
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

8-31-2011

Cooperative impedance control with time-varying
stiffness
Matthew Courtney

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Courtney, Matthew. "Cooperative impedance control with time-varying stiffness." (2011). https://digitalrepository.unm.edu/
me_etds/50

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/50?utm_source=digitalrepository.unm.edu%2Fme_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/50?utm_source=digitalrepository.unm.edu%2Fme_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

David Vick
Text Box
Matthew Courtney

David Vick
Note
Accepted set by David Vick

David Vick
Note
None set by David Vick

David Vick
Text Box
Mechanical Engineering

Cooperative Impedance Control with
Time-Varying Stiffness

by

Matthew Courtney

B.S., Mechanical Engineering, University of New Mexico, 2008

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mechanical Engineering

The University of New Mexico

Albuquerque, New Mexico

July 2010

c©2010, Matthew Courtney

iii

Dedication

To my loving fiancee, Kim.

iv

Acknowledgments

I would like to thank my advisor, Dr. Gregory Starr, for the opportunity to (as
my fiancee says)“go to work everyday and play.” His internship provided me with
thought-provoking problems to tackle and the experience necessary to be a mar-
ketable engineer. Without Dr. Starr’s support and guidance, this thesis would not
have been possible.

Stipend and equipment support for this thesis work was made available by the
DOE University Research Program in Robotics (URPR),
via grant # DE-FG52-04NA25590.

v

Cooperative Impedance Control with
Time-Varying Stiffness

by

Matthew Courtney

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mechanical Engineering

The University of New Mexico

Albuquerque, New Mexico

July 2010

Cooperative Impedance Control with
Time-Varying Stiffness

by

Matthew Courtney

B.S., Mechanical Engineering, University of New Mexico, 2008

M.S., Mechanical Engineering, University of New Mexico, 2010

Abstract

The focus of much automation research has been to design controllers and robots

that safely interact with the environment. One approach is to use impedance control

to specify a relationship between a robot’s motion and force and control a grasped

object’s apparent stiffness, damping, and inertia. Conventional impedance control

practices have focused on position-based manipulators — which are inherently non-

compliant — using constant, task-dependent impedances. In the event of large tra-

jectory tracking errors, this implementation method generates large interaction forces

that can damage the workcell. Additionally, these position-based devices require ded-

icated force/torque sensors to measure and apply forces. In this paper, we present

an alternative impedance controller implemented on cooperating torque-based ma-

nipulators. Through the use of time-varying impedance parameters, this controller

limits the interaction forces to ensure harmless manipulation. Successful completion

of transport and insertion tasks demonstrated the effectiveness of the controller.

vii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review . 2

1.2.1 Force Control . 2

1.2.2 Cooperative Control . 4

1.3 Problem Statement . 5

1.4 Thesis Organization . 6

2 Theory 7

2.1 Control Law . 7

2.2 Extension to Multiple Manipulators 10

2.3 General Implementation . 12

viii

Contents

2.3.1 Forward Kinematics . 12

2.3.2 Error Calculations . 13

2.3.3 Impedance Forces . 15

2.3.4 Jacobian . 16

2.3.5 Recursive Newton-Euler Dynamics 18

2.3.6 Nullspace . 19

2.3.7 Frame Considerations . 20

3 Hardware and Software 22

3.1 Whole Arm Manipulators . 23

3.1.1 Kinematics . 25

3.1.2 Quantization . 26

3.1.3 Force Measurement . 27

3.2 Robot Transport Unit . 29

3.3 Computers . 31

3.4 MATLAB/Simulink/RTW/xPC . 32

4 Application 33

4.1 Simulation . 34

4.1.1 Two Dimensional Control . 34

4.1.2 Three Dimensional Control . 37

ix

Contents

4.2 Realization . 40

4.2.1 Experiment 1 . 40

4.2.2 Experiment 2 . 47

5 Conclusions 55

5.1 Contribution . 55

5.2 Future Research . 56

Appendices 59

A Implementation Notes 60

A.1 Target/Hardware Communications 60

A.1.1 WAM - Softing CAN Bus . 60

A.1.2 RTU - Galil 1816 PCI Motion Control Board 62

A.2 Trajectory Generation . 65

A.3 Initialization . 68

B Derivations 71

B.1 Orientation Error . 71

B.2 Discrete Kalman Filter . 73

B.3 Nullspace Projection . 73

B.4 Joint Accelerations . 74

x

Contents

C Manipulator Specifications 76

C.1 Inertial Data . 76

C.2 Joint Limits . 80

References 82

xi

List of Figures

2.1 Impedance Control Diagram . 9

2.2 Frame Assignment Diagram . 12

2.3 Proposed Relationship Between Force and Error 16

3.1 Workcell Diagram . 23

3.2 Whole Arm Manipulator by Barrett Technologies 24

3.3 Barrett Hand . 25

3.4 Frame Assignments for 7-dof WAM[1] 26

3.5 Comparison of WAM and JR3 Force Readings 28

3.6 Force Reading Errors . 28

3.7 Target PC Hardware . 31

4.1 Schematic of 2-D Workcell . 35

4.2 2-D Simulation Trajectory . 36

4.3 2-D Simulation Tracking Error . 36

4.4 Object Position with Instability . 37

xii

List of Figures

4.5 3-D Simulation Trajectory . 39

4.6 3-D Simulation, Actual Path . 39

4.7 Completion of Insertion Task . 40

4.8 Experimental Object 1 . 41

4.9 Object Trajectory for Experiment 1 42

4.10 Force-Error Plot for Insertion . 43

4.11 Experiment 1 Object Position . 44

4.12 Total Impedance Force for Insertion 45

4.13 Experiment 1 Forces Due to Variable Stiffness 45

4.14 Experiment 1 Forces Due to Constant Stiffness 46

4.15 Commanded and Realized RTU Forces 47

4.16 Completion of Transport Task . 48

4.17 Experimental Object 2 . 49

4.18 Force-Error Plot for Transport . 50

4.19 Trajectory Tracking Errors for Experiment 2 51

4.20 Translational Stiffness Gains During Experiment 2 52

4.21 Condition of the Jacobian for Experiment 2 53

A.1 Block Diagram of Software/Hardware Interface 61

A.2 Bit Packing Block . 63

A.3 RTU Interface Blocks . 64

xiii

List of Figures

A.4 Trajectory Generator GUI . 66

A.5 GUI Teach Pendant for Galil Board 68

A.6 Diagram of ‘Triggered Ramp’ Block 69

A.7 Left WAM Position Trajectory During Grasp State 70

xiv

List of Tables

3.1 Table of DH Link Parameters . 25

4.1 Estimated Object Parameters . 42

4.2 Steady State Errors in Meters and Radians 54

A.1 Drive Ratios Relating the WAM Motors and Joints 62

C.1 WAM Joint Limits . 81

xv

Chapter 1

Introduction

1.1 Motivation

In a traditional industrial setting, all locations are known and error tolerances are

low; this is a structured environment. The robots appropriate for these environments

are stiff and accurate, controlled by a position-based device. Take one of these heavy,

rigid robots off of the assembly line and onto the battlefield or into the operating room

and havoc will ensue. With an unstructured environment, manipulation tasks will

inevitably collide with or fail to grasp objects, breaking valuable commodities along

the way - possibly including the robots themselves. To properly use a rigid, position-

based robot in this situation, a large amount of sensing and computation must be

dedicated to perception of the environment. Rather than incorporate cameras and

sensors and additional controllers for each new subsystem, it may be preferable to

design a controller that can work in both settings.

Using robots for combat has been the “wave of the future” for years. But, only re-

cently, the notions of robot couriers, barricade builders, and scouts are being realized.

In these situations, smaller is better: easier to move and easier to hide. So, what

1

Chapter 1. Introduction

happens when a heavy or awkward object must be manipulated? The payload limits

of an individual robot will be exceeded and cooperation is needed between multiple

platforms to accomplish the job. It is clear that compliance and cooperation leads

to much needed versatility in robotic tasks.

1.2 Literature Review

1.2.1 Force Control

Decades of research have been focused on the challenge of controlling robot-

environment interactions. Robust and reliable manipulation tasks have been suc-

cessfully demonstrated using various force control methods. The two fundamental

approaches are force tracking control (explicit force control) and impedance control

(implicit force control).

Explicit force control tracks a reference force to perform a desired task. By prop-

erly following the desired contact forces, the manipulator is ensured a safe interaction

with the environment. However, this method is only designed for manipulation dur-

ing contact. While in free space, the manipulator must use an alternate controller.

Also, the desired position trajectory of the manipulator is not directly known. The

expected path can be inferred, only through knowledge of the environment stiffness

and position and the manipulator’s dynamic model.

Conversely, impedance control specifies the interaction dynamics by relating the

contact forces to the motions of the manipulator and thereby indirectly controls

the environmental forces. The concept of stiffness control was first proposed by

Salisbury [2] in 1980 and later formalized by Hogan [3] in 1985 to include the control

of all three forms of impedance: stiffness, damping, and inertia. Through impedance

control, the stiffness, damping, and inertial parameters of the robot can be tuned to

2

Chapter 1. Introduction

be rigid for accurate maneuvers or compliant for interactions with the environment

depending on the desired task. However, due to the indirect nature of this scheme,

the environment must be known to accurately control the interaction forces. When

impacts with unexpected obstacles cause large errors in the trajectory, large forces

are generated - which can still be damaging.

Both implicit and explicit force controllers have their advantages. Previous work

on force-tracking impedance control seeks to combine the benefits of both control

schemes. In 1997, Seraji and Colbaugh demonstrated an adaptive scheme that mod-

ified the reference trajectory to maintain a desired force [4]. Two methods were

proposed: the first uses the Model-Reference Adaptive Control (MRAC) framework

to select the reference position based on the desired force tracking dynamics; the

second estimates the position and stiffness of the environment and uses them to cal-

culate a reference trajectory. Both methods utilize an accurate position controller to

realize the new reference trajectory. Tsumugiwa et. al., in 2002, estimated the hu-

man arm stiffness during robot-human interactions and varied the desired damping

parameters accordingly [5]. This method only uses inertial and damping terms in

the controller; therefore, it is strictly passive and unable to track free space trajec-

tories. Jung et. al. extended this idea in 2004 using a two phase adaptive approach

that alternates between stiffness and admittance control depending on the contact

state of the manipulator [6]. Jung’s method was designed as a hybrid position/force

controller. Hybrid control is a method that partitions the Cartesian axes into force

controlled and position controlled. Though this scheme is useful for position-based

manipulators, the interaction forces must arise in the predetermined ‘force axes’ to

be utilized.

