundary conditions to ṽL
i on applicable grid nodes

4. Compute material point strain increment using equation (4.3.8)
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∆ε̃p =
∆t

2

�

i=1

(ṽL
i ⊗∇Ni(X

0
p) +∇Ni(X

0
p)⊗ ṽL

i )

5. Compute material point strain update ε̃Lp = ε0p +∆ε̃p

6. Evaluate the constitutive model to compute material point stress increment

∆σ̃p and update the stress σ̃L
p = σ0

p +∆σ̃p

7. Compute nodal internal force increment using equation (4.2.12)

∆f̃ inti = −
Np�

p=1

Mp

ρ
∆σ̃p ·∇Ni(X

0
p)

8. Evaluate the implicit non-linear function using equation (A.1.2)

F(θ) = θ −∆tµ∆f̃ inti + p0
i +∆tf int 0i

For a single Newton iteration, θ = pn. For the GMRES iterations the argument

θ is either θ = pn + h||pn||qk or θ = h||pn||qk. Since ||qk|| = 1 for the case of

GMRES the difference approximation for the directional derivative of F in (A.1.5)

becomes

DhF(pn,qk) =






0 qk = 0
F(pn + h||pn||qk)− F(pn)

h||pn||
qk �= 0, pn �= 0

F(hqk)− F(0)

h
qk �= 0, pn = 0






(A.3.1)

where the quantities pn and F(pn) are available from the previous Newton itera-

tion.
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B.1 Governing Equations

Consider two configurations of a deformable body. The initial or reference configura-

tion of the body is the set of points Ω0 ∈ R3 . The position vector of a material point

in the initial configuration is denoted by X ∈ Ω0. The body deforms relative to its

initial state. This deformed state is referred to as the current or spatial configuration

of the body, and is represented by the set of points Ω ∈ R3. The position vector of a

material point in the current configuration is denoted by x ∈ Ω. A one-to-one map-

ping is assumed to exist between the material point positions such that x = x(X)

and X = X(x). The displacement of a material point is u = x−X.

The local form of the equilibrium equation is obtained by setting the sum of in-

ternal and external forces in Ω equal to zero. The resulting governing equation for

equilibrium is

∇ · σ + b̄ = 0 (B.1.1)

where σ is the symmetric Cauchy stress tensor and b̄ is the body force per unit

volume.

The boundary is divided into two sets of points such that ∂Ω = ∂Ωu ∪ ∂Ωt. The

displacement (or essential) boundary conditions are applied to ∂Ωu and the traction

boundary conditions are applied to ∂Ωt as follows:

u(x) = g(x) ∀ x ∈ ∂Ωu

τ (x) = t(x) ∀ x ∈ ∂Ωt (B.1.2)

The measure of deformation between the initial and deformed configurations is the

strain, denoted by ε. The small strain approximation is used for which strain is
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computed as the symmetric part of the displacement gradient as follows:

ε =
1

2
[∇u+ (∇u)T ] (B.1.3)

The constitutive relationship, denoted symbolically as σ = σ(ε), is necessary to form

a complete set of equations for obtaining the displacement field solution, u(x).

The weak (variational) form of equilibrium in equation (B.1.1) is obtained using the

usual arguments. The final result is

−
�

Ω

ρ∇w : σs
dV +

�

∂Ω

w · τdA+

�

Ω

ρw · bdV = 0 (B.1.4)

where the test function, w, is an admissible variation of the solution. The specific

stress, σs, is defined using the mass density of the material, ρ, to be σs = σ/ρ.

B.2 The Discrete MPM Equations

MPM involves the discritization of space, denoted by x ∈ R3, and the body of solid

material, denoted by Ω ⊂ R3. Space is discretized by a set of grid cells connected

by the set of Nn grid node positions {xi}Nn
i=1. The solid body is discritized by the

set of Np material points {Xp}Np

p=1 ⊂ Ω. The subscripts i and p are used to denote

quantities associated with gird nodes and material points respectively.

