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ABSTRACT 

 

Concentrating solar power (CSP) is a large field of interest in the renewable 

energy sector.  However, CSP has not yet become as economical as other renewable 

energy technologies.  A possible solution to this issue is the ability to produce efficient 

and cost-effective solar collectors such as parabolic troughs, heliostats, and parabolic 

dishes.  There are many different areas where costs can be reduced such as using cheaper 

materials, developing more efficient power cycles, designing better structures, reducing 

the control system cost, or improving the alignment of the mirrors.  The research 

presented focuses on the area of mirror alignment.  Properly aligned mirrors produce 

more concentrated solar energy output thereby increasing the thermal efficiency in the 

entire system. 

The first purpose  of this research is to develop a cost-effective method to analyze 

gravity deformations in solar collectors.  The deformations are found from Finite Element 

Analysis (FEA) on a true scale model.  The second purpose of this research is to study the 

optical performance of the solar collector after gravity deformation.  Ray tracing is used 

to fully analyze the optical performance of collectors.  Together the deformations and 

beam characterization lead to a useful, cost-effective process to analyze solar collectors.  
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The results of the study show that the simulations presented can accurately match 

experimental data.  The final process allows for design changes to be studied before 

making a costly prototype.   
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DEFINITIONS 

FEA is the standard acronym for Finite Element Analysis. 

An FEA element refers to the discrete piece of an FEA model.  Each element 

contains nodes which are used to solve the stress and strain equations at those specific 

points. 

A displacement is defined as the translation and rotation of an FEA element from 

its original location after loading.  This is reported in three dimensions using a standard 

length unit such as millimeter or inch.  The term deformation is also used to describe 

displacements. 

A surface normal is the vector normal to a particular surface. 

A slope error is defined as the angular deviation of the surface normal vector of a 

finite element before and after loading.  The surface normal of a finite element is known 

before loading and the new surface normal of that same element can be determined after 

loading.  A slope error is commonly used to describe the optical accuracy of a reflecting 

surface.  A perfectly reflecting surface wouldn't have any slope errors.  Slope errors occur 

from loadings, but there are inherent mirror inaccuracies induced during manufacturing 

and assembly processes. 

An HCE is the standard abbreviation for the heat collecting element of a parabolic 

trough.  It is usually composed of an external glass envelope which surrounds a heat 

absorbing element. 

A ray trace is a simulation which tracks photons (rays) from an emitting source.  

The rays are allowed to be reflected, absorbed, or transmitted by objects in the ray trace 

model.  
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For a parabolic trough the intercept factor is the main optical performance 

metric.  An intercept factor is the ratio of actually energy on the heat collecting absorbing 

element to the total energy reflecting from the collector surface.  A perfectly reflecting 

solar collector without deformations will result in an intercept factor of 1 since all of the 

energy reflecting from the collector surface will impact the HCE absorbing element.  

Other collector systems such as heliostats rely on flux maps and beam shape to quantify 

optical performance.  These metrics are easily found using plane targets during ray 

tracing.   

An incident angle is the angle between the normal of the collecting surface to the 

aperture and the incoming solar rays.  This angle is used to evaluate solar collector 

performance when tracking the sun throughout the day.  It is expected that a larger 

incident angle results in more energy missing the HCE resulting in a lower intercept 

factor. 

An incident angle modifier accounts for deviations from a zero incident angle 

between the sun and the collector for experimental studies.  It is defined as the efficiency 

of the trough at any incident angle to the sun divided by the efficiency of a trough at zero 

incident angle to the sun. 

When a ray trace emitting source is set to emit photons (a ray), the ray is emitted 

within a defined solid angle (cone angle).  An apodized source means that the intensity of 

the energy leaving the source in a ray is non-uniform along the defined emitting cone 

angle.   
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1. INTRODUCTION 

Concentrating solar power (CSP) is a large field of interest in the renewable energy 

sector.  However, CSP has not yet become as economical as other renewable energy 

technologies.  A possible solution to this issue is the ability to produce efficient and cost-

effective solar collectors such as parabolic troughs, heliostats, and parabolic dishes.  

There are many different areas where costs can be reduced such as using cheaper 

materials, developing more efficient power cycles, designing better structures, reducing 

the control system cost, or improving the alignment of the mirrors.  The research 

presented here focuses on the area of mirror alignment.  Properly aligned mirrors produce 

more concentrated solar energy output thereby increasing the thermal efficiency in the 

entire system. 

Understanding the impacts of gravity loading on collectors can improve mirror 

aligning procedures.  Using the known gravity deformations in alignment procedures is 

known as biasing.  Biasing can lead to more accurate mirror alignment possibly resulting 

in more power output of solar collectors. The first goal of this research is to develop a 

cost-effective method to analyze gravity deformations in solar collectors.  The 

deformations are found from Finite Element Analysis (FEA) on a true scale model.  The 

second goal of this research is to study the optical performance of the solar collector after 

gravity deformation.  Ray tracing is used to fully analyze the optical performance of 

collectors.  Together the deformations and beam characterization lead to a useful, cost-

effective process to analyze solar collectors.  The process allows for design changes to be 

studied before making a costly prototype.  Usually, a prototype is built and then optical 
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analysis is performed through experiments.  In this study an LS-2 parabolic trough will 

be analyzed as an example for the procedure developed in this study. 

2. BACKGROUND 

Solar Collectors range in size and shape in order to concentrate sunlight onto a 

particular target.  Typical collectors are heliostats, parabolic troughs, and parabolic 

dishes.  The procedure being developed can be used for any of the geometries, but as an 

example a parabolic trough will be studied.  The LS-2 parabolic trough was designed and 

developed by LUZ Industries and is used at the Kramer Junction Solar Electric 

Generating System (SEGS) in Southern California.  This particular trough has a mirror 

aperture of 5 m and a focal length of 1.49 m.  A complete LS-2 parabolic trough consists 

of six trough modules with each module containing five columns of four mirrors.  The 

total length of a complete trough system is 49 m long [1].   

When considering the optics of a solar collector the focal length is often referenced.  

In a parabolic trough, the rays are all focused to a single focal length along the length of 

the trough.  This line is called the focal line.   A plane of curvature is also described and 

this is a cross-sectional plane of the parabolic trough.  Figure 1 represents the basic 

geometry of the parabolic trough collector.  A parabolic trough is a line-focus collector 

which means all of the solar energy is reflected to the focal line along the axis of the 

parabolic trough.  The only requirement for the incoming solar energy is that rays are 

parallel to the 'normal to aperture' of the collector when projected onto the plane of 

curvature.  This results in the solar energy being reflected to the focal line with accuracy.  

Figure 2 depicts the tracking required by the trough at different sun positions.  To achieve 

this, a parabolic trough requires one axis of rotation to track the sun throughout the day.  
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A torque tube is responsible for mirror rotation and rotates the entire trough collector in 

the same way to track the sun. A typical parabolic trough solar plant aligns the parabolic 

troughs in an East to West axis orientation or a North to South axis orientation depending 

on the location of the plant. 

 

Figure 1. Simple parabolic trough geometry diagram [2] 

 

Plane of Curvature 
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Figure 2. Parabolic trough with solar energy rays parallel to the normal to aperture 

of trough and reflecting to the focal line at different trough rotations to account for 

differing sun positions [2] 

 

A parabolic trough power plant combines many parabolic solar collectors in order to 

drive the electrical generation process.  The basic elements of a collector are the torque 

tube, mirrors, and heat collecting element (HCE).  The torque tube rotates the trough so 

that it properly tracks the sun throughout the day.  The mirrors reflect the solar energy 
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from the collector to the focal line of the trough.  The HCE is placed at the focal line of 

the trough and is responsible for absorbing the solar energy reflected from the collector.  

A heat transfer fluid (HTF) is pumped through the HCE and absorbs the solar energy 

incident on the HCE.  Figure 3 depicts how the parabolic troughs would be combined in 

an actual power plant to produce thermal energy for electricity production.  The trough 

rotates about the axis of the trough which runs along the length of the torque tube. 

 

 

Figure 3. Typical parabolic trough power plant setup [2] 

 

A single LS-2 module was located at the National Solar Thermal Test Facility 

(NSTTF) on a rotating platform that allows the collector to track the sun azimuthally, 

while the drive system of the module tracks the sun in elevation.  Two axis tracking is not 

required but very useful in experimental studies when specific trough orientations need to 
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be studied.  Figure 4 displays the LS-2 parabolic trough that was located at the NSTTF.  

Empirical data were collected from a similar trough for use at Sandia National 

Laboratories.   

 

Figure 4. LUZ LS-2 parabolic trough at the NSTTF [3] 

 

Parabolic troughs require accurate mirror alignment in order to maximize the solar 

energy output from the reflective surfaces onto the heat collection element (HCE).  

Therefore, it is necessary to determine accurate procedures and techniques to align the 

mirrors correctly and understand the impact of factors such as gravity on the techniques.  

Previous studies involving parabolic troughs used various innovative methods to 

determine the mirror angular displacements due to gravity.  Luepfert et al. [4] used digital 

photogrammetry to digitally survey the reflective surfaces of a trough mirror module 

which gives highly accurate three dimensional coordinate data of the surface.  This 

system required a high resolution camera and the procedure performed on a full scale 

model to properly evaluate the impacts of gravity deformation on the system.  This data 
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was then processed to analyze the effects of gravity sag on the mirror beam quality.  The 

slope deviations (slope errors) were determined from the coordinate data obtained from 

photogrammetry to evaluate the performance of the mirrors.  Ulmer et al. [5] created a 

technique that evaluates the surface slope errors of parabolic trough collection systems by 

utilizing a digital camera and image analysis.  Using the reflection of the HCE as a 

reference, a series of images are taken while rotating the trough, recording the appearance 

and disappearance of the HCE in the reflection.  A computer program then evaluates the 

images to find the HCE reflections and draws lines that represent the upper and lower 

edges of the HCE reflection in the mirrors.  The surface normals are calculated and yield 

the slope error angles as a consequence of gravity sag and manufacturing defects.  This 

method needs a full size trough and a high resolution camera.  

Diver and Moss [6] developed a technique (TOPCAT) to align parabolic trough 

mirrors using overlays of theoretical images of the HCE onto photographic images of the 

actual system to guide alignment.  In this method, the collector is oriented at 0° (facing 

horizontally).  Impacts of gravity sag on the mirrors and support structure in other 

orientations may affect the accuracy of this method.  It is beneficial to use known gravity 

deformations to bias the alignment procedure to account for gravity induced deflections.  

Gravity-induced bending and sag also affects characterization methods such as the 

Video Scanning Hartmann Optical Test (VSHOT).  This method measures the local slope 

error distribution of a mirror facet in a particular orientation [7],[8].  The process works 

by utilizing a laser ray-trace on the reflective surface and taking high speed images of the 

collector to describe the characteristics of the surface of the collector.  This method is 

quick, but again requires a full size prototype. 
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Lüpfert et al. [9] used a ray-tracing code and PARASCAN technology to evaluate the 

EUROTROUGH parabolic collector HCE intercept factor.  Measuring the experimental 

solar flux distribution on the HCE with PARASCAN resulted in flux maps which could 

then be used to calculate the experimental intercept factor.  Photogrammetry techniques 

were used to map the parabolic trough and then a ray-tracing code was utilized with these 

mapped models to evaluate the intercept factor of the system.  This procedure quantifies 

the intercept factor of a parabolic trough which is the amount of energy present on the 

HCE divided by the total amount of energy being reflected from the collector.  For an 

incident angle of 30° the PARASCAN and ray-tracing results were similar with intercept 

factor values of 0.964 and 0.965, respectively.  This method shows that a ray-tracing 

model can provide accurate numerical results of trough intercept factors, but the 

deformed trough model was a result of scanning a full size trough system. 

He et al. [10] utilized a Monte Carlo Ray Trace (MCRT) to evaluate the flux 

distribution on an LS-2 HCE.  This method employs random photon movements and, at 

each reflection or transmission, determines whether the photon strikes the HCE.  A mesh 

grid is created on the HCE to track the photon distribution along the tube.  This 

information was then imported into FLUENT to analyze the outlet temperature of the 

working fluid through the tube.  Using this method, the influence of geometric 

concentration ratios (GC) and different rim angles on the outlet temperature of the system 

were evaluated.  As GC increased the outlet temperature increased.  As the rim angle 

increased the heat flux on the tube decreased.  The ray-trace was successfully employed 

to evaluate the effect on system performance when including the entire heat transfer 

process.  In this process, intercept factors can be extrapolated from the heat transfer data.  