3

Chapter 1. Introduction

1.2.2 Cooperative Control

When manipulating large, heavy, and awkward objects, it may also be necessary to

use multiple robots to safely accomplish motions. This is especially the case where

a single manipulator’s acceptable payload is exceeded. Rather than purchasing a

larger robot for the task, one could utilize cooperation between multiple, smaller

arms. In the hope of incorporating compliance and cooperation, much theoretical

work has been performed. The first work in multi-robot impedance control was

performed by Schneider and Cannon in 1992[7]. They formulated a dual-arm Ob-

ject Impedance Control (OIC) scheme that propagates the necessary forces to the

manipulators and thereby controls a commonly-held object’s impedance. Their ex-

perimental work used planar two-link Selective Compliant Articulated Robotic Arm

(SCARA) manipulators connected to the ‘object’ via pins so that the reactions at

the manipulator/object interfaces were strictly forces. This control algorithm was

modified by later researchers to improve trajectory tracking, and was applied to other

robots. Moosavian and Papadopoulos [8] presented an extension of OIC called Mul-

tiple Impedance Control (MIC). This control scheme not only imposes an impedance

on the object but on the manipulator end-effectors as well. Simulations of both OIC

and MIC were performed using a single arm to demonstrate the improved behavior

of the MIC law in free space and in contact with the environment. Many other vari-

ations for cooperative control have been formulated, including: extensions of hybrid

impedance control [9], inner force and outer PID control loops [10], and adaptive

control [11], to name a few. Each of these methods, however, is inappropriate for

the use on a torque-based manipulator. All of these controllers, as well as most

found in the literature, utilize force/torque sensors to estimate the contact forces.

Commonly mounted to the robot wrist, only interactions with the tool will provide

measurements suitable for feedback control. These forces and torques can be sensed

by a back-drivable torque-based manipulator without an explicit sensor by examining

4

Chapter 1. Introduction

the disturbance torques. Additionally, the previous works in cooperative compliance

focus on position-based implementation which adds further unnecessary complexity

to the system.

Another aspect of cooperative control unites manipulators and mobile bases. To

increase a robotic arm’s versatility, it is often mounted upon a mobile platform for

extra degrees of freedom. Much research has been performed on coordination and

cooperation between manipulator and base. Early research focused on decoupling

the mobility and manipulability of the mobile robot system and supplying different

coordinated trajectories for each subcomponent. However, more recently unified

systems have become desirable: [12] [13] [14] [15], to name a few. Hootsman proposed

the simple extended Jacobian method that will be used here. This method modifies

the standard Jacobian matrix to include the mobile platform’s kinematics - effectively

unifying the manipulator and base into a single system.

1.3 Problem Statement

Despite the broad body of research, the problem remains to derive a cooperative

time-varying impedance controller that does not rely on a force/torque sensor. This

improvement will afford greater controller versatility while ensuring safe handling

in uncertain conditions. The workcell at UNM is one of only a handful with two

redundant, torque-based, back-drivable manipulators - the Whole Arm Manipulator

(WAM) from Barrett Technologies. In the few years that the WAM has been avail-

able, a large amount of research and support has arisen. From conference workshops

to journal articles, from academic theses to R&D corporations, the development of

the WAM has reinvigorated the force-control community. Taking advantage of this

unique resource, we propose a control scheme that eliminates the force/torque sensor

at the wrist, has the ability to track forces under impedance control, and employs

5

Chapter 1. Introduction

cooperation between multiple manipulators. Conventional impedance controllers use

task-dependent impedances that remain constant for the duration of the task. By

enforcing a nonlinear, time-varying impedance function, the new controller varies the

impedance parameters throughout the task to reduce the interaction forces. Limited

work has been performed on time-varying impedance. Research by Tsetserukou [16]

most closely resembles the work performed here, however it is joint impedances that

are varied, and the controller is restricted to single arm applications. No method

could be found that uses time-varying impedances in task coordinates capable of

autonomous control; nor was there evidence of cooperative force-tracking impedance

controllers in the literature.

1.4 Thesis Organization

We began by presenting motivation for improvements in existing impedance control

theory. The remainder of the paper is structured as follows: Chapter 2 formulates

the cooperative impedance control law for torque-based manipulators and provides

an overview of the theory needed for generalized implementation; the workcell’s

hardware and software are described in Chapter 3; Chapter 4 delves into the specific

control tasks and results for computer simulation and experimental validation; and

the conclusions and future work are laid out in Chapter 5.

6

Chapter 2

Theory

The previous chapter discussed the need for a single robot to cooperatively interact

with other robots and the environment to safely perform a wide variety of manip-

ulation tasks. Documented approaches to force-tracking impedance control focus

on single position-based manipulators with constant impedance parameters. In this

work, an alternative method of cooperative force-tracking impedance control is pro-

posed, for use on torque-based manipulators, that simplifies implementation and

provides safe, versatile handling of objects in uncertain environments.

2.1 Control Law

Cooperative impedance control is a manipulation method wherein multiple robots

interact with a common object to simultaneously manipulate the object and give it

a desired dynamic response - whether it be high stiffness for accuracy or low stiffness

for compliance. Just as in single-arm impedance control, force relates to motion

through a second order linear differential equation,

F = Mdẍ + Kvẋ + Kpx. (2.1)

7

Chapter 2. Theory

However, in object impedance control, the motion is defined relative to a grasped

object rather than to a single manipulator’s end effector. The forces in (2.1) are a

combination of all forces on the object, including but not limited to: gravity, inertia,

external, centripetal, and Coriolis effects. To obtain the desired object response,

cooperating manipulators apply additional forces to compensate for errors in the

motion trajectory and contact with the environment. Initially these impedance forces

(F) are computed with respect to the object. Then they are propagated to the robots

through a grasp matrix (W). Finally, the Jacobian transpose is used to convert each

arm’s force into joint torques to be realized by the manipulator’s motors.

Let us begin to formulate the cooperative impedance control law by first stating

the desired object behavior,

Mdẍ + Kvė + Kpe = F. (2.2)

Define trajectory tracking error (e) as the difference between the actual and desired

position, xdes − xact. The stiffness (Kp), damping (Kv) and inertia (Md) coefficients

can be selected to impart a desired impedance to the object. In this approach, in-

teraction forces between the object and the environment are generated from position

and velocity tracking errors and object accelerations.

Using the definition of e, we can solve (2.2) for the object’s acceleration,

ẍ = −M−1
d (Kvė + Kpe− Fext). (2.3)

The equation of motion for an object moving in a Cartesian coordinate frame, which

relates inertial forces to external forces, is given as,

M0Ẍ + B0 = Fext + Frobot. (2.4)

To clarify the notation: the object’s motion (X) is a concatenation of its position

(x) and orientation (θ); the error in X is E; the angular velocity (ω) is the rate of

change of the orientation; the inertia matrix (M0) refers to the object’s mass (m) and

8

Chapter 2. Theory

Figure 2.1: Impedance Control Diagram

inertia tensor (I); body forces (B0) are caused by gravitational acceleration (g) and

centripetal and Coriolis effects; external forces (Fext) are generated during contact

with the environment and are represented by an equivalent force (fext) and moment

(µext) acting on the object; the total robot force (Frobot) relates the ith manipulator’s

forces (fi) and moments (µi) to the object frame through a grasp vector (pi). I3x3

and 03x3 are the identity and zero matrices, respectively. These terms are calculated

by the following equations,

M0 =

 mI3x3 03x3

03x3 I

 (2.5)

B0 =

 −mg

ω × Iω

 (2.6)

Fext =

 fext

τ ext

 (2.7)

Frobot =

 Σfi

Σ(pi × fi) + Σµi

 . (2.8)

9

Chapter 2. Theory

Taking the acceleration, Ẍ, of (2.3), substituting it into (2.4), and solving for the

total robot force, we obtain the force necessary to impose the impedance behavior

set forth in (2.2),

Frobot = −M0Md
−1(KvĖ + KpE− Fext) + B0(Ẋ,X)− Fext. (2.9)

2.2 Extension to Multiple Manipulators

For cooperative tasks, the control force computed in (2.9) must be partitioned be-

tween all robots. A grasp matrix (W) is used to accomplish this. This matrix

combines the forces at the grasp locations (Fcmd) and computes the equivalent force

acting on the object frame (Frobot),

Frobot = WFcmd (2.10)

W =

 I3x3 03x3

P1 I3x3

...
I3x3 03x3

P2 I3x3

... · · ·

 . (2.11)

Pi is a skew symmetric matrix that performs the cross product between pi and

fi; Fcmd is a column vector concatenating the forces and moments caused by the

manipulators at the grasp points,

Pi =


0 −pi3 pi2

pi3 0 −pi1
−pi2 pi1 0

 (2.12)

Fcmd =



f1

µ1

f2

µ2

...


. (2.13)

10

Chapter 2. Theory

Theoretically, the inverse of the grasp matrix computes the necessary manipulator

forces to impose a desired object force. However, because W is a non-square matrix,

we must use the right pseudoinverse of the grasp matrix, (W+), to perform this

calculation. This pseudoinverse exists because the grasp matrix always has full row

rank,

Fcmd = W+Frobot (2.14)

Fcmd = W+{−M0M−1
d (KvĖ + KpE− Fext) + B0(Ẋ,X)− Fext} (2.15)

W+ = WT(WWT)−1. (2.16)

Although (2.15) embodies the object’s desired dynamics, it does not consider

the dynamic effects of the manipulators. Manipulator dynamics are modeled by the

following equation,

M(q)q̈ + C(q̇,q)q̇ + G(q) = τ − JTf + τn, (2.17)

in which M(q) is the robot’s inertia matrix, C(q̇,q) accounts for the Centripetal and

Coriolis torques, and G(q) adds the gravitational effects. In (2.17), the force exerted

on the environment (f) is converted into a moment using the Jacobian transpose.

This exerted force is the decoupled command force found in (2.15). τ n is a set of

joint torques that act in the nullspace of the Jacobian; these torques generate no

forces at the robot end-effector and only exist if the manipulator degrees of freedom

are greater than the controlled degrees of freedom (in general, 6). Therefore, each

robot’s joint torques, necessary to impart a specified impedance on the object while

compensating for the object and manipulator dynamic models, are given by

τ = M(q)q̈ + C(q̇,q)q̇ + G(q)+

JTW+[−M0M−1
d (KvĖ + KpE− Fext) +

B0(Ẋ,X)− Fext] + τn. (2.18)

11

Chapter 2. Theory

2.3 General Implementation

2.3.1 Forward Kinematics

The first step in realizing (2.18) is to accurately calculate the object’s position and

orientation with respect to a world coordinate frame. Transformation operators are

one such method for solving this kinematics problem. Each transform consists of a

rotation matrix (R), a position vector (p), and a scaling factor (1). Denote the homo-

geneous transformation matrix of frame {B} with respect to frame {A} as A
BT. These

homogeneous transform matrices have the special properties that C
AT = C

BTB
AT and

A
BT−1 = B

AT. Therefore, the matrices can be combined to determine the relationship

between two frames that are not necessarily adjacent. Figure 2.2 shows an example

workcell with the relevant coordinate frames. Through transformation operators, we

Figure 2.2: Frame Assignment Diagram

find that the object frame {O} is related to the stationary, world coordinate frame

12

Chapter 2. Theory

{S} (called the station frame) by

S
OT = S

BTB
TTT

OT. (2.19)

To calculate each manipulator’s transformation between the base {B} and tool

{T} frames, we use the standard Denavit-Hartenberg method. This technique assigns

link frames and defines them using a table of link parameters. The parameters include

(ai) the length of the common normal between two link frames, (αi) the angle about

the common normal from zi−1 to zi, (di) the distance along zi−1 to the common

normal, and (θi) the angle about zi−1 from xi−1 to xi.

