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Abstract

High-order zero-pressure-gradient turbulent boundary layer statistics are important

for turbulence modeling efforts and insight into the nature of turbulent flow. In

this thesis, a complete database of third-, fourth-, and fifth-order central velocity

moments is presented. The statistics were extracted from flow field data from a

finely resolved direct numerical simulation by the Universidad Politécnica de Madrid

Fluid Dynamics Group. Fourth-order moment interrelations formed by invoking

Millionshtchikovs hypothesis of quasinormality and fifth-order moment interrelations

formed by utilizing truncated Gram-Charlier series expansions of the marginals of the

joint probability density function of the flow are presented. Reasonable agreement

was found for most of the moment interrelations. Flow visualizations using the Q

criterion are also presented.
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δ+ von Kármán number: δuτ/ν boundary layers, 0.5huτ/ν channels.

δ 0.995 of the boundary layer thickness.

δ∗ boundary layer displacement thickness.

θ boundary layer momentum thickness.

ν kinematic viscosity.

xvi



Chapter 1

Introduction

1.1 The Turbulent Boundary Layer

The complexity of turbulence is represented mathematically by the Navier-Stokes

equations. The nonlinear advection terms in the equations generate random velocity

and pressure fluctuations in turbulent flows. In a turbulent boundary layer, kinetic

energy from the free-stream flow is transferred into velocity and pressure fluctua-

tions in the boundary layer and then is dissipated in the boundary layer by viscosity.

However, fluid dynamicists continue to struggle to explain the mechanisms that pro-

duce the turbulent fluctuations, how energy is dissipated in the boundary layer, how

the different layers within the turbulent boundary layer interact, and what role the

structures (i.e. coherent motions) play in dynamics of the boundary layer.1

Sir Osbourne Reynolds was the first fluid dynamicist to decompose a turbulent

field into mean and fluctuating components.2 Reynolds showed that by substituting

the decomposed quantities into the Navier-Stokes equations an unclosed system of

equations is formed, known today as the Reynolds-averaged Navier-Stokes (RANS)

1



Chapter 1. Introduction

equations.3 The equations for mean velocity include ensemble-averaged velocity fluc-

tuation terms referred to as Reynolds stresses, which are representative of the cou-

pling between the turbulent fluctuations and the mean field.

An incompressible zero-pressure-gradient (ZPG) turbulent boundary layer on a

flat plate is considered the canonical turbulent boundary layer. It is expected that if

this flow is completely understood, it will shed light on the dynamics of more com-

plicated turbulent boundary layers that include curved surfaces, pressure gradients,

large free-stream turbulent fluctuations, injection/suction, and other complex flows.

In an incompressible ZPG turbulent boundary layer, the profile of the mean stream-

wise velocity is used to identify several layers, each associated with its own dynamical

processes, as shown for a moderate Reynolds number in Figure 1.1. The “+“ nota-

tion for the velocity U signifies nondimensionalization by the friction velocity uτ and

the same notation for the wall normal coordinate signifies nondimensionalization by

ν/uτ .

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

y+

U
+

Figure 1.1: Mean streamwise velocity at Reθ = 5200
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Chapter 1. Introduction

Closest to the wall is the viscous sublayer, where the effects of the fluid’s inertia

and the pressure gradient are small, and viscous effects are dominant. Moving away

from the wall, the next region is known as the buffer layer, which features anisotropic

distributions of distinct pockets of high and low fluid velocities.1 The buffer layer

contains the location of the peak turbulent kinetic energy production within the

boundary layer4,3,5 and the location of maximum turbulence intensity for moderate

Reynolds numbers.6,5 The next layer is the logarithmic (log) layer, which is named

after a theoretical logarithmic expression for mean velocity that includes empirically

determined coefficients called the log law. High Reynolds number turbulent boundary

layers may be defined as containing logarithmic regions of appreciable length.5 In

this region the effects of viscosity on turbulent fluctuations are negligible. Finally,

the outermost region of the turbulent boundary layer is referred to as the wake region

or outer layer.3,7 The outer layer is characterized by large eddy structures that form

a wavy interface between turbulent and irrotational parts of the flow, and the outer

layer entrains mass and momentum from the free-stream.8

3



Chapter 1. Introduction

1.2 Motivation

Turbulent boundary layers appear in many engineering applications. However, tur-

bulent flows contain a wide range of time and length scales and so directly simulating

the governing equations of turbulent flows requires massive computational resources.

The goal of turbulence modeling is to create models that accurately predict turbulent

flows using limited computational resources. Turbulence modelers strive to predict

variables relevant to engineering applications, such as an object’s drag coefficient,

and to reduce the number of floating point operations that must be performed.

Reynolds stress transport (RST) turbulence models are an attractive type of

turbulence model for engineering applications because they simulate turbulent flows

using less computational resources than direct numerical simulation (DNS) and large

eddy simulation (LES), and they produce more accurate results than first-order tur-

bulence closure models. RST models are second-order RANS turbulence models.

Like the first-order RANS equations, the RST equations are unclosed.

One modeling approach for closure is to generate closure terms using empirical

functions. However, the accuracy of an empirical function depends on how similar

the computed flow is to the flow used to generate the empirical function. The higher

the order of turbulence closure, the more sensitive the modeled terms are to the

dynamics of the specific flow. Therefore, empirical functions lack universality and

may introduce significant errors. In addition, the modeled terms of RST equations

include high-order mixed moments that are difficult to measure by experiment.

Another modeling approach for closure is to analyze the physics of the flow and

generate a mathematical statement through physical reasoning. An example of physi-

cal reasoning in turbulence modeling is the correct assertion that the effect of random

velocity fluctuations on turbulent flows closely resembles the effect of thermal agita-

4



Chapter 1. Introduction

tion of molecules on the movement of gases, known as the concept of eddy viscosity

or turbulent viscosity. Unfortunately, physical analysis of higher-order closure terms

is exceedingly difficult, but empirical functions and physical analysis are not the only

tools available to the turbulence modeler. Statistical tools may be employed to con-

struct closure terms from known variables. Closure schemes that employ statistical

tools promise more universality than empirical functions and more tractability than

physical reasoning.

1.3 Objectives

The complete statistical description of the evolution of near-wall turbulence behav-

ior is far from being obtained.3 In this thesis, LES and DNS are considered as tools

for collecting high-order turbulence statistics to add to the statistical description of

turbulent boundary layers. The primary goals of this thesis are 1) to extract high-

order statistical moments from flow field data of a turbulent boundary layer and 2)

to evaluate the validity of central moments constructed using Gram-Charlier series

expansions for the probability distributions of turbulent quantities9,6 and to evalu-

ate the validity of central moments constructed using Millionshtchikov’s hypothesis

of quasi-normality in the fluctuating components of the turbulent boundary layer

velocity field.10

This thesis is organized as follows: an overview of simulation types is provided

in Chapter 2. Chapter 3 discusses an unsuccessful attempt to collect turbulence

statistics by LES and the collection technique used for extracting turbulence statistics

from DNS data. Chapter 4 presents the turbulence statistics from DNS data and

the constructued central moments, and conclusions are drawn in Chapter 5.

