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Abstract

This dissertation presents an experimental and numerical consideration of fluid

instabilities formed by the interaction of a planar shock wave and a cylindrical column

of gas seeded with glycol droplets. Seeding a fluid flow with a passive tracer is a

common practice in experimental fluids research and it is important to understand

how these tracers behave. It will be shown that these tracers do not explicitly follow

the flow, and in extreme cases can cause hydrodynamic instabilities.

Experiments were performed in the University of New Mexico (UNM) tiltable

shock tube facility and numerical analysis was performed using the Eulerian hydro-

dynamics code SHAMRC (Second-order Hydrodynamic Automatic Mesh Refinement

Code). Two gases are considered. The first gas is sulfur hexafluoride (SF6), which

generates the well known Richtmyer-Meshkov Instability (RMI) when accelerated by
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a shock wave. This instability is formed due to a mis-alignment of the pressure and

density gradients during impulsive acceleration. The second gas is air. There is no

density gradient between the gas column and the surrounding air, but an instability

is formed that is similar in morphology to RMI due to the presence of the glycol

droplets. Experimental and numerical results are presented for both types of insta-

bility at Mach numbers 1.2, 1.67, and 2.0. Also, numerical parameter studies that

vary the Atwood number, Mach number, and the droplet diameter are discussed.

The cylindrical gas column represents a three-dimensional set of initial condi-

tions which are often considered two-dimensional due to geometry. The validity of

this assumption is explored experimentally and numerically for both types of initial

conditions by looking at images taken (or produced) in both horizontal and verti-

cal planes of the instability. The results show that this assumption is valid, with

variations in the instabilities morphology occurring only near the walls of the shock

tube. Finally, a fully 3D scenario is considered by introducing an angle of incidence

between the planar shock wave and the cylindrical column.
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Chapter 1

Introduction

A Richtmyer-Meshkov Instability (RMI) is generated when an interface between

two fluids of differing density is impulsively accelerated. This instability was first

theoretically described by Richtmyer [2] and later demonstrated experimentally by

Meshkov [3]. The instability develops due to a misalignment of the density and

pressure gradients which results in the deposition of vorticity, causing the formation

of a perturbation that grows non-linearly with time and eventually may transition

to fully turbulent flow. RMI occurs in various natural and engineering phenom-

ena, including: supernovae explosions, deflagration to detonation transition, inertial

confinement fusion, and plays an important role in mixing during combustion.

In traditional RMI, vorticity is generated due to the misalignment of pressure and

density gradients in a continuous fluid phase. However, it has recently been shown

experimentally [1] and numerically [4] that a similar class of instability can evolve in

multi-phase flows, where the average density gradient is caused by a second, non-fluid

phase. In this scenario, initial conditions consisting of a region of flow seeded with

particles or droplets having a non-trivial mass are impulsively accelerated by a shock

wave, causing the formation of an instability that resembles RMI. Fundamentally,

1



Chapter 1. Introduction

this region can be thought of as a fluid with a density equal to the mass of the

secondary phase divided by the volume that it occupies, effectively spreading the

mass of the secondary phase out over the entire region encompassed by the initial

conditions. In this respect, it is easy to see how an instability similar in morphology

to RMI might occur. The major difference in the case of the multi-phase equivalent

is the absence of a true density interface between the initial conditions and the

shock wave and thus the absence of the primary mechanism for RMI formation, i.e.

vorticity deposition due to a misalignment of the pressure and density gradients.

1.1 The Richtmyer-Meshkov Instability

The vorticity of a velocity field is defined as the curl of that field, or ~ω = ~∇ × ~v.

The vorticity is a vector with a magnitude that is related to the rotational motion

of a fluid element and a direction perpendicular to that motion. The equation for

vorticity production is derived by taking the curl of the Navier-Stokes equation,

shown in Equation 1.1. Here, D()
Dt

is the material derivative, as defined in Equation

1.2. The variable ~v is the velocity, ~g represents the body forces (in this case gravity),

P is the pressure, and µ is the dynamic viscosity. The resulting vorticity equation is

shown in Equation 1.3 for an inviscid fluid with zero body forces.

ρ
D~v

Dt
= ρ~g − ~∇P + µ ~∇2~v (1.1)

D

Dt
=

(
∂

∂t
+ ~v · ~∇

)
(1.2)

D~ω

Dt
=
(
~ω · ~∇

)
~v − ~ω

(
~∇ · ~v

)
+
~∇ρ× ~∇P

ρ2
(1.3)

2



Chapter 1. Introduction

In Equation 1.3 the first term represents the generation of vorticity due to a ve-

locity gradient or vortex stretching. The second term represents vorticity generation

due to compressibility. For a flow at rest, there is no initial vorticity and thus both

of these terms are zero. The third term is the baroclinic vorticity term. This term

represents the generation of vorticity due to misalignment of the pressure and density

gradients and is the primary mechanism for vorticity generation in RMI.

Figure 1.1 shows how a passing shock wave generates a Richtmyer-Meshkov in-

stability for three initial perturbation geometries. In each geometry the interface is

defined as the region separating two gases with differing densities, with the lower

density gas being referred to as ’light’ and the higher density gas being referred to

as ’heavy’. The first geometry (top) is a planar interface between light and heavy

gases with a protrusion of heavy gas into the light gas. The shock wave travels

from the light gas into the heavy gas. As the shock passes the perturbation, vor-

ticity is deposited in the form of a clockwise rotation on the upper surface and a

counter-clockwise rotation at the lower surface. This interaction causes the per-

turbation amplitude to grow immediately. The second geometry (center) depicts a

planar boundary between the light and heavy gases. In this case, the shock passes

from the heavy gas to the light and the perturbation is formed by a protrusion of

light gas into the heavy gas. In this geometry, the density gradient is reversed re-

sulting in a deposition of vorticity which is opposite in sign and causes the direction

of rotation to be reversed when compared with the first geometry. The amplitude

of the perturbation initially decreases up until phase inversion, after which, the am-

plitude increases. The third and final geometry (bottom) is a cylinder of heavy gas

embedded in light gas. This is a combination of the first and second geometries.

As the shock enters the upstream side of the cylinder, vorticity is deposited in the

same manner as the first geometry, causing immediate growth of the perturbation

amplitude. Once the shock passes through the middle of the cylinder, it is passing

from a heavy fluid to a light fluid, reversing the sign of vorticity deposited, as is

3



Chapter 1. Introduction

geometry two. This vorticity deposition results in the roll-up of the cylinder edges

to form two counter-rotating vortex pairs. This final case represents the instability

morphology that will be focused on in this work.

1.2 Motivation

The initial driving force behind research on RMI was nuclear weapons research in the

1960s. RMI plays an integral role during the early stages of nuclear detonation and

must be accurately modeled by Computational Fluid Dynamics (CFD) codes used

for nuclear stockpile stewardship. Interest in RMI was renewed with the emergence

of Inertial Confinement Fusion (ICF) as a potential power source in the 1970s [6]. In

ICF a pellet of fuel consisting of a core of deuterium and tritium gas surrounded by a

dense ablative shell is rapidly heated [7]. This heating results in a shock wave which

compresses the fuel and initiates the fusion reaction. The generation of RMI during

this processresults in a non-uniform compression and can degrade the performance

of the ICF fuel pellet. RMI is induced by the inward moving shock and can cause

mixing of the outer shell and inner fusion gases, reducing the overall compression

and temperature increase by the converging shock wave.

Another area where RMI plays a role is in the formation of supernova remnants.

When a star nears the end of its life it may form a supernova if the mass of the

star is large enough. A supernova is a strong shock wave, which propagates outward

from the core of the star [8]. The shock wave expels most of the mass of the star

and passes into the surrounding interstellar medium, creating what is known as a

supernova remnant. Finger-like protrusions that form in the remnant are believed to

be caused by hydrodynamic instabilities [9], mainly Rayleigh-Taylor. However, the

effects of mixing caused by RMI on the expansion has been explored [10] and is now

an integral part of the modeling of supernova remnant formation and evolution [11].
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Finally, Richtmyer-Meshkov instabilities can also play an important role in com-

bustion processes. Combustion can occur either subsonically (deflagration) or super-

sonically (detonation) [12]. In deflagration the flame front heats the surrounding fuel

and advances at a velocity less than the speed of sound. In detonation a shock wave

moves through the fuel, rapidly heating it and driving the combustion reactions.

A deflagration wave can transition to detonation in an extremely complex process

known as Deflagration-to-Detonation Transition (DDT) [13]. The mechanism by

which DDT occurs is not clear in experiments, however, numerical simulations have

indicated that shock waves interacting with the flame front can cause RMI to develop.

The instability induces mixing of unburned materials into the burned region and can

cause DDT. In a SCRAMJET (Supersonic Combustion ramjet), the residence time

of fuel and oxidizer in the combustion chamber is on the order of milliseconds [14]. If

the mixing of the fuel (heavy gas or droplets) and oxidizer (light gas) is not complete,

combustion can be locally quenched and cause a reduction is engine efficiency. One

method of mixing the reactants is through interactions with shock waves, or shock-

induced mixing. The interaction of shock waves with density interfaces between the

light and heavy gases or droplets will result in the formation of RMI, enhancing the

mixing and promoting combustion.

There is no shortage of reasons to study Richtmyer-Meshkov instabilities, either

from the point of view of limiting the instabilities impact on ICF, or utilizing the

instability to promote mixing. Developing robust computational models that can

accurately reproduce the instability is important to understanding these phenomena.

The primary goal of this work is to explore the formation and growth of single

and multi-phase RMI through experimental and numerical methods. These types

of instabilities can be created in a controlled laboratory setting, which allows for

the generation of repeatable experimental results. These results can be used to

validate numerical models at specific points in a wide ranging parameter space, which

includes, but is not limited to, variables such as the shape and composition of the
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initial conditions and the shock Mach number. By using these controlled experiments

as a baseline, powerful numerical models can be validated. In turn, these results

increase the confidence in simulations of the complicated physical processes listed

above, many of which can not be easily recreated in a laboratory setting and can

only be considered numerically.

1.3 Previous Research

The Richtmyer-Meshkov instability is named for the men credited with its discovery,

Robert D. Richtmyer and Evgeny E. Meshkov. Richtmyer first postulated the exis-

tence of the instability in his 1960 paper [2] where he performed a theoretical and

numerical analysis. His theoretical treatment of the instability was two-fold. The

first, the impulsive model, was based on the work of G. I. Taylor on the growth of

instabilities at the interface of two fluids of differing density subject to an accelera-

tion, otherwise know as the Rayleigh-Taylor Instability (RTI). Richtmyer considered

an impulsive acceleration ∆uδ(t) and showed that the growth of the amplitude η of

small perturbations is given by Equation 1.4, where ∆u is the velocity change across

the shock front and η0 is the initial perturbation amplitude. This is opposed to the

solution found by Taylor for constant acceleration given by Equation 1.5. In these

equations, k is the wavenumber, k = 2π
λ

with λ being the perturbation wavelength

and A is the Atwood number, given by A = ρ2−ρ1
ρ2+ρ1

.

dη(t)

dt
= k∆uAη0 (1.4)

d2η(t)

dt2
= kgAη(t) (1.5)
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The second treatment by Richtmyer was a linear model based on the Euler equa-

tions for a shock moving from a light to a heavy fluid. He used a finite difference

method to calculate perturbation growth rates based on this model. In 1969 Meshkov

proved the existence of the instability through his shock tube work [3]. He performed

experiments for a shock transiting from a light to a heavy fluid and from a heavy

to a light fluid and found that both scenarios were unstable. This is a primary dif-

ference from the Rayleigh-Taylor instability, which is only unstable for a light fluid

accelerating a heavy fluid. Since the time of Richtmyer and Meshkov there has been

a great deal of research devoted to furthering the understanding of RMI. The focus

here is limited to work relevant to this dissertation, namely shock accelerated heavy

gas cylinders.

In 1960, Rudinger and Somers experimentally and theoretically studied the be-

havior of spherical and cylindrical gas bubbles accelerated by shock waves [15]. Their

goal was to characterize the movement of bubbles used as passive tracers relative to

the flow. They created bubbles of hydrogen, helium, and sulfur-hexafluoride (SF6)

and measured the bubble displacement with a schlieren system. Experiments were

performed at Mach numbers 1.12, 1.22, and 1.28. The bubble displacements were

compared to the displacement of a spark, which represents the displacement of the

air behind the shock. They found that the bubble displacement was larger than the

surrounding air for gases lighter than air, while the bubble displacement was smaller

than the surrounding air for gases heavier than air. They also derived an expression

relating the bubble velocity to the gas velocity by considering the formation of a

vortex ring in the case of a spherical bubble or a vortex pair in the case of a cylinder.

The result is shown in Equation 1.6, where ub is the bubble velocity, ug is the gas

velocity, and σ is the ratio between the air and gas densities, specifically σ = ρb
ρg

. It

is noted that this expression can be rewritten in terms of the Atwood number, given

by A = ρb−ρg
ρb+ρg

, which is shown as Equation 1.7. A comparison between their theory

and experimental measurements yielded good agreement.
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ub
ug

= 1 +
2

π2

(1− σ)

(1 + σ)
(1.6)

ub
ug

= 1− 2A

π2
(1.7)

In 1987, Hass and Sturtevant performed experiments to study the interaction of

planar shock waves and cylindrical or spherical volumes of gas [16]. They examined

helium and refrigerant 22 (R22) for the cases of cylinder and bubble (spherical) initial

conditions interacting with M=1.2 shock waves. The cylinders were 5 cm in diameter

and were formed by stretching a thin (0.5 µm) nitrocellulose membrane around two

3 mm thick Pyrex disks, which formed the ends of the cylinder. The volume was

then filled with the desired gas. The deformation of the initial conditions after

shock acceleration was visualized using a spark shadowgraph optical system. They

compared the velocities of the resulting instabilities to the linear stability analysis of

Richtmyer and the theory proposed by Rudinger previously presented. They found

experimental velocities that were larger than the predicted values, primarily due to

wall effects of the shock tube.

In 1988, Picone and Boris used the experimental results of Hass and Sturtevant

as validation for numerical simulations using the FAST2D code [17]. FAST2D is

inviscid, compressible fluid dynamics code that solves the Euler equations using a

flux-corrected transport method. They achieved good qualitative agreement between

the experimental images and numerical results as well as good quantitative agree-

ment between the measured velocities of the upstream and downstream edges of the

instability. The numerical results were also used to examine the vorticity generated

by the shock/bubble interaction and to verify the non-linear theory developed by

Picone for the late-time vorticity.
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In 1993, Jacobs performed experiments with cylinders of SF6 and helium at

M=1.095 [18]. These experiments differed from the previous shock tube experi-

ments, in that the initial conditions were formed by a laminar jet of gas. This setup

eliminated the membrane required to separate the initial condition gases from the

surrounding atmosphere used in previous experimental work. This is advantageous

as the membrane can affect the flow structure and interfere with visualization tech-

niques. The cylinder was 0.8 cm in diameter, which is significantly smaller than the

5 cm diameter cylinder used by Haas and Sturtevant. The initial condition gases were

seeded with bi-acetyl gas, which was made to fluoresce with a 430 nm laser source

spread into a planar sheet. This imagining technique, called Planar Laser Induced

Fluorescence (PLIF), was used to visualize cross-sectional slices of the fluid insta-

bilities. The PLIF images were similar in morphology to the experimental images

observed by Haas and Sturtevant. Jacobs also observed the formation of secondary

fluid instabilities (Kelvin-Helmholtz) near the edges of the vortex pair at late times

for the SF6 initial conditions, which appeared to be caused by shear between the

rotating vortex and the surrounding air. Jacobs also computed the instability dis-

placement as a function of time and compared the results to those of Rudinger and

Somers. He found that their theory under-predicted the final velocity of the vortex

pair.