Using these parameters, we are able to formulate transformation matrices between

adjacent joint frames,

i−1
i T =


cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)

sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

 . (2.20)

The relationship between the station frame and the base frame (S
BT) and the

tool frame and object frame (T
OT) is subject to the workcell configuration and spe-

cific experiment. The transformations for our specific hardware arrangement will be

addressed in Chapters 3 and 4. After all necessary transformations are determined,

(2.19) can be computed.

2.3.2 Error Calculations

The next stage of computation determines the position and velocity error in the

object’s trajectory. Different methods were used to calculate the translational and

13

Chapter 2. Theory

rotational errors. First redefine the transformation matrix into a more computation-

ally usable vector form,

T =


nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 =

 n o a p

0 0 0 1

 . (2.21)

The desired and actual translations can be compared using the standard Euclidean

difference:

d = pdes − pact. (2.22)

The rotations, however, are more complex. The relationship between two 3-space

rotations can be found from

R∆ = RdesRact
T . (2.23)

Using the notation from (2.21) and comparing the resulting off-diagonal terms in

(2.23), we find that the rotational error is

∂ =
1

2
(nact × ndes + oact × odes + aact × ades). (2.24)

The full derivation of this equation can be found in Appendix B.1.

From [17], a skew symmetric matrix of angular velocities is given by

Ω =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 = ṘRT. (2.25)

Thus the angular velocities are the resulting elements of Ω. Angular velocity error

can then be calculated with the difference,

∂̇ = ωdes − ωact. (2.26)

14

Chapter 2. Theory

2.3.3 Impedance Forces

In (2.2) we calculate the stiffness, damping, and inertia forces caused by the object’s

trajectory errors. In an ideal impedance controller, the desired trajectory is closely

tracked during free-space motions (high stiffness) and the forces are minimized during

environmental interactions (low stiffness). A problem with typical impedance con-

trollers is that impedance gains remain constant for an entire task. If a compliant

interaction is desired, the motion has poor tracking performance - even in free-space.

Conversely, if an accurate motion is desired, large forces are applied during contact.

Task-dependent impedances have been used to avoid this problem, but these have

relied on either a predefined impedance trajectory that is strictly time-dependent or

on a state (contact or free-space) observer with abrupt adjustments. Both of these

are incapable of quickly and stably adjusting to unexpected collisions. Continuous

variation of the impedance parameters is needed to cause both stiff and compliant

interactions during a single task. Because the goal is to allow interactions with an

unstructured environment, the variance cannot simply be a time-dependent adjust-

ment; it must correspond to a controlled variable that fluctuates with task state.

We propose a solution to this problem by varying the controller’s impedance param-

eters with respect to the tracking error. Our response behavior is achieved in the

force-error graph of Figure 2.3.

This relationship maintains the impedance concept of relating motions to forces

and is governed by the equation

F = sign(e)Fmax[1− exp(−|e|
ξ

)]. (2.27)

The correlation is defined by two constants: the maximum force (Fmax), chosen to

limit the force on the environment caused by trajectory tracking errors, and the rise

constant (ξ), chosen for a desired stiffness near the origin. From Hooke’s law, the

15

Chapter 2. Theory

Figure 2.3: Proposed Relationship Between Force and Error

stiffness is obtained by K = ∂F
∂e

. Which, when e << 1, can be estimated by

KO =
Fmax
ξ

. (2.28)

We know that, when the error equals the rise constant, the exerted force will be

0.63Fmax; which is another possible method for choosing ξ. With this saturating

force function, the maximum stiffness force will be tracked once the error threshold

has been reached. By using this particular stiffness relationship, there is always a

reactionary force driving the position error to zero.

2.3.4 Jacobian

The impedance forces found from the object errors must next be converted into joint

torques using the transpose of the Jacobian matrix. The Jacobian matrix (∂X
∂q

) was

found using the kinematic parameters of the robot. In [18], Paul defines a method

whereby the Jacobian is found during the forward kinematic computations. First

calculate the intermediate transformations,

7
i T = 7

6T6
5T . . .i+1

i T. (2.29)

16

Chapter 2. Theory

Again denoting the transformation matrix by (2.21), we begin by formulating the

manipulator’s 6x7 Jacobian matrix that relates differential joint-space to differen-

tial task-space with respect to the tool frame (TJmanip). The ith column vector of

the manipulator’s tool frame Jacobian (TJmanip,i) is computed using the following

equation for revolute joints,

TJmanip,i =



(p× n)z

(p× o)z

(p× a)z

nz

oz

az


, (2.30)

where the vectors n, o, a, and p are obtained from 7
i T. Next, the RTU translational

degree of freedom must be added to the Jacobian. This translational joint axis is

parallel to the x-axis of the manipulator base frame, so a differential change in the

RTU joint corresponds to a differential change in the x-axis. This means that the

column vector of the Jacobian relating to the RTU is simply

BJRTU =



1

0

0

0

0

0


. (2.31)

By transforming (2.31) into the tool frame and appending the manipulator Jacobian,

the system Jacobian is

TJ =

  B
TR 03x3

03x3
B
TR

 BJRTU
TJmanip

 . (2.32)

17

Chapter 2. Theory

2.3.5 Recursive Newton-Euler Dynamics

To incorporate the manipulator dynamics into the control algorithm of (2.18), we

utilized the recursive Newton-Euler method proposed by Luh, Walker, and Paul[19].

This inverse dynamics method uses manipulator parameters (inertia, mass, link

lengths, etc.) to compute the necessary joint torques for a given set of joint po-

sitions, velocities, and accelerations,

RNE(q̈, q̇,q) = τ . (2.33)

Computing the torque is a two stage process. First, the velocities and accelerations of

the center of mass are computed for each link. The motion is propagated iteratively

outward from i = 1→ 7 using (2.34-36),

ωi = iRT
[
ωi−1 + z0θ̇i

]
(2.34)

ω̇i = iRT
[
ω̇i−1 + z0θ̈i + ωi−1 × (z0θ̇i)

]
(2.35)

v̇i = iRTv̇i−1 + ω̇i × pi + ωi × (ωi × pi). (2.36)

The base angular velocity (ω0) and acceleration (ω̇0) are zero, and the base linear

acceleration (v̇0) is set equal to upward gravitational acceleration (
[

0 0 9.81
]T

).

The second stage computes the forces and torques acting at the center of mass of

each link due to its linear and angular accelerations and propagates them throughout

the manipulator to determine the resulting joint torques. Here, inward iterations

(2.37-42) are performed from i = 7→ 1,

v̇ci = vi + ωi × ri + ωi × (ωi × ri) (2.37)

Fi = miv̇ci (2.38)

Ni = Iciω̇i + ωi × (Iciωi) (2.39)

fi = i+1Rfi+1 + Fi (2.40)

ni = i+1Rni+1 + pi × fi + Ni + ri × Fi (2.41)

τ i = nT
i (iRTz0). (2.42)

18

Chapter 2. Theory

The torques computed using the Newton-Euler method account for the left hand side

of (2.17).

2.3.6 Nullspace

Redundancy, in manipulation, is defined by having more degrees of freedom avail-

able than are being specified. In our system, each WAM+RTU has eight available

axes. However, the Cartesian forces and moments necessary to control the object’s

impedance sum to only six. Therefore, two redundant degrees of freedom allow for

an infinity of physical configurations. To control the redundant degrees of freedom

without affecting the manipulator tool frame, the null torques (τ n) must not generate

forces at the tip. Joint torques relate to tip forces through the Jacobian transpose,

JTF = τ . (2.43)

Rearranging (2.43) and applying the redundancy torque criterion, we find that the

null torques reside in the nullspace of the Jacobian’s inverse transpose,

J−Tτn = 0. (2.44)

To generate these torques, we begin by finding functions for the desired nullspace

variables,

Φ1 = sx(q)− q1 (2.45)

Φ2 = q6. (2.46)

The two redundant control variables were chosen as (1) the distance between the tool

frame and the RTU along the x axis of the station frame (to keep the RTU’s sepa-

rated) and (2) the orientation of the fifth WAM joint (to maintain a desired ‘elbow’

angle). The Jacobian is then computed for each equation to find the relationship

19

Chapter 2. Theory

between these kinematic functions and their controlling joint torques,

JΦ1 =
∂Φ1

∂q
=
∂sx

∂q
−

[
1 0 0 0 0 0 0 0

]
(2.47)

JΦ2 =
∂Φ2

∂q
=

[
0 0 0 0 0 1 0 0

]
. (2.48)

The computations for both equations are simple, noting that the first term in (2.45)

is the first row of the manipulator Jacobian with respect to the base frame. The

joint torques can then be computed using proportional control and the Jacobian

transpose,

τΦi
= JTΦi

[Knull,i(Φdes − Φ)]. (2.49)

Nullspace damping is unnecessary because it is supplied by the inherent friction in

the system. To ensure that the redundancy control torques do not affect the object

forces, we project them into the nullspace (Appendix B.3),

τn = (I− JT(JJT)−1J)τΦ. (2.50)

2.3.7 Frame Considerations

Throughout the many computations comprising the control law, it is necessary to

ensure consistency of coordinate frames. The calculations must reflect the frames in

which the values are defined. For example, the impedance forces are derived from

the object position relative to the station frame: so the impedance forces are also in

this frame. However, the grasp matrix is computed using pi, which is relative to the

object frame. To utilize equation (2.14) for computing the manipulator command

forces, the robot forces must be converted to the object frame using the appropriate

transform (O
S T). Then, to generate the joint torques, the manipulator forces must be

converted into the same coordinate frame as the Jacobian (Base or Tool). Without

frame consistency, the control law equation is invalid. Nuances, such as this one,

20

Chapter 2. Theory

must be accounted for when the control law is realized on a particular workcell. The

specific implementation methods, equations, and parameters will be presented in

Chapters 3 and 4 where the workcell software and hardware are detailed.

21

Chapter 3

Hardware and Software

When applying (2.18) to a physical system, many cooperating hardware and software

components are involved. The dual arm workcell at the University of New Mexico

has two 7-DOF Barrett Whole Arm Manipulators (WAM) with three-fingered Bar-

rett Hands. Each is mounted atop a Robot Transport Unit (RTU) for increased

mobility. As seen in Figure 3.1, several communication protocols are used between

the components. MathWorks software is used to unite these components and per-

form rapid controller prototyping, computer simulations, and hardware-in-the-loop

experiments.