9 

 

However, this process fails to include any degradation to optical efficiency due to 

deformation of the collector surface. 

In summary, several investigations into the impact of gravity deformations on solar 

collector efficiency have been focused on analyzing full scale trough systems.  The need 

for a procedure to analyze gravity deformation impacts on the optical performance of 

design concepts before full scale prototypes is critical.  The work presented here is unique 

because it couples FEA and ray tracing before a full size prototype exists.  The coupling 

procedure can be used quickly and efficiently to evaluate many design concepts.  This has 

the opportunity to aid in the way solar collectors are designed.  This will result in cost-

savings during the design stage, while also providing valuable information about system 

deformations when alignment procedures are performed. 

The solar energy being emitted from the sun is a very important feature to the optical 

performance of all solar collectors.  When the sun emits energy, the rays do not emit in a 

collimated way.  In fact the sun shape causes rays to be emitted within a specific cone 

angle of ~0.55˚.  The cone angle emission causes a beam spreading when solar rays 

reflect off of the solar collector mirrors.  For example, a parabolic trough would reflect 

solar rays to a perfect focal line if the solar rays were exactly parallel to the normal to 

aperture of the collector.  However, the cone angle emission causes a beam spreading 

effect so a beam spread image appears on the HCE and not on a perfect focal line.  The 

solar energy being emitted within the cone angle does not have the same radiation 

intensity across the cone angle.  The rays in the middle of the cone angle are at highest 

intensity and then the intensity drops off towards the outer rim of the cone angle.  This 

effect is called sun limb-darkening.  Figure 5 graphically represents the effect of the sun 
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limb-darkening across the sun cone angle.  Further information on sun-limb darkening is 

available by Rabl [11]. 

 

Figure 5. Sun limb-darkening of Normalized Irradiance versus Cone Angle [Data 

from 11] 

 

3. THEORY 

The theory for the procedure being presented has two main analysis portions.  The 

first portion is running Finite Element Analysis on the solar collector structure.  Using 

FEA, the geometry is exposed to gravity loading and realistic structural boundary 

conditions.  The deformed geometry information can be used to provide slope error maps 

of the deformations which is critical in understanding optical performance of a system.  

Physically, the collector reflective surfaces distort under loading which is characterized as 

a slope error.  A slope error for this study is defined as the angular deviation of the 

surface normal vector of a finite element before and after loading.  The surface normal of 

a finite element is known before loading and the new surface normal of that same 

element can be determined after loading.  Thus, the slope errors of each finite element in 
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the system is determined and an accurate slope error characterization of the reflective 

surface can be shown.  The FEA provides deformed geometry which is then imported 

into a ray trace program.  A good reference for using FEA in mechanical engineering 

design is by Mottram and Shaw [12].  Mottram and Shaw describe the mathematics 

behind choosing types of mesh elements, logical simulation steps, and post-processing of 

information.  Other literature focused on structural analysis of solar collectors is provided 

by Moya et al. [13] and by Dunder [14].  These studies focus on the structure of 

collectors under various operating and loading conditions. 

The ray trace program applies the critical physical properties to the deformed 

collector surfaces.  The ray trace can provide accurate flux maps, ray trace statistics, and 

most importantly, determine beam quality due to gravity loading.  The surface slope 

errors and beam quality is known and from this information design changes can be 

employed to improve the optical performance of the solar collector.  An in depth ray 

tracing analysis description is provided by Welford and Winston [15].  They approach ray 

tracing in a solar energy context which is helpful for understanding this analysis.  An 

example of using optical equations to solve for optical performance of trough models is 

detailed by Eames et al. [16].  This model evaluates a two-dimensional analysis using 

numerical techniques to solve heat transfer and optical performance equations.  A study 

evaluating the finding of intercept factors for parabolic troughs is detailed by Kalogirou 

et al. [17].  Several different methods are compared here and can be referenced for a 

deeper understanding of other ways intercept factors are found. 
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4. SOFTWARE 

Two programs are involved in the procedure being developed within this study.  

SolidWorks is the chosen Computer Aided Drafting program (CAD) with its internal 

Simulation feature being used as the FEA program.  APEX is the ray tracing program 

used in this study.  ASAP is another ray tracing program which is well established and 

will be used to verify results from the APEX program. 

4.1 Solidworks and Solidworks Simulation 

SolidWorks is a well-known and respected Computer Aided Design (CAD) program.  

It has emerged as an industry leader.  It has a very strong presence in current engineering 

college programs which makes it a perfect software for the FEA and ray tracing coupling 

procedure presented here.  The reason for choosing this program is that it is intuitive to 

use, accurate, and most engineers have already been exposed to it.   

SolidWorks Simulation is the FEA program embedded within SolidWorks.  Having 

an embedded FEA program makes the transition from geometry to FEA analysis very 

simple.  The material properties assigned in the CAD program are retained simplifying 

the finite analysis procedure.  SolidWorks has done a good job in coupling the CAD 

features to the FEA features.  This FEA program has a high learning curve making it  a 

very suitable program to incorporate into this procedure for analyzing solar collectors. 

4.2 APEX 

APEX is a fairly new ray-tracing program available commercially today.  It is 

produced by Breault Industries which is a renowned company for optical modeling 

software.  It was chosen to be the ray tracing program for this analysis because it is also 
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embedded within SolidWorks.  This makes the use of the program very simple with a fast 

learning curve.  With most engineers already fluent with SolidWorks, this program can be 

easily learned.  The CAD geometry needed for ray tracing is available directly from 

SolidWorks and SolidWorks Simulation.  APEX is a suitable program for the ray tracing 

portion of this solar collector analysis. 

4.3 ASAP 

ASAP is a well-known ray tracing program developed by Breault Industries.  It has 

been used repeatedly by scientists and engineers for optical modeling projects.  This 

program is the "older brother" of APEX.  Results from APEX are validated against ASAP 

to verify that APEX is producing quality optical results. 

4.4 Microsoft Excel 

Microsoft Excel is a well known data analysis tool used by many engineers.  It has 

many capabilities and is used for post-processing the FEA and ray trace results.  Excel is 

capable of providing slope error characterization plots and makes analysis of the many 

data points very easy. 

4.5 MATLAB 

MATLAB is a mathematical analysis tool available to many engineers.  It has 

programming abilities which aid in the post-processing of data.  It is used in conjunction 

with Excel to quickly and accurately post-process data.  It is mainly used for 

manipulation of large matrices and also provides some slope error characterization plots.  

MATLAB was easier to use in terms of manipulation of plots.  The color scales and axes 

are easier to adjust compared to Excel. 
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5. PROCEDURE 

The procedure for analyzing solar collectors is composed of two main parts.  The first 

portion consists of creating the geometry of the collector and performing the FEA 

necessary to determine the gravity induced deformations on the system.  The second 

portion consists of importing the deformed geometry into the ray trace program and 

determining the optical performance of the gravity deformed collector. 

5.1 Finite Element Analysis 

The Finite Element Analysis is used to characterize the deformations of the solar 

collector reflecting surfaces.  A single LS-2 parabolic trough is used as an example of the 

procedure.  Initially, only a single mirror column is being demonstrated for procedure 

simplicity.  However, results for a full trough module will be shown in Section 6.  Note 

that this analysis has been developed so that it can be used for any solar collector. 

5.1.1 Finite Element Metrics and Terms 

A displacement is defined as the translation and rotation of an FEA element from 

its original location after loading.  This is reported in three dimensions using a standard 

length unit such as millimeter or inch.  The term deformation is also used to describe 

displacements. 

A slope error is defined as the angular deviation of the surface normal vector of a 

finite element before and after loading.  The surface normal of a finite element is known 

before loading and the new surface normal of that same element can be determined after 

loading.  A slope error is commonly used to describe the optical accuracy of a reflecting 

surface.  A perfectly reflecting surface wouldn't have any slope errors.  Slope errors occur 



15 

 

from loadings, but there are inherent mirror inaccuracies induced during manufacturing 

and assembly processes which also cause slope errors to be present. 

5.1.2 Geometry  

The dimensions of the modeled system are based upon measurements taken of the 

LS-2 module at the NSTTF.  The measurements of small features were recorded using a 

digital caliper (tolerance of 0.0254 mm), and large features were recorded using a 

measuring tape (tolerance of 2.54 mm).  All of the measurements of the trough had to be 

completed in person.  The geometry CAD drawings were not available for modeling 

purposes.  When modeling this caused some parts to not align correctly with their 

conjugate pieces.  Thus, some engineering judgment was used to get the CAD geometry 

to "fit" correctly.  SolidWorks requires parts to accurately match in order for the parts to 

be mated correctly, such as in the case of coincident features. 

The full collector system was modeled using two main assemblies. The first assembly 

will be the one be demonstrated for example of the procedure.  The second assembly 

includes the rest of the parabolic trough structure for which only results will be shown 

for.  The first assembly is composed of the mirror panels with the brackets and trusses 

attached to them.  The contoured mirrors for the parabolic trough were created using 

extruded parabolic sketches and mirroring symmetric parts.  The dimensions of each 

mirror in the assembly were approximately 1.57 m x 1.31 m for the two outer mirrors and 

1.57 m x 1.39 m for the two inner mirrors.  All mirrors have a thickness of 4 mm. There 

are two bracket types used for joining the mirrors to the support structure.  A hinged-pin 

bracket allows for the mirror to be aligned while a fixed bracket supports one end of each 

mirror.  A fixed bracket is rigidly attached to the mirrors.  The truss support structure is 
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composed of hollow rectangular tubing.  The brackets and truss support were given 

material properties of AISI 304 steel with the default material properties being included 

within SolidWorks.   

The assembly contains many different parts which are then mated together to form a 

single cohesive geometric system.  It is crucial to understand the mating types needed in 

the geometry in order to the system to behave correctly during the FEA portion of the 

analysis.  Coincident mates will bond surfaces together unless otherwise specified during 

analysis.  Concentric mates concentrically mate circular features together.  However, the 

concentric mating does not allow for rotation about the circular features during analysis.  

In order to have parts rotate during FEA, a mechanical hinge mate must be used.  This is 

required for this particular trough system as seen in Figure 6.  The mirrors are supported 

on the structure using two fixed brackets and two hinged brackets.  The hinged brackets 

allow the mirror to rotate around a pin so that the mirrors can be aligned to the line focus 

point required.  The hinged mate was used for mating the hinged brackets to the mirror 

support structure.  The first assembly will be the one be demonstrated for example of the 

procedure.  The second assembly includes the rest of the parabolic trough structure which 

has results presented in Section 6 of this report. 
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Figure 6: Parabolic trough truss to mirror brackets, Red brackets signify pin-joint 

brackets, Green brackets represent fixed brackets, (Left) Side View of Outer Mirror, 

(Right) Isometric View of Outer Mirror 

 

The second assembly is the main assembly for the full trough collector.  It includes 

the complete parabolic trough structure including the torque tube, mirrors, trusses, 

left/right ground supports, and heat collecting element with supports.  The first assembly 

is copied five times in this assembly to replicate the five mirror columns present on an 

actual trough module.  Each of the mirror columns is mated to a torque tube.  The torque 

tube is rotated to allow the trough to track the sun throughout the day.  The tube is a 

circular hollow tube with a quarter inch wall thickness.  The actual wall thickness was not 

known and could not be directly measured, but this thickness was deemed appropriate 

using engineering judgment.  The torque tube was attached at either end by a ground 

support which supports the entire trough.  It was attached using an "adapter" plate which 

connects the torque tube rigidly, but still allows for rotation about the end ground 

supports.  The supports are made from L-channel weldments for the cross supports and 

hollow rectangular tubes for the main support frame.  The heat collecting element (HCE) 

is composed of a glass envelope which surrounds a thermal absorber.  There is a vacuum 

gap between the glass envelope and absorber to prevent convective heat transfer. The 

Pin Joint Bracket 

Fixed Bracket 
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HCE is held up by simple V-shaped supports extending from the torque tube.   The final 

model is shown in Figure 2 when compared to the actual trough system.  The SolidWorks 

model has the ability to rotate about the torque tube axis.  This means the trough can be 

rotated to track the sun in elevation.   