5



Chapter 2

Simulation of Turbulent Boundary

Layers

2.1 Direct Numerical Simulation

Numerical solutions to the Navier-Stokes equations for turbulent conditions are re-

ferred to as direct numerical simulation. DNS was unattainable until the 1970s, when

the amount of memory and processing speed of the most advanced computers could

finally accommodate the wide range of length and time scales present in a turbu-

lent flow. In the last 40 years DNS has matured into a research tool for examining

geometrically simple turbulent flows such as jets, pipe flows, channel flows, wakes,

and boundary layers, to name a few. Verified and validated DNS data is considered

experiment-quality and provides a more detailed portrait of the flow field than is

possible through experiments.11 Conceptually, DNS is the simplest type of turbulent

flow simulation, but the wide range of scales present in turbulent flows requires fine

grid resolution and therefore extensive computational resources.

6



Chapter 2. Simulation of Turbulent Boundary Layers

For accurate DNS of turbulent flows, the spatial scales, from the integral scales

to the Kolmogorov scales, must be resolved. The integral scale is a spatial measure

of the largest possible eddy in the flow, and it is essentially the distance over which

the fluctuating component of the velocity remains correlated. An eddy is loosely

defined as a turbulent motion characterized by a timescale, lengthscale, and char-

acteristic velocity. Each linear dimension of the computational domain must be at

least a few times larger than the integral scale. The smallest resolved lengthscale,

the Kolmogorov scale η, imposes the fine grid resolution requirement for DNS and

consequently the computational expense.

Kolmogorov hypothesized that at high Reynolds numbers, the small-scale tur-

bulent motions are statistically isotropic (the turbulent fluctuations are of equal

magnitude in all directions).12 Kolmogorov further hypothesized that smallest ed-

dies receive energy from larger eddies at the same rate as the smallest eddies dissipate

heat, and so the motion at the smallest scale depends only on the rate of the supply

of energy, equal to the dissipation rate ε, and the kinematic viscosity of the fluid

Although Kolmogorovs hypotheses do not account for the presence of intermittency

(pockets of irrotational flow at all scales in turbulent flows), grid resolution of a

lengthscale of O(η) is widely considered a sufficient resolution criterion for accurate

DNS of turbulent flows.11 The assumption that the Kolmogorov lengthscale is the

smallest relevant lengthscale inherently assumes that the Kolmogorov lengthscale is

much larger than the mean free path of the molecules in the fluid, i.e. the continuum

hypothesis is valid.3

The physical motions captured by a simulation are functions of the grid resolution

and the numerical methods employed to discretize derivatives and interpolate values.

Generally speaking, a higher-order accurate spatial discretization may use fewer grid

points for the same flow resolution as a lower-order accurate spatial discretization

on more grid points. The error of spatial discretization schemes has two sources:

7



Chapter 2. Simulation of Turbulent Boundary Layers

differentiation error, which is an estimate of how well the discretization scheme re-

solves the derivatives of the flow, and error associated with the nonlinearity of the

Navier-Stokes equations.11,13 The differentiation error as a function of the resolution

of a wave may be estimated by matching the differentiation stencil with a truncated

Taylor series or by Fourier analysis of the velocity field.

The error associated with the nonlinearity of the Navier-Stokes equations is most

significant at the small scales. The nonlinearity of the equations causes the interac-

tion of scales smaller than the grid resolution and scales at and above grid resolution.

Intuitively, if the Kolmogorov scales are resolved the error will be small. If the nonlin-

ear spatial derivatives are represented as Fourier modes (i.e. a set of basis functions),

the nonlinear operations will generate higher modes than those represented by the

set.11,13 Therefore, the nonlinearity of the equations produces contributions from

higher-order modes that are improperly added to the set of basis functions. The

error from this process is referred to as aliasing, and it must be considered when

implementing discretization schemes.11,13

There are three common approaches to discretization of the Navier-Stokes equa-

tions: the finite difference method (FDM), the finite volume method (FVM), and the

finite element method (FEM). For the FDM, the partial derivatives of the govern-

ing equations are approximated in terms of the nodal values of the functions. The

result is one algebraic equation per grid node. The FDM is arguably the simplest

discretization scheme to implement but it is difficult to implement on unstructured

grids (grids composed of non-parallelepiped cells) and the method does not conserve

mass flux through the computational domain without the addition of a constraint.13

The FVM discretizes the integral form of the Navier-Stokes equations. As its

name implies, the computational domain is divided into smaller control volumes,

and the surface and volume integrals of the governing equations are approximated

using quadrature. The FVM conserves mass flux through the domain without addi-

8
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tional constraints and it is suited to any type of grid, but implementing the FVM

in three-dimensions is more difficult to program than FDM because differentiation,

integration, and interpolation schemes must implemented for all dimensions.13

The FEM also uses the integral form of the governing equations, but what distin-

guishes it from the FVM is the multiplication of weight functions to the integrands

computed for each of the discrete volumes, or elements, within the domain. The

FEM is relatively easy to analyze mathematically and use for complex geometries,

but the matrices of the linearized equations are often not well structured, so it can

be challenging to find efficient computational methods for FEMs.13

The wide range of time scales present in turbulent flows must be resolved by time

advancement schemes for DNS. Large timesteps may cause numerical instability for

explicit time advancement of DNS of constant-density incompressible flow. How

large is too large a timestep is revealed by the Courant condition for incompressible

flows, as shown in Equation 2.1.

u∆t

∆x
< α (2.1)

Here, α is a parameter that depends on the particular selected time advancement

scheme and u is a characteristic velocity. The logic of the Courant condition is that

a simulation will become unstable if a fluid parcel moves across a cell in less time

than the simulation advances.

Since the Navier-Stokes equations include only a first-order time derivative, time

advancement schemes are numerical solutions to ordinary differential equations (ODEs).

Problems featuring wide ranges of time scales are called stiff and are the most chal-

lenging ODEs to solve.11 Third- and fourth-order Runge-Kutta schemes are common

time advancement schemes. For incompressible flow, the speed of sound is infinite

and consequently pressure cannot be computed explicitly. The fractional step method

of Kim & Moin14 is a popular method for implicitly solving for the pressure and en-

9
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forcing continuity. A review of common time advancement schemes may be found in

Ferziger.13

Inducing and sustaining a turbulent boundary layer in DNS is challenging because

of the computational constraints on domain size. Simulating transition from laminar

to turbulent flow requires a large computational domain and the tripping mecha-

nism for the transition adds complexity to the simulation. A common alternative to

simulating transition to turbulence is to employ a turbulent inflow method.

