
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

7-12-2014

A Simple Computational Model for Particle
Resuspension Behind a Normal Moving Shock
Nyssa Gilkey

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Gilkey, Nyssa. "A Simple Computational Model for Particle Resuspension Behind a Normal Moving Shock." (2014).
https://digitalrepository.unm.edu/me_etds/81

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/81?utm_source=digitalrepository.unm.edu%2Fme_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i

 Nyssa Gilkey
 Candidate

 Mechanical Engineering

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 C. Randall Truman, Chairperson

 Arsalan Razani

 Svetlana Poroseva

ii

A SIMPLE COMPUTATIONAL MODEL FOR PARTICLE

RESUSPENSION BEHIND A MOVING NORMAL SHOCK

BY

NYSSA GILKEY

BACHELOR OF SCIENCE, MECHANICAL ENGINEERING

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mechanical Engineering

The University of New Mexico

Albuquerque, New Mexico

May 2014

iii

ACKNOWLEDGEMENTS

I would first like to thank my committee chair and advisor, Dr. Truman, without whom

this wouldn’t have been possible. He has been a large influence in my academic career,

both in undergraduate and graduate school, and has always pushed me to try harder,

while simultaneously guiding me towards the best methods and results.

I would also like to thank my committee members, Dr. Poroseva and Dr. Razani, both of

whom were last minute replacements for my committee. They both took up the task, each

challenging me to examine my own way of conducting research and building simulations.

This research was supported by grant “Experimental and Numerical Studies of Respirable

Particle Transport from Surfaces by Acoustic/Shock Waves,” PIs: Profs. C. Randall

Truman and Peter Vorobieff, from Agent Characterization, Threat Agent Science (TAS),

RD-CB Basic and Supporting Science, DTRA Project #CB10-CBSFTE2-2-0071.

Finally, I would like to extend special thanks to my family and friends. Without them I

could not have done this, nor would I have been able to make it this far.

iv

A SIMPLE COMPUTATIONAL MODEL FOR PARTICLE RESUSPENSION

BEHIND A MOVING NORMAL SHOCK

by

Nyssa Gilkey

B.S., Mechanical Engineering, University of New Mexico, 2010

M.S., Mechanical Engineering, University of New Mexico, 2014

ABSTRACT

The simulation of particle resuspension from a surface due to shock

passage and subsequent piston flow presents a means to analyze the post-

shock conditions of an environment, such as after a “dirty” bomb is

detonated. This computational model is based on the “Rock’n Roll”

models of particle detachment by Reeks, Reed, and Hall. The attractive

forces used in the model are based on measurements by Truman et al.

(2011). The simplifying assumptions of this model are: the simulation is

two-dimensional, the particles are perfect spheres of identical size and are

arranged in a hexagonal pattern in a bed of specified length and height.

Each particle is categorized as being in one of five situations with respect

to surrounding particles. These situations are used to model the forces and

moments acting on the particles for resuspension. A random particle

arrangement was generated within MATLAB, as well as a visual display

of the particle layout as the shock wave passes over the particles. The

model employs a turbulent velocity profile acquired from a STAR-CCM+

simulation with randomly-varying attractive forces between particles.

Particle rolling and the dynamics of resuspending particles are computed

during the passage of the shock and its following piston flow. A variety of

multi-particle interactions was observed. Particles “zippered off” along the

v

direction of the flow. Mountains and canyons were eroded away due to

either strongly-attracted or weakly-attracted particles. After the shock

passes over the particle bed, predictions reveal that all particles are

detached above a certain height due to high velocity piston flow. The

simulation also predicts the percentage of particles resuspended when

exposed to the shock.

vi

Contents

List of Figures ... x

List of Tables .. xv

Nomenclature .. xvii

Chapter 1 – Introduction ... 1

Chapter 2 – Literature Review .. 2

2.1 – General Resuspension Models ... 2

2.2 – Ibrahim et al. .. 5

2.3 – Particle Resuspension in Severe Accident Conditions ... 9

2.4 – Parmer and Shock-Particle Interaction ... 15

2.5 – Powders and Spores ... 18

2.6 – Resuspension from Indoor Surfaces ... 20

2.7 – Reeks, Reed, and Hall (RRH) Models ... 21

2.8 – Particle Resuspension Force Measurement .. 24

2.9 – Literature Review Summary .. 27

Chapter 3 – Particle Movements ... 28

3.1 – Situation One .. 30

3.2 – Situation Two ... 31

3.3 – Situation Three ... 32

vii

3.4 – Situation Four ... 33

3.5 – Simplification and Summary of Moment Equations .. 34

3.5.1 – Threshold Velocity for Surface NH2, FA = 20 nN 37

3.5.2 – Threshold Velocity for Surface COOH, FA = 5x10nN 39

3.5.3 – Threshold Velocity for Surface CH3, FA=0.5x10-9N 40

Chapter 4 – Grid Generation ... 42

Chapter 5 – The Boundary Layer Model .. 47

5.1 – Piston Flow Behind Moving Shock ... 47

5.2 – The Prism Layer ... 49

5.3 – STAR-CCM+ Results .. 54

5.3.1 – Velocity Profile ... 54

5.3.2 – Friction Velocity .. 55

5.3.3 – Turbulent Kinetic Energy .. 55

Chapter 6 – Visualization.. 57

Chapter 7 – Test Code: Uniform Attractive Force and Velocity 59

Chapter 8 – Simulating the Airflow .. 63

8.1 – Turbulent Velocity Profile ... 63

8.2 – Simulation Refinement ... 65

8.3 – Particle Rolling ... 66

viii

8.4 – Shock Passage .. 67

Chapter 9 – A Usable Code .. 69

9.1 – Focusing the Results ... 69

9.2 – The Time Scale, τ ... 71

9.3 – Capturing Particle Resuspension .. 73

Chapter 10 – Results ... 75

10.1 – 12x52 Grid, Mach 1.2 .. 75

10.2 – 22x102 Grid, Mach 1.2 .. 75

10.3 – 32x92 Grid, Mach 1.2 .. 76

10.4 – Trends ... 77

10.5 – Results at Different Velocities ... 78

Chapter 11 – Observed Particle Behavior ... 80

Chapter 12 – Conclusions ... 84

Chapter 13 – Future Work .. 86

References ... 89

Appendix A – MATLAB Codes ... 94

A.1 – MomentCalc .. 94

A.2 – gridgen ... 103

A.3 – partmap .. 107

ix

A.4 – PartSimSimple ... 110

A.5 – PartSimComplex ... 122

A.6 – PartBatch Run .. 144

A.7 – ParticleResuspension ... 161

Appendix B – Results for Mach 1.2.. 167

B.1 – 12x52 CH3 ... 167

B.2 – 22x102 CH3 ... 168

B.3 – 22x102 COOH ... 169

B.4 – 32x92 CH3 ... 170

B.5 – 32x92 COOH ... 171

x

List of Figures

Figure 1 – Rock’n Roll Model forces and dimensions ... 23

Figure 2 – Average adhesion forces for large particles with different surface chemistries

(Truman et al., 2011) .. 26

Figure 3 – The layout of four particles in a perfect hexagonal grid. Particles ABC form an

equilateral triangle, with side lengths equal to particle diameter. 29

Figure 4 – a) Particle atop two particles, with no particles to either side. b) Free body

diagram of a Situation One particle. ... 31

Figure 5 – a) Particle atop two particles, with a particle to the immediate right. b) Free

body diagram of a Situation Two particle... 32

Figure 6 – a) Particle atop two particles with a particle to the immediate left. b) Free body

diagram of a Situation Three particle.. 33

Figure 7 – a) Particle atop two particles, with particles to the immediate left and right. b)

Free body diagram of a Situation Four particle. ... 34

Figure 8 – Velocity vs net moment for each situation where FA = 20*10-9N. Symbols

indicate minimum velocity for particle to detach, termed lift-off velocity.

The moment balance is identical for Situations Two and Four. 39

xi

Figure 9 – Velocity vs net moment for each situation, FA = 5*10-9 N. Symbols indicate

minimum velocity for particle to detach, termed lift-off velocity. The

moment balance is identical for Situations Two and Four. 40

Figure 10 – Velocity vs net moment for each situation, FA = 0.5*10-9N. Symbols indicate

minimum velocity for particle to detach, termed lift-off velocity. The

moment balance is identical for Situations Two and Four. 41

Figure 11 – Two random particle arrangements based on the same parameters 42

Figure 12 – The original 4 row by 12 column matrix (top) and the resulting filled-in

matrix (bottom). Note that row 1 is the lowest row in each matrix. 43

Figure 13 – Particle arrangement corresponding to filled-in matrix of Figure 12, where

only red particles can move. The empty circles are the [0] values in Figure 12.

... 44

Figure 14 – The completed matrix describing the particle arrangement of Figure 13, with

elements corresponding to the situation for each particle. 46

Figure 15 – Stretching factor example .. 51

Figure 16 – Velocity profile from STAR-CCM+for Mach 1.2 case................................. 55

Figure 17 – Velocity profile for Mach 1.2 case from STAR-CCM+ using wall variables

... 56

Figure 18 – Turbulent Kinetic Energy profile for Mach 1.2 case from STAR-CCM+ 56

xii

Figure 19 – Particle bed visualization, where color indicates Situation of each particle. 58

Figure 20 – Initial particle bed, with Situation indicated by color. 61

Figure 21 – Particle bed after 15 time steps have elapsed. Empty circles indicate the

Situation of the resuspended particle. ... 62

Figure 22 – Velocity interpolation from STAR-CCM+ values .. 64

Figure 23 – Particle bed Situations after 15 time steps. A) Exposed to constant velocity,

B) Exposed to velocity varying with height. Empty circles indicate the

Situation of the resuspended particle. Fewer particles in B resuspended. 65

Figure 24 – Particle bed at four time intervals as the shock passes. The black line

indicates the location of the shock passing over the particles. Empty circles

indicate the Situation of the resuspended particle. To the left of the shock,

particles are exposed to the piston velocity, whereas to the right of the shock,

they experience no flow. ... 68

Figure 25 – Average percent resuspension vs dimensionless time for 12x52 grid size. .. 72

Figure 26 – Average percent resuspension vs dimensionless time for 22x102 grid size. 72

Figure 27 – Average percent resuspension vs dimensionless time for 32x92 grid size. .. 73

Figure 28 – Particle resuspension for 15x52 grid size with varying attractive forces vs

dimensionless time. ... 76

xiii

Figure 29 – Particle resuspension for 22x102 grid size with varying attractive forces vs

dimensionless time. ... 77

Figure 30 – Particle resuspension for 32x92 grid size with varying attractive forces vs

dimensionless time. ... 78

Figure 31 – Typical particle bed at the end of a simulation. Resuspended Situation Twos

indicated by empty red circles .. 80

Figure 32 – Typical particle bed visualizations during shock passage that show a

Situation One particle remaining on the fourth row. Empty circles indicate the

Situation of the resuspended particle. ... 82

Figure 33 – Typical particle bed visualization showing remaining mountains developed

by strongly attracted particles. Empty circles indicate the Situation of the

resuspended particle. ... 83

Figure B1 – Percent particle resuspension vs dimensionless time for CH3 with 12x52

grid size, using the piston flow follwing a Mach 1.2 shock. Note they are

scaled for clarity. ... 167

Figure B2 – Percent particle resuspension vs dimensionless time for CH3 with 22x102

grid size using the piston flow follwing a Mach 1.2 shock. Note they are

scaled for clarity. ... 168

xiv

Figure B3 – Percent particle resuspension vs dimensionless time for COOH with 22x102

grid size using the piston flow follwing a Mach 1.2 shock Note they are scaled

for clarity. .. 169

Figure B4 – Percent particle resuspension vs dimensionless time for CH3 with 32x92 grid

size using the piston flow follwing a Mach 1.2 shock. Note they are scaled for

clarity. ... 170

Figure B5 – Percent particle resuspension vs dimensionless time for COOH with 32x92

grid size using the piston flow follwing a Mach 1.2 shock. Note they are

scaled for clarity. ... 171

xv

List of Tables

Table 1 – Lift-Off velocities for each Situation and each attractive force estimate 41

Table 2 – Table of particle checks for each possible arrangement. The red particle is

being checked, blue particles must be checked, black particles cannot move;

dash line indicates no particle present. ... 45

Table 3 – Shock conditions ... 47

Table 4 – Flow properties behind the shock ... 48

Table 5 – Piston flow conditions .. 48

Table 6 – Boundary layer parameters ... 49

Table 7 – Prism layer terms .. 50

Table 8 – Variables for y+ .. 52

Table 9 – Calculated y+ values for STAR-CCM+ ... 53

Table 10 – Completed table for STAR-CCM mesh generation .. 53

Table 11 – Color assignments for visual representation ... 57

Table 12 – Equations for forces in Y for each Situation, basic simulation 59

Table 13 – New Situation allocations after resuspension ... 60

Table 14 – Reduced force balance equations .. 63

xvi

Table 15 – Results from PartSimComplex over various runs, using a 12x52 particle

arrangement grid ... 70

Table 16 – User inputs for ParticleResuspension ... 74

Table 17 – Percent resuspension for various grids and attractive forces for a Mach 1.2

shock, t/τ = 1. .. 79

Table 18 – Percent resuspension for various grids and attractive forces for a Mach 1.7

shock, t/τ = 2. .. 79

xvii

Nomenclature

a = speed of sound

C = Cunningham Factor, eqn (8)

CD = drag coefficient

CL = lift coefficient

d = diameter of the particle

d+ = dimensionless diameter, eqn (12)

FA = attractive force

FD = drag force

FL = lift force

Ho = position of equilibrium separation for which adhesion force balances with the elastic

rebound force, eqn (7)

Kn = Knudson number, eqn (9)

L = length scale

Ma = Mach number

Mp = moment about the pivot point

r = radius of the particle

R = gas constant

u* = shear velocity

Vp = piston velocity

Vs = shock velocity

y+ = dimensionless wall distance

α = relative approach between particle and surface, eqn (7)

λ = mean free path of air, eqn (9)

µ = dynamic viscosity of air

ν = kinematic viscosity of air

ρ = density of air

σ = standard deviation of height distribution for asperity, eqn (7)

1

Chapter 1 – Introduction

Particle resuspension is both a natural and a manmade occurrence. It occurs when wind

blows across a sand dune or when an explosive device detonates. All a particle needs to

be resuspended in the flow is to be exposed to a high enough flow velocity for drag to

overcome the attractive forces keeping it down. The topic is of interest in a variety of

fields, from clean room development to HVAC system development.

This study examines particle resuspension due to the passage of a shock wave, such as

when respirable particles are lifted up due to a bomb detonation. The particles are

suddenly subjected to the piston velocity in the flow trailing the shock. The particles are

subjected to turbulent velocity fluctuations in flows up to Mach 1.7, as well as a wide

variety of attractive forces. Particle interactions are of great interest as they dictate how

many particles will resuspend out of a given sample, and in what manner they resuspend.

2

Chapter 2 – Literature Review

A wide variety of particle models was reviewed before choosing the Reeks, Reed, and

Hall “Rock’n Roll” Model. Then this model was combined with research done in particle

resuspension to create a new particle simple computation resuspension model.

2.1 – General Resuspension Models

In order to understand particle resuspension, a survey of models had to be conducted. The

first models that were examined were summarized by Ziskind et al. (2000). The models

were focused on particle behavior on surfaces that were subjected to external excitations.

They focused on fluid flow over a particle-laden surface, which was determined to be the

most feasible method for particle removal through hydrodynamic moments derived from

the drag force acting parallel to the surface. Prior to this, the usual method was the

hydrodynamic lift force exceeding the adhesion force. With the newer model, if the drag

force is not strong enough, it can cause the particles to oscillate, which led to Reeks et al.

(1988) using energy balance instead of force balance to determine resuspension.

Vainsthein et al. (1997) introduced a model for particle oscillations parallel to the

surface. Resuspension was caused by turbulent drag force and the rate of resuspension

caused by that drag force was larger than that of the laminar drag force.

The modeling of particle oscillations was based on the following concepts: 1) when a

particle is placed on a surface, it forms a contact with the surface; 2) the particle

formation is complete when the adhesion forces acting on the particle are fully balanced

by the elastic force due to particle deformation; 3) equilibrium exists when there are no

external forces, making this the reference state; and 4) particles are considered perfect

3

spheres and a particle may be removed immediately if an appropriate external force of

moment exceeds the adhesion-based counterpart.

Linear models are the simplest 1-degree of freedom oscillation model, which have a

particle of mass m and a spring with a constant k. The linear model has no damping.

Reeks et al. (1988) and Lazaridis et al. (1998) came to this model, the differences in their

models being how they calculated the spring stiffness. Ziskind et al. (2000) split the

spring in two, with the spring constant of each spring half of the stiffness of the original

spring. When the particle was turned, one spring was extended while the other was

compressed. The resulting stiffness was the same, and the distances between the springs

was equal to r.

For nonlinear models, the same basic setup is used: a particle on a smooth surface with an

external force acting on it parallel to the wall. The two main factors to consider for linear

models are the surface roughness and the mean external forces (the hydrodynamic lift and

drag forces). These external forces cannot reach the natural frequency of the submicron

particles by any existing method of particle removal from a surface.

Nonlinear models have a particle on a smooth surface with external forces acting parallel

to the wall, but the adhesion models do not consider the particle response to an applied

load that are not normal to the wall. This leads to peeling, where the tangential force is

capable of causing normal separation of forces. If the tangential loading does not

approach its critical value, the system will remain in a regime of peeling. The models

predict different behaviors for hard and soft particles. Nonlinear models are best used for

a perfectly smooth surface, if the oscillations are parallel to the surface. The resonant

4

oscillations are unstable. Once again, there is no possibility of removal for the particles

by the application of a force with a frequency equal to the harmonic frequency of the

particle. However an application of a force with a frequency lower than the natural

frequency may still cause resonance within the system.

Ziskind et al. (1998) also studied the effects of shear on particle motion near a surface,

and its application to resuspension. They split the process into two stages, where Stage

One was when a particle is detached (leaves its initial site on the surface) and Stage Two

occurred when a particle may either move away from the surface or return to it depending

on flow conditions. They considered the mean shear rate to be on the order of 105s-1

(fully developed turbulent flow) where the viscous sublayer was equal to five wall units.

The viscous sublayer thickness was on the order of 10 microns so that particles with

diameters between 0.1-10 microns were fully submerged in the viscous sublayer.

Ziskind et al. (1998) determined that a particle at fixed flow conditions may be either

stable or unstable. When motion is unstable, the particle moves very rapidly away from

the surface and this happens when the initial velocity of the particle is smaller than the

local fluid velocity and the wall induced lift is larger than gravity. When wall induced lift

is smaller than gravity, the particle that at first moves away from the surface may change

its direction of motion and come closer to the wall. The particle will slow down and the

motion eventually becomes stable. They also showed how the fluid shear rate, the particle

size, initial location and velocity determine the character of motion.

Vainshtien et al. (1997) focused on semiconductor manufacturing, clean room

technologies, indoor air contamination, and particle behavior in respiratory tracks. The

5

particles were held in place by very strong forces (physical attractions, chemical bonds

and mechanical stresses) which they called the adhesion forces. The group placed

emphasis on the prevention of particle deposition on surfaces rather than on the

subsequent removal. They then studied particle removal by various means such as air

jets, and high frequency sonic waves. The calculations were completed with an energy

balance with a fluctuating lift force where the drag force moment was in equilibrium with

the adhesion force moment. They found that the resuspension rate caused by the drag

force is considerably larger than that of the lift force and is determined to be consistent

with turbulent flow.

From this survey of resuspension models, a few important notes became apparent. A

particle must peel before it can move, the lift and drag forces are important to

determining the eventual resuspension of a particle and that the adhesion forces are the

forces that must be overcome before resuspension can be achieved.

2.2 – Ibrahim et al.

Ibrahim et al. (2003) studied microparticle detachment from surfaces that were exposed

to turbulent air flow in controlled experiments to develop a model. The mode of

detachment was the process of separation by rolling, sliding, or direct lift-off of a

microparticle adhering in static equilibrium to a surface. Entrainment is defined as the

capture of the microparticle by the flow after being detached. Re-entrainment (or

resuspension) of a microparticle is the removal of a microparticle from a surface, where

the microparticle was previously airborne and subsequently deposited on a surface. A

microparticle can be considered in a state of equilibrium when it is attached to a fixed

6

surface by adhesion. A microsphere is held on the surface by its gravitational (mg) and

adhesion (FA) forces. If it is in the viscous sublayer, it experiences a linear mean shear

flow that produces drag (FD) and lift (FL) forces, as well as moments of these forces.

Ibrahim et al. started by doing wind tunnel experiments. In Phase One, flow is

accelerated for a period of time and some microparticles are removed either in groups or

individually. In Phase Two, mean flow reaches steady state. The detachment rate is

coupled to the flow acceleration and detachment rates during Phase One can be as many

as two orders of magnitude more than the rates during Phase Two.

They found that resuspension rate was reduced in high relative humidity, due to the

absorption of water vapor at the particle-surface interface and its effects on adhesion.

Ibrahim et al. also looked at surface roughness, as all surfaces are rough in some capacity.

In the study, Ibrahim et al. also examined Particle-Particle collisions. Once microparticles

were detached, they moved along the surface and impacted other microparticles. This

supplied enough momentum to the stationary microparticles to overcome their adhesion

with the surface. Ibrahim et al. looked at detachment of stainless steel and glass

microspheres and Lycopodium spore microparticles from a glass substrate.

The major factors controlled in the experiments were air-flow acceleration, final

freestream velocity, relative humidity, initial number density of deposited microparticles,

microparticle counting technique and the microparticle material and size. Microparticle

detachment on the surface occurred in discrete, intermittent events, either in groups or

individually. When two or more microparticles detached simultaneously, particles

between them did not detach. Microparticle detachment occurred as rolling and/or sliding

7

rather than as direct lift-off. The modeling supports that this motion is rolling rather than

sliding. Detachment does not always result in entrainment. Microparticles that remain

adherent to the surface do not detach when subjected again to the same flow velocity

history in a subsequent experiment. All microparticles do not detach at a single value of

the freestream velocity, but over a range of velocities.

Ibrahim et al. (2004a) returned to their study, this time focusing on the effects of

substrate cleanliness, deposition technique, storage duration up to 48 days, and moisture

concentration on removal of microparticles from the surface. Typically the flow velocity

is increased with time over an initial transient period until a steady mean velocity is

reached. They investigated the effects of several flow and particle deposition

characteristics on the detachment behavior. They looked at effects of mean flow

acceleration, where there were two distinct phases of detachment: short term phase

characterized by a high detachment rate and long term phase characterized by a much

lower detachment rate. Dependence on flow acceleration in the considered range

(transition) is small and within the uncertainty measurements.

Ibrahim et al. further examined the effects of density deposition and collisions.