In 1997, Rightley et. al. [19] performed shock tube experiments for a gas curtain

of SF6 being accelerated by a M=1.2 shock wave. The SF6 was seeded with glycol

droplets to visualize the flow. They performed quantitative measurements of the

instability mixing widths and used a point vortex row model based on the work of

Jacobs et. al. [20] to calculate the circulation, Γ. The value of Γ was calculated by

constructing curve fits to experimental data using Equation 1.8.

w(t) =
2

k
sinh−1

[
k2Γ (t) + sinh

(
kw0

2

)]
(1.8)
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They also performed an analysis of the tracking fidelity of the glycol droplets used

as a passive tracer. They calculated the response time of the particles and found

that there was a 3 µs delay in the acceleration of a 0.5 µm particle to the piston

velocity behind the shock. This resulted in the conclusion that while the droplets

do not perfectly follow the flow, the droplets would track the subsequent instability

that formed and yield accurate measurements of the post-shock flow.

In 1998, Vorobieff et. al. [21] used the same experimental setup as Rightley et.

al. [19] to explore the transition of the instability to turbulence. They constructed

second-order structure functions based on the intensity of the light scattered off of

the gas curtain. Experiments were run for single and multi-mode initial conditions.

Their results showed that as the gas curtain evolved towards a fully mixed state, the

structure functions approached a power-law behavior with an exponent near 2/3.

This behavior is often considered to be a signature of fully developed incompressible

turbulence.

In 2000, Prestridge et. al. [22] performed Particle Image Velocimetry (PIV)

measurements on experiments similar to those reported by Rightley et. al. [19] and

Vorobieff et. al. [21]. The PIV allowed for the generation of velocity fields which

were used to calculate the circulation in the flow. The circulation was compared to

the model presented by Rightley and found to be in good agreement.

In 2002, Zoldi performed an experimental and numerical study of a cylinder of

SF6 accelerated by a M=1.2 shock [23]. The initial conditions were seeded with

glycol droplets to allow for visualization and for use in PIV. Numerical simulations

were performed with the RAGE code, which is a multi-dimensional, adaptive mesh,

Eulerian hydrodynamics code. Experimental were performed in the facility used in

the work of Rightley, Vorobieff, and Prestridge. The numerical results were qualita-

tively compared to experimental results and showed good agreement. Quantitative

comparisons were made between the results by examining the height and width of
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the instability, the spacing between the vortex pairs, the convective velocity of the

instability, and the circulation. To match experimental results, the concentration

of the SF6 in initial conditions was reduced to 60% and the density gradient was

diffused to eliminate a sharp interface between the air and initial condtions. This

change was validated by obtaining images of the initial SF6 concentration gradients

using Planar Laser Rayleigh Scattering (PLRS). These images showed the SF6 cylin-

der to be larger and more diffuse than the glycol droplets used as passive scalars.

No attempts were made to numerically model the glycol droplets, but these results

highlight the importance of understanding the behavior of passive tracers.

In addition to traditional RMI formed at the interface of two fluids, this disser-

tation also explores a multiphase analogue, where a shock wave accelerates a region

seeded with droplets. There has been little work in the area of multiphase RMI. In

2010, Ukai performed numerical simulations for traditional and multiphase RMI for

a single-mode perturbation [4]. Three types of simulations were performed, the first

with a shock wave traveling from a light to a heavy gas, the second with a shock

wave traveling from a light gas to a region of heavy gas seeded with particles, and a

third with a shock wave passing into a region with particles and no heavy gas. The

work showed numerically that the Stokes number (St), which is a measure of the

particle response time over a characteristic distance, and the seeding density play an

important role in how particles respond to the passing shock wave. In the case of

a low Stokes number (St << 1), the particles behaved as passive tracers and were

nearly instantaneously accelerated to the material velocity behind the shock. In this

case, a RMI like instability formed with growth rates predicted by Richtmyer’s the-

ory. When the Stokes number was large, however, the particles would move relative

to the flow and the acceleration was not impulsive. In this case, the instabilities

that formed behaved more like a traditional Rayleigh-Taylor instability. The work

also included a linear stability analysis based on a dusty-gas formulation [24] that

assumes the volume fraction of the particles is very small, and that particle-particle
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interactions (collisions) are negligible. It was found that for St << 1 the multi-phase

growth model asymptotes to traditional RMI.

The first experimental proof of a multi-phase RMI analogue was reported by Voro-

bieff et. al. in 2011 [1]. Experiments were performed for a cylinder of air seeded with

glycol droplets accelerated by shock waves at M=1.2, M=1.67, and M=2.02. The

instabilities that were observed were compared with instabilities formed by similar

strength shock waves interacting with a cylinder of SF6 (traditional RMI). While the

size of the gas columns were initially the same, the traditional Richtmyer-Meshkov

instabilities were significantly larger than the multi-phase analogue. These results

are presented in detail in Chapter 4, where they are compared to results of numerical

simulations.

1.4 Narrative Summary

This dissertation covers the experimental and numerical study of shock accelerated

single and multi-phase initial conditions performed in the University of New Mexico

shock tube facility. Chapter2 presents the experimental and numerical methods used

in these efforts. Chapter 3 covers experimental and numerical results for a cylinder of

SF6 seeded with glycol droplets accelerated by M=1.22, M=1.67, and M=2.0 shock

waves. Chapter 4 covers experimental and numerical results for a cylinder of air

seeded with glycol droplets accelerated by similar strength shock waves. Chapter 5

presents a quantitative analysis of the perturbation amplitude growth rate for single-

phase RMI. Chapters 6 explores the assumption of a quasi two dimensional flow field

by examining three dimensional experimental and numerical results, while Chapter 7

explores fully three dimensional results by accelerating the initial conditions with a

shock wave at an 15 degree angle of incidence relative to the initial condition cylinder.

Finally, Chapter 8 summarizes all of the results presented.
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Figure 1.1: Richtymyer-Meshkov instability formation for light to heavy gas (top),
heavy to light gas (middle), and a cylinder of heavy gas embedded in light gas
(bottom) [5].
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Chapter 2

Experimental and Numerical

Methods

The experimental data presented here was obtained using the shock tube located at

the University of New Mexico (UNM) shock tube facility. The facility was built with

Defense Threat Reduction Agency (DTRA) funding in 2007-2009. The details of

the facility and the experimental setup are given in the first section. The numerical

simulations of the shock tube experiments were performed using the Computational

Fluid Dynamics (CFD) code SHAMRC. To get a detailed characterization of the

experimental initial conditions, the CFD code FLUENT was used. A synopsis of

both codes is given in the second and third sections respectively.

2.1 Experimental Methods

The UNM shock tube facility, shown in Figure 2.1 and 2.2, is used to study planar

and oblique interaction of shock waves with gaseous density interfaces and multiphase

flows. The shock tube is comprised of a driver section, a driven section, an optically
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transparent test section, and a run-off section. The shock tube is mounted to the

wall in a manner that allows for variation in both the height of the shock tube from

the floor and the angle with respect to horizontal. The shock tube can be raised

to a height of six feet in a horizontal configuration and tilted to angles as high

as 30 degrees from the horizontal position (this limit is imposed by the height of

the ceiling in the facility). In addition, the shock tube is isolated from vibrations

through a series of rubber dampers. The flexibility of the mounting system allows

for a variety of test configurations and enables the subtraction of background images

used in high speed imaging. For the experiments described in this work, the shock

tube was mounted both horizontally and at an angle of 15 degrees.

Figure 2.1: UNM shock tube facility

Before an experimental run, a polypropylene diaphragm is inserted between the

flanges of the driver and the driven section, which makes it possible to pressurize the

driver section. For these experiments, the driver gas was helium. The diaphragm is

ruptured by an electrically driven four-blade puncturer mounted inside of the driver

section, releasing a planar shock wave into the driven section. The diaphragms are

roughened pre-shot to ensure a clean rupture. To increase the strength of the shock
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Figure 2.2: View of the experimental setup from the upstream direction with close-
ups of the concentric-flow nozzle and test section.

generated, the driver section is pressurized to higher levels, as such, the number of

diaphragms required is also increased. A shot at M = 1.67 utilizes two diaphragms

and a shot at M = 2.02 requires 3 diaphragms. Alternatively, a paper diaphragm can

be used for low Mach number shots. In this case, the strength of the shock is adjusted

by varying the number of sheets placed in between the driver and driven sections.

This method reliably ruptures at a given pressure determined by the number of sheets

used and does not require the use of the puncture device described earlier. In the

case of M = 1.22 shots, a single piece of paper is required. Table 2.1 shows the

values of pressures required for typical shock strengths used in this work.

The driven section, whose total length is 3.2 m, is instrumented with two Omega

pressure transducers that are connected to a National Instruments PXI-1002 board
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Table 2.1: Shock tube pressures for various Mach numbers

Mach Number Piston Velocity (m
s

) Pressure (Pa)

1.2 103.97× 104 1.53063× 105

1.67 303.73× 104 4.13685× 105

2.0 425.31× 104 8.27370× 105

with a digital oscilloscope. The latter transfers the recorded pressure traces to a

computer, where they are stored for post processing and analysis. The pressure

signal from the second transducer indicates the passage of the shock wave and is used

to trigger a Stanford Research DG-535 digital delay generator. The delay generator

sends trigger signals to the high speed imaging system. Images are recorded by a

DRS Imaging IMACON-200 high framing rate intensified camera with a 1200x980

pixel frame resolution with ten bits per pixel. The images are illuminated by two

New Wave Gemini double-pulsed Nd:YAG lasers. Each laser pulse is triggered by a

separate pulse from one of the two DG-535 delay generators. The presence of two

delay generators is necessitated by each having only four trigger channels, while the

desired number of trigger signals is five (one for the camera and four for the laser

pulses).

The laser pulses are emitted at 532 nm, have a duration of about 5 ns, and an

optical energy about 0.2 J per pulse. As each laser head has a maximum repetition

rate of 15 Hz, there are only four laser pulses (two heads per laser) available for each

experiment, thus limiting the number of exposures per experiment to four. Each

laser is mounted on a tripod along with a cylindrical lens and a spherical lens that

expand the laser beam into a laser sheet. These laser sheets illuminate the same

horizontal or vertical planar section of the flow, passing through the transparent

wall of the shock tube. The entire test section of the shock tube is built of 12.7 mm

thick polycarbonate for unimpeded optical access.
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Experimental images are obtained in one of two possible observation planes. The

first configuration consists of laser sheets that pass through the test section on a hor-

izontal plane. The laser sheets illuminate a horizontal cross-section of the instability

which is captured by the camera via a mirror placed at a 45 degree angle above the

test section. The second configuration utilizes the same mirror to direct the laser

sheet vertically through the test section. In this configuration, the camera is able to

obtain experimental images directly through the side of polycarbonate test section.

To generate initial conditions, a 75 liter settling tank above the test section is

filled with a mixture of the injected gas (air or sulfur hexafluoride) and droplets.

In the experiments described in the following chapters, an American DJ Stallion

commercial fog-making machine was mounted on top of the settling tank to discharge

fog (dipropylene glycol droplets with an average diameter between 1 and 10 microns)

into the tank. The fog that is produced is hotter than ambient air. To counteract

buoyancy effects, the fog plume is directed into an ice bath placed inside the settling

tank directly below the fog machine. If particles coalesce to scales larger than micron-

sized, they settle to the bottom of the tank and are not injected into the test section.

The initial conditions flow from the tank via a plastic tube with protrudes into the

tank 3 inches. The tube ends in a valve which can be turned on or off to start or

stop the flow of the gas column.

The air-droplet or SF6-droplet mixture is injected into the shock tube through

a concentric-flow nozzle mounted flush with the top wall of the test section. Two

different tubes were used as inner nozzles in this work. The earliest work presented,

which includes late time images of RMI and the images of the multiphase RMI, used

a plastic tube with an inner diameter of 6.35 mm. This tube was easily deformed,

affecting the quality of the initial conditions. The tube was replaced by an aluminum

tube with the same outer diameter, but with an inner diameter of 4.5 mm. This

change improved the quality of the initial conditions, making the experimental results

18



Chapter 2. Experimental and Numerical Methods

more repeatable. The inner tube carries the droplet-seeded air or SF6. Unseeded

air flows through the outer concentric nozzle which has a 19.05 mm diameter. This

concentric nozzle setup reduces shear between the quiescent air filling the test section

and the droplet-seeded jet. The jet moves at a velocity of approximately 1 m/s, which

is 2 orders of magnitude smaller than the typical velocity of gases behind the shock

front. The axis of the concentric flow nozzle is vertical, so the flow of the gas-droplet

mixture (which is heavier than air) is gravity-stabilized. At the bottom of the test

section, the droplet-seeded jet exits through a 19.05 mm diameter hole. A gentle

suction is applied to this hole to ensure that the bottom of the initial condition

column does not transition to turbulence. The density of SF6 is roughly 5 times

heavier than air, so gravitational forces acting on the fluid are sufficient to drive

these initial conditions through the test section. The air-droplet initial conditions

have roughly the same density as air, therefore, a small positive overpressure is

applied to the settling tank in the form of a fan to force these initial conditions

through the test section.

Measurements of the average SF6-droplet and air-droplet mixture density in the

settling tank were performed as follows. For the SF6-droplet initial conditions, the

settling tank was filled with SF6 and a 0.83 liter sample container was filled from the

plastic tube used to feed the injection nozzle. The container was filled through a hole

in the lid for a period of two minutes to ensure that the container was completely

full. It was found that filling the container for more than two minutes did not

change the measured mass. The container was weighed on a scale accurate to 0.01

grams. After each measurement, the container was purged of SF6 and re-weighed.

The difference in the weight of the full and empty container gives a mass which can

be divided by the container volume to give the average density. A series of these

measurements were taken and averaged together, resulting in an average density of

3.701 kg/m3. Measurements were also taken with the SF6 seeded with glycol droplets

and it was found that the seeding had a negligible effect on the measured mass. The
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ambient density of the air in the laboratory based on the temperature and pressure

was calculated as 1.18167 kg/m3 on the day of the measurements. This yields an

Atwood number of approximately 0.5.

