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ABSTRACT 

The Active Thermal Tiles (ATTs) experiment explores another option for 

managing electronic component temperatures onboard spacecraft. The ATTs are based on 

thermoelectric devices that can alter the thermal gradient between the bus and 

component. Because ATTs do not rely on fluids or moving parts, they are highly reliable 

devices which make them attractive for use in spacecraft. An ATT experimental ground 

unit was tested in a vacuum chamber under 88 different conditions over a temperature 

range of 280K to 310K. The power supplied to the electronic component was varied 

between 5W and 40W, and the current running through the ATTs was varied between 

0.0A and 3.0A. Conductance and the coefficient of performance were measured, and a 

performance map was created. In addition, the power used by the ATTs was compared 

against the power used by survival heaters. Results showed the ATTs require less power 

to create the same temperature differential as survival heaters proving ATTs are more 

efficient than a traditional survival heat approach. Also, a computer simulation of the 

ATT was calibrated and used to compare the two control methods for the ATTs: PID or 

On-Off. PID control was up to two times as efficient as On-Off control. Ground tests 

were run to confirm the results from the simulation.  
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1. Introduction

1.1. Thermal Control Systems for Spacecraft 

Space is an environment that offers a wealth of opportunities for research and 

application. Technologies developed because of satellites and human spaceflight have 

assisted in saving lives and making life on earth more convenient. Satellites aid in 

predicting weather and studying the climate. Such forecasts can determine crop yield as 

well as prevent deaths and extreme damage when an area is faced with a particularly 

dangerous storm or other natural disaster. Communication is now possible in remote 

areas where it was not available before. One can determine location and receive 

directions to a new destination via the satellite-based Global Positioning System (GPS). 

Other fields have technologically benefited from space exploration as well, such as the 

medical field and electronics industry. Materials that had to be developed and tested to 

travel through the vacuum of space needed to be lightweight, durable, and strong. Such 

materials were then used in the medical field for implants, surgical tools, or other means 

of repairing injuries or saving lives (space-exploration.org, 2013). 

Not only does space flight benefit the world’s technological capabilities, but also 

its global economics. Space exploration creates high-paying jobs not only for those 

working in the space program, but also in areas supporting it (Coalition for Space 

Exploration, 2010). Satellites can also be used to discover valuable natural resources in 

lands thought to be worthless and desolate, causing economies to boom. Some discredit 

space exploration, claiming the benefits are few, but space exploration and its products 

and technological advances have affected our daily lives in ways one could not imagine 

and clearly for the better. However, accessing such prospects is challenging. 
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Several environmental factors must be considered when designing a spacecraft. 

First, micrometeoroids and spacecraft debris can cause significant damage due to the high 

speeds involved in space flight. The vacuum of space must also be considered. Seemingly 

insignificant things such as air pockets inside the structure of the spacecraft can cause 

substantial problems when a satellite is introduced into the space environment. Another 

problem is outgassing which occurs when gas, previously trapped or dissolved in a 

material, is released when the material is placed inside a vacuum. These gases can 

condense and interfere with critical components such as spacecraft optics. Finally, the 

thermal environment of space is a factor that cannot be overlooked. The extreme 

temperatures between sunlight and shadow are 250°F and -250°F (National Aeronautics 

and Space Administration, 2012). In addition, there are different forms of radiation that 

need to be taken into account when designing a spacecraft. Albedo, infrared (IR), and 

solar radiation must be considered. 

Thermal control systems are designed and developed to overcome the challenges 

of the harsh thermal environment of space while managing electronic components within 

a spacecraft. Designing thermal control systems for spacecraft can be an in-depth process 

and costly to implement. First of all, each component of the satellite must be evaluated to 

determine thermal control requirements and evaluate methods to meet them. Then there is 

a validation phase, where a design is created based on the budget of the project and the 

schedule for which it needs to be completed. Then the final design is developed and 

installed on the spacecraft (Gilmore, 2002). Most satellites are fitted with custom thermal 

control systems near the end of production to assure proper performance and an 

acceptable fit. 



3 

There are several different forms of thermal control used on satellites today. One 

example is multi-layer insulation (MLI). MLI is a passive form of insulation featuring 

several different layers of metal-coated Kapton sandwiching lightweight netting. The 

layers each reflect a certain amount of radiation back towards the source, resulting in 

very little heat loss (Gilmore, 2002). Also, satellites can feature louvers, which function 

like shutters. They can be opened when electronics are too hot and closed when 

electronics need to be warmed. Another form of thermal protection can be fluid loops or 

heat pipes. These are piping networks filled with coolant such as Freon, ammonia, or 

water – all of which draw heat away from warm components. 

Many areas of everyday life are affected by a satellite’s ability to perform as 

expected whether it is used for communications, GPS, or weather forecasting. In order to 

function properly, a satellite must be designed with means for adequate temperature 

control. Spacecraft thermal control is a field that is always open for improvement and 

new alternatives. The focus of this research is a promising alternative called the Active 

Thermal Tile (ATT), a type of thermoelectric device (TED).  

1.2. Thermoelectric Devices 

There are several different ways to implement thermal control on components on 

a satellite, but it has been suggested that ATTs may serve as yet another suitable option 

for temperature control on a satellite. Developed by Infoscitex as a Small Business 

Research Innovation project with the Air Force Research Laboratory, ATTs utilize 

thermoelectric devices (TEDs) and can be implemented and adjusted to fit a wide range 

of low heat transfer electronic components. 



4 
 

Many advantages can be found when using TEDs to cool and heat. First, they are 

solid-state devices that have no moving parts, thus reducing noise and vibration and 

increasing reliability. They also do not require fluid to aid in their energy conversion 

process, which makes them light weight. Another advantage is their small size. All of 

these aspects make them optimal choices when it comes to situations where heat transfer 

needs to be controlled (Riffat and Ma, 2003) and make them prime candidates for space 

applications where reliability, mass, size, and utility in microgravity are driving design 

considerations.  

While TEDs have many useful attributes, they tend have a low coefficient of 

performance (COP) and limited heat transfer capacity. This means that their applications 

are limited to cooling or heating electronics characterized by only low heat transfer 

(Simons and Chu, 2000).  Despite this, TEDs have been used on several spacecraft. 

Examples range from pollution monitoring satellites to the Hubble Space Telescope 

(Peabody et al., 2007; Copeland and Oren, 1975). However, while the devices have been 

used in orbit, very little research has been published comparing their on-ground 

performance with their on-orbit performance.  

1.3. Literature Review and Experimental Objectives 

1.3.1. Review of Related Literature 

TEDs operate using the Peltier effect which “occurs if a current is circulated 

around a loop of two dissimilar materials; heat is absorbed at one junction and released at 

the other” (Mole et al., 1972). These devices use electrical energy to transfer heat to or 

from an object, thereby heating or cooling it. In order for the TED to cool, a current is 

passed through pairs of two different types of semiconductor materials that have formed a 
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junction, shown in Figure 1. One material contains positive charges and is referred to as 

p-type material, while the other contains negative charges and is known as n-type 

material (DiSalvo, 1999). As the electrons pass from the n-type material and into the p-

type material, heat is absorbed from the environment. Consequently, if the current is 

reversed, heat is released into the environment.  

 

The study of thermoelectricity was first developed in 1834 after the discovery of 

the Peltier effect, yet there were not any major applications until the mid-1950s. A.V. 

Ioffe developed the idea of using compounds composed of elements from the lower part 

of the periodic table. His ideas led to the use of materials such as bismuth, lead telluride, 

and bismuth telluride for thermoelectric applications (Nolas, et al., 1998). 

Since then, TED research has focused on improving heating/cooling efficiency 

and expanding their applications. The COP for TEDs is not as high as it is with other 

forms of cooling. Typically, a single stage TED has a COP between 0.4 and 0.7. 