      

Figure 7. (Top) Photograph of actual LS-2 trough [3]; (Bottom) SolidWorks
®
 model 

of LS-2 trough. 

 

5.1.3 Finite Element Analysis Setup 

The finite element simulations for an example of this procedure are focused on a 

single four-mirror column. Each column of mirrors on the LS-2 is attached separately to 

the torque tube.  Therefore, deflections caused by gravity-induced bending of the mirrors 

and support structure (trusses and brackets) in different orientations can be simulated 

independently for individual columns (i.e., bending of mirrors and supports in one 

column does not affect the bending of mirrors and supports in another column).  The 

single column of mirrors is simulated using finite element analysis in SolidWorks 

Simulation to obtain the deflections on the reflective surface of the mirrors. The single 

mirror column was subjected to gravity loading with restraints placed on the truss 

supports corresponding to the actual restraints.  The restraint was a fixed condition which 
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is accurate to having the truss support being rigidly fixed to the torque tube (Figure 8).  

The fixed restraint does not have any degrees of freedom especially since there is not a 

torque tube displacement. 

 

 

Figure 8. Fixed restraints placed on single mirror column for FEA simulation 

 

In this study, solid mesh elements were used to accurately portray the connections 

between the mirror and the truss structure.  A solid mirror allowed for easy attachment of 

the truss to the mirrors through the use of simple brackets and as a result the bonding 
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conditions were accurately portrayed during simulation.  An alternative study was 

performed utilizing shell elements on the mirror panels, but in some of the studies it was 

concluded that the bonding conditions were skewed and mesh continuity was problematic 

between the brackets and mirrors.  These conditions were providing abnormal results 

compared to the solid model at the boundary conditions of the brackets, therefore a 

purely solid element mirror module was utilized.  For solid meshing elements in 

SolidWorks, the elements are tetrahedral 3D solid elements for each component.  Each 

element is composed of 10-nodes which allows to for more accurate solution 

interpolations.  The following mesh settings were chosen to perform the FEA for this 

solar collector single mirror column: 

1. Global Element Size = 1.03968 in 

2. Mesh Controls (specified mesh element sizes for specific parts) 

a. Brackets = 0.3182 in 

b. Mirror Truss Supports = 0.636417 in 

c. Torque tube mounting plates = 0.39776 in 

The mesh controls are necessary because small parts cannot be meshed with the 

specified global element size.  A mesh control allows small parts to be meshed with a 

suitable element size.   

  The final mesh took less than five minutes to complete and the total simulation run 

time was around an hour for a very fine mesh.  A coarser mesh took under half an hour 

but provided less accurate displacement results.  A grid-independence study was 

performed to make sure that the solution from the FEA is not grid dependent.  The 

number of elements was recorded as the mesh is refined and then the corresponding 
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maximum displacement in the model was analyzed for each mesh refinement.  The 

appropriate mesh size was chosen after the maximum displacement in the model differed 

by less than 0.5% at least.  The chosen mesh element sizes were considered accurate once 

a grid-independence study was performed. 

The analysis was run in two main positions, each proven to be mesh independent.  

The first position is the 90° position (reflective surfaces facing upward) and the second 

position is the 0° position (reflective surfaces facing horizontally).  Figure 9 illustrates 

the mirror positions and mirror labels used in the simulations.  The trough column had an 

identical mesh for each position identified.  This guarantees that each position can be 

compared against each other without concern about mesh differences, i.e. the FEA 

elements are labeled the same such that the elements from each loading position can be 

directly compared.  Although the 0° position is shown rotated in Figure 9 and throughout 

the rest of this study, the global coordinates for each node are the same as those in the 90° 

position.  The FEA boundary conditions are rotated such that the proper orientation is 

achieved to study the effects due to gravity.  Each of the mirrors is assigned a number 

label such that each mirror can be uniquely identified during the analysis process.  The 

labels were arbitrarily chosen. 

The displacement induced by gravity in these two trough orientations are reasoned to 

produce the largest displacements in the mirrors.   In the 90˚ position, the mirrors would 

be "flattened" out by gravity.  In the 0˚ position, the mirrors would be "folding" in on 

themselves.  These effects will cause the greatest displacements in the mirrors due to 

gravity. Using these two positions a threshold approach to this problem setup is 

introduced.  It is reasoned that these two positions could cause the greatest decrease in 
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intercept factor and would be the best models to identify any degradation in optical 

performance.  Also, when designing structures it is useful to identify the largest 

displacements in the structure and  mitigate these.  In this procedure, a detailed map of 

the slope errors in the mirrors could provide valuable insight into the structural design of 

the system.  Thus, the maximum displacements due to gravity loading is seen as most 

useful in this problem setup. 
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Figure 9. (Top) 90° positioned trough model with labeled mirrors, (Bottom) 0° 

positioned trough model with labeled mirrors. 

 

The mirrors had direct interactions with the truss support system through a series of 

brackets causing specific boundary conditions to be placed on the model in order to get 

accurate simulation results.  Two of the four brackets which connect each mirror to the 

truss are fixed to the mirror and truss which is provided in SolidWorks by a simple 

Gravity 

Gravity 

5 m 

1.6 m 
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bonded connection provided from the coincident mate between the components.  The 

coincident mate is automatically considered as global contact between components when 

the model is imported into SolidWorks Simulation.  The other two brackets are hinged on 

the mirror through a pin support system so that the mirror is free to rotate about these 

pins.  In order for Simulation to recognize these pinned boundary conditions between the 

mirrors and truss, a special mate had to be applied to the bracket/mirror component 

interactions.  A hinge mate allows for the mirror to rotate about the pin support and 

allows the realistic movement of the system to be simulated in the FEA.  The entire 

model is required to be fixed using a fixed geometry restraint to allow the simulation to 

have a point of reference.  Fixed geometry boundary conditions were applied to the 

surface on the truss-to-torque tube mounts where the torque tube is normally attached.  

These boundary conditions allow the model to be stabilized and proper analysis to be 

performed.  

The only load in this analysis is gravity.  In the 90° position, gravity is normal to the 

center of the trough center line.  For the 0° position, the gravity vector was simply rotated 

from the 90° trough position by 90° rather than changing the orientation of the actual 

geometry.  Gravity is set to a value of 9.81 m/s
2
, but the direction changes according to 

the model.  In the 0° position, gravity was -9.81 m/s
2
 in the Y-direction.  In the 90° 

position, gravity was 9.81 m/s
2
 in the X-direction.  The coordinate system was chosen 

such that the Z-axis runs parallel to the torque tube axis for the mirror column.   
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5.1.4 Finite Element Analysis Results 

The results discussed in what follows were taken directly from SolidWorks.  The 

displacement figures are exaggerated so that the deformations can be easily seen.  The 

original mirror location is transparent on the displacement figures for reference. 

Figure 10 illustrates the displacements of the mirrors during gravity loading in the 90° 

position.  The maximum displacement occurs on the edges of the outer mirrors with a 

value of ~0.9 mm.  As can be seen, mirrors 1 and 4 open outward from the center of the 

trough when compared to the original shape, which can be seen as a transparent image in 

Figure 10.  Figure 10 has a deformation exaggeration scale of 200 applied to it so that the 

displacements can be visualized (which is why the trusses appear to come through the 

deformed mirrors).  The trusses are much more rigid than the mirror structures given the 

appearance that they did not deform much, but they deform a slight amount under gravity 

loading.  The truss displacement results are not shown explicitly here because the mirror 

displacements are key to the procedure, but will be shown in Section 6 for the full trough 

module. 
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Figure 10. 90° position displacements after gravity loading with transparent original 

shape (exaggeration scale = 200). 

 

Figure 11 displays the mirror displacements in the 0° position.  The maximum 

displacement occurs along the edges of the outer mirrors with a value of ~0.7 mm.  The 

top of the trough bends downward toward the center of the trough, while the bottom 

mirror tilts downward as well.  Figure 11 has a deformation exaggeration scale of 200 

(which is why the trusses appear to come through the deformed mirrors). 

The support structure for the mirrors (trusses and brackets) contributed to the overall 

displacements of the mirrors.  The amount of displacement caused by bending of the 

support structure ranged from ~1.5-4.0 times the displacements caused by individual 

mirror deformations alone, depending on the mirror positions.  In the 90° position, 

mirrors 2 and 3 experienced about a 1.5x increase of deformation due to the supports.  
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Mirrors 1 and 4 experienced a 4x increase in deformation.  In the 0° position, mirrors 2 

and 3 exhibited about a 2x increase in deformation while mirrors 1 and 4 showed about a 

3.5x increase. 

 

 

Figure 11. 0° position displacements after gravity loading with transparent original 

shape (exaggeration scale = 200). 

 

5.1.5 Slope Errors 

Although only two positions of the mirrors were analyzed, there were three slope-

error studies performed.  The first case explored the gravity-induced displacements and 

resulting slope errors of the mirror column positioned at 90° relative to its undeformed 

shape at 90°. The second case examined similar displacements and slope errors in the 0° 
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position.  The third case examined the slope errors resulting from the deformed shape in 

the 0° position relative to the deformed shape in the 90° position.     

To determine the slope error distribution of each mirror on the single trough column, 

the following procedure was followed.  The first step was to record the nodal positions of 

the reflective surfaces based on the undeformed shape of the model.  Each node is 

specified by x, y, and z coordinates, and these values are recorded for the top reflective 

surface of the mirrors.  After simulating the gravity-induced bending of the mirrors and 

support structure, the nodal coordinates and displacements from their original position are 

recorded and imported into a Microsoft Excel spreadsheet for each individual mirror.   

The nodal coordinates and displacements of the deformed and undeformed shapes are 

used to calculate unit vectors for adjacent nodes, and these vectors are used to determine 

rotations (slope errors) about the z-axis, which is parallel to the HCE tube, as follows.  

First, two vectors were identified between adjacent nodes on the model.  The first vector 

is composed of two coordinates from two adjacent nodes on the undeformed shape’s 

reflective surface. The second vector is composed of the displaced coordinates (after 

deformation) of the same two nodes as used for the first vector.  These two vectors 

intersect each other and the Θ between the two intersecting vectors is the angular 

displacement.  Figure 12 describes the process. 

The second step is to translate the second vector (created from the deformed shape’s 

nodes) so that its first point is coincident with the first point of the first vector 

(undeformed shape’s nodal vector).  This also translates the second point of the deformed 

shape’s vector.  Figure 12 describes the process. 
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Figure 12. Finding the slope errors from the FEA, Steps 1 and 2 in finding the slope 

errors 

 

The final step is to determine the angle, Θ, between the two vectors.  The dot product 

is used to find the angle according to the formula: A • B = |A|*|B|*cosΘ,  A/|A| is the unit 

vector of the first vector (undeformed shape) and B/|B| is the unit vector of the second 

vector (deformed shape).  The direction of the angular rotation can be determined from 

the cross product of the two vectors found above.  Only rotation about the z-axis was 

considered.  If the z-component of the cross product was negative (into the page in Figure 

9), then that local section of the mirror rotated clockwise.  If the z-component of the cross 

product was positive (out of the page in Figure 9), then that local section of the mirror 
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rotated counter-clockwise.  These signs were then applied to the corresponding slope 

error values.   

The inputs required for finding the slope errors are taken from Simulation.  The first 

required input are the coordinates of the surface element nodes before deformation 

occurs.  Each mirror surface was probed in SolidWorks.  The probing gives the node 

coordinates of each surface element before gravity deformation.  The second required 

input is the coordinates of the displaced nodes.  Unfortunately, SolidWorks does not 

provide a simple way to extract the displaced nodal coordinates of the mirrors.  However, 

SolidWorks does provide the displacements in the X, Y, and Z directions.  The 

displacements in these coordinate directions were extracted and then added to the original 

nodal coordinates.   

The coordinates were imported into the slope error calculator created within 

Microsoft Excel.  Custom Visual Basic macros were written to automate the functions 

required to calculate the slope errors.  MATLAB was used as a supplemental tool to 

quickly generate the slope error plots representing the slope error distributions of the 

mirrors. 