Depending on relative magnitude of the aerodynamic drag, lift, pull-off, gravity forces,

and moments, the particle may detach from the surface in direct lift-off, pure rolling, and

sliding modes. Relatively heavy particles move along the surface and collide with other

particles on the surface and that impact supplies force and moments to other particles that

could overcome adhesion, possibly causing detachment and resuspension. Collisions

were more effective than flow alone in causing detachment. The density of particles

causes particles to detach at a velocity large enough that the detaching moment supplied

8

is much larger than that of a similar volume of air. The density was high enough that

there were enough particles to start many chains of collisions. High density particles

colliding mostly resulted in detachment instead of sticking, unless freestream velocity

was less than 1m/s, which resulted in sticking.

Ibrahim et al. (2004b) then focused on microparticle detachment from surfaces exposed

to turbulent air flow, specifically the microparticle motion after detachment. They studied

elongated counter-rotating streamwise vortices that occur randomly in space and time

which cause near wall fluid burst and sweep events. The first pattern they looked at

(ejection sweep pattern) was similar to classical description of burst sweep events. The

second pattern (macro sweep pattern) was observed less frequently than the former and

characterized by sustained high velocity periods with large sweeps. In general larger

microspheres detach at lower freestream velocities. Since they studied humidity before, it

was noted that with relative humidity 52%, microspheres detach in the freestream

velocity range of 5 to 22 m/s. The results indicated that the normal direction is governed

practically by the balance of the Hertzian and adhesion forces. In the entrainment case,

the mass center displacement and the contact radius are approximately at their

equilibrium position after detachment. In the tangential direction, the microspheres

undergo pure rolling on the surfaces with rolling detachment and a high acceleration.

High acceleration was caused mainly by the sweep part of the burst sweep event. Shortly

after detachment, the adhesions dissipation moment can be neglected compared to the

drag moment.

From their work, it was apparent that surface roughness and relative humidity were very

important, and that particle-particle collisions also contributed to particle resuspension.

9

The particles once again were found to roll rather than lift off the surface in discrete

intermittent events in large groups or individually. However just because two particles

resuspended at the same time did not mean a particle that rested between them would as

well. Particle collisions accounted for some of the particle resuspension downstream from

where the particle resuspended.

2.3 – Particle Resuspension in Severe Accident Conditions

Severe Accident Conditions arise when an accident has occurred at a nuclear facility.

There is rarely any data immediately following such an accident. For example, the

Chernobyl release lasted two weeks, so initial deposition was poorly defined, and

resuspension data was not collected until years later (Loosemore, 2003) However in

studying this behavior, it can be determined when buildings are safer to enter in terms of

respirable radioactive particle.

Loosmore (2003) examined particle resuspension in regards to aerosols. They relied on

simple models based on a resuspension factor (the air concentration at breathing height)

and resuspension rate (resuspension flux from the surface, divided by the original surface

concentration). However the models showed great variability and uncertainty. Most

existing data on resuspension was obtained months to years after initial deposition. These

long term data sets are inadequate substitutes for a short-term emergency response

scenario. For the selected data sets, the deposited material was unaltered before exposure

to wind, so the resuspension could be calculated easily from measured quantities. The

surfaces used were bare soil, concrete, and grass, with a friction velocity ranging from 0.1

to 1.4 m/s. Two types of particles were used with different densities, ranging in size from

10

submicron to silt. Roughness heights for the surface were estimated to be 1/10th obstacle

height.

The model was based on five parameters: friction velocity, time since wind began, the

particle diameter, the particle density, and the roughness. The models were physically

realistic: resuspension rates increased with friction velocity, and the particle diameter

decreased with time, surface roughness and particle density. Larger particles protrude up

higher in boundary layer, and thus experience larger removal forces. Larger surface

roughness provides more shielding, acting against resuspension. The gravitation

attraction is not expected to be the primary adhesive force, with Van der Waals and

capillary forces providing the higher attraction, so therefore resuspension was not based

directly on density. The model predicted resuspension to fall sharply with time, so that

2/3rd the total removal in the first year occurs in the first day. This emphasizes the need

for a robust model for short-time resuspension.

Hontanñón et al. (2000) used the CAESAR code for aerosol resuspension in turbulent

pipe flows due to aerosol resuspension possibly being an important source of

radioactivity to the environment in the late states of a severe accident in a nuclear power

plant, when highly turbulent flows pass over the aerosol deposits as a consequence of the

disruptive phenomena occurring in the reactor coolant system and containment building.

The experimental data is limited and does not correspond to conditions found in several

accidents, so the correlations are based on non-representative conditions. An older model

used a force balance that only used one of aerodynamic forces (lift or drag). Their new

model used both and balances with frictional and adhesive forces where previously

surfaces were perfectly smooth and aerodynamic drag was only with turbulent mean flow

11

and under predicted particle resuspension. This model accounted for surface roughness

and turbulent fluctuations.

The CÆSAR Code is a 2D Lagrangian particle tracking code that calculates trajectory

within the viscous sublayer. It can solve particle equation of motion in both axial and

radial directions. Within the code, gravitational force is neglected and is considered to be

proportional to the cube of particle diameter. The adhesive force is proportional to

particle diameter as well. Trajectory is modeled as a succession of interactions with

turbulent eddies where an eddy is characterized by random axial and radial velocities. At

the beginning, instantaneous components are evaluated and assumed to be constant

during particle-eddy interaction. There are new positions and velocity at the end of the

interaction, where it then interacts with a new eddy. For the adhesive force, particles are

assumed to be hard smooth spheres where the substrate is a rigid rough shell. A particle

translating in shear flow undergoes transversal force (lift force) which causes particles to

travel perpendicular to flow direction. The Reynolds number associated with shear rate

and particle slip is important and fluctuations of lift force are consequences of

fluctuations of the axial flow velocity, assumed to follow Gaussian probability

distribution. The drag force includes corrections due to both inertia and wall effects. The

friction force is the resistance of the substrate to particle slide. It acts in a direction

parallel to surface of contact between particle and substrate and helps maintain the

particle at a position of static equilibrium.

The STORM Experiments were an experimental program on aerosol resuspension in

turbulent pipe flows under conditions representative of nuclear reactors during severe

accidents. The horizontal pipe was 6.3cm diameter and 5m long with aerosols of SnO2

12

with steam and nitrogen as gas carriers. In resuspension phase, gas velocity was increased

stepwise where Reynolds number varied from 50000 to 150000. Roughness had a drastic

effect on adhesion, where 0.5μm was enough to reduce adhesive force by three orders of

magnitude compared to a smooth surface. Particle surface adhesive force was

proportional to particle diameter and inversely proportional to surface roughness.

According to Hontannon et al., lift and drag forces only apply to particle Reynolds

numbers less than unity. If particle is in contact with wall, shear Reynolds number and

slip Reynolds number are related to particle Reynolds number.

They found that the steady flow conditions results in two periods of particle resuspension

rate: short and long term. In the short term, resuspension rate was high initially and

responsible for significant fraction of total resuspended mass. In the long term,

resuspension rate decreased sharply and continued to decrease with time exposure to

flow. A large portion of resuspension takes places over a short period (less than 10 ms)

with the remaining material resuspending at rate inversely proportional to time exposure

to the flow. An inverse relationship is maintained over wide range of times (up to several

hours) and long term behavior is resistant to variations in the flow, particle size, and

surface roughness.

This code captured the existence of initial phase with large particle rentrainment (where

most resuspension occurs) followed by an abrupt drop in resuspension. There was a

period of strong resuspension predicted by the code that is shorter than experiments

indicate. The code, however, did overestimate the amount of material resuspended, which

can be explained by a single-layer model, which assumes all particles are exposed to flow

and the STORM tests were multilayer. It also neglected cohesion between particles.

13

Biasi et al. (2001) used a simple model for the interpretation of experimental data on

particle resuspension in turbulent flows. They chose to focus on this as particle

resuspension plays an important role in the release of radioactive material from a nuclear

reactor following a severe accident (where the possible resuspension of deposited

material in the primary circuit either during or after the accident will increase the

eventual release to the environment. They also used the STORM experiments, as well as

the “Rock’n Roll” resuspension model to develop their model. They used the same ideas

of mean lift and drag force, the RMS lift and drag, the geometric factor, forcing

frequencies and the distribution of adhesive forces. The other three experiments they used

focused on single and multilayer resuspension: Hall’s experiments, Braaten’s

experiments and the Oak Ridge National Laboratory (ORNL) experiments. They

eventually compared to the CAESAR code results. They charted results for comparisons

between experimental data and determined that several features play an important role.

The model was simplistic and depended on a small number of variables. The model was

mechanistic, taking into account the correct physical processes that determine particle

resuspension. The model had been properly bench-marked in an experiment in which the

resuspension and the distribution of adhesive forces were both measured. They looked at

two particle regimes, where particles were (10-30) μm and roughly spherical and

monodisperse particles with less than a mono-layer coverage. Multi-layer deposits of

particles were generally sub-micron particles typical of those involved in the STORM

and ORNL experiments and thus typical of deposits occurring in the light water reactor

severe accident. Both regimes of particles in the adhesion were much reduced from that

due to prefect contact, consistent with the influence of roughness and reduced contact due

14

to surface asperities. Influence of roughness is less for the smaller size multi-layer

particles indicating a greater than linear dependence on particles size for the adhesion as

has previously been assumed. Geometric standard deviation of the adhesion is less.

Lazaridis et al. (2010) studied turbulent resuspension of small non-deformable particles.

They also chose to examine this phenomenon because resuspension can have a strong

effect on timing and magnitude of radioactive sources released to the containment and the

environment. The current models used force or energy balance models, where the force

balance resuspension occurs when aerodynamic lift forces become greater than adhesive

forces (rolling and sliding). They worked from a modified Reeks, Reed, and Hall (RRH)

model, where effect of drag force on resuspension rate is included and improved

agreement with experimental results. The hydrodynamic forces in turbulent boundary

layer flow are usually decomposed into two parts: mean part (shear flow field) and

fluctuating part (turbulent velocity fluctuations in boundary layer). The adhesive force

was proportional to the particle radius and inversely proportional to the square of distance

to the surface. For the small metallic particles, elastic flattening is not important, thereby

providing an indirect justification for the assumption of non-deformable particles.

Roughness was determined to cause a reduction and spread of adhesive force, and can be

modeled by introducing effective particle radius. The mean part of the velocity field was

determined by the point of detachment from the surface. Higher friction velocities

corresponded to easier resuspension. Resuspension occurred when the particle is closer to

the surface. An increase in particle size has same effect since larger particles feel a larger

mean lift force and are resuspended more easily.

15

Severe Accidents provide a long term look at particle resuspension, where particles are

subjected to a low speed for a long period of time. However, they do indicate how

particles react with flow, with large particles being subjected to more forces and layered

particles having a more linear dependence on the particle size for adhesion.

2.4 – Parmer and Shock-Particle Interaction

Parmer et al. (2009a) studied prediction and modeling of shock-particle interactions.

They found that as a shock wave propagates into a gas-particle mixture, the gas velocity

increases instantaneously across the shock. By contrast a particle velocity approaches the

post shock gas velocity only slowly due to the finite inertia of the particles. The particles

generally approach the equilibrium state faster than predicted by standard drag relation.

The drag force on a particle, and hence drag coefficient, are substantially enhanced in the

post shock flow. Using an accelerometer installed inside a sphere, they examined the

stress-wave drag balance and reported time dependent force measurement on a stationary

particle with an estimated error of less than 15%.

The force on a particle increases significantly as the shock wave passes over it. The peak

force on particle can be more than 1 order of magnitude greater than steady state force in

post shock flow. The propagation of shock consists of regular and irregular shock wave

reflection, diffraction, and focusing phenomena. Simulations captured the increase of

instantaneous drag force by more than an order of magnitude as the shock wave

propagates over the particle, taking a non-monotonic approach to the steady state. Shock

wave Mach Numbers were sufficiently low that the Mach number of the flow behind the

shock wave was subcritical. The Lagranian-Eulerian point particle approach with the

16

proposed force model can thus be used as an efficient approach to compute compressible

multiphase flows involving shock waves propagating through suspensions containing

large numbers of particles.

They determined that the inviscid unsteady force is crucial to capturing the peak in the

unsteady force on particles due to the interaction with a shock wave. The impact of shock

is on the front of the particle, and the pressure near the front stagnation point is that

behind a reflected shock wave. Assuming the sphere does not move, pressure at the rear

stagnation point remains unchanged until the shock wave reaches the rear end.

Parmer et al. (2009b) modeled the unsteady forces on particles in compressible flow. The

limitations were rooted in the relationship between the added mass and the instantaneous

acceleration. They modeled the effect of the Mach number, where added mass force is

realized instantaneously upon the application of acceleration due to the infinite acoustic

propagation speed implicit in the incompressibility assumption. The force is proportional

to the applied instantaneous acceleration and ceases to exist once the acceleration is

removed. They also looked at Mach number expansion where the qualitative behavior

had increasing added effect at a finite Mach number.

Parmer et al. (2010) studied improved drag correlations for spheres and their applications

to shock tube experiments. For subcritical Mach numbers, the flow around a spherical

particle is shock free. The drag coefficient is only weakly affected by compressibility

effects. For supercritical but subsonic Mach numbers, a shock wave of limited radial

extent exists on the sphere, and the drag coefficient becomes more strongly dependent on

the Mach number. For supersonic Mach numbers, a bow shock exists that leads to a large

17

increase of the drag coefficient (the bow shock does not appear at precisely sonic

conditions but the proceeding simple separation into regimes is sufficient for modeling

purposes). The upper limit of Mach numbers examined was 1.75. The boundary layer

effects were eliminated by hanging the spherical particles from a spider web thread.

Interference between particles was reduced by testing no more than three particles

simultaneously. A large part of particle trajectory was recorded using multiple

shadowgraphs in a single run.

Fedorov et al. (2002) developed a numerical simulation of shock wave interaction with a

near wall particle layer. They were hoping to prevent dust explosion in mines and other

similar industries. gas-dust mixture behind a shock wave was modeled. They examined

dust lifting related to compression and expansion waves following multiple reflections of

the shock wave off of a contact surface. The numerical solution was carried out for a one-

velocity, one-temperature mathematical model. They found two different wave pictures

in a dense layer of dust by examining the shock wave reflection.

Suzuki et al. (2006) studied particle motion behind a planar shock wave. They used

horizontally placed shock tubes and direct photograph technique that was synchronized to

the shock wave. They found that the speed of rotation and the velocity of the particles

were strongly affected by the floor conditions. They speculated that the upward forces

responsible for particle resuspension were generated by the shock wave reflections

between the particles and the floor.

Wayne et al. (2013) examined shock-driven particle transport off of both smooth and

rough surfaces. This is an area with little research conducted, so they modified an

18

existing shock tube to study respirable particles resting on a horizontal surface that are

then detached by a shock-driven flow. They measured the effects of surface roughness on

the resulting particle cloud. They found that the growth of the particle cloud was dictated

by several factors, where the most influential was the adhesive force between particles

and the surfaces. The stronger the attraction, the smaller and slower the resulting cloud.

They also noted that the particle clouds extended above the boundary layer, which they

believe suggests that particle lag may play a role in the evolution of the flow.

Jacobs et al. (2012) studied high-order resolution Eulerian-Lagrangian simulations of

dispersion of particles that were accelerated by the piston flow following a moving shock.

Their work was two-dimensional and looked at bronze particles with a volume

concentration of 4%. The particles were originally arranged in various shapes (rectangle,

triangle and circle). They found that the flow had an impact on the cloud formation, such

as reflected shocks and unstable wakes. The particles would be pulled out of the clouds in

sharp corners, so the smoothest transport was with the circular cloud.

Shock-Particle interaction is of great importance to the model being developed as the

particles go from a no flow state to a post shock state. They found that as the shock

passes, the particles are subjected to forces up to one order of magnitude greater than

what they would be using the piston flow. They are also subjected to a rapid change in

flow velocity.

2.5 – Powders and Spores

Krauter and Biermann (2007) studied the resuspension of fluidized spores in ventilation

systems. They used Bracillus anthracis (Anthrax) particles that were less than 5 microns

19

in diameter which allowed penetration into pulmonary aveoli. There is minimal data on

human infective doses available. There were variations in individual susceptibility, strain

virulence, spore preparation, and physical characteristics. The experimental air flow was

similar to air circulation in ordinary buildings. They focused their study in postal

buildings, which other studies show that an area could still be contaminated several days

after original contamination. The particles were deposited and resuspended from ducts at

different rates depending on size, velocity, physical configuration, duct surface, and

environmental factors (humidity, dirt, and biofilm formation). The particle resuspension

rate was qualified as being uncertain within 2 to 3 orders of magnitude, values ranging

from 10-13 to 10-14 1/s . Bioparticles smaller than 10 microns moved with the airflow.

Spores on the surface tended to move from a source location to some other location on

the duct surfaces. After being viewed for seven hours, the initial cloud of spores moved

through a ventilation duct for 25 seconds, but spores continued to move though the duct

for the next several hours (50% decrease took approximately 3 hours). Resuspension on

plastic was no different than resuspension on steel.

Gac et al. (2008) studied the turbulent flow energy for resuspending powder particles.

They looked at the interactions between particles in powder agglomerate structure and

between particles and the support surface, on the microscale. They focused on the short

range effects (van der Waals forces), the electrostatic forces and the capillary attraction

induced by presence of condensed fluid between particles. They worked with the Eddy

Fluid Particle Model which uses a damping coefficient, including two effects: damping in

solids and in a fluid. It also uses kinetic, turbulent and thermal energy. The mean flow

kinetic energy of a moving fluid degrades to thermal energy, but usually the first part of it

20

is transformed into turbulent energy. The turbulent viscosity produces drag which is

independent of the molecular viscosity of the fluid. They used the Verlet algorithm for

their calculations and found that efficient resuspension of particles from a powder sample

to the form suitable for inhalation requires considerable energy for fluidization and

breaking up of particle aggregates. Inter-particle cohesive forces have to be overcome by

the stresses of the interactions between the flowing air and the aerosolized aggregates.

2.6 – Resuspension from Indoor Surfaces

Kim et al. (2008) focused on resuspension on indoor surfaces, where it may be of

importance to improve indoor air quality in modern buildings. They also wanted to

examine how best to protect against indoor dispersal of toxins. They modeled room flow

dispersion profiles and then looked at how these profiles interacted with particles. They

examined the mechanisms that caused particle resuspension on indoor surfaces, identified

parameters that were relevant to resuspension as well as evaluated their model against

experimental data. They developed empirical correlations that can predict particle

resuspension as a function of time, particle size, friction velocity, surface roughness and

the van der Waal’s interactions between the particle and the surface.

Boor et al. (2011) also studied resuspension from indoor surfaces. Particles deposited on

indoor surfaces can be resuspended through a variety of mechanisms, such as a passing

fluid stream and can therefore increase the particle concentrations in the air. This in turn

can lead to the particles being inhaled and could cause respiratory problems. Boor et al.

focused on monolayer and multilayer particle deposits, which were generated by two

separate seeding procedures, so the multilayer particle deposits could be thicker, with a

21

higher quantity of particles. They also developed a micro-scale wind tunnel. They used

fluorescent particles to detect the number of particles resuspended. They found that

particle resuspension was greater for multilayer deposits. For the purposes of their

research, this suggested that heavy dust loads would have a greater resuspension rate than

light dustings.

Kassab et al. (2012) examined micrometer particle detachment from a variety of surfaces.

They examined glass, ceramic, and hardwood substrates experimentally, where the

particles were deposited on the lower surface of a wind tunnel by gravitational settling.

The airflows went up to 16m/s and individual particle trajectories were mapped using

high-speed imaging. They found three different types of motion: immediate lift off,

where the particles would completely leave the surface with no rolling or bouncing;

rolling/bouncing, which were caused by the particles moving over an uneven surface; and

complex motion, where particles rolled and bounced before lifting off. Surface roughness

would affect what type of motion.

2.7 – Reeks, Reed, and Hall (RRH) Models

Reeks et al. (1988) developed the basis of the “Rock’n Roll” model for particle

resuspension. Prior to this model, turbulent energy was not taken into account in the

modeling process which left the force balance models incomplete. The turbulent energy

transferred to the particle influences resuspension, as it allows the particle to move within

a certain distance from the wall, but not actually detach from the wall. They classified

detachment as when a particle accumulates enough vibrational energy to escape from the

22

surface adhesive potential well. This allowed them to develop an equation for rate

constant p

𝑝~𝜔𝑜exp⁡[−
𝑄

2(𝑃𝐸)
]

(1)

where ωo is the natural frequency of vibration, Q is the depth of the surface adhesive

potential well and (PE) is the average potential energy of a particle within the well. In

this model, potential energy depends on the fluid and mechanical damping, as well as the

energy spectrum of the fluctuating aerodynamic force, especially when it is near the

resonant frequency of the particle-surface vibration. The rate constant p, based on the van

der Waals adhesive forces for a particle on a surface (with both particle and surface being

elastically deformed), indicates that particles can be resuspended from a surface more

easily than anticipated from a balance of adhesive and aerodynamic forces. The observed

dependence of resuspension on flow and particle size was the same as that predicted by

this model. The resuspension rates from surfaces where there is a wide range of adhesive

forces (usually due to particle roughness) were shown to decay over time, almost

inversely with the duration of exposure to the flow.

Reeks and Hall (2001) expanded on their 1988 model. They began with measurements of

short-term resuspension of alumina spheres, ranging in size from 10 to 20 µm, as well as

graphite particles. These were being resuspended from a polished, stainless steel flat plate

in a fully developed turbulent flow. Measurements were made of the normal and

tangential forces holding the particles to the surface. These forces covered a broad range

of values, but were on average much lower than the values for a smooth contact. The

tangential forces were typically 1/100th of the average normal adhesive forces, indicating

23

that the drag forces play a more important role in resuspension than the lift forces. Forces

and dimensions used in the Reeks, Reed, and Hall (RRH) “Rock’n Roll” model are

shown in Figure 1. This causes their force balance to be dominated by drag forces. Their

results also showed that the contribution of resonant energy to resuspension is relatively

small, especially when considering the overwhelming influence of the drag forces. This

simplifies the resuspension rate constant so that a moment balance of the adhesion and

aerodynamic forces about points of contact can be made. These points of contact are

created by surface asperities. This way of analyzing particle resuspension resulted in

values of resuspension rate similar to the original RRH model, though they are much

improved.

Figure 1 – Rock’n Roll Model forces and dimensions

As will be discussed below, this model will be used within the numerical method

discussed herein. For each particle there is a point of contact (P) and a point of adhesion

24

(Q). The flow moves from left to right, as indicated by the drag force. There is a lift force

and a drag force, as well as a distance between points Q and P (indicated by a). The

particle will pivot about point P, where moments about point P due to drag, lift and the

adhesion force will be computed. Then the particle will twist off to be resuspended into

the flow after it has exited the surface adhesion well, where particles are caught due to

low velocity and high attractive force.