However, that number can increase with optimized, custom TEDs or as more stages are 

 
Figure 1: Thermoelectric device cooling schematic (Mole, et al., 1972). 
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added to the TED (Marlow Industries, 2012). Adding more stages will increase the 

device’s size and weight, so research has been conducted to make COP improvements 

without compromising the size and weight aspects that make TEDs desirable (Laird 

Technologies, 2010).  

Chein and Huang (2000) ran a number of tests to see which temperatures resulted 

in the highest efficiencies for TEDs. Others have focused on optimizing a TED’s COP by 

different means. For example, Wijingaards et al. (2000) writes about changing the 

semiconductor materials that make up the TED from the usual Bi2Te3 to polySi.  

Research has been conducted concerning the applications of a TED. Simons and 

Chu (2000) mention that IBM has been researching TEDs since the 1960’s. They 

researched using TEDs to cool components of electronic equipment, and also investigated 

how well a TED could cool chips on a wafer, shown in Figure 2. While they were able to 

achieve some cooling, they determined TED technology needed to advance for it to be 

applicable to their work. The attainable COP and the heat pumping capability of the 

TEDs used in the experiment were not good enough to affect the electronics in a way 

they deemed acceptable. However, they did admit the concept had potential benefits.  

Walker et al. (2004) also analyzed the idea of using thermoelectric coolers to cool 

electronics. The model involved testing TEDs under several different conditions such as 

uniform heating and cooling, nonuniform heating and uniform cooling, and nonuniform 

heating and nonuniform cooling. Those cases also involved different heat loads, ranging 

from 10W to 60W. After the data was compiled, the results were compared with data 

from electronics with no cooling mechanism.  
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Walker’s research found that a TED would provide better performance in realistic 

situations when heating is localized, such as on a chip compared to standard cooling 

devices. In fact, the more localized the heat was, the better the performance of the TED 

(Walker et al., 2004). However, different parameters were noted that would need to be 

evaluated in order to optimize performance. These include: size and shape of the TED 

array elements, how including power and sensor circuitry in each element would affect 

both the cost and the effectiveness of each element, and how each localized controller 

would use information gathered from each neighboring array element. 

Cheng et al. (2005) tested the performance of a silicon-based thermoelectric 

device as it cooled a high-powered light emitting diode (LED). Two TEDs were tested – 

one with 12 pairs of “thermoelectric legs” and the other with 16 pairs. The experimental 

setup started out at room temperature, and the difference between the LED and room 

temperature was measured as the current was increased. They recorded a difference of 

 
Figure 2: Simons and Chu TED experimental setup (Simons, 2000). 
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approximately 11.5°C between ambient temperature and the TED for the 12 pair device. 

The graphs of the results are shown in Figure 3. The 16 pair device resulted in a 

temperature difference of approximately 24.9°C. The resulting plots were parabolic 

because after a certain point, most of the input current begins transferring to joule heating 

and the TED is not as effective. After the results of the experiement were analyzed, it was 

determined that a silicon-based TED can be used as an active cooler because it 

successfully lowered the thermal resistivity of the LED.  

Ramanathan and Chrysler (2006) analyzed the idea of using TEDs to cool 

electronic components in a microprocessor. TEDs were modeled as positioned on the 

backside of a die and directly over a hot spot that was assumed to have a heat flux of 800 

W/cm2. Using series of equations, the graph in Figure 4 was developed to show the 

differences in the temperature of the electronics both with the different thermoelectric 

devices, and without the thermoelectric devices. It was concluded that TEDs offer 

potential thermal benefits and determined that the integration of TED in a microprocessor 

is a “significant and revolutionary change”.  

Wang et al. (2007) modeled and experimentally measured the reduction in 

temperature caused by TEDs. In these experiments, a TED was connected to a silicon 

chip by means of a copper “mini contact pad” that was found to greatly improve the 

TED’s cooling performance. Different sizes of mini contact pads were tested under 

different power levels.  

Wang et al. (2007) concluded that this type of cooling had “great potential 

application for on-chip hot spot cooling…by concentrating the thermoelectric cooling on 
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small regions of the silicon chip”. Figure 5 shows the temperature of the chip, and shows 

strong similarities to Ramanathan’s research in Figure 4.  

 

 

 
Figure 3: The performance of a silicon-based TED cooling a high-powered LED 

(Cheng et al., 2005). 

 

 
Figure 4: Ramanathan and Chrysler (2006) TED experiment results. 
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Later, Alley et al. (2008) performed tests using embedded TEDs for thermal 

control on an Intel mobile Core 2 Duo processor. After installing the TEDs on the central 

processing unit (CPU) die, a maximum temperature difference of 10°C was achieved 

through passive and active cooling.  

Tiezhu et al. (1999) ran experiments on a satellite using TEDs to cool the 

electronics on-orbit. The sole purpose of this experiment was to test if TEDs could be 

successful in keeping the temperature gradients on the satellite within a nominal range. 

The satellite was in orbit for 8 days and it was found the TEDs were able to keep the 

electronics within a desired temperature range while drawing a maximum current of 

1.43A. However, there was no ground testing involves with these tests. 

Peabody et al. (2007) implemented TEDs on the Wide Field Camera 3 on the 

Hubble Space Telescope. The instrument uses the devices to both cool the detectors on 

the camera and thermally isolate the detectors from the rest of the instrument. While they 

 
Figure 5: Hot spot temperature variation versus TED power (Wang et al., 2007). 
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were efficient in cooling, Peabody et al. state there was a slight difference between the 

vendor’s power versus cooling performance curves and the actual results due to how the 

vendor predicted the curve. They found an improvement of 5% was needed. Thus, to 

compensate, they ran their electronics at 95%. Because of this difference, and similar 

situations with other components, Peabody et al. insisted that the thermal design of a 

spacecraft be ground tested, and all power associated with active control devices be 

predicted beforehand.  

1.3.2. Summary and Objectives 

Previous work with thermoelectric devices (TEDs) tested their ability to cool 

electronics in terrestrial environments. There have also been limited on-orbit tests of 

spacecraft mounted TEDs, but comparisons of ground and on-orbit performance have not 

been well documented. The objective of the present work was to develop a ground-based 

performance map and control study of the ATTs. The results of this effort will be 

delivered to and utilized by Air Force Research Laboratory (AFRL) personnel to support 

on-orbit testing on the International Space Station (ISS).  

To accomplish this objective, the following tasks were proposed. 

1. Examine the modes of operation that are available with the ATTs and 

determine how to measure them. Then develop a test procedure and prepare 

an adequate test setup that will explore the passive cooling and heating 

properties of the tiles, their ability to cool both with and against the thermal 

gradient, and their ability to heat both with and against the thermal gradient. 
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2. Install experimental components such as instrumentation, hardware, etc., and 

integrate support systems to be used to create an acceptable setup for 

simulating and monitoring a space environment and gathering applicable data. 

3. Conduct 24-hour vacuum tests with varying temperature gradients to test all 

aspects of the ATT operating conditions (passive and active cooling and 

heating).  

4. Use the data collected from the tests to develop a performance map, 

determining the coefficient of performance for each mode of operation 

(enhanced cooling, refrigeration, enhanced heating) and heat pump conditions 

for the various TED operating currents, radiator temperatures, and component 

heat loads. Results will be documented in order to be compared to on-orbit 

experiments on the International Space Station. 

5. Use data collected from performance tests to calibrate a numerical model of 

the ATT test setup in order to simulate test conditions. 

6. Find control variables for a proportional-integral-derivative (PID) controller 

and develop a control strategy needed for on-orbit testing of ATTs. 

  



13 
 

2. Experimental Method-Performance Testing 

2.1. System Configurations 

The Active Thermal Tiles (ATTs) are designed to be installed on spacecraft to 

actively regulate electronic component temperatures. To evaluate their performance 

under a wide-range of conditions, two similar test units (flight and flight spare) were 

designed, developed, and assembled by a team at the Air Force Research Lab (AFRL) 

prior to the work presented here.  The flight unit was installed on the International Space 

Station, while the flight spare was used for ground testing at AFRL facilities.  Both test 

units were designed and developed to simulate both a bus (heat sink) and electronic 

component (heat source).  The ATTs were then sandwiched between source/sink and 

tested under a wide-range of conditions. Figure 6 illustrates how the components on a 

spacecraft would need to be arranged to be thermally managed. 