For the air-droplet mixture, a 1 liter sample container was placed into the tank

near the hole drilled in its bottom for the attachment of the nozzle. The tank

was filled with droplets from the fog making machine. Then the sample container

was closed with a tight-fitting lid, removed, and weighed on a scale accurate to

2× 10−4 g. Subsequently, the lid was removed, the contents of the container flushed

with air, the lid put back, and the weight recalculated. Comparison of the two

measurements produces the density difference due to the presence of the droplets.

Multiple repetition of the measurements results in an average density of 0.062 kg/m3

for the air-droplet initial conditions. Based on the air density calculated above, this

yields an Atwood number of approximately 0.03.

2.2 Numerical Modeling with SHAMRC

The Eulerian computer code SHAMRC (pronounced shamrock) is a two or three di-

mensional, finite difference, hydrodynamic computer code. SHAMRC, which stands

for Second-order Hydrodynamic Automatic Mesh Refinement Code, is a descen-

dant of SHARC (Second-order Hydrodynamic Advanced Research Code), which is

in turn a descendant of the HULL code developed at the Air Force Weapons Labo-

ratory (AFWL) in the early 1970’s. It is used to solve a variety of airblast related

problems which include high explosive (HE) detonations, nuclear explosive (NE)

detonations, structure loading due to airblast, thermal effects on airblast, cloud rise,

conventional munitions blast and fragmentation, shock tube phenomenology, dust

and debris dispersion and atmospheric shock propagation. The code has the capabil-

ity to run with a single Eulerian grid or with the Automatic Mesh Refinement (AMR)
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option that divides the computational domain into smaller Eulerian grids at several

levels of refinement to provide high-resolution results [25]. Its capabilities and at-

tributes include multiple geometries, non-responsive structures, non-interactive and

interactive particles, several atmosphere models, multi-materials, a large material

library, HE detonations, a K-ε turbulence model, and water and dust vaporization.

SHAMRC is second-order accurate in both space and time and is fully conservative

of mass, momentum and energy. It is fast because it employs a structured Eulerian

grid and efficient due to the use of the pre-processor SRCLIB. SHAMRC was used in

this work to model the interaction between the passing shock wave and both types

of initial conditions. The details of these calculations are discussed in the following

chapters.

One of the features of SHAMRC that makes it efficient is that a custom set of

code is tailor made for each problem. SHAMRC does not exist as a single executable,

instead, a collection of source files exist as meta-code. This meta-code forms a library

that is managed by a program called SRCLIB [26]. The user “makes” the code prior

to each calculation by running the SRCLIB pre-processor, thus creating a FORTRAN

source file that contains code specific to the options set in an input file. The code is

then compiled to create an executable. In addition to getting only the code specific

to the requirements of a problem, when the source code is made any data structures

that are required are dimensioned to the correct size to minimize memory usage. In

essence, the making process optimizes SHAMRC for a particular problem, decreasing

the time and memory required to complete the simulation. Users also have the ability

to make changes to the source code through a standalone file which is incorporated

into the SHAMRC libraries during the making process. This allows users to develop

new models or make changes to existing models as they see fit. The SHAMRC library

contains several files, but there are three main programs necessary for any calculation.

Program KEEL is used to setup the computational grid and any associated models.

Program SHARC is the finite difference solver that advances the fluid flow state in
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time. Finally, program PULL is used to plot the results generated by KEEL and

SHARC. Each of these programs and the options required to run them are covered

in great detail in the SHAMRC User’s Manual [27] and will not be described here.

An overview of the SHAMRC differencing method and any models relevant to the

calculations performed for this work is provided below. Readers who are interested

in a more detailed examination of the differencing method, other models, or the

parallel implementation are directed to the SHAMRC Methodology Manual [25].

SHAMRC solves the conservation equations for mass, momentum, and energy for a

compressible, non-conducting, inviscid fluid, which are given in Equations 2.1, 2.2,

and 2.3. Also required for closure is a relation, or equations of state, defining the

pressure in a zone based on the density and internal energy. A list of the variable

descriptions and their units is given in Table 2.2.

(
∂

∂t
+ ~v · ~∇

)
ρ+ ρ~∇ · ~v = 0 (2.1)

ρ

(
∂

∂t
+ ~v · ~∇

)
~v + ~∇P + ρ~∇φ− κ∇2~v = ~0 (2.2)

ρ

(
∂

∂t
+ ~v · ~∇

)
E + ~∇ · P~v + ρ~v · ~∇φ− κ∇2H − ρQ̇ = 0 (2.3)

The solution method of the preceding equations is a conservative, two-phase,

operator-split, explicit, time-marching method that is second-order accurate in space

and time. The basic fluid equations are divided into Lagrangian and Eulerian terms

and their solution is divided into two corresponding phases. The energy redistribu-

tion terms are treated in a separate routine after the Lagrangian update, and before

the Eulerian remap. Figure 2.3 outlines the order of the solution phase.
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Table 2.2: Shock tube pressures for various Mach numbers

Variable Description Units

ρ material density g
cm3

P pressure dynes
cm2

I specific internal energy ergs
g

~v fluid velocity vector cm
s

E = I + ~v·~v
2

total energy density cm
s2

φ external potential (e.g., gravity) ergs
g

κ turbulence energy density ergs
g

Q̇ heat or energy transfer ergs
g−s

t time s

Figure 2.3: SHAMRC solution phase program flow.
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The first phase is a Lagrangian step in which the conservation equations are

solved in a Lagrangian frame of reference. The boundary values are calculated for

each zone based on zone centered quantities and the velocity and energy are updated

by a half time step. These boundary values are used to calculate an intermediate

pressure at the zone boundaries, which is in turn used to update the zone energy and

velocity by a full time step. After the Lagrangian phase any energy transfer models

are applied. Some examples are radiation transport, high explosive detonation, or

chemical reaction, etc. Note that this phase is absent for the calculations performed

here. The second phase is the Eulerian part of the solution. The first phase essen-

tially performs a second-order Lagrangian calculation. Since SHAMRC is based on

an Eulerian reference frame, the results of the first phase must be remapped into

the fixed mesh. This takes the form of an advection calculation which fluxes hy-

drodynamic variables. The method is conservative of mass, momentum, and energy

and completes a single SHAMRC time step. If particles are present in the calcula-

tion, they are processed after the completion of this phase. As particles motion is

important to the calculations performed here, the SHAMRC particle model will be

explored in more detail.

SHAMRC has the capability to model Lagrangian particles that move through the

mesh. Each particle can exchange mass, momentum, and energy with the surround-

ing fluid. Mass can be exchanged via particle combustion or droplet evaporation,

however these models are not used in this work. The particles exchange momentum

with the fluid via drag forces and energy exchange is performed via heating or cool-

ing due to conduction and convection. Each particle has a position, velocity, mass,

radius, density, and energy and can be thought of as a computational particle rep-

resenting a cloud of tens or hundreds of millions of physical particles in the case of

micron sized particles. The cloud is given the physical characteristics of an individ-

ual particle, which include the radius and material properties. These properties are

used to calculate the mass, momentum, and energy exchange for the computational
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particle cloud. The particles are assumed to have a much higher density than the

embedding fluid, and as such have a negligible volume. Since the particle volume

is neglected it does not affect the pressure calculation for fluid in a computational

zone. There exist situations when particles are tightly packed and this assumption

is not valid. There are special models in SHAMRC to take into account the volume

of a cloud of particles and the effects of this tight packing on the cloud response in

terms of momentum exchange through an increased drag coefficient. As the packing

density of the fog droplets in the initial conditions is low, these models are not needed

for this work. The particles are spherical in nature and are subjected to drag forces

according to the equation for drag over a sphere, given in Equation 2.4 [28]. In this

equation, Re is the particle Reynolds number given by Re = ρg∗V ∗Dp

µg
, where ρg and

µg are the gas density and dynamic viscosity, V is the particle velocity, and Dp is

the particle diameter.

Cd = 0.47 +
36

Re
(2.4)

In addition to the standard particle drag law, there is also a correction for the

Mach number of the flow. The form of the correction is given in Equation 2.5 [29].

In these equations, Csp
d refers to the drag coefficient for a spherical particle.

Cd =Csp
d M < 0.3

Cd =Csp
d +

1− 0.47

1.5− 0.3
(M − 0.3) 0.3 < M < 1.5

Cd =Csp
d +

0.93− 1

6.0− 1.5
(M − 1.5) 1.5 < M < 6.0

Cd =Csp
d + 0.46 M > 6.0

(2.5)
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2.3 Numerical Modeling with FLUENT

The CFD code FLUENT is a commercial code distributed and maintained by AN-

SYS, Inc. It provides comprehensive modeling capabilities for a wide range of incom-

pressible and compressible, laminar and turbulent fluid flow problems. FLUENT can

model a broad range of transport phenomena (heat transfer, chemical reactions, etc.)

and can model complex geometries. FLUENT also has several methods of modeling

multiphase flows. FLUENT solves the mass, momentum, and energy conservation

equations for a fluid flow. As opposed to SHAMRC, where Euler’s equations are

solved for momentum conservation, FLUENT also has the capability to solve the

full Navier-Stokes equations. In light of this, FLUENT was used to develop a model

of the initial conditions that could be used as input for the 2D and 3D SHAMRC

calculations. The code’s mass diffusion and multiphase modeling capabilities were

used to model how the cylinder of SF6 seeded with glycol droplets evolved as it flows

from the initial condition tube and through the shock tube test section. The calcula-

tion setup and results are presented in Chapter 3. The exact details of the FLUENT

models will not be discussed here, as it is commercial software and the documentation

is readily available in the form of the theory [30] and user [31] manuals.
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Richtmyer-Meshkov Instabilities

3.1 Overview

A Richtmyer-Meshkov Instability (RMI) [2, 3] is generated when an interface between

two fluids of differing density is impulsively accelerated. The instability develops due

to misalignment of the density and pressure gradients. This misalignment results in

the deposition of vorticity, causing the formation of an instability that grows non-

linearly with time and eventually may transition to fully turbulent flow. In this

work, RMI experiments were performed initially as control experiments to test the

high speed imaging system, develop timings for future experiments, and to validate

numerical modeling. The results presented in this chapter are obtained at an At-

wood number of 0.5 for Mach numbers 1.22, 1.67, and 2.02 at multiple downstream

locations.
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3.2 Experimental Results

Experimental data was acquired primarily at two downstream camera positions. The

first position was centered at 16.51 cm from the initial conditions. The camera frame

width was 5.08 cm, so that images could be acquired from 13.97 cm to 19.05 cm

downstream of the initial conditions. Figure 3.1 shows typical images obtained at

this downstream location for three Mach numbers. Here, the shock passes over

the cylindrical initial conditions from left to right, forming the instability. There

are two structures visible in these images. The first is the edge of two counter-

rotating vorticies. Noticeably absent absent is any structure inside of the instability.

This fact will be explored further in the next section. The second structure visible

is a protrusion or jet of material from the center of the instability. As the RMI

grows, secondary baroclinic instabilities cause perturbations in the vortex cores while

Kelvin-Helmholtz instabilities cause perturbations at the edge due to shear with the

surrounding flow. When the perturbations on the edges of the vortex cores meet

at the centerline of the instability, they merge to form this structure. Again, this

phenomenon will be explored in greater detail in the next section.

Figure 3.1: RMI at 19.05 cm downstream of the initial conditions for Mach number
1.22, 1.64, and 2.04 [1].

The second set of images were taken at a point just downstream of the initial

conditions. The camera was centered so that images could be obtained as the shock
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passed through the initial conditions. These images show the initial development of

the instability and provide a good baseline for comparison with early time numerical

results. Figure 3.2 shows the evolution of the RMI for five times at an interval

of 50 µs starting with the initial conditions. The laser illumination is narrowed

into a thin sheet, however, nearby droplets above and below the laser sheet in the

initial conditions are also illuminated. This provides a look at the column on initial

conditions in addition to a single planar slice. The formation of the two counter-

rotating vorticies is clearly visible. These images will be used for validation of the

SHAMRC modeling of RMI at early times and as a baseline comparison for the early

time formation of the multiphase instabilities introduced in the next chapter.

Figure 3.2: RMI at early times.

3.3 Initial Condition Characterization

The density of the gas in the settling tank was measured as described in Chapter 2

and found to be 3.701 × 10−3 g
cm3 . Initial SHAMRC calculations with a cylinder of

initial conditions at this density and a diameter equal to that of the initial conditions

tube produced an instability with a different morphology than what was seen in

experiments. The instability exhibited the two counter-rotating vortices, but also
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produced various secondary structures that were not observed. Tomkins et. al. [32]

and Zoldi [23] observed that when SF6 is used as the initial conditions gas, the

cylinder that is formed has a lower density near the edges due to diffusion with the

surrounding air. Tomkins also found that the maximum concentration of SF6 was

approximately 0.84 % by mass, which agrees well with the measured density of the gas

in the settling tank. Numerical simulations of the injection system were performed

to obtain a detailed description of the density field as a function of cylinder radius.

The CFD code FLUENT was used to model the injection system. The simulation

was performed in 2D axisymmetric coordinates with the species transport model

enabled to capture the effects of diffusion. Gravity effects were enabled to drive

the heavier gas down through the test section, as this is the primary mechanism

for forming the initial conditions in the lab. The flow was assumed to be laminar,

so no turbulence models were used. This assumption was based on the maximum

flow velocity through the pipe, which was found to be approximately 1.5 m/s in

the FLUENT calculation. From this velocity and the gas properties of the initial

conditions, the Reynolds number (Re = ρV d
µ

) is approximately 1200. This value is

well below the typical Reynolds number for transition to turbulent flow, Re ≈ 6300

[28].

Figure 3.3 shows the injection system as modeled in FLUENT. The top region

represents the settling tank. This area is initially filled with a mixture of SF6 and air

to obtain the measured density. The same mixture was fed into the top boundary

at the same ratio via an ambient pressure boundary to keep the settling tank filled.

Directly below the settling tank is the initial condition feeder tube. The resolution

in the tube is 0.45 cm, with 10 elements spanning the radius of the tube. Outside of

the feeder tube is the co-flow nozzle. The nozzle resolution is the same as the feeder

tube with 13 elements spanning the thickness. The co-flow nozzle is fed at the top

by a mass flow inlet to maintain the shape of the initial conditions. The actual flow
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through the experimental setup was not measured, so a mass flow of 1×10−4g/s was

chosen to approximately match the velocity in the feeder tube. Both the feeder tube

and co-flow nozzle discharge into the test section. The test section is bounded top

and bottom by solid walls and at the sides by an ambient pressure inlet. Below the

test section is the initial condition exit hole. It is the same diameter as the co-flow

inlet and has a small negative pressure applied to it to help maintain the cylindrical

shape of the initial conditions. Here the bottom boundary was modeled as a pressure

exit with a pressure of 101324 Pa. Figure 3.4 shows contours of velocity magnitude

and species concentration from the FLUENT calculation of the injection system. In

the figure, the SF6 concentration spreads out as the initial conditions fall through the

test section. From the velocity magnitude contours, the maximum velocities occur

near the center of the initial condition column and are low enough for the assumption

of laminar flow to be acceptable.