22

Chapter 3. Hardware and Software

Figure 3.1: Workcell Diagram

3.1 Whole Arm Manipulators

The WAMs provide an ideal platform for controller development in that all necessary

kinematic and dynamic properties are available. These robots are differentially cable

driven; placing most of the motors at the robot base allows for light weight linkages

and minimizes joint friction. The robots were also designed to be backdriveable:

an external force on any link can cause joint motion. Each manipulator has seven

degrees of freedom, is modeled after the human arm, and is commanded by a set of

motor currents. This particular combination of manipulator characteristics makes

the WAM ideal for interacting with the environment through force control algorithms

without the need for explicit force/torque sensors. Rather than alter the desired tra-

jectory to accommodate environmental forces, the WAM’s design complies with these

disturbances naturally. Rudimentary, open-source, C-based controllers are available

for these robots to demonstrate example applications, but their open architecture

design encourages novel, state-of-the-art controller implementation.

23

Chapter 3. Hardware and Software

Figure 3.2: Whole Arm Manipulator by Barrett Technologies

The robots communicate with the target computers through a Controller Area

Network (CAN) bus. Though this method of communication is well documented due

to its extensive use in the automotive industry, the specific WAM communication

protocols are proprietary. Data packets are sent over the bus with an 11 bit identifier

to determine the message type, origin, and destination, and the data is packed with

different bit patterns for each type of information: property, position, or torque.

Each robot has a Barrett three-fingered hand mounted for prehensile grasping.

The hands are also differentially cable driven, and can be controlled by a teach

pendant or directly by computer. Though the hands can be used to supply additional

impedance properties, simple rigid grasps are assumed for the duration of this work.

24

Chapter 3. Hardware and Software

Figure 3.3: Barrett Hand

3.1.1 Kinematics

Although the dynamic parameters of the WAMs (Appendix C.1) come from CAD

models rather than being physically measured through model identification, they

proved capable of computing accurate gravitational torques and will continue to be

used for all necessary modeling. To calculate the forward kinematics of the WAM,

i ai αi di θi
(m) (rad) (m) (rad)

1 0 −π
2

0 θ1

2 0 π
2

0 θ2

3 0.045 −π
2

0.55 θ3

4 -0.045 π
2

0 θ4

5 0 −π
2

0.3 θ5

6 0 π
2

0 θ6

7 0 0 0.0609 θ7

T 0 0 0.10 0

Table 3.1: Table of DH Link Parameters

the link parameters of Table 3.1, extracted from the frame assignments in Figure 3.4,

25

Chapter 3. Hardware and Software

Figure 3.4: Frame Assignments for 7-dof WAM[1]

are used in equation (2.20) and combined to generate a transformation relating the

base frame and tool frame,

1
TT = 1

2T2
3T . . .7T T. (3.1)

3.1.2 Quantization

Quantization can hinder measurements of joint velocity. The motor positions are

sensed by optical encoders, which inherently quantize. In calculating the Newton-

Euler dynamics, it is necessary to compute the joint velocities of the WAM. However,

these values can only be obtained using the quantized motor position values. Through

discrete differentiation, the motor velocity values have a resolution of ∆ΘM

∆t
. Each

26

Chapter 3. Hardware and Software

encoder reads 4096 counts per revolution (0.00153 radians per count). Assuming a

500Hz sampling frequency, the velocity resolution becomes 0.767 radians per second.

To avoid a noisy velocity signal, we implemented a discrete time Kalman filter to pre-

dict the position and velocity from the current and previous position measurements.

The model we used was formulated in [20] and can be seen in Appendix B.2.

3.1.3 Force Measurement

Throughout this thesis, it is assumed that the system model is exact and forces gen-

erated by the manipulator’s end-effector are equal to those commanded. However,

this is never the case: nonlinearities in the motor, quantization of the signals, and un-

modeled friction can cause errors. Therefore, we designed a preliminary experiment

to compare the commanded and realized wrenches.

We ran four tests to compare force data from a wrist-mounted JR3 force/torque

sensor and the WAM’s own joint torque measurements. The first two runs were

performed using a PD joint controller. The torques from the controller were saved

and converted to forces using the pseudoinverse of the transpose Jacobian,

F = (JT)+τ . (3.2)

The second two runs were made using a Cartesian space controller. In this

case, forces were directly computed by the controller; no additional conversions were

needed for comparison. Figure 3.5 shows data from a Cartesian control experiment,

although no distinct differences could be found between the two methods. The WAM

forces all contained biases in the force signals. However, once these were removed,

the WAM and JR3 forces were quite similar - rarely differing by more than 5N. Sig-

nal noise only contributes to 0.5N of error in steady-state. Unmodeled friction is the

likely cause of most under-actuation.

27

Chapter 3. Hardware and Software

Figure 3.5: Comparison of WAM and JR3 Force Readings

Figure 3.6: Force Reading Errors

Additional errors may be caused by error in the WAM’s initial position. The

WAM arms do not have a stored home position for the motors. Every time that

the manipulator is reset, the encoder positions are also reset. Each joint has a

physical marking to represent the zero position - this must be manually aligned; in

many cases, this cannot be accurately achieved. With the Barrett Hands mounted

28

Chapter 3. Hardware and Software

to the wrist, the initial position changes. Minor errors in a single joint position may

have substantial effects on the Cartesian errors. An error of 0.01 radians of a single

joint at home position can result in up to 4mm of error in tool frame positioning.

Although a manipulator will be oblivious its own error, cooperating robots may

have an 8mm difference in the calculated object position; and, as the manipulator

extends, these errors continue to increase. Assuming a mid-range stiffness gain of

1000N/m, this error could apply over 10N of force to a system that is perfectly

tracking the trajectory. Throughout the experiments, we tried to consistently reset

the manipulator to the same initial position. But initialization error always had some

effect on the controller performance.

3.2 Robot Transport Unit

The RTU consists of a carriage, 4.3276 meters of usable low-friction track, and a

7 HP motor. The additional axis increases the manipulability of the workcell by

both adding an extra degree of freedom to the system and extending the usable

workspace of the manipulator. For simplicity, the station frame in all of our experi-

ments lies directly between the two RTU home positions and at the same height as

the manipulator base frames. Each manipulator’s base frame is set back 0.209 meters

(70203 counts) from the front of the RTU. Therefore, the transformations of the left

29

Chapter 3. Hardware and Software

and right base frames relative to the station frame are

S
LBT =


1 0 0 dL − 2.3728

0 1 0 0

0 0 1 0

0 0 0 1

 (3.3)

S
RBT =


−1 0 0 2.3728− dR
0 −1 0 0

0 0 1 0

0 0 0 1

 . (3.4)

dL and dR are the left and right RTU positions relative to each home position,

respectively.

The carriage motion is controlled by a Galil 1816 DSP-based motion control

board. This controller has the ability to drive the system in several different modes,

all based on a high stiffness PID control loop around motor position. For our pur-

poses, Position Tracking control mode is used. This mode accelerates at a constant

rate to attain a maximum velocity while tracking continuously updated position

setpoints. With high velocity and acceleration parameters (100,000 counts/sec and

256,000 counts/sec2, respectively), we are able to accurately position the RTU.

The RTU and WAM are fundamentally different devices. The RTU is a rigid,

accurate, position-based device, while the WAM is a compliant, torque-based device.

Though the control algorithm computes forces and torques necessary for the system

to correctly manipulate the object, the RTU forces must be converted into positions

to be utilized. Therefore, we specify an apparent stiffness for the RTU and compute

the position displacement necessary to achieve it,

x = xdes −
FRTU
KRTU

. (3.5)

30

Chapter 3. Hardware and Software

3.3 Computers

The Host PC is a standard Dell Precision T3400 with a 2.83GHz, Intel Core2 Quad

processor and 4GB of RAM. However, the Target PCs are custom built with a

2.53GHz, Intel Core2 Duo processor and 2GB of RAM and include PCI boards for

the various communications (Softing CAN bus, Galil Motion Controller, GE Fanuc

Reflective Memory, Intel Ethernet Chip Set). Each PCI board, except for the Galil,

was chosen because of the support MATLAB provided. Although the communication

between targets was available through Ethernet and CANbus networks, the desire

for real time performance necessitated increased speed. For this reason, we chose to

implement a reflective memory ring. This ring synchronizes multiple memory boards,

through fiber optic cables, with nanosecond update rates.

Figure 3.7: Target PC Hardware

31

Chapter 3. Hardware and Software

3.4 MATLAB/Simulink/RTW/xPC

MathWorks software applications were used to design controllers, compile code and

control the entire system in real time. These tools are widely used in industry

and academia for control and simulation. The process begins in Simulink, a block-

diagram-based environment running on the Host PC. Here, mathematical equations

representing hardware models and controllers are encoded in blocks and arranged in

a desired system formation. This approach to dynamic system modeling is an intu-

itive method that closely resembles the techniques taught in basic controls courses.

The modularity of block diagrams encourages collaboration between researchers and

accelerates the design process. Similar to a coded function, a given subsystem block

can be stored in a library, where it can be quickly accessed for use in any future

diagram. Once a system model is generated, Real Time Workshop (RTW) is used to

build a program that runs in real time. This is a two step process: first the Simulink

model generates corresponding C code, then the code is compiled into an executable

module. For our applications, the executable module runs on a real time kernel, xPC

Target, on the Target PC (one for each WAM) and communicates directly with the

hardware components.

In the following chapter, computer simulations and hardware experiments are

performed. We are able to construct controllers, simulate and actuate hardware,

and record and analyze data all with the same multifaceted MathWorks software.

32

Chapter 4

Application

To apply the control law from Chapter 2 using the hardware and software described

in Chapter 3, the following simulations and experiments were designed. The intent of

these tests was to demonstrate the compliance and versatility of the proposed control

system and compare it to a similar time-invariant impedance controller. We begin by

simulating the control algorithm with simplified computer models. Then we designed

two tasks for the dual-arm workcell. The first requires insertion of a commonly-held

pipe into a corner whose position and orientation are uncertain; the object needs

compliance to securely align with the recess. The second task requires transporting

an object between two waypoints while encountering an obstacle; without damaging

the object or obstacle, the controller must adjust for the unexpected forces and

continue to track its trajectory. During the motions, the interaction forces were

limited by the variable impedance to ensure safe handling while still completing the

desired insertion/transport task.

33

Chapter 4. Application

4.1 Simulation

We first performed a series of computer simulations. In Simulink, two and three

dimensional simplifications of the cooperative impedance controller were assem-

bled without an RTU model. Free-space trajectories were followed using constant

impedance parameters to ensure the control system was properly created, the ma-

nipulators maintained stability, and the computation time was sufficiently low.

4.1.1 Two Dimensional Control

A two dimensional simulation was performed in the MATLAB Simulink environment

first. This undertaking used two, planar, revolute-revolute manipulators to control

an imaginary object 0.2 meters in length. For ease, the object pose was calculated

from the two end-effector positions,

X =


xR+xL

2

yR+yL

2

atan2(yR − yL, xR − xL)

 . (4.1)

The robots began 1.0 meter apart at the base and had links 0.5 meters in length.