2.8 – Particle Resuspension Force Measurement

Zhang and Ahmadi (1995) examined particle detachment from rough surfaces in

turbulent flows. They assumed that the real area of contact between the particle and the

surface was determined by elastic deformation of surface asperities, so they examined the

surface properties in their research. They used both the sliding and rolling methods of

detachment, as well as examining near wall eddies and turbulent motion, with particular

focus on critical shear velocities. They found that the dominant resuspension mechanism

for spherical particles on a rough surface is rolling, and that the critical shear velocity was

reduced as the roughness increased. However, it increased when the radius of surface

asperities decreased. They also concluded that gravitational effects on the particle were

negligible for small particles. They examined particles ranging in size from 0.1 microns

to 100 microns.

Zhang and Ahmadi (2000) examined aerosol particle resuspension in turbulent channel

flow. They used direct numerical simulations of the Navier-Stokes equation to generate

the instantaneous fluid velocity field. They examined the particle resuspension

mechanisms, and they compared their results with Reeks et al. (1988), and found good

25

agreement between Reeks’ results and their simulated resuspension. rates. They found

that larger size particles (60 microns) move perpendicular to the wall when resuspended

due to the lift force. Near-wall turbulent flow structures play a significant role in particle

resuspension. They examined particles ranging in size from 30 microns to 60 microns.

In collaboration with Profs. Truman and Vorobieff at UNM, D. Srivastava and Prof.

Hugh Smyth at the Univ. of Texas College of Pharmacy measured adhesion forces

between glass particles and artificially-roughened surfaces (Truman et al.,

2011). Particles were classified as respirable or small (diameter <5 microns) or as large

(mean diameter ~10 microns). Surfaces with varying degrees of roughness (smooth,

nano-rough, micro-rough, and nano-and-micro-rough) and varying surface chemistries

(-CH 3, -COOH, and –NH2) were produced. The CH3-modified surface is hydrophobic,

while the other two are hydrophilic.

To produce nano-roughness, silver was etched onto 10 mm stainless steel discs followed

by sputter coating. Micro-roughness was obtained by physically roughening stainless

steel discs with a ¼” 240-grit sanding band. Nano-and-micro-rough surfaces received

both treatments. An Optical Profiler was used to measure the roughness of these

surfaces. To vary the surface chemistry, self-assembled monolayers (SAMs) of

1-dodecanethiol, 11-Mercaptoundecanoic acid, and 11-amino-1-undecanethiol,

hydrochloride were used. To improve the adhesion of gold to the discs, a 20 nm layer of

smooth silver was sputter coated onto the smooth and micro-rough discs. Then, a 15 nm

layer of gold was thermally evaporated onto all the discs.

26

Resulting surface roughness measured with a scanning electron microscope (SEM) varied

from 0.19-0.38 microns for the nano-rough surfaces, from 1.1-1.8 microns for the micro-

rough surfaces, and from 1.9-2.2 microns for the nano-and-micro-rough surfaces. The

resulting adhesion forces for large particles, shown in Figure 2, generally increase with

increasing roughness except that the smooth glass surface has the highest adhesion

force. While there are some differences between adhesion forces with different surface

chemistry, there is no clear trend. The hydrophilic NH2 surfaces were significantly more

adhesive on the nano-rough surfaces, while the hydrophobic CH3 surfaces were

significantly more adhesive on the nano-and-micro-rough surfaces. Thus for the present

study, the values of adhesion force considered in the present work were selected to span

the range of values at 0.5, 5, and 20 nN.

Figure 2 – Average adhesion forces for large particles with different surface chemistries

(Truman et al., 2011)

27

2.9 – Literature Review Summary

These ideas, the neglect of resonance effects, the importance of moment balances and

effect of roughness on particle adhesion, were brought together to form a new method to

analyze particle resuspension that was developed for this study. Reeks, Reed, and Hall

(1988) determined how particles resuspended, and which forces are the most pertinent for

a model of a particle that pivots about a point before lifting off. This model is applicable

to the case of a nano-rough surface, with few contact points between the surface and the

particle. The nano-rough adhesion forces measured by Truman et al. (2011) had the

smallest variance. When spherical particles are arranged in a hexagonal grid, so that

particles touch at two contact points with the surface beneath them, they interact with

each other in a way that is similar to a nano-rough surface particle interaction.

28

Chapter 3 – Particle Movements

For this model the particle dynamics were simplified with the assumptions described in

this section. A particle’s geometry relative to its neighbors falls into a limited number of

situations, which will also be described and analyzed within this section.

Ten basic assumptions are made for the model.

Assumption 1 – The model is two-dimensional on a vertical plane including the

streamwise and wall-normal directions.

Assumption 2 – Particles are of equal size, shape and mass. They are hard particles,

meaning they do not deform. In the vertical plane, the particles are circular although their

mass is computed for spheres.

Assumption 3 – The collection of particles is arranged in a hexagonal grid pattern. The

grid is defined by specifying the number of rows and the number of columns, where

columns are diagonal. In Figure 3, Particle A is located in one row, whereas Particles B,

C and D are located in another row. The columns are oriented upwards to the right, thus

Particles A and B are located in one column, and Particle C is located in the next column.

Assumption 4 – From Assumption 2, particles ABC form an equilateral triangle, with

side lengths equal to the diameter of the particles, and thus angles A, B and C are each

60°, or 𝜋/3 radians. The points of contact lie on the line between centers of adjacent

particles, and form equilateral triangles with the particle centers.

29

Assumption 5 – At the point of contact between particles, there is an attractive force or

reactive force.

Figure 3 – The layout of four particles in a perfect hexagonal grid. Particles ABC form

an equilateral triangle, with side lengths equal to particle diameter.

Assumption 6 – Particle mass is negligible with respect to the attractive forces and lift

and drag forces. Assuming a glass particle has a radius of 5 microns, the weight of the

particle would be 1.23x10-17 N, which is far smaller than the attractive forces on the order

of 10-9 N.

Assumption 7 – The simulation takes place in a dry environment, with low relative

humidity.

Assumption 8 – Once a particle resuspends, it is no longer considered a part of the

simulation. It does not bounce or collide with other particles, triggering their

resuspension.

30

Assumption 9 – The particles are not resuspended by the shock, but rather the piston

velocity following the shock.

Assumption 10 – Since the particles are stacked in a grid pattern, each particle can be

arranged in one of five ways, as described below.

Each of these five arrangements is defined by the particle’s ability to move and its

interactions with the particles that surround it. A particle is immobile when it is in contact

with another particle above it. For example, in Figure 3, Particles B and C cannot move

because Particle A rests on top of both of them. Particle D can move as there is no

particle above it. An immobile particle is defined as Situation Zero. The particle does not

enter into the resuspension equations until it is able to move.

3.1 – Situation One

Situation One occurs when a particle sits atop two other particles, with no particles to the

immediate left or the immediate right. This is shown in Figure 4a. Assuming the air flow

is in the direction indicated by Figure 4a, then the free body diagram (FBD) of the

particle is shown in Figure 4b. There is a pivot point (P) and an attraction point (A). The

particle is acted on by four forces: the lift force (FL), the drag force (FD), the weight (mg)

and the contact force (FA) at point A There is also an attraction force at P, but it produces

no moment about point P.

31

Figure 4 – a) Particle atop two particles, with no particles to either side. b) Free body

diagram of a Situation One particle.

Taking the moment about pivot point P, when there is no motion, results in the following

equation:

∑𝑀1𝑃 = 0 = 𝐹𝐴𝑟 cos (
𝜋

6
) − 𝐹𝐷𝑟 cos (

𝜋

6
) − 𝐹𝐿𝑟 cos (

𝜋

3
) (2)

where r is particle radius.

3.2 – Situation Two

Situation Two is a particle atop two other particles, with no particle to the immediate left.

However, it does have a particle to the immediate right. This is shown in Figure 5a.

Assuming the airflow is in the direction indicated by Figure 5a, then the free body

diagram of the particle can be seen in Figure 5b. There is a pivot point (P) and two

attraction points (A1 and A2). The pivot point P was chosen as it is the point of contact

where the smallest lift force would be required to overcome the attraction forces in the

moment balance. The particle is acted on by four forces: the lift force (FL), the drag force

32

(FD) and two contact forces (FA1 and FA2). The drag force (Fd) creates no movement or

moment, as it goes through the pivot point P. There is also an attractive force at point P,

but it produces no moment about point P.

Taking the moment about point P, when there is no motion, results in the following

equation:

∑ 𝑀2𝑃 = 0 = 𝐹𝐴1 cos (
𝜋

6
) 𝑟 + 𝐹𝐴2 cos (

𝜋

6
) 𝑟 − 𝐹𝐿𝑟 (3)

Figure 5 – a) Particle atop two particles, with a particle to the immediate right. b) Free

body diagram of a Situation Two particle.

3.3 – Situation Three

Situation Three is a particle atop two other particles, with no particle to the immediate

right. However, it does have a particle to the immediate left. This can be seen in Figure

6a. Assuming the airflow is in the direction indicated by Figure 6a, then the free body

diagram of the particle can be seen in Figure 6b. There is a pivot point (P) and two

attraction points (A1 and A2). The pivot point P was chosen as it will result in

resuspension with the smallest lift force. The particle is acted on by four forces, the lift

33

force (FL), the drag force (FD) and two contact forces (FA1 and FA2). There is also an

attractive force at point P, but it produces no moment about point P.

Taking the moment about point P, when there is no motion, results in the following

equation:

∑𝑀3𝑃 = 0 = 𝐹𝐴1𝑟 cos (
𝜋

6
) + 𝐹𝐴2𝑟 cos (

𝜋

6
) +𝐹𝐿𝑟 cos (

𝜋

3
) − 𝐹𝐷𝑟 cos (

𝜋

6
) (4)

Figure 6 – a) Particle atop two particles with a particle to the immediate left. b) Free

body diagram of a Situation Three particle.

3.4 – Situation Four

Situation Four is a particle atop two other particles, with particles to the immediate left

and the immediate right. This can be seen in Figure 7a below. Assuming the velocity is in

the direction indicated by Figure 7a, then the free body diagram of the particle can be

seen in Figure 7b. There is a pivot point (P) and three attraction points (A1, A2 and A3).

The pivot point P was chosen as it is the point of contact where the forces required for

resuspension are the smallest. The particle is acted on by five forces, the lift force (FL),

the drag force (FD) and three contact forces (FA1, FA2 and FA3). The drag force is acting

34

through the pivot point P. There is also an attractive force at point P, but it produces no

moment about point P.

Taking the moment about P, when there is no motion, results in the following equation:

∑𝑀4𝑃 = 0 = 𝐹𝑎1 cos (
𝜋

6
) + 𝐹𝑎3 cos (

𝜋

6
) −𝐹𝐿𝑟 (5)

Figure 7 – a) Particle atop two particles, with particles to the immediate left and right.

b) Free body diagram of a Situation Four particle.

3.5 – Simplification and Summary of Moment Equations

With these equations, it can be seen that Situations Two and Four have the same moment

balance. For Situation Four, the third contact force (between the particle and the particle

to its immediate left) produces no moment. The drag force does not enter into the

moment balances for Situations Two and Four. Thus the moment balances for Situations

One, Three and Two/Four, respectively, are:

∑𝑀1𝑃 = 0 = 𝐹𝐴𝑟 cos (
𝜋

6
) − 𝐹𝐷𝑟 cos (

𝜋

6
) − 𝐹𝐿𝑟 cos (

𝜋

3
) (2)

35

∑𝑀3𝑃 = 0 = 𝐹𝐴1𝑟 cos (
𝜋

6
) + 𝐹𝐴2𝑟 cos (

𝜋

6
) +𝐹𝐿𝑟 cos (

𝜋

3
) − 𝐹𝐷𝑟 cos (

𝜋

6
) (4)

∑𝑀4𝑃 = 0 = 𝐹𝑎1 cos (
𝜋

6
) 𝑟 + 𝐹𝑎3 cos (

𝜋

6
) 𝑟 −𝐹𝐿𝑟 (5)

FA is the contact force and for the nano-rough surfaces, it falls into three categories. NH2

surfaces have attractive forces ranging from 15 to 25 nN, COOH surfaces range from 4 to

6 nN and the CH3 has the smallest attractive forces, ranging from 0 to 1 nN. All three of

these will be examined.

For the lift and drag forces, lift and drag coefficients had to be calculated. For the drag,

Soltani and Ahmadi (1995) was used, specifically the equation for Stokes Drag force.

𝐹𝐷 =⁡
5.8𝜋𝜌𝑑𝑢∗2𝐿

𝐶
 (6)

The density, ρ of air at 70°F is 1.184 kg/m3, d is the diameter of the particle and u* is the

shear velocity (3.96 m/s for Mach 1.2, 13.4 m/s for Mach 1.7). The length scale L is

defined as

𝐿 = ⁡
𝑑

2
+ 2.76𝜎 + 𝐻𝑜 − 𝛼 (7)

where σ is the standard deviation of the height distribution for asperity, Ho is the position

of the equilibrium separation for which the asperity adhesion force balances with the

elastic rebound force, and α is the relative approach between the particle and the surface.

Because α, σ and Ho are on the order of the asperity height, or approximately 200 nm

according to Truman et al. (2011), they are negligible compared to the diameter of 10

microns. Thus the length scale is L = d/2.

36

C is the Cunningham factor, defined as

𝐶 = 1 + 𝐾𝑛 [1.257 + 0.4 exp (−
1.1

𝐾𝑛
)] (8)

where Kn is the Knudson number and is defined as

𝐾𝑛 = ⁡
2𝜆

𝑑
 (9)

The mean free path of air, λ, is also on the order of nanometers, and is much smaller than

the diameter, so we can assume that C = 1.

The drag force written in terms of drag coefficient is

𝐹𝐷 =
1

2
𝜌𝑉2𝐶𝐷𝜋𝑟2 (10)

where V is the freestream velocity (104m/s) and r is the particle radius (5 microns). Thus

the drag coefficient based on eqn (6) is

𝐶𝐷 =
23.2𝑢∗2

𝑉𝑃
2 = {

0.0337⁡𝑓𝑜𝑟⁡𝑀𝑎𝑐ℎ⁡1.2
0.0417⁡𝑓𝑜𝑟⁡𝑀𝑎𝑐ℎ⁡1.7

 (11)

Ahmadi (2014) discusses various proposals for computing lift forces on small particles

due to shear. The form that provides the best agreement with experimental data is

dimensionless lift force 𝐹𝐿
+ = 𝐹𝐿 (𝜌𝜈2)⁄ = 15.75*d+1.87 = 88.3 for Mach 1.2 and 873.4 for

Mach 1.7, where the dimensionless particle diameter is

𝑑+ =
𝑑𝑢∗

𝜈
= {

2.53⁡𝑓𝑜𝑟⁡𝑀𝑎𝑐ℎ⁡1.2
8.56⁡𝑓𝑜𝑟⁡𝑀𝑎𝑐ℎ⁡1.7

 (12)

37

where ν is the kinematic viscosity of the air (ν = 1.565x10-5 m2/s at 70°F).

Lift force written in terms of lift coefficient is

𝐹𝐿 =
1

2
𝜌𝑉2𝐶𝐿𝜋𝑟2 (13)

so that the lift coefficient is

𝐶𝐿 =
2𝐹𝐿

+𝜈2

𝑉2𝜋𝑟2
= {

0.0509⁡𝑓𝑜𝑟⁡𝑀𝑎𝑐ℎ⁡1.2
0.0546⁡𝑓𝑜𝑟⁡𝑀𝑎𝑐ℎ⁡1.7

 (14)

These values will be used for the subsequent calculations relating to the particle

resuspension.

3.5.1 – Threshold Velocity for Surface NH2, FA = 20 nN

The moment equations for the four situations were placed into MATLAB, where

FA = 20x10-9N, which is the average attractive force for the surface NH2. The lift-off

velocity can be determined as the minimum flow velocity for which the moment is

negative and the particle can pivot free and detach into the flow. This occurs when the

total moment due to attractive forces between the particles is overcome by the moment

due to the lift and drag forces. This code, listed in Appendix A.1, is called MomentCalc.

Figure 8 shows the flow velocity versus net moment on particles in each of the situations

(where Situations Two and Four are identical). Lift-off velocities are indicated by the

symbol at zero net moment. As expected, Situation One requires the lowest velocity for

the particle to detach. It is somewhat surprising that Situation Three requires a higher

38

lift-off velocity than Situations Two and Four. This is due to the different pivot point

location.

At a high velocity, if the moment is less than zero, the particle pivots about P and the

particle will soon resuspend. For this specific value of the attraction force, a particle in

Situation One would resuspend when the velocity exceeded 84m/s, Situations Two and

Four (given they are based on the same equation) would resuspend at 122 m/s and

Situation Three would resuspend at 129 m/s. Note that Situation One has only one

attractive force to overcome, whereas Situation Three has two attractive forces to

overcome and they are arranged in such a way that they are more difficult to overcome

than the two attractive forces in Situations Two and Four.

However, as the freestream velocity is equal to approximately 104 m/s, only the Situation

One particles will resuspend due to moments breaking the attractive bonds, and even

those particles may not resuspend as they require a lift-off velocity of 84m/s.

39

Figure 8 – Velocity vs net moment for each situation where FA = 20*10-9N. Symbols

indicate minimum velocity for particle to detach, termed lift-off velocity.

The moment balance is identical for Situations Two and Four.

3.5.2 – Threshold Velocity for Surface COOH, FA = 5x10nN

If the attractive force between particles is equal to 5x10-9N, the mean attractive force for

the surface COOH, the results are different as presented in Figure 9.

Situation One would start to pivot at 42 m/s, Situations Two and Four start to resuspend

at 61 m/s and Situation Three starts to move at 65 m/s. Note that as the attractive force is

less, the lift-off velocity is significantly decreased. All of these particles has the potential

to resuspend as the lift-off velocity for each is less that 104 m/s. However, due to the

velocity profile, they will only resuspend if the velocity is high enough at that height.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
-13

0

20

40

60

80

100

120

140

160

180

200

Moments, N/m

L
if
t

O
ff

 V
e
lo

c
it
y
,

m
/s

Velocity(m/s) vs Net Moment(N/m), F
A

 = 20*10-9N, NH2 Surface

Sit1

Sit2

Sit3

Sit4

40

Figure 9 – Velocity vs net moment for each situation, FA = 5*10-9 N. Symbols indicate

minimum velocity for particle to detach, termed lift-off velocity.

The moment balance is identical for Situations Two and Four.

3.5.3 – Threshold Velocity for Surface CH3, FA=0.5x10-9N

If the attractive force between particles is equal to 0.5x10-9N, the mean value for a nano-

rough particle-surface interaction on a CH3 surface, the results are different as can be

seen in Figure 10.

Situation One would start to pivot at 14 m/s, Situations Two and Four start to resuspend

at 20m/s and Situation Three starts to move at 21m/s. These attractive forces are the

smallest, and thus the particles will resuspend the easiest. They will also resuspend at

heights smaller than those that would be found using the COOH attractive forces, as the

smallest COOH lift-off velocity (40 m/s) is twice that of the largest NH3 lift-off velocity

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
-13

0

20

40

60

80

100

120

140

160

180

200

Moments, N/m

L
if
t

O
ff

 V
e
lo

c
it
y
,

m
/s

Velocity(m/s) vs Net Moment(N/m), F
A

 = 5*10-9N, COOH Surface

Sit1

Sit2

Sit3

Sit4

41

(20m/s). A complete tabulation of the results can be found in Table 1. Note that as the

attraction force decreases, so does the lift-off velocity of the particle.

Figure 10 – Velocity vs net moment for each situation, FA = 0.5*10-9N. Symbols indicate

minimum velocity for particle to detach, termed lift-off velocity.

The moment balance is identical for Situations Two and Four.

Table 1 – Lift-Off velocities for each Situation and each attractive force estimate

Lift-off Velocities (m/s)

NH3

20x10-9N

COOH

6x10-9N

CH3

0.05x10-9N

Situation One 85 42 14

Situation Two 122 61 20

Situation Three 129 65 21

Situation Four 122 61 20

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
-13

0

20

40

60

80

100

120

140

160

180

200

Moments, N/m

L
if
t

O
ff

 V
e
lo

c
it
y
,

m
/s

Velocity(m/s) vs Net Moment(N/m), F
A

 = 0.5*10-9N, CH3 Surface

Sit1

Sit2

Sit3

Sit4

42

Chapter 4 – Grid Generation

In order to run the simulations, a grid had to be generated that would determine the

random placement of the particles that were being tested. Each time the simulation would

run, a new random positioning of the particles would be used, meaning that each solution

would be unique and would be calculated as a whole. In the notation system, [#]

indicates a value in the matrix, and {#} indicates the situation into which each particle is

categorized.

In Figure 11, two random particle arrangements are shown that are based on the same two

basic requirements: there are four rows and 13 columns. Each arrangement is unique and

would yield a different solution. Each particle in arrangements A and B is categorized

according to the particles surrounding them. Figure 11 A, for example, has two Situation

One particles in the 4th row whereas Figure 11 B has only one. Figure 11 B also has a

Situation Four particle in the 4th row, whereas Figure 11 A does not.

Figure 11 – Two random particle arrangements based on the same parameters

43

For a specified number of rows and columns, the particle layout was determined first.

The code in its entirety is listed in Appendix A.2, called gridgen. An [MxN] matrix was

established where M was the minimum number of rows and N was the minimum number

of columns. This matrix was then filled with random values between 0 and 1 that were

rounded to the nearest integer (being 0 or 1). Zero (0) indicates that no particle fills that

position, while one (1) indicates that a particle is present. Since it is not physically

possible for particles to lie atop empty spaces, any gap (0) with a particle (1) above it was

converted to (1) to indicate the presence of a particle. For each [1] in the original matrix,

every space in the column beneath that particle also had to have a [1] in it, thus filling

any empty gaps. Furthermore, each particle must be supported by two below, one directly

beneath and one below in the column to the right. Figure 12 shows an original 4 row by

13 column matrix where each red [0] in the original matrix indicates a gap replaced with

a particle (or red [1]) in the filled-in matrix. The filled-in matrix in Figure 12

corresponds to the particle arrangement shown in Figure 13. The zeroes in the upper right

of the matrix are generated by adding empty columns, and then adding particles to form

the base of particles that require it. This does not happen for every random arrangement.

[

0 1 0 0 0
1
0
1

0
1
1

1 1 0
0 1 1
1 0 0

0 0 0 0 0 0
1 0 1
0 1 1
0 1 1

1 0 0
1 1 1
0 1 0

0
0
0
1

]

→ [

0 1 0 0 0
1
1
1

1
1
1

1 1 0
1 1 1
1 1 1

0 0 0 0 0 0
1 0 1
1 1 1
1 1 1

1 0 0
1 1 1
1 1 1

0
0
0
1

]

Figure 12 – The original 4 row by 12 column matrix (top) and the resulting filled-in

matrix (bottom). Note that row 1 is the lowest row in each matrix.