Each material point is associated with a discrete mass Mp. The total mass, m, of

the body Ω is simply m =
�Np

p=1 Mp. In MPM the mass density, ρ (x), is represented

as a distribution of discrete material point masses using the Dirac delta distribution

δ (x) as follows:
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ρ (x) =

Np�

p=1

Mpδ (x−Xp) (B.2.1)

The discrete set of MPM equilibrium equations are formed from the weak form of

equilibrium in equation (B.1.4). Substitution of (B.2.1) into (B.1.4) replaces the

integrals in (B.1.4) with sums of material quantities evaluated at the material point

positions Xp as follows:

−
Np�

p=1

Vpσ(Xp) : ∇w(Xp) +

�

∂Ω

w(x) · τ (x)dA+

Np�

p=1

Vpw(Xp) · b̄(Xp) = 0 (B.2.2)

Since inertial forces are not considered in for the equilibrium case, the use of a

mass quantity is not necessary. The quantity, Vp, in equation (B.2.2) is the discrete

material point volume.

The variation in equation (B.2.2) is approximated with standard finite element nodal

basis functions, Ni (x), i = 1, 2, . . . , Nn which satisfy the partition of unity property

such that
�Ni

i=1 N(x) = 1. The finite element approximation of the displacement

field variation is

w(x) =
Nn�

i=1

wiNi(x) (B.2.3)

The test function approximation in equation (B.2.3) is substituted into equation

(B.2.2). The final result is

−
Nn�

i=1

Np�

p=1

Vpσ
s
p : (wi ⊗∇Ni(Xp)) +

Nn�

i=1

�

∂Ω

wi · τ (x)Ni(x)dA

+
Nn�

i=1

Np�

p=1

Vpwi · b̄(Xp)Ni(Xp) = 0 (B.2.4)
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Further simplification of (B.2.4) results in the following:

−
Nn�

i=1

wi ·
Np�

p=1

Vpσ
s
p ·∇Ni(Xp) +

Nn�

i=1

wi ·
�

∂Ω

τ (x)Ni(x)dA

+
Nn�

i=1

wi ·
Np�

p=1

Vpb̄(Xp)Ni(Xp) = 0 (B.2.5)

Since (B.2.5) holds for all wi, discrete MPM equations reduce to the following

form:

−
Np�

p=1

Vpσp ·∇Ni(Xp) +

�

∂Ω

τ pNi(Xp)dA+

Np�

p=1

Vpb̄pNi(Xp) = 0 (B.2.6)

The internal forces at the nodes are defined to be

f inti = −
Np�

p=1

Vpσp ·∇Ni (Xp) (B.2.7)

The external forces at the nodes are defined to be

f exti = bi + τ̂ i (B.2.8)

where

τ̂ i =

�

∂Ω

Ni(Xp)τ pdA (B.2.9)

and

bi =

Np�

p=1

Vpb̄p Ni (Xp) (B.2.10)
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Equations (B.2.7) - (B.2.10) are combined to form a simplified expression for the

discrete MPM equilibrium equations. The result is

Fi(ui) = f inti + f exti = 0 (B.2.11)

where the functional dependence of the nodel displacement solution, ui, is empha-

sized through the use of the function, Fi(ui) in equation (B.2.11).

B.3 Numerical Implementation of Quasi-static

MPM

The numerical solution of the quasi-static problem is typically obtained in steps by

incrementally applying displacement boundary conditions, external forces or both

in order to obtain incremental solutions in displacement, ∆ui. The discrete quasi-

static equations are solved for each load step denoted by k (k = 1, . . . , K). For

displacement control loading a boundary displacement increment, ∆gk, is applied on

∂Ωu for each step such that
�K

k=1 ∆gk = g(x). In general, load control is achieved

by incrementing the external force on the nodes by ∆f ext ki for each load step such

that
�K

k=1 ∆f ext ki = f exti . This is accomplished by incrementing the corresponding

body force b̄i for xi ∈ Ω and surface tractions τ̂ i for xi ∈ ∂Ωt appropriately on

the grid nodes. Quantities associated with a discrete load step are denoted with the

superscript k. Each discrete load step corresponds to a discrete configuration, Ωk, of

the solid body.