Figure 3.5 shows how the species concentration of SF6 changes as a function of

radius from the cylinder center at three different heights in the shock tube. The three

lines represent distances of 1.905, 3.81, and 5.715 cm from the top of the shock tube.

This figure shows that the initial condition column is thicker than the diameter of

the feeder tube which has a radius of 0.2286 cm. Also, the column gets wider as it

falls from the top of the shock tube to the bottom. At the same time, the inner core

of SF6 narrows, resulting in a lower density gradient and Atwood number near the

bottom of the shock tube.

To verify the convergence of the FLUENT model, two additional calculations were

run. The first implemented second order upwind schemes instead of the first order

upwind schemes used previously. The second refined the mesh by a factor of two. The

species concentration versus radius plots for these calculations are shown at the mid-

plane of the shock tube in Figure 3.6. There is no change in the species concentration

when compared to the baseline calculation, which leads to the conclusion that the
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Figure 3.3: The injection system as modeled in FLUENT.

original model has converged.
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Figure 3.4: Velocity magnitude and mass fraction contours in the injection system.
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Figure 3.5: SF6 concentration as a function of cylinder radius at 1.905 (Quarter),
3.81 (Half), and 5.715 cm (Three Quarter) from the top of the shock tube.
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Figure 3.6: Comparison of density as a function of radius for higher order methods
and increased mesh refinement.
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3.4 Initial Condition Characterization

Numerical calculations to model the formation and growth of RMI were run using

SHAMRC. A 2D Cartesian mesh was used with dx and dy of 0.005 cm. The mesh

extended to the shock tube wall in the y direction, a distance of 3.81 cm. The x

extent was set to 40 cm so that the instability could be observed in the same region

as visualized in experiments before being swept from the grid. Additionally, a plane

of symmetry along the x-axis was used to reduce the total number of zones required

to 6 million.

To generate the shock waves in the simulations, high pressure and temperature

air at a specific velocity was placed upstream of the initial conditions. To main-

tain steady flow, these conditions were also fed in from the left boundary. The

Rankine-Hugoniot relations for a calorically perfect gas were used to determine the

gas properties required to generate the appropriate Mach number. These relations

are given in Equations 3.1, 3.2, and 3.3 [33]. In these equations, P is the pressure, ρ

is the density, e is the internal energy, u is the velocity in a shock stationary reference

frame, γ is the ratio of specific heats, and the subscripts 1 and 2 denote conditions

upstream (ahead) and downstream (behind) of the shock wave respectively.

P2

P1

= 1 +
2γ

γ + 1

(
M2

1 − 1
)

(3.1)

ρ2
ρ1

=
u1
u2

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

(3.2)

e2 − e1 =
p1 + p2

2
(u1 − u2) (3.3)
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To look at the effects of varying Mach number, experiments were performed at

Mach numbers ranging from 1.22 to 2.02. Due to the variability in Mach number

generated in the experiments, the numerical calculations were run at M=1.2, M=1.67,

and M=2.0. While these Mach number do not exactly match their experimental

counterparts, due to variations in the experimental Mach number, they do provide a

reasonable approximation to the average values obtained. The material properties for

air used for each Mach number are given in Table 3.1. The ambient density of air in

SHARMC is 1.225×10−3 g
cm3 and the ambient energy is 2.044×109 ergs

g
. The ambient

density of air in the shock tube facility is approximately 20% lower than ambient air

density, however, by matching the desired Mach number, the pressure and density

ratios across the shock will be achieved regardless of the ambient conditions used in

the calculations.

Table 3.1: Material Properties for SHAMRC Equation of State

Mach Number Piston Velocity ( cm
s

) Energy ( ergs
g

) Density ( g
cm3 )

1.2 1.0397× 104 2.30861× 109 1.643× 10−3

1.67 3.0737× 104 2.94730× 109 2.632× 10−3

2.0 4.2531× 104 3.46533× 109 3.267× 10−3

The FLUENT results were used as initial conditions in the SHAMRC calculations.

To import these initial conditions in the SHAMRC model, two cubic splines were

used to generate a continuous function for density as a function of radius. To transfer

this information to SHAMRC, several annuli were generated with material densities

equivalent to the density found from the cubic spline at a radius equal to the center

of the annulus. In the experiments, the visualization plane was at the center of

the shock tube, so the density profile used in the SHARMC calculations is also

taken from the mid-plane of the shock tube in the FLUENT calculation. The SF6

was modeled as an ideal gas with equations of state given by P = (γ − 1)ρI and
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T = (PWM)/(Rρ). In these equations, P is the pressure, ρ is the density, γ is the

ratio of specific heats, I in the specific internal energy, T is the temperature, WM

is the molecular weight, and R is the universal gas constant. Since the maximum

species concentration exiting the settling tank was measured as 0.84, the density of

the SF6 was set to 3.675×10−3 g/cm3, which yields an Atwood number of 0.5 at the

ambient air density (1.225 × 10−3 g/cm3) found in SHAMRC. The ratio of specific

heats, or γ, was set to 1.4 and the molecular weight was set to 86.83 to match the

ambient temperature (287.87) in SHAMRC. The decision was made to match the

Atwood number measured in the lab and not the actual density. On a given day, the

pressure and temperature in the lab can vary, but the Atwood number will remain

fairly constant. This choice provides a good baseline when comparing to test data.

Figure 3.7 shows density contours of the SF6 along with the early time experi-

mental RMI images. The images have been scaled so that they are the same size

relative to each other. When comparing the density contours to the experimental

images, it is apparent that the experimental initial conditions observed are smaller

than the density contours. The width of the initial conditions in the experiment is

approximately 0.44 cm, which is just smaller than the inner diameter of the feeder

tube. Additionally, while the basic morphology of two counter-rotating vorticies is

present, there are structures that appear in the SHAMRC calculations that are not

visible in the experimental images. The most noticeable of which is a filament of

material formed from the lower density regions surrounding the high density core of

SF6. As the instability grows, these secondary features are absorbed into the vortex

core and the overall structure exhibited by the density contours matches better with

the experimental images, however, there is still a noticeable absence of material at

the core of the instability in the experimental images.

One possible explanation for these differences is that the density contours of SF6

are not visible in the experimental images due to the imaging technique being used.
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The SF6 is seeded with glycol droplets, which are illuminated by the lasers. Initially,

it was believed that the droplets would act as passive tracers and follow the flow

exactly, leading to the highest concentrations in areas where the density is highest.

From these images, it is clear that this is not the case and the droplets will have to

be explicitly modeled as discrete particles to match the experimental results. This

result is not surprising, as the work by Rightley et. al. [19] performed an analysis

on the motion of glycol droplets embedded in a gas curtain of SF6. They showed

that the droplets do not exactly follow the fluid and that there is some lag due to

acceleration of the particles by the fluid motion.

Figure 3.7: Comparison between density contours generated by SHAMRC (bottom)
and experimental images (top) for early times.

3.5 Numerical Modeling with Glycol Droplets

To investigate the effects of the fog droplets on the instability formation, a SHAMRC

calculation was run with the massive interactive particle model. For this calculation,

particles with a diameter of 1 µm were placed uniformly into the region containing
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SF6. The total mass of particles was 1.666 × 10−5 g, which matches the density

measurements outlined in the previous chapter for the air-droplet initial conditions.

Tracer particles were also placed into this calculation to illustrate the differences. In

SHAMRC, the velocity of a tracer particle is set to the zone velocity in which it resides

and therefore follows the flow exactly. Figure 3.8 shows results for tracer particles

(top) and the massive particles (bottom) at early times. By comparing Figure 3.8

with Figure 3.7, it can be seen that the tracer particles form a similar structure as

the density contours, although the information about the fluid density is lost. By

contrast, the massive interactive particles do not have their velocities explicitly set

by the surrounding flow. They are accelerated by the flow due to drag forces and are

able to slip relative to the flow. Initially, these results exhibit a similar morphology

to the tracer particles, but as the counter-rotating vortex pair forms the particles are

driven from the core of the vorticies by centrifugal forces. This phenomenon is also

observed in the experimental images and is caused by the finite mass of the glycol

droplets. The total mass of the particles is negligible when compared to the mass of

the SF6, which is responsible for the formation of this instability; however, there are

phenomena that are observed solely due to the particles and the imagining technique

being used. While the SHAMRC calculation with the massive particles does provide

a better match to the morphology of the experimental results, it still produces an

instability that is too large and exhibits secondary structures not observed in the

lab.

To accurately reproduce the test images, it is necessary to better characterize the

initial conditions with respect to the particles. To do this, a FLUENT calculation

was run with the mixture model to simulate the presence of the glycol droplets. The

mixture model allows for the simulation of multiphase flows where the phases move

at different velocities, but have local equilibrium. The model is particularly useful for

simulating multiphase flows in which the particulate phase is uniformly or nearly uni-

formly distributed in size. This model is simpler and faster than the full multiphase
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Figure 3.8: Comparison of SHAMRC calculations with tracer particles (top) and
massive interactive particles (bottom) at early times.

Eulerian model and can obtain similar results for the scenarios described above. A

more detailed description of the mixture model can be found in the FLUENT theory

guide [31].

For this calculation, the secondary phase will be modeled as glycol droplets with

a uniform diameter of 1 µm. These particles are accelerated by drag forces accord-

ing to the Schiller-Naumann [31] model. The settling tank is filled with the same

concentration of SF6 with an added mass of the secondary phase corresponding to

the mass reported in Chapter 2 for the air-droplet initial conditions. Figure 3.9

shows contours of the volume fraction of the particulate phase. Figure 3.10 shows

a detailed comparison of the relative concentrations of the two phases at the center

plane of the shock tube. The calculation shows that the particles reside in a smaller

region than the SF6. In fact, the particles occupy a region only marginally wider

than the radius of the feeder tube. While mass diffusion causes the SF6 to spread

into the surrounding air, there is no similar mechanism to cause the droplets to do

the same. These results match well with the initial condition diameter measured

from experimental data of 0.44 cm.
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Figure 3.9: Volume fraction contours of the particulate phase.

A SHAMRC calculation was run with the new initial conditions to see what effect

they would have on the RMI. To match the FLUENT results, a region of particles

was created using the setmetal option in SHAMRC. This option places particles into

zones containing a specific material at a mass based on a percentage of the mass in the

zone. This feature is used to fill complicated geometries with particles, or to generate

a group of particles that have some specific distribution of diameters. To fill the

appropriate zones in the mesh with the proper amount of material a cubic spline and

a linear fit were used to match the fluent results for the particle mass concentration

as a function of radius depicted in Figure 3.10, similar to how the initial conditions
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Figure 3.10: SF6 and droplet concentration as a function of cylinder radius at the
shock tube center.

for SF6 were created. Figure 3.11 shows a compilation of the experimental images

(top) and images of the particles from the SHAMRC calculation (bottom). In the

SHAMRC images, the particles are colored by their diameter. As the particles have a

uniform diameter of 1 µm the variations in color only indicate the position of separate

particles, not differing density. The initial conditions in the SHAMRC simulation

now appear to be roughly the same size as what is observed in experiments. Also,

the resulting instability that is formed in the SHAMRC calculation matches well

with the morphology that is observed in experiments. The vortex cores are absent

of droplets and there are no secondary filaments observed. The biggest difference

between the numerical and experimental results is a slight mismatch in the thickness

of the instability. The instabilities produced by SHAMRC appear to be thinner than

those observed in experiments at later times. This is likely due to the lack of a
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distribution of sizes for the particle diameters. In the numerical simulations, all of

the droplets are exactly 1 µm in diameter, while in the experiments it is probable that

some of the particles are slightly smaller or larger than this size. This variation in

size would have the effect of spreading the particles out slightly as they are initially

accelerated due to differences in drag forces, which are highly dependent on the

particle diameter. This concept will be explored in depth in Chapter 3, where the

effects of particle size on instability formation are examined numerically.

Figure 3.11: Comparison between particle images from SHAMRC (bottom) and
experimental images (top) for early times.

With satisfactory comparisons of the experimental and numerical results at early

times, a comparison can be made between these results at the farther the downstream

position. Figure 3.12 shows the particles at a downstream distance of 16.51 cm, which

is identical to the position at which the experimental image was taken. The numeri-

cal results are in good agreement with the experimental morphology as well and the

instability size that is observed. One major difference is the size and thickness of

plume of droplets being ejected from the center of the instability. The plume gen-
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erated in the SHAMRC simulation is sparser than what is observed experimentally.

One possible explanation is that the numerical particles do not exactly reproduce the

motion of each physical particle in the cloud, resulting in a plume which is less dense

in appearance. Another possibility is that the fog droplets are being modeled by a

uniform distribution in particle diameter. It is likely that there is some small vari-

ation in the particle sizes, which would result in particles being accelerated relative

to one another. This motion could result in a plume that appears fuller. Another

small difference is the apparent size of the void at the center of the vortex. The

numerical calculations appear to over predict the area of this region. This difference

could again be explained by the lack of a particle size distribution. The effects of

particle size on instability formation will be explored much more thoroughly in the

next chapter, and it will be shown that the particles can have a large effect of the

morphology that is observed.

Figure 3.12: Comparison between particle images from SHAMRC (right) and exper-
imental images (left) for late times.
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3.6 Mach Number Variation

In the previous section, SHAMRC was used to successfully reproduce the experimen-

tal results for M=1.67. In this section, experimental results for M=1.2 and M=2.0

are compared to numerical results generated from the same initial conditions used

to successfully reproduce the results at M=1.67. Figure 3.13 shows a comparison at

early times between the experimental and numerical results for M=2.0. The insta-

bility grows at a faster rate and appears to be slightly smaller in height than the

instability that is formed at M=1.67. The SHAMRC results appear to capture both

of these features. Figure 3.14 shows a comparison at early times between the exper-

imental and numerical results for M=1.2. This instability grows at a much slower

rate than the instabilities formed at the higher Mach numbers. The instability is

also noticeably bigger than the other instabilities. Again, SHAMRC is able to match

both of these features. Finally, Figure 3.15 shows a comparison of the SHAMRC

and experimental results at the downstream position of 16.51 cm. The agreement

between the SHAMRC and experimental results at late times is not as good as the

agreement at early times, especially for M=1.2. The small differences that are ob-

served at early times for the low Mach numbers are amplified at late times, resulting

in a morphology that is not observed in the experiments, namely the central plume

of ejected droplets. Overall the morphology and size of the instabilities presents a

good match to experimental data.
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Figure 3.13: Comparison between particle images from SHAMRC (bottom) and
experimental images (top) for early times at M=2.
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Figure 3.14: Comparison between particle images from SHAMRC (bottom) and
experimental images (top) for early times at M=1.22.