44

Figure 13 – Particle arrangement corresponding to filled-in matrix of Figure 12, where

only red particles can move. The empty circles are the [0] values in Figure 12.

In the resulting particle arrangement, each particle was categorized into the appropriate

situation. Values within the matrix were set to represent one of six possibilities: empty

space, a particle that cannot move, or particles in Situations One through Four. Situations

Two and Four are kept as distinct because when particles resuspend new situations will

arise. As shown in Figure 13, six particles in the arrangement can move, indicated by the

color red.

Here {0} is the value for an empty space. Each [0] remains as {0}. No particle may fill an

empty space because particles that move about their pivot point are assumed to be

entrained in the flow as they detach. The next step is more complex because the first

nonzero value in each column may be a particle that cannot move. In Table 2, all six

possible layouts for a specific particle (highlighted in red) are illustrated. The spaces

around it that must be checked are shown in blue. Black particles provide a base but do

not require a check. Situations One through Four are represented in the matrix with the

numbers {1} through {4}. Situation Zero (a particle that cannot move) is represented by

an {8} since {0} represents an empty space.

45

Table 2 – Table of particle checks for each possible arrangement. The red particle is

being checked, blue particles must be checked, black particles cannot move; dash line

indicates no particle present.

Matrix Diagram Explanations
Situation

Representation

[
0 0 0
1 1 0
1 1 1

]

With a particle immediately

above, the Red Particle cannot

move.

{8}

[
1 0 0
1 1 0
1 1 1

]

The Red Particle cannot move

because the space above and to

the left is occupied.

{8}

[
0 0 0
0 1 0
1 1 1

]

The Red Particle is in Situation

One because it can move and has

no particles to the immediate left

or right.

{1}

[
0 0 0
0 1 1
0 1 1

]

The Red Particle is in Situation

Two because it can move and has

a particle to the immediate right.

{2}

[
0 0 0
1 1 0
1 1 1

]

The Red Particle is in Situation

Three because it can move and

has a particle to the immediate

left.

{3}

[
0 0 0
1 1 1
1 1 1

]

The Red Particle is in Situation

Four because it can move and has

a particles to the immediate left

and immediate right.

{4}

The most efficient way to determine the situation of a particle is first to check if it can

move. This is done by checking whether both the space above it and the space above it

and to the left are empty. If it can move, it is categorized in one of Situations One through

46

Four by checking the particles to the left and to the right. Figure 14 shows the completed

matrix with each particle categorized corresponding to the arrangement in Figure 13.

𝑀𝑎𝑡𝑟𝑖𝑥 →

[

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0 0

0 2 8
0 8 8
0 8 8

8 3 0
8 8 8
8 8 8

1 0 1
8 8 8
8 8 8

1 0 0
8 8 3
8 8 8

0 0
0 0
8 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8]

Figure 14 – The completed matrix describing the particle arrangement of Figure 13, with

elements corresponding to the situation for each particle.

There are a few other values that must be added to the grid generation code. To simplify

coding, an empty top row must be added, so that the code will not result in an error when

checking for empty spaces above the top row of particles. An additional empty column

to the left and to the right must also be added for the same reason. Finally, a full row of

particles is allocated to the bottom, making it so each particle generated has a stable base

beneath it.

47

Chapter 5 – The Boundary Layer Model

A boundary layer model is needed because the particles are within the boundary layer. A

velocity profile is needed to compute the lift and drag forces on the particles. This section

describes the setup for the problem in STAR-CCM+ and the boundary layer model that

was produced. In this model, the particles will resuspend due to the piston velocity,

which is the velocity of air following the shock. Initially, there will be no flow until the

shock passes.

5.1 – Piston Flow Behind Moving Shock

The particle resuspension model will analyze two cases, with flows of air at Mach 1.2

and Mach 1.7. Since these cases are moving shocks, the pertinent values of pressure,

temperature, density and velocity can be calculated from normal shock relations in a

moving reference frame and fluid properties typical for Albuquerque NM. The speed of

the shock Vs is calculated as the product of speed of sound

𝑎 = ⁡√𝛾𝑔𝑐𝑅𝑇 (15)

where R = 287.1 J/(kg*K), γ = 1.4, and gc = 1 kg*m/(N*sec2), and Mach Number

𝑉𝑠 = 𝑎𝑀𝑎1 (16)

Table 3 – Shock conditions

Ma1
Pressure

(kPa)

Temperature

(K)

Density

(kg/m3)

Initial Velocity,

V1 (m/s)

Speed of the

Shock, Vs

(m/s)

1.2 86.18 289 0.979 0 409

1.7 86.18 289 0.979 0 579

48

In a reference frame moving with the shock at speed VS, the flow behind the shock is

denoted by 2’ with properties computed from normal shock relations, and is the air

velocity relative to the moving shock.

Table 4 – Flow properties behind the shock

Ma1 Ma2’
Pressure

(kPa)

Temperature

(K)

Speed of

sound, a (m/s)

Velocity of the

air, V2’ (m/s)

1.2 0.8422 130 325.9 361.8 304.8

1.7 0.6405 276 421.2 411.5 236.3

Piston flow values (denoted by 2) are those properties behind the moving shock in a

stationary reference frame including the Reynolds number

𝑅𝑒2 =⁡
𝜌𝑉2𝐿

𝜇𝑔𝑐
 (17)

Table 5 – Piston flow conditions

Ma1
Pressure

(kPa)

Temp

(K)

Density

(kg/m3)

Velocity,

V2 (m/s)

Viscosity, µ

(N*s/m2)

Reynolds

Number

1.2 130 325.9 1.32 104 2.04E-05 6.84E+05

1.7 276 421.2 2.15 316 2.47E-05 2.80E+06

The high Reynolds numbers indicate that both flows will be turbulent. Once these values

are calculated, an estimated thickness of the boundary layer can be calculated using

(White, 2006)

ℎ =
0.37 ∗ (𝐿𝑒𝑛𝑔𝑡ℎ)

𝑅𝑒𝐿

1
5⁄

 (18)

This gives a result for roughly how high the prism layer mesh in STAR-CCM+ must be.

49

Table 6 – Boundary layer parameters

Ma1 Length (m) ReL

Boundary

Layer

Thickness (m)

1.2 0.61 4.11E+06 0.0108

1.7 0.61 1.68E+07 0.0081

A numerical simulation of piston flow in the shock tube was carried out using STAR-

CCM+ before further development of the model could be carried out. The numerical

simulation was a test section with dimensions 0.10x0.10x0.61 meters, with the center at

0.305 meters. However, because the model being developed is two-dimensional, the

simulation domain only has to be 0.10x0.305 meters. The STAR-CCM+ simulation is

symmetric around the vertical midplane of the shock tube, which means that the

simulation domain can be further reduced to 0.025x0.305 meters if the top plane is a

symmetry line.

The STAR-CCM+ simulation can be reduced further because the velocity profile is

approximately constant for distances from the wall between 0.025 to 0.05 meters. The

part that is of most interest is closest to the wall, where the velocity profile changes the

most and where the velocity profile will be used by the particle resuspension model. By

reducing the size of the STAR-CCM+ simulation, the mesh will be more refined close to

the wall. Therefore, the simulation was 0.025 meters high and 0.305 meters long.

5.2 – The Prism Layer

STAR-CCM+ creates the computational mesh by using prism layers. Because the STAR-

CCM+ model of the shock tube segment is rectangular, the prism cells will also be

50

rectangular for this simulation. However the prism layers allows STAR-CCM+ to create

a stretching mesh, with smaller cells closer to the wall and larger cells towards the mean

flow. The mesh requires a set of input values, as follows:

Table 7 – Prism layer terms

base The value that all later calculations will be based upon

maximum %
The maximum amount of the base that the stretching prism layer

will occupy

of layers The total number of layers within the stretching prism

stretching

factor

The ratio of each prism layer thickness to the one below it (a

value greater than one)

% of prism

layer

The true percentage amount of the base that the stretching prism

layer occupies

depth The height of the stretching prism layer

It is, in fact, impossible to specify all of the values listed in Table 7. The Maximum %

and the true percentage cannot be simultaneously specified. The true percentage, the

number of layers and the stretching factor have to be chosen so that they are consistent

with each other; two values must be selected and used to calculate the third in order to

specify the prism layers.

The maximum % is the maximum amount of the Base that the prism layer is allowed to

occupy. This does not mean that it will take up this entire space, as will be seen in the

following calculations. A good value is 10%, because by that point the flow velocity will

have increased significantly and is no longer requires as much resolution for future

51

calculations. The mesh does not need to be as refined from 10% to 100%, though there

does need to be a well-defined mesh to acquire good results.

The number of layers is directly correlated to the number of data points. Each cell will

provide data, so it is better to have more layers of cells. There is a trade-off between

having enough layers to model the details of the flow and having superfluous layers that

do not contribute to the solution. The number of layers outside the prism layer needs to

be the same as the number of layers within the prism layer.

The stretching factor is defined as: Stretching factor = (height of second layer – height of

first layer)/height of first layer as shown in Figure 15. The example is for a stretching

factor of 1.5.

Figure 15 – Stretching factor example

This does not give a quick and effective way to determine the most useful stretching

factor based solely on the top of the layers. This is especially useless when y+ is being

used for the calculations. y+ is the dimensionless wall distance,

𝑦+ =
𝑢∗𝑦

𝜐
 (19)

52

𝑢∗ =⁡√𝜏𝑤𝑎𝑙𝑙/𝜌 is the friction velocity, y is the distance to the wall and 𝜐 = 𝜇/𝜌 is the

kinematic viscosity of the fluid. Where µ is dynamic viscosity, ρ is density and τw is wall

sheer stress.

A calculator within STAR-CCM+ can be used for many of these values, based upon the

flow. So the best way to get these values is to run a simple simulation with a uniform

mesh. This will provide approximate values for the friction velocity u*, the density ρ and

the dynamic viscosity µ. The values for the piston flow following a Mach 1.2 shock are

tabulated below:

Table 8 – Variables for y+

u* 3.96 m/s

ρ 1.185 Kg/m3

µ 1.85E-05 N*s/m2

An initial layer height can be calculated from these three values by stating y+ = 1. Thus

the height of the first layer can be calculated using

ℎ =
⁡𝜇

𝑢∗𝜌
= 1.85𝑥10−5

𝑁 ∗ 𝑠

𝑚2
∗

1

3.96

𝑠

𝑚
∗

1

1.185
∗

𝑚3

𝑘𝑔
= 3.937𝑥10−6𝑚 (20)

A stretching factor of 1.15 was chosen and the next layer height can be determined by

simply multiplying the height of the first layer (3.937x10-6 meters) by 1.15, giving a value

of 4.521x10-6 meters. This is not the top of the second layer, but the thickness of it. From

this, the value of y+ for this cell can be calculated using eqn (19). Subsequent values can

then be calculated using the same method, resulting in Table 9.

53

Table 9 – Calculated y+ values for STAR-CCM+

Layer # height (m) y+

1 3.94E-06 1.000

2 4.52E-06 2.150

3 5.23E-06 3.473

4 5.99E-06 4.993

5 6.91E-06 6.742

6 7.95E-06 8.754

… … …

32 4.59E-04 577.100

Adding the heights together, a value for the total prism depth is calculated. This is used to

determine if the total calculated height is greater than the maximum percentage that the

prism layer is allowed to occupy, as specified in Table 7. This also gives the total number

of prism layers should allow for the value of y+ to range from 1 to about 500. The

completed table of values needed by STAR-CCM+ is listed in Table 10.

Table 10 – Completed table for STAR-CCM mesh generation

base (m) 0.0254

maximum % 10

of layers 32

stretching factor 1.15

% of prism layer 6.759

depth (in) 0.00171

54

This means that there are 32 prism layers within the prism layer, the stretching factor is

1.15 and the depth of the prism layer is about 0.00171 meters, or 6%, which is less than

the maximum of 10%. It should be noted that the value calculated here is approximately

the same size as the value calculated initially for the size of the boundary layer, and most

of the boundary layer is encapsulated within the prism mesh.

5.3 – STAR-CCM+ Results

With the above values entered into STAR-CCM+, a mesh can be generated to compute

the velocity profile. Using STAR-CCM+, a velocity inlet/pressure outlet simulation was

used for the turbulent velocity profile using a k-ω turbulence model, and was then run for

1000 iterations until the residuals became steady, indicating convergence of the output

results.

5.3.1 – Velocity Profile

Figure 16 shows the velocity profile for air traveling at 104 m/s, the calculated piston

velocity for the Mach 1.2 case. With a 0.0254 meter domain height and symmetry plane

at the top surface, mass flow conservation requires that the velocity in the inviscid region

increases to 109 m/s. Position is distance from the wall.

55

Figure 16 – Velocity profile from STAR-CCM+for Mach 1.2 case.

5.3.2 – Friction Velocity

The velocity profile in wall variables, where 𝑢+ = 𝑢 𝑢∗⁄ is shown in Figure 17, where

position is distance from the wall. The value of the friction velocity can be extracted and

used to determine the suitability of the wall-normal mesh. The velocity profile satisfies

the u+ = y+ behavior for y+ <~ 5 and demonstrates logarithmic behavior for 20 < y+ <

1000.

5.3.3 – Turbulent Kinetic Energy

The STAR-CCM+ results for turbulent kinetic energy shown in Figure 18 are suspect

because the peak kinetic energy is expected to occur at y+ ~ 10 rather than y+>100

(Bernard, 2002). There was no response to inquiries made to STAR-CD, the distributor

of STAR-CCM+, about this discrepancy. The computed velocity profile is strongly

dependent on the tubulent kinetic energy profile, so it is believed that something within

56

the code for outputting kinetic energy is in error. Because the computed velocity profile

appears to correct, it will be used in the particle resuspension modeling using MATLAB.

Figure 17 – Velocity profile for Mach 1.2 case from STAR-CCM+ using wall variables

Figure 18 – Turbulent Kinetic Energy profile for Mach 1.2 case from STAR-CCM+

57

Chapter 6 – Visualization

A MATLAB function was created to display the particle grid, with input from the above

grid generation. The code in its entirety is listed in Appendix A.3, called partmap. First,

a color was assigned to each particle situation listed in Table 11.

Table 11 – Color assignments for visual representation

Situation Matrix # Color

No Particle 0 None

Situation One 1 Green

Situation Two 2 Red

Situation Three 3 Black

Situation Four 4 Magenta

Situation Zero 8 Blue

A radius is chosen for plotting the particles. Then each particle is assigned a coordinate

for plotting. Because the particles are assumed to be in a packed hexagonal array, each

row is shifted relative to the row beneath it by the radius of a particle. In the packed

hexagonal array, the y-coordinate for a row is the same. The x-coordinate is determined

by the matrix index of the particle. The plotting coordinates for each particle are

calculated from the indices of the particle.

For example, a particle arrangement where the input is 4 rows and 10 columns could

potentially look like Figure 19. Recall that a bottom row is added so there is a stable base,

and particles are added to the right to support “hanging particles”. Each of the particles

58

is represented with a color that represents what type of situation it is in. This will allow

for a quick visual inspection of the results.

Figure 19 – Particle bed visualization, where color indicates Situation of each particle.

59

Chapter 7 – Test Code: Uniform Attractive Force and Velocity

The next step is building the code that will determine which particles resuspend. The first

version of the code had simplifying assumptions so the code could be created in an

incremental manner. The code in its entirety is listed in Appendix A.4, called

PartSimSimple.

A basic grid of ten rows and fifty columns was used. The velocity profile was uniform,

with no boundary layer profile. The attractive force is assigned as uniform throughout the

grid. A force of 1*10-9N was chosen initially, as it was small enough to allow for

debugging purposes. A time step t = 10-14 seconds is chosen for these calculations in

order to solve the dynamic equations.

Table 12 – Equations for forces in Y for each Situation, basic simulation

Situation Equation

One 𝐹𝑌1 =⁡−𝐹𝑎 cos (
𝜋

6
) + 𝐹𝐿 − 𝑚𝑔

Two 𝐹𝑌2 =⁡−2𝐹𝑎 cos (
𝜋

6
) + 𝐹𝐿 − 𝑚𝑔

Three 𝐹𝑌3 =⁡−2𝐹𝑎 cos (
𝜋

6
) + 𝐹𝐿 − 𝑚𝑔

Four 𝐹𝑌4 =⁡−2𝐹𝑎 cos (
𝜋

6
) + 𝐹𝐿 − 𝑚𝑔

Next, a system of equations was solved for each situation. The forces in y are found first.

These equations are then used to determine the acceleration in y, as F = ma. With the

acceleration, the velocity in y can then be calculated with 𝑉 = ⁡𝑉𝑖 + 𝑎𝑡. Using the

60

velocity and the acceleration, a position in y can then be calculated, using the equation

𝑦 = ⁡𝑦𝑖 + 𝑉𝑡 + 𝑎𝑡2. These equations require the logging of the position and velocity of

the previous time step.

Next a value must be determined to decide whether or not a particle has resuspended.

Once the particle breaks free at one attraction point, it has broken free of all attraction

points, and has started to move. It is only a matter of time before it resuspends. However,

this time does need to be standardized so it can be factored into the calculations. The

easiest way is to assign a vertical distance y that the particle must travel before it is

considered to have ‘resuspended’. The value chosen can be altered to better visualize the

results. A distance equal to half the radius of the particles was chosen as a reasonable

value for these initial calculations.

After a particle is determined to have resuspended, it is allocated a new number within

the grid, thus remembering its situational identity when it has suspended. Note that these

resuspended particles are no longer being used within the calculations. This was done by

adding (-9) to the situation number when a particle resuspends. The new values are listed

in Table 13. The Grid visualization was expanded upon to display the resuspended

particles as empty circles.

Table 13 – New Situation allocations after resuspension

Situation Matrix # Resuspend Value

No Particle 0 NA

Situation One 1 -8

Situation Two 2 -7

Situation Three 3 -6

Situation Four 4 -5

Situation Zero 8 NA

61

For example, Figure 20 shows the Particle Arrangement for a [10,40] initial grid. It has

nine Situation One particles, five Situation Two particles, four Situation Three particle

and three Situation Four particles.

Figure 20 – Initial particle bed, with Situation indicated by color.

When this arrangement is used in the test simulation, after fifteen time steps, the grid

looks like Figure 21. Notice the now empty circles whose color indicate the Situation of

the particle when it resuspended. These empty circles maintain their location and their

color to help determine how particles resuspended. It can be seen in Figure 21 that the

particles seemed to lift off in rows, with the Situation Fours all detaching at once. If each

time step is depicted it will show the particles resuspending as time passes, also in rows,

though with time steps in between where nothing resuspends. There is no sudden

62

emergence of a Situation One particle, and the particles resuspend in a logical fashion,

assuming that all the particles are the same size, weight, are experiencing the same

attractive force and subject to the same airflow velocity.

Figure 21 – Particle bed after 15 time steps have elapsed. Empty circles indicate the

Situation of the resuspended particle.

63

Chapter 8 – Simulating the Airflow

The preliminary simulation is expanded upon by including the variable attractive forces,

the velocity profile with a boundary layer and the addition of more particles. The

attractive force of each particle was assigned a maximum value of 1*10-9N. Since it is a

uniform random distribution, the MATLAB random function was used to assign each

particle a value between 0 and 1, and would then later be scaled to the appropriate values,

with a bias added so it covers the correct range of attractive forces for a surface. This

assigns each particle an attractive force which will now be used in the force balance

equations. As can be seen in Table 14, each attractive force is in represented in the forces

in the y-direction. The code in its completed form is listed in Appendix A.5, and is called

PartSimComplex.

Table 14 – Reduced force balance equations

Situation Equation

One 𝐹𝑌1 =⁡−𝐹𝑎 cos (
𝜋

6
) + 𝐹𝐿 − 𝑚𝑔

Two 𝐹𝑌2 =⁡−𝐹𝑎1 cos (
𝜋

6
)−𝐹𝑎2 cos (

𝜋

6
) + 𝐹𝐿 − 𝑚𝑔

Three 𝐹𝑌2 =⁡−𝐹𝑎1 cos (
𝜋

6
)−𝐹𝑎2 cos (

𝜋

6
) + 𝐹𝐿 − 𝑚𝑔

Four 𝐹𝑌2 =⁡−𝐹𝑎1 cos (
𝜋

6
)−𝐹𝑎2 cos (

𝜋

6
) + 𝐹𝐿 − 𝑚𝑔

8.1 – Turbulent Velocity Profile

The particles are subjected to a turbulent airflow. This airflow is thus not a uniform flow

and is more parabolic in nature. This means that the airflow closest to the wall is much

64

slower than the air away from the wall. This airflow was modeled in a STAR-CCM+, as

described in Section 5. A plot of the velocity profile for the piston flow flowing a Mach

1.2 shock is shown in Figure 22.

Figure 22 – Velocity interpolation from STAR-CCM+ values

At the wall, the velocity is almost zero, though with greater distance from the wall, the

airflow speeds up. This needs to be represented within the simulation itself. The results

from STAR-CCM+ are imported and a linear interpolation is used to solve for the

velocity at a given coordinate. This is depicted with the red symbols in the figure above.

The blue line is the results from STAR-CCM+. This velocity profile based on the y

location of the particle is now used. Previously, when subjected to a uniform flow with

65

uniform attractive forces, several of the particles resuspended, and given enough time, all

of them would. This is no longer the case as can be seen in Figure 23.

Figure 23 – Particle bed Situations after 15 time steps. A) Exposed to constant velocity,

B) Exposed to velocity varying with height. Empty circles indicate the Situation of the

resuspended particle. Fewer particles in B resuspended.

Far fewer particles have resuspended over the same amount of time. This is due to the

boundary layer. Within the boundary layer, the airflow velocity decreases closer to the

wall, to the point where the lift and drag forces are insufficient to overcome the attractive

forces. The randomized attractive forces make it possible for particles to stick together in

ways that are not apparent until the surrounding particles have resuspended.

8.2 – Simulation Refinement

After the initial simulations, the grid of particles was expanded to a much larger scale. A

larger model requires more computing time. The code starts on the outermost layer of

particles and then works downward towards the base. Logic was added to the code to

determine when an entire row of particles was unable to move. As every subsequent row

would also not be able to move, the checks past this point were not needed. The

66

visualization was changed so it only displayed the rows above the first unmovable row.

This made the results easier to interpret and increased the speed of the program

immensely for large [100,100] or a [500,500] particle arrangements.

Memory requirements were also reduced by not saving the time history of the net forces,

accelerations, velocities and positions of every particle. Instead, only the values from the

current and previous time step are saved, as they are the only two needed for the

propagation of the motion of a particle.