Consider an intermediate equilibrium state of loading at step k for which the ma-

terial point quantities, Xk
p, ε

k
p and σk

p are known. The known external force at the

grid nodes is f ext ki =
�k

j=1 ∆f ext ji for predetermined load increments, ∆f ext ji (j =

1, . . . , k). The equilibrium state at the (k + 1)th loading step is obtained from the
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nodal displacement increment solution, ∆ui, which satisfies the following discrete

MPM equation for the incremental quasi-static problem:

Fi(∆ui) = f int k+1
i + f ext k+1

i = 0 (B.3.1)

where the external force at the nodes for the (k + 1)th loading step is computed to

be

f iext k+1
i = f ext ki +∆f ext k+1

i (B.3.2)

and the following displacement boundary conditions are satisfied:

∆ui = ∆gk+1(xi) ∀xi ∈ ∂Ωu (B.3.3)

The nodal internal forces at the (k + 1)th loading step are computed from equation

(B.2.7) in terms of the corresponding material point stress σk+1
p as follows:

f int k+1
i = −

Np�

p=1

Vpσ
k+1
p ·∇Ni

�
Xk

p

�
(B.3.4)

The incremental displacement solution is approximated using nodal basis functions

as follows:

∆u(x) =
Nn�

i=1

∆uiNi(x) (B.3.5)

The material point strain increment is computed from equations (B.1.3) and (B.3.5)

to be
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∆εp =
1

2

Nn�

i=1

�
∇Ni

�
Xk

p

�
⊗∆ui +

�
∇Ni

�
Xk

p

�
⊗∆ui

�T�
(B.3.6)

The updated strain is

εk+1
p = εkp +∆εp (B.3.7)

The material point stress increment is obtained by evaluation of the constitutive

model. Symbolically, the stress increment computation is

∆σp = ∆σp(∆εp) (B.3.8)

The updated stress is

σk+1
p = σk

p +∆σp (B.3.9)

In general, the function Fi = Fi(∆ui) in equation (B.3.1) is a non-linear function of

∆ui. The solution to Fi(∆ui) = 0 is obtained using the implicit solution method

described in Appendix A in which equations (B.3.1) - (B.3.9) are solved iteratively

to obtain the new equilibrium state at the (k+1)th load step. Once the solution ∆ui

is obtained , the material point position, Xp, and displacement Up, are updated as

follows:

Xk+1
p = Xk

p +
Nn�

i=1

∆uiNi

�
Xk

p

�
(B.3.10)

∆Uk+1
p = ∆Uk

p +
Nn�

i=1

∆uiNi

�
Xk

p

�
(B.3.11)
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B.4 Evaluation of the Implicit Non-linear Func-

tion and its Directional Derivative

Within the Newton-GMRES iterations it is necessary to evaluate the non-linear

function F. For the Newton algorithm the evaluation of F(∆un) is required (see

section A.1) for each Newton iteration n. For the GMRES algorithm, the evaluation

of F is necessary to form the directional derivative DhF(∆un,qk) for each GMRES

iteration k (see section A.2). Quantities associated with the previous and current load

steps are denoted by superscripts 0 and L respctively. The quantities X0
p, ε

0
p and σ0

p

are available from the previous load step. The only quantity that is actually updated

during the Newton-GMRES procedure is the displacement increment solution, ∆ui.

All other quantities computed for the current load step during the solver iterations

are placeholder quantities that are overwritten at every iteration and are denoted

by a tilde. Let θ be the argument for the function F. The evaluation of F(θ) is

summarized in the following steps:

1. Apply kinematic boundary conditions to the argument θ on applicable grid

nodes as follows from equation (B.3.3):

θ = ∆gL(xi) ∀xi ∈ ∂Ωu

2. Compute material point strain increment using equation (B.3.6) as follows:

∆ε̃p =
1

2

�

i=1

(θ ⊗∇Ni(X
0
p) +∇Ni(X

0
p)⊗ θ)

3. Compute material point strain update ε̃Lp = ε0p +∆ε̃p

4. Evaluate the constitutive model to compute material point stress increment

∆σ̃p and update the stress σ̃L
p = σ0

p +∆σ̃p

221



Appendix B. Quasi-Static MPM

5. Compute nodal internal force using equation equation (B.3.4) as follows:

f̃ int. L
i = −

Np�

p=1

Vpσ̃
L
p ·∇Ni(X

0
p)