Figure 3.15: Comparison between particle images from SHAMRC (bottom) and
experimental images (top) for late times at Mach number 1.22, 1.67, and 2.0.
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Multi-phase Fluid Instabilities

4.1 Overview

In the previous chapter the numerical and experimental results for the traditional

Richtmyer-Meshkov Instability (RMI) were introduced. This instability forms due to

vorticity deposition by the misalignment of pressure and density gradients across a

fluid-fluid interface. Recent experimental work by Vorobieff et. al. [1] and numerical

work by Ukai [4] have shown that a similar type of instability can form in multiphase

flow. In this case, the morphology of the instability that forms is similar to traditional

RMI, however; the mechanism behind its formation is different due to an absence of

a fluid-fluid interface.

This chapter first introduces experimental data for these types of instabilities

gathered at a variety of Mach numbers and downstream locations for the experi-

mental setup described in Chapter 2. Next, two types of numerical approaches are

undertaken using SHAMRC to model this instability. The first approach is to ap-

proximate the droplet phase as a fluid with a density equivalent to spreading the

mass of the discrete droplets out over the region of the initial conditions. It has
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already been shown in Chapter 3 that SHAMRC can successfully model traditional

RMI, however; this scenario is for a significantly lower Atwood numbers than those

previously considered. The second approach it to model the droplets with the par-

ticle models found in SHAMRC. These two methods will be compared against each

other. Finally, a series of SHAMRC calculations are presented to demonstrate how

the size of the droplets affects the instability.

4.2 Experimental Results

The experimental initial conditions consisted of a vertical column of slowly moving

air seeded with glycol droplets. The vertical velocity is small in relation to the shock

velocity and can be neglected in the following numerical models. The particles are

accelerated by a shock wave generated as described in Chapter 2. The images in

Figure 4.1 shows the evolution of the laser illuminated horizontal cross-section of

this column, as it and the surrounding air are accelerated by a planar shock moving

at an average velocity of about 570 m/s (Mach number M = 1.66+/-0.02, with small

variations from experiment to experiment). What is visible in the images is Mie

scattering off droplets in the laser-illuminated plane. The dark areas of the images

correspond to droplet-free air, while brighter zones contain droplets.

The images in Figure 4.1 are a compilation of six experimental image sequences

taken at various locations downstream on the initial conditions. The shock direction

is from bottom to top. The timings of individual exposures are marked in the figure,

with t = 0 corresponding to the time at which the shock wave passes through the

center of the initial conditions. The shock Mach number for each exposure is also

displayed in this figure. The Mach number is calculated by measuring the time

between pressure peaks recorded by the pressure transducers. The numbers to the

left of the image denote the distance from the center of the initial position of the
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column in mm.

The initial conditions of the experiment (first image in Figure 4.1) are nearly two-

dimensional, with little variation in the direction normal to the plane of view. In the

early images of the sequence of Figure 4.1 (third to fifth), the smallest droplets form

a line parallel to the shock front, and larger droplets trail farther upstream, forming

a tail-like structure, due to smaller droplets achieve momentum equilibrium with

the embedding flow faster than the larger ones. Overall, this momentum exchange

leads to the air-droplet mixture mean velocity in the section of the flow containing

particles being lower than that of the surrounding particle-free air. Shear between

the areas with lower and higher velocities in turn leads to formation of counter-

rotating vorticies on both sides of the column which are apparent in the seventh and

subsequent images in Figure 4.1.

The morphology that develops at later times as the result of this shock-driven in-

teraction is superficially similar to that of a cylinder of heavy gas initially embedded

in lighter gas and accelerated by a planar shock [13], where two counter-rotating vor-

ticies form due to RMI. However, what happens in the two cases on the microscopic

scale is quite different, and there are also discernible differences in the flow morphol-

ogy due to traditional RMI and to the multiphase RMI, as Figure 4.2 illustrates.

This figure shows the evolution of the air-droplet and air-SF6 instabilities at iden-

tical downstream locations for differing Mach numbers. The experimental images

were illuminated with a green laser, here; false color has been added to distinguish

between different Mach numbers. Blue for M = 2.02, green for M = 1.67, and red

for M = 1.22.

With SF6 injection, an initially cylindrical, diffuse interface forms between the

heavy gas and the lighter gas (air), resulting in a density gradient being added to the

initial conditions, producing RMI upon shock passage. The counter-rotating vortex

pairs are evident in all the cases, however, for the case of RMI, another feature gains
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Figure 4.1: Mosaic of six experimental image sequences showing the evolution of a
shock-accelerated column of glycol droplets in air [1].
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Figure 4.2: Images of the instability of a droplet-air column (top) and droplet-SF6

column (bottom) [1].

prominence as the Mach number increases, namely a central spike that emerges due

to secondary instabilities. This feature is notably absent in the images of the droplet-

seeded column. The RMI images also manifest small-scale structures that form due

to secondary instabilities and lead to the flow transitioning to turbulence. In the case

of RMI, the flow behavior at small scales associated with these features is known to

become statistically consistent with models of fully developed turbulence [34].

The small-scale structures visible in the top column of Figure 4.2 arise both due

to shear (Kelvin-Helmholtz instability) and to the secondary baroclinic instability

induced by pressure-density misalignment in the cores of the vorticies comprising

the counter-rotating pair. Some evidence of the shear-driven secondary structures

may be present in the late-time (t > 1 ms) images of the droplet-column instability

as well, however, even at the latest times observed, no evidence of transition to

turbulence was seen. Another notable feature of 4.2 is the rather weak dependence

of the apparent size of the counter-rotating vortex pairs on the Mach number.
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Figure 4.3 shows the early time growth of the air-droplet instability (top) and

the SF6-droplet column (bottom). The images were taken from M = 1.67 shots and

have a spacing of 25 us between frames. Of particular note is the rapid growth and

formation of the RMI instability when compared with the air-droplet instability. In

many earlier experiments, tracer particles or droplets were used under the assumption

that they would behave as a passive scalar. These results demonstrate that such an

assumption is generally not valid. However, in the presence of RMI, its much faster

growth begins to dominate the flow from the time shortly after shock acceleration,

as Figure 4.3 illustrates.

Figure 4.3: Comparisons of early-time evolution of air-droplet column (top) and
SF6-droplet column (bottom) for M = 1.67 [1].

4.3 Numerical Modeling

Numerical calculations to model the formation and growth of the observed instabil-

ities were run using SHAMRC. A 2D Cartesian mesh was used with dx and dy of

roughly 0.005 cm. These dx and dy were chosen so that there would be exactly 128

zones across the diameter of the IC column, which was set to the inner diameter of

the injection tube used in these experiments, 0.635 cm. Note that this diameter is

slightly larger than the initial conditions presented in the previous chapter. This is

due to a change in the injection system to improve the quality of the initial conditions,
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presented in Chapter 2. The validity of this choice for initial condition diameter was

verified by examining images taken of the initial conditions during experiments. The

mesh extended to the shock tube wall in the y direction, a distance of 3.81 cm. The

x extent was set to 51 cm so that approximately 2 ms of instability growth could be

modeled before the instability was swept from the grid. Additionally, a half plane of

symmetry along the x-axis was used to reduce the total number of zones required to

9 million.

4.3.1 Modeling with a Pseudo-Glycol Fluid

The first approach used to model the initial conditions in SHAMRC was to approx-

imate the air-glycol mixture as a perfect gas with the same average density. The

perfect gas equations of state are defined as P = (γ − 1)ρI and T = (PWM)/(Rρ).

In these equations, P is the pressure, ρ is the density, γ is the ratio of specific heats,

I in the specific internal energy, T is the temperature, WM is the molecular weight,

and R is the universal gas constant. To determine the density of the pseudo-glycol

fluid, a container with a known volume of the air-glycol mixture was weighed with

a high accuracy scale. The result was the difference between the densities of air and

the air-glycol mixture, found to be 0.06 ± 0.01 kg/m3. The local elevation causes a

15% reduction in the standard air density of 1.225 kg/m3. Together with the mea-

sured density differential, this yielded an Atwood number A = (ρ2− ρ1)/(ρ2 + ρ1) of

approximately 0.03.

To match laboratory conditions and maintain the appropriate Atwood number,

the simulations were run at an ambient density of 1.051 kg/m3 for air and a density of

1.116 kg/m3 for the pseudo-glycol fluid. A γ of 1.4 was chosen for the pseudo-glycol

fluid to match air. The ambient energy and atomic weight were chosen to maintain

pressure and temperature equilibrium between the initial conditions and ambient air.
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Figure 4.4 shows side-by-side comparisons of images taken during several experiments

along with images from a SHAMRC calculation with A = 0.03 and M = 1.67. The

images from the calculation display the density of the pseudo-glycol fluid and have

all been scaled to the same size. The scaling factor was chosen so that the images

of the initial conditions are the same size for the test data and numerical results.

This scaling allows the direct comparison of the sizes of the instabilities observed

in experiments and those generated in the numerical simulation. The timings of

the exposures are displayed below the corresponding images. with the time t = 0

corresponding to the time at which the shock wave reaches the center of the initial

conditions.

From this image, it is clear that the morphology of the instability created in

the numerical calculation is a good qualitative representation of what is observed in

experiments. To quantify these results, measurements were taken from each image

to determine the width of the instability as a function of time. The streamwise

perturbation width is defined as the extent of the instability in the direction of the

shock. Figure 4.5 illustrates the definition of the perturbation width W and height

H. Figure 4.6, left shows all the test data collected along with the SHAMRC data for

Mach numbers of 1.22 (red squares), 1.67 (blue diamonds), and 2.02 (green triangles)

for an initial condition Atwood number of 0.03. The test data are shown as open

symbols, while the SHAMRC data points are filled.

The experimental setup only allows for the collection of four data points for

each shock tube run. This results in a spread in the experimental data which can

be accounted for by small differences in the shape of the initial conditions and the

Mach number, resulting in non-uniform vortex formation. The SHAMRC data was

generated in a calculation with perfectly formed initial conditions and as such does

not display this spread. In Figure 4.6, the numerical results form a lower bound for

the experimental data with a slope that matches the experimental data, indicating
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Figure 4.4: Multi-phase instability evolution. Green images - experiment (planar
laser visualization), color images - numerics. Scale left of the images indicates down-
stream distance in mm, labels to the right indicate timings and Mach numbers.
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Figure 4.5: Definition of streamwise pertubation width and height.

Figure 4.6: Perturbation width for SHAMRC calculations (filled) and test data
(open) at various Mach numbers.
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a similar growth rate. The main difference between the two data sets is the larger

size of the experimental instability. This difference is nearly constant over time and

is due to the assumption made to model the initial conditions as a continuous fluid

instead of discrete particles. In the experiments, the larger particles get accelerated

to the piston velocity more slowly than their smaller counterparts. This lag causes

a spread in the initial conditions which can be seen clearly in the early images of

Figure 4.1. The comparisons above demonstrate that SHAMRC can be used with the

current assumptions to model the first order effects of the glycol-air initial conditions

and the resulting instabilities that are formed.

4.3.2 Modeling with Discrete Particles

The geometry of this calculation and the shock initial conditions were identical to the

calculation run in the previous section. The difference was that instead of creating

initial conditions with the pseudo-glycol fluid, glycol droplets were used. To match

the Atwood number of the previous calculation, 1.03×10−5 g of droplets were placed

into the calculation. Sixteen computational particles were placed in each zone inside

the initial condition cylinder for a total of 102,992 particles. Each computational

particle represents a cloud of physical particles with a combined mass of 1.0×10−10 g.

For this calculation a uniform particle distribution of 1.0 microns in diameter was

used. The density of glycol is 1036 kg/m3, so a physical droplet with this radius

has a mass of 5.4245×10−16 kg and each computational particle represents 184,349

physical particles. SHAMRC does not model particle-particle interactions, however,

the seeding density of the particles is small enough that these types of interactions

happen very infrequently and do not need to be modeled.

Figure 4.7 is a comparison of the experimental (left column) and numerical (right

column) images presented in Figure 4.4 with corresponding images from the particle
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simulation (center column). The images are again scaled so that the initial conditions

are the same size as the test data. These images are placed in between the images

from the test data and previous modeling effort with a pseudo-glycol fluid. It is clear

from looking at the images that both methodologies yield instability morphologies

that are similar to those seen in experiments. A feature that both methods fail

to resolve is the tail of trailing particles that is observed in experiments. It was

expected that this feature would be absent when modeling the instability with a

pseudo-glycol fluid, however; it should be possible to reproduce this feature with the

particle approach. The likely culprit is the use of a mono-disperse particle size. With

the current setup, all particles will be accelerated at the same rate across a plane

parallel to the shock front. The only difference will appear in a plane perpendicular

to the shock where particles on the edge of the initial conditions are subjected to a

shear that causes the instability to form. If some of the particles are subjected to a

slightly different drag force a tail will likely appear.

The preceding shows that SHAMRC can successfully reproduce the instability

with a discrete particle model. The investigation can now be turned to how the size

of the particles affects this instability. Calculations were run with a mono-disperse

particle size distribution of 0.5, 0.7, 1.0, 3.0, 5.0, 10.0 and 25.0 microns in diameter.

Figure 4.8 shows images from each calculation at 250, 500, 1000, and 1500 micro-

seconds. The images are order from left to right by diameter and top to bottom

by time. Figure 4.8 demonstrates how changing the diameter of the particles in

the initial conditions affects the instability that is formed. In the case of the 3.0

micron particles, the edges of the instability have only just begun to turn back in on

themselves at 1500 micro-seconds while the instabilities formed by smaller particles

have rolled up several times. From the figure, it can be seen that increasing the size

of the particles effectively decreases the intensity of the vortex pairs that are formed.

Again looking at the 3.0 micron particles, the size of the instability is larger than

those formed by those with smaller particles. The vortex pairs formed by increasingly
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Figure 4.7: Instability Evolution. Green images - experiment (planar laser visualiza-
tion), color images - numerics. Scale left of the images indicates downstream distance
in mm, labels to the right are timings and Mach numbers of experimental images.
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larger particle sizes are bigger in size and slower to develop than those formed by

smaller particles. Figure 4.9 shows the instability perturbation widths measured

for each particle size. All particles sizes undergo an initial period of compression

during which the particles are accelerated to piston velocity behind the shock. This

is followed by a period of linear growth during which the instability begins to form.

Both of these periods increase in length with increasing particle size. The final stage

is a period of non-linear growth similar to what is displayed by traditional RMI.

Figure 4.8: Instabilities that are formed by mono-disperse particle distributions rang-
ing from 0.5 microns to 10 microns in diameter.
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Figure 4.9: Perturbation widths for instabilities that are formed by mono-disperse
particle distributions ranging from 0.5 microns to 25 microns in diameter.