The time step for the simulation was calculated by first determining the time to resuspend

a particle. The fastest a particle would resuspend is a Situation One particle when it is

exposed to the maximum flow, with a weak attractive force holding it to the other

particles. This resuspension time is then divided by 10, so that the particle dynamics can

be calculated and allow the simulation to capture the motion of that particle. Other

particles take longer to resuspend as they may have more than one attractive force to

overcome, which may also be stronger, and the aerodynamic forces are smaller with a

lower velocity. This time step allows for all of the motion to be captured for all situations

of particles.

8.3 – Particle Rolling

The next step is to model the particles with moments. While the particles themselves can

be resuspended purely by the lift forces, some of the particles can move and rotate before

lifting off. Situation One is the best example, as the particle can roll onto the adjacent

particle before resuspending.

67

Further code was added to roll the particles for Situations One and Three (the only

situations where there is no particle to the immediate right). For Situations Two and Four,

it is impossible for them to roll, and they can only resuspend by breaking the attractive

bonds between them and the surrounding particles through lift. The code was changed to

check for resuspension due to either rolling due to a moment or a strong enough lift force.

8.4 – Shock Passage

This simulation was further expanded upon to model the passage of a shock over the

particles. While shock itself is not modeled within the simulation, the passage of the

shock can be, as the particles behave differently before and after the shock. In this

simulation, the boundary between pre and post shock situations is approximated as being

infinitesimally small. This means that the particles are either exposed to zero velocity

flow, or exposed to the piston velocity flow at any given time.

The length of time it would take for the shock to pass over the entirety of the particles can

be calculated from the Mach number of the shock, and the length of the particle

arrangement, calculated by the number of particles in the bottom row and their diameters.

This gives a value for the time the simulation must run to model the passage of the shock.

The vast majority of particles are resuspended as the shock passes over the particles. The

simulation can be run longer to capture the few additional particles that will resuspend

with more exposure to piston flow.

The next step is to model the passage of the shock. As the speed of the shock and the time

step and current time of the simulation are known, the distance the shock has traveled is

also known. So the next step is to have the simulation check, particle by particle, if the

68

shock has passed it before doing the calculations for modeling resuspension. If the shock

has passed, the particle is exposed to the piston velocity flow. If it has not, the particle is

exposed to no flow and thus will not be considered for resuspension. This will generate

results that are closer to the real world dynamics as the particles are exposed to flow for a

very short interval of time and either exposed to the piston flow or no flow at all.

Figure 24 – Particle bed at four time intervals as the shock passes. The black line

indicates the location of the shock passing over the particles. Empty circles indicate the

Situation of the resuspended particle. To the left of the shock, particles are exposed to the

piston velocity, whereas to the right of the shock, they experience no flow.

69

Chapter 9 – A Usable Code

As the air flow has been fully modeled, a new code had to be crafted that could be used to

look at the results, both individually, and also for trends. This required the air flow model

to be written as a subroutine for a larger code that would use PartSimComplex and run it

in a variety of ways to produce different results, depending on the user’s needs.

9.1 – Focusing the Results

The first step was to determine what results were appropriate to examine. The most

readily apparent of these results was the number of particles that resuspended. The code

previously counted how many particles of each type resuspended, and how many

particles overall resuspended. Now it was time to take those results and export them.

Code was added to PartSimComplex to export this data, as well as the time it took the

simulation to run and the initial and final particle counts.

With this, some basic statistical analysis could be performed, notably determining the

percentage of the particles that resuspended. However, one run was not enough to

recognize trending, so multiple runs were looked at, which was the basis for

PartBatchRun, which may be found in its completed form in Appendix A.6.

PartBatchRun allows for the simulation to be run multiple times, each time logging the

data results. In order to determine an appropriate number of runs, some statistics had to

be calculated from the results of these runs: average, minimum, maximum, range and

standard deviation. It was determined by looking at a few samples of data, that while 25

70

runs was sufficient to determine trending behavior, there was not enough data for some of

the smaller size particle arrangements.

For testing the statistical analysis, the attractive force range was shifted so as to increase

particle attraction. The attractive force is now between 1-2 nN. This will allow more

trends to become visible. The results of the 12x52 particle arrangement over various

numbers of runs are displayed in Table 15.

Table 15 – Results from PartSimComplex over various runs, using a 12x52 particle

arrangement grid

Initial

particles

Final

particles

Resuspended

particles
%Sit1 %Sit2 %Sit3 %Sit4 %Total

12x52 25 Runs

mean 465.6 120.7 344.9 6.503 88.81 0.1513 4.534 74.07

min 447 113 327 4.735 87.16 0 2.941 72.72

max 479 128 359 7.951 91.45 0.5882 5.556 75.06

range 32 15 32 3.216 4.297 0.5882 2.614 3.332

stdev 8.4552 4.326 8.086 0.7737 1.042 0.1709 .7269 0.8846

12x52 50 Runs

mean 458.9 120.6 338.3 6.381 89.25 0.1813 4.184 73.71

min 427 108 306 4.902 86.57 0 2.194 71.56

max 479 130 359 7.837 91.50 0.8721 6.000 76.32

range 52 22 53 2.935 4.932 0.8721 3.806 4.756

stdev 10.56 5.272 10.87 0.741 0.8819 0.2031 0.6677 1.206

12x52 100 Runs

mean 461.4 120.0 341.4 6.367 89.15 0.1661 4.318 73.99

min 423 105 307 5.099 85.63 0 2.874 71.02

max 479 133 360 8.750 90.99 0.6173 5.625 77.07

range 56 28 53 3.651 5.363 0.6173 2.751 6.050

stdev 10.45 5.587 9.493 0.6862 1.011 0.2204 0.6593 1.106

71

While the results vary with the number of runs included in the statistical analysis, the

changes from 50 to 100 runs are relatively small, a minimum run count of 100 was

chosen for initial trending analysis.

9.2 – The Time Scale, τ

The next step was to determine the appropriate time scale. Initially, the particles within

the simulation were exposed to the flow for the amount of time it took the shock to pass

over the particles. However, this will not capture particle detachment in the subsequent

piston flow behind the shock. The length of time it takes for the flow at the piston

velocity to pass over the particle bed is selected as a time scale τ = (bed length)/Vp. For

Mach 1.2, the piston velocity (342 ft/s) is roughly 1/4th the velocity of the shock

(1342 ft/s). Thus the shock passes over the particle bed in 0.25τ and 0.55τ, respectively,

for M = 1.2 and 1.7. In order to make sure that all motion was captured, run times equal

to 5, 10 and 15τ were used to determine a minimum run time. This was done by running

the simulation using a variety of particle arrangements and plotting various results. In

Figure 25, the 12x52 grid arrangement is used. About 70% of all particles resuspended,

with 87% of them being Situation Twos, followed by small percentages of Situation

Ones, Fours and very few Threes. However each of these results is consistent across all

three time scales, with negligible variance between them. This was repeated with the

22x102 and 32x62 grid arrangements with similar results that are shown in Figure 26 and

Figure 27.

For all of the simulations, Situation Twos are the overwhelming majority of resuspended

particles, followed by Situation Ones, Fours and finally Threes, which are a rare event.

72

The larger the grid, the greater percentage of particles resuspend, though adding more

rows increases the percentage resuspended compared to adding more columns. This is

because all particles above a certain height (where the velocity of the flow is fast enough)

will resuspend. These results indicated that 5τ was a more than adequate run time.

Figure 25 – Average percent resuspension vs dimensionless time for 12x52 grid size.

Figure 26 – Average percent resuspension vs dimensionless time for 22x102 grid size.

73

Figure 27 – Average percent resuspension vs dimensionless time for 32x92 grid size.

9.3 – Capturing Particle Resuspension

Particle Resuspension happens very early in exposure to flow, as was evidenced by the

amount of particle resuspension that happens when the run time was equal to the length

of time it took for the shock to cross the particles. A significant number of the particles

resuspend as the shock passes over the particles, results for t/τ < 1 were of interest. The

shock passes over the particle bed at t/τ~0.25 for Mach 1.2 and Mach 1.7, so the run

times of 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 1, 2, 3, 4, and 5 were selected to fully

capture the motion. This would produce a better overall picture of particle resuspension

with time. At this point, a better, more diverse attractive force array was implemented,

where the attractive forces ranged from 5x10-9N to 15x10-9N, as opposed to the previous

0 to 10x10-9N. The smaller attractive force was beneficial for exaggerating the dynamics

as the particles more readily resuspend.

Collecting results at intermediate times required the addition of trackers within

PartSimComplex, as well as a few on/off switches, as it became apparent that the code

would have to perform two functions: 1) visual depictions of a characteristic flow and 2)

74

multiple runs of random arrangements. The newest version of the code would distinguish

between the two, and present the results accordingly. PartBatchRun would run the code

PartSimComplex as many times as required by the user, log the data, calculate the mean,

maximum, minimum, range, standard deviation, as well as plus and minus one standard

deviation, and plot the results for visual comparison. It can also generate a movie out of a

particular arrangement, showing how particles resuspend.

PartBatchRun was created as a MATLAB function, which means a further code was

wrapped around it, called ParticleResuspension which is listed in Appendix A.7. This

code takes user inputs and determines which of the two functions the user wants: visuals

or data collection. It also presents the option, with the visuals, to make an .avi file movie

of the particle resuspension. The inputs for this code are listed in Table 16.

Table 16 – User inputs for ParticleResuspension

Input Description

Columns The initial number of columns.

Rows The initial number of rows.

t/τ
The amount of time the particles are exposed to the flow, where

the time the piston velocity takes to cross the flow is equal to 1.

Attractive Force

Choice

Allows the user to input which attractive force of the four used

within this text to use: NH2, COOH, CH3 or Test.

Plotting Run or

Data Run

This allows the user to input if this is a plotting run or a data run.

A plotting run generates images for one run. A data run produces

statistical data for series of runs

Movie Run Switch
This allows the user to decide if they wish to make an .avi file

movie of a single run.

Run Count For a data run, the number of times the simulation will run.

75

Chapter 10 – Results

The final product allows for multiple runs with the same inputs. Since the attractive

forces and grid arrangements are varied randomly, each run will provide different results.

Using this tool, particle resuspension can now be examined in terms of varying attractive

forces based on surface chemistry and varying grid size.

10.1 – 12x52 Grid, Mach 1.2

This is the smallest grid, both in height and length and thus has the fewest particles

exposed to the piston flow following a Mach 1.2 shock. As shown in Figure 28, nearly all

the particles using the CH3 attraction forces resuspend, while less than 1% of the

particles using the COOH attraction forces resuspend. None of the particles using the

NH2 attraction forces resuspend. The resuspended particles are mostly Situation Twos,

where the few particles that do resuspend using the COOH attraction forces are Situation

Twos. The complete results for CH3 are listed in Appendix B.1.

10.2 – 22x102 Grid, Mach 1.2

This is the longest grid, and thus has the most particles in the direction of the flow. As

shown in Figure 29, nearly all the particles using the CH3 attraction forces resuspend,

while less than 1% of the particles using the COOH attraction forces resuspend. Again,

none of the particles using the NH2 attraction forces resuspend. The resuspended

particles are mostly composed of situation twos, and in the COOH resuspension, there are

more Situation Four particles resuspending than Situation Ones, and a comparable

76

number of Situation One and Three particles resuspending. The complete results for CH3

are listed in Appendix B.2. The complete results for COOH are listed in Appendix B.3.

Figure 28 – Particle resuspension for 15x52 grid size with varying attractive forces vs

dimensionless time.

10.3 – 32x92 Grid, Mach 1.2

This is the largest grid, and thus has the most particles resuspending overall. As shown in

Figure 30. Nearly 100% of the particles using the CH3 attraction forces resuspend, while

2% of the particles using the COOH attraction forces resuspend. None of the particles

using the NH2 attraction forces resuspend. As with the previous results, the resuspension

is dominated by Situation Twos. However, uniquely to the COOH attraction forces, there

77

are more Situation Fours resuspending than Situation Ones. The complete results for CH3

are listed in Appendix B.4. The complete results for COOH are listed in Appendix B.5.

Figure 29 – Particle resuspension for 22x102 grid size with varying attractive forces vs

dimensionless time.

10.4 – Trends

There are trends apparent across all three grid arrangements and attractive forces, most

notably that the Situation Twos comprise a majority of the resuspended particles in each,

followed by the remaining three situations. Another trend would be that the Situation

Twos decrease percentage wise over time, as they are popular for the top rows, which are

exposed to higher flows and thus more easily overcome the attractive forces, allowing

particles to resuspend readily. However as time progresses, the easily resuspended

78

particles lift off, leaving strongly attracted particles, which make way for the Situation

Ones, Threes and Fours. Situation Ones are also very common at the start of

resuspension, then the trail off before rising again. This is due to the top layer of particles

being composed of many Situation Ones, where the particles most readily resuspend.

Figure 30 – Particle resuspension for 32x92 grid size with varying attractive forces vs

dimensionless time.

10.5 – Results at Different Velocities

The code can run at varying velocities, as the piston flow was analyzed for two velocities,

the flow following a Mach 1.2 shock and the flow following a Mach 1.7 shock. When the

velocity profile for the Piston flow following a Mach 1.7 shock was used, 0.55τ was the

time it took for the shock to cross the particles. The flow is significantly higher than the

79

piston flow following a Mach 1.2 shock, and thus more particles resuspend with the

entirety of the CH3 particles resuspending regardless of grid size and a majority of the

COOH and NH2 particles resuspending as well. These results can be compared in Table

17 and Table 18.

Table 17 – Percent resuspension for various grids and attractive forces for a Mach 1.2

shock, t/τ = 1.

 %

Resuspended

% Situation

One

% Situation

Two

% Situation

Three

% Situation

Four

12x52

COOH 0.93 0 100 0 0

CH3 90.18 5.49 90.71 0.11 3.69

22x102

COOH 0.82 4.86 83.21 5.26 6.66

CH3 95.12 2.70 95.34 0.04 1.91

32x92

COOH 1.95 10.99 53.04 7.86 28.10

CH3 96.45 2.28 96.34 0.04 1.34

Table 18 – Percent resuspension for various grids and attractive forces for a Mach 1.7

shock, t/τ = 2.

 %

Resuspended

% Situation

One

% Situation

Two

% Situation

Three

% Situation

Four

12x52

NH2 84.09 5.80 91.24 0.05 2.90

COOH 94.29 5.34 92.07 0.06 2.53

CH3 100 5.27 94.73 0 0

22x102

NH2 91.91 2.80 95.80 0.02 1.38

COOH 97.07 2.70 96.00 0.02 1.28

CH3 100 2.66 97.34 0 0

32x92

NH2 94.12 2.31 96.72 0.01 0.96

COOH 97.91 2.28 96.78 0.01 0.92

CH3 100 2.29 97.71 0 0

80

Chapter 11 – Observed Particle Behavior

There were a number of interesting observed particle behaviors.

Observation 1 – Most particles resuspend as Situation Two Particles. Situation Twos are

exposed to the flow more prominently, and when they are resuspended, they usually

generate another Situation Two particle immediately downstream. This creates a wave of

particles that are resuspending a few particle diameters behind the location of the shock.

The lag is due to the particle having to rise one radii before it is considered to have

resuspended and expose the next particle downstream to the flow. They make up the

majority of the top rows, with the last particle on each row becoming a Situation One, as

seen in Figure 31.

Figure 31 – Typical particle bed at the end of a simulation. Resuspended Situation Twos

indicated by empty red circles

81

Observation 2 – There are fewer Situation Three’s that resuspend. They are exposed to

less of the flow and are the last exposed to the flow. When a particle immediately

upstream resuspends, a Situation Three is transformed into a Situation One. If there are

Situation Three particles, their resuspension usually occurs in the lower rows, where the

velocity is lower, making it less likely for the upstream particles to resuspend as the

piston flow passes over the particles.

Observation 3 – There are very few Situation Four particles being resuspended. They

have little exposure to the flow, and particles on either side prevent them from rotating.

They often transition to another Situation Two or Three, depending on the motion of the

surrounding particles.

Observation 4 – The top several rows are the easiest to resuspend, because they are

exposed to large enough velocity to overcome the attractive forces. The upper rows are

exposed to higher velocity flow. They usually resuspend as a Situation Two, and they

zipper off, resuspending from upstream to downstream.

Observation 5 – Situation One particles tended to form when a particle has a stronger

attractive force. They were usually a Situation Two, until the particle immediately

downstream resuspended. Now the Situation One is free to rotate and overcome its

stronger attractive force and resuspend. The Situation Ones that are inside the particle bed

(as opposed to the top row of particles), tended to be paired with a Situation Three

particle downstream, or with a weakly attracted Situation Four particle. This is illustrated

by the lone Situation One particle in the fourth row in Figure 32.

82

Figure 32 – Typical particle bed visualizations during shock passage that show a

Situation One particle remaining on the fourth row. Empty circles indicate the Situation

of the resuspended particle.

Observation 6 – The fraction of resuspended particles that are Situation Twos decreases

with time. They are the overwhelming majority at the start of the simulation and then

taper off slightly as other situations resuspend in the lower rows where strongly attracted

particles are not so easily resuspended.

Observation 7 – The higher the particles extend into the flow, the higher the percentage

of resuspended particles. However, if the particles only extend along the surface, and

have more columns rather than adding rows, the percentage of the particles remains the

same, indicating that there is a threshold height beneath which particles will not

resuspend, regardless of the time exposed to the flow.

Observation 8 – If particles in lower rows did not resuspend shortly after the shock

passing, attractive forces were too strong for the velocity at that elevation to overcome.

They tended to come in pairs of Situations Two and Three.

83

Observation 9 – Particles that do not resuspend anchor the top of a mountain. Particles

would erode from the back. Canyons are also created, as erosion from the front of one

mountain would merge with erosion from the back of a neighboring mountain. Several

mountains can develop, as shown in Figure 33.

Figure 33 – Typical particle bed visualization showing remaining mountains

developed by strongly attracted particles. Empty circles indicate the Situation of the

resuspended particle.

Observation 10 – The Base Row of Particles rarely was exposed to the piston flow, and

when it was, it was not exposed long enough for the particles to resuspend.

Observation 11 – The particle resuspension happens quickly compared to τ, the time of

the passage of the piston flow over the bed of particles. Nearly all particle resuspension

was completed by τ/4, or the time for the shock to pass over the particle bed.

84

Chapter 12 – Conclusions

This model was developed to analyze particle resuspension in piston flow following a

shock wave, in a two-dimensional set up with perfectly spherical particles all of the same

size. The model classified each particle according to the location of adjacent particles,

and based on that classification, specific force and moment equations were used to

determine whether particles resuspended. This model was based on the previous models

of Reeks, Reed, and Hall (Reeks et al. 1998, 2001), and used particle adhesion data from

Truman et al. (2011).

Various multi-particle interactions and behaviors were observed. A majority of the

particles resuspend, zippering off in the direction of the piston flow trailing the shock.

Strongly attracted particles cause mountains and canyons to develop, caused by the

erosion of nearby weakly-attracted particles. All particles resuspend above a certain

height, where velocity is high enough for lift and drag to overcome the maximum

attractive forces on the particles. The stronger the attractive forces between particles, the

greater the velocity required to generate the necessary lift and drag forces to cause

particle resuspension. Resuspension of a specific particle is dependent on particle

placement within the grid and its surrounding particles that determine the attractive

forces. The higher the piston velocity, the more particles will resuspend.

Within the simulation, each particle is unique, both in location and in attraction, and thus

each simulation provides a different result. These results can be analyzed for trends

regarding the influence of the attractive forces on particle resuspension, and the piston

85

velocity trailing the shock. This gives insight into how particles resuspend and the rate at

which they resuspend, and what forces dictate this resuspension.

86

Chapter 13 – Future Work

While this analysis covers many of the basics to give a general idea of how particles

should and can resuspend, it is not a complete model. There are some details that it does

not cover, and some dimensions that it does not cover. These parts were all omitted due

to assumptions made at the beginning of the analysis, when the situation was simplified

down to the core and most important components.

These basic assumptions, which were described at the beginning of the model set up, all

originated from the simplification that the particles form a perfect, two-dimensional,

hexagonal grid. In real life, this assumption is false, as a perfect hexagonal grid requires

perfect spheres of identical size and packed into a perfect grid. This means that Triangle

ABC in Figure 34 may not be perfectly equilateral, meaning the angles used to make the

above formulas and models could vary around a mean value of 60 degrees. This would

change the strength of the forces, and would alter how the particles lifted off, as well as

create new situations with voids within the grid. The contact forces would be much more

difficult to compute.

Figure 34 – Potential three-dimensional developments

87

It was assumed that the particles were in a two-dimensional pattern as opposed to a three-

dimensional pattern. In theory, there would simply be new free-body diagrams that

allowed for three-dimensional motion. Each particle (in a perfect, hexagonal grid where

each particle was perfectly spherical and identical in size) would be touching as many as

twelve other particles. Particles that are free to move have three adjacent particles below

and up to six adjacent particles on the same level. This would mean that there are 26

possible situations for each particle. In the two-dimensional situation, the wind is

assumed to only come from one direction, whereas in the three-dimensional simulation

the wind can come from any angle in the horizontal plane.

Particle attraction is another way the problem was simplified for analysis. The attractions

forces were assumed to be for a nano-rough surface. A nano-rough surface has points of

contact and the elasticity and deformation of the particle do not need to be considered. A

much more complicated model could developed from this to include particle elasticity

and deformation.

The equations of motion were built using Reeks and Hall’s (2001) second version of the

Rock’n Roll model, where the velocity fluctuations do not create strong enough

oscillations to affect particle motion. Particle motion is dictated primarily by drag and lift

forces as the particles are pivoted about a point. As per their second model, once a

particle detaches, it is no longer considered. A more detailed model would include the

finding of their first Rock’n Roll model, where particles will remain within the sublayer,

drifting downstream, until they reach resonance frequency and escape the sublayer. As

the resonance frequency is dictated by particle motion due to turbulent forces, which are

by their very nature unpredictable, this would be a probabilistic model.

88

The particles are assumed to resuspend due to the piston flow, and the piston flow only.

This does not take into account particle collisions, nor does it take into account the shock

itself. Igra and Falcovitz (2011) predicted that the lift and drag forces on a sphere were

affected by sliding shocks. They found time-varying drag and lift forces due to shock

interaction with the surface. Future work may take this into account and add these new

forces acting on the particle during the passage of the shock.

89

References

Ahamdi, G. “Lift Force” ME 437/457. Clarkson University, New York, 2005.

[http://web2.clarkson.edu/projects/fluidflow/courses/me637/1_4Lift.pdf Accessed 4/2/14]

Bernard, P.S., and Wallace, J.M. Turbulent Flow: Analysis, Measurement and

Prediction, Wiley, 2002, Hoboken, New Jersey, p. 121.

Biasi, L., de los Reyes, A., Reeks, M.W., and de Santi, G.F. (2001) “Use of a

simple model for the interpretation of experimental data on particle resuspension in

turbulent flows” Journal of Aerosol Science. Vol. 32, pp. 1175-1200.