The vectors, pi, for computing the grasp matrix were [-.1 0] and [.1 0] for the left

and right manipulators respectively.

Because of the object’s limited reachable workspace, we specified the manipula-

tors to impart only a force on the object, no moment. The grasp matrix then reduces

to (4.2); the torques in Fcmd are omitted.

W =


1 0 1 0

0 1 0 1

−p1,y p1,x −p2,y p2,x

 . (4.2)

34

Chapter 4. Application

Figure 4.1: Schematic of 2-D Workcell

We assumed a rigid object, implementing a stiff virtual spring between the two

manipulator tool frames to maintain a constant separation distance and relative

orientation. The virtual spring force can also be used to measure the internal forces

on the object. Other object properties such as mass, inertia, and shape were omitted.

During the command force computation, (2.15), we selected the desired inertia

matrix to equal the actual and omitted the object dynamics. Therefore, the control

law reduced to

Fcmd = −W+(KvĖ + KpE). (4.3)

Though elementary, it is a useful introductory model of dual arm manipulation.

In tracking the simple position trajectory of Figure 4.2 with a high constant

stiffness (2 N/mm), the tracking error remains less than 2.0 millimeters. As seen in

Figure 4.4 below, instability can arise in certain orientations due to singularities in

the Euler angles at π
2
. Later experiments use the angular error equations presented

in Section 2.3.2 to avoid this occurrence.

35

Chapter 4. Application

Figure 4.2: 2-D Simulation Trajectory

Figure 4.3: 2-D Simulation Tracking Error

36

Chapter 4. Application

Figure 4.4: Object Position with Instability

4.1.2 Three Dimensional Control

In three dimensional controller simulations, the control equations more closely fol-

lowed those presented in Chapter 2. This simulation modeled torque driven, 7-DOF

manipulators representing frictionless WAMs. Because the control law and simu-

lation used the same manipulator model, the two arm system could be completely

controlled. The object used in this simulation has a 1.0 meter length, again without

inertia properties, and the base frames of each manipulator were 0.5 meters from the

station frame.

Unlike the two dimensional representation, where the kinematics can be deter-

mined through simple geometry, the three dimensional setup must use transform-

based kinematic chains to determine the current object position. However, this

method computes the object position using only one of the two available chains -

either S
OT = S

LBT LB
LTT LT

O T or S
OT = S

RBT RB
RTT RT

O T. The object’s actual position

37

Chapter 4. Application

and position error are dependent on only one manipulator. In simulations, this

causes a feedforward effect if no direct interactions between the two robots exist.

To enforce the rigid object criterion and eliminate the feedforward effect, we again

employ a virtual object stiffness to apply a corrective force between the two grasp

positions. Since we know the desired pose of the tool frames relative to the object,

and we can compute the actual pose of the object, we can easily compute the relative

error between the feedforward manipulator and its desired position. In realizing this

model on actual robots, the object would transfer forces from one hand to the other

and no force feedback would be necessary.

The trajectory for the three dimensional simulation proceeds from the initial po-

sition to final position by altering five of the six Cartesian parameters. The constant

desired stiffness for this run was 1 N/mm for translation and 5 N-m/rad for ori-

entation. The damping for translation was 30 N-s/m. Addition of the orientation

damping caused the computation time of the simulations to increase exponentially

and often lead to instability in the system. Therefore it was set to zero. Although

the differences between the desired position in Figure 4.5 and the actual position in

Figure 4.6 may appear significant, it must be noted that an impedance controller,

like the one here, is less focused on positional accuracy and more on interaction

forces. The oscillating error values may be due to several factors, including omission

of orientation damping and poor manipulability (discussed in Section 4.2). When the

experiment is extended to contact an environment, more analysis will be performed

on the origins of controller error.

38

Chapter 4. Application

Figure 4.5: 3-D Simulation Trajectory

Figure 4.6: 3-D Simulation, Actual Path

39

Chapter 4. Application

4.2 Realization

4.2.1 Experiment 1

The first experiment performed on the actual hardware demonstrates the controller’s

compliant insertion capabilities. Manipulators attempt to insert an object into a

corner while accounting for modeling errors both in the object and environment.

Figure 4.7: Completion of Insertion Task

Setup

The object in this experiment was formed from Schedule 40 PVC pipe. Several

pieces of stock piping were combined to create a 1.78 kilogram object that lie directly

between the two Barrett Hands. The object was symmetrically grasped to provide a

large contact surface for the insertion without concern for manipulator interference.

This simple system configuration closely resembles that of the computer simulations

40

Chapter 4. Application

with the addition of the RTU and the object’s inertia. The object frame and grasp

locations can be seen in Figure 4.8.

Figure 4.8: Experimental Object 1

The tool frames of the left and right manipulators are 0.605 meters on either side

of the object frame. The transformation matrices relating the grasp frame to the

object frame are

LT
O T =


0 0 −1 −0.605

0 1 0 0

1 0 0 0

0 0 0 1

 (4.4)

RT
O T =


0 0 −1 0.605

0 −1 0 0

−1 0 0 0

0 0 0 1

 . (4.5)

The inertia parameters of the object were estimated by assuming a single pipe

with an additional point mass at both ends. The mass moments of inertia with

respect to the y and z axes are the same because Ox lies along the pipe’s axis of

symmetry. Thus, the inertia can be calculated from the equations,

Ixx =
1

2
m(ID2 +OD2) (4.6)

Iyy = Izz =
1

12
mctL

2
ct + 2mpt(

L

2
)2. (4.7)

41

Chapter 4. Application

ID and OD are the inner and outer diameters of the pipe. The subscripts ct and pt

correspond with the equivalent object’s center pipe and point masses, respectively.

L is the length of the object along the pipe’s axis of symmetry. Table 4.1 lists the

estimated object properties.

Parameter Value
m 1.72 kg
Ixx 0.0013492 kg-m2

Iyy 0.52308 kg-m2

Izz 0.52308 kg-m2

Table 4.1: Estimated Object Parameters

The object motion for this experiment proceeded from the object grasp position

of [0 0 0.6] to [0 0.8 0] using Cartesian straight line path and a rest-to-rest quintic

velocity profile (Figure 4.9).

Figure 4.9: Object Trajectory for Experiment 1

The maximum force, Fmax, was set to [20 30 30 5 5 5], the rise constants,

ξ, were [0.02 0.03 0.03 0.25 0.25 0.25] and the damping coefficients, Kv, were

[10 30 30 0.3 0.3 0.3]. By specifying low stiffness forces, the object will be more

42

Chapter 4. Application

compliant as it contacts the apparatus. These values result in the stiffness function

seen in Figure 4.10.

Figure 4.10: Force-Error Plot for Insertion

Results

To demonstrate the versatility of the cooperative control algorithm, it was imple-

mented as a distributed system: each manipulator obtained its own estimate of the

actual object position and second manipulator position. However, depending on the

relative position and orientation of the tool frames post-grasp, large errors in the

estimated actual and desired object positions can cause additional impedance forces

to be applied that should not exist. To demonstrate this error and its effects on the

assumed position trajectory, we plotted the position of the object as computed by

each manipulator (Figure 4.11). This plot also takes into account the differences in

initial WAM position noted in Section 3.1.3. It is easy to recognize the large and

varying differences between each assumed position even though the actual position

of the object lies approximately between the two. This means that larger forces

are exerted on the object than necessary, however the majority reside in the system

43

Chapter 4. Application

nullspace: internal object forces. To remain consistent throughout the remainder of

Figure 4.11: Experiment 1 Object Position

the analysis, only readings from the left robotic system will be used.

Despite the aforementioned errors, the object was successfully inserted into the

corner without applying excessive forces to the environment. The total forces applied

to the object due to the impedance controller can be seen plotted in Figure 4.12. The

noise in the command forces are largely due to the remaining noise in the velocity

signal (damping, centripetal, and Coriolis effects). Although the z forces on the

object surpass the desired 30N limit, much of this surplus purely compensates for

the object’s mass (16.87N) and never becomes apparent to the environment.

Figure 4.13 depicts the object forces due to the time-varying stiffness. The vari-

able gain in the proposed force-tracking impedance controller greatly limits the over-

all forces and clearly tracks the desired stiffness forces. Though only the stiffness

parameter is adjusted in the current control scheme, any/all of the impedance gains

can be controlled in the same manner. It was assumed that stiffness would be the

largest contributor to the object forces. When comparing Figures 4.12 and 4.13,

clearly this is a valid assumption.

44

Chapter 4. Application

Figure 4.12: Total Impedance Force for Insertion

Figure 4.13: Experiment 1 Forces Due to Variable Stiffness

While testing a conventional time-invariant impedance controller, the stiffness

gain remains constant - which creates large forces when all other experimental pa-

rameters remain the same. The stiffness parameter was set to the value of Kp at

the origin, [1000 1000 1000 50 50 50]. Implementation of this controller for the same

experiment with the same desired trajectory resulted in apparatus compliance rather

than object compliance: the object sat snugly in the groove only after displacing the

45

Chapter 4. Application

corner to a new location. Therefore, to directly compare the stiffness forces of a

time-varying and a constant controller, we assume the apparatus can sustain high

forces and calculate them from the errors of the compliant run. The corresponding

stiffness forces are depicted in Figure 4.14.

Figure 4.14: Experiment 1 Forces Due to Constant Stiffness

Finally, a comparison of the desired and realized RTU forces was performed

(Figure 4.15). The realized forces were computed using (3.5) with a desired RTU

stiffness of 1 N/mm.

Though the RTU tracks the overall desired forces throughout most of the ex-

periment, its response is noticeably slower. The goal of this experiment, to limit

the interaction forces while completing an uncertain insertion task, was successfully

completed. Overall, the system performed well to realize desired forces. However,

improvements could be made in the areas of system modeling and object position

consensus.

46

Chapter 4. Application

Figure 4.15: Commanded and Realized RTU Forces

4.2.2 Experiment 2

The second experiment was chosen to demonstrate the safe handling capabilities of

the time-varying, cooperative impedance controller during transport tasks. This test

manipulates an object along a desired free-space trajectory while encountering an

obstacle. The manipulators must soften the impact with the impediment, maneuver

around it, and continue along the path.

Setup

The common object in this experiment was a 1.24 meter PVC pipe with a mass of

1.28 kilograms and inner and outer diameters of 0.0520 meters and 0.0637 meters,

respectively. The object was grasped, as shown in Figure 4.17, to facilitate a large

object motion while keeping the arms moderately extended and protruding the pipe

for contact.