The effects of a differing uniform particle size have been studied, but not the

effect of a non-constant particle distribution. Figure 4.10 shows three particle dis-

tributions that have been chosen for this study. The shape of the distributions are

normal in log space and are centered about a particle diameter of 3.0 microns. The

form of the Probability Density Function for a log-normal distribution is shown in

Equation 4.1. In this equation, F is the probability of a diameter x, σ is the standard

variation, and µ is the mean. To vary the distributions, different values were chosen

for the standard deviation while the mean was held constant at 3 microns. The three

distributions shown in Figure 4.10 represent a standard deviation of 0.2 (distribution

1), 0.5 (distribution 2), and 1.0 (distribution 3) microns.
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F (x : µ, σ) =
1

xσ
√

2π
exp

(
− (lnx− µ)2

2σ2

)
(4.1)

Figure 4.10: Particle distributions for SHAMRC calculations. Distribution 1 is shown
in red, distribution 2 is shown in blue, and distribution 3 is shown in black.

Figure 4.11 shows images from each calculation at 250, 500, 1000, and 1500 µs.

The images are ordered so that the width of the particle distribution increases from

left to right. With a distribution of particle sizes, the instability forms a tail of

the largest particles. This tail is formed due to a delay of the acceleration of large

particles. A distribution that has a higher standard deviation or is “wider” generates

a larger tail. Figure 4.12 shows the instability widths measured for each particle

distribution. The wider distributions create a tail of particles that is larger than the

width of the instability. This tail masks the growth of the instability and causes

the instability width to remain fairly constant. For a distribution with a smaller
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standard deviation, the tail essential shifts the instability width curve by a small

constant.

Figure 4.11: Instabilities that are formed by non-uniform particle distributions shown
in Figure 4.10.
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Figure 4.12: Perturbation widths for instabilities that are formed by non-uniform
particle distributions shown in Figure 4.10.

66



Chapter 5

The Effects of Atwood and Mach

Number Variation on Classical

RMI

5.1 Overview

In chapter 3 the traditional Richtmyer-Meshkov Instability (RMI) was introduced.

Experimental results were presented and it was shown that the numerical code

SHAMRC could be used duplicate the morphologies seen in laboratory experiments

once the initial conditions were properly characterized. With this baseline estab-

lished, SHAMRC can be used to explore the parameter space surrounding the ex-

perimental results. The results of a numerical parameter study for Atwood numbers

ranging from 0.1 to 0.5 will be presented in the following sections. The effects of

Atwood number on the instability growth rate and the convective velocities of the

vortex cores will be examined.

Also presented in this chapter is a numerical parameter study on the effects of
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varying the shock Mach number of the growth rate. In principle, it is easy to vary

the shock Mach number by simply adjusting the pressure in the shock tube driver

section, however, difficulties still exist. Small variations in pressure at low Mach

numbers can result in large variations in the Mach number and the high material

velocities of the post shock gases at high Mach numbers can make image acquisition

difficult. As such, SHAMRC simulations at Mach numbers 1.2, 1.4, 1.7, 2.0, and 2.5

were performed. The effects of Mach number on the instability growth rate will be

examined in the second section.

5.2 Atwood Number Variation

The initial conditions that were used for this study were identical in shape to the

initial conditions derived from FLUENT results in chapter 3. To reduce the Atwood

number, the density of the gas used to represent SF6 was varied. Table 5.1 gives

the material properties used for each Atwood number. The ratio of specific heats,

or γ, was held constant at 1.4. The total particle mass in each calculation was also

adjusted relative to the fluid density to keep the ratio between fluid and particle

masses the same as what is seen in experiments. These initial conditions may not

correspond exactly to reproducible experimental conditions, but they will provide a

means of comparing the effects of increasing the Atwood number on RMI formation

and growth.

The results of the SHAMRC calculations are shown as density contours in Figure

5.1 and particles plots in Figure 5.2. The images are taken from a series of times

ranging from 50 µs to 500 µs after acceleration by the shock wave. In both figures the

Atwood number increases from left to right and time increases from top to bottom.

These figures qualitatively display the effects of increasing the Atwood number on the

instability growth. As the Atwood number increases, the density gradient between
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Table 5.1: Material Properties for SHAMRC Equation of State

Atwood Number Density ( g
cm3 ) Energy ( ergs

g
) Molecular Mass ( g

mol
)

0.1 1.497× 10−3 1.69175× 109 35.37
0.2 1.838× 10−3 1.37788× 109 43.43
0.3 2.275× 10−3 1.11321× 109 53.75
0.4 2.858× 10−3 8.86127× 108 67.53
0.5 3.675× 10−3 6.89123× 108 86.83

the initial conditions and the ambient air is higher. This increased density gradient

leads to an larger amount of vorticity being deposited by the passing shock wave

due to the baroclinic vorticity term in the vorticity equation, which takes the form

shown in Equation 5.1.

Dω

Dt
=

1

ρ2
∇ρ×∇p (5.1)

The evolution of the instability can be broken into three distinct regimes. The

first is a linear growth region predicted by the linear theory of Richtmyer. In this

region, the instability has a shape similar to the images in the upper-left region of

Figures 5.1 and 5.2. This period of linear growth lasts approximately 50 µs after

shock compression for an Atwood number of 0.5 and up to 200 µs for an Atwood

number of 0.1. The end of the first region is marked by the initial formation of

two counter-rotating vortex cores. The second regime is that of nonlinear growth

characterized by the formation and growth the vortex cores. During this period, the

increase in size of the instability slows while material is wrapped into the vortex cores.

The end of this regime is marked by the formation of secondary instabilities, either

due to shear at the exterior of the instability (Kelvin-Helmholtz) or due to baroclinic

instabilities at the vortex core. This regime corresponds to a band stretching from the

lower left to the upper right of Figures 5.1 and 5.2. It spans times of approximately
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50 to 350 µs after shock compression for an Atwood number of 0.5 and from 200 µs

to times greater than 1.5 ms for an Atwood number of 0.1. The third and final regime

is that of rapid nonlinear growth. During this phase, the secondary instabilities that

developed in the second phase become stronger and more intense, leading to eventual

breakdown of the vortex core and the formation of a plume of material that is ejected

downstream of the instability. It is during this period that transition to turbulence

may occur. In this stage, the instability takes on the appearance of the images in the

lower right-hand corner of Figures 5.1 and 5.2. This also corresponds to the late-time

experimental and numerical images from Chapter 3.

Figure 5.3 provides a quantitative look at the streamwise perturbation width as

a function of time for increasing Atwood number. The perturbation width is defined

as the distance from the upstream edge to the downstream edge in the direction of

travel. Here, the particles occupy the regions of highest density and therefore, the

extents of the particle cloud will be used to define the perturbation width. Distinctly

visible in this figure are the three regimes outlined above. Also shown is the initial

compression of the instability by the passing shock wave that occurs before the

linear growth phase. As the Atwood number is increased, the vorticity deposited by

the shock increases due to the increased density gradient. This causes the counter-

rotating vortex pair to form more quickly and grow at an increased rate.

A non-dimensional time τ can be developed from the linear growth rate analysis

of Richtmyer and is shown as Equation 5.2.

τ = kA∆V (t− t0) (5.2)

Here, A is the Atwood number, ∆V is the piston velocity or material velocity

behind the shock wave. The variable k is the wavenumber defined as k = 2π
λ

, where

λ is the perturbation wavelength, which is set to the initial instability width (for

the particles), 0.4983. The variables t and t0 correspond to the current time and
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Figure 5.1: Density contours from SHAMRC calculations for increasing Atwood
number.
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Figure 5.2: Particle plots from SHAMRC calculations for increasing Atwood number.
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Figure 5.3: Perturbation width as a function of time for multiple Atwood numbers.

initial time, which is measured as the time of maximum compression of the initial

conditions. To scale the instability width, a non-dimensional scaling parameter σ

is introduced as σ = w
w0

where w is the streamwise perturbation width and w0 is

the minimum perturbation width. The values chosen for w0 and t0 are shown in

Table 5.2 and were calculated from SHAMRC results. The resulting scaling is shown

in Figure 5.4 and demonstrates that for the first and second regimes the growth rate

for this instability can be collapsed to a single curve for multiple Atwood numbers.

The failure of the scaling method to collapse the third phase of instability growth is

not surprising, as during this phase the linear growth rate developed by Richtmyer is

no longer appropriate due to the formation of secondary instabilities and breakdown

of the vortex core.
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Table 5.2: Initial times and instability widths.

Atwood Number t0 (s) w0 (cm)

0.1 1.2× 10−3 0.2037

0.2 1.0× 10−3 0.2095

0.3 9.5× 10−5 0.2205

0.4 9.0× 10−5 0.2360

0.5 8.0× 10−5 0.2516

Figure 5.4: Scaled instability size as a function of scaled time for multiple Atwood
numbers.
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Jacobs et. al. [18] introduced a model for instability growth in dual-interface

studies. Rightley et. al. [19] extended the model to be a single parameter fit based

on the circulation and applied it to experiments involving a gas curtain of SF6.

The model approximates the instability as an infinite row of counter-rotating point

vorticies with the same magnitude of circulation Γ. The basic form on the is given

in Equation 5.3 with k, t0, and w0 defined as before.

w(t) =
2

k
sinh−1

[
k2Γ (t− t0) + sinh

(
kw0

2

)]
(5.3)

The value of Γ was adjusted for each Atwood number to generate the best fit to

SHAMRC data. The results are shown in Figure 5.5 and the values chosen for Γ

for each Atwood number are shown in Table 5.3. Equation 5.3 is a good fit to the

SHAMRC results for times before the appearance of secondary instabilities. These

times are marked by an increase of the growth rate of the instability and are listed

for reference in Table 5.3.

Table 5.3: Circulation used to generate the best Jacobs fits to SHAMRC data

Atwood Number Γ ( cm
2

s
) Onset of Secondary Instabilities (s)

0.1 250 1.0× 10−3

0.2 600 5.0× 10−4

0.3 1050 4.0× 10−4

0.4 1900 3.0× 10−4

0.5 3500 2.75× 10−4

In addition to increasing the growth rate of the instability, it was noted that

increasing the Atwood number also had the effect of decreasing the velocity at which

the instability propagates downstream. A similar concept was theorized by Rudinger

[15] and observed by Jacobs [18]. Rudinger theorized that the instability would have
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Figure 5.5: Fits to SHAMRC data based on the Jacobs scaling (drawn as solid black
lines).

a velocity equivalent to that of a pair of counter-rotating vortex pairs. He found that

the relative velocity of the vortex pair could be defined as Uvp = 2
π2AV , where A is

the Atwood number and V is the post-shock velocity. Jacobs applied this theory to

his experimental results and found this theory to under-predict the actual instability

velocity at late times for a cylinder of SF6. Figure 5.6 shows Rudinger’s theory as

well as the calculated average instability velocity from the SHAMRC calculations for

varying Atwood number. The figure also shows the result of a proposed modification

to the linear fit. The original model has been modified so that Uvp = 3
2π2AV and

provides a good match to the SHAMRC results.
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Figure 5.6: Instability velocity relative to the shock piston velocity.

5.3 Mach Number Variation

To study the effects of changing the Mach number, calculations were run with the

same initial conditions as for the Atwood number parameter study with an Atwood

number of 0.5, but with varying Mach number. In addition to the calculation previ-

ously presented in the previous section at M=1.7, calculations were run at M=1.2,

M=1.4, M=2.0, and M=2.5. A summary of the initial conditions used to generate

the different Mach numbers in air is given in Table 5.4.

In the previous section, the SHAMRC results were plotted at similar times, which

correlated roughly to the same downstream position. It was shown at the end of

the section that there was some discrepancy due to different instability convective

velocities caused by the varying Atwood number. For the Mach number study, there

is a wide range of convective velocities expected due to the wide range of Mach

numbers and piston velocities considered. To examine the effect of changing the

Mach number, SHAMRC images are instead considered at identical downstream
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Table 5.4: Material properties for SHAMRC air equation of state

Mach Number Piston Velocity ( cm
s

) Energy ( ergs
g

) Density g
cm3 )

1.2 1.0397× 104 2.30861× 109 1.643× 10−3

1.4 1.9443× 104 2.57055× 109 2.070× 10−3

1.7 3.1524× 104 2.99155× 109 2.692× 10−3

2.0 4.2531× 104 3.46533× 109 3.267× 10−3

2.5 5.9545× 104 4.39566× 109 4.083× 10−3

locations. These results are shown as density contours in Figure 5.7 and particle

plots in Figure 5.8 The images are produced at 1.0, 3.0, 6.0, 9.0, 12.0, and 15.0 cm

downstream of the initial conditions.

There are a few trends that are observable from these images. First, as the

Mach number increases, the perturbation width of the instability increases while

the perturbation height of the instability deceases at similar downstream locations.

This feature was also observed experimentally and reported in Chapter 3. This

result indicates that the instabilities have an increased vorticity for higher Mach

numbers. This arises from a stronger pressure gradient due to the higher Mach

number. Second, in Figure 5.7, the images at 1.0 cm downstream exhibit a spike of

material that forms on the downstream side of the instability due to shock focusing.

This spike increases in size for increasing Mach number. Third, in Figure 5.8, the rate

at which the particles are entrained into the vortex core is accelerated with higher

Mach number. This is again due to the greater vorticity deposition at higher Mach

numbers and reconfirms the first observation. Finally, in both figures, secondary

instabilities appear sooner at higher Mach numbers.

Figure 5.9 provides a quantitative look at the streamwise perturbation widths as a

function of time for increasing Mach number. These results are similar to the results
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Figure 5.7: Density contours from SHAMRC calculations at Mach numbers ranging
from M=1.2 to M=2.5.
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Figure 5.8: Particle plots from SHAMRC calculations for Mach numbers ranging
from M=1.2 to M=2.5.

presented in Figure 5.3 for increasing Atwood number with a couple of differences,

primarily visible during the compression phase. First, increasing shock strength leads

to a higher pressure ratio across the shock, which results in a larger compression and

a smaller initial instability width. Second, higher Mach numbers have faster piston

velocities, which results in a shorter time required to compress the initial conditions.

The non-dimensional scaling developed in the previous section was applied to the

SHAMRC results and is shown in Figure 5.10. The values for w0 and t0 are shown in

Table 5.5. The proposed scaling does a good job of collapsing the SHAMRC results
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Figure 5.9: Instability size as a function of time for multiple Mach numbers.

to a curve of approximately the same shape; however, there appears to be an offset

between the results at different Mach number. A similar result was observed by

Orlicz et. al. [34]. In that work, experiments were performed for a curtain of SF6

at Mach numbers 1.2 and 1.5. They were able to collapse their results for these two

Mach numbers to a single curve by adding a small offset. By looking at Figure 5.10,

it appears that this method will not be sufficient to collapse the results to a single

curve as the distance between the curves is not constant for differing Mach number.

Instead, a new Mach dependent non-dimensional instability width σ∗ is defined as

σ∗ = w
w0
Ma, where M is the Mach number and a is a scaling parameter. Figure 5.11

shows results for a = −0.4. This scaling appears to collapse the results to a single

curve for times leading up to the formation of the secondary instabilities and is good

for a range of Mach numbers.
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Figure 5.10: Scaled instability width as a function of scaled time for multiple Mach
numbers.

Table 5.5: Initial times and perturbation widths.