Boor, B.E., Siegel, J.A., and Novoselac, A. (2011) “Development of an

experimental methodology to determine monolayer and multilayer particle resuspension

from indoor surfaces” ASHRAE Transactions. Vol. 117 Part 1, pp. 434-441.

Fedorov, A.V., Fedorova, N.N., and Fedorchenko, L.A. (2002) “Numerical

simulation of the shock wave interaction with a near-wall fine particle layer”

Proceedings, 11th International Conference on Methods of Aerophysical Research,

Novosibirsk, Russia, July 2002. pp. 45-50.

Gac, J., Sosnowsku, T., and Gradon, L. (2008) “Turbulent flow energy for

aerosolization of powder particles” Journal of Aerosol Science. Vol. 39, pp. 113-126.

Hontanñón, E., de los Reyes, A., and Capitão, J.A. (2000) “The CÆSAR code for

aerosol resuspension in turbulent pipe flows: assessment against the STORM

experiments” Journal of Aerosol Science. Vol. 31, No. 9, pp. 1061-1076.

http://web2.clarkson.edu/projects/fluidflow/courses/me637/1_4Lift.pdf

90

Ibrahim, A.H., Dunn, P.F., and Brach, R.M., (2003) “Microparticle detachment

from surfaces exposed to turbulent air flow: controlled experiments and modeling”

Journal of Aerosol Science. Vol. 34, pp. 765-782.

Ibrahim, A.H., Dunn, P.F., and Brach, R.M., (2004a) “Microparticle detachment

from surfaces exposed to turbulent air flow: Effects of flow and particle deposition

characteristics” Journal of Aerosol Science. Vol. 35, pp. 805-821.

Ibrahim, A.H., Dunn, P.F., and Brach, R.M., (2004b) “Microparticle detachment

from surfaces exposed to turbulent air flow: Microparticle motion after detachment”

Journal of Aerosol Science. Vol. 35, pp. 1189-1204.

Igra, D. and Falcovitz, J., (2001) “Lift and drag on a sphere above ground by a

sliding shock.” Proceedings of the Insitution of Mechanical Engineers, Part G: Journal

of Aerospace Engineering. Vol 226, pp. 550-560.

Jacobs, G.B., Don, W.S., Dittmann, T. (2012) “High-Order resolution Eulerian-

Lagrangian simulations of particle dispersion in the accelerated flow behind a moving

shock” Theoretical and Computational Fluid Dynamics. Vol 26, pp. 37-50.

Kassab, A.S., Ugaz, V.M., King, M.D., and Hassan, Y.A. (2012) “High resolution

study of micrometer particle detachment on different surfaces” Aerosol Science and

Technology. Vol. 47, pp. 351-360.

Kim, Y., Gidwani, A., Wyslouzil, B.E., and Sohn, C.W. (2010) “Source term

models for fine particle resuspension from indoor surfaces” Building and Environment.

Vol. 45, pp. 1854-1865.

91

Krauter, P. and Biermann, P. (2007) “Reaerosolization of fluidized spores in

ventilation systems” Applied and Environmental Microbiology. Vol. 73 No. 7, p. 2165-

2172.

Lazaridis, M., Drossinos, Y., and Georgopoulos, P.G. (1998) “Turbulent

resuspension of small nondeformable particles” Journal of Colloid and Interface Science.

Vol. 204, pp. 24-32.

Loosmore, G. (2003) “Evaluation and development of models for resuspension of

aerosols at short times after deposition” Atmospheric Environment. Vol. 37, pp. 639-647.

Mollinger, A.M., Nieuwstadt, F.T.M., and Bessem, J.M. (1995) “A new device to

measure the lift force on a particle in the viscous sublayer” Measurement Science

Technology. Vol. 6, pp. 206-213.

Parmar, M.K., Haselbacher, A., and Balachandar, S. (2009a) “Prediction and

modeling of shock-particle interaction” AIAA Paper 2009-1124.

Parmar, M.K., Haselbacher, A., and Balachandar, S. (2009b) “Modeling of

unsteady forces on particles in compressible flow” AIAA Paper 2009-1125.

Parmar, M.K., Haselbacher, A., and Balachandar, S. (2010) “Improved drag

correlation for spheres and application to shock tube experiments” AIAA Journal. Vol. 48

No. 6, pp. 1273-1276.

Reeks, M.W., Reed, J. and Hall, D.(1988) “On the resuspension of small particles

by a turbulent flow.” Journal of Physics D. Applied Physics. Vol. 21, pp. 574-569.

92

Reeks, M.W. and Hall, D (2001) “Kinetic models for particle resuspension in

turbulent flows: theory and measurement” Journal of Aerosol Science. Vol. 32, pp. 1-31.

Soltani, M., and Ahmadi, G. (1995) “Particle detatchment from rough surfaces in

turbulent flows” Journal of Adhesion. Vol. 51, pp. 105-123

Suzuki, T., Sakamura, Y., Igra, O., Adachi, T., Kobayashi. S, Kotani, A, and

Funawatashi, Y. (2006) “Shock tube study of particles’ motion behind a planar shock

wave” Measurement Science and Technology. Vol. 16, pp. 2431-2436.

Truman, C.R., Vorobieff,P., and Smyth, H.D.C., "Experimental and numerical

studies of respirable particle transport from surfaces by acoustic/shock waves," Annual

Report to DTRA Threat Agent Science-Agent Characterization, 2011, 8 pp.

Vainshtein, P., Ziskind, G., Fichman M., and Gutfinger, C. (1997) “Kinetic model

of particle resuspension by drag force” Physical Review Letters. Vol. 8 No. 3, pp. 551-

554.

Wayne, P.J., Vorobieff, P., Smyth, H., Bernard, T., Corbin, C., Maloney, A.,

Conroy, J., White, R., Anderson, M., Kumar, S., Truman, C.R., and Srivastava, D. (2013)

“Shock-driven particle transport off smooth and rough surfaces” Journal of Fluids

Engineering. Vol. 135, 061302.

White, F.M. (2006) Viscous Fluid Flow, 3rd Edition. McGraw Hill (2006), New

York, NY. pp. 505-521.

93

Zhang, H., and Ahmadi, G. (2000) “Aerosol particle removal and re-entrainment

in turbulent channel flows – a direct numerical simulation approach” Journal of

Adhesion. Vol 74, pp. 441-493.

Ziskind, G., Fichman M., and Gutfinger, C. (1998) “Effects of shear on particle

motion near a surface – application to resuspension” Journal of Aerosol Science. Vol. 29,

pp. 323-338.

Ziskind, G., Fichman M., and Gutfinger, C. (2000) “Particle behavior on surfaces

subjected to external excitations” Journal of Aerosol Science. Vol. 31 No. 6, pp. 703-719.

94

Appendix A – MATLAB Codes

A.1 – MomentCalc

clear all

close all

clc

% This program calculates the values of velocity needed to start a

% particlerolling, when the moment is less than zero, as a positive

% moment indicates no motion.

% Assigns variables values.

r = 5*10^-6; %m

m = 2.4*4/3*pi*r^3*10^-3; %kg

g = 9.81; %m/s^2

Cd = 0.0337; %drag coef, calculated from Soltani et al. (1995)

Cl = 0.0509; %lift coef, calculated from Ahmadi (2005)

roh = 1.184149835; %kg/m^3

V = 0:1:200; %m/s

Fd = 1/2*roh*V.^2*Cd*pi*r^2; %N

Fl = 1/2*roh*V.^2*Cl*pi*r^2; %N

%% For the initial value of Fa = 20*10^-9N

Fa = 20*10^-9; %N

% Situation ONE

95

Mp1 = Fa*cosd(30)*r - Fd*r*cosd(30) - Fl*r*cosd(60) ;

% Situation TWO

Mp2 = Fa*cosd(30)*r + Fa*cosd(30)*r - Fl*r;

% Situation THREE

Mp3 = Fa*cosd(30)*r + Fa*cosd(30)*r*cosd(30) - Fl*r*cosd(60)...

 - Fd*r*cosd(60);

% Situation FOUR

Mp4 = Fa*cosd(30)*r + Fa*cosd(30)*r - Fl*r;

% plot the values for visual inspection

plot(Mp1, V, 'r')

hold on

grid

plot(Mp2, V, 'b')

plot(Mp3, V, 'g')

plot(Mp4, V, 'k')

plot([0,0],[0,200],'k')

legend('Sit1','Sit2','Sit3','Sit4')

xlabel('Moments, N/m')

ylabel('Lift Off Velocity, m/s')

axis([-2*10^-13,2*10^-13,0,200])

title('Velocity(m/s) vs Net Moment(N/m), FA = 20*10^-9N, NH2 Surface')

96

diff1 = abs(0-Mp1);

diff2 = abs(0-Mp2);

diff3 = abs(0-Mp3);

diff4 = abs(0-Mp4);

x1 = diff1(1);

y1 = 1;

x2 = diff2(1);

y2 = 1;

x3 = diff3(1);

y3 = 1;

x4 = diff4(1);

y4 = 1;

for i = 1:length(diff1)

 if diff1(i) < x1

 x1 = diff1(i);

 y1 = i;

 end

 if diff2(i) < x2

 x2 = diff2(i);

 y2 = i;

 end

 if diff3(i) < x3

 x3 = diff3(i);

 y3 = i;

 end

 if diff4(i) < x4

97

 x4 = diff4(i);

 y4 = i;

 end

end

y = [y1 y2 y3 y4]

plot([0,0,0,0],[y1,y2,y3,y4],'ko')

%% upper bound of adhesion forces. Fa = 5*10^-9N

Faa = 5*10^-9; %N

% Situation ONE

Mp1a = Faa*cosd(30)*r - Fd*r*cosd(30) - Fl*r*cosd(60);

% Situation TWO

Mp2a = Faa*cosd(30)*r + Faa*cosd(30)*r - Fl*r;

% Situation THREE

Mp3a = Faa*cosd(30)*r + Faa*cosd(30)*r*cosd(30) - Fl*r*cosd(60)...

 - Fd*r*cosd(60);

% Situation FOUR

Mp4a = Faa*cosd(30)*r + Faa*cosd(30)*r - Fl*r;

% plot

figure

98

plot(Mp1a, V, 'r')

hold on

grid

plot(Mp2a, V, 'b')

plot(Mp3a, V, 'g')

plot(Mp4a, V, 'k')

plot([0,0],[0,200],'k')

legend('Sit1','Sit2','Sit3','Sit4')

xlabel('Moments, N/m')

ylabel('Lift Off Velocity, m/s')

axis([-2*10^-13,2*10^-13,0,200])

title('Velocity(m/s) vs Net Moment(N/m), FA = 5*10^-9N, COOH Surface')

diff1 = abs(0-Mp1a);

diff2 = abs(0-Mp2a);

diff3 = abs(0-Mp3a);

diff4 = abs(0-Mp4a);

x1a = diff1(1);

y1a = 1;

x2a = diff2(1);

y2a = 1;

x3a = diff3(1);

y3a = 1;

x4a = diff4(1);

y4a = 1;

for i = 1:length(diff1)

99

 if diff1(i) < x1a

 x1a = diff1(i);

 y1a = i;

 end

 if diff2(i) < x2a

 x2a = diff2(i);

 y2a = i;

 end

 if diff3(i) < x3a

 x3a = diff3(i);

 y3a = i;

 end

 if diff4(i) < x4a

 x4a = diff4(i);

 y4a = i;

 end

end

ya = [y1a y2a y3a y4a]

plot([0,0,0,0],[y1a,y2a,y3a,y4a],'ko')

%% nano-rough bound of adhesion forces. Adhesion = 10*10^-9N

Fab = 0.5*10^-9; %N

% Situation ONE

Mp1b = Fab*cosd(30)*r - Fd*r*cosd(30) - Fl*r*cosd(60);

100

% Situation Two

Mp2b = Fab*cosd(30)*r + Fab*cosd(30)*r - Fl*r;

% Situation Three

Mp3b = Fab*cosd(30)*r + Fab*cosd(30)*r*cosd(30) - Fl*r*cosd(60)...

 - Fd*r*cosd(60);

% Situation Four

Mp4b = Fab*cosd(30)*r + Fab*cosd(30)*r - Fl*r;

% plot attempt

figure

plot(Mp1b, V, 'r')

hold on

grid

plot(Mp2b, V, 'b')

plot(Mp3b, V, 'g')

plot(Mp4b, V, 'k')

plot([0,0],[0,200],'k')

legend('Sit1','Sit2','Sit3','Sit4')

xlabel('Moments, N/m')

ylabel('Lift Off Velocity, m/s')

axis([-2*10^-13,2*10^-13,0,200])

title('Velocity(m/s) vs Net Moment(N/m), FA = 0.5*10^-9N, CH3 Surface')

diff1 = abs(0-Mp1b);

101

diff2 = abs(0-Mp2b);

diff3 = abs(0-Mp3b);

diff4 = abs(0-Mp4b);

x1b = diff1(1);

y1b = 1;

x2b = diff2(1);

y2b = 1;

x3b = diff3(1);

y3b = 1;

x4b = diff4(1);

y4b = 1;

for i = 1:length(diff1)

 if diff1(i) < x1b

 x1b = diff1(i);

 y1b = i;

 end

 if diff2(i) < x2b

 x2b = diff2(i);

 y2b = i;

 end

 if diff3(i) < x3b

 x3b = diff3(i);

 y3b = i;

 end

 if diff4(i) < x4b

 x4b = diff4(i);

102

 y4b = i;

 end

end

yb = [y1b y2b y3b y4b]

plot([0,0,0,0],[y1b,y2b,y3b,y4b],'ko')

103

A.2 – gridgen

function [gridd] = gridgen(rows,cols)

% GRIDGEN generates a grid of particles to run test with. Input is

% the base number of ROWS and COLS. The output is the grid of

% particles to be modeled. [gridd] = gridgen(rows,cols)

%% Generate Base

% Generates a random set of numbers in an [ROWS, COLS] matrix.

% Rounded to either a zero or a one, they indicate an empty or filled

% space.

gridd = rand(rows,cols);

gridd = round(gridd);

gridd = [zeros(1,cols); gridd];

gridd = [zeros(rows+1,1) gridd zeros(rows+1,rows+1)];

[r,c] = size(gridd);

cantmove = 8;

sit1 = 1;

sit2 = 2;

sit3 = 3;

sit4 = 4;

%% Fill in the Base

% Fills in the base so there are no zero-values within the grid and

% eliminates hanging particles, making sure each particle has a

% stable base of two particles to rest on.

104

for i = 1:r

 for j = 1:c

 if gridd(i,j) == 1;

 gridd(i+1,j) = 1;

 gridd(i+1,j+1) = 1;

 end

 end

end

%% Switch to -1 for empty space and 0 for particle

% Reallocate for ease.

for i =1:r+1;

 for j = 1:c

 if gridd(i,j) == 0

 gridd(i,j) = -1;

 else

 gridd(i,j) = 0;

 end

 end

end

%% Determine which Particles cannot move

% Determines Situation Zero particles.

105

for i = 2:r+1

 for j = 2:c

 if gridd(i-1,j) == 0

 gridd(i,j) = cantmove;

 end

 if gridd(i-1,j-1) == 0

 gridd(i,j) = cantmove;

 end

 if gridd (i-1,j) == cantmove

 gridd(i,j) = cantmove;

 end

 if gridd(i-1,j-1) == cantmove

 gridd(i,j) = cantmove;

 end

 end

end

%% Determine what Situation remaining particles are

% Determines the situations for the remaining particles, One

% through Four.

for i = 2:r+1

 for j = 2:c

 if gridd(i,j) == 0

 if gridd(i,j-1) == -1

 if gridd(i,j+1) == -1

 gridd(i,j) = sit1;

 else

106

 gridd(i,j) = sit2;

 end

 else

 if gridd(i,j+1) == -1

 gridd(i,j) = sit3;

 else

 gridd(i,j) = sit4;

 end

 end

 end

 end

end

107

A.3 – partmap

function partmap(gridd)

% PARTMAP visually displays the particles generated by GRIDGEN.

gridd2 = flipud(gridd); %flips gridd, so it can be easily mapped

[r,c] = size(gridd); %sizes gridd

figure

axis([-2,c,-1,c])

kk = 0;

hold on

for i = r:-1:1

 for j = c:-1:1

 if gridd2(i,j) == 8 %Plots Situation Zero Particles

 if floor(i/2) == i/2

 plot(j-kk,i,'.','MarkerSize',50)

 else

 plot(j-kk,i,'.','MarkerSize',50)

 end

 end

 if gridd2(i,j) == 1 %Plots Situation One Particles

 if floor(i/2) == i/2

 plot(j-kk,i,'g.','MarkerSize',50)

 else

 plot(j-kk,i,'g.','MarkerSize',50)

 end

108

 end

 if gridd2(i,j) == 2 %Plots Situation Two Particles

 if floor(i/2) == i/2

 plot(j-kk,i,'r.','MarkerSize',50)

 else

 plot(j-kk,i,'r.','MarkerSize',50)

 end

 end

 if gridd2(i,j) == 3 %Plots Situation three Particles

 if floor(i/2) == i/2

 plot(j-kk,i,'k.','MarkerSize',50)

 else

 plot(j-kk,i,'k.','MarkerSize',50)

 end

 end

 if gridd2(i,j) == 4 %Plots Situation Four Particles

 if floor(i/2) == i/2

 plot(j-kk,i,'m.','MarkerSize',50)

 else

 plot(j-kk,i,'m.','MarkerSize',50)

 end

 end

 if gridd2(i,j) == -8 %Plots Resuspended Situation Ones

 if floor(i/2) == i/2

 plot(j-kk,i,'go','MarkerSize',15)

 else

 plot(j-kk,i,'go','MarkerSize',15)

 end

109

 end

 if gridd2(i,j) == -7 %Plots Resuspended Situation Twos

 if floor(i/2) == i/2

 plot(j-kk,i,'ro','MarkerSize',15)

 else

 plot(j-kk,i,'ro','MarkerSize',15)

 end

 end

 if gridd2(i,j) == -6 %Plots Resuspended Situation Threes

 if floor(i/2) == i/2

 plot(j-kk,i,'ko','MarkerSize',15)

 else

 plot(j-kk,i,'ko','MarkerSize',15)

 end

 end

 if gridd2(i,j) == -5 %Plots Resuspended Situation Fours

 if floor(i/2) == i/2

 plot(j-kk,i,'mo','MarkerSize',15)

 else

 plot(j-kk,i,'mo','MarkerSize',15)

 end

 end

 end

 kk = kk+.5;

end

110

A.4 – PartSimSimple

clear all

close all

clc

rows = 10; %Row Input

cols = 10; %Column Input

tindex = 15; %Number of Plots

gridda = gridgen(rows,cols);

partmap(gridda)

axis([-2,cols+12,0,rows+2])

title('Initial')

%% Variable Assignment

% Assigns variables, mostly zero values for storage.

cantmove = 8;

sit1 = 1;

sit2 = 2;

sit3 = 3;

sit4 = 4;

lift = -9;

initial = 0;

[rows,cols] = size(gridda);

dely = gridda*0;

vely = gridda*0;

111

accy = gridda*0;

forcey = gridda*0;

forcex = gridda*0;

posy = gridda*0;

loggridda = zeros(rows,cols,tindex);

logdely = loggridda*0;

logvely = loggridda*0;

logaccy = loggridda*0;

logforcey = loggridda*0;

logforcex = loggridda*0;

logposy = loggridda*0;

delt = 10^-17;

%% Known Variables

Fa = 0.5*10^-9; %N, Attractive Force

r = 5*10^-6; %m, radius of the particle

m = 2.4*4/3*pi*r^3*10^-3; %kg, mass of the particle

g = 9.81; %m/s^2, gravity

Cd = 0.0337; %drag coef, calculated from Soltani et al. (1995)

Cl = 0.0509; %lift coef, calculated from Ahmadi (2005)

roh = 1.184149835; %kg/m^3, density of the air

V = 200; %m/s, velocity, constant value

Fd = 1/2*roh*V.^2*Cd*pi*r^2; %N, drag force

Fl = 1/2*roh*V.^2*Cl*pi*r^2; %N, lift force

112

%%

for t = 2:tindex+1

 for i = 1:rows

 for j = 1:cols

 %Situation One Calculations

 if gridda(i,j) == sit1

 % calculate force y

 forcey(i,j) = -Fa*cosd(30) + Fl;

 logforcey(i,j,t) = forcey(i,j);

 % determine acc

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,t) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,t-1) + accy(i,j)*delt;

 logvely(i,j,t) = vely(i,j);

 % determine pos y

 posy(i,j) = logposy(i,j,t-1) + logvely(i,j,t-1) + ...

 accy(i,j)*delt^2/2;

 logposy(i,j,t) = posy(i,j);

 %if pos y is greater than threshold, shift to resuspend

 if (logposy(i,j,t)-logposy(i,j,t-1)) > r/2

 gridda(i,j) = lift + sit1;

 end

113

 end

 %Situation Two Calculations

 if gridda(i,j) == sit2

 % calculate force y

 forcey(i,j) = - Fa*cosd(30)- Fa*cosd(30) + Fl;

 logforcey(i,j,t) = forcey(i,j);

 % determine acc

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,t) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,t-1)+accy(i,j)*delt;

 logvely(i,j,t) = vely(i,j);

 % determine pos y

 posy(i,j) = logposy(i,j,t-1) + logvely(i,j,t-1) + ...

 accy(i,j)*delt^2/2;

 logposy(i,j,t) = posy(i,j);

 %if pos y is greater than threshold, shift to resuspend

 if (logposy(i,j,t)-logposy(i,j,t-1)) > r/2

 gridda(i,j) = lift + sit2;

 end

 end

 %Situation Three Calculations

 if gridda(i,j) == sit3

 % calculate force y

 forcey(i,j) = - Fa*cosd(30) - Fa*cosd(30) + Fl;

 logforcey(i,j,t) = forcey(i,j);

114

 % determine acc

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,t) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,t-1)+accy(i,j)*delt;

 logvely(i,j,t) = vely(i,j);

 % determine pos y

 posy(i,j) = logposy(i,j,t-1) + logvely(i,j,t-1) + ...

 accy(i,j)*delt^2/2;

 logposy(i,j,t) = posy(i,j);

 %if pos y is greater than threshold, shift to resuspend

 if (logposy(i,j,t)-logposy(i,j,t-1)) > r/2

 gridda(i,j) = lift + sit3;

 end

 end

 %Situation Four Calcuations

 if gridda(i,j) == sit4

 % calculate force y

 forcey(i,j) = - Fa*cosd(30) - Fa*cosd(30) + Fl;

 logforcey(i,j,t) = forcey(i,j);

 % determine acc

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,t) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,t-1)+accy(i,j)*delt;

 logvely(i,j,t) = vely(i,j);

 % determine pos y

115

 posy(i,j) = logposy(i,j,t-1) + logvely(i,j,t-1) + ...

 accy(i,j)*delt^2/2;

 logposy(i,j,t) = posy(i,j);