It is an ongoing challenge to construct a turbulent inflow method such that the

turbulent fluctuations at the inlet plane possess physically accurate phase relation-

ships and anisotropy. Spalart & Leonard15 created one of the first turbulent inflow

methods. They proposed a coordinate transformation of the Navier-Stokes equations

that represents the turbulent boundary layer in a statistically homogenous manner

in the streamwise direction. The result permits the use of periodic boundary condi-

tions, so that the simulation generates its own turbulent inflow, as well as the use of

a highly accurate Fourier series representation of the velocity field in the streamwise

direction. However, their method is complicated and difficult to program. Lund et

al.16 proposed a much simpler “modified Spalart method” that does not require a

coordinate transformation of the Navier-Stokes equations and instead rescales the

mean and fluctuating quantities at a downstream recycle station using a single em-

pirical relation and feeds the information to the upstream inlet plane. Their method

is arguably the most popular turbulent inflow method used for DNS and LES. For

a detailed review of the multitude of turbulent inflow methods the reader is referred

to Sagaut.17

If the error introduced by the turbulent inflow method at the inlet plane is min-

imal, then turbulent fluctuations consistent with the dynamics of the Navier-Stokes

equations are reconstructed by nonlinear effects as the flow progresses in the stream-

wise direction. Once the maxima of the fluctuation intensities (the peak fluctuating

10
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quantities divided by their respective mean quantities) has reached what appear to be

asymptotic gradual growth rates, the reconstruction of the turbulent fluctuations is

complete.8 The streamwise length over which the reconstruction occurs, after enough

time for the initial flow conditions to pass completely out of the domain, is known

as the adaptation length. The adaptation length may be measured by an approxi-

mation of the distance that the largest eddies in the flow are advected, known as the

eddy turnover length, Lto, expressed in Equation 2.2.18

Lto =
U∞δ99
uτ

(2.2)

A non-dimensional turnover distance for the adaptation length, x̃, may be calculated

by integrating the streamwise distance of the adaption length divided by the turnover

length, expressed in Equation 2.3.18

x̃ =

∫ x

0

uτ
U∞δ99

dx (2.3)

The significant computational expense of DNS forbids its use as an engineering tool

and restricts its use to investigating relatively simple flows of moderate Reynolds

number. As shown in Figure 2.1, the Reynolds number based on momentum thick-

ness θ of many practical flows is often several orders of magnitude larger than what

is possible to simulate by DNS, and high-quality experiments require expensive facil-

ities.19 Some groups have argued that the observed Reynolds number dependence of

turbulence statistics is purely a consequence of which quantities are chosen for non-

dimensionalization, commonly referred to as scaling variables.11 However, Reynolds

number dependence and appropriate scaling variables are topics of ongoing debates

that require more extensive explanations than can be provided here. For simplicity,

conventional inner and outer scaling variables are used in this thesis. The reader is

referred to DeGraaff & Eaton,7 George & Castillo20, Monkewitz et al.,21 Panton,22

and Wei et al..23 for more information regarding the new scaling variables.

11
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Figure 2.1: Reθ ranges for various applications

2.2 Large Eddy Simulation

Large eddy simulation is a useful tool for collecting flow field information from flows

that are too computationally expensive to simulate by DNS. As the name implies,

the largest eddies are simulated directly and the smallest eddies are modeled. The

level of approximation of the flow may be split into two components: the level of

space-time resolution and the level of dynamic description. The gap between the

smallest relevant scales simulated without modeling and the Kolmogorov scales is

a measure of the space-time resolution. The required level of space-time resolution

for a flow depends on what information is sought. The selected level of dynamic

description is determined by judging the relative importance of the various forces

acting on the primitive variables. For example, all of the turbulent boundary layer

simulations described in this document simulate perfectly isothermal, incompressible

flows of Newtonian fluids, which are, strictly speaking, unrealistic. The differences

between the simulated flows and real flows with infinitesimal variations in temper-

ature and viscosity due to such assumptions are negligible in most cases. However,
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neglected dynamics in the subgrid turbulence models that describe the turbulence of

the unresolved scales, also known as the subgrid scales, are often significant. The dy-

namics that are modeled are often flow-specific, and the interested reader is referred

to Kassinos et al.24

The governing equations of explicit LES feature additional terms that account

for the evolution of the flow at the subgrid scales. The mathematical filtering of

the flow into resolved and unresolved quantities is misleadingly similar in form to

Reynolds decomposition. For Reynolds decomposition, the mean of the fluctuating

quantities is zero by definition, but for LES the mean of the unresolved quantities is

not necessarily zero. The concept of subgrid viscosity is also distinct from the concept

of turbulent viscosity because its corresponding lengthscale is grid-dependent. One

popular subgrid scale turbulence model is the subgrid-viscosity model of Germano et

al.25 The model is a turbulence closure scheme, based on the local resolved scales, that

is composed of an equation for the subgrid scale stresses and a subgrid scale kinematic

viscosity relation. For more information on subgrid models and explicit LES, the

reader is referred to Saguat.17 For implicit LES, extra terms are not introduced

into the governing equations. Instead, complex numerical methods are chosen that

effectively cancel the numerical error of the computations with the resolution error

of the grid.

Boundary conditions and the turbulent inflow methods for LES are similar to

those for DNS. Both DNS and LES may be computed in physical space or Fourier

(spectral) space. In Fourier space, the spatial variations of the primitive variables

are represented as a truncated series of orthogonal basis functions. Computations in

Fourier space are more efficient because the basis functions are global, so the solutions

for all points are computed in the same operation. The drawbacks of computing the

flow field in Fourier space are that it is more challenging to compute in parallel and

that periodic boundary conditions must be used.
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2.3 Reynolds-Averaged Navier-Stokes Simulation

In general, engineering applications of computational fluid dynamics do not require a

complete description of the evoloution of the flow field. Instead, engineers are often

interested solely in mean quantities. A computationally affordable alternative for

an engineer using a desktop computer is to solve for the one-point moments of the

flow field using a truncated set of the RANS equations. The RANS equations are

formed by using Reynolds decomposition to average the flow, as in Equation 2.4-

Equation 2.6. The turbulent quantities are decomposed into mean and fluctuating

components, the bar notation indicates averaging, and the index i is used for Einstein

notation of the velocity vector components.

ũi = Ui + ui, p̃ = P + p, (2.4)

ũi = U, p̃ = P, (2.5)

ui = 0, p = 0. (2.6)

The decomposed quantities are substituted into the Navier-Stokes equations, and

the raw moments of the Navier-Stokes equations are formed, as in Equations 2.7 and

2.8.

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −∂P
∂xi
− ∂uiuj

∂xj
+ ν

∂2Ui
∂x2j

, (2.7)

∂Ui
∂xi

= 0. (2.8)

The system of mean velocity equations in Equations 2.7 and 2.8 is unclosed

without an additional equation for the Reynolds stress, uiuj, generated by the non-

linear terms in the Navier-Stokes equations. By taking the raw moment of the first

central moments and the raw moment of the Navier-Stokes equations, a transport

equation for uiuj is generated. The transport equation for uiuj is known as the
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Reynolds stress transport equation and it includes a new obstacle for closure, the

third-order central moment uiujuk. By taking the raw moment of increasingly high-

order central moments and the Navier-Stokes equations, an infinite set of RANS

equations may be formed. Equations 2.9 and 2.10 show operation which generates

the RST equation. Equations 2.11 and 2.12 show the operations that generate the

third- and fourth-order central moment transport equations.

N(ũi) =
∂ũi
∂t

+ ũj
∂ũi
∂xj

+
∂p̃

∂xi
− ν ∂

2ũi
∂x2j

, (2.9)

uiN(ũj) + ujN(ũi) = 0, (2.10)

uiujN(ũk) + uiukN(ũj) + ujukN(ũi) = 0, (2.11)

uiujukN(ũl) + uiujulN(ũk) + uiukulN(ũj) + ujukulN(ũi) = 0. (2.12)

A complete set of RANS equations yields a complete statistical description of

the evolution of a turbulent flow field.26 However, the system of equations must be

truncated for computation; therefore, some terms must be modeled for closure. The

order of the closure scheme corresponds to highest order moments that are solved

for at all grid points, i.e. a first-order RANS closure scheme generates solutions for

only the mean quantities.