The object frame and right manipulator grasp frame lie at the pipe center while

47

Chapter 4. Application

Figure 4.16: Completion of Transport Task

the left manipulator grasp frame is located 0.5 meters down the pipe in the positive

Oy direction. Therefore, the transformation matrices relating the object frame to the

left and right grasp locations can be calculated as,

LT
O T =


0 0 −1 0

0 1 0 0.5

1 0 0 0

0 0 0 1

 (4.8)

RT
O T =


0 0 −1 0

0 −1 0 0

−1 0 0 0

0 0 0 1

 . (4.9)

However, this grasp configuration is not conducive to impedance control of the

48

Chapter 4. Application

Figure 4.17: Experimental Object 2

WAM as formulated. The WAM’s seventh joint is directly driven by the seventh

motor, which greatly limits its ability to smoothly exert large torques. With a grasp

location 0.5 meters from the object frame, small rotations of the left manipulator’s

seventh joint causes large motions in the object. To maintain a stiff positional

impedance, this joint must employ high stiffness gains; but the the motor’s limitations

lead to instability of the controller under these conditions. Modifications to the

grasp matrix were performed that cause the manipulator to relay zero moments to

the object’s x axis. Recalling the grasp matrix formulation in Chapter 2, the grasp

moments relate to object moments via the 3x3 identity matrix in the lower right of

each 6x6 partition. To limit the effects of the manipulator’s seventh joint, we simply

replace the “1” in the (1,1) entry of that identity matrix with “0”. The resulting

grasp matrix becomes,

W =


I3x3 03x3 I3x3 03x3 · · ·

P1


0 0 0

0 1 0

0 0 1

 P2


0 0 0

0 1 0

0 0 1

 · · ·

 . (4.10)

To compute I of object two, we again utilize the inertia equations for a pipe.

Because the pipe’s axis of symmetry lies along Oy, the mass moments of inertia for

49

Chapter 4. Application

the x and z are the same,

I =


0.16401 0 0

0 0.00433 0

0 0 0.16401

 . (4.11)

For this experiment, the object has a rest-to-rest velocity profile while following

a simple Cartesian line - extending 1.0 meter in the Sx direction. All other Cartesian

degrees of freedom are held constant. With the main task of tracking a trajectory,

the translational stiffness and damping parameters for this task were set high,

Fmax =
[

50 50 50 30 20 5
]

(4.12)

ξ =
[

0.05 0.05 0.05 1.0 0.667 0.167
]

(4.13)

Kv =
[

10 30 30 0.3 0.3 0.3
]
. (4.14)

These values impose a translational and rotational stiffnesses of 1 N/mm and 30 N -

m/rad when E << 1.

Figure 4.18: Force-Error Plot for Transport

50

Chapter 4. Application

Results

The motion trajectory began at approximately sixty-two and a half seconds. As the

object traversed the desired trajectory, it encountered a stiff vertical bar that gener-

ated forces along the x axis and moments about the z axis of the station frame. At

approximately the sixty-fifth second, disturbances in the x position and yaw rotation

denote the impact.

Figure 4.19: Trajectory Tracking Errors for Experiment 2

Interactions with the obstacle cause the object position errors to increase. These

increased errors decrease the variable stiffness as the Force-Error relationship of

Figure 4.18 is maintained. Figure 4.20 clearly shows the maximum stiffness value of

1 N/m for all three translation directions. This value can be calculated by (2.28) for

when the position error is close to zero. At the instant the position errors are at a

maximum, the stiffness is at a minimum and the impact forces are reduced. Once

the obstacle has been overcome, the stiffness force recovers the position errors and

the variable stiffness increases again.

51

Chapter 4. Application

Figure 4.20: Translational Stiffness Gains During Experiment 2

Although an ideal experiment would demonstrate compliance only due to impact

forces, reality shows that motions also appear in the other axes. These were not

completely unforeseen; depending on the configuration and system modeling errors,

the impact effects can vary.

The manipulability of a robotic arm is measured by the condition of its Jacobian

and demonstrates the ability to realize tool motions. Found from the eigenvalues of

the following matrix,

CJ =
√

JJT, (4.15)

the condition varies with the joint positions. If a robot’s configuration leads to low

manipulability in desired directions, trajectory tracking errors — including secondary

motions — often appear.

In comparing the plots of error and manipulability, several correlations can be

detected. As the manipulability of the x and z axes degrade, their errors begin to

increase. Additionally, as the manipulability improves for y rotations, so too does

the error. Although the yaw follows a similar trend, the collision effects provide a

52

Chapter 4. Application

Figure 4.21: Condition of the Jacobian for Experiment 2

more significant contribution to this motion. Certainly, not all of the errors can be

accounted for in this manner. Physical joint limits, for example, are not a factor in

the manipulability measure. Fortunately, the manipulator’s joints remained far from

their extremes throughout all experimental runs.

Another cause for error in trajectory tracking is unmodeled dynamics. These

propagate throughout the motion to form large residual errors that may not be

recovered - even in steady state. After the desired trajectory comes to rest, friction,

damping, and inertia forces resist motion and counteract the stiffness force. To

demonstrate the effects of unmodeled dynamics, trials were performed with and

without the feed-forward object model torques. The errors before and after each run

are found in Table 4.2. Comparing the initial and final object errors, we can observe

the effects of object modeling errors. Note that the change is significantly less in

the roll and yaw rotations and z translation when the object’s inertia is modeled.

This is expected because the object model accounts for the gravity force (z axis)

and Coriolis and centripetal effects- which have the greatest effect on the largest

rotational motions (roll and yaw). Also, the large final error in the roll is likely due

to torque restrictions in the modified grasp matrix (4.10).

53

Chapter 4. Application

WITHOUT MODELED OBJECT PARAMETERS
x y z roll pitch yaw

Before -0.02184 -0.007836 -0.02816 0.02772 -0.06643 -0.04758
After -0.03767 -0.003674 -0.04586 0.15750 -0.12730 -0.07401

% Change 72.5 52.9 62.9 468.2 91.6 55.5
WITH MODELED OBJECT PARAMETERS

x y z roll pitch yaw
Before -0.02459 -0.008765 -0.05151 0.04569 -0.04194 -0.04635
After -0.03922 -0.004538 -0.05065 0.21760 -0.10570 -0.04651

% Change 59.5 48.2 1.7 179.3 152.0 0.3

Table 4.2: Steady State Errors in Meters and Radians

The computer simulations and hardware experiments of this paper were designed

with a specific intent: to demonstrate the versatile, compliant, and cooperative abili-

ties of this controller. By using backdrivable torque-based manipulators with known

dynamic models, we eliminated the need for force/torque sensors in our force control

scheme. Clearly, the objectives were met; each cooperative task was completed suc-

cessfully and the total interaction forces were bounded - even under large tracking

errors.

54

Chapter 5

Conclusions

The goal of this research was to improve upon the available control methods and

design a simple cooperative impedance controller that is versatile enough to perform

multiple tasks without variation of the control structure and safe enough to interact

with humans and fragile objects alike in unstructured environments. The funda-

mental aspect of an impedance controller is its ability to couple motion and force.

Therefore, the impedance parameters are the simplest and most direct to adjust.

Previous work on cooperative impedance control and force tracking impedance con-

trol dedicate hardware and software to enact forces with position-based manipulators

that are inherently non-compliant. These schemes adjust the position trajectories

and damping parameters to achieve a beneficial interaction; but they avoid using

continuous, time-varying stiffnesses.

5.1 Contribution

This paper derives and implements a cooperative, compliant, force-tracking imped-

ance controller on its ideal platform: a torque-based manipulator. The impedance

55

Chapter 5. Conclusions

parameters are varied with respect to the contact forces - which are obtained from

position errors instead of explicit force/torque sensors. The experimental tasks per-

formed demonstrate the ease of implementation, versatility, and compliant abilities

of the controller. Even in the event of large position errors, the object’s interaction

forces are limited through the continuously-adjusted stiffness. Both the insertion task

and transport task were successfully completed without damage to the workcell. The

same was not true for the experiments run with constant stiffness controllers. Epit-

omizing the need for the time-varying controller, both experiments run with conven-

tional controllers damaged equipment; the insertion task altered the corner location

rather than complying with it and the transport task dislodged a manipulator cable

and frayed a hand cable.

5.2 Future Research

Although the proposed controller completed the compliance tasks and demonstrated

the advantages of time-varying impedance, improvements can still be made. Errors

in the current control system arise from three main sources: (1) friction, (2) ma-

nipulability, and (3) consensus. Therefore, the major directions of research foreseen

developing from this paper are model identification of the WAM and RTU, manipu-

lability control, and the incorporation of computer vision.

The friction torques in each joint reduce the object’s apparent forces. The de-

sired interaction forces can not truly be realized because the controller lacks friction

compensation (Figure 3.5). However, straightforward model identification can be

performed to obtain a usable friction model in future WAM experiments. Because

the joint torques are readily observable in the WAMs, an experiment could be devised

that moves each joint through its range multiple times at different constant veloc-

ities. The simulated WAM model can then be subjected to the same experiment.

56

Chapter 5. Conclusions

The difference between the actual and simulation torques during a constant velocity

is the result of friction. By plotting these friction torques against the joint velocities,

the coulomb and viscous coefficients become evident. A simple model relates friction

forces to the joint velocities,

Ff = fCsign(q̇) + fV q̇, (5.1)

where fC and fV are the Coulomb and viscous friction coefficients, respectively,

and q̇ is joint velocity. Concurrent improvements to the Kalman filter must also be

performed to further reduce the velocity noise, as oscillatory Coulomb effects could

be troublesome.

As seen in Section 4.2.2, poor system manipulability can also cause controller

error, leading to undesirable secondary object motions. One possible approach to

improve the robot’s ability to realize motions is through the nullspace. Rather than

controlling spacial parameters heuristically - that may or may not benefit the results,

the nullspace could be used to maximize the manipulability of the object. Either

through feedback control or path planning algorithms, a designated manipulability

value could be tracked as an auxiliary robot task.

Finally, all manipulators must be in agreement as to the object’s position to

accurately control its impedance. Figure 4.11 best depicts the lack of consensus

in the distributed control system. A straightforward method to unite the system is

computer vision. Cameras in the workcell dedicated to determining the object’s pose

can relay data to a single control system. This unified system will then compute the

torques for both manipulators. The Simulink controller construction in this paper

facilitates sensor integration without major changes. Simply use the vision system,

instead of transformation matrices, for the kinematic solution to greatly reduce the

errors in object estimation and apply more accurate object forces.

A common goal in robotics research is to understand and apply methods for

57

Chapter 5. Conclusions

safe human-robot interactions. This aspect of automation is critical as more and

more companies create robotic aides for use at home and work. The time-varying

impedance controller presented here is one method that insures safe, compliant in-

teractions and could be applied in such a dynamic environment.

58

Appendices

A Implementation Notes 60

A.1 Target/Hardware Communications 60

A.2 Trajectory Generation . 65

A.3 Initialization . 68

B Derivations 71

B.1 Orientation Error . 71

B.2 Discrete Kalman Filter . 73

B.3 Nullspace Projection . 73

B.4 Joint Accelerations . 74

C Manipulator Specifications 76

C.1 Inertial Data . 76

C.2 Joint Limits . 80

59

Appendix A

Implementation Notes

A.1 Target/Hardware Communications

The lowest level of implementation involves communication between the hardware

and software. In the robot level diagram (Figure A.1), the Target block accepts the

command torques and forces from the controller and returns the joint positions and

velocities. Many subtasks are necessary to provide this simple representation. The

joint torques/forces are first divided between the WAM and the RTU.