 %if pos y is greater than threshold, shift to resuspend

 if posy(i,j) < 0

 posy(i,j) = 0;

 end

 if (logposy(i,j,t)-logposy(i,j,t-1)) > r/2

 gridda(i,j) = lift + sit4;

 end

 end

 % Redetermines Situations of Exposed Particles

 if gridda(i,j) == cantmove

 if gridda(i-1,j) < -1

 gridda(i,j) = 0;

 end

 if gridda(i-1,j-1) < -1

 gridda(i,j) = 0;

 end

 end

 if gridda(i,j) == 0

 if gridda(i,j-1) < 0

 if gridda(i,j+1) < 0

 gridda(i,j) = sit1;

 else

 gridda(i,j) = sit2;

 end

116

 else

 if gridda(i,j+1) < 0

 gridda(i,j) = sit3;

 else

 gridda(i,j) = sit4;

 end

 end

 end

 if gridda(i,j) > 0

 if gridda(i-1,j) > 0

 gridda(i,j) = cantmove;

 end

 if gridda(i-1,j-1) > 0

 gridda(i,j) = cantmove;

 end

 end

 loggridda(i,j,t) = gridda(i,j);

 end

 end

end

%Plots the steps

for i = 2:tindex

 partmap(loggridda(:,:,i))

 axis([-2,cols,0,rows])

end

117

title('Final')

118

 A.5 – partmap2

function partmap2(gridd)

% PARTMAP2 visually displays the particles generated by GRIDGEN,

reduced.

gridd2 = flipud(gridd);

[r,c] = size(gridd);

kk = 0;

i8=0;

i1=0;

i2=0;

i3=0;

i4=0;

i_8=0;

i_3=0;

i_4=0;

i_5=0;

% Determines the situation and determines if the row is entirely made

% of particles that cannot move.

for i = r:-1:1

 if8 = 1;

 for j = c:-1:1

 if gridd2(i,j) == 8

 i8 = i8+1; x8(i8) = j-kk; y8(i8) = i;

 end

119

 if gridd2(i,j) == 1

 i1 = i1+1; x1(i1) = j-kk; y1(i1) = i;

 end

 if gridd2(i,j) == 2

 i2 = i2+1; x2(i2) = j-kk; y2(i2) = i;

 end

 if gridd2(i,j) == 3

 i3 = i3+1; x3(i3) = j-kk; y3(i3) = i;

 end

 if gridd2(i,j) == 4

 i4 = i4+1; x4(i4) = j-kk; y4(i4) = i;

 end

 if gridd2(i,j) == -8

 i_8 = i_8+1; x_8(i_8) = j-kk; y_8(i_8) = i;

 end

 if gridd2(i,j) == -7

 i_3 = i_3+1; x_3(i_3) = j-kk; y_3(i_3) = i;

 end

 if gridd2(i,j) == -6

 i_4 = i_4+1; x_4(i_4) = j-kk; y_4(i_4) = i;

 end

 if gridd2(i,j) == -5

 i_5 = i_5+1; x_5(i_5) = j-kk; y_5(i_5) = i;

 end

 if gridd2(i,j) ~= 8 && gridd2(i,j) ~= -1

 if8 = 0;

 end

 end

120

 if i < (r-4) && if8 == 1

 h = i;

 break

 else

 h = i;

 end

 kk = kk+.5;

end

figure

axis([-2,c,(h-1),r])

hold on

% Plots based on values for if particles are there, what situation and

% if particles have resuspended.

if i8 > 0.1

 plot(x8,y8,'.','MarkerSize',50)

end

if i1 > 0.1

 plot(x1,y1,'g.','MarkerSize',50)

end

if i2 > 0.1

 plot(x2,y2,'r.','MarkerSize',50)

end

121

if i3 > 0.1

 plot(x3,y3,'k.','MarkerSize',50)

end

if i4 > 0.1

 plot(x4,y4,'m.','MarkerSize',50)

end

if i_8 > 0.1

 plot(x_8,y_8,'go','MarkerSize',15)

end

if i_3 > 0.1

 plot(x_3,y_3,'ro','MarkerSize',15)

end

if i_4 > 0.1

 plot(x_4,y_4,'ko','MarkerSize',15)

end

if i_5 > 0.1

 plot(x_5,y_5,'mo','MarkerSize',15)

end

122

A.5 – PartSimComplex

function [snapshotdata, partcounti, finalpart, cols, rows, ...

 totaltime] = PartSimComplex(rows,cols,timeselect,plotonoff,...

 movieonoff, attf)

% PARTSIMCOMPLEX is a simulation for particle simulation. Inputs are

% the number of ROWS and COLS for the simulation, the TIMESELECT (how

% long the simulation runs based on the piston velocity following the

% shock), PLOTONOFF, MOVIEONOFF indicators (tell whether or not plots

% or movies are generated), and attf (indicates which attractive force

% to use). Outputs are SNAPSHOTDATA (tracks the particle resuspension

% at specific times), PARTCOUNTI (the initial count of particles),

% FINALPART (the final count of unresuspended particles), ROWS (the

% final number of rows) and COLS (the final number of columns) as

% well as TOTALTIME (the time the simulation ran).

plotcount = 100; %how often the plots are displayed.

rowsstore = rows; %store for printing results

colsstore = cols; %store for printing results

load 0927hsbv % Load the velocity inputs from STARCCM+

load 0927hsbx % Load the x-coordinates for inputs STARCCM+

x = x*0.0254; %in to m conversion

v = v*0.3048; %ft/s to m/s conversion

[gridda] = gridgen(rows,cols); %calls GRIDGEN

123

[rows,cols] = size(gridda); %new values for rows/cols

%% Assigning Variables

if attf == 1

 Fa = rand([rows,cols])*(1*10^-9)+(0*10^-9);%CH3 Attr forces, N

elseif attf == 2

 Fa = rand([rows,cols])*(2*10^-9)+(4*10^-9);%COOH attr forces, N

elseif attf == 3

 Fa = rand([rows,cols])*(15*10^-9)+(10*10^-9);%NH2 attr forces, N

elseif attf == 4

 Fa = rand([rows,cols])*(1*10^-9)+(1*10^-9); %Test attr forces, N

end

r = 5*10^-6; %m, assigns the radius

m = 2.4*4/3*pi*r^3*10^-3; %kg, assigns the mass

g = 9.81; %m/s^2, gravity

Cd = 0.0337; %drag coef, calculated from Soltani et al. (1995)

Cl = 0.0509; %lift coef, calculated from Ahmadi (2005)

roh = 1.184149835; %kg/m^3, density of air.

Inertia = 2/5*m*r^2; %m^4, inertia for the particles

%% Variable Creation

% Creates variables used for the rest of the program, most of which

% are empty grids that will be filled in.

cantmove = 8;

sit1 = 1;

124

sit2 = 2;

sit3 = 3;

sit4 = 4;

lift = -9;

initial = 0;

cosd30 = cosd(30);

cosd60 = cosd(60);

sind30 = sind(30);

rint = zeros(rows,1);

respcount = 0;

sit1count = 0;

sit2count = 0;

sit3count = 0;

sit4count = 0;

resptrack = zeros(rows,cols);

dely = gridda*0;

vely = gridda*0;

accy = gridda*0;

forcey = gridda*0;

forcex = gridda*0;

posy = gridda*0;

alpha = gridda*0;

omega = gridda*0;

125

delta = gridda*0;

loggridda = zeros(rows,cols,2);

logdely = loggridda*0;

logvely = loggridda*0;

logaccy = loggridda*0;

logforcey = loggridda*0;

logforcex = loggridda*0;

logposy = loggridda*0;

logalpha = loggridda*0;

logomega = loggridda*0;

logdelta = loggridda*0;

%% Count the number of particles in simulation

% Counts the total number of particles within the simulation so

% they can be used for later analysis.

partcounti = 0;

for i = 1:rows

 for j = 1:cols

 if gridda(i,j) > 0

 partcounti = partcounti + 1;

 else

 partcounti;

 end

 end

126

end

%% Calculating the Time Index

% Determines how long the simulation should run and how many time

% steps should be taken. It is based on the fastest time to resuspend,

% that of a particle exposed to full flow, and then taking five

% timesteps to cover that resuspension.

Flmaxts = 1/2*roh*max(v).^2*Cl*pi*r^2; %Calculates max lift force

Fdmax = 1/2*roh*max(v).^2*Cd*pi*r^2; %calculates max drag force

forceyts = Flmaxts - m*g; %Calculales Y forces

accyts = forceyts/m; %Calculates acceration

timestep = sqrt((r*2)*2/accyts); %Calculates the time to resuspend

V_shock = 410; %m/s, the speed of the shock

Mpmax = (max(max(Fa))*cos(pi/6)*r - Fdmax*r*cos(pi/6) -...

 Flmaxts*r*cos(pi/6) + m*g*r*cos(pi/6)); %Calculates max moment

alpha = abs(Mpmax/(2/5*m*r^2)); %Calculates angular acceleration

timerot = sqrt(pi/6/alpha*2); %Calculates time to rotate

dis = cols*r*2; %distance the shock travels over particles

timedis = dis/max(v); %the time taken for the piston velocity

delt = timestep/5; %the length of a timestep

tindex = timedis/delt*timeselect; %how many steps taken

%% Calculating & Plotting the Velocity values at Row Heights

% Interpoltes the values for Velocity at given heights from STARCCM+

% values.

127

for i = 1:rows

 rint (i) = r+(rows-i)*r; %The row heights

end

V = interp1(x,v,rint); %the corresponding velocities

vprint = V; %stores Velocity values

if plotonoff == 1

 figure

 plot(v, x,'r.')

 hold on

 plot(V, rint)

 axis([0,50,0,0.0001])

 title('Velocity Interpolation')

 xlabel('Velocity, m/s')

 ylabel('Y-position, m')

 legend('STARCCM+','Interpolation')

end

%%

if plotonoff == 1

 if rows < 50

 partmap(gridda)

 axis([-2,cols,0,rows])

 else

128

 partmap2(gridda)

 end

 Frame(1)=getframe;

 title('Initial')

end

for i = rows:-1:1

 xcor(i,1) = (rows-i+1)*.5;

 for j = 1:cols

 xcor(i,j) = xcor(i,1)+j-1;

 end

end

xcor = xcor*2*r;

for t = 2: round(tindex)

 for i = 1:rows

 for j = 1:cols

 %determine current situation of the particle

 if gridda(i,j) > 0

 if gridda(i,j) == cantmove

 gridda(i,j) = cantmove;

 elseif gridda(i,j-1) < 0

 if gridda(i,j+1) < 0

 gridda(i,j) = sit1;

 else

129

 gridda(i,j) = sit2;

 end

 else

 if gridda(i,j+1) < 0

 gridda(i,j) = sit3;

 else

 gridda(i,j) = sit4;

 end

 end

 end

 % Determines the Velocity based on Shock Location

 distance = V_shock*t*delt; %Calculates the shock location

 if xcor(i,j) > distance % Verifies Shock Passage

 V(:) = 0; %if it has not passed, Velocity = 0.

 end

 Fd = 1/2*roh*V(i).^2*Cd*pi*r^2; %N %calculates drag forces

 Fl = 1/2*roh*V(i).^2*Cl*pi*r^2; %N %calculates lift forces

 % Situation One Calculations

 if gridda(i,j) == sit1

 % calculate the moment m

 Mp1 = Fa(i,j)*cosd30*r - Fd*r*cosd30 - Fl*r*cosd60;

 % calculate force y

 forcey(i,j) = -Fa(i,j)*cosd30 - Fa(i,j)*cosd30 + Fl;

 logforcey(i,j,2) = forcey(i,j);

 if forcey(i,j) > 0

 % determine acc

130

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,2) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,1)+accy(i,j)*delt;

 logvely(i,j,2) = vely(i,j);

 % determine pos y

 posy(i,j) = logposy(i,j,1) + logvely(i,j,1) + ...

 accy(i,j)*delt^2/2;

 logposy(i,j,2) = posy(i,j);

 %if pos y > threshold, shift to resuspend

 if (logposy(i,j,2)-logposy(i,j,1)) > r*2

 gridda(i,j) = lift + sit1;

 respcount = respcount + 1;

 sit1count = sit1count + 1;

 resptrack(i,j) = t;

 end

 elseif Mp1 < 0

 if logdelta(i,j,1) < -1*(pi/6)

 alpha(i,j) = 0;

 omega(i,j) = 0;

 else

 alpha(i,j) = Mp1/(Inertia);

 logalpha(i,j,2)=alpha(i,j);

 omega(i,j) = logomega(i,j,1) + alpha(i,j)*delt;

 logomega(i,j,2) = omega(i,j);

 delta(i,j) = logdelta(i,j,1) + ...

 logomega(i,j,1)*delt + ...

 alpha(i,j)*delt^2/2;

131

 logdelta(i,j,2) = delta(i,j);

 end

 if delta(i,j) < -1*(pi/6)

 % calculate force y

 forcey(i,j) = -Fa(i,j) + Fl;

 logforcey(i,j,2) = forcey(i,j);

 % determine acc

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,2) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,1) + accy(i,j)*delt;

 logvely(i,j,2) = vely(i,j);

 % determine pos y

 posy(i,j) = logposy(i,j,1) + logvely(i,j,1)...

 + accy(i,j)*delt^2/2;

 logposy(i,j,2) = posy(i,j);

 %if pos y > threshold, shift to resuspend

 if (logposy(i,j,2)-logposy(i,j,1)) > r*2

 gridda(i,j) = lift + sit1;

 respcount = respcount + 1;

 sit2count = sit2count + 1;

 resptrack(i,j) = t;

 end

 end

 logomega(i,j,1) = logomega(i,j,2);

 logdelta(i,j,1) = logdelta(i,j,2);

 end

 end

132

 % Situation Two Calcluations

 if gridda(i,j) == sit2

 Mp2b = Fa(i,j)*cosd30*r + Fa(i,j)*cosd30*r - Fl*r;

 % calculate force y

 forcey(i,j) = - Fa(i,j)*cosd30 - Fa(i,j)*cosd30 + Fl;

 logforcey(i,j,2) = forcey(i,j);

 % determine acc

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,2) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,1) + accy(i,j)*delt;

 logvely(i,j,2) = vely(i,j);

 % determine pos y

 posy(i,j) = logposy(i,j,1)+logvely(i,j,1) + ...

 accy(i,j)*delt^2/2;

 logposy(i,j,2) = posy(i,j);

 %if pos y is greater than threshold, shift to resuspend

 if Mp2b < 0

 gridda(i,j) = lift + sit2;

 respcount = respcount + 1;

 sit2count = sit2count + 1;

 resptrack(i,j) = t;

 elseif (logposy(i,j,2)-logposy(i,j,1)) > r*2

 gridda(i,j) = lift + sit2;

 respcount = respcount + 1;

 sit2count = sit2count + 1;

 resptrack(i,j) = t;

133

 end

 end

 % Situation Three Calculations

 if gridda(i,j) == sit3

 Mp3 = Fa(i,j)*cosd30*r + Fa(i,j)*cosd30*r*cosd30 - ...

 Fl*r*cosd60 - Fd*r*cosd60;

 % calculate force y

 forcey(i,j) = - Fa(i,j)*cosd(30) - Fa(i,j)*cosd(30)...

 + Fl;

 logforcey(i,j,2) = forcey(i,j);

 if forcey(i,j) > 0

 % determine acc

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,2) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,1) + accy(i,j)*delt;

 logvely(i,j,2) = vely(i,j);

 % determine pos y

 posy(i,j) = logposy(i,j,1) + logvely(i,j,1) + ...

 accy(i,j)*delt^2/2;

 logposy(i,j,2) = posy(i,j);

 % if pos y > threshold, shift to resuspend

 if (logposy(i,j,2)-logposy(i,j,1)) > r*2

 gridda(i,j) = lift + sit3;

 respcount = respcount + 1;

 sit3count = sit3count + 1;

 resptrack(i,j) = t;

134

 end

 elseif Mp3 < 0

 if logdelta(i,j,1) < -1*(pi/6)

 alpha(i,j) = 0;

 omega(i,j) = 0;

 else

 alpha(i,j) = Mp3/(Inertia);

 logalpha(i,j,2)=alpha(i,j);

 omega(i,j) = logomega(i,j,1) + alpha(i,j)*delt;

 logomega(i,j,2) = omega(i,j);

 delta(i,j) = logdelta(i,j,1) + ...

 logomega(i,j,1)*delt + ...

 alpha(i,j)*delt^2/2;

 logdelta(i,j,2) = delta(i,j);

 end

 if delta(i,j) < -1*(pi/6)

 % calculate force y

 forcey(i,j) = - Fa(i,j)*cosd(30) - ...

 Fa(i,j)*cosd(30) + Fl;

 logforcey(i,j,2) = forcey(i,j);

 % determine acc

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,2) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,1) + accy(i,j)*delt;

 logvely(i,j,2) = vely(i,j);

135

 % determine pos y

 posy(i,j) = logposy(i,j,1) + logvely(i,j,1)...

 + accy(i,j)*delt^2/2;

 logposy(i,j,2) = posy(i,j);

 % if pos y > threshold, shift to resuspend

 if (logposy(i,j,2)-logposy(i,j,1)) > r*2

 gridda(i,j) = lift + sit3;

 respcount = respcount + 1;

 sit3count = sit3count + 1;

 resptrack(i,j) = t;

 end

 end

 logomega(i,j,1) = logomega(i,j,2);

 logdelta(i,j,1) = logdelta(i,j,2);

 end

 end

 % Situation Four Calculations

 if gridda(i,j) == sit4

 Mp4b = Fa(i,j)*cosd30*r + Fa(i,j)*cosd30*r - Fl*r;

 % calculate force y

 forcey(i,j) = - Fa(i,j)*cosd30 - Fa(i,j)*cosd30 + Fl;

 logforcey(i,j,2) = forcey(i,j);

 % determine acc

 accy(i,j) = forcey(i,j)/m;

 logaccy(i,j,2) = accy(i,j);

 % determine vel y

 vely(i,j) = logvely(i,j,1) + accy(i,j)*delt;

136

 logvely(i,j,2) = vely(i,j);

 % determine pos y

 posy(i,j) = logposy(i,j,1) + logvely(i,j,1) + ...

 accy(i,j)*delt^2/2;

 logposy(i,j,2) = posy(i,j);

 % if pos y is greater than threshold, resuspend

 if Mp4b < 0

 gridda(i,j) = lift + sit4;

 respcount = respcount + 1;

 sit4count = sit4count + 1;

 resptrack(i,j) = t;

 elseif (logposy(i,j,2)-logposy(i,j,1)) > r*2

 gridda(i,j) = lift + sit4;

 respcount = respcount + 1;

 sit4count = sit4count + 1;

 resptrack(i,j) = t;

 end

 end

 % Determines situations for newly exposed particles

 if gridda(i,j) == cantmove

 if gridda(i-1,j) < -1

 gridda(i,j) = 0;

 end

 if gridda(i-1,j-1) < -1

 gridda(i,j) = 0;

 end

 end

137

 if gridda(i,j) == 0

 if gridda(i,j-1) < 0

 if gridda(i,j+1) < 0

 gridda(i,j) = sit1;

 else

 gridda(i,j) = sit2;

 end

 else

 if gridda(i,j+1) < 0

 gridda(i,j) = sit3;

 else

 gridda(i,j) = sit4;

 end

 end

 end

 if gridda(i,j) > 0

 if gridda(i-1,j) > 0

 gridda(i,j) = cantmove;

 end

 if gridda(i-1,j-1) > 0

 gridda(i,j) = cantmove;

 end

 end

 %Log Results

 loggridda(i,j,1) = gridda(i,j);

 logdely(i,j,1) = logdely(i,j,2);

 logvely(i,j,1) = logvely(i,j,2);

138

 logaccy(i,j,1) = logaccy(i,j,2);

 logforcey(i,j,1) = logforcey(i,j,2);

 logforcex(i,j,1) = logforcex(i,j,2);

 logposy(i,j,1) = logposy(i,j,2);

 V = vprint; %replace Velocity with Velocity profile

 end

 end

 % Logs results as a snapshot at very specific intervals, where one

 % unit of time (timedis) is the amount of time it takes for the

 % piston velocity to cross all of the particles, and then at 0.05,

 % 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 1, 2, 3, 4, and 5 times

 % that interval.

 if t == round((timedis/delt*0.05))

 data0005 = [0.05 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(1,:) = data0005;

 elseif t == round((timedis/delt*0.1))

 data0010 = [0.1 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(2,:) = data0010;

 elseif t == round((timedis/delt*0.15))

 data0015 = [0.15 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(3,:) = data0015;

 elseif t == round((timedis/delt*0.2))

139

 data0020 = [0.2 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(4,:) = data0020;

 elseif t == round((timedis/delt*0.25))

 data0025 = [0.25 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(5,:) = data0025;

 elseif t == round((timedis/delt*0.3))

 data0030 = [0.3 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(6,:) = data0030;

 elseif t == round((timedis/delt*0.4))

 data0040 = [0.4 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(7,:) = data0040;

 elseif t == round((timedis/delt*0.5))

 data0050 = [0.5 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(8,:) = data0050;

 elseif t == round((timedis/delt))

 data0100 = [1 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(9,:) = data0100;

 elseif t == round((timedis/delt*2))

 data0200 = [2 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(10,:) = data0200;

 elseif t == round((timedis/delt*3))

140

 data0300 = [3 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(11,:) = data0300;

 elseif t == round((timedis/delt*4))

 data0400 = [4 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(12,:) = data0400;

 elseif t == round((timedis/delt*5))

 data0500 = [5 respcount sit1count sit2count...

 sit3count sit4count];

 snapshotdata(13,:) = data0500;

 end

 if plotonoff == 1

 % plot results every PLOTCOUNT # time steps

 if (rem(t,plotcount) == 0)

 if rows < 50

 partmap(loggridda(:,:,1))

 axis([-2,cols,0,rows])

 else

 partmap2(loggridda(:,:,1))

 end

 distpart = V_shock*t*delt/(2*r);

 hold on

 plot([distpart,distpart],[0,rows],'k')

 string = sprintf(...

 'frame %d, time = %10.5f (ns), shock @ %3.5f',...

 t, t*delt*(10^9),distpart);

141

 title(string)

 hold off

 end

 end

 if movieonoff == 1

 % Creates an avi file of each frames.

 if rows < 50

 partmap(loggridda(:,:,1))

 axis([-2,cols,0,rows])

 else

 partmap2(loggridda(:,:,1))

 end

 distpart = V_shock*t*delt/(2*r);

 hold on

 plot([distpart,distpart],[0,rows],'k')

 string = sprintf(...