Mach Number t0 (s) w0 (cm)

1.2 1.8× 10−4 0.3007

1.4 1.3× 10−4 0.2779

1.7 8.0× 10−5 0.2516

2.0 6.5× 10−5 0.2097

2.5 5.5× 10−5 0.1781
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Figure 5.11: Scaled instability width as a function of scaled time for multiple Mach
numbers with new scaling.
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Chapter 6

Three-dimensional

Richtmyer-Meshkov Instability

6.1 Overview

The previous chapters presented experimental results for initial conditions that were

assumed to be nearly 2D. Making this assumption allows for two simplifications,

one for experimental visualization and the other for numerical modeling. From an

experimental point of view, the assumption of 2D initial conditions means that the

experimental images obtained will be identical regardless of the vertical position of

the visualization plane in the shock tube cross section. From a numerical point of

view, this assumption allows for great simplification of the calculations and elimi-

nates the need for costly 3D simulations, thus reducing the time required to obtain

results, or allowing for calculations at a much higher level of resolution. This chap-

ter addresses this assumption in detail by presenting experimental results obtained

at multiple planes in the shock tube and results from full 3D calculations for both

the traditional and multi-phase RMI presented previously. Additionally, the results
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presented in this chapter will be used as a baseline in the next chapter, where the

shock tube is tiled to create an angle of incidence between the shock wave and the

gas column.

6.2 Experimental Results

To examine the three-dimensionality of the instabilities generated, the imaging sys-

tem was modified to visualize a vertical cross-section of the flow as opposed to the

horizontal planes presented previously. Figure 6.1 shows schematics for both hori-

zontal and vertical planes of visualization. In the horizontal configuration, the laser

sheet passes through test section, illuminating a cross-section of the gas cylinder.

Images are captured via a mirror mounted to the top of the test section. For vertical

planes, the laser sheet passes through the test section by reflecting it off the mirror

used to acquire the horizontal images. Experimental images are taken by the camera

directly through the side of the test section. This method works well for imaging

any regions downstream of the initial conditions, however, it is not possible to create

vertical slices of the initial conditions using this technique due to obstruction of the

laser sheet by the initial condition nozzle. To overcome this difficulty, the laser sheet

was directed through an optical window mounted at the end of the runoff section,

which provides unobstructed access for the light sheet. The drawback of this config-

uration is that only one laser can be used, thus limiting the number of images that

can be obtained to two.

Figure 6.2 shows vertical slices of the initial conditions and instability that is

created for the air-droplet initial conditions accelerated by a M=1.67 shock. The

figure is a compilation of images obtained from four different experiments. As there

is only one laser (two pulses) available for imaging of the initial conditions in the

vertical plane, each experiment yields only two images and several experimental
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Figure 6.1: Schematics for image acquisition in the horizontal (left) and vertical
(right) planes.

runs were performed with differing delays between the two frames to obtain images

at multiple downstream locations. The frame height of each image is 7.62 cm to

capture the entire vertical extent of the gas column. The images span a time of

225 µs after shock acceleration over a distance of approximately 7 cm downstream

of the initial conditions. Note that the spacing between these images is not to scale.

The direction of travel is from left to right. There is very little of the instability

structure visible in these images as the growth rate of the multi-phase instability is

slow due to the low Atwood number, as was discussed in Chapter 4. One feature of

note is the bend in the column at the top and the bottom of the shock tube as it

is accelerated downstream. This is an interesting feature as it shows that the initial

conditions, which started as a right cylinder, do not maintain this shape near the

top and bottom on the shock tube. This feature will be explored in greater detail in

the numerical modeling section. Also of note, is that the angle of the column with

respect to the horizontal is nearly constant at all times.

The left side of Figure 6.3 shows a compilation of images in the vertical plane

produced by accelerations of the SF6-droplet initial conditions by a M=1.67 shock.

The frame width is the same as for the air-droplet initial conditions show previously,

however, the images only span a range of 125 µs due to the increased width of the
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Figure 6.2: Experimental images in the vertical plane of the air-droplet instability
at M=1.67 for early times.

instability in the streamwise direction. Again visible in these images is the bend in

the cylinder at the top and the bottom of the shock tube. On the right of Figure

6.3 is a characteristic image taken from the horizontal plane at 100 µs. Two regions

of importance are highlighted in this image. The first, denoted A, is a bridge of

material that forms between the two vortex cores. This structure is always visible in

the vertical visualization plane as it crosses the centerline of the instability (shown

as a the dashed line), which coincides with the laser sheet. It is the sole structure

seen in the vertical plane at 75 µs and is the left-most structure visible at 125 µs.

The second region of interest, denoted B, is the point along the centerline where the

two counter-rotating vorticies are closest to one another. This point also shows up

in the vertical plane and is visible as the right-most structure at 125 µs. This region

may not actually cross the centerline, however, it is illuminated due to the presence

of particles in or near the laser sheet. It may or may not be visible depending on the

size of the instability.
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Figure 6.3: Experimental images in the vertical plane of the SF6-droplet instability
at M=1.67 for early times (left) and a characteristic image from the horizontal plane
along the centerline (right).

Figure 6.3 shows vertical slices of both instabilities at a distance of 19.05 cm

downstream of the initial conditions and are taken approximately 600 µs after accel-

eration by a M=1.67 shock wave. This image illustrates the differences in the growth

rates of the two instabilities. The multi-phase instability has a small growth rate,

and the secondary structures are not large enough to meet at the centerline and thus

are not visible in the vertical plane. The traditional Richtmyer-Meshkov instability

has a much higher growth rate and at these late times and forms a secondary plume

of material that is ejected from the center of the instability. This plume forms the

main structure visible in this image. Also visible is the bridge connecting the two

vortex cores at the back of the instability. At these late times, this bridge is no

longer a vertical column due to the formation of secondary instabilities. The dark

areas between the bridge and the plume are regions occupied by the centers of the

vortex pairs. The instability also has a noticeably different structure near the top

and bottom of the shock tube and the curvature of the column is still visible, al-
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though not as apparent as in the multi-phase instability. The angle that the back

of the column makes with the horizontal is nearly constant in times, however the

downstream side of the column appears to rotate due to the increased growth rate

and thus wider instability perturbation width near the top of the column.

Figure 6.4: Experimental images in the vertical plane of the air-droplet (left) and
SF6-droplet (right) instabilities at M=1.67, 19.05 cm downstream.

6.3 Numerical Setup

To model the experimental results, 3D SHAMRC calculations were performed. The

gas cylinder was generated by using the FLUENT results obtained in Chapter 3.

In 2D, the FLUENT results were imported into SHAMRC by generating a cubic

spline that matched the density as a function of radius. This spline was used to

generate a series of annuli (25 separate rings for air and SF6) with varying density

to create the cylinder of initial conditions. This method is not feasible for 3D as

it involves generating a different cubic spline for each column height. Instead, the
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2D FLUENT results were imported into a 2D SHAMRC calculation using the area

feed-in option. This capability fills a region of a SHAMRC mesh with conditions

supplied via an auxiliary data file, which contains cell properties on a triangular

grid. The data file is created by a standalone program that parses a file containing

a series of points containing pertinent hydrodynamic variables (velocity, pressure,

temperature, density). The standalone program generates a triangular mesh of data

points that can be read by SHAMRC. The resulting 2D SHAMRC mesh can be read

into a 3D SHAMRC mesh in a process which maps the 2D plane into a 3D cylinder.

The particles are generated in the same fashion. A FLUENT dump containing

information about the particle mass for each cell in the mesh is used to generate a

2D SHAMRC mesh which contains zones filled with a place holder material. This

mesh is again read into a 3D SHAMRC mesh and particles are placed into each cell

containing the place holder material, similar to the 2D initial conditions created in

Chapter 3. Approximately 2 million particles are required for a 3D calculation with

one computational particle per cell.

The 3D calculations were split into two steps, both with a zone resolution of

0.01 cm in all directions. The total cell count for each calculation was approximately

600 million zones. The first step spans from 3.0 to 17.0 cm in the x-direction, from

0.0 to 3.81 cm in the y-direction (utilizing a half-plane of symmetry), and from -7.0

to 7.0 cm in the z-direction. The shock wave propagates in the x-direction with the

gas column centered at 4.5 cm. The shock wave was generated by a constant feed

in boundary condition with material properties for M=1.67 as defined in Chapter 3.

The shock tube has a height of 7.62 cm, however, to model the holes in the shock

tube for the gas cylinder entrance and exit the mesh was extended beyond the shock

tube walls and filled with non-responding islands with a cylinder cut in them. The

islands behave as a solid surface that is not affected by the surrounding flow and are

used in SHAMRC to generate solid objects.
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Figure 6.5 shows a vertical slice from the SHAMRC calculation. This figure

consists of contours of fluid density and shows the initial gas column as well as the

holes in the shock tube. The islands are plotted in white. The calculation was

run until just before the shock wave exits the mesh. At this time, the instability

has passed from the region containing the holes in the shock tube and as a result,

the mesh can be resized in the z-direction. The results of step 1 were placed into a

second calculation that spans from -3.81 to 3.81 cm in the z-direction and from 10 cm

to 30 cm in the x-direction. The y-direction extent was unchanged. Additionally,

to minimize boundary effects, expanding zones were added to the mesh in the x-

direction beyond 30 cm to allow for run-off of the shock wave. These zones start at a

resolution of 0.01 cm, but increase in size by 5% every zone. This allows the mesh to

be extended far beyond the area of interested with minimal computational expense.

Figure 6.5: SHAMRC density contours of the initial conditions in the vertical plane.

6.4 Numerical Results

Figure 6.6 shows results from the SHAMRC calculation of the air-droplet instability

from the 0 to 225 µs. The numerical images represent particles that are in a vertical
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plane comprising the instability center. Particles are plotted for the 5 planes on either

side of the requested plane, in this case from -0.05 to 0.05 cm. It is possible to plot a

single plane of particles, however, in the experimental imagery, the laser sheet has a

finite thickness, and illuminates particles that fall within or very near to the thickness

of the laser sheet. The particles are colored by particle radius. The numerical

images are similar to the experimental images introduced in the first section for the

air-droplet initial conditions. The cylinder is compressed by the passing shock and

displays very little visible structure. The curvature of the instability near the top

and bottom of the shock tube is also observed. The numerical instability appears

slightly smaller than what is observed in experiments due to the uniform distribution

of particles diameters at 1 micron. A particle distribution over a range of diameters

would generate a instability that is wider due to the differences in the acceleration

by drag of particles with differing diameters. Figure 6.7 displays vertical slices at

-2.0, 0.0, and 2.0 cm. This figure shows the uniformity of the multi-phase instability

throughout the mid-section of the column.

Figure 6.8 shows results for the SHAMRC calculation of the SF6-droplet insta-

bility from the 0 to 175 µs. These images differ more from the experimental results

than the air-droplet instability. Most notably absent is the lack of a well defined

secondary structure that appears downstream of the bridge connecting the vortex

cores at later times. In the numerical images, this column appears much thicker near

the top of the instability and disappears near the bottom of the instability. This is

caused by the differences in the structures that are formed in the horizontal plane.

Another feature is the curvature at the bottom of the shock tube. At 75 µs there

is a distinct curve, which disappears as the instability develops. The multiphase

instability also generates this backward curve, however it stays fairly constant as the

instability moves downstream. A similar type of behavior is observed in the experi-

mental images for both types of instabilities. This curve is also visible at the top of

the column and appears to form into a vortex at later times.
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Figure 6.6: SHAMRC images in the vertical plane of the air-droplet instability at
M=1.67 for early times.

Figure 6.7: SHAMRC images in the horizontal plane of the air-droplet instability at
M=1.67 for early times.
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Figure 6.8: SHAMRC images in the vertical plane of the SF6-droplet instability at
M=1.67 for early times.

Figure 6.9 shows particle images from horizontal planes at -2.0, 0.0, and 2.0 cm.

These images correlate with the vertical images from Figure 6.8 and illustrate how the

instability differs are various heights in the column. Two counter-rotating vorticies

are formed at all heights, however, the vorticies form more quickly near the top of

the column. The vorticies that form in the lower part of the column are farther apart

due to smaller vorticity deposition due to smaller density gradients. These structures

are not visible in the vertical planes until they near the centerline.

Figure 6.10 shows density contours along the centerline of the instability in the

vertical plane. This image shows how the core of the high density gas narrows

as it falls through the shock tube. As only the center plane is shown, there are no

visible structures downstream of the bridge as observed in the experiments. However,

instabilities that form near the top and bottom of the column are visible. These

instabilities are barely visible in the early time experimental images, but lead to

the formation of large secondary structures that are clearly visible in images from
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Figure 6.9: SHAMRC images in the horizontal plane of the SF6-droplet instability
at M=1.67 for early times.

farther downstream. These instabilities are formed by the interaction of the shock

wave with the initial condition holes in the shock tube. As the shock wave passes

over the holes in the shock tube, the shock wave expands into the voids. This causes

a local reduction in pressure, resulting in a lower shock strength. When the locally

weaker shock accelerates the gas column, it lags behind the center of the column,

creating the bend that is visible in both experimental and numerical images.

Figure 6.11 shows horizontal slices at -2.0, 0.0, and 2.0 cm for the same times

as Figure 6.10. These images display how the instability evolution changes as a

function of column height and downstream position. Near the top of the gas column,

the core of high density gas is nearly the width of the inner initial condition tube,

while towards the bottom the core narrows to a much smaller diameter. This results

in a locally higher density gradient near the top of the cylinder and a larger amount

of vorticity deposited. Due to the higher vorticity, the instability develops faster.

The overall diameter of the cylinder is fairly constant along the height, although it

95



Chapter 6. Three-dimensional Richtmyer-Meshkov Instability

Figure 6.10: SHAMRC images in the vertical plane of the SF6-droplet instability at
M=1.67 for early times.

does widen slightly near the bottom. As a result the instability that forms has a

larger perturbation height near the bottom of the shock tube.

To examine the effects of the holes at the top and bottom of the shock tube on the

instability, the first step of the SHAMRC calculation with the SF6 initial conditions

was run with a mesh that terminated at -3.81 and 3.81 cm in the z-direction. This

effectively removed the holes from the calculation and is a setup which cannot be

repeated experimentally. Figure 6.12 shows density contours in the vertical plane

from this calculation. The top of the column remains nearly straight, with a very

small instability visible at 175 µs. At the bottom of the shock tube, the column

bends in the opposite direction as observed in Figure 6.10 and Figure 6.6 for the

multi-phase instability. This bend is caused by the variation in the density near the

bottom of the column, a feature that is not present in the multi-phase case. When

the holes are included in the calculation, this variation in density cancels out the

deceleration caused by the locally lower shock pressure. The result is a column that
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Figure 6.11: SHAMRC density contours in the horizontal plane of the SF6-droplet
instability at M=1.67 for early times.

appears to have a both a backward and forward bend at later times. In the late time

experimental images of traditional RMI, shown in Figure 6.4, there appears to be

material ahead of the instability, confirming these results.