Typical first-order closure strategies involve a transport equation for turbulent

kinetic energy, which is derived by taking the trace of the RST equation. All of the

terms in the turbulent kinetic energy transport equation have a firm physical basis.

However, another equation representing the evolution of turbulent lengthscales is

required for first-order closure schemes. Transport equations for the dissipation rate

of turbulent kinetic energy, eddy viscosity, and other surrogate quantities for the

turbulent lengthscale are commonly used for one- and two-equation RANS closure

schemes. The number of equations in the description of a RANS closure refers to

the number of transport equations of turbulent quantities. A thorough review of

common one- and two-equation RANS closure schemes may be found in Wilcox.27
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Spalart28 defined two principal challenges for turbulence modeling: I) accurate

prediction of the growth and separation of turbulent boundary layers, and II) ac-

curate prediction of momentum transfer after separation. Simulations of first-order

RANS closure schemes can achieve limited accuracy for challenge I flows and are in-

accurate for challenge II flows.28 A significant source of error arises from the empirical

functions employed throughout first-order closure schemes. Empirical functions are

not universal to all flows by the nature of their formulation. Furthermore, it has

been shown analytically that for some wall-bounded flows first-order closure schemes

cannot accurately predict mean velocity components.29

Second- and higher-order closure schemes offer improved descriptions of chal-

lenge I and II, compared with first-order closures, and include more statistical detail.

Higher-order closure terms are more difficult to model with empirical functions28 be-

cause it is more difficult to collect the relevant data from experiments, and the behav-

ior of higher-order closure terms is more sensitive to the specific flow. However, it has

been demonstrated that statistical tools for describing random fields can be used to

formulate higher-order moments in terms of lower-order moments.6,30 Turbulent ve-

locity fields are known to be approximately Gaussian at individual points in the flow

but do not constitute Gaussian random fields. The marginals of a three-dimensional

joint probability density function, describing a close-to-Gaussian turbulent velocity

field, may be approximated as Gram-Charlier series expansions.9 By truncating the

series expansions, higher-order mixed velocity moments may be equated to sums

and products of lower-order mixed velocity moments. Similar formulations may be

generated by using the Millionshtchikov’s hypothesis of quasi-normality in the fluc-

tuating components of the velocity field.10 High-order central moment interrelations

are discussed in section 5.3 and 5.4.
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2.4 Other Types of Simulations

In recent years, several new types of simulations have been developed. Notable

examples include unsteady Reynolds-averaged Navier-Stokes (URANS) simulations,

detached eddy simulation (DES), and quasi-direct numerical simulation (QDNS).

In contrast to RANS simulations, which inherently assume that the flow is steady,

URANS simulations advance the flow in time and capture only fluctuations with

lower frequencies (larger time scales) than the time step used for advancement. DES

is a hybrid of RANS simulation and LES techniques that uses the RANS equations

in regions of the flow where the turbulent scales are very small. QDNS is essentially

very finely resolved LES that employs a subgrid scale model for viscous stress alone.

A complete review of URANS, DES, and QDNS is not possible here, and the reader

is referred to Speziale31 for more information regarding URANS, Spalart28 regarding

QDNS, and Spalart32 regarding DES.
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Chapter 3

Generation of Turbulent Statistics

Two attempts were made to collect high-order turbulent statistics. The first attempt

involved modifying the High Gradient hydrodynamics code (HIGRAD), an LES code

written by researchers at Los Alamos National Laboratory, for simulation of a ZPG

turbulent boundary layer. The second attempt involved post-processing the data of

a DNS of a ZPG turbulent boundary layer to collect the desired statistics.

3.1 LES using the High-Gradient Hydrodynamics

Code of Los Alamos National Laboratory

HIGRAD is an atmospheric computational fluid dynamics code created by Los

Alamos National Laboratory to accurately represent flows characterized by sharp

gradients in velocity, concentration, and temperature. HIGRAD uses a fully com-

pressible finite-volume formulation for explicit LES and features an advection scheme

that is second-order accurate in time and space. HIGRAD includes a grid transfor-

mation from the simulation grid to a fully orthogonal computational grid of constant
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resolution.33 The grid transformation reduces the error associated with numerical

discretization of the governing equations onto irregular grids of topography. HI-

GRAD has been used to simulate a wide variety atmospheric phenomena including

hurricanes, flow over urban areas, explosive dispersion, and coupled wind turbine/at-

mosphere processes.34,35

FIRETEC is a multi-phase transport wildfire model that couples with HIGRAD.

Within FIRETEC is a subgrid model that contains turbulence closure equations. It

includes a Reynolds stress tensor model based on the Boussinesq approximation,27

turbulent kinetic energy transport equations, and a subgrid-viscosity model, all of

which are represented on three subgrid scales.36

HIGRAD was selected as a potential tool for generating high-order turbulent

statistics because data from finely resolved LES may closely approximate data from

DNS. However, to modify HIGRAD for simulation of a ZPG turbulent boundary

layer over a flat plate eight modifications were required. The required modifications

and the progress made towards achieving them are presented in the list below.

1. Modification of Grid Transformation Scales.

The grid transformation scheme within HIGRAD permitted a minimum cell

dimension of 1 m. This was changed to allow a minimum grid dimension of

1· 10−7m.

2. Implementation of a Wall Boundary Condition.

As an atmospheric CFD tool, HIGRAD uses a permeable solid boundary con-

dition at the wall to model the effect of vegetation on atmospheric flows. A

Dirchlet boundary condition was used to set the velocity components at the

wall to zero, and a Neumann boundary condition was used to set the derivative

of the pressure at the wall to zero.

19



Chapter 3. Generation of Turbulent Statistics

3. Implementation of a Boundary Condition at the Top of the Domain for a ZPG.

To maintain a ZPG, the simulation domain height must be much greater than

the boundary layer height or a lower domain height may be used in conjunction

with a special top boundary condition. For the latter, the boundary condition

at the top of the domain must allow a unit mass equal to that contained within a

unit volume with the height of the displacement thickness to exit. To implement

the condition, a Neumann boundary condition must be implemented for the

streamwise and spanwise velocity components (Equation 3.1) and a streamwise

function (Equation 3.2) must be implemented for the wall-normal velocity.16,18

∂ũ

∂y
=
∂w̃

∂y
= 0, (3.1)

ṽ = U∞
∂δ∗

∂x
. (3.2)

Neuman boundary conditions that set the wall-normal derivatives of all ve-

locities to zero were implemented in HIGRAD and the computational domain

heights were a minimum of 20 boundary layer thicknesses.

4. Implementation of a Turbulent Inflow Method and Convective Exit Boundary

Conditions.

As discussed in Chapter 2, simulating transition to turbulence is computation-

ally demanding for both DNS and LES. In addition, simulating transition to

turbulence requires special subgrid models. Alternatively, turbulent inflow gen-

eration methods attempt to produce turbulent fluctuations at the inlet plane

that possess accurate phase relationships and anisotropy. A turbulent inflow

method was not introduced, but the modified Spalart method by Lund et al.,16

which rescales the exit velocities using an empirical function for the friction

velocity, was selected as a potential candidate. However, to implement the

method of Lund et al.16 the discretized equations and their associated numer-

ical schemes must be converted from compressible to incompressible forms.
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5. Turbulent Flow Initialization.