 'frame %d, time = %10.5f (ns), shock @ %3.5f',...

 t, t*delt*(10^9),distpart);

 title(string)

 Frame(t) = getframe;

 hold off

 close

 end

end

% Particle calculations & total time

finalpart = partcounti-respcount;

perresp = respcount/partcounti*100;

142

totaltime = delt*tindex;

if plotonoff == 1

 if rows < 50

 partmap(loggridda(:,:,1))

 axis([-2,cols,0,rows])

 else

 partmap2(loggridda(:,:,1))

 end

 title('Final')

end

if movieonoff == 1

 movie(Frame)

 movie2avi(Frame,'resuspension.avi')

end

if plotonoff == 1

 % Report of Model Results

 disp('Summary')

 fprintf('The initial value for the rows: %d. \n', rowsstore)

 fprintf('The initial value for the columns: %d. \n', colsstore)

 fprintf('The final value for the rows: %d. \n', rows)

 fprintf('The final value for the columns: %d. \n', cols)

 fprintf('The initial number of particles: %d. \n', partcounti)

 fprintf('The final number of particles: %d. \n', finalpart)

 fprintf('The total number of resuspended particles: %d. \n',...

 respcount)

143

 fprintf(...

 'Number of Situation One resuspended particles: %d. \n', ...

 sit1count)

 fprintf(...

 'Number of Situation Two resuspended particles: %d. \n', ...

 sit2count)

 fprintf(...

 'Number of Situation Three resuspended particles: %d. \n', ...

 sit3count)

 fprintf(...

 'Number of Situation Four resuspended particles: %d. \n', ...

 sit4count)

 fprintf(...

 'Percentage of particles resuspended: %3.3f percent. \n', ...

 perresp)

 fprintf('The time elapsed: %2.13f seconds. \n', totaltime)

end

end

144

A.6 – PartBatch Run

function [snapshotdatafull, perall, meanall, maxall, minall, ...

 rangeall, stdall, partcountfull, finalpartfull] = ...

 PartBatchRun(runcount, rows, cols, timeselect, plotonoff, ...

 movieonoff, attf);

% PARTBATCHRUN performs multiple runs of the program PARTSIMCOMPLEX.

% Inputs are RUNCOUNT (the number of times PARTSIMCOMPLEX will be run),

% the number of ROWS and COLS for the simulation, the TIMESELECT (how

% long the simulation runs based on the piston velocity following the

% shock), PLOTONOFF and MOVIEONOFF indicators (tell whether or not

% plots or movies are generated) and ATTF (which determines the

% attractive force used). Outputs are SNAPSHOTDATAFULL (tracks the

% particle resuspension at various specific times for all runs).

% There are also numerous outputs of various runs at specific times.

% These outputs are PERRESP (the percent resuspended), MEANALL (the

% mean of resuspended particles), MAXALL (the maximum resuspended),

% MINALL (the minimum resuspended), STDALL (the standard deviation of

% the particle resuspension data, PARTCOUNTFULL (the number of

% particles in each run), and FINALPARTFULL (the number of particles

% remaining at the end).

%% Initialize Values for Speed

partcountfull = zeros(runcount,1);

finalpartfull = partcountfull;

colsfull = partcountfull;

rowsfull = partcountfull;

145

totaltimefull = partcountfull;

colsave = cols;

rowsave = rows;

%% Running the Simulation RUNCOUNT # of times

for i = 1:runcount

 runn = i % Counts the number of runs for visual tracking.

 [snapshotdata, partcounti, finalpart, cols1, rows1, totaltime]...

 = PartSimComplex(rows, cols, timeselect, plotonoff, ...

 movieonoff, attf);

 snapshotdatafull(:,:,i) = snapshotdata(:,:); % Logs all data.

 partcountfull(i,1) = partcounti; % Logs initial particle count.

 finalpartfull(i,1) = finalpart; % Logs final particle count.

 colsfull(i,1) = cols1; % Logs colomns dimension of particles.

 rowsfull(i,1) = rows1; % Logs rows dimension of particles.

 totaltimefull(i,1) = totaltime; % Logs time of simulation.

 cols = colsave; % Resets Colomns for next iteration.

 rows = rowsave; % Resets Rows for next iteration.

end

%% Statistical Analysis, Initializing Matricies

xvals = snapshotdata(:,1,1);

resusp(:,:) = snapshotdatafull(:,2,:);

sit1co(:,:) = snapshotdatafull(:,3,:);

146

sit2co(:,:) = snapshotdatafull(:,4,:);

sit3co(:,:) = snapshotdatafull(:,5,:);

sit4co(:,:) = snapshotdatafull(:,6,:);

dimcount = size(resusp);

perresp = zeros(dimcount);

persit1 = perresp;

persit2 = perresp;

persit3 = perresp;

persit4 = perresp;

meanresp = zeros(dimcount(1),1);

meansit1 = meanresp;

meansit2 = meanresp;

meansit3 = meanresp;

meansit4 = meanresp;

maxresp = zeros(dimcount(1),1);

maxsit1 = maxresp;

maxsit2 = maxresp;

maxsit3 = maxresp;

maxsit4 = maxresp;

minresp = maxresp;

minsit1 = maxresp;

minsit2 = maxresp;

minsit3 = maxresp;

147

minsit4 = maxresp;

stdresp = zeros(dimcount(1),1);

stdsit1 = stdresp;

stdsit2 = stdresp;

stdsit3 = stdresp;

stdsit4 = stdresp;

%% Calculate Percentage

% Calculates Percentage Resuspended

for i = 1:runcount

 perresp(:,i) = resusp(:,i)/partcountfull(i,1)*100;

end

% Calculates Percentage of Resuspended that are Situation Ones

for i = 1:runcount

 for j = 1:dimcount(1)

 persit1(j,i) = sit1co(j,i)./resusp(j,i)*100;

 if resusp(j,i) == 0

 persit1(j,i) = 0;

 end

 end

end

% Calculates Percentage of Resuspended that are Situation Twos

for i = 1:runcount

148

 for j = 1:dimcount(1)

 persit2(j,i) = sit2co(j,i)./resusp(j,i)*100;

 if resusp(j,i) == 0

 persit2(j,i) = 0;

 end

 end

end

% Calculates Percentage of Resuspended that are Situation Threes

for i = 1:runcount

 for j = 1:dimcount(1)

 persit3(j,i) = sit3co(j,i)./resusp(j,i)*100;

 if resusp(j,i) == 0

 persit3(j,i) = 0;

 end

 end

end

% Calculates Percentage of Resuspended that are Situation Fours

for i = 1:runcount

 for j = 1:dimcount(1)

 persit4(j,i) = sit4co(j,i)./resusp(j,i)*100;

 if resusp(j,i) == 0

 persit4(j,i) = 0;

 end

 end

end

149

% Saves Results for Output.

perall(:,:,1) = perresp;

perall(:,:,2) = persit1;

perall(:,:,3) = persit2;

perall(:,:,4) = persit3;

perall(:,:,5) = persit4;

%% Averages

% Calculates the Average Percentage Resuspended.

for i = 1:dimcount(1)

 meanresp(i,1) = mean(perresp(i,:));

end

% Calculates the Average Percentage of Resuspended particles that are

% Situation Ones.

for i = 1:dimcount(1)

 meansit1(i,1) = mean(persit1(i,:));

end

% Calculates the Average Percentage of Resuspended particles that are

% Situation Twos.

for i = 1:dimcount(1)

 meansit2(i,1) = mean(persit2(i,:));

end

% Calculates the Average Percentage of Resuspended particles that are

150

% Situation Threes.

for i = 1:dimcount(1)

 meansit3(i,1) = mean(persit3(i,:));

end

% Calculates the Average Percentage of Resuspended particles that are

% Situation Fours.

for i = 1:dimcount(1)

 meansit4(i,1) = mean(persit4(i,:));

end

% Saves Results for Output.

meanall = [meanresp meansit1 meansit2 meansit3 meansit4];

%% Min Max and Range

% Determines the Min, Max and Range of Values for Percent Resuspended.

for i = 1:dimcount(1)

 maxresp(i,1) = max(perresp(i,:));

 minresp(i,1) = min(perresp(i,:));

end

rangeresp = maxresp - minresp;

% Determines the Min, Max and Range of Values for the Percentage of

% Resuspended values that are Situation Ones.

for i = 1:dimcount(1)

 maxsit1(i,1) = max(persit1(i,:));

151

 minsit1(i,1) = min(persit1(i,:));

end

rangesit1 = maxsit1 - minsit1;

% Determines the Min, Max and Range of Values for the Percentage of

% Resuspended values that are Situation Twos.

for i = 1:dimcount(1)

 maxsit2(i,1) = max(persit2(i,:));

 minsit2(i,1) = min(persit2(i,:));

end

rangesit2 = maxsit2 - minsit2;

% Determines the Min, Max and Range of Values for the Percentage of

% Resuspended values that are Situation Threes.

for i = 1:dimcount(1)

 maxsit3(i,1) = max(persit3(i,:));

 minsit3(i,1) = min(persit3(i,:));

end

rangesit3 = maxsit3-minsit3;

% Determines the Min, Max and Range of Values for the Percentage of

% Resuspended values that are Situation Fours.

for i = 1:dimcount(1)

 maxsit4(i,1) = max(persit4(i,:));

 minsit4(i,1) = min(persit4(i,:));

end

rangesit4 = maxsit4-minsit4;

152

% Saves Results for Output.

maxall = [maxresp maxsit1 maxsit2 maxsit3 maxsit4];

minall = [minresp minsit1 minsit2 minsit3 minsit4];

rangeall = [rangeresp rangesit1 rangesit2 rangesit3 rangesit4];

%% Standard Deviation

% Calculates the Standard Deviation of the Percentage Resuspended, as

% well as the +/- One Standard Deviation frpm the mean.

for i = 1:dimcount(1)

 stdresp(i,1) = std(perresp(i,:));

end

std1resp = meanresp + stdresp;

stdn1resp = meanresp - stdresp;

% Calculates the Standard Deviation for the Percentage of Resuspended

% values that are Situation Ones, as well as the +/- One Standard

% Deviation from the mean.

for i = 1:dimcount(1)

 stdsit1(i,1) = std(persit1(i,:));

end

std1sit1 = meansit1 + stdsit1;

stdn1sit1 = meansit1 - stdsit1;

% Calculates the Standard Deviation for the Percentage of Resuspended

% values that are Situation Twos, as well as the +/- One Standard

153

% Deviation from the mean.

for i = 1:dimcount(1)

 stdsit2(i,1) = std(persit2(i,:));

end

std1sit2 = meansit2 + stdsit2;

stdn1sit2 = meansit2 - stdsit2;

% Calculates the Standard Deviation for the Percentage of Resuspended

% values that are Situation Threes, as well as the +/- One Standard

% Deviation from the mean.

for i = 1:dimcount(1)

 stdsit3(i,1) = std(persit3(i,:));

end

std1sit3 = meansit3 + stdsit3;

stdn1sit3 = meansit3 - stdsit3;

% Calculates the Standard Deviation for the Percentage of Resuspended

% values that are Situation Fours, as well as the +/- One Standard

% Deviation from the mean.

for i = 1:dimcount(1)

 stdsit4(i,1) = std(persit4(i,:));

end

std1sit4 = meansit4 + stdsit4;

stdn1sit4 = meansit4 - stdsit4;

% Saves Results for Output.

stdalltemp = [stdresp stdsit1 stdsit2 stdsit3 stdsit4];

std1all = [std1resp std1sit1 std1sit2 std1sit3 std1sit4];

154

stdn1all = [stdn1resp stdn1sit1 stdn1sit2 stdn1sit3 stdn1sit4];

stdall(:,:,1) = stdalltemp;

stdall(:,:,2) = std1all;

stdall(:,:,3) = stdn1all;

%% Plots Zoomed Scaling

% Plots mean Percent Resuspended, as well as +/- One Standard

% Deviation.

figure

bar(xvals,meanresp)

hold on

plot(xvals,std1resp,'-ro')

plot(xvals,stdn1resp,'-ko')

title('% Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

%axis([0, max(xvals)*1.2, 0, min(100,max(std1resp)*1.1)])

hold off

% Plots the Percentage of Resuspended Values that are Situation Ones,

% as well as +/- One Standard Deviation.

figure

bar(xvals,meansit1)

hold on

plot(xvals,std1sit1,'-ro')

plot(xvals,stdn1sit1,'-ko')

155

title('% Situation One Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

%axis([0, max(xvals)*1.2, 0, min(100,max(std1sit1)*1.1)])

hold off

% Plots the Percentage of Resuspended Values that are Situation Twos,

% as well as +/- One Standard Deviation.

figure

bar(xvals,meansit2)

hold on

plot(xvals,std1sit2,'-ro')

plot(xvals,stdn1sit2,'-ko')

title('% Situation Two Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

%axis([0, max(xvals)*1.2, 0, min(100,max(std1sit2)*1.1)])

hold off

% Plots the Percentage of Resuspended Values that are Situation Threes,

% as well as +/- One Standard Deviation.

figure

bar(xvals,meansit3)

hold on

plot(xvals,std1sit3,'-ro')

plot(xvals,stdn1sit3,'-ko')

156

title('% Situation Three Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

%axis([0, max(xvals)*1.2, 0, min(100, max(std1sit3)*1.1)])

hold off

% Plots the Percentage of Resuspended Values that are Situation Fours,

% as well as +/- One Standard Deviation.

figure

bar(xvals,meansit4)

hold on

plot(xvals,std1sit4,'-ro')

plot(xvals,stdn1sit4,'-ko')

title('% Situation Four Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

%axis([0, max(xvals)*1.2, 0, min(100, max(std1sit4)*1.1)])

hold off

% PLots the Percentage Resuspended for All Situations against one

% another.

figure

plot(xvals,meansit1, '-ro')

hold on

plot(xvals,meansit2, '-bo')

plot(xvals,meansit3, '-mo')

157

plot(xvals,meansit4, '-ko')

title('% of All Situations Resuspended vs Dimensionless Time')

legend('Situation 1', 'Situation 2', 'Situation 3', 'Situation 4')

xlabel('t/Tau')

ylabel('% Resuspended')

%axis([0, max(xvals)*1.2, 0, min(100,max(meanall)*1.1)])

hold off

%% Plots 100% Scaling, same as above, scaling from 0 - 100% on Y AXIS

% Plots mean Percent Resuspended, as well as +/- One Standard

Deviation.

figure

bar(xvals,meanresp)

hold on

plot(xvals,std1resp,'-ro')

plot(xvals,stdn1resp,'-ko')

title('% Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

axis([0,max(xvals)*1.2,0,100])

hold off

% Plots the Percentage of Resuspended Values that are Situation Ones,

% as well as +/- One Standard Deviation.

figure

bar(xvals,meansit1)

158

hold on

plot(xvals,std1sit1,'-ro')

plot(xvals,stdn1sit1,'-ko')

title('% Situation One Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

axis([0,max(xvals)*1.2,0,100])

hold off

% Plots the Percentage of Resuspended Values that are Situation Twos,

% as well as +/- One Standard Deviation.

figure

bar(xvals,meansit2)

hold on

plot(xvals,std1sit2,'-ro')

plot(xvals,stdn1sit2,'-ko')

title('% Situation Two Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

axis([0,max(xvals)*1.2,0,100])

hold off

% Plots the Percentage of Resuspended Values that are Situation Threes,

% as well as +/- One Standard Deviation.

figure

bar(xvals,meansit3)

159

hold on

plot(xvals,std1sit3,'-ro')

plot(xvals,stdn1sit3,'-ko')

title('% Situation Three Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

axis([0,max(xvals)*1.2,0,100])

hold off

% Plots the Percentage of Resuspended Values that are Situation Fours,

% as well as +/- One Standard Deviation.

figure

bar(xvals,meansit4)

hold on

plot(xvals,std1sit4,'-ro')

plot(xvals,stdn1sit4,'-ko')

title('% Situation Four Particle Resuspension vs Dimensionless Time')

legend('Mean', 'Std+1', 'Std-1')

xlabel('t/Tau')

ylabel('% Resuspended')

axis([0,max(xvals)*1.2,0,100])

hold off

% PLots the Percentage Resuspended for All Situations against one

% another.

figure

plot(xvals,meansit1, '-ro')

160

hold on

plot(xvals,meansit2, '-bo')

plot(xvals,meansit3, '-mo')

plot(xvals,meansit4, '-ko')

title('% of All Situations Resuspended vs Dimensionless Time')

legend('Situation 1', 'Situation 2', 'Situation 3', 'Situation 4')

xlabel('t/Tau')

ylabel('% Resuspended')

axis([0,max(xvals)*1.2,0,100])

hold off

end

161

A.7 – ParticleResuspension

clear all

close all

clc

% Input the number of columns, and checks that the column input is an

% integer number.

colscheck = input(...

 'Input the number of columns as a positive integer: ');

while colscheck ~= round(colscheck) || colscheck < 0

 disp(...

 'ERROR! The number of columns MUST be a positive integer.')

 colscheck = input('Input the number of colomns: ');

end

cols = colscheck;

% Input the number of rows, and checks that the row input is an integer

% number.

disp(' ')

rowscheck = input('Input the number of rows as a positive integer: ');

while rowscheck ~= round(rowscheck) || rowscheck < 0

 disp('ERROR! The number of rows MUST be a positive integer.')

 rowscheck = input('Input the number of rows: ');

end

rows = rowscheck;

% Input the time scaling, and verifies that the time scaling is one of

162

% the accepted values for time scaling.

disp(' ')

disp('For the dimensionless time, tau, 1 is equal to the length of ')

disp('time it takes for the piston velocity to cross the particles.')

disp('Most resuspension occurs before tau = 1. The accepted values ')

disp('are 0.05, 0.1,0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 1, 2, 3, 4, and

5');

disp(' ')

timeselectcheck = input('Please enter one of the accepted values: ');

while timeselectcheck ~= 0.05 && timeselectcheck ~= 0.1 && ...

 timeselectcheck ~= 0.15 && timeselectcheck ~= 0.2 && ...

 timeselectcheck ~= 0.25 && timeselectcheck ~= 0.3 && ...

 timeselectcheck ~= 0.4 && timeselectcheck ~= 0.5 && ...

 timeselectcheck ~= 1 && timeselectcheck ~= 2 && ...

 timeselectcheck ~= 3 && timeselectcheck ~= 4 && ...

 timeselectcheck ~= 5 && timeselectcheck ~=10 && ...

 timeselectcheck ~= 15

 disp('ERROR! Tau MUST be one of the approved values.')

 timeselectcheck = input('Please enter an accepted value: ');

end

timeselect = timeselectcheck;

% Input the Attractive force to be used for the simulation and verifies

% it is one of the accepted values

disp(' ')

disp('This program allows four different random attractive forces to ')

disp('be used for simulation:')

disp('(1) is for CH3, 0-1nN')

163

disp('(2) is for COOH, 4-6nN')

disp('(3) is for NH2, 15-25nN')

disp('(4) is for testing, 1-2nN')

attf = input(...

 'Please enter one of the values for attractive force, 1-4: ');

while attf ~=1 && attf ~= 2 && attf ~= 3 && attf ~= 4

 disp('ERROR! Please enter a value 1-4')

 attf = input('Please enter an accepted value: ');

end

% Input whether or not this is a plotting run.

disp(' ')

disp('Is this a plotting run, or a data run?')

disp('A plotting run will generate one run that displays a series of')

disp('images of the particles in the layout as they resuspend. A data

')

disp('run will do multiple runs of randomly generated particles and')

disp('attractive forces, and look at the data at verious time scales.')

disp('1 = plotting run, 0 = data run')

disp(' ')

plotonoffcheck = input('Would you like this to be a plotting run: ');

while plotonoffcheck ~= 1 && plotonoffcheck ~=0

 disp('ERROR! The value MUST be either 1 or 0.')

 plotonoffcheck = input('Would you like to plot? Enter 1 or 0: ');

end

plotonoff = plotonoffcheck;

164

% Input whether or not this is a movie run.

disp(' ')

disp('Do you want to generate a movie? This will automatically turn ')

disp('this into a plotting run. However it will generate one frame for

')

disp('every time step, so this is a rather time consuming process.')

disp(' ')

movieonoffcheck = input('1 = movie creation, 0 = no movie: ');

while movieonoffcheck ~=1 && movieonoffcheck ~= 0

 disp('ERROR! The value MUST be either 1 or 0.')

 movieonoffcheck = input('Would you like this to be a movie run: ');

end

movieonoff = movieonoffcheck;

% Verify that a movie run is what is required.

disp(' ')

if movieonoff == 1

 disp('Are you sure? This can generate upwards of 15,000 frames, ')

 disp('which is both time and memory consuming.')

 disp(' ')

 movieonoff = input('Reaffirm by entering 1 now: ');

 if movieonoff ~= 1

 movieonoff = 0;

 end

end

if movieonoff == 1

 plotonoff = 1;

165

end

if plotonoff == 1

 [snapshotdata, partcounti, finalpart, cols, rows, totaltime] = ...

 PartSimComplex(rows, cols, timeselect, plotonoff, movieonoff);

end

if movieonoff == 1

 disp(' ')

 disp('The movie file is an automatically generated .avi format ')

 disp('file. It will be called "resuspension.avi" and will save to')

 disp('the current directory when it is finished.')

end

if plotonoff == 0

 disp(' ')

 disp('For a batch run, the code will run repeatedly. The number')

 disp('of runs is selected here. A set of 100 runs seems to be ')

 disp('adequete for data analysis. This must be an integer.')

 disp(' ')

 runcountcheck = input('Input the number of runs: ');

 while runcountcheck ~= round(runcountcheck) || runcountcheck < 0

 disp('ERROR! The number of runs MUST be a positive integer.')

 runcountcheck = input('Input the number of runs: ');

 end

 runcount = runcountcheck;

 [snapshotdatafull, perresp, meanall, maxall, minall, rangeall, ...

 stdall, partcountfull, finalpartfull] = PartBatchRun(...

166

 runcount,rows, cols, timeselect, plotonoff, movieonoff,attf);

 disp('Runs Complete')

end

167

Appendix B – Results for Mach 1.2

B.1 – 12x52 CH3

Figure B1 – Percent particle resuspension vs dimensionless time for CH3 with 12x52

grid size, using the piston flow follwing a Mach 1.2 shock. Note they are scaled for

clarity.

168

B.2 – 22x102 CH3

Figure B2 – Percent particle resuspension vs dimensionless time for CH3 with 22x102

grid size using the piston flow follwing a Mach 1.2 shock. Note they are scaled for

clarity.

169

B.3 – 22x102 COOH

Figure B3 – Percent particle resuspension vs dimensionless time for COOH with 22x102

grid size using the piston flow follwing a Mach 1.2 shock Note they are scaled for clarity.

170

B.4 – 32x92 CH3

Figure B4 – Percent particle resuspension vs dimensionless time for CH3 with 32x92

grid size using the piston flow follwing a Mach 1.2 shock. Note they are scaled for

clarity.

171

B.5 – 32x92 COOH

Figure B5 – Percent particle resuspension vs dimensionless time for COOH with 32x92

grid size using the piston flow follwing a Mach 1.2 shock. Note they are scaled for

clarity.