 

 
 

Figure 6: Thermal components on a spacecraft. 
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Six components make up the actual ATT experiment: an electronics box (heat 

source), an electronics box lid, a radiator (heat sink), two side support brackets, and an L 

bracket. The radiator dissipates waste heat, the L bracket allows the front of the radiator 

to be fastened to a baseplate if necessary (this feature is not used in this test setup), while 

the two side support brackets hold the radiator normal to the base. All of those 

components are made of 6061-T651 aluminum. The entire radiator structure is bolted to 

the two side supports by 35 ¼”-28 screws. When assembled, the dimensions of the 

assembly are 16” wide by 13.125” deep, by 24” tall. The structural setup is shown in 

Figure 7.  

 

The radiator simulates the “bus” and was fitted with four resistance temperature 

detectors (RTDs) and two 20 W heaters. These heaters, along with two separate cold 

 
Figure 7: ATT experiment structure (shown without the cold plate or cold plate 

mount). 
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plates, keep the radiator at a set temperature. There is also a sun sensor on the radiator to 

aid in data reduction efforts by sensing the sunlight status on the radiator.  

An electronics box is mounted in the center of the back of the radiator to simulate 

an electronic component. This unit includes four 10W resistance heaters, printed circuit 

board (PCB) that controls the electronic components on the setup, and four RTDs. The 

electronics box lid is attached using four #6-32 screws. An aerogel blanket insulates the 

electronics box to help reduce heat loss to the surroundings. 

The ATTs themselves, shown in Figure 8, are sandwiched between the radiator 

and the electronics box to affect the flow of heat between them. This is done using 8 #8-

32 flathead screws that pass through clearance holes in the electronics box bottom and 

thread into helicoils in the back of the radiator. The ATT is not just a thermoelectric 

device (TED), but an assembly of components that offers another way of cooling and 

heating electronics. This assembly includes the TED, a bypass circuit that maintains ATT 

functionality if one module were to fail, and plug-and-play connections. This assembly as 

well as the ATT orientation can be seen in Figure 9. 

To properly ground test the ATTs, they needed to be placed in an environment to 

simulate thermal conditions a spacecraft would experience on-orbit. The ATT setup was 

housed in a bell jar-style vacuum chamber 10-5 torr or less for all experiments. 

Electronics box heaters simulate the heat loads electronics generate during a mission. The 

radiator simulates the bus or thermal sink over a range of temperatures using patch 

heaters and two cold plates. The cold plates were plumbed, using feedthroughs and VCR 

fittings, to a cycling refrigerating bath filled with cooled Syltherm. The cold plate 

mounts’ configuration is shown in Figure 10 and an example of their connection to the 
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refrigerating baths is shown in Figure 11. Figure 12 shows how the experimental setup 

simulates a spacecraft. 

To insulate the assembly from any outside thermal interference, an MLI blanket 

with a black Kapton outer layer covered the entire set. The blanket was attached using 

Kapton tape. All interfaces are dry bolted with the exception of the interfaces between the 

ATT’s TEDs and the radiator between the TEDs and the electronics box. These interfaces 

utilized an eGRAF thermal interface material to increase thermal conductivity. 

 

 
Figure 8: ATT assembly and orientation. 
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Figure 9: ATT experiment assembly (Williams and Hengeveld, 2011). 

 
Figure 10: Cold plate mount configuration for tests. 
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Figure 11: Setup for radiator cooling. 

 
Figure 12: How the ATT experimental setup simulates a spacecraft. 
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2.2. Test Procedures 

2.2.1. Cooling Cases 

The ATTs were tested to determine their efficiency over a wide range of 

environments using the integrated software and a Windows HyperTerminal interface. By 

programming each of the cases shown in Figure 13 using HyperTerminal, the ATTs 

cooling ability and heating capability were measured, and their control structure was 

evaluated. First, their cooling ability was tested over 72 different variations of electronics 

box power, radiator temperature, and ATT current. Initial testing had been conducted on 

the two different units (flight and flight spare units) to verify the performance of both 

units. These results were compared to the current tests to assure nothing had changed and 

also to validate the chosen procedure yielded the desired results. 

 

 
Figure 13: Test matrices for cooling cases (Williams and Hengeveld, 2011). 
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There were three requirements for successful testing of a case: 1) the average 

composite radiator temperature must be within +/- 2K of the desired temperature setpoint, 

2) less than 1K change in any component’s temperature over an hour, and 3) electronics 

box power within 2% of the desired value. Initially, temperature was recorded every 

fifteen minutes to determine whether the experiment was at steady-state or not. After 

running four cases, it was determined that two hours was sufficient for the entire 

experiment to reach steady-state and maintain it for an hour. Thus, analysis was 

performed only on the last hour of data once the experiment had reached steady-state. 

The minimum temperature value during that hour was subtracted from the maximum 

temperature value found during that hour. This was to verify that the temperature did not 

spike or fluctuate excessively. To meet the requirement, this difference must be less than 

1K. 

HyperTerminal software offered the capability to set the ATT current and radiator 

temperature; however, setting the electronics box power was more complicated. The total 

power in the electronics box was made up of the electronics box heaters, which were set 

to run at a specific power, and the electronics control unit (ECU) which cannot directly 

measured.  

Experiment power is distributed by two buses. Bus A controls the ECU inside the 

electronics box and the ATTs. Bus B controls both radiator and electronics box heaters. 

As the cooling cases were first being run, Bus A power was analyzed and compared to 

past tests in order to verify behavior. First, it was graphed over time to make sure it was 

constant. If those values remain constant throughout the hour the experimental setup was 

at steady-state and the average of those values could be taken and used for calculating 
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power values for the ATTs and electronics box. The graph showing the comparison 

between the validity tests and the ground tests for the first few cases run with a radiator 

temperature of 280K is shown in Figure 14 as an example of how Bus A power was 

examined. 

 

 
 

 
Figure 14: Bus A comparison for Cases 1 and 3 and the checkout testing from the 

previous year. 
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The fluctuating values shown in Figure 14 caused an error in the average value 

that was used to calculate the electronics box power – one of values used to determine 

success. The Bus A power waveform was graphed against other measured values to help 

determine this instability. A correlation between the electronics box heater duty cycle and 

Bus A power was discovered.  

During testing, Bus A power was monitored, and heaters were individually 

switched on at full power. There was a notable decrease in Bus A power each time a 

heater was energized as shown in Figure 15. Bus A Power was then graphed versus 

heater duty cycle during an experimental case and a correlation was found. This is shown 

in Figure 16. 

 

 
Figure 15: Bus A power versus time during troubleshooting. 
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Bus A, which powers the ECU and ATTs, and Bus B, which powers the heaters, 

shared a ground. This meant that whenever the heaters would turn on, it would interfere 

with the Bus A measurement. Testing operations were modified to account for this 

anomaly. While running each case, another test would be run after the 2 hour experiment 

time duration had expired, and the experimental setup was at steady-state. At that point, 

the electronics box heaters would be shut off, while the radiator heaters and the ATTs 

would remain on for a three-minute time period. Data would be taken during this post-

test, results were used to determine actual electronics box power.  

Electronics box steady state temperature, radiator temperature, and Bus A power 

were then analyzed to determine test success. If unsuccessful, settings were altered and 

the case was re-run. Figure 17 is a flowchart depicting the process of running one case.  

 
Figure 16: Bus A power versus heater duty cycle. 
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After the post-test, parameters were set for the next case. Electronic box power 

was found using Equation (2.1) where  ̇  is the electronics box power,  ̇    is the 

measured post-test Bus A power ,  ̇    is the steady state test case ATT power draw, and 

 ̇     is set heater power. All parameters are in watts.  