Figure 6.13 shows late time images of particles in the vertical plane from the

SHAMRC calculations of the air-droplet (left) and SF6-droplet (right) instabilities.

The images were obtained 19.05 cm downstream of the gas cylinder and can be

compared directly to Figure 6.4. Both are good matches to their experimental coun-

terparts. The multi-phase instability exhibits very little structure in this plane apart

from the curvature of the cylinder near the top and bottom of the shock tube. This

bend is more pronounced at these late times. The most prominent feature of the

traditional Richtmyer-Meshkov instability in this plane is the two vorticies formed

during the interaction between the passing shock wave and the initial condition holes

in the shock tube walls. The early time images in Figures 6.8 and 6.10 show the for-

mation of these structures at early times.
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Figure 6.12: SHAMRC images in the vertical plane of the SF6-droplet instability
formed with no holes in the shock tube.

Figure 6.13: SHAMRC images in the vertical plane of the air-droplet instabilities at
M=1.67 for late times.
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Chapter 7

Richtmyer-Meshkov Instability

Formed by an Oblique Shock

7.1 Overview

The previous chapter presented experimental and numerical results for a planar shock

wave accelerating either a column of sulfur-hexafluoride (SF6) or air seeded with

glycol droplets. In this chapter, experimental and numerical results are presented

for the case where there is an angle of incidence between the initial condition column

and the plane of the shock wave. This angle of incidence makes the instability fully

3D, and in this case, cannot be recreated with 2D simulations. The experimental

and numerical results will be compared to observations from the previous chapter to

examine the behavior of the instability after such an acceleration.
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7.2 Experimental Results

To create a non-planar interaction between the shock wave and the gas column, the

shock tube was tilted to an angle of 15 degrees from the horizontal. The shock wave

was formed by the release of high pressure gases from the driver section and as such

traveled in a plane perpendicular to the walls of the shock tube. The gas column

was formed identically to the initial conditions used in the previous chapter with

the exception that the test section for these experiments had offset holes on top

and bottom to allow the passage of the vertical column through the inclined test

section. Imaging was again performed in the vertical cross-section to examine how

the instability evolves in the third dimension.

Figure 7.1 shows vertical slices of the initial gas column and instability that is

created for the air-droplet initial conditions accelerated by a M=1.67 shock. The

images are compiled from three experiments due to the limitation of two laser pulses

per experiment. The frame height and width are 7.62 cm and the images span a time

of 200 µs after shock acceleration. To acquire these images, the camera is tilted at

an angle of 15 degrees, causing this initial conditions to appear rotated with respect

to the bottom of the image. These results appear very similar to those presented for

the multi-phase instability in Chapter 6. There is a curvature at the top and bottom

of the gas column due to the interaction of the shock wave and holes in the test

section. A feature that is noticeably different is the angle that the column makes

with respect to the horizontal after acceleration by the shock wave. Initially, the

column is inclined at an angle of 15 degrees. After acceleration, this angle is smaller

(approximately 10 degrees) and remains fairly constant in the next two images.

The deposition of vorticity by the passing shock wave will cause the column

to rotate in a clock-wise direction, however, the density gradient for the multi-phase

instability is relatively small when compared to traditional RMI, as was demonstrated
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Figure 7.1: Experimental images in the vertical plane of the air-fog instability at
M=1.67 for early times.

in Chapter 4. This results in a smaller amount of vorticity generated and is likely

not sufficient to account for the initial rotation. This observation is confirmed by

observing that the relative angle of the column at late times, as the change in this

angle represents the rotational rate of the instability. Instead, the change in angle is

likely caused by compression as the shock wave passes through the initial conditions.

This will be explored in greater detail in the next section.

Figure 7.2 shows vertical slices of the initial conditions and the instability that

is created when a M=1.67 shock wave accelerates a column of SF6 seeded with

droplets. These images show the same type of initial rotation as the air-droplet

instability, however, there also appears to be a small amount of additional rotation
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of the column between 100 and 200 µs. Also of interest is the waviness of the bridge

connecting the vortex pair. This is a phenomenon not observed in the planar shock

interaction and appears to be unique to this oblique interaction. Additionally, the

size of the secondary instability that is created near the top and bottom of the shock

tube is increased. At 200 µs, a dark region near the bottom of the shock tube

indicates the presence of a vortex.

Figure 7.2: Experimental images in the vertical plane of the SF6-fog instability at
M=1.67 for early times.

Figure 7.3 shows vertical slices of both instabilities at a distance of 19.05 cm

downstream of the initial conditions and are taken approximately 600 µs after the

initial acceleration. The multi-phase instability, shown on the left, demonstrates a

larger curvature near the top of the shock tube than what is observed at the bottom.
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This is a feature not seen in the case of acceleration by a planar shock. The traditional

RMI, shown on the right, has a large kink on the downstream edge approximately

one quarter of the shock tube height from the top of the instability. This structure

was also not present when accelerated by a planar shock.

Figure 7.3: Experimental images in the vertical plane of the air-fog (left) and SF6-fog
(right) instabilities at M=1.67, 19.05 cm downstream.
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7.3 Numerical Setup

A 3D SHAMRC calculation was used to model the experimental results. The cal-

culations were run identically to the 3D calculations from the previous chapter. To

simulate the angle of the shock tube, the gas column and the holes in the shock tube

were rotated counter-clockwise by an angle of 15 degrees. Due to the rotation, the

distance that the initial conditions travel through the shock tube is increased. To

accurately capture the evolution of the column as it passes through the shock tube,

an additional FLUENT calculation was run. This calculation was identical to the

calculation used to generate the gas column initial conditions in Chapter 6, with the

exception that the distance between the top and bottom wall of the shock tube was

increased to 7.89 cm instead of 7.62 cm. Figure 7.4 shows the initial conditions as

generated in SHAMRC.

Figure 7.4: SHAMRC density contours of the initial conditions in the vertical plane.
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7.4 Numerical Results

Figure 7.5 shows results from the SHAMRC calculation of the air-droplet instability

from the 0 to 200 µs. These images are identical to the experimental results presented

in the previous section. The SHAMRC results capture both the initial rotation

due to the passing shock and the relatively constant angle of the instability in the

vertical plane thereafter. The calculation also captures the plume of particles that

is generated by the shock passing over the holes in the top and bottom of the shock

tube. Due to the angle of the holes, this plume is enhanced on the upper surface

and suppressed on the lower surface. This is effect is identical to what is seen

in experiments. Figure 7.6 shows horizontal slices at -2.0, 0.0, and 2.0 cm. The

images are arranged so that their position in the image is relative to their horizontal

displacement in the vertical column. Displaying the images in this manner clearly

illustrates the rotation of the cylinder as it evolves. The horizontal images are similar

in shape to those presented in Chapters 4 and 6, displaying little growth due to the

relatively low Atwood number.

Figure 7.7 shows results from the SHAMRC calculation of the SF6-droplet in-

stability from the 0 to 200 µs. These images are similar to the images presented

in Chapter 6. The numerical images show more particles in the centerline plane

downstream of the bridge than the non-inclined counterpart. As with the air-droplet

column, the instability that is formed near the top of the shock tube is enhanced,

while the instability at the bottom is suppressed. Figure 7.8 shows slices in the hor-

izontal plane for -2.0, 0.0, and 2.0 cm. The images are staggered to indicate their

relative position in the vertical plane. The oblique shock interaction creates vorticies

that are closer together than what is generated by the planar shock. This is also

reflected in the vertical slices by the more pronounced downstream column, which is

formed when the vorticies meet near the centerline downstream of the bridge.
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Figure 7.5: SHAMRC images in the vertical plane of the air-droplet instability at
M=1.67 for early times.

Figure 7.6: SHAMRC images in the horizontal plane of the air-droplet instability at
M=1.67 for early times.
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Figure 7.7: SHAMRC images in the vertical plane of the SF6-droplet instability at
M=1.67 for early times.

Figure 7.8: SHAMRC images in the horizontal plane of the SF6-droplet instability
at M=1.67 for early times.
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Figure 7.9 shows density contours from the vertical plane along the instability

centerline. From these images, the rapid development of the instability near the

top of the shock tube is clear. This figure also illustrates the initial rotation of the

gas column. It does not appear, however, that there is any significant rotation of

the center of the column after the initial acceleration. There does appear to be

more rotation near the bottom and top of the shock tube than was observed for

acceleration by the planar shock wave. Figure 7.10 shows density contours in the

horizontal plane for the SF6-droplet instability. The images are again staggered to

indicate their relative position in the vertical plane. The instability behaves similarly

to what is observed when accelerated by the planar shock wave. The instability grows

more rapidly near the top, where the core density is highest, and has the largest

perturbation height near the bottom, where the initial diameter is the largest.

Figure 7.9: SHAMRC density contours in the vertical plane of the SF6-droplet in-
stability at M=1.67 for early times.

Figure 7.11 shows density contours in both the vertical and horizontal planes

during the shock acceleration of the initial conditions. This image shows how the
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Figure 7.10: SHAMRC images in the horizontal plane of the SF6-droplet instability
at M=1.67 for early times.

passing shock compresses and rotates the gas column due to the angle of incidence

between the two. The shock has passed through the top half of the column, which has

a distinctly different angle than the unaccelerated bottom. A vertical line is shown

on the image for reference. There is a distinct differences between this line, and the

angle that the shock makes as it passes through the column. As the shock enter the

column it slows down due to the higher density gas. This deceleration causes the

shock wave to appear rotated with respect to the horizontal. The compression of

the gas column occurs perpendicular to this shock and causes the apparent initial

rotation of the initial conditions.

Figure 7.12 shows late time images in the vertical plane from the SHAMRC

calculations of the air-droplet (left) and SF6-droplet (right) instabilities. The images

were obtained 19.05 cm downstream of the initial conditions and can be compared

directly to Figure 7.3. These images are both good matches to the instability that

is observed in experiments and are similar in morphology to what is observed for
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Figure 7.11: SHAMRC density contours of the SF6-droplet instability showing the
shock acceleration of the initial conditions.

acceleration by a planar shock. Of note is the increased curvature of the instability

near the top of the shock tube for the multi-phase instability and the kink that is

observed near the top for the SF6-droplet gas column.

Initially, it was believed that there would be an apparent rotation of the instability

due to the angle between the shock wave and the initial condition column, however,

the numerical and experimental results presented here do not demonstrate a mea-

surable rotation. It may be that the angle between the shock and the gas column is

not large enough to produce a rotation that can be observed with these experiments.

In the horizontal plane, the interaction between the shock and the cylinder forms an

instability that grows rapidly due to the shape of the initial conditions. The rotation

in the vertical plane may be easier to observe in an instability that is generated from

small amplitude perturbations in the horizontal plane. Alternatively, it may be the

case that the vorticity deposited in the horizontal plane stabilizes the gas column,

leading to small local instabilities rather than a large scale rotation. In either case,
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Figure 7.12: SHAMRC images in the vertical plane of the air-droplet instabilities at
M=1.67 for late times.

more experimental and numerical investigations are be required to fully understand

this phenomenon.
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Conclusions

This dissertation presented experimental and numerical results for single and mul-

tiphase fluid instabilities generated by shock acceleration of a column of gas seeded

with glycol droplets. The experimental work was performed at the University of New

Mexico tiltable shock tube facility, and the computational analysis was performed

using the Eulerian hydrodynamics code SHAMRC. Experiments were conducted in

two shock tube configurations, horizontal and at a tilt angle of 15 degrees. The ex-

perimental images were obtained in two visualization planes (horizontal and vertical)

using a high speed camera and laser illumination.

Two cases were examined. The first was the traditional Richtmyer-Meshkov

Instability (RMI), where the passing shock wave accelerated a column of sulfur hex-

afluoride (SF6) seeded with glycol droplets. The experimental results were used as

validation of the SHAMRC models and to understand interaction between the fluid

and droplet phases. It was found that the droplets do not exactly follow the fluid

flow and must be explicitly modeled to generate numerical results that match the

experimental images. Two parameter studies were performed numerically to exam-

ine the effects of Atwood number and Mach number on the instability formation and
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growth. The streamwise perturbation width growth rate was compiled for Atwood

numbers ranging from 0.1 to 0.5 and Mach numbers ranging from 1.2 to 2.5. This

quantitative comparison showed the differences in the perturbation widths at vari-

ous Atwood and Mach numbers and that these results could be collapsed to a single

curve by using a non-dimensional scaling involving these two parameters.

The second case considered was a multi-phase analogue to RMI where air is

seeded with glycol droplets. In this case, there was no density gradient between the

gas column and the surrounding air. It was shown experimentally that this scenario

produces an instability that is similar to RMI in morphology despite the absence

of a fluid-fluid density interface. This instability was treated numerically in two

ways. The first method was to determine an average density for the initial conditions

by spreading the mass of the particles out over the volume that they occupied.

This method modeled the instability as traditional RMI with a very low Atwood

number. The second method was to model the droplets as discrete particles. Both

methods produced instabilities that were similar in morphology to those observed in

experiments. However, only by modeling the initial conditions as discrete particles

was is possible to recreate all of the features observed, namely a tail of trailing

particles. As the motion of the particles is directly affected by their size, SHAMRC

calculations were run with varying particles diameters. It was shown that increasing

the particle diameter has the effect of increasing the perturbation height of the

instability while reducing the growth rate of the perturbation width. It was also

shown that if the particles are not uniformly sized, the instability forms a tail of

trailing particles due to differences in drag forces, as was observed experimentally.

Finally, an experimental and numerical investigation of the three-dimensional ef-

fects of traditional and multi-phase RMI was performed. Experiments were run with

the shock tube in a horizontal configuration and at an angle of 15 degrees. The exper-

iments run with the shock tube in the horizontal position confirmed the assumption
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that both types of instability can be treated as two-dimensional, especially near the

center of the shock tube. However, near the top and bottom of the shock tube the

column lags behind, creating a small curvature. The results from 3D numerical sim-

ulations agreed well with these experimental observations and were used to confirm

that this curvature is primarily caused by interaction of the passing shock wave and

the holes in the shock tube used for generation of the initial conditions. Additionally,

for traditional RMI instabilities, there are vorticies that develop at late times due to

this interaction. Tilting the shock tube changes the angle of interaction between the

planar shock wave and the initial condition column. Experimental and numerical

results for the tilted shock tube configuration also demonstrated good agreement.

Upon acceleration by the shock wave the instability that formed was rotated from

its original angle, although no additional measurable rotation was observed.

SHAMRC proved to be a useful tool in exploring these types of fluid instabilities.

It provided insight into the experimental results and helped to better understand the

phenomena that were observed. In particular, SHAMRC was very useful in exploring

the effects of the composition of the initial conditions, varying the Atwood and

Mach numbers, and particle sizes on instability formation and growth. In general,

numerical tools can be extremely useful in interpreting experimental results and,

when properly validated, can be used to explore wide ranging parameter spaces not

readily accessible in experimental work.
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