The flow fields were initialized using mean velocity profiles from simulations

of similar Reynolds number and a random turbulent intensities from 0 to 0.1

superimposed uniformly on the mean profiles. If an appropriate amount of time

elapses, it has been shown that this is an acceptable initialization procedure.16

6. Addition of Viscous Diffusion to the Governing Equations.

Viscous diffusion terms were added by adding a constant kinematic viscosity

to the subgrid model terms in the resolved momentum equations. The modifi-

cation added a viscous diffusion term to the resolved scales alone.

7. Modification of the FIRETEC Subgrid Model to a Conventional Subgrid Vis-

cosity Model.

As mentioned previously, to collect high-order statistics using LES the com-

putational grid resolution must approach the resolution requirements for DNS.

As the grid becomes finer, the effect of the subgrid model on the resolved scales

decreases. The FIRETEC subgrid model was modified to compute one subgrid

scale, with no combustion, for an isothermal flow.

8. Implementation of an Incompressibility Condition and Appropriate Discretiza-

tion Methods.

To avoid compressiblity effects the computed flows were of a Mach number

of 0.3 or less.37 However, the addition of unneccessary equations and terms

potentially introduce an additional source of numerical error and present an

additional challenge for implementing a turbulent inflow method. Optimally,

HIGRAD would be converted to computing incompressible flow, but numerical

schemes for compressible flows are quite different than those for incompressible

flows and the task of converting HIGRAD into an incompressible flow-solver is

non-trivial.
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Given the significant amount of required code modifications presented above and a

project timescale of one year, the attempt to simulate a high-fidelity ZPG turbulent

boundary layer was abandoned in favor of utilizing data from an existing DNS of a

ZPG turbulent boundary layer.

3.2 DNS by the UPM Fluid Dynamics Group

The Universidad Politécnica de Madrid (UPM) Fluid Dynamics Group generously

provided velocity and pressure fields from their DNS of a ZPG turbulent boundary

layer flow over a flat plate for the extraction of high-order turbulent statistics. A

precursor low-resolution simulation, referred to as BLAUX , was used to minimize the

flow development distance and generate a turbulent flow field passed to the inlet of

the main high-resolution simulation, BL6600. The UPM group used the method of

Lund et al.16 for BLAUX , so it generated its own turbulent inflow from a recycle

location. A location towards the back of the computational domain of BLAUX was

sampled for the inflow of BL6600. The turbulent flow field was passed from BLAUX

to BL6600 by making three adjustments. The first was to interpolate the flow field

to fit the node locations of the BL6600 grid, the second was to extend the area of free

stream flow upwards to match the taller height of BL6600, and the third modification

was to slightly adjust the passed turbulent field to enforce constant mass flux inflow

for BL6600. The domain of BL6600 extends from Reθ = 2780 to 6680 in the streamwise

direction, and the ratio of the domain height to the boundary layer thickness at the

exit plane is approximately 2.5. The physical orientation of BLAUX and BL6600 from

Sillero et al.18 is shown in Figure 3.1.

Periodic spanwise boundary conditions and convective exit boundary conditions

were used for both computational domains. The primitive-variable formulation of the

incompressible Navier-Stokes equations was solved using a fractional step method14
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Figure 3.1: Boundary layer simulation schematic

to ensure mass conservation. Spatial derivatives in the streamwise and wall-normal

directions were computed using staggered three-point compact finite differences38

with the exception of the Poisson equation for pressure, which was computed with

centered second-order finite differences. Staggered Cartesian grids, shown in Fig-

ure 3.2 as drawn in Simens et al.,39 were introduced by Harlow & Welch40 and allow

for straightforward evaluation of the mass fluxes in the continuity equation due to

the location of the velocities on the cell faces.

Compact finite difference schemes, such as Padé schemes, can be derived by

fitting polynomials to the velocity profile across several nodes. Unlike traditional

finite differences, compact finite differences use the derivatives of the velocity profile

as well as the velocity profile to derive coefficients for a matching polynomial.38 The

advantage of compact finite difference schemes is that they require fewer nodes for

the computation of derivatives compared with central finite differences. A Fourier

spectral representation was used for the variables in the spanwise direction, dealiased
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Figure 3.2: BL6600 staggered grid

using the 2/3 rule. Time was advanced using a semi-implicit, three-step Runge Kutta

scheme. The reader is referred to Simens et al.39 regarding further numerical method

details, and to Borrell et al.41 for code parallelization details.
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Analysis of Turbulent Statistics

4.1 Interpolation and Ensemble Averaging

High-order turbulence statistics were collected at streamwise locations correspond-

ing to Reθ = 4101 and 5200 (δ+ = 1331 and 1626). It was determined in Sillero

et al. that all relevant flow scales in BL6600 are correctly represented for Reθ >

4800. However, statistical comparisons with experiment data were deemed accept-

able as low as Reθ > 4101 because was shown by Sillero et al.18 that the maximum

Reynolds stress, δ/θ, and the wake intensity are close to convergence at Reθ = 4101.

In addition, the second-order statistics collected by a hot wire anemometry (HWA)

experiment by Schwarz42 at the same Reynolds number possess up to 15% uncer-

tainty. Turbulence statistics were obtained using over 200 statistically independent

flow realizations taken from the simulation after an initial washout period for a to-

tal time period of approximately 11.5 turnover times of the largest turbulent eddy,

defined as t = δ/uτ .
18 Statistics were ensemble averaged over the spanwise direction

and the streamwise direction for a short region in which the change in the boundary

layer thickness is less than 1.22%.
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The formal order of accuracy of a simulation is the lowest order numerical scheme

implemented in the code.39 As the UPM Group implemented a centered second-

order finite difference scheme to solve the Poisson equation, the data is formally

second-order accurate.39 Fourth-order compact finite differences schemes38 were im-

plemented to compute derivatives in the streamwise and wall-normal directions in

the simulation. A fourth-order interpolation scheme was employed to interpolate

the data and collocate the staggered grid for statistical analysis. An algorithm cre-

ated by Fornberg43 for approximating the derivatives of a variable was used as a

computationally efficient procedure for polynomial interpolation.

The Lagrange interpolation formula44 states that the unique interpolation poly-

nomial, p(x), interpolates the total velocity ũ(xi) at distinct node locations xi, where

i = 1 : n is expressed by Equations 4.1 and 4.2.

lj(x) =
n∏
i=1

x− xi
xj − xi

, j = 1 : n, i 6= j, (4.1)

p(x) =
n∑
j=1

ũ(xj)lj(x). (4.2)

To approximate the behavior of the kth derivative at a given x location, Fornberg43

stated Equation 4.3.

dkũ(x)

dxk
≈ dkp(x)

dxk
. (4.3)

The weights cj
k may then be found by substituting recursion relations for La-

grange polynomials into a Taylor series approximation of the previous equation.43

Once the weights are found, the polynomial of the kth order derivative may be com-

puted for a given location (Equation 4.4).43 The zeroth derivative is an interpolation.

dkp(xj)

dxk
=

n∑
j=1

ckju(xj). (4.4)
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4.2 Statistical Tools for Closure Schemes

Once the staggered streamwise and wall-normal velocities were collocated the random

pressure and velocity fields were decomposed by Reynold’s decomposition into mean

and fluctuation components, as shown in chapter 2. The mean quantity is also

referred to as the statistical expectation or raw moment of a random variable, and

the fluctuating quantities are the first central moments, shown in Equations 4.5 and

4.6.45

(ũ− U)n = un, (4.5)

u0 = 1, u1 = 0, u2 ≥ 0. (4.6)

The second central moment is known as the variance and is the square of the

standard deviation. Standardized moments are higher-order central moments nondi-

mensionalized by the variance and raised to one half the order of the corresponding

central moment.45 The third- and fourth-order standardized moments, shown in

Equations 4.7 and 4.8, are known as the skewness and flatness factors, respectively.