Table 1, Table 2, and Table 3 contain the statistical values of the slope error data that 

were found for each case.  Slope error values are plotted in Figure 13, Figure 14, and 

Figure 15 with the values assigned a color depending on its magnitude.  Figure 13 and 

Figure 14 of the slope error figures have a color bar that range from +3 mrad to -3 mrad, 

with red denoting a positive (counterclockwise) rotation and blue denoting a negative 

(clockwise) rotation about the z-axis (parallel to the HCE tube).  Figure 15 has a color bar 

ranging from +3.5 mrad to -3.5 mrad.  It should be noted that in order for the plots to be 
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created, only every third value was plotted.  This method allowed the plot to be generated 

and manipulated efficiently while still giving an accurate visual representation of the 

slope errors.   

Table 1. 90° position slope error statistical values of all elements present on each 

mirror surface 

All Units in Milli-radians (mrad)   

  Mirror1 Mirror2 Mirror3 Mirror4 

Max 1.852 2.002 2.133 1.651 

Min 0.000 0.001 0.000 0.000 

Average 0.668 0.840 0.878 0.668 

Median 0.636 0.749 0.806 0.649 

St. Dev. 0.409 0.472 0.475 0.391 

 

The slope error values for the 90° position indicate that the maximum absolute slope 

error is found in mirror 3 which is about 2.133 mrad.  Mirror 3 has the highest average 

absolute slope error of 0.878 mrad. 

Figure 13 illustrates the slope errors for the 90° position trough. The slope errors are 

relatively consistent with intuition.  As expected, when the trough reflective surfaces are 

in the 90° position, the trough is expected to open up with the mirrors rotating away from 

the trough center.  Mirror 1 has red at its far left edge indicating that the slope error is 

positive and, therefore, rotated in the counterclockwise direction.  Mirror 4 has blue at its 

far right edge indicating the rotation about the z-axis is in the clockwise direction. The 

magnitude of the slope error values are nearly symmetrical for opposing mirrors (i.e., 

Mirror 1/Mirror 4 and Mirror 2/Mirror 3).  The reason they are not identical is due most 

likely to un-identical mesh element patterns applied to each mirror.  This is hard to 

control in SolidWorks since most of the meshing operations are automatic.  A differing 

mesh pattern will result in slightly different results for the opposing mirrors.  However, 

the average slope errors and standard deviations are are near identical. 
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Figure 13. Simulated slope errors (angular rotation about the z-axis parallel to the 

HCE tube) for the 90° vs. undeformed case.  Positive values indicate 

counterclockwise rotation, and negative values indicate clockwise rotation. 

Table 2 displays the slope error values when the trough was in the 0° position.  The 

slope error values for the 0° position indicate that the maximum absolute slope error is 

found in mirror 1 and 4 with a value of 2.377 mrad.  Mirror 1 has the highest average 

absolute slope error of 0.914 mrad.  

Table 2. 0° position slope error statistical values of all elements present on each 

mirror surface 

All Units in Milli-radians (mrad)  

 Mirror1 Mirror2 Mirror3 Mirror4 

Max 2.377 2.003 1.982 2.377 

Min 0.000 0.000 0.000 0.000 

Average 0.914 0.464 0.461 0.900 

Median 0.947 0.214 0.218 0.933 

St. Dev. 0.588 0.586 0.572 0.581 

 

Gravity 
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Figure 14 illustrates the slope errors for the 0° position.  The figure is oriented the 

same as in Figure 13 for easy comparison, but the actual configuration would have the 

column of mirrors rotated clockwise by 90°.  At mirrors 1 and 4, the slope errors along 

the outer edges are negative, indicating that the ends are rotating clockwise (sagging 

downward) due to gravity-induced bending.  The middle mirrors (2 and 3) have much 

lower slope errors.  

  

 

Figure 14. Simulated slope errors (angular rotation about the z-axis parallel to the 

HCE tube) for the 0° vs. undeformed case.    Positive values indicate 

counterclockwise rotation, and negative values indicate clockwise rotation. 

Table 3 displays the slope error values resulting from a comparison of the deformed 

trough in the 0° position relative to the deformed trough in the 90° position.  In other 

words, the slope errors (angular rotations) of mirror elements are calculated when the 

trough is rotated from the 90° position (facing upward) to the 0° position (facing 

horizontal), where gravity is included in both positions.  The slope error values for the 

Gravity 
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90° position versus 0° position indicate that the maximum absolute slope error is found in 

mirror 3 at 3.344 mrad.  The highest absolute average slope error is found in Mirror 1 at 

1.304 mrad.  These results indicate that a rotation of the trough from 90° to 0° can yield 

effective slope errors on the order of 1 mrad due to gravity bending when considering the 

slope errors in both positions. 

 

Table 3. 90° versus 0° position slope error statistical values of all elements present on 

each mirror surface 

All Units in Milli-radians (mrad)   

  Mirror1 Mirror2 Mirror3 Mirror4 

Max 3.237 1.922 3.344 2.594 

Min 0.000 0.000 0.000 0.000 

Average 1.304 0.773 1.260 0.818 

Median 1.222 0.753 1.110 0.468 

St. Dev. 0.785 0.437 0.848 0.743 

 

Figure 15 illustrates the slope errors of the 90° versus 0° positions.  At the edge of 

mirror 1, the slope errors are negative (clockwise rotation).  This is consistent when 

analyzing the 90° and 0° positioned mirrors. When the trough is rotated 90° clockwise 

from the face-up position, mirror 1 will rotate clockwise.  Initially, in the 90° position, 

mirror 1 is sagging outward from the center (see Figure 4).  After rotating it to the 0° 

position, mirror 1 sags downward toward the center of the mirror (see Figure 5).  The 

result is a large clockwise rotation along the outer edge of mirror 1.  For mirror 4, the 

gravity induces a sag outward from the center in both the 90° and 0° positions.  Thus, the 

rotation (slope error) of mirror 4 is less than mirror 1.  Parts of the two inner mirrors (2 

and 3) also show fairly significant slope errors as a result of the trough rotation. 
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Figure 15.Simulated slope errors (angular rotation about the z-axis parallel to the 

HCE tube) for the 90° vs. 0° case.    Positive values indicate counterclockwise 

rotation, and negative values indicate clockwise rotation. 
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Figure 16. Schematic indicating the slope error rotations caused by rotating the 

trough column from the 90 degree position to the 0 degree position, arrows indicate 

clockwise or counterclockwise dominant rotations about the z-axis 

 

Diver et al. [6] noted that during testing TOPCAT Alignment mirror alignment 

techniques on the SEGS LS-2 at the NSTTF, slope errors of 2 mrad could be detected.  

The study performed had the trough in the 90° position and this observation can be 

directly related to the 90° position study done by FEA in this study.  As can be seen in 

Table 1, the maximum slope errors calculated in the model were 2.133 mrad which is 

close to those observed by Diver.  Wendelin [7] performed slope error analysis on a 

Solargenix trough module using VSHOT characterization techniques and determined that 

maximum slope errors could peak at about 5 mrad, but from the slope error plot it 

appears as if the nominal slope error value for this system is about +/- 3 mrad.  The +/- 3 

mrad range closely corresponds to the slope error findings using FEA analysis even 

though the trough module studied by Wendelin was not exactly identical to the LS-2. 
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Ulmer et al. [5] study of a EuroTrough four mirror module using reflection method 

resulted in large maximum slope errors at very select spots on the model.  However, 

generally the facets produced high slope errors of about +/- 4 mrad in all four mirrors.  

The slope error plot shows that many spots of the mirrors have slope errors of +/- 2 mrad.  

The FEA analysis provided slope errors of +/- 2 mrad and lower which corresponds to the 

Ulmer study.   

5.1.6 Finite Element Analysis Conclusions 

Finite-element modeling was performed on the LS-2 parabolic trough solar collector 

in order to determine the effects of gravity sag on the mirror facets.  The displacements 

were calculated for each mirror and then analyzed resulting in a distribution of slope 

errors along the mirror.  The slope errors resulting from gravity-induced bending of the 

mirrors and support structure were as high as ~2 mrad, depending on the location of the 

mirror facet on the collector.  The slope errors resulting from a change in orientation of 

the trough from the 90° position to the 0° position with gravity were as high as ~3 mrad, 

depending on the location of the facet. 

These results indicate that gravity-induced bending of the mirrors and support 

structure can have a significant impact on the optical quality of the collector.  

Characterization and alignment methods that measure the optical quality of collectors in a 

particular position (e.g., 0°) need to consider these effects to ensure accurate 

characterization and alignment when the collector is positioned in other orientations. The 

results of these simulated deformations and slope errors will be used in a ray-tracing code 

to determine the impact of gravity loading on HCE intercept factors in future work.  
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Unfortunately, actual displacement measurements were unable to be taken due to 

disassembly of the trough at the NSTTF.  However, other studies have shown that 

SolidWorks Simulation analysis can provide results close to experimental data.  Moya et 

al. [13] performed an analysis between a heliostat empirical displacement data and FEA 

with accurate results.  This gives confidence that the modeling approach for the trough 

would yield similar results to empirical trough data if any were available. 

5.2 Ray Tracing Analysis 

5.2.1 Ray Trace Analysis Metrics and Terms 

For a parabolic trough the intercept factor is the main optical performance metric.  

An intercept factor is the ratio of actually energy on the heat collecting absorbing element 

to the total energy reflecting from the collector surface.  A perfectly reflecting solar 

collector without deformations will result in an intercept factor of 1 since all of the 

energy reflecting from the collector surface will impact the HCE absorbing element.  

Other collector systems such as heliostats rely on flux maps and beam shape to quantify 

optical performance.  These metrics are easily found using plane targets during ray 

tracing.   

An incident angle is the angle between the normal of the collecting surface to the 

aperture and the incoming solar rays.  This angle is used to evaluate solar collector 

performance when tracking the sun throughout the day.  It is expected that a larger 

incident angle results in more energy missing the HCE resulting in a lower intercept 

factor. 

An incident angle modifier accounts for deviations from a zero incident angle 

between the sun and the collector for experimental studies.  It is defined as the efficiency 
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of the trough at any incident angle to the sun divided by the efficiency of a trough at zero 

incident angle to the sun. 

When a source is set to emit photons (a ray), the photon is emitted within a 

defined solid angle (cone angle).  An apodized source means that the intensity of the 

energy leaving the source in a ray is non-uniform along the defined emitting cone angle.   

5.2.2 General Ray Trace Information 

The finite-element models were used to determine the impact of gravity loads on 

displacements and rotations of the facet surfaces, resulting in slope error distributions 

across the reflective surfaces.  The geometry of the LUZ LS-2 parabolic trough collector 

was modeled in SolidWorks, and the effects of gravity on the reflective surfaces are 

analyzed using SolidWorks Simulation.  The ideal mirror shape, along with the 90° and 

0° positions (with gravity deformation) were evaluated for the LS-2.  The ray-tracing 

programs APEX and ASAP are used to assess the impact of gravity deformations on 

optical performance.  A comprehensive study is performed for the parabolic trough to 

evaluate a random slope error threshold (i.e., induced by manufacturing errors and 

assembly processes) above which additional slope errors caused by gravity sag decrease 

the intercept factor of the system.  The optical performance of the deformed shape of the 

collector (in both positions) is analyzed by first modeling the ideal collector without 

deformation. This provides the study with a control since the optical performance is as 

good as possible for the undeformed model.  Next, the deformed collector model is 

analyzed in the ray trace.  Finally, additional induced slope errors ranging from zero up to 

1° (17.44 mrad) are applied to the solar collector surface (undeformed and deformed 

models) to evaluate the degradation in optical performance.  The ray trace results for the 
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deformed models are compared to the undeformed model to evaluate when induced slope 

errors due to gravity loading impact optical performance for each collector orientation. 

This is further referred to as a threshold approach.  Another ray trace analysis can be used 

to identify the intercept factor for different solar incident angles.  The intercept factors are 

found from ray-tracing and then compared to empirical data to demonstrate if the 

simulations provide consistent answers with experimental data. 

5.2.3 Ray Trace Analysis Setup 

The FEA produced deformed geometry, which could then be saved and imported into 

a ray-tracing model as shown in Figure 19.  A ray trace model needs three essential 

objects for solar collecting systems.  The first is the emitting source which is the sun for 

solar applications.  The second is the actual collecting system.  The structure for the 

reflecting surfaces does not need to be included if it does not interfere with the reflection 

of solar radiation to a target.  The third object is the target.  The target is where rays are 

terminated (fully absorbed if they reach the target) and this object is where ray trace 

optical performance statistics are commonly extracted from.  For a parabolic trough the 

target is the HCE which is composed of the glass envelope and absorbing element.  In 

general, a ray trace procedure acts as follows: 

1) The rays are emitted into the model from the emitting source. 