 ̇   ̇      ̇     ̇     (2.1) 

The files obtained from these tests are run through a Fortran data complier that 

transforms recorded data into labeled columns of test variables to be analyzed. ATT 

power, found by multiplying TED voltage and the TED current, is used with average Bus 

A Power to find the required power input to the electronics box heaters for test cases 

Equation (2.2).  

 ̇      ̇    ̇      ̇     (2.2) 

 
 

Figure 17: Flow chart describing test procedure. 
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During test cases, the ATTs are programmed to run constantly by setting their 

target temperatures well below any temperatures that might be reached inside the 

chamber. The heater power found by Equation (2.2) is used to set the electronics box 

heaters. The target temperature of these heaters is set well above temperatures that might 

be reached inside the chamber to ensure they remain on during testing. Data collection 

begins, and the experiment is run until steady state is reached. 

Once the cases were completed, the coefficient of performance (COP) was 

determined. The COP is the ratio of desired output to required input. This ratio is shown 

in Equation (2.3) where  ̇ is the heat flow from the electronics box into the ATTs and 

 ̇    is ATT Power (Hengeveld, 2011). 

     
 ̇ 

 ̇   

 
(2.3) 

ATT power is found by multiplying ATT voltage and ATT current, both collected 

during testing. Determining the heat flow from the electronics box into the ATTs is not as 

straightforward. The electronics box needs to be examined separately to determine where 

the work being put into the box is going.  This is done in Figure 18.  

 

As shown in Figure 18, there are only two ways for heat to be expelled across the 

boundary. It moves either into the surrounding environments or into the ATTs. The heat 

 
Figure 18: Heat transfer diagram of electronics box (Hengeveld, 2011). 
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transfer equation that represents the electronics box is shown as Equation (2.4) where  ̇  

is the electronics box power and  ̇    is the heat loss from the electronics box.  

 ̇   ̇   ̇    (2.4) 

Since the electronics box is highly insulated, it was assumed that  ̇    is zero, 

which simplifies Equation (2.4). Equation (2.3) can then be stated as Equation (2.5) 

(Hengeveld, 2011) which was used to find ATT COP for the cooling cases. 

     
 ̇ 

 ̇   

 (2.5) 

2.2.2. Heating Cases 

Eight heating cases were run to explore the ATT’s heating capabilities. Because 

of limitations in the test setup, ATT heating performance was determined by running 

equivalent cases with ATTs and with resistance heaters via four test cases, shown in 

Figure 19. Twelve cases were run: four cases used heaters to achieve test conditions, four 

used the ATTs running at 1.0A, and four used the ATTs running at 2.0A. The test 

matrices are shown in Figure 20. 

 

Rad 
Temp [K] 

Ebox Temp [K] 

285 290 295 

280    

290    

 
Figure 19: Basic test matrix for ATT Heating Cases. 
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For the cases using the ATTs, the radiator heaters were set using the 

HyperTerminal program, as well as the ATT current. The ATTs were run in a hysteresis 

style that would run the ATTs to keep them within a defined range of a set temperature. 

The range was set to be +/-0.1K. This was to mimic the on/off pattern the survival heaters 

follow when they are running.  

To make the data comparable, the heaters needed to be run at as low of a power as 

necessary to reach the target temperature. Finding the proper heater power value that 

would give the desired result took some effort. The heaters were set in 2W increments 

from 6W to 40W. The experiment was set to reach 295K and to run at each power setting 

for two hours in order to reach steady state. A second heater sweep was conducted after 

that focused on power values that caused the electronics box steady state temperature to 

rest at the desired target temperatures in the initial heater sweep. Steady state 

temperatures were then graphed versus electronics box power. The results of this heater 

sweep are shown in Figure 21. 

This analysis was done to find the minimum heater power necessary to meet test 

values. If the heaters never turned off during a test, it meant the target test temperature 

was never reached. If the heaters cycled excessively, too much power was being supplied 

to the electronics box that would result in an unfair comparison of the heater performance 

Rad 
Temp [K] 

Ebox Temp [K]  Rad 
Temp [K] 

Ebox Temp [K]  Rad 
Temp [K] 

Ebox Temp [K] 

285 290 295  285 290 295  285 290 295 

280 1 2 3  280 5 6 7  280 A B C 

290   4  290   8  290   D 

(A)  (B)  (C) 

Figure 20: Heating cases test matrices.  (A) 1.0A TED Cases; (B) 2.0A TED Cases; 
(C) Heater Cases. 
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to that of the ATTs. Therefore, the setting that would keep the heaters on and turn them 

off the least number of times, or the power setting that would maintain the target 

temperature and exceed it the least amount of times needed to be found. To find this 

power setting, heater duty cycle was graphed versus time and the setting that resulted in 

the graph that displayed the least amount dips in the waveform (but still some) was 

chosen. Figures 22 through 24 show the 280K radiator temperature cases, while Figure 25 

shows the 290K radiator temperature cases. Table 1 summarizes the final values. Once 

values for the heaters had been chosen, the heating cases involving the electronics box 

heaters were completed. 

More examination was required for the case in Figure 22 because 6.50W still 

resulted in fluctuation in the duty cycle. The target temperature was not reached for the 

Figure 21: Heater sweep, with attention to between 6W and 8W for 285K, 14W 
and 18W for 290K, and 24W and 28W. 
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6.25W and 6.38W tests, therefore they could not be used, and the 7.0W test heaters 

fluctuated between on and off too frequently.  

Figure 23 shows that the target temperature was not reached for the 16W case, 

therefore it could not be used, and the 16.5W test heaters fluctuated between on and off 

too frequently meaning an excessive amount of power was being supplied to the 

electronics box to maintain the desired temperature. 

Figure 24 shows that the target temperature was not reached for the 26W test, 

therefore it could not be used, and the 26.5W test heaters fluctuated between on and off 

too frequently. 

Figure 25 shows that the target temperature was not reached for the 6.25W test, 

therefore it could not be used, and the 6.75W test heaters fluctuated between on and off 

too frequently. The fact that 6.5W was the value that resulted in the least amount of 

heater duty cycle fluctuations for this case and also for the 280K radiator temp/285K 

electronics box temperature case was particularly encouraging since both cases involve a 

5K temperature differential. 

The coefficient of performance needed to be found for the heating cases as well. 

The heat flow throughout the experiment is complicated with all the heating occurring in 

the electronics box. The cases needed to be analyzed slightly differently to compare ATT 

performance with heater performance. This is why the exact same tests were completed 

with the two different heating methods. COP can still be defined as the ratio of desired 

output to required input, which is represented by Equation (2.6) (Hengeveld, 2011), but 

instead of just looking at how much heat the ATTs move, the COPH compares the power 

used to move heat using the heaters with the power used to move heat using the ATTs.  
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This equation is used with the assumption that the heater cases portray the nominal power 

needed to create a temperature differential.   

     
 ̇     

 ̇    

 
(2.6) 

 

Rad. Temp: 280K – Ebox Temp: 285K 

 
Figure 22: Heater power waveforms for several different heater settings with 

heater temperature setpoint of 285K and radiator temperature setpoint of 280K. 



31 

. 

Rad. Temp: 280K – Ebox Temp: 290K 

Figure 23: Heater power waveforms for several different heater settings with 
heater temperature setpoint of 290K and radiator temperature setpoint of 280K. 
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Rad. Temp: 280K – Ebox Temp: 295K 

 
Figure 24: Heater power waveforms for several different heater settings with 

heater temperature setpoint of 295K and radiator temperature setpoint of 280K. 
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Rad Temp: 290K – Ebox Temp: 295K 

 
Figure 25: Heater power waveforms for several different heater settings with 

heater temperature setpoint of 295K and radiator temperature setpoint of 290K. 
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Table 1: Final heater power values. 