6. Compute nodal external force using equation equation (B.3.2) as follows

f iext Li = f ext 0i +∆f extLi

7. Evaluate the implicit non-linear function using equation (B.3.1)

F(θ) = f̃ int. L
i +∆f iext Li

For a single Newton iteration, θ = ∆un. For the GMRES iterations the argument θ

is either θ = ∆un + h||∆un||qk or θ = h||∆un||qk. Since ||qk|| = 1 for the GMRES

iteration the difference approximation for the directional derivative of F in (A.1.5)

becomes

DhF(∆un,qk) =






0 qk = 0
F(∆un + h||∆un||qk)− F(∆un)

h||∆un||
qk �= 0, ∆un �= 0

F(hqk)− F(0)

h
qk �= 0, ∆un = 0






(B.4.1)

where the quantities ∆un and F(∆un) are available from the previous Newton iter-

ation.
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The objective of this work is to use MPM to simulate the experimentally observed size

effect in mode I fracture energy for concrete using a modified multiple smeared crack

material failure representation. Key differences between classical multiple smeared

crack models and the modified multiple smeared crack approach are presented. A

physical basis for the modification is postulated which retains the fracture energy

as a constant material property but accounts for the variation of fracture energy

with structural size measured in the laboratory. Preliminary studies demonstrate

the feasibility of the approach for simulating the size effect.

C.1 Measurement of Fracture Energy

The fracture energy, Gf , is defined as the energy consumed to form a unit area

of crack surface. It is the key material property utilized in discrete constitutive

models for localization and fracture. The work of fracture method of measuring

Gf for concrete (and other quasi-brittle materials) is illustrated in figure C.1 for

the case of a compact tension specimen (CTS) [78], [77]. The specimen is pulled

apart by a force P until compete failure. The plane of failure, represented by the

dashed line, is assumed to have a surface area equal to the cross sectional area of the

specimen ligament Ac. A typical load P vs. load point displacement δ response of

the structure is characterized by an increase of load up to a peak value followed by a

gradual decrease in load. The softening observed in the response is due to localized

deformation in the fracture process zone (FPZ) as discussed previously in section

2.1. The fracture energy is calculated from the P vs. δ response to be

Gf =
1

Ac

�
P dδ (C.1.1)

Although Gf is considered to be a constant material property, experiments show

a definite size dependence in the measurement of Gf for geometrically similar test
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specimens [27], [77]. Test data displaying the size effect in Gf for concrete CTS

is displayed in figure C.2. Figure C.1 displays the load vs. crack mouth opening

displacement (CMOD) response for geometrically similar test specimens with varying

ligament lengths b used to measure Gf . The fracture energy Gf vs. b plot reveals

that Gf increases with an increasing value of b (size of sample) and may approach a

constant value for sufficiently large b.

!
P 
!

!  
!

P P 

!
  

Ac 
!

!"

Figure C.1: Illustration of Work of Fracture Method for Measuring Gf

! !
Figure C.2: Experimental Concrete Fracture Data Taken from Wittmann et. al.
1990 [77]
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For the purposes of modeling material failure using a smeared crack approach, the

heterogeneous material is treated as a homogeneous material. The homogeneous ap-

proximation is based on the assumption of a representative volume of the material

over which material properties are averaged. For concrete the representative volume

is on the order of the maximum aggregate size [9] and most concrete applications

allow for a smeared analysis because the structural size is usually much greater than

the representative volume. In this way macroscopic laboratory testing can be used

to obtain material properties that can be applied to structural analysis (i.e. Youngs

modulus, Poissons ratio, mass density, etc.). The fracture energy is inherently as-

sumed to be an average material property that applies to the representative volume.

So ideally, tension tests of an isolated representative volume would consistently yield

a value of mode I Gf within some acceptable experimental error bound. This ide-

alization is illustrated by the tensile test displayed in figure C.3 in two dimensions.

However, these tests are not feasible, which has been shown by the problems en-

countered in direct tensile testing of concrete [54], including the difficulty in uniform

loading of tension samples due to non-uniform deformation. For this reason, indirect

tension tests such as three point bending of notched beams and compact tension

tests have been elected for measuring Gf [48], [49], [78]. The problem with obtaining

Gf from these methods is the size effect.

For the present research the fracture energy is still considered to be a constant

material property that is applied through a discrete constitutive model. However,

a distinction is made between the value of fracture energy measured by a work of

fracture method Gf and the fracture energy value obtained by an idealized tension

test G∗
f over the isolated representative volume (see figure C.3). The latter value is

assumed to be a material property and is calculated to be

G
∗
f = L

�
σ dε (C.1.2)
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where σ is a uniform tensile stress applied to the volume, ε is the corresponding

strain component taken over a characteristic length L of the representative volume.

It is important to note that L represents the width of the localization zone over which

the cracking effect is smeared. It is automatically assumed that the representative

volume encompasses the localization zone.

! !  

!  
 

"  
!!  

!"!