2) The rays travel in their respective directions until they are either reflected, 

transmitted, or absorbed by the objects in the system. 

a) If absorbed then the ray is terminated on the absorbing object. 

b) If reflected, the ray continues in the ray trace until it is absorbed.   
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c) If transmitted, the ray continues to be traced in the system until it is reflected 

or absorbed. 

3) The ray trace is complete when all of the rays in the system are terminated.  A ray 

is either terminated when it is absorbing by an object in the system or if it leaves 

the system as a "missed" ray meaning it failed to be absorbed by any object. 

For solar models, a custom “sun” object has to be created within each ray-tracing 

program above the solar collector.  In ASAP, a rectangular object was created and then set 

to emit rays.  The rays were set to have a half-angle emission from the sun source of 4.8 

mrad (0.275°) with the sun apodization applied over that half-angle.  This setting 

properly applies the sun limb-darkening (apodization) to the model.  The sun source is 

easily modified to not include the apodization effect by simply removing it from the 

program script.  In APEX, a similar rectangular object is created and set to emit rays.  

The rays are emitted normal from a surface and then pass through a Lambertian “scatter 

model” which forces the rays to be emitted with the same cone angle as the ASAP case, 

shown in Figure 17.  A Lambertian model scatters rays in every direction with the same 

magnitude.  When applied with the sun cone angle this approximates the sun most 

appropriately when limb-darkening is not included. This sun-source does not have the 

ability to be apodized to resemble the true sun cone-angle intensity.   A sensitivity study 

in ASAP was run to evaluate the effect of not including limb-darkening.  The comparison 

showed that the absolute intercept factor was reduced by one percentage point leading to 

the conclusion that the APEX sun model would be a valid tool to show that the modeling 

methodology presented here can be used to achieve fairly accurate results.   
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Figure 17. Sectional view of APEX emitting sun source, rays being emitted from top 

surface, then scattered randomly into the 0.55˚ cone angle 

 

The ray-trace simulations used a deterministic modeling approach meaning that the 

same results are achieved for every ray trace when identical parameters are used.  A 

Monte Carlo method is available in APEX, but was not feasible for this study due to the 

modeling approach taken to simulate a sun source.  The APEX scatter model is a 

Lambertian model limited by a small scatter cone angle of ~0.55° which limits the 

transmission of rays through the surface unless a very large number of rays are traced.  

There is a small probability that the rays are scattered through the surface in the small 

cone angle required by the sun model resulting in most of the rays being absorbed by the 

scattering surface.  This is an artifact of using the Lambertian surface and how the 

internal Monte Carlo algorithm works.  APEX help states that for deterministic modeling, 

the number of scattered rays need only be one if the scattering angle is less than 5.7°.  

This particular model is deemed to be accurate since the number of scattered rays is set to 

ten and the cone angle is only ~0.55°.   

Top of Sun Source, 

Rays emitting normal 

from this surface 

Scatter Model cone 

angle through which 

rays are scattered after 

being emitted 

Bottom of Sun Source, 

Scatter Model applied 

on this surface 
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The sun emitting source was made to move to its estimated position in the sky 

according to the day of the year, latitude, and the hour relative to solar noon [18].  The 

parabolic trough is aligned longitudinally along the north-south axis (+Z direction is 

north, +X is west) and made to track the sun.  The sun's azimuth angle is negative when 

in the east and positive when in the west.  The sun's elevation angle is always positive 

with 90˚ being the sun directly overhead.   

 

Figure 18. Sun direction schematic, α is the elevation angle, ϒ is the azimuth angle, 

and θ is the incident angle 

 

In both APEX and ASAP, specific boundary conditions (surface coatings, part 

material) needed to be applied to each surface of the imported FEA geometry to achieve 

an accurate ray-trace of each model.    
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An emitting surface is applied to the top of the sun object (rectangular volume in 

APEX) with 1 million rays emitted towards the collector with a prescribed direct normal 

irradiance (DNI) of 1000 W/m
2
 with a constant ray wavelength of 550 nm.  The sun 

source initially emits 100,000 rays which pass through the sun scattering surface (bottom 

of sun object) causing the rays to scatter within the sun cone angle specified.  Each ray is 

split into 10 rays that pass onto the rest of the model from the scattering surface.  Each of 

those ten rays are restricted to the Lambertian scatter model such that each ray has the 

same magnitude independent of the direction it is scattered within the sun cone angle. 

 Also applied to the sun source, is a simple coating designed to kill the parent rays 

and only allow their children rays to pass on to the rest of the model.  The reason for 

killing the parent ray is to generate a reasonable distribution of rays upon the trough from 

the scattering surface without the influence of the initial parent rays.  This better 

represents a sun source by forcing the parent ray to be distributed into the sun cone angle.  

The medium of the sun source was set to “air” to allow the rays to pass with near 100% 

transmissivity through the simulated source.  The sun source size is arbitrary as long as it 

is sufficiently large to generate enough rays to strike all parts of the model. 

 The parabolic trough HCE is made to extend well past the collector in both the 

north and south directions to make sure that there are no end losses in this model.  It is 

located at a focal length of 1.49 m from the collector.  The HCE tube is composed of two 

components, the outer glass envelope and the  absorbing element.  The outer envelope is 

made of Schott N-BK7 glass medium with refractive index of 1.5168 which is a 

borosilicate type glass.  The medium allows for ray distortion as they pass through the 

envelope.  Total internal reflection is also possible and, if a ray encounters this 
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phenomenon, it will eventually terminate within the glass envelope counting as a missed 

ray.  The outer diameter of the glass envelope is 115 mm and has a thickness of 3 mm.  

Additional anti-reflective (AR) coatings were applied to the outer and inner surfaces of 

the envelope which had 3% reflectivity and 97% transmissivity based upon Sol-Gel AR 

coating experimental values [19].  It should be noted that these values are not precisely 

known for the actual parabolic trough tube.  The anti-reflecting coating does not have an 

explicit thickness applied because it is assumed that the coating strictly behaves as a 

single layer of quarter-wave coating. The 3% absorption value is dependent on the 

incoming incident angle of the solar rays.  Higher incident angles have more reflection 

than transmission.  However, the AR coating is supposed to help reduce absorption with 

increasing incident angle.  The transmissivity coefficients are directly dependent on the 

incident angle of the incoming rays and the refractive index of the media.  The ray 

wavelength is constant throughout the study.  Anti-reflective coatings are designed based 

on the concept of dielectric reflection which is explained explicitly by Stine and Harrigan 

[2].  The absorbing element is made to be perfectly absorbing with a diameter of 70 mm.  

100% absorptive causes all rays to terminate at the HCE.  This gives accurate intercept 

factor results when considering only the number of rays hitting the HCE.  However, any 

heat transfer results in the system would be skewed due to reflection losses not being 

accounted for.  This parabolic trough tube simulates the Schott PTR-70 receiver model 

except for the perfect absorption. 

The collector geometry for the ray trace is composed of the four mirror surfaces 

of the LS-2 since the truss system does not impact the ray-trace analysis.  The non-

relevant parts in the ray trace were suppressed from the deformed model.  The mirrors are 
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set to be perfectly reflecting for this analysis to compare the performance characteristics 

of the trough mirrors for each model.  If wanted, the mirrors can also be set to absorb a 

certain amount of the incoming radiation, but this fraction would be small.  This 

condition is used in conjunction with surface roughness models to simulate ray scattering 

when reflected from the mirror surfaces.  The roughness models act as an additional RMS 

slope error on the mirror surfaces caused by manufacturing defects or cleanliness.  The 

roughness models are added to the models in increments to evaluate at which point 

gravity induced slope errors contribute to degradation in optical performance.  These 

coatings are custom created scatter models which are utilized to simulate a roughened 

surface.  However, due to a current APEX bug, it is not possible to set the slope error to 

exactly 5 mrad or 10 mrad.  Due to the number of significant values acceptable, a slope 

error of 5.23 mrad (0.3°), 10.47 mrad (0.6°), and 17.44 mrad (1°) are chosen for each 

custom roughness coating value.  Ray trace studies not previously mentioned were 

performed by adding additional lower RMS slope error values to the mirror surfaces.  

These values were similar to the slope error results observed by Ulmer [5] of about ~4 

mrad. The initial results showed that gravity induced slope errors in these cases did not 

contribute significantly to decreased intercept factors between the ideal and deformed 

models.  Therefore, a simulation scheme using higher RMS slope error values was 

established to try and determine if there was an error threshold above which additional 

gravity induced slope errors would impact the intercept factor significantly.  The 

decreased intercept factor threshold can be directly determined by comparing the ideally 

shaped model intercept factors to the gravity deformed trough model results.  If the 

intercept factors differ between the ideal and deformed models then it is a result due to 
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the gravity-induced slope errors in the deformed system.  Although unrealistic, using the 

higher RMS slope error values gives a good range of comparison for the ray-trace 

models. 

 

 

Figure 19. Ray-Tracing model; sun-source, HCE with envelope, and collector 

5.2.4 Ray Trace Analysis 

5.2.4..1 Intercept Factor Threshold Analysis  

The optical performance of the parabolic trough is quantified using the intercept factor of 

the system.  The intercept factor was calculated as shown in Equation 1.  This equation 

provides a calculation of the intercept factor for the system including all possible rays 

which missed the HCE.   Although the equation is simplified here, the numerator consists 

of the several objects in the model for which the ray trace results can be extracted from.  

These objects are the HCE components and the collector. 

     
                                             

                                        
                             (1) 

Sun Source 

Collector 

HCE 

Emitted Rays 
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where I.F. is the intercept factor. 

In the ray-tracing models there are inherent difficulties in obtaining an accurate 

intercept factor.  When the sun emits rays, some of the rays hit the HCE directly without 

touching the collector.  This provides inaccurate results because the intercept factor 

should only include the rays that reflect from the collector and strike the absorbing 

element.  Therefore, the rays hitting the HCE directly were subtracted from the intercept 

factor calculation.  These rays are found by setting the collector reflecting surfaces to a 

perfectly absorbing material and then running the ray trace.  At this point, any rays that 

strike the HCE are directly from the sun and this number can be subtracted from further 

ray trace studies when rays are being reflected to the HCE from the collector. 

To determine if gravity-induced deflections have a significant impact on intercept 

factors, a ray trace study was done which compares three collector models: ideal shaped 

mirrors (undeformed model), 0° position deformed mirrors, and 90° position deformed 

mirrors.  Each trough model had four cases evaluating different additional roughness 

values on the collector reflective surfaces for two different incident angles.  The 

roughness cases include additional slope errors on the mirrors of 0 mrad, 5.23 mrad, 

10.47 mrad, and 17.44 mrad.  In total, there are 24 cases being evaluated. 

Each model was also evaluated in two positions while tracking the sun at solar 

incident angles of 44.22° (9am) and 58.32° (solar noon) on December 21 (day 355 of an 

average year).  The latitude for the model used was for Daggett, CA (34.867°N).  Figure 

20 displays the ray-trace for the 44.22° sun incident angle while viewing perpendicular to 

the north-south axis.  These incident angles were chosen arbitrarily, but are thought to 

give a good comparison for the impacts on intercept factors when the incident angles vary 
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significantly.  In addition to modeling the worst-case deformation positions, these angles 

provide a clear comparison of the effects of gravity deformations on trough optical 

performance when the sun is not normal to the surface. 

In summary, each model was evaluated with eight ray-tracing scenarios (4 for each 

incident angle) in order to evaluate a random slope error threshold (i.e., induced by 

manufacturing errors, assembly processes, or cleanliness) above which additional slope 

errors caused by gravity sag decrease the intercept factor of the system.  Figure 21 

displays some representative ray-trace figures of HCE ray intercepts.  This particular case 

is for the ideal shaped mirrors with 0, 5.23, 10.47, and 17.44 mrad applied at an incident 

angle of 58.32°.  Most of the ray-trace figures look visually similar.  Figure 22 and Figure 

23 display a typical view of the parabolic trough with sun incident angles of 58.32° and 

44.22°, respectively.  Note the difference in distance that the rays travel from the collector 

to the HCE with increasing incident angle in the figures.  Some of the rays are striking 

the tube directly from the sun source and these appear as hitting the top of the tube in the 

figure. These rays are subtracted from the final intercept factor values since they do not 

contribute to the intercept factor considering only the reflected rays from the collector to 

the HCE. It can be visually verified from this figure that there are no end losses 

considered in any of the cases. 