Radiator Temp: 280K 
Ebox Temp Total Heater Power 

285K 6.52W 
290K 16.24W 
295K 26.00W 

Radiator Temp: 290K 
Ebox Temp Total Heater Power 

295K 6.52W 
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3.  Results and Conclusions-Performance Tests 

3.1. Comparing Ground Tests with Past Tests 

Before any data analysis could be done, the tests needed to be checked to 

determine if they met the requirements for a successful test. These requirements include 

the radiator being within 2K of the setpoint, less than 1K change in temperature over an 

hour for both the radiator and the electronics box, and the electronics box power within 

2% of the desired value. 

First, the data from the ground tests were compared with data taken the year prior. 

This was done to make sure that nothing had changed since the past year. The prior tests, 

termed validity tests, confirmed that the flight spare and the flight unit maintained 

performance levels and were comparable. It was essential that the flight spare still 

performed the way it had the year before in order to compare it to the performance of the 

flight unit. If not, the data collected from the flight spare unit could not be compared with 

the data collected from the flight unit on-orbit.  

The electronics box temperature was graphed over time. This was to make sure 

the experiment reached steady-state and did not fluctuate over time. An example of how 

the temperature was checked for each set of cases per radiator temperature for both the 

validity and the ground tests is shown in Table 2. 
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The steady-state electronics box temperature with regard to ATT current was also 

studied. It needed to be verified that both the flight and flight spare units achieved similar 

steady-state temperatures during their tests. The graphs showing the comparison between 

the validity tests and the ground tests are shown in Figure 26. 

 

Table 2: Electronics box steady state temperature versus time for 280K validity cases 
performed the previous year compared to the ground tests. 

 
Ebox 

Power 
[W] 

ATT 

Current 
[A] 

Ebox Temperature [K] 
Present 

Case 
Flight 

Unit 
% Diff Flight 

Spare 
%Diff 

5W 0.0A 282.8K 282.8 0.00% 283.0 -0.07% 
5W 1.0A 276.5K 276.4 0.04% 276.4 0.04% 
8W 0.0A 284.2K 285.2 -0.35% 284.2 0.00% 
8W 1.0A 278.5K 279.6 -0.39% 278 0.18% 

 
 

 
Figure 26: Flight-Flight Spare Validity Tests versus Present Tests final electronics box 

temperature comparison. 
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Lastly, the coefficients of performance (COPs) at each radiator temperature and 

ATT current were compared for both the present cases and the validity tests. The validity 

test COPs and their percent differences from the present cases are shown in Table 3. The 

percent differences vary from -1.18% to 28.19%. The relatively high percent difference is 

because the heater powers for the past work differed from the desired value more than 

those of the present cases because of the requirements for a successful test being so tight. 

The validity tests were conducted under less strict requirements. COP is dependent on 

those heater power values, so if it varies, the COP will also change. 

 

The average percent differences between the validity test values and the ground 

test values are shown in Table 4. The percent difference in the electronics box 

temperature is small, but there are significant differences in ATT Power and COP.  

Table 3: Flight-Flight Spare-Ground Test performance comparison. 

Rad. 

Temp 

[K] 

Ebox 

Power 
[W] 

ATT 

Current 
[A] 

Coefficient of Performance 
Present 

Case 
Flight 

Unit 
% Diff Flight 

Spare 
%Diff 

280 5 1.0 4.607 4.345 5.69% 4.340 5.81% 
8 1.0 8.101 7.827 3.39% 7.422 8.39% 

290 5 1.0 4.310 3.716 13.80% 3.779 12.33% 
8 1.0 7.528 6.645 11.73% 6.491 13.78% 
28 1.0 43.031 43.797 -1.78% 43.810 -1.81% 
28 2.0 7.568 7.942 -4.94% 7.044 6.93% 

300 5 1.0 4.178 3.000 28.19% 3.041 27.21% 
8 1.0 7.143 6.063 15.13% 5.879 17.69% 
28 2.0 7.023 7.105 -1.18% 7.361 -4.18% 

310 28 1.0 46.029 43.339 5.85% 40.771 11.42% 
28 2.0 6.700 6.363 5.02% 6.2673 6.51% 
28 3.0 2.643 2.518 4.71% 2.480 6.17% 
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Table 4 shows the electronics box temperature from the most recent tests varies 

by less than 1% from the previous tests, and the average ATT power varied by less than 

5% which shows that the setup performed nearly the same as it had previously, so the 

data collected on the ground could still be compared to the data collected on-orbit.  

The large COP differences can be attributed to the tight requirements on 

electronics box power for the current cases that did not exist when the initial testing was 

completed. Since that was the case, the difference between the actual and desired 

electronics box powers was larger for the past cases, which caused different COPs and a 

large percent difference between the two. 

3.2. Cooling Case Performance 

The performance of the ATTs was examined in two ways. The first method 

examined the ATTs performance with respect to the entire experiment. In this analysis, 

the final composite temperature of the electronics was subtracted from the composite 

temperature of the radiator. This temperature difference versus ATT current is shown in 

Figure 27. As expected, each power setting presented a similar response. As ATT current 

increases, temperature difference decreases at a rate of around 7K per amp. These figures 

also show how an increase in electronics box power affects performance. The greater the 

Table 4: Average percent differences between validity tests and ground tests. 

 Flight Flight Spare 

Rad. 
Temp 

Average % 
Difference in 
Ebox Temp 

Average % 
Difference in 
ATT Power  

Average % 
Difference in 

COP 

Average % 
Difference in 
Ebox Temp 

Average % 
Difference in 
ATT Power  

Average % 
Difference in 

COP 

280K -0.24% -0.90% 4.54% 0.07% -1.05% 7.10% 
290K -0.17% -0.76% 4.70% 0.16% -0.95% 7.81% 
300K -0.01% 0.38% 14.05% 0.10% -0.53% 13.36% 
310K -0.25% -1.14% 5.19% -0.08% -4.74% 8.03% 
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electronics box power, the more current the ATTs must use to make a large impact by 

cooling, and therefore, the greater the positive temperature differential of the experiment. 

Vice versa, the less power supplied to the heaters, the less current is needed for the ATTs 

to make an impact. This data was compared to the performance curves provided by 

Marlow Industries, the manufacturers of the TEDs used in the ATTs, as shown in Figure 

28. The figures are similar, while the values differ. This is because there is more than one 

ATT being used on this setup which would cause the experiment to create a higher 

temperature differential while using a lower ATT current.  

 

 
Figure 27: ATT experiment performance map (The temperature differential 

created by subtracting electronics box steady state temperature from the radiator 
steady state temperature vs. ATT current). 



40 

The relationship between ATT power and change in electronics box temperature 

was also examined. When designing a spacecraft, the amount of power used to create a 

temperature gradient must be known. ATT power and change in electronics box 

temperature create a parabolic curve. This is because as current flows through the ATTs, 

heat is generated, and the ATTs have to use more power to remove more heat. These 

curves, shown in Figure 29, are also similar to those from experiments by Wang (2007) 

and Ramanathan and Chrysler (2006). 

Figure 28: Marlow TED performance (Technical Data Sheet: XLT2391 Single-
Stage Thermoelectric Cooler). 
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3.3. Heating Case Performance 

New analysis methods were introduced for the heating cases. Like the cooling 

cases, the second hour of each test was selected for analysis. The first step in analyzing 

the data collected from the heating cases was to make sure the target temperature was 

reached. Case 4, which required the ATTs to create a temperature differential of 15K, 

failed to reach its target temperature, so it was omitted. However, it can then be 

concluded that 1.0A is not a large enough current in heating mode to maintain a 15K 

temperature differential between the payload and the radiator.  

The next step was to analyze the difference in power usage for each temperature 

differential. Figure 30 shows the waveforms for the smallest temperature differential. The 

power for only 200 seconds is shown to give a better idea of the details of the waveform. 