Figure C.3: Idealized tension test of a representative volume of inhomogeneous ma-
terial to obtain mode I G∗

f
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C.2 A Modification to the Classical Multiple

Smeared Crack Approach

The smeared crack representation of the discrete constitutive model presented in

section 3.5.3 is used for this study. The capability of the constitutive model algorithm

to treat multiple smeared cracks at a material point is also utilized (see section 4.5).

The commonly used multiple smeared crack representation of failure is referred to as

the classical approach, and is described in detail by Rots [54]. The modified multiple

smeared crack failure representation described in this section allows for additional

energy dissipation mechanisms from failure of cracks over a material point that could

simulate the size effect in Gf obtained from work of fracture tests. The associated

algorithm requires only minimal modifications to the implementation of the classical

approach.

Classical smeared crack approaches do not reproduce the size effect in Gf for simu-

lations of work of fracture experiments. The simulations reproduce exactly the Gf

value used in the discrete constitutive model as expected. Let i (i = 1, 2, . . .) denote

the discrete crack index. The energy dissipated from the failure of a single crack is

denoted as Ec
i . The value of Gf from a work of fracture simulation is computed to

be

Gf =
1

Ac

�

i

E
c
i (C.2.1)

In order to simulate the size effect, a different value of Gf must be used for a different

size specimen. The inability to capture the size effect in simulation is due to specific

assumptions of the classical multiple smeared crack model. A conceptually simple

modification to this model is proposed to alleviate the shortcoming.

The key differences between the classical multiple smeared crack model and the modi-
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fied approach utilized for this study are the assumptions regarding energy dissipation

prior to failure. The failure of each crack i dissipates a certain amount of energy E
c
i .

The classical model limits crack energy dissipation only to one crack over a repre-

sentative volume (i.e. finite element) at any given point in the loading. The energy

available for failure within a representative volume is limited as follows [54]:

�

i

E
c
i

Ai
≤ Gf (C.2.2)

Failure is associated with a representative volume (usually a finite element) for the

case of equality in equation (C.2.2).

It is postulated that the classical multiple smeared crack model can not capture the

size effect in Gf measured from work of fracture methods because it inadequately

restricts the energy available for failure. The proposed modification does not restrict

failure energy availability to a representative volume, but instead to an individual

smeared crack i in the volume while multiple smeared crack orientations are allowed

to develop at any given time. The energy availability modification is

E
c
i

Ai
≤ G

∗
f (C.2.3)

where failure is associated with an individual crack inside a representative volume.

In general, equation (C.2.3) does not satisfy the classical failure criterion (equation

(C.2.2)). The use of G∗
f rather than Gf in equation (C.2.3) should be noted.

The limitation of energy availability for classical multiple smeared crack models is

partially based on experimental claims and partially based on computational con-

venience. It has been stated that experimental evidence shows that only the most

recently initiated crack in a system of non-orthagonal cracks is active [54], [73]. Thus

the classical model assumes development of only one crack at a time. However, this
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choice is also motivated by the computational benefits of such an assumption. Only

information for one crack needs to be stored and the history of the previously initi-

ated cracks can be erased. The only necessary history to be tracked throughout the

simulation is the accumulated energy dissipation from the cracks (a scalar quantity)

because the failure criterion in equation (C.2.2) relies on this quantity. However,

no physical basis is provided for the limitation of energy available before fracture in

equation (C.2.2). The physical interpretation would be that of failure (supposedly for

some orientation) of the entire representative volume occurs once a certain amount

of energy is dissipated from crack formation in that volume. This effect is assumed

to be independent of the number of cracks in the representative volume and their

orientation.

The proposed modification to the multiple smeared crack model removes the energy

availability restrictions. The physical interpretation of the revised failure criteria in

equation (C.2.3) is that all cracks within a representative volume can develop simul-

taneously and independent of each other. The same amount of energy is available

for the failure of each crack. In essence, the modified model represents the fracture

process zone with several cohesive crack surfaces in a given representative volume

rather than a single surface that may changes orientation. Admittedly there is no

physical basis for this assumption either, and to the authors knowledge there is no

experimental data to support it. However, the approach does allow for an additional

energy dissipation mechanism that may account for the size effect of Gf measured in

work of fracture experiments. If the proposed method can be validated with actual

size effect data for Gf , a physical basis for its use would be provided. The first

goal of the research is to attempt this validation effort and determine whether or

not the proposed approach can reproduce the size effect for Gf . Partial success has

already been obtained in the preliminary analysis which is discussed in upcoming

sections.
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C.3 CTS problem Setup in MPM

The problem of interest is the simulation of the experimentally observed increase in

fracture energy Gf with increase in size of concrete test specimen using the multiple

smeared crack approach in MPM. The test sample geometry and dimensions are

taken from the concrete CTS test series of Wittmann et al. [78]. Figure C.4 displays

the CTS geometry for which the dimensions are specified in terms of the ligament

length b . Small, medium, and large compact tension simulations are performed with

ligament lengths of 15, 30, and 60 cm respectively.