Su =
u3

u2
3/2
, (4.7)

Fu =
u4

u2
2 . (4.8)

The sign of the skewness factor indicates the direction of a shift in the peak of a

Gaussian probability distribution. A Gaussian probability distribution is symmetric

about zero for central moments, so S = 0 for Gaussian probability distributions. The

flatness factor is a measure of the thickness of the tails of the distribution, and for a

Gaussian distribution the flatness factor is F = 3.45

If all of the statistics of a random field are invariant under a shift in time, it

is statistically stationary. Similarly, if all of the statistics of a random field are
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invariant under a shift in space, it is statistically homogenous.45 The theorem of

ergodicity states that if a random field is statistically stationary and homogenous then

indefinitely repeated sampling from a single probe will produce the same results as a

single sample from a large number of probes.17 Since the considered ZPG turbulent

boundary layer is statistically homogenous in the spanwise direction and statistically

stationary in time, the theorem of ergodicity permits spatio-temporal averaging to

increase the size of the statistical sample. In addition, a limited distance in the

streamwise direction may also be used to increase the sample because the flow is

approximately homogenous for a distance that corresponds to a change in boundary

layer height of less than 1.22%. Equations 4.9-4.11 express the ensemble averaging

for third-, fourth-, and fifth-order mixed moments.

uiujuk =
1

NzNtNx

∫ z

z0

∫ t

t0

∫ x

x0

(ũi − Ui)(ũj − Uj)(ũk − Uk)dzdtdx, (4.9)

uiujukul =
1

NzNtNx

∫ z

z0

∫ t

t0

∫ x

x0

(ũi − Ui)(ũj − Uj)(ũk − Uk)(ũl − Ul)dzdtdx, (4.10)

uiujukulum =
1

NzNtNx

∫ z

z0

∫ t

t0

∫ x

x0

(ũi − Ui)(ũj − Uj)(ũk − Uk)(ũl − Ul)(ũm − Um)dzdtdx.

(4.11)

As mentioned in chapter 2, the DNS data evaluated in this thesis is used to

examine the validity of higher-order central moments constructed from lower-order

central moments for second- and higher-order RANS model closures. Currently,

there are two approaches to construct higher-order central moments constructed from

lower-order central moments based on considering statistical properties of a turbulent

flow field. The first approach, as shown by Fériet9 begins by writing the boundary

layer transport equations for central moments starting from the conservation laws,

as shown below in Equations 4.12 and 4.13.
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1

n+ 1

∂un+1
i

∂t
+

Uj
n+ 1

∂un+1
i

∂xj
+uni uj

∂Ui
∂xj

+
1

n+ 1

∂un+1
i uj
∂xj

−uni
∂uiuj
∂xj

= uni (ν
∂2ui
∂x2j
− ∂p

∂xi
),

(4.12)

Ωi = uni (ν
∂2ui
∂x2j
− ∂p

∂xi
). (4.13)

For steady wall-bounded flows, the three-dimensional joint probability distribu-

tion, Pj(uj, v,Ωi), may be introduced. The marginals of the joint probability distri-

bution are Equations 4.14 and 4.15.

Pi1(ui, v) =

∫ ∞
−∞

Pi(ui, v,Ωi)dΩi, (4.14)

Pi2(ui,Ωi) =

∫ ∞
−∞

Pi(ui, v,Ωi)dv. (4.15)

In a non-Gaussian turbulent velocity field, as in most turbulent flows of indus-

trial interest, Gram-Charlier series expansions (a series expansion using orthonormal

functions in the form of Hermite polynomials) may be used to represent the marginals

of the joint probability distribution.9 The first terms of the expansion correspond

to a Gaussian probability distribution and the remaining terms in the expansion ex-

press deviations from a Gaussian distribution.6 By truncating the expansion, it was

shown that alternative sets of equations for the interrelations of the moments may

be derived.6,30 The fourth- and fifth-order interrelations of the high-order moments

obtained by truncating Gram-Charlier expansions are shown below in Equations

4.16-4.18.

u5i = 10 u2i u
3
i , (4.16)

u4iuj = 6 u2i u
2
iuj + 4uiuj u3i , (4.17)

u2iu
3
j = 6 uiuj uiu2j + u2i u

3
j + 3u2iuj u

2
j . (4.18)
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The Gram-Charlier series expansion procedure is applicable to fourth- and higher-

order statistical turbulence closures and its validity was successfully tested in bound-

ary layer flow experiments, such as, the turbulent boundary layer on a flat plate,30,46,47

and an open-channel flow over smooth and rough surfaces.48 Good agreement be-

tween experimental data49,50 and those obtained using the Gram-Charlier series ex-

pansion technique was also observed in a cylindrical pipe flow.51,52 The second pro-

cedure uses Millionshtchikovs hypothesis of quasinormality.10 The quasinormality

hypothesis is used in third-order statistical closures and is based on the assumption

of Gaussian distribution of a turbulent velocity field for fourth- and higher-order

velocity correlations. The validity of this hypothesis was demonstrated for one-point

statistics in experiments by Uberoj53 and for two-point statistics by Zaets.54 In the

turbulent boundary layer, Equations 4.19 and 4.20 relate the central velocity mo-

ments.

u3iuj = 3 uiuj u2i , (4.19)

u2iu
2
j = 2 uiuj uiuj + u2i u

2
j . (4.20)
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Results

The one-point, first- and second- order moments (i.e. the mean velocities and

Reynolds stresses) extracted from BL6600 at Reθ = 5160 are discussed in detail by

Sillero et al.18 They presented additional validation information, and the reader is

referred to Sillero et al.18 for more information regarding the validation of lower-order

moments.

5.1 Third-, Fourth-, and Fifth-Order Moments

The reported statistics constitute the first complete DNS database of third- to fifth-

order velocity central moments in turbulent boundary layers. Figures 5.1 to 5.38 plot

the behavior of the third-order central velocity moments throughout the turbulent

boundary layer at streamwise locations corresponding to Reθ = 4101 and 5200. The

bar notation is used to signify the ensemble averaging discussed in Chapter 3. The

plots are shown with conventional inner and outer scaling dimensions y+ and y/δ,

respectively. Blue lines correspond to data extracted at Reθ = 4101 and the red lines

correspond to data extracted at Reθ = 5200.
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Third-order moment validation data from hot wire anemometry (HWA) measure-

ments at Reθ = 4101 by Schwarz,42 laser doppler velocimetry (LDV) measurements

at Reθ = 5200 by DeGraaff,55 HWA measurements at Reθ = 4980 by Smith &

Schwartz,56 and HWA measurements Reθ = 4850 by Klewicki57 are depicted by •,

×, 4, and +, respectively. Verification DNS data from a simulation by Schlatter &

Örlü58 is shown by ©.