Several ray-traces were performed in ASAP mimicking the optical properties set in 

APEX.  This analysis found that APEX was performing the ray-tracing accurately.  When 

compared, the results from each program were near identical. 
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Figure 20. Perpendicular to North-South axis view of LS-2 trough at a 44.22° 

incident angle on Day 355 
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Figure 21. 58.32° incident angle HCE intercept figures for the undeformed trough, 

(From top-left clockwise) 0 mrad, 5.23 mrad RMS, 10.47 mrad RMS, and 17.44 

mrad RMS applied; any rays not hitting the HCE are terminated on the last 

contacted surface; vertical lines coming from the top of each figure are rays directly 

from the sun; every 1000 of 1 million rays displayed 

 

Figure 22. 58.32° incident angle ray-trace model for ideal shaped mirrors, tracing 

every 1000 ray; viewing west 
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Figure 23.  44.22° incident angle ray-trace model for ideal shaped mirrors, tracing 

every 1000 ray; rotated west view to visualize ray path 

 

Figure 24 and Figure 25 show the decreasing trends in intercept factors when 

additional slope errors are added to the reflective surfaces.  The trends are nearly identical 

Table 4 and Table 5 display the intercept factor percent differences of the 0° and 90° 

positioned deformed models when compared to the ideally shaped mirrors at solar 

incident angles of 44.22° and 58.32°.  As the additional slope errors are applied to the 

mirror surfaces, the intercept factor percent differences between the ideal and deformed 

models are less than 1% and in most cases less than 0.5% leading to the conclusion that 

gravity-induced deflections in the mirrors are not significantly impacting the intercept 

factors of the LS-2 collector based on the FEA performed on this particular trough model.  

The ideal mirror intercept factors are close to the deformed model intercept factors. A 

threshold was not reached where gravity-induce slope errors caused the deformed 

model’s intercept factors to deviate significantly from the ideal case.   
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Figure 24. Intercept factors with increasing additional slope errors present on the 

reflective surfaces for the incident angle of 44.22˚ for the deformed models and ideal 

model 

 

Figure 25. Intercept factors with increasing additional slope errors present on the 

reflective surfaces for the incident angle of 58.32˚ for the deformed models and ideal 

model 
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Table 4. Intercept factor percent differences for Ideal vs. 0° deformed model 

 

Solar incident angle: 

44.22° 

Solar incident angle: 

58.32° 

No additional slope errors  0.04% 0.07% 

5.23 mrad RMS additional slope 

error 0.06% 0.09% 

10.47 mrad RMS additional slope 

error 0.32% 0.64% 

17.44 mrad RMS additional slope 

error 0.07% 0.70% 

 

Table 5. Intercept factor percent differences for Ideal vs. 90° deformed model 

 

Solar incident angle: 

44.22° 

Solar incident angle: 

58.32° 

No additional slope errors  0.08% 0.05% 

5.23 mrad RMS additional slope 

error 0.17% 0.10% 

10.47 mrad RMS additional slope 

error 0.13% 0.03% 

17.44 mrad RMS additional slope 

error 0.28% 0.04% 

 

Some of the trends are counter intuitive for the percent differences between the 

deformed models and ideal model at different solar incident angles.  The rays have a 

shorter distance to travel from the mirrors to the HCE as the solar incident angle 

increases, as can be verified from Figure 22 and Figure 23.  In geometric terms, the rays 

reflect off the mirror surfaces (influenced by gravity induced slope errors and additional 

roughened surface slope errors) at a certain angle.  Depending on the solar incident angle, 

the distance the rays travel from the reflective surfaces to the HCE can be significant.  

Rays reflected with significantly distorted angles can miss the HCE completely 
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depending on the distance they have to travel before they hit the HCE.  The 0° model was 

influenced by the longer ray travel distance.  At a solar incident angle of 44.22°, the slope 

errors do not impact the reflected ray angles enough to cause the rays to miss the HCE.  

However, at a solar incident angle of 58.32°, the reflected ray angles cause more rays to 

miss the HCE due to the longer travel distance.  

The trend is opposite for the 90° position case.  At a solar incident angle of 

44.22°, the intercept factor differences are higher than at a solar incident angle of 58.32°.  

Some of the reflected rays do not impact the HCE with a shorter distance to travel.  

However, the longer distance allows the reflected ray angles to strike the HCE. The 

longer distance aids the reflected rays in a positive way.  It is reasoned that the gravity 

displacements in the 90° deformed model actually aid in increasing the intercept factor. 

These effects are still mitigated by the fact that the intercept factors are not 

significantly impacted by deformations when compared to the ideal shaped mirror as can 

be seen by the very low percent differences. 

5.2.4..2 Intercept Factor Incident Angle Dependence 

Experimental intercept factor studies were performed on the LS-2 trough by Dudley 

et al. [1] which lend a valid comparison to the ray-trace studies. The performance 

degradation of the trough was evaluated as the solar beam incident angle changed.  

Dudley utilizes thermal measurements to determine the intercept factors of the HCE 

based on solar incident angle.  In the study, cold water is used as the heat-transfer fluid 

and operation  is at ambient air temperatures leading to low thermal losses.  Although the 

true optical efficiency can only be measured if thermal losses were zero,  this approach 

provides a good approximation for the trough intercept factors since the operating system 
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was kept as close to ambient temperature as possible.  The ray-trace analysis provides a 

way to estimate the RMS slope error on the experimental collector mirrors by comparing 

the simulated and empirical results.  However, the ray-trace does not include any losses 

from the HCE which could cause minor differences between the experimental and 

simulated results. 

The experimental studies resulted in Figure 26, detailing the calculated intercept 

factor of the system.  The calculation required to achieve a comparable intercept factor to 

the ray-trace results is seen in Equation 2. 

 

           
                       

                              
                                    

 

where I.F.'Data is the normalized intercept factor relative to the intercept factor at a zero 

incident angle for the empirical results.  The incident angle modifier (K) is found from 

substituting the solar beam incident angle into the respective equations shown in Figure 

26. 

Since the gravity-induced deflections in the model were discovered to not severely 

impact intercept factors for the deformed FEA model in this analysis, only the ideal 

shaped trough model was used for comparison to the experimental results.  Four days 

were evaluated at solar incident angles relative to solar noon.  The days were March 21 

(day 80), June 21 (day 172), September 23 (day 266), and December 21 (day 355) which 

correspond to solar incident angles of 35.27°, 11.43°, 35.88°, 58.32°, respectively.  March 

21 and September 23 has close to the same incident angles, but this is to show that close 

incident angles perform in a similar way as a check for the ray trace simulation.  If the 
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intercept factors for the close incident angles don't perform as expected then this gives 

clear reason that something is not correct in the simulations.  The days chosen were the 

equinoxes and solstices.  The three cases for the ideal model were additional RMS slope 

errors of 0 mrad, 5.23 mrad, and 10.47 mrad applied to the reflective surfaces.  It is 

assumed in the ray-trace simulations that the HCE is ideally located, however in reality 

the HCE sags when in different orientations.  However, as a first estimate, the 

comparison of simulation results to experimental results should still be fairly close and a 

more detailed FEA could be applied to account for this sagging effect in future studies.   

In the ray-trace, the intercept factor for a particular incident angle needs to be 

modified in order to compare to the empirical data intercept factor, shown in Equation 3.   

               
                     

                          
                                           

where I.F.'ray_trace is the normalized intercept factor relative to the intercept factor at a zero 

incident angle for the ray-trace results. 

 Figure 29 and Figure 30 show the cross-sectional view of the HCE with rays 

striking the HCE reflecting from the collector with increasing solar incident angles.  The 

number of rays striking the HCE decrease with increasing solar incident angle.  It should 

be noted that the error bars result from an error analysis performed for this study.  It is 

determined that the error is +/- 1.88% for the incident angle modifier in the experimental 

data [1]. 



58 

 

 

 

Figure 26. Incident angle modifier for LS-2 receiver [1] 

Figure 27 and Figure 28 show the ray-trace simulations for solar incident angles of 

35.27° and 11.43°, respectively.   
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Figure 27. Day 80 (Spring Equinox) ray-trace simulation for comparison to 

empirical data 

 

Figure 28. Day 172 (Summer Solstice) ray-trace simulation for comparison to 

empirical data 
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Figure 29. Increasing incident angle and the influence on HCE intercept figures for 

the undeformed trough with 0 mrad additional RMS slope errors applied to 

reflective surfaces, (From top-left clockwise) 11.43˚, 35.27˚, 58.32˚, and 35.88; any 

rays not hitting the HCE are terminated on the last contacted surface; vertical lines 

coming from the top of each figure are rays directly from the sun; every 1000 of 1 

million rays displayed 

11.43˚ 

58.32˚ 35.88˚ 

35.27˚ 
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Figure 30. Increasing incident angle and the influence on HCE intercept figures for 

the undeformed trough with 5.23 mrad additional RMS slope errors applied to 

reflective surfaces, (From top-left clockwise) 11.43˚, 35.27˚, 58.32˚, and 35.88; any 

rays not hitting the HCE are terminated on the last contacted surface; vertical lines 

coming from the top of each figure are rays directly from the sun; every 1000 of 1 

million rays displayed 

 

The ray-trace simulation results are presented in Table 6, Table 7, and Table 8.  These 

three tables compare the ray-trace intercept factors with the empirical data intercept 

factors at the different solar incident angles (θ).  A negative percent difference indicates 

that the ray-trace intercept factor is below the empirical data result.  A positive value 

means the ray-trace intercept factor was estimated above the empirical data result.   

 

11.43˚ 

58.32˚ 35.88˚ 

35.27˚ 
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Table 6. Ideal LS-2 shape intercept factor with empirical data percent difference 

Θ (°) Empirical Intercept Factor Ray-Trace Intercept Factor Percent Difference 

35.27 0.968 0.930 -3.96% 

11.43 0.990 0.937 -5.50% 

35.88 0.963 0.930 -3.48% 

58.32 0.762 0.860 12.12% 

   

Table 7. Ideal LS-2 shape with 5.23 mrad additional RMS slope error intercept 

factor with empirical data percent difference 

Θ (°) Empirical Intercept Factor Ray-Trace Intercept Factor Percent Difference 

35.27 0.968 0.913 -5.82% 

11.43 0.990 0.934 -5.78% 

35.88 0.963 0.911 -5.49% 

58.32 0.762 0.791 3.74% 

 

Table 8. Ideal LS-2 shape with 10.47 mrad additional RMS slope error intercept 

factor with empirical data percent difference 

Θ (°) Empirical Intercept Factor Ray-Trace Intercept Factor Percent Difference 

35.27 0.968 0.870 -10.67% 

11.43 0.990 0.901 -9.32% 

35.88 0.963 0.867 -10.44% 

58.32 0.762 0.728 -4.59% 

 

It is clearly seen that the intercept factors differ significantly from the simulations and 

empirical results.  This gives reason that the single trough mirror column cannot 

accurately be used as an optical performance indicator for an entire trough module.  The 

full trough module would need to be modeled which is described in Section 6.2 of this 

report.    
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Another reason for the large percent differences in intercept factors for the empirical 

data and ray-trace results is likely caused by unknown reflectivity values for the 

experimental LS-2 glass envelope.  It was known that an anti-reflective (AR) coating was 

applied to the glass envelope, most likely Sol-Gel coating, but the reflectivity was 

assumed to be 3%.  This value was most likely lower in the experimental setup causing 

the intercept factor for the trough to be higher in the empirical data.  Dudley et al. [1] 

performed a study evaluating the impact of the glass envelope on the intercept factors.  

They found that removing the glass envelope did not have an impact on the trough 

intercept factor.  This supports the conclusion that the values reported by Pettit et al. [10] 

were higher than the value of the AR coating on the experimental glass envelope.  A few 

simulations were run with a perfectly transmitting glass envelope and 0 mrad additional 

slope errors on the ideal LS-2 model.  This led to intercept factors as high as 0.99 for the 

ideal case.  This shows the reflectivity of the envelope is critical in predicting the 

intercept factors of the system along with finding an accurate representation of the 

additional RMS slope errors due to defects and cleanliness.  

5.2.5 Ray Trace Analysis Conclusions 

A procedure is developed to evaluate the optical properties of solar collector systems.  