A.1.1 WAM - Softing CAN Bus

The manipulator requires the input torques to be zero while it is in idle mode. To

ensure this, the mode block checks the state of the manipulator. If the arm is idle,

mode sends “0” and multi-port switch sets the torques to zero; otherwise, the arm

is active, mode sends “2”, and the controller’s torques are sent to the robot. Each

motor is interfaced with a micro-controller known as a puck. These pucks retain all

the necessary information about the motors including encoder position and motor

60

Appendix A. Implementation Notes

Figure A.1: Block Diagram of Software/Hardware Interface

current. Because the motors drive the joints using a differential, the seven joint

torques do not directly correspond to the seven motor currents. The joint torques

are converted to motor torques using the drive ratios of Table A.1,

τM = DTτ J (A.1)

D =



− 1
N1

0 0 0 0 0 0

0 1
2N2

− 1
2N2

0 0 0 0

0 − n3

2N2
− n3

2N2
0 0 0 0

0 0 0 1
N4

0 0 0

0 0 0 0 1
2N5

1
2N5

0

0 0 0 0 − n6

2N5

n6

2N5
0

0 0 0 0 0 0 − 1
N7


. (A.2)

Then the ratios between motor torque and motor current (νi) and motor current

and puck torque (τp,i = 1024 is equivalent to 1.01A) are used to convert the ith motor

61

Appendix A. Implementation Notes

Parameter Value
N1 42.0
N2 28.25
N3 28.25
n3 1.68
N4 -18.0
N5 9.7
N6 9.7
n6 1.0
N7 14.93

Table A.1: Drive Ratios Relating the WAM Motors and Joints

torques into puck torques,

τp,i =
1024

νi
τm,i. (A.3)

Finally, they are packed into data packets for the upper (pucks 5-7) and lower

(pucks 1-4) arm. As was mentioned earlier, the WAM’s CAN protocols are pro-

prietary. CAN bus communications are supported by the MathWorks software and

include initialization, bit (un)packing, send, and receive blocks ready for use with

the Softing PCI board.

Pucks also sense and store the current encoder positions. These values are re-

ceived over the CAN bus and unpacked. To make them usable in the control algo-

rithm, the motor transition ratios are used for conversion to joint positions.

θJ = DθM (A.4)

A.1.2 RTU - Galil 1816 PCI Motion Control Board

The RTU motor position is controlled by a Galil 1816 position control board. The

communications with the Galil board are performed in using rudimentary, two let-

ter commands. For interaction between the board and the Target PC, a driver was

62

Appendix A. Implementation Notes

Figure A.2: Bit Packing Block

generated using a MATLAB S-function block. This block, when added to a system,

initializes, sends commands to, and receives responses from the control board. The

block has four inputs and four outputs. The first determines the block mode: ini-

tialize, send command, etc. The second input to the driver block accepts commands

stored as int8 data types. The number of characters in the command, stored as

an int32, is received by the third input port. And the final input determines the

command index. Every time a new command is sent, the index number must be

increased for the Galil driver to recognize it. Similarly the four output ports denote

the block mode, response, response length, and response index. With this driver

formulation, the block can be used in Simulink to execute commands either for a

single instance or continuously.

During the controller implementation, the Galil commands are sent every time

step. The following set of blocks receives the RTU position generated by the control

63

Appendix A. Implementation Notes

algorithm and sends the corresponding commands the motion control board.

Figure A.3: RTU Interface Blocks

64

Appendix A. Implementation Notes

The calculations of (3.5) transform the controller force into a position for use with

the motion control board. These are performed in the convert force to position block

and sent to the formulate command block. This block determines the command

input length; then the block generates two commands to be sent in a single instance:

TPX to request the current encoder position and PA to set the current RTU position.

The command and length are sent through the driver block (the other two inputs are

optional). The driver’s response is then processed in the extract value from command

block. Here, the block determines if both commands were accepted (two semicolons

in the response) and extracts the current position value. Finally, the encoder position

is converted to meters using the empirical relationship: 1.00 meters = 167,954 counts.

A.2 Trajectory Generation

While compiling the experimental tasks for this thesis, many different trajectory

files were generated and tested. To ease the trajectory formulation, we designed a

Graphical User Interface (GUI) for creating joint-space and Cartesian-space paths

with multiple waypoints. Upon starting the GUI, the first window lets the user

choose whether to generate a trajectory or load a trajectory. If a new trajectory is

to be created, the user specifies the type of trajectory and the number of waypoints.

The next window, provides a table for data entry, including pauses in the trajectory,

motion time, time step, and waypoints. These values are used to create a trajectory

structure, Rin for Cartesian paths and Pin and Vin for joint paths, each with fields

time and signals. The signals field has two subfields: dimensions and values. The

dimensions vary by trajectory type: joint-space are nx7 and Cartesian space are

4x4xn. The structure is set up for easy incorporation in Simulink’s From Workspace

blocks.

65

Appendix A. Implementation Notes

Figure A.4: Trajectory Generator GUI

66

Appendix A. Implementation Notes

The motion between each set of waypoints is calculated with a quintic rest-to-rest

motion profile using the following equations:

P (t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0 (A.5)

V (t) = 5a4t
5 + 4a4t

3 + 3a3t
2 + 2a2t+ a1 (A.6)

a0 = P0 (A.7)

a1 = V0 (A.8)

a2 =
a1

2
(A.9)

a3 =
20P2 − 20P1 − (8V1 + 12V0)tf − (3a1 − a2)t2f

2t3f
(A.10)

a4 =
30P0 − 30P1 + (14V1 + 16V0)tf + (3a1 − 2a2)t2f

2t4f
(A.11)

a5 =
12(P1 − P0)− 6(V1 + V0)tf − (a1 − a2)t2f

2t5f
. (A.12)

For joint trajectories, the subtrajectories between each pair of waypoints are simply

concatenated. However with Cartesian trajectories, the velocity trajectories (V(t))

are omitted and a transformation matrix is computed for each time step,

R(t) =


cos(α(t)) cos(β(t))) cos(α(t)) sin(β(t)) sin(γ(t))− sin(α(t)) cos(γ(t))

sin(α(t)) cos(β(t)) sin(α(t)) sin(β(t)) sin(γ(t)) + cos(α(t)) cos(γ(t))

− sin(β(t)) cos(β(t)) sin(γ(t))

0 0

cos(α(t)) sin(β(t)) cos(γ(t)) + sin(α(t)) sin(γ(t)) x(t)

sin(α(t)) sin(β(t)) cos(γ(t))− cos(α(t)) sin(γ(t)) y(t)

cos(β(t)) cos(γ(t)) z(t)

0 1

 , (A.13)

where α, β, and γ are the desired yaw, pitch, and roll.

67

Appendix A. Implementation Notes

A.3 Initialization

Before the cooperative impedance controller can begin, the RTU must be homed

and moved into its initial position (0.5 meters from {S}). To communicate with the

control board without the full controller running, we created a teach pendant GUI

that allows commands to be sent for a single instance. Every time the ‘Set/Get’

button is pressed, the command is sent and the response is retrieved and both are

stored in the ‘History’ list.

Figure A.5: GUI Teach Pendant for Galil Board

Each time the power is reset, the RTUs must be homed and set to their initial

positions. To do this, the RTU speeds are set low (HM 2000;). Then the homing

function is started (HM;BG;). Once the RTU has reset its encoder to the zero at its

home position, the speed is returned to its desired value (SP 100000;), the position

tracking mode is entered (PT 1;), and the RTU is moved to the initial position

(PA 314500;).

68

Appendix A. Implementation Notes

Unlike the RTUs that remain still when uncontrolled, the manipulators fall. The

manipulators cannot begin in a position grasping the object; there must first be a

trajectory from the initial home position to the grasp position. Then a secondary tra-

jectory, with the object, commands motion its final position. To transition between

these two manipulation states, we utilize the reflective memory communications and

the MATLAB Stateflow toolbox. The reflected memory allows a trigger signal to

be sent to both WAM systems within the same integration time step. This signal

triggers a specially designed triggered ramp block. When enabled, a Stateflow chart

records the trigger time. By subtracting this from the current time and dividing by

the update rate, an enabled ramp, with slope 1
dt

, is created. The initial ramp value

is set to “1” by the bias block and only allowed to reach a maximum value equal

to the number of steps in the secondary trajectory. This ramp signal is fed into a

selector block that returns the indexed point of the secondary trajectory. Effectively,

this method allows for the system to begin a secondary trajectory using a signal to

trigger the motion to commence.

Figure A.6: Diagram of ‘Triggered Ramp’ Block

Each grasp-state trajectory begins and ends in the same place (for each manipu-

lator). Even though the manipulators are acting independently during this motion,

69

Appendix A. Implementation Notes

the trajectory refers to an object position to avoid changing the controller during

this separate state. The grasp-state path is a Cartesian line between two points

with a rest-to-rest velocity profile. These two object points correspond to the WAM

starting in home position and ending ready to grasp an object at [0 0 0.6].

Figure A.7: Left WAM Position Trajectory During Grasp State

70

Appendix B

Derivations

B.1 Orientation Error

Using the notation from (2.21), we can evaluate (2.23) for R∆.

R∆ =


nxd oxd axd

nyd oyd ayd

nzd oyd ayd



nxa oxa axa

nya oya aya

nza oya aya


T

(B.1)

=


nxdnxa + oxdoxa + axdaxa nxdnya + oxdoya + axdaya

nydnxa + oydoxa + aydaxa nydnya + oydoya + aydaya

nzdnxa + ozdoxa + azdaxa nzdnya + ozdoya + azdaya

nxdnza + oxdoza + axdaza

nydnza + oydoza + aydaza

nzdnza + ozdoza + azdaza

 (B.2)

71

Appendix B. Derivations

From [17], we know that the differential rotation matrix is represented by

R∆ =


0 −∂z ∂y

∂z 0 −∂x
−∂y ∂x 0

 (B.3)

By equating the off diagonal terms of (B.2) and (B.3) we find two separate equations

for the differential orientations (∂ =


∂x

∂y

∂z

).

∂ =


nzdnya + ozdoya + azdaya

nxdnza + oxdoza + axdaza

nydnxa + oydoxa + aydaxa

 (B.4)

∂ =


−nydnza − oydoza − aydaza
−nzdnxa − ozdoxa − azdaxa
−nxdnya − oxdoya − axdaya

 (B.5)

Adding (B.4) and (B.5) and grouping like terms, we find

2∂ =


nzdnya − nydnza + ozdoya − oydoza + azdaya − aydaza
nxdnza − nzdnxa + oxdoza − ozdoxa + axdaza − azdaxa
nydnxa − nxdnya + oydoxa − oxdoya + aydaxa − axdaya

 (B.6)

∂ =
1

2



nzdnya − nydnza
nxdnza − nzdnxa
nydnxa − nxdnya

 +


ozdoya − oydoza
oxdoza − ozdoxa
oydoxa − oxdoya



+


azdaya − aydaza
axdaza − azdaxa
aydaxa − axdaya


 (B.7)

=
1

2
(na × nd + oa × od + aa × ad) (B.8)

72

Appendix B. Derivations

B.2 Discrete Kalman Filter

In this implementation of a Kalman filter, the encoder quantization with covariance

1
3
∆θm is considered the measurement noise (ν) and the motor acceleration is driven

by white noise (w) with empirically chosen covariance (Q). ẋ

ẍ

 =

 0 1

0 0

  x

ẋ

 +

 0

1

w (B.9)

y =
[

1 0
]  x

ẋ

 + ν (B.10)

The discrete Kalman iteration equation is as follows.