The BL6600 results and experiment data are in general agreement, except for ve-

locity moments that contain higher powers of the wall-normal velocity fluctuation

such as v3
+

and uv2
+

. For the HWA results, the discrepancy may be explained by the

difficulty of measuring central moments of the wall-normal velocity with one hot wire

directly adjacent to the other.7 It has also been noted that size of the hot wire may

mask or expose the statistical footprints of different structures, determined by the

size of the hot wire.59 Although the hot wire measurements of Schwarz42 are recorded

only in the outer region of the turbulent boundary layer, the statistical footprint of

smallest wall-normal fluctuations (i.e. Kolmogorov eddies η ≈ 1.5δv) may be filtered

out by the large size of the hot wire. The characteristic non-dimensional length for

a hot wire is L+ = Luτ/ν, where L is the active length of the wire. Table 5.1 shows

a comparison of the spatial resolution of BL6600 and wire resolution of the HWA

experiment by Schwarz.

Data δv ∆y+, L+

BL6600 0.0074m 0.32
Schwarz (HWA) 0.000015m 83.90

Table 5.1: Resolution Comparison at Reθ = 4101

The skewness factors indicate significant departures from Gaussian distribution

in the viscous sublayer and outer region for streamwise and wall-normal velocity

fluctuations. The large quantity of positive wall-normal fluctuations in those regions,
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shown by the experiment data as well as the DNS data, may contribute to the HWA

experiment spatial resolution error in the outer region.

Schlatter & Örlü58 also used a version of the Lund et al.16 turbulent inflow gen-

eration method, but they computed all primitive variables in Fourier space. Table

5.2 compares the spatial resolution of BL6600 to the spatial resolution of the LDA

by DeGraaff.55 The spatial resolution error of the LDA by DeGraaff55 is comparable

to that of the UPM Fluid Dynamics Group’s DNS and therefore does not explain

the difference between the DNS data and the LDA data. The difference could be ex-

plained by an overprediction of the friction velocity in the experiment by DeGraaff.55

Data δv ∆y+ ∆z+

BL6600 0.0076m 0.32 4.07
DeGraaff (LDA) 0.000021m 1.65 2.83

Table 5.2: Resolution Comparison at Reθ = 5200

Fourth- and fifth-order central velocity moments were obtained at both of the

specified Reynolds numbers. The streamwise flatness factor agrees with the HWA of

Klewicki et al.57 in the inner region, and the DNS of Schlatter & Örlü58 throughout

the boundary layer. A slight variation in the two sets of DNS profiles from BL6600 is

observed between Reθ = 4101 and 5200. As mentioned in the Chapter 1, Reynolds

number dependence of turbulent boundary layer statistics is considered by some

groups to be a result of inappropriate scaling.11 However, many groups have observed

Reynolds number scaling for central moments in turbulent boundary layers similar

to the differences in the BL6600 statistical profiles.7,55,60,19,59 It has been argued that

at very high Reynolds number statistics become asymptotic.5 A small error in the

calculation of the Reθ = 4101 statistics was discovered but the presented results are

within a few percent of the true values for all comparisons with experiment data.
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5.2 Moment Interrelations from the Gram-Charlier

series expansion procedure

Figures 5.41 to 5.60 show the interrelations of fifth-order moments constructed using

the truncated Gram-Charlier series expansion procedure discussed in Section 4.2.

The constructed moments are plotted as a dashed black line and solid black line

for Reθ = 4101 and Reθ = 5200, respectively. As before, the blue lines correspond

to BL6600 simulation data extracted at Reθ = 4101 and the red lines correspond to

BL6600 simulation data extracted at Reθ = 5200.
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5.3 Moment Interrelations fromMillionshtchikov’s

hypothesis

Figures 5.61 to 5.70 show the fourth-order moment interrelations constructed using

the Millionshtchikov quasinormality hypothesis procedure discussed in Section 4.2.

The figures demonstrate that the assumption of a Gaussian turbulent velocity field10

is rather weak in the considered flow; it is a reasonable approximation for uv3 and

u2v2, but gives only qualitative agreement for u3v. As before, the constructed mo-

ments are plotted as a dashed black line and solid black line for Reθ = 4101 and Reθ

= 5200, respectively. The blue lines correspond to BL6600 simulation data extracted

at Reθ = 4101 and the red lines correspond to BL6600 simulation data extracted at

Reθ = 5200.
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5.4 Visualization of Turbulent Structures

Near the wall in a turbulent boundary layer, alternating streaks of high- and low-

speed fluid in the viscous and buffer layers extend in the streamwise direction. Near

wall streaks are x+ = 200 - 1000 in length and z+ = 100 in width on average, where

x+,y+, and z+, are streamwise, wall-normal, and spanwise coordinates normalized by

uτ/ν, respectively.17,61,62,63 It has been observed that the low-speed streaks rise from

the wall and oscillate in 8 < y+ < 12, followed by an abrupt disintegration of the

fluid pocket in the buffer layer around 10 < y+ < 30.62 The process is called bursting

and is considered to be intermittent, quasi-cyclic, and the primary mechanism for

the production of turbulent kinetic energy.1,4 The bursting phenomenon has been

linked to quasi-streamwise vortical activity.64

Another observed turbulent structure that occurs in the viscous and buffer lay-
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ers is referred to as a localized shear layer.65,66,67,68,69 Localized shear layers occur

between pockets of fluid with drastically different velocities and are thought to orig-

inate from low-speed fluid moving away from the wall, also known as an ejection.4

Ejections are associated with a sharp drop in ∂ωz/∂y, where ωz is the spanwise curl

of the velocity field,70 and may extend from the buffer layer into the log layer.62

As low-speed fluid moves away from the wall, high-speed fluid rushes down into the

viscous sublayer in an event known as a sweep.67,62 Opposite to an ejection, sweeps

are associated with a sharp rise in ∂ωz/∂y.62

The large eddy structures in the wake region have been observed to contain

structures that are elongated in the streamwise direction66 and characterized by

transverse velocities.71 It has been observed that large scale intermittency is found

in external turbulent boundary layers but not in internal turbulent boundary layers.8

Several researchers have found evidence of low-speed streaks, bursting motions,

and localized shear layers in experiments and suggested that observed phenomena

result from the dynamics of vortex loops inclined at roughly 45 degrees above the

wall, called hairpin vortices.72,73,74,14,59 A smoke visualization by Head & Bandy-

opadhyay75 directly observed hairpin vortices extending to the outer edge of the

boundary layer. The relatively large turbulence trips used in their experiment, how-

ever, have led others to speculate that the hairpins they observed did not evolve

due to flow instabilities and therefore the experiment is not representative of the

canonical turbulent boundary layer.76 In addition, Head & Bandyopadhyay75 re-

port that for Reθ > 5000 the vortex pairs or hairpins become so stretched that the

name hairpin vortex ceases to describe the structure. Erm & Joubert77 performed

turbulent boundary layer measurements using three different trip mechanisms and

concluded that the effects of a turbulence trip are negligible only for Reθ > 1500. It

is conceivable that the larger the turbulence trip relative to the flow parameters, the

longer the streamwise distance affected by the trip, and so it seems plausible that
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the hairpin vortices observed by Head & Bandyopadhyay75 are an artifact of their

turbulence trip. Bernard & Wallace4, Bernard et al.,78 and Robinson1 agree that

a vortical description of turbulence production mechanisms in the boundary layer

is the most useful description, and they postulate that half-horsehoe or half-hairpin

quasi-streamwise vortices are the most common vortical structures in the turbulent

boundary layer.