One can notice both the ATTs and the heaters cycling on and off, but the ATT 

 
Figure 29: ATT experiment performance map (Temperature differential found by 

subtracting radiator steady state temperature from the electronics box steady 
state temperature vs. ATT power). 
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waveforms are more rounded and periodic. The heaters’ waveform is much more 

sporadic. The difference can be explained by the software: the program only checks the 

current (amp) value to adjust the voltage value every three seconds. Also, there is a limit 

to how high the voltage can instantaneously rise: the limit is 1.0V corresponding to 1.0A 

for the four ATTs in series. When TED current is supposed to rise to 2.0A, it will only do 

so in 1.0A increments every 3 seconds.  

Figure 31 shows waveforms for the cases with a 10K temperature differential. As 

expected, the peaks in ATT power have the same amplitude but are wider than in the 5K 

temperature differential plots. This is because the ATTs, while running at the same 

currents, need to heat longer to maintain the larger temperature differential.  

Figure 32 shows the 15K differential heating case. The case using a TED current 

of 1.0A to maintain a 15K temperature differential failed to reach the target temperature. 

The 1.0A waveform shows that the ATTs were constantly on. This means they never 

were able to reach their target temperature and therefore never turned off. The 2.0A 

waveform, once again shows wider peaks than in the previous two plots.  

COP was examined for the heating cases as well. Cases using ATTs to heat the 

electronics box (numbered cases) were compared to correlating cases which use heaters 

to heat the electronics box (lettered cases). Thus, cases 1 and 5 were compared to Case A, 

Cases 2 and 6 were compared to Case B, Case 7 was compared to Case C, and Cases 4 

and 8 were compared to Case D.  

An increase in COP can be seen with the increase in temperature differential. This 

is because these COPs are not traditional COPs. In these cases, the COP is a measure of 

comparison between heaters and the ATTs. Figure 33 shows the correlation between 
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power usage and temperature differential for both the heaters and the ATTs. While both 

slopes show that power usage increases with increasing temperature differential, the slope 

formed by the heater cases is much steeper, meaning more power is needed to create a 

larger temperature differential with the heaters than is needed to create the same 

temperature differential with the ATTS.  Since COP is a comparison of the power 

required by the heaters relative to that required by the ATTs, it is related to the increasing 

distance between the two trend lines in Figure 33. Therefore, COP should increase with 

the increasing temperature differential. 

Figure 30: ATTs power and electronics box temperature versus time waveforms for 
5K temperature differential. 
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Figure 31: ATTs power and electronics box temperature versus time waveforms for 
10K temperature differential. 

Figure 32: ATTs power and electronics box temperature versus time waveforms for 
15K temperature differential. 
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3.4. Uncertainty Analysis 

Standard deviation and resolution of values being collected were used to 

determine the standard Type B uncertainty of the measurements and calculations made. A 

normal distribution was used. Overall the measurement uncertainty was less than +/3%. 

Table 5: COP for each heating case. 

ATT 
Curr. (A) 

Rad. Temp 
(K) 

Ebox Temp 
(K) 

COP 

1.0 280 285 2.511 
280 290 4.113 
280 295 --- 
290 295 2.521 

2.0 280 285 2.358 
280 290 3.307 
280 295 3.847 
290 295 2.343 

Figure 33: Power usage versus temperature differential between electronics box 
and the radiator. 
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The exception to this is the Bus A and Bus B values which had significant error because 

of the ground loop in the design. These values are shown in Table 6. 

  

Table 6: Uncertainty of measured and calculated values for performance tests. 

Measured Calculated 

Value % Uncertainty Value % Uncertainty 
Radiator Temp ±0.04% Bus A Power ±2.09% 

Ebox Temp ±0.04% Bus B Power ±54.42% 
ATT Current ±0.96% ATT Power ±1.15% 
ATT Voltage ±0.63% ECU Power ±2.38% 

Bus A Voltage ±0.25% Total Ebox Power ±54.47% 
Bus A Current ±2.08% COPC ±54.49% 
Bus B Voltage ±0.75% COPH ±54.49% 
Bus B Current ±54.42% ATT Energy ±1.15% 

  ATT Resistance ±1.77% 
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4. Experimental Method – Controls Testing 

The Active Thermal Tiles (ATTs) could be controlled in two ways: a 

proportional-integral-derivative (PID) controller or an On-Off controller. A PID 

controller uses proportional, integral, and derivative constants to adjust ATT current to 

meet and maintain a target temperature while keeping the ATTs constantly on. An On-

Off controller cycles the ATTs on and off to maintain the target temperature. These two 

control methods were compared to determine which uses the least amount of energy. 

Before that comparison could be made, the PID constants needed to be found.  

Since PID constants are usually found by a trial and error method, the same cases 

would have to be run while varying the constants until the ATTs ran the most efficiently. 

Each ground test takes at least two hours to complete. However, the developers of the 

ATTs, Infoscitex, wrote a program that would simulate the ATT experiment once the 

proper initial conditions were input. This program could also run in a PID controlled 

mode. With this program, a two-hour long experiment could then be shortened to three 

minutes so more constants could be tested per day. Hence, the control program was a 

much more effective way of finding the most efficient ATT PID constants. 

The intent of these experiments was to determine which method causes the ATTs 

to keep the electrical component at a set temperature while using the least amount of 

energy. Both of these methods were tested under -5K and -10K temperature differentials 

since those were the cases that would be most greatly impacted by the two different 

experimental methods. These are the greatest temperature differences achieved using 

ATT currents less than 3.0A.  



48 
 

The first step was to make sure the control program was tuned well enough to 

match test data. The initial conditions were input, and the geometry and material 

properties of the setup were programmed. There were other unknown factors that could 

be manipulated to tune the program. These factors include the interface resistance 

between aluminum and the ATTs, the multiplier for the TED resistance, the multiplier for 

the thermoelectric coefficient, and the multiplier for the aluminum thermal capacity. Each 

factor was adjusted to create resulting waveforms that matched the test values within +/-

5% of test values. Examples of the how each factor adjusted the behavior of the control 

simulation are shown in Figure 35. The various dash lines represent the different 

variations of each factor, while the solid lines represent the original ground data that the 

simulation should be tuned to match.  

Once that was completed, the program was set up to be controlled by the PID 

controller. Since the system being controlled is thermal and running until a steady-state, a 

proportional controller should be all that is necessary. The program was then tuned to 

find the proper proportional gain needed to maintain a set temperature while using the 

least amount of energy possible. The program was run multiple times, each time varying 

the proportional gain until the gain was too large to maintain a steady temperature. The 

proportional constant was then scaled back just enough to result in a fixed temperature at 

steady-state.  

The On-Off method was simulated by raising the gain exceedingly high. The 

program used only had PID control available; however, when the gain is set too high, the 

ATTs will turn on at full power, and turn off again when the target temperature has been 
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met. The gain was set to 10000 for the ground checkout tests, so that is what the gain was 

set to for the On-Off method in the simulation. 

After the tuning of the program and simulating the different run modes, the values 

for the proportional gain for each of the selected cases were obtained by running the six 

cases over and over while varying the gain until the largest gain that resulted in the 

system converging on the temperature closest to the target was found. Then, the cases 

were run on the experimental setup inside the vacuum chamber using the same 

parameters as were programmed into the simulator, and the results were compared to the 

results of the program. 

Figure 34: Effects of four different factors on the control simulation results.  
IALM = Interface resistance of aluminum; FINT = multiplier for interface 

resistance; FALMCAP = multiplier for aluminum thermal capacity; FTEDB = 
multiplier for the thermoelectric coefficient. 
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Figure 35: Examples of control program tuning. 
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5. Results and Conclusions – Controls Testing

5.1. Simulation Results 

First, the six cases were tuned to match the test data. This was done using the 

defaults from the given control program and adjusting four of the variables. Each case 

was done separately, and the results of the tuning are shown in Figure 36. All of the cases 

were tuned so the results of the simulation were less than +/-5% different than those from 

the ground tests. 