Pk+1|k = AdPk|kA
T
d +Bd (B.11)

kd = Pk|k−1

 0

1

 (
[

1 0
]
Pk|k−1

 0

1

 +
1

3
∆θ)−1 (B.12)

Pk|k = (I2x2 − kd
[

1 0
]
)Pk|k−1(I2x2 − kd

[
1 0

]
)T + kd(

1

3
∆θ)kTd (B.13)

where,

Ad = I2x2 +

 0 1

0 0

 ∆t (B.14)

Bd = ∆tQ

 0

1

 [
1 0

]
. (B.15)

B.3 Nullspace Projection

To ensure that the redundancy control torques reside in the nullspace of the Jaco-

bian’s inverse transpose, we use a mapping function. Note that J−T is actually the

pseudoinverse of the Jacobian transpose because the matrix is non-square. We want

73

Appendix B. Derivations

a projection operator, P, such that Pτ φ ∈ N(J−T) i.e.

J−TPτ φ = 0. (B.16)

We can show that the projection matrix,

P = (I− JT(JJT)−1J), (B.17)

guarantees this. Substituting () into () we find

J−T(I− JT(JJT)−1J)τ φ = (JJT)−1J(I− JT(JJT)−1J)τ φ (B.18)

= [(JJT)−1J− (JJT)−1JJT(JJT)−1J]τ φ (B.19)

= [(JJT)−1J− (JJT)−1J]τ φ (B.20)

= 0τ φ (B.21)

= 0. (B.22)

Therefore, P projects the redundant control torques into the nullspace.

B.4 Joint Accelerations

To fully model the manipulator dynamics, the joint accelerations must be computed.

Rather than calculating the joint accelerations through direct differentiation and

amplifying the noise from the position signal, it is possible to use the following

equation,

q̈ = J−1J̇q̇. (B.23)

To compute the Jacobian derivative, we use the equation

J̇ = q̇TH. (B.24)

74

Appendix B. Derivations

where H is the Hessian matrix. We modified the method proposed in [21] for revolute

joint variables to compute the numerical Hessian,

H =
∂2X

∂θi∂θj

=

 ai × (aj × (pe − pj))

ai × aj

 . (B.25)

If we also note that the Jacobian for revolute joint variables can be written as

J =
∂X

∂θ
=

 ai × (pe − pi)

ai

 , (B.26)

we can then write the Hessian as a function of a previously computed Jacobian,

H =

 J(i, 4 : 6)× J(j, 1 : 3)

J(i, 4 : 6)× J(j, 4 : 6)

 . (B.27)

It is then straightforward to compute the Jacobian derivative (J̇(J, q̇)).

75

Appendix C

Manipulator Specifications

C.1 Inertial Data

Barrett Technologies supplied the inertial data of the WAM. The information is

based on computer modeling of the components and includes link mass (mi), center

of mass location with respect to the link frame (pi), and the inertia tensor at the

center of mass aligned with the link frame (Li).

76

Appendix C. Manipulator Specifications

Frame 1

m1 = 8.3936kg

pm,1 =


0.3506

132.6795

0.6286

 mm

L1 =


95157.4294 246.1404 −95.0183

246.1404 92032.3524 −962.6725

−95.0183 −962.6725 59290.5997

 kg −mm2

Frame 2

m2 = 4.8487kg

pm,2 =


−0.2230

−21.3924

13.3754

 mm

L2 =


29326.8098 −43.3994 −129.2942

−43.3994 20781.5826 1348.6924

−129.2942 1348.6924 22807.3271

 kg −mm2

77

Appendix C. Manipulator Specifications

Frame 3

m3 = 1.7251kg

pm,3 =


−38.7565

217.9078

0.0252

 mm

L3 =


56662.2970 −2321.6892 8.2125

−2321.6892 3158.0509 −16.6307

8.2125 −16.6307 56806.6024

 kg −mm2

Frame 4

m4 = 2.1727kg

pm,4 =


5.5341

0.0682

119.2769

 mm

L4 =


10.6749 0.0450 −1.3556

0.0450 10.5866 −0.1100

−1.3556 −0.1100 2.8204

 kg −mm2

78

Appendix C. Manipulator Specifications

Frame 5

m5 = 0.3566kg

pm,5 =


0.0548

28.8629

1.4849

 mm

L5 =


0.3711 −0.0001 −0.0000

−0.0001 0.1943 −0.0161

−0.0000 −0.0161 0.3821

 kg −mm2

Frame 6

m6 = 0.4092kg

pm,6 =


−0.0592

−16.8612

24.1905

 mm

L6 =


0.5489 0.0002 −0.0001

0.0002 0.2385 −0.0443

−0.0001 −0.0443 0.4513

 kg −mm2

79

Appendix C. Manipulator Specifications

Frame 7

m7 = 0.0755kg

pm,7 =


0.1484

0.0725

−3.3579

 mm

L7 =


0.0391 0.0002 0.0000

0.0002 0.0388 0.0000

0.0000 0.0000 0.0761

 kg −mm2

Barrett Hand

mBH = 1.20kg

pBH =


0.0000

0.0000

−0.0320

 mm

C.2 Joint Limits

Reiterated many times earlier, position controlled devices, like the RTUs, are inher-

ently unsafe. Because of their high accuracy and high bandwidth, the RTUs can

severely damage anything in the workcell in the blink of an eye. To avoid such a

catastrophe, we generated an additional control block that limits the RTU motion

to the track between its home position and the other RTU. A virtual spring, with a

stiffness of 3 N/mm, is added to the controller to repel either of these boundaries.

80

Appendix C. Manipulator Specifications

When the RTU is within 0.2977 meters (50,000 cts) to said obstacle, the virtual

spring becomes engaged and forces the sled in the other direction.

Joint Positive Joint Limit Negative Joint Limit
rad rad

1 2.6 -2.6
2 2.0 -2.0
3 2.8 -2.8
4 3.1 -0.9
5 1.3 -4.8
6 1.6 -1.6
7 2.2 -2.2

Table C.1: WAM Joint Limits

Similarly, the physical joint limits of the WAMs must be avoided. Threshold joint

limits are set to activate rotational springs at each joint - 0.03m radians from the

actual limits (Table A.2).

81

References

[1] Wam arm: User’s guide., 2006.

[2] J. Kenneth Salisbury. Active stiffness control of a manipulator in cartesian
coordinates. In Decision and Control including the Symposium on Adaptive
Processes, 1980 19th IEEE Conference on, volume 19, pages 95–100, December
1980.

[3] N. Hogan. Impedance control - an approach to manipulation. i - theory. ii -
implementation. iii - applications. ASME Transactions Journal of Dynamic
Systems and Measurement Control B, 107:1–24, March 1985.

[4] Homayoun Seraji and Richard Colbaugh. Force tracking in impedence control.
I. J. Robotic Res.

[5] Toru Tsumugiwa, Ryuichi Yokogawa, and Kei Hara. Variable impedance con-
trol based on estimation of human arm stiffness for human-robot cooperative
calligraphic task. In ICRA, pages 644–650, 2002.

[6] Seul Jung, T.C. Hsia, and R.G. Bonitz. Force tracking impedance control of
robot manipulators under unknown environment. Control Systems Technology,
IEEE Transactions on, 12(3):474 – 483, May 2004.

[7] S.A. Schneider and Jr. Cannon, R.H. Object impedance control for cooperative
manipulation: theory and experimental results. Robotics and Automation, IEEE
Transactions on, 8(3):383–394, June 1992.

[8] Ali Moosavian, , S. Ali, A. Moosavian, and Evangelos Papadopoulos. Multiple
impedance control for object manipulation. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 461–466, 1998.

[9] Haipeng Xie, I.J. Bryson, F. Shadpey, and R.V. Patel. A robust control scheme
for dual-arm redundant manipulators: experimental results. In Robotics and

82

References

Automation, 1999. Proceedings. 1999 IEEE International Conference on, vol-
ume 4, pages 2507–2512 vol.4, 1999.

[10] F. Caccavale, P. Chiacchio, A. Marino, and L. Villani. Six-dof impedance con-
trol of dual-arm cooperative manipulators. Mechatronics, IEEE/ASME Trans-
actions on, 13(5):576–586, October 2008.

[11] R.G. Bonitz and T.C. Hsia. Robust internal-force based impedance control for
coordinating manipulators-theory and experiments. In Robotics and Automa-
tion, 1996. Proceedings., 1996 IEEE International Conference on, volume 1,
pages 622–628 vol.1, April 1996.

[12] H. Seraji. An on-line approach to coordinated mobility and manipulation. pages
28 –35 vol.1, May 1993.

[13] K. Ward and R. Arkin. Reactive control of a mobile manipulator using pseudo-
joint damping, 1994.

[14] O. Khatib, K. Yokoi, K.-S. Chang, D. Ruspini, R. Holmberg, and A Casal.
Coordination and decentralized cooperation of multiple mobile manipulators.,
1996.

[15] Yoshio Yamamoto and Xiaoping Yun. Coordinating locomotion and manip-
ulation of a mobile manipulator. IEEE Transactions on Automatic Control,
39:1326–1332, 1987.

[16] D. Tsetserukou, R. Tadakuma, H. Kajimoto, N. Kawakami, and S. Tachi. Intel-
ligent variable joint impedance control and development of a new whole-sensitive
anthropomorphic robot arm. pages 338 –343, June 2007.

[17] Werner F. Schindler and Ciro Natale. Interaction Control of Robot Manipulators:
Six Degrees-of-Freedom Tasks. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2003.

[18] Richard P. Paul, Burce Shimano, and Gordon E. Mayer. Differential kinematic
control equations for simple manipulators. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-11(6):456–460, June 1981.

[19] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-line computational scheme
for mechanical manipulators. J. DYN. SYS. MEAS. & CONTR., 102(2):69–76,
1980.

[20] Armando Bellini and Stefano Bifaretti. A digital filter for speed noise reduction
in drives using an electromagnetic resolver. Math. Comput. Simul., 71(4):476–
486, 2006.

83

References

[21] A Hourtash. The kinematic hessian and higher derivatives. In CIRA 2005 Pro-
ceedings, International Symposium on Computational Intelligence in Robotics
and Automation series, pages 169–174. IEEE, June 2005.

84