Unlike vorticity, a vortex has no precise mathematical definition. In a turbulent

boundary layer, regions of strong vorticity do not necessarily correspond to the pres-

ence of vortices.1 Robinson et al.1 proposed a qualitative definition of a vortex: “A

vortex exists when instantaneous streamlines mapped onto a plane normal to the

vortex core exhibit a roughly circular or spiral pattern when viewed from a reference

frame moving with the center of the vortex core.” In experiments, it is difficult to

outline vortical structures,4 and objective vortex detection methods for DNS are a

topic of ongoing research.79,4,80

The Q critierion was selected as the vortex detection method for this study to

directly compare the flow field of the BL6600 simulation with the flow field published

by Wu & Moin76 that visualizes hairpin vortices. The Q criterion is formulated in

terms of the second invariant of the velocity gradient tensor for incompressible flow

in Equation (5.1).81

Q =
1

2
(||Ω||2 − ||S||2). (5.1)

Here ||A|| is the Euclidean (or Frobenius) matrix norm of A. Coherent vortices

are defined as the region where Q > 0, where the rate of clockwise rotation of an

infinitesimal fluid element about its centroid is greater than the rate of shearing

action acting on the infinitesimal fluid element.81 The isosurfaces of Figures 5.71 to

5.76 show the isosurfaces of Q = 0 colored by normalized local total velocities.

Observed low-speed ejections at Reθ = 5200 in Figures 5.71-5.74 extend from
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the buffer layer into the log layer in agreement with the measurements of Honkan

& Andreopoulos70 are shown in detail in Figures 5.75 and 5.76. Figures 5.75 and

5.76 also show quasi-streamwise vortical structures in the buffer and log layers that

appear to disintegrate as they rise, in agreement with the concept of the bursting pro-

cess.64,1,4 The lowest reaches of the high-speed sweeps stop short of extending into the

viscous sublayer, in disagreement with previous experimental observations.62,4 The

blue colored near-wall streaks are apparent in Figures 5.75-5.76, and their stream-

wise dimension, x+ = 200 - 1000 corresponds to those for similar Reynolds numbers

observed by Gupta et al.63 and for lower Reynolds numbers observed by Kline et

al.62 However, their spanwise width is approximately x+ = 40, much narrower than

observations. The presence of localized shear layers is suggested in Figures 5.71-5.73

by steep gradients in the isosurface color.
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ũ/ũ
max

= 1

ũ/ũ
max

= 0

Figure 5.71: Streamwise view of the Q criterion isosurface colored by total streamwise
velocity ũ at Reθ = 5200
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ũ/ũ
max

= 1

ũ/ũ
max

= 0

Figure 5.72: Isometric view of the Q criterion isosurface colored by total streamwise
velocity ũ at Reθ = 5200
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v/v
max

= 1͂ ͂

v/v
max

= 0͂ ͂

Figure 5.73: Streamwise view of the Q criterion isosurface colored by total wall-
normal velocity ṽ at Reθ = 5200
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w/w
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= 0͂ ͂

Figure 5.74: Streamwise view of the Q criterion isosurface colored by total spanwise
velocity w̃ at Reθ = 5200
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Figure 5.75: Near-wall ejection, zoomed-in view of Figure 5.71

Figure 5.76: Near-wall sweep, zoomed-in view of Figure 5.71
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Large-scale intermittent structures that are elongated in the streamwise direction

are clearly seen in the wake region of Figures 5.71-5.72. The large structures extend

from the buffer layer all the way to the outer edge of the boundary layer, in agreement

with the observations of Schlatter et al.82 Using a two-point correlation to examine

the fluctuating wall shear stress, they found not only a peak associated with near

wall streaks but also a peak associated with larger spanwise structures, roughly 0.85δ

in size, for Reθ > 1500.

The turbulent boundary layer structure, visualized by the Q criterion at Reθ =

4101 and Reθ = 5200 in the BL6600 simulation of the UPM Fluid Dynamics Group,

agrees with the qualitative description of the taxonomy of structures provided by

Robinson.1 In addition, large spanwise structures were visualized and identified as

those predicted by Schlatter et al.82 for Reθ > 1500. The result indicates that

the hairpin vortices found by Wu & Moin76 may be an artifact of low Reynolds

number flows, specific turbulence trips, or both. This assertion is supported by

isosurfaces of the DNS data generated by Schlatter & Örlü58, which show hairpin

vortices at low Reynolds numbers that break apart into a field of fragmented hairpin

vortices by approximately Reθ = 4000. Furthermore, the smoke visualization by

Head & Andreopoulos75 is the only observational evidence of hairpin vortices and

they observed that complete hairpins disappeared for Reθ > 5000.70 It is important

to note that the turbulence tripping mechanism influences the structure of the flow

at low Reynolds number. Wu & Moin76 note that the turbulence trip of Head &

Andreopaulos is widely considered to have been too large to generate a canonical

turbulent boundary layer, and they used a periodic puff of homogenous turbulence

to sustain their simulated turbulent boundary layer instead of a turbulent inflow

method. Schlatter & Örlü83 examined the effect of different tripping devices used in

DNS and found that the residual effects of the specific trip are observable in turbulent

statistics up to Reθ = 3000.
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Conclusions

A complete database of third-, fourth-, and fifth-order central velocity moments in

a turbulent boundary layer is presented. The profiles of fourth- and fifth-order mo-

ments constructed using Gram-Charlier procedure and the Millionshtchikov’s quasi-

normality hypothesis procedure approximate the behavior of the true fourth- and

fifth-order moments. The maximum error for the constructed moments occurs in

the inner region (the region of maximum production of turbulent kinetic energy), for

moments that contain streamwise fluctuations. A source of error may be the slightly

different locations of the peak streamwise moments, which alternate in the buffer

layer between even- and odd-order moments. Since the two procedures explored in

this thesis impose assumptions about the proximity of the probability distributions

to Gaussian distribution, the Gaussianity or non-Gaussianity of individual moments

may be an additional source of error.

The moment interrelations approximately agree, and since the approach is sta-

tistical, it is plausible that the approximate agreement will hold true for any flow of

interest. However, more data from other benchmark flows should be collected and

processed in the same manner to generate a clear picture of the universality of the
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quality of the moment interrelations. Furthermore, it is not known if the moment

interrelations improve with increasing Reynolds number. It has been shown previ-

ously by Poroseva84 that conventional second-moment-closures that include empirical

functions are increasingly accurate for increasing Reynolds numbers in rotating pipe

flow. The same study also indicated that as the Reynolds number increases, the

impact of empirical functions on the flow solution produced by conventional second-

moment closures weakens. The primary conclusion of this thesis is that statistical

procedures for constructing third- and higher-moment closure terms are broadly ac-

curate enough to warrant implementation in second- and higher-order RANS closure

schemes. Implementation, verification, and validation of new schemes based on the

statistical procedures is needed.

The turbulent boundary layer structure visualized using Q criterion isosurfaces

at Reθ = 5200 in the BL6600 simulation of the UPM Fluid Dynamics Group agrees

with the description of the taxonomy of structures provided by Robinson1 and with

recent visualizations of the flow field by Schlatter & Örlü.58 In addition, large scale

structures on the order of the boundary layer thickness were visualized and identi-

fied as those predicted by Schlatter et al.82 and also shown by Schlatter & Örlü58

for Reθ > 1500. The large structures that extend down into the inner region are

consistent with those described by Smits et al.5
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