Ray-trace simulations were performed on the LS-2 parabolic trough utilizing FEA results.  

A comprehensive analysis was performed for the parabolic trough to evaluate a random 

slope error threshold above which gravity-induced deflections decrease the optical 

performance of the trough system.  The intercept factor for an ideal mirror shape and 

deformed shapes due to gravity in the 0° position and 90° position were found using ray-

trace measurements.  These positions were chosen based on the assumption that they 
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provide the greatest deformed trough surfaces.  The deformed models were used as inputs 

in a ray trace.  The ray trace simulations were composed of different emitting solar 

incident angles and varying additional RMS slope error values applied to the reflective 

surfaces.  As the additional errors are applied to the deformed models, it is reasoned that 

when compared to an ideal model with the same additional errors applied, any difference 

in intercept factor will be attributed to gravity-induced deformations.  Thus, a threshold 

approach is created to evaluate the effects of gravity deformation on trough optical 

performance.   

The 0° positioned deformed model resulted in the highest percent differences when 

compared to the ideal shaped mirrors of ~0.3% at a solar incident angle of 44.22° and 

~0.7% at 58.32°.  The 90° positioned trough intercept factor differences were slightly 

lower than the 0° case.  This result shows that the single mirror column's optical 

performance is not affected by gravity induced displacements in the mirrors.  If the single 

mirror column were a whole collector system, then this system is designed structural 

sound so that gravity does not impact the optical performance.  However, the single 

mirror column was used as a procedural example of how FEA and ray tracing can be 

combined to evaluate the optical performance of a collector.  The conclusion that gravity 

does not impact the optical performance of a single mirror column may not be the case 

for the full size trough module.  The full size trough module is evaluated in Section 6.2 of 

this report.  

A performance degradation study of the LS-2 system was evaluated for varying solar 

incident angles.  Empirical data was compared to ray-tracing results to evaluate the 

plausible additional RMS slope error present on the experimental LS-2 trough at the 
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NSTTF.  The intercept factors for the empirical and ray-trace results differed significantly 

leading to the conclusion that a single trough mirror column can not accurately be used as 

an optical performance indicator for a full trough module.  Another difference for large 

intercept factor differences is most likely attributed to a higher AR value being applied to 

the glass envelope in the ray-trace simulations.  However, with further work to evaluate 

the true reflectivity value of the glass envelope surrounding the HCE and using more 

realistic additional RMS slope errors on the simulated mirrors, a better ray-trace result 

can be achieved and compared directly to the experimental results.  

6. OTHER ANALYSES 

6.1 Further Use of Slope Error Analysis 

SkyFuel, a parabolic trough company, requested the slope error procedure be 

performed on one of their parabolic trough designs.  According to www.skyfuel.com, 

"The SkyTrough is SkyFuel's high-performance parabolic trough solar concentrator for 

use in utility-grade solar-thermal power plants for generating electricity or for industrial 

process heat applications" [20].  This trough differs from other designs because it utilizes 

a unique reflective mirror surface called ReflecTech Mirror Film. The mirror film is 

applied to an aluminum sheet that acts like traditional parabolic trough mirror structures. 

The slope error analysis was performed and the results were given to SkyFuel so they 

could evaluate their system design.  Unfortunately, explicit detail cannot be provided here 

due to proprietary issues.  The ray-trace portion of this analysis was not yet fully 

developed during the SkyFuel analysis so it was not applied to this system. 
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6.2 Full LS-2 Parabolic Trough Module 

Although the single mirror columns of the LS-2 trough are independent of each other, 

the effect of a displacing torque tube may further affect the trough displacements due to 

gravity.  The sag of the HCE will also be simulated in order to allow for a more accurate 

comparison between the numerical and empirical results.  As a result, the optical 

performance will be compared to experimental results presented by Dudley [1]. 

6.2.1 FEA Displacements 

The full parabolic trough was subjected to gravity loading in the 0˚ and 90˚ 

positions.  The mesh for the FEA has the same settings as for the single mirror column 

except for an extra mesh control to account for the glass envelope on the HCE.  An 

element size of 0.8391 in was applied to this part.  The full trough had 1,203,269 

elements.  A grid convergence study was performed to make sure this mesh provided 

accurate and consistent displacement results.  The boundary conditions for the FEA are 

shown in Figure 31.  The green arrows note the fixed boundary condition while the red 

arrow indicates the gravity loading vector. 

 

Figure 31. 90˚ position full LS-2 parabolic trough module with FEA 
restraints and loading.  Red arrow indicates gravity loading.  Green arrows 
indicate fixed restraints. 
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After running preliminary analysis, it was determined that the 90˚ position 

provided the most interesting results in terms of gravity induced slope errors.  This 

position degraded the optical performance of the system more than the ideal parabolic 

shape collector.  An initial ray trace was performed on the deformed and ideal models to 

see if there were differences in the optical performances of the system when additional 

slope errors were added to the reflective surfaces.  This particular ray trace used a solar 

incident angle of 35.27˚.  The HCE glass envelope was excluded from the full trough 

model because the specifications of the glass envelope are not precisely known and were 

shown to significantly impact the intercept factor of the system described in Section 5.  

However, the empirical results provide values for optical performance without the glass 

envelope so there is still valid empirical data to compare the numerical data to.  Table 9 

shows the same threshold approach as described in Section 5, but for the full trough 

module.  The 0˚ positioned deformed model and the 90˚ positioned deformed model were 

compared to the ideal shaped parabolic trough with 0 mrad, 5 mrad, and 10 mrad of 

additional slope errors applied to the reflective surfaces of the models.  The results show 

that the ideal and 90˚ deformed models differ significantly in terms of intercept factors.  

The 0˚ deformed model differed slightly from the ideal shape.  These are significant 

results since the single trough module described in Section 5 showed that gravity induced 

deformations did not contribute to the degradation of optical performance in a single 

mirror column.  The results presented here show that in the full trough system gravity sag 

plays an important role in the optical performance of the system.   



68 

 

Table 9: Intercept factors for Ideal and Deformed parabolic trough models with 

additional slope errors applied to the reflective surfaces,  Solar incident angle of 

35.27˚ 

  

Ideal Shape of Parabolic 

Trough Intercept Factor 

90˚ Deformed 

Trough Intercept 

Factor 

0˚ Deformed Trough 

Intercept Factor 

0 mrad 0.996 0.996 0.996 

5 mrad 0.919 0.769 0.901 

10 mrad 0.686 0.582 0.669 

 

  The preliminary ray trace showed that the most interesting position for trough 

deformation and optical degradation is in the 90˚ position.  Thus, from this point forward 

in the analysis only the 90˚ position will be analyzed.  Another reason that this deformed 

model is being considered over the 0˚ position for the full ray trace analysis is that during 

the empirical testing, it is known that the trough was positioned facing the sun during the 

most sunny times during the day for testing.  The test dates for incident angle tests were 

roughly August through September which correspond to sun elevation angles of 73˚-

51.3˚(days 213-273 respectively).  These elevation angles correspond to the trough being 

positioned facing more upward toward the sky rather than towards the horizontal which 

the 90˚ position represents.  It is reasoned that the deformations incurred at the 90˚ 

position would be the worst gravity induced deformations in the system thus provide a 

worst-case scenario analysis, but still can be roughly compared to the empirical results 

for model validation purposes. 

 The 90˚ position displacement plots from SolidWorks Simulation are shown in 

Figure 32, Figure 33, and Figure 34.  It can be seen that the trough displacements are 

quarter-symmetric about the torque tube axis and down the center of the middle mirror 

column axis.  The displacements indicate an opening clam-shell effect where the mirror 

columns displace outward away from the torque tube causing the mirror columns to 
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"open up".  Figure 35 shows the displacements in the trusses and torque tubes for the full 

size model.  They are relatively lower than those present in the mirrors. 

 

Figure 32: 90˚ deformed parabolic trough looking lengthwise along the collector, 

Exaggeration Scale of 20 
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Figure 33: 90˚ deformed parabolic trough looking at a near top-down angle, 

Exaggeration Scale of 20 

 

Figure 34: 90˚ deformed parabolic trough looking perpendicular to the HCE and 

Torque Tube, Exaggeration Scale of 20 
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Figure 35. 90˚ deformed parabolic trough trusses and torque tube displacement 

plots for full trough module, (Top) View normal to Z-axis, (Bottom) View normal to 

X-axis, Exaggeration scale of 20, Block arrow indicates gravity load direction 

The interesting portion of the FEA analysis are the induced slope errors caused by 

gravity loading.  Six mirrors are evaluated for the surface slope errors.  These six mirrors 

are representative of the entire trough module because of the symmetric nature of the 

displacements whilst in this position.  Figure 36 gives a map detailing the labeling of the 

mirrors for the slope error analysis. 
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Figure 36: Full parabolic trough labeling map corresponding the mirrors evaluated 

in the slope error analysis 

Table 10 describes the significant statistics of the slope errors on the mirrors.  The 

maximum slope error and the largest average slope errors appear in Mirror 4.  Mirror 1 

and Mirror 4 are the mirrors on mirror column 1 of the trough indicating that being so 

close to the ground supports causes these mirrors to have large slope errors.  These slope 

errors are lower than those presented by Ulmer [5] and Wendelin [7] which the nominal 

slope errors reported are ~3 mrad.  However, the simulation slope errors only include 

gravity deformation which indicate that the nominal slope errors for the trough ranging 

from 0.5-1.4 mrad are reasonable when compared to actual trough studies.  An important 

factor to remember is that the mirrors have slope errors due to manufacturing, assembly, 

and cleanliness. Additional slope errors will  be applied in the ray tracing analysis to 

account for these additional factors. 

1 

4 5 6 

3 2 

Column 1 Column 2 Column 3 Column 4 Column 5 



73 

 

Table 10: Reflective surface slope errors of the full parabolic trough under gravity 

loading in the 90˚ position 

  Mirror 1 Mirror 2 Mirror 3 Mirror 4 Mirror 5 Mirror 6 

Max 6.182 4.740 5.629 7.124 4.985 5.746 

Average 1.111 0.746 0.458 1.377 0.997 0.528 

Median 0.777 0.546 0.374 0.885 0.761 0.463 

St. Dev. 1.057 0.715 0.393 1.259 0.835 0.380 

 

6.2.2 Ray Trace Results 

Ray trace modeling was used to predict degradation of the optical performance for 

the parabolic trough at increasing solar incident angles.  The 90˚ deformed model was 

used as the basis for the ray trace analysis.  Several days were simulated which give 

characteristic solar incident angles which can be used to compare to the empirical data 

presented by Dudley [1] for the parabolic trough.  As mentioned previously, the glass 

envelope was excluded from this analysis due to uncertain anti-reflective coating values, 

but there is empirical data which excludes the glass envelope also.   

With increasing incident angles, degradation in optical performance is 

unavoidable.  This is mainly due to cosine foreshortening of the parabolic trough.  During 

the parabolic trough testing, the end losses in the trough are reported to be eliminated 

from the efficiency experiment.  At incident angles other than 0˚, there is some portion of 

the receiver that does not have any incident solar energy.  The receiver is thus shortened 

by this amount when the efficiency calculations were evaluated.  The incident angle 

modifier, which is used to calculate intercept factors, is calculated by dividing the 

efficiency calculated at any incident angle by the efficiency calculated at a zero incident 

angle.  Thus, end losses are accounted for in the experiment by shortening the length of 

the HCE in the efficiency calculations. The intercept factors are based on a heat transfer 
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analysis which proves difficult to compare directly to a ray trace analysis because of 

thermal losses.  The experiment used cold water as the heat transfer fluid and was 

operated close to the ambient temperature to avoid thermal losses.  Also, the focal length 

and collector reflective area is different in the experiment.  The focal length, rim angle, 

and collector reflective area for the experiment are 1.84 m, 70˚, and 39.2 m
2
, respectively.   

The focal length, rim angle, and collector reflective area for the simulation are 1.49 m, 

80˚, and 42.65 m
2
, respectively.   

The empirical data is adjusted to account for end losses by modifying the 

efficiency equations of the trough based on a focal length of 1.84 m.  However, in the 

simulations, the focal length is 1.49 m which means the simulations need to be adjusted 

to more closely match the experimental data.  The experimental data is over corrected for 

when compared to the smaller focal length simulation trough.  This geometric difference 

will cause differences in the intercept factors.  The difference in focal length efficiency 

corrections is shown in Figure 37.   