Once the program was tuned to match the test data, the PID constants were found 

for each of the cases. This was done by increasing the proportional gain in the program 

until the system ceased to converge to a temperature. Then the gain was scaled back so 

that it resulted in a waveform that converged on a temperature while requiring the 

smallest amount of current. The gains for these cases are shown in Table 7. Once those 

gains were found, the simulation was run in its control mode using those gain values, and 

then again with the gain set to 10000 A/K to simulate an On-Off mode. 

The results of the three different types of simulations are shown in Figures 37 

through 42. Each figure shows ATT current as well as electronics box temperature versus 

time. The top graphs show both the simulation and the original performance test for each 

particular case. This simulation was run with a constant ATT current until the experiment 

had reached steady state. The middle graph shows the performance of the simulation 

when controlled by the gains shown in Table 7. The currents in these graphs fluctuate 

before settling on a steady current. The bottom graph shows the performance of the 

simulation when it is controlled by an On-Off control method. In these graphs, the current 
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fluctuates between 0.0A and 3.0A (the limit the ground unit software imposes on ATT 

current) during the simulation to maintain the set temperature. 

Final temperature, average current, and total energy over an hour were all noted in 

order to compare the two control methods. Table 8 shows the comparison between the 

initial performance test data and the simulation results. The energy values for each of the 

PID controlled cases were proportional to TED current: this matched expectations since 

energy is the integral of power over time, and power is proportional to current. The 

currents in the PID cases also were within 3.5% of the TED current values used for the 

original cooling cases. The original cases reached their final temperatures by constantly 

running the TEDs at certain currents. The average currents of the PID controlled program 

would end up being similar to those from the ground tests. The On-Off controlled method 

was different. While final temperatures hovered around the proper target temperature, the 

energies and currents of the on/off tests remain close to the same value regardless of the 

temperature differential. 

Figure 43 is shown as an example of the difference between the PID controlled 

cases and the On-Off controlled cases. The figure shows power versus time with energy 

being the integral of power over time. According to the simulation, the PID controlled 

cases are up to seven times more efficient than the On-Off cases. The actual percent 

differences in energy usage are shown in Table 9. These were calculated by dividing the 

difference between the energies from the two different methods by the energy usage 

during the PID tests. It is not known why the powers for the simulated On-Off cases 

differed so much from the simulated ground tests.  
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Figure 36: Control program cases tuned to ground tests.  The cases on the left have a 
-5K temperature differential, while the cases on the right have a -10K temperature 

differential. 
 

Table 7: Gains for the six simulated test cases. 
∆T Case Gain (A/K) 
-5K 4 611 

20 650 
45 679 

-10K 5 662 
46 692 
50 739 
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Figure 37: Comparison of ATT current and electronics box temperature versus 
time for the different control methods for Case 4 (-5K temperature differential 

created by a radiator temperature of 280K, an electronics box power of 5W, and 
an ATT current of 1.0A.) 
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Figure 38: Comparison of ATT current and electronics box temperature versus 
time for the different control methods for Case 20 (-5K temperature differential 
created by a radiator temperature of 290K, an electronics box power of 5W, and 

an ATT current of 1.0A.) 
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Figure 39: Comparison of ATT current and electronics box temperature versus 
time for the different control methods for Case 45 (-5K temperature differential 
created by a radiator temperature of 300K, an electronics box power of 5W, and 

an ATT current of 1.0A.) 
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Figure 40: Comparison of ATT current and electronics box temperature versus 
time for the different control methods for Case 5 (-10K temperature differential 

created by a radiator temperature of 280K, an electronics box power of 5W, and an 
ATT current of 1.5A.) 
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Figure 41: Comparison of ATT current and electronics box temperature versus 

time for the different control methods for Case 46 (-10K temperature differential 
created by a radiator temperature of 300K, an electronics box power of 5W, and an 

ATT current of 2.0A.) 
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Figure 42: Comparison of ATT current and electronics box temperature versus 

time for the different control methods for Case 50 (-10K temperature differential 
created by a radiator temperature of 300K, an electronics box power of 8W, and an 

ATT current of 2.0A.) 
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The large difference between the simulated energies and the ground test energies 

could have several different explanations, but most likely, it is that other unknown factors 

are affecting the simulation results. For example, the ATTs are generating their own heat 

that they then have to displace. This causes them to have to remain on longer and 

therefore use more energy.   

Table 8: Final results for control program.  Note the energy values are for TEDs 
only.  ECU power is not included. 

 Performance Test PID On/Off 

Case 

Avg. 
Temp 

[K] 

Avg. 
Curr. 

[A] 

Total 
Energy 

[J] 

Avg. 
Temp. 

[K] 

Avg.  
Curr. 

[A] 

Tot. 
Energy 

[J] 

Avg. 
Temp. 

[K] 

Avg.  
Curr. 

[A] 

Tot. 
Energy 

[J] 
4 273.1 1.500 9088 273.1 1.484 9323 273.2 2.847 35207 
20 286.1 1.000 4049 286.1 1.035 4807 286.1 2.868 34927 
45 295.6 1.000 4326 295.6 0.981 4244 295.6 2.842 35466 
5 270.0 2.000 16493 270.0 2.035 17210 270.0 2.826 35545 
46 288.4 2.000 18429 288.4 1.998 18531 288.4 2.846 39315 
50 290.4 2.000 17860 290.4 1.967 17446 290.4 2.847 38169 
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5.2. Ground Testing Results 

After examining the simulations, the same cases were run on the flight spare to 

verify the data created by the simulator. The results of these tests are shown in Table 10. 

It was found that the ground tests produced similar average temperatures, ATT currents, 

and total energy values to the simulation for the PID cases. There was a significant 

 
Figure 43: Energy comparison simulation example for a -10K temperature differential.  

 
Table 9: Percent differences in energy usage over an hour between simulated  

On-Off control and PID control. 

∆T Case % Difference 
in Energy 

Usage 
-5K 4 278% 

20 627% 
45 736% 

-10K 5 107% 
46 112% 
50 119% 

. 
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difference between the values from the ground test and the simulation for the On-Off 

cases. The percent differences between the simulation and the ground tests are shown in 

Table 11. Not only were there large differences in the values for the On-Off cases, but the 

waveforms for the two testing methods were shaped differently as well, as shown in 

Figure 44. The simulation waveforms for the PID controlled cases remained nearly 

constant throughout steady state. The ground test waveforms for the PID controlled cases, 

on the other hand, fluctuated throughout steady state.  

 

 

Table 10: Final results for the ground testing. 

 PID On/Off 

Case 

Avg. 
Temp. [K] 

Avg.  
Curr. [A] 

Tot. 
Energy 

[J] 

Avg. 
Temp. [K] 

Avg.  
Curr. [A] 

Tot. 
Energy 

[J] 
4 273.2 1.466 8882 273.2 1.593 15488 
20 286.2 0.982 4187 286.1 1.091 9986 
45 295.7 0.977 4343 295.6 1.058 9529 
5 270.2 1.951 15870 270.1 2.090 23165 
46 288.6 1.953 17939 288.5 2.040 22993 
50 2906 1.957 17485 290.5 2.048 22612 

 
Table 11: Differences between the ground tests and control simulations. 

 PID On/Off 

Case 

Avg. 
Temp. [K] 

Avg.  
Curr. [A] 

Tot. 
Energy 

[J] 

Avg. 
Temp. [K] 

Avg.  
Curr. [A] 

Tot. 
Energy 

[J] 
4 0.05% -1.20% -4.73% 0.00% -44.05% -56.01% 
20 0.02% -5.15% -12.90% -0.02% -61.96% -71.41% 
45 0.02% -0.40% 2.33% -0.02% -62.75% -73.13% 
5 0.07% -4.09% -7.79% 0.04% -26.04% -34.83% 
46 0.06% -2.20% -3.19% 0.02% -28.33% -41.52% 
50 0.06% -0.50% 0.22% 0.03% -28.06% -40.76% 
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While the ground tests proved that the PID control was indeed more efficient than 

On-Off control, the waveforms did not come out as expected. The total energy values 

from the ground tests were more reasonable than the energy values from the simulation, 

but the waveforms were not. This was a problem since the On-Off cases were supposed 

to result in currents of either 0.0A or 3.0A. Instead, they varied in discrete steps between 

0.0A and 3.0A as shown in Figure 45. 