!
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Figure C.4: Compact tension specimen geometry [78]

Figure C.5 displays an MPM configuration of the CTS for b = 15 cm. The back-

ground finite element grid is composed of uniform four node square elements. The

body is represented by the set of red material points. Initially four material points

are placed uniformly inside each element. As a simplification, the notch width, h, is

set equal to the side length of one element. The line of elements directly under the

notch, outlined by a dashed box, are referred to as the notch line. Boundary condi-
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tions are applied through rigid material points that have a prescribed velocity. The

two rigid points, in green, are located at the midpoint of the CTS appendages and

move at the same speed, vL, in opposite directions in the ex direction. The values of

the specimen dimensions and concrete material properties are listed in table C.1. All

simulations performed are computed using explicit time integration of the discrete

MPM equations (µ = 0 in equation (4.2.20)). A low value of vL is used in order to

simulate a quasi-static loading condition.
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!

!"#$%&'()*&

Figure C.5: MPM configuration of CTS for b = 15 cm

Table C.1: Compact tension specimen problem data

problem data Symbol Value Unit
mass density ρ 2350 kg/m

3

Young’s modulus E 24.9 GPa

Poisson’s ratio ν 0.18 dimensionless
ultimate tensile strength τnf 2.7 MPa

shear strength τsf 14.9 MPa

shear strength for large mean pressure τsm 90.0 MPa

compressive strength f
�
c 42.7 MPa

fracture energy Gf 61.35 N/m

coupling parameter Cn 0.2 dimensionless
coupling parameter Cs 0.1 dimensionless
coupling parameter Cψ 5.0 dimensionless
ligament length b 15, 30, 60 cm

notch width h element side length cm

specimen depth d 12 cm

load velocity vL 0.02 m/s

material points per cell N/A 4 N/A
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C.4 Simulation of the Ideal Failure of the CTS

The fracture energy computed from simulations of complete failure of the CTS

is

Gf =
Ef

bd
(C.4.1)

where Ef is the total energy dissipated from crack opening upon complete failure of

the CTS and bd is the CTS ligament area. The total crack opening energy of the

body is the sum of the energy dissipated from all cracks as follows:

Ef =
�

i

E
c
i (C.4.2)

The computation of Ef for i = 1 is displayed in equation (5.2.40). The value of Ef

is also considered to be composed of energy contributions from dominant cracks and

non-dominant cracks as follows:

Ef = Efd����
dominant crack

+ Efn����
non-dominant crack

(C.4.3)

Dominant crack surfaces are defined to be the set of failure surfaces over material

points for which the surface traction reduces to zero. Non-dominant crack surfaces

are defined as those failure surfaces for which failure is initiated but traction is not

reduced to zero. The dominant and non-dominant crack energy contributions are

denoted by Efd and Efn respectively in equation (C.4.3).

An ideal fracture test is conducted to ensure that the correct amount of crack opening

energy is dissipated. The test is a simulation of a CTS experiment that idealizes

failure as the single dominant crack surface as pictured in figure C.1 for which n = ex.

234



Appendix C. Preliminary Studies of Fracture Energy Size Effect Simulation

Upon ideal failure the computed fracture energy Gf should be equal to the true

fracture energy G
∗
f that is used as a material property. Two restrictions are made

for simulating the ideal failure case. First, the discrete constitutive model is applied

only to the material points within the notch line elements (see figure C.5) and the

remaining material points are considered to be elastic. Secondly, only two failure

surfaces defined by normal vectors, n1 = ex and n2 = ey, are permitted on material

points within the notch elements.