 

Figure 37. Schematic indicating differences in focal length efficiency calculation 

corrections between the experimental trough and simulation trough, θ is the 

incident angle, 1.84 m is the experimental focal length, 1.49 m is the simulation focal 

length 
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In the simulations, to account for differences from the experimental setup, the 

HCE length is adjusted to different lengths to get a representative HCE length 

corresponding to the experiments.  Adjusting the HCE length will essentially calibrate the 

ray trace simulations for direct comparison to the experimental data.  The adjustment 

accounts for the focal length end loss correction difference between the experiment and 

simulations.  If this is done, the simulation data falls matches closely with the 

experimental intercept factor data.  Four different HCE lengths are evaluated in this study 

to provide a range of possible HCE lengths. 

During the ray trace, several different HCE lengths were chosen to simulate the 

optical performance seen during the tests.  The first length is only the length of the 

trough.  The second length is with a 4 inch HCE extension added to the ends of the 

parabolic trough length HCE.  This is the actual size of the experimental HCE.  The third 

length is with a 30 inch HCE extension added to the ends of the parabolic trough length 

HCE.  Finally, the fourth length is a very long extension added to the ends of the HCE 

which effectively acts as an infinite length HCE and is a conservative estimate.  The 

infinite length HCE is expected to give better optical results since the end losses are 

absorbed completely. 

As can be seen if Figure 38, there are six ray trace simulations and the empirical 

data curve for intercept factors for increasing solar incident angle.  The infinite length 

HCE provides very good optical performance with high intercept factors even with solar 

incident angles up to 58.32°.  Even with additional slope errors added to the reflective 

surfaces, the intercept factors do not match well with the empirical data. The ray trace 

simulations with an HCE the same length as the parabolic trough have the same trend as 
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the empirical data.  However, the values for the intercept factors are well below the 

empirical intercept factors, even for the small incident angle of 11.43°.  The study with an 

HCE extended 4 inch past the length of the trough provides similar results as the trough 

length HCE, but the intercept factors are slightly higher.  The 4 inch extended HCE 

would be the correct ray trace to use if utilizing this data specifically for design purposes.  

Finally, when running an analysis with an HCE 30 inches longer than the trough 

collector, the simulation data is close to the empirical data.  This trough HCE length 

calibrates the ray trace simulations to what is being seen in the experiments. 

The percent differences between the simulation with a 30 inch extended HCE and 

experiment range from 0.03% to 2.5% (Table 11).  It is noted that the experimental data 

incident angle modifiers used for empirical intercept factor calculations have an 

estimated error of +/- 1.88%.  An estimation of the additional RMS slope errors actually 

present on the experimental trough, based on the ray trace simulations, could range from 

~2 mrad to ~4 mrad.  Any value above 4 mrad would degrade the optical performance too 

much and any value below 2 mrad is physically unreasonable.  It is believed that 

additional slope errors present on the mirrors for the experimental setup due to reasons 

other than gravity sag are closer to 2-2.5 mrad based on ray trace results.   

Table 11. Intercept factor percent differences between empirical data and trough 

simulation with 30 inch extended HCE, 2 mrad additional RMS slope errors on 

mirrors 

Incident Angle (˚) Percent difference 

11.43 0.77% 

35.27 2.54% 

48.65 0.03% 

58.32 2.28% 
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Figure 39 and Figure 40 are representative ray traces at two solar incident angles 

corresponding to days 172 and 355 of a normal year.  They are for 2 mrad additional 

slope error on the 90˚ deformed model with a 30 in extension on the HCE.  As can be 

seen, the HCE extension has little effect for the smaller solar incident angle, but when the 

incident angle is large the HCE length is important for end loss considerations. 

 

 

 

Figure 38: Empirical Intercept Factors compared to Ray Trace Simulation Intercept 

factors for 90˚ positioned deformed trough 
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Figure 39: 90 degree deformed model with 2 mrad additional RMS slope errors on 

the reflective surfaces for 11.43˚ incident angle (Day 172), 30 in. extension on HCE 
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Figure 40: 90 degree deformed model with 2 mrad additional RMS slope errors on 

the reflective surfaces for 35.27˚ incident angle (Day 355), 30 in. extension on HCE 

 

6.2.3 Full Trough Module Conclusion 

The full LS-2 parabolic trough was run through FEA and ray tracing to estimate 

the amount of slope error present in the reflective surfaces.  The glass envelope was 

excluded due to data being available for the envelope exclusion during the experiment.  

Different HCE lengths were evaluated to provide an estimate to which calibrates the 

simulations to the experimental data well.   

The slope errors due to gravity are on average 0.5-1.4 mrad for the mirrors.  When 

including additional RMS slope errors of 2 mrad on the mirrors and an HCE which 

extends 30 inches beyond the length of the parabolic trough, the intercept factors are 
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close to experimental data.  An estimate of ~2-4 mrad of additional slope errors are 

present on the experimental trough mirrors based on the ray tracing results for the full 

trough module.  Combining FEA and ray tracing gives a way to predict optical 

performance of a parabolic trough. 

The gravity induced slope errors can be evaluated from a structural standpoint and 

the trough structure can be adjusted to counter-act the gravity induced errors.  The ray 

tracing can predict the new structure optical performance and thus an iteration process 

can aid in designing the structure until a final design is acceptable.  This process reduces 

the number of required prototypes and reduces design costs. 

7. CONCLUSION 

A procedure which couples FEA and ray tracing to predict optical performance of 

solar collectors has been described and demonstrated.  The process can be used for any 

solar collector and predict optical performance of the collector.  This research 

demonstrated the procedure for a simple single mirror column of an LS-2 trough.  The 

intercept factor results suggest that gravity induced deformations do not affect optical 

performance when the deformed models were compared to the ideal (undeformed) model.  

The intercept factors from empirical data for a full trough module were not accurately 

compared to the single mirror column.  This result showed that the single mirror column 

cannot act as an optical performance indicator for a full trough module. To fully validate 

the procedure, a full LS-2 trough module was simulated. 

The full LS-2 trough module was modeled and compared to the empirical data 

available.  The maximum slope errors present on the reflective surfaces ranged from 

~4.7-7.1 mrad while the average slope errors were ~0.4-1.4 mrad.  These average slope 
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errors are less than reported by other studies, [4], [5], [6] and [7], but are thought to be 

reasonable considering that those studies include slope errors from other sources such as 

manufacturing defects and assembly procedures.  Comparing to the other studies 

indicates that the additional RMS slope errors on the mirrors could range from ~2-4 

mrad.   

The deformed models were used as inputs in ray tracing simulations and compared to 

an ideal (undeformed) model.  Additional RMS slope errors were added to the reflective 

surfaces of the models to evaluate whether gravity induced slope errors contribute to 

degradation in optical performance with a solar incident angle of 35.27˚.   The intercept 

factors showed that gravity induced deformations contribute to degradation in optical 

performance especially with higher additional RMS slope errors present on the mirrors.  

The final step in the analysis of the full trough module was comparing the optical results 

from the simulation directly to the empirical data available.  After calibrating the ray 

trace simulations to match the experimental setup,  it was determined that the ray trace 

simulations are similar to the empirical results.  The maximum percent difference in 

intercept factors was ~2.5% and the minimum percent difference was ~0.03%.  The 

ability for the simulations to resemble empirical data  shows that the procedure of 

coupling FEA and ray tracing provides results that can be used in the collector design 

process.   

In terms of design, the LS-2 trough module has low average slope errors across the 

reflective surfaces due to gravity loading.  It appears that additional RMS slope errors on 

the mirror surfaces could range from ~2-4 mrad.  This result indicates that if the 

manufactured mirrors have reduced slope errors, then the optical performance of the 
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trough would increase.  The LS-2 could be modified structurally to add additional support 

to the mirrors to reduce gravity induced slope errors, but this would increase the weight 

and cost of the trough.  The slope errors and displacements discovered by FEA could help 

alignment procedures for this particular trough which could increase optical performance 

of the system. 

Beam shape, intercept factor, and flux maps can also be generated using the 

procedure presented in order to predict how a structure behaves under gravity loading.  

The results can be used to make design changes before prototypes are developed.  One 

particular use of the procedure to aid in design processes was utilized by SkyFuel, which 

requested that the slope error analysis be performed.  This procedure can be useful for 

designing structures and improvement of optical performance of the system.  Using this 

procedure can result in significant cost savings by adjusting the design before production. 

Additional simulation factors could be further studied to improve the procedure 

presented throughout this research.  All of the additional slope errors were uniform across 

the mirrors of the trough.  Each mirror could have more or less additional slope errors 

present than its neighboring mirrors.  This could impact intercept factors.  The ray traces 

could be analyzed further to predict and study some heat transfer values such as 

absorptivity of the mirrors and HCE.  The glass envelope could further be included in the 

ray trace to study the specific refractive effectives it has on rays reaching the absorbing 

tube of the HCE for the full trough module.  This future work could lead to 

improvements for this procedure which could further enhance the design process of solar 

collector systems. 
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8. RECOMMENDATION OF FUTURE WORK 

The future of concentrated solar power technologies is promising.  There is a large 

push for development of these technologies in order to compete directly with fossil fuel 

electricity production.  The current SunShot initiative is to achieve a level zed cost of 

electricity (LCOE) of $0.06/kWh by 2020 for parabolic trough and power tower 

technologies [21].  Current trough estimated LCOE in 2015 is for $0.194/kWh and power 

towers are estimated at $0.144/kWh in 2015 [21].  Many CSP technology goals are 

outlined in the DOE initiative and can be further studied in the SunShot report by DOE's 

Energy Efficiency and Renewable Energy department [21].   

The current push by DOE has directly influenced the concentrated solar energy 

research around the country by encouraging scientists and engineers to create new ideas 

or renovate existing technologies to meet the very ambitious SunShot cost goal.  The 

research presented in this work can be used in any of the concentrated solar collector 

technologies to evaluate new designs with quick iterations to initially predict optical 

performance.  However, it seems that power tower technologies using heliostats and high 

temperature receivers are the best option for the CSP industry.  New heliostat designs 

which reduce cost of the collector are starting to emerge.  Predicting the optical 

performance of these designs are critical in power plant design.  Initial power tower 

plants using heliostats are being constructed today with a main one being Ivanpah by 

Bright Source [22].  Some heliostats are being placed up to 1 mile away from the focal 

target which has the possibility of reduced optical performance with even the slightest 

deviation in tracking, structural deformation, or mirror accuracy.  The structural analysis 

is critical to the success of heliostats especially when they are placed at large distances 
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away from the target.  Design iterations can be performed an structural design concepts 

for these heliostats and predict optical performance of the collector.  This would be a next 

step for this research.   

An interesting concept which can also be performed is to parametrically study all of 

the effects in a collector that affect the optical performance.  Design charts/tables can 

then be created which would be useful in engineering design of future solar collectors.  

The procedure developed in this research would be a good way to accomplish this task.  

Many different factors can affect the optical performance of collectors such as mirror 

roughness, anti-reflective coatings, thermal sagging, etc.  These factors can be accounted 

for in the FEA and ray tracing coupling procedure to analyze all factors affecting optical 

performance. 

An interesting extension to this procedure would be to combine it with high 

temperature receiver heat transfer analysis using computational fluid dynamics (CFD) 

software.  High temperature receivers can consist of several different receiver types 

employing different HTFs.  The lowest temperature option is utilizing molten salt as the 

HTF in a recirculation serpentine pattern through HTF tubes exposed to solar flux.  A 

volumetric air receiver can be used to heat air to high temperatures to drive power cycles.  

A CO2 HTF can be used in a super-critical gas cycle to drive power cycles.  Finally, an 

interesting option is to use solid particles to absorb solar flux.  The solid particles absorb 

energy to achieve high temperatures and then can be used to drive thermal cycles.  All of 

these receivers can be analyzed in CFD.  

The optical performance can be performed to yield accurate irradiance distributions 

on solar receivers to see how distributed fluxes affect thermal efficiency of receivers.  
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The optical performance predictions and heat transfer analysis done with receivers can be 

iterated together in order to get the most efficient solar thermal energy generating system.  

Higher temperatures will lead to higher thermal efficiency leading to more electricity 

production.  This could lead to improved power plant costs which is critical for achieving 

the SunShot goal of $0.06/kWh. 
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