When the experiment is current controlled, the system adjusts the voltage to allow 

the current to rise to the level it needs to be to reach the proper temperature. However, the 

program only checks the current value to adjust the voltage value every three seconds. 

Also, there is a limit to how high the voltage can rise instantaneously. That limit is 1.0V 

corresponding to 1.0A for the four TEDs in series. This means that when TED current is 

 
Figure 44: Energy comparison between the ground tests and the simulation for a 

-10K temperature differential. 
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supposed to jump to 3.0A, it will only do so in 1.0A increments every 3 seconds. This is 

not the case when the TEDs are turning off. When the TEDs are required to turn off, the 

current will instantaneously turn off instead of following the pattern it follows when the 

current rises. This explains the strange waveforms obtained for the ground tests run by 

the On-Off control method. 

 

This still did not explain the strange waveform for the PID cases during the 

ground tests. A range of gains was tested on the ground experiment to validate the gain 

value the simulation gave. To do this, average steady state electronics box temperature 

and total energy used over an hour were graphed versus the gain values. For, most cases, 

as the gain increased, temperature decreased, but only by a small increment. Second, as 

gain increased, total energy used over an hour increased. Overall, the different gains did 

not produce significant changes in temperature. So the gain predicted by the simulation 

may not be the optimum gain, but it might not make a significant difference.  

 
Figure 45: ATT current versus elapsed time for On-Off case ground test. 
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It was also noticed that there is a gain threshold that significantly impacts energy 

usage. Case 20, shown in Figure 46, is a good example of this. Temperature decreases an 

average of 0.04K with every 250A/K increase in the proportional gain; energy rises by 

over 200J with each gain increase. In addition, there is a large spike in the energy plot 

with an increase in gain from 1000 A/K to 1250 A/K; when the gain is 1250 A/K, the 

total energy used is more than twice the energy used when the gain was 1000 A/K. Up 

until a certain value between 1000 A/K and 1250 A/K for Case 20, the changes in 

proportional gain have little impact on temperature or energy consumed over an hour. 

Then, at a gain of 1250 A/K, there is a significant increase in energy usage although the 

temperature change is remains small. This is the point at which the gain becomes 

oversaturated and the control method becomes On-Off control rather than PID control. 

 

Cases 20 and 45 both demonstrate this behavior. The rest of them did not, but 

comparing the energies for both the PID control and the On-Off control, the values that 

 
Figure 46: Electronics box temperature and energy usage per hour versus gain 

for Case 20. 
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can be expected after the jump would be similar to those energy values from the On-Off 

cases. With more time, more ground testing could be conducted, and this point were the 

energy usage significantly increases could be found.  

5.3. Uncertainty Analysis 

Standard deviation and resolution of the values given by the program were 

factored into finding the uncertainty of both the delivered and calculated values. These 

results are shown in Table 12 and Table 13, respectively, for the PID controlled and On-

Off controlled simulations. The maximum uncertainty for the PID values is only ±4.00% 

once the ATT current has converged on a current value. However, the maximum 

uncertainty for the On-Off cases is much higher – over ±30%. This is because during the 

On-Off cases, the current fluctuates between 0A and 3A as opposed to fractions of an 

amp. 

 

 

Table 12: Uncertainty percentages for PID controlled simulation. 

Delivered Calculated 

Value % Uncertainty Value % Uncertainty 
Ebox Temp ±0.00% ATT Power ±4.00% 

ATT Current ±2.53% ATT Energy ±4.00% 
 
 

Table 13: Uncertainty percentages for On-Off controlled simulation. 

Delivered Calculated 

Value % Uncertainty Value % Uncertainty 
Ebox Temp ±0.01% ATT Power ±32.06% 

ATT Current ±22.63% ATT Energy ±32.06% 
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6. Conclusion and Future Work 

Active Thermal Tiles (ATTs) were tested over a range of possible methods of 

operation. Of interest in this study was the ATT’s cooling capability, heating capability 

as compared to survival heaters, and control methods efficiency.  

The cooling cases verified the ATTs cooling capacity. In all, a total of 72 cases 

were tested and two performance maps were created: a map relating the temperature 

differential to ATT current, and a map relating the temperature differential to ATT 

power. The first map (Figure 27) showed that the performance of the ATTs depends on 

the temperature gradient created between the radiator and the electronics box. This graph 

showed that low ATT currents result in a greater positive temperature differential. High 

ATT currents result in a greater negative temperature differential as expected. The rate of 

change is about 7K for every amp, and the temperature difference ranges from 20K to -

20K as ATT current increases. The second map (Figure 29) showed that as ATT power 

increases, the temperature differential will also but only to a point. At some point, joule 

heating will cause the ATTs to become less efficient. 

The heating cases were run to compare the energy ATTs used to heat compared 

with that of survival heaters. Like survival heaters, they are small, lightweight, and have 

no moving parts. However, these tests have shown that the ATTs are more efficient in 

heating than the survival heaters. While both heating options require more power to 

create larger temperature differentials, the heaters require much more of a power increase 

to create the same temperature differentials as the ATTs. Other ATT advantages over 

survival heaters include their versatility as due to connections that allow for modular 

reconfiguration and their cooling capability. 
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Then the different control methods were evaluated. There are two modes of 

control: control by tuned PID constants which will find the best current to constantly run 

the ATTs at, or control by switching the ATTs on at full power and then off. Six cases 

were run via a control program which sped up the testing process, allowed different gain 

values to be tested, and determined the optimal gain – that is, the gain that results in the 

electronics box temperature matching the set point while using the least amount of 

energy. However, running a variety of cases with varying gains using the actual test 

setup, it was found that there might not be an optimal gain. Instead, there may be a gain 

beyond which the energy consumption doubles. There is some experimental evidence of 

this behavior, but it was not demonstrated for all of the test cases. As for which control 

method is more efficient, tests have proved that the PID control is at least twice as 

efficient as On-Off control. 

In the future, there should be a more in-depth investigation into the control 

scheme for the ATTs – one that finds not only the proportional gain, but also the integral 

and derivative factors in a proportional-integral-derivative (PID) controller that allow the 

ATTs to keep the electronics box within a desired range while using the least amount of 

energy.  

Other future tests of interest would include discovering the impact that increasing 

the number of ATTs would have on several aspects of ATT performance. These cases 

would look at the effect the number of ATTs had on COP and power usage. They would 

also be geared for finding the point at which the power used to cool or heat a payload 

would outweigh the benefits adding more ATTs would give.  
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 Before testing can be expanded some aspects of the control setup should be 

changed. A board with separate grounds for the two buses which power the experimental 

setup should be manufactured. This would simplify the procedure by removing the post-

test step. Secondly, the refrigerating bath setup should also be re-evaluated. There were 

several problems with cooling the radiator that stemmed from the refrigerating baths. 

During the summer months, humidity would cause ice to form not only in the reservoirs 

of the refrigerating baths, but also on the cooling apparatuses inside. This would lower 

the efficiency and interfere with the performance tests. Upgrades should include ways to 

isolate the cooled Syltherm and cooling apparatuses from the environment to allow for 

more efficient testing.  

The data collected from these tests has been and will continue to support on-orbit 

operations. Overall, ATTs seem to be a promising component in temperature control of a 

spacecraft. ATTs have many advantages over other methods of thermal control. They 

offer heating and cooling capacity, and they have versatility as plug and play 

connections. They lack moving parts or heavy fluids and are extremely efficient when 

compared to survival heaters. For these reasons, ATTs are promising candidates for use 

on spacecraft. 
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