Results for the b = 15 cm case are displayed in figure C.6. The plots on the right of

figure C.6 show various energy quantities throughout loading. For complete failure of

the CTS, the expected energy dissipated by crack opening is displayed as the constant

value 0.12(m)×0.15(m)×122.7(J/m2) = 2.2J . It is also observed that Ef = Efd and

Efn = 0 . This result falls in line with physical interpretation of the ideal fracture

in a compact tension test for which the CTS is split into two identical pieces. It

is interpreted as complete failure on the dominant crack surfaces for n1 = ex and

no crack opening on the non-dominant surface n2 = ey. Consequently, as the CTS

approaches complete failure, Ef/(bd) → G
∗
f . The implication is that Gf = G

∗
f , the

intended result of the ideal CTS failure experiment. The mechanical work, defined

as the area under the P vs. δ curve, is also plotted. Note that W > Ef throughout

loading due to the additional components of elastic energy and kinetic energy. The

energy dissipation behavior of the b = 15 cm case is representative of the behavior

observed for the b = 30 cm and b = 60 cm cases.
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!
Figure C.6: Ideal CTS failure results for b = 15 cm

C.5 Preliminary Results for Fracture Energy Size

Effect Simulation

Compact tension test simulations of concrete specimens are performed using the

multiple smeared crack method in MPM in an attempt to simulate the size effect

trend observed in experimentally measured Gf . For all cases the multiple smeared

crack model is applied only to material points within the notch line with a maximum

of 20 failure orientations allowed over a material point. No predetermined failure

surfaces are imposed.

Figures C.7 and C.8 display global responses for the ideal failure simulations and

the multiple smeared crack fracture simulations respectively. All simulations are

run nearly to failure but not completely failed. Although a maximum number of 20

failure planes were permitted over a given material point, it was observed that no

more than 17 surfaces initiated over a given material point for any of the simulations.
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The results shown in figures C.7 and C.8 correspond to the smallest mesh size used

to simulate a given case. Since the notch length is always set equal to the side length

of the element, h is also used to denote the side length of the square element.

A brief convergence study (not shown) was performed with a coarse mesh and fine

mesh for each case. The respective coarse and fine mesh element sizes correspond

to h = 1 cm and h = 0.5 cm for the b = 15 cm case, h = 2 cm and h = 1 cm for the

b = 30 cm case and h = 4 cm and h = 2 cm for the b = 60 cm case. The convergence

studies incorporate increasingly larger values of h with increasing ligament lengths

of the CTS in order to minimize overall computational time. Larger oscillations in

the P vs δ response are associated with relatively larger values h. This effect is

observed in the results in figures C.7-C.8 since the specimens with a larger value of b

are associated with relatively larger value of h. In general, good agreement between

coarse and fine mesh results were observed up to the point of the loading where the

force drops down and begins to flatten out. At this point the force was observed

to rise again for the coarse mesh simulations; an unphysical result which requires

further investigation.
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!
Figure C.7: P vs. δ response for the ideal CTS failure

!
Figure C.8: P vs. δ response for CTS failure using multiple cracks
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The calculated fracture energy results from the multiple smeared crack fracture sim-

ulations are displayed in table C.2. A simulated size effect trend is obtained. The

second column contains the calculated fracture energy Gf = Ef/(bd) which increases

with increasing values of ligament length b (size). This increase in Gf with increas-

ing b is accompanied by an increase in the percentage of total crack opening energy

contribution from non-dominant cracks (column 5). One physical interpretation of

this result is that the non-dominant cracks represent the effect of microcracks in

the FPZ and that more microcracks form in the FPZ for bigger test samples. This

interpretation falls in line with the theory that the size effect in occurs because the

boundaries of sufficiently small test specimens inhibit full development of the FPZ

[77], [56] . The larger the sample, the larger the FPZ, and therefore more microcracks

are present and more energy is dissipated. It should also be noted that the quantity

Efd/(bd) in column 3 approaches the value, G∗
f = 122.7, as the samples approach

complete failure. This result represents the ideal fracture case.

It is clear from the results in table C.2 that use of the modified multiple smeared crack

approach results in the correct size effect trend; the increase in Gf with increasing

size b. These results demonstrate the potential of the failure simulation approach

for predict the size effect in Gf . However, validation of this approach requires a

successful comparison with experimental size effect data.

Table C.2: Results for Gf computed from simulations

b (cm)
Ef

(bd)
(J/m2)

Efd

(bd)
(J/m2) %

Efd

Ef
%

End

Ef

15 147 120 82 18
30 165 114 69 31
60 178 103 58 42
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