
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

7-5-2012

Monitoring and anomaly detection in solar thermal
systems using adaptive resonance theory neural
networks
Hongbo He

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
He, Hongbo. "Monitoring and anomaly detection in solar thermal systems using adaptive resonance theory neural networks." (2012).
https://digitalrepository.unm.edu/me_etds/13

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/13?utm_source=digitalrepository.unm.edu%2Fme_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 , Chairperson

Hongbo He

Mechanical Engineering

Andrea A. Mammoli

Arsalan Razani

Peter Vorobieff

Thomas P. Caudell

Monitoring and anomaly detection in
solar thermal systems using adaptive
resonance theory neural networks

by

Hongbo He

B.S. Thermal and Power Engineering Xi’an Jiaotong University, 2003

M.S. Thermal and Power Engineering Xi’an Jiaotong University, 2006

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2012

c⃝2012, Hongbo He

iii

Dedication

I would like to dedicate this dissertation to my mother Zulian Li, my wife Zhen

Yang and my daughter Cassiah K. He. Also, I dedicate this to the sweet memory of

my father Jianming He.

iv

Acknowledgments

I would like to thank Dr. Andrea A. Mammoli, my advisor, and Dr. Thomas
P. Caudell for their support, patience, inspiration and for introducing me to this
interesting research.

I would like to thank my other dissertation committee members Dr. Arsalan Razani
and Dr. Peter Vorobieff for their valuable insights and assistance in my studies. Many
thanks go to David Menicucci for his advisement in the process of my research. I
also wish to thank the graduate students Mario Leroy Ortiz and Donald Lincoln for
their help and support. Thanks also to Mike Edgar and Jeremy Sment for help with
the data acquisition system.

I gratefully acknowledge the financial support of this research project from Sandia
National Laboratories.

v

Monitoring and anomaly detection in
solar thermal systems using adaptive
resonance theory neural networks

by

Hongbo He

B.S. Thermal and Power Engineering Xi’an Jiaotong University, 2003

M.S. Thermal and Power Engineering Xi’an Jiaotong University, 2006

Ph.D, Engineering, University of New Mexico, 2012

Abstract

SHW systems are generally expected to last for at least 20 years with little or no

maintenance. However, in many cases failures occur far sooner due to a variety of

problems, many of which are undetected or detected long after the system has failed

because the backup heater silently assumes the heating load. Some of the failures

may cause the system to run inefficiently or even damage other system components,

such as when a system loses fluid in the solar loop and the pump runs dry, eventually

destroying itself.

In recent years there has been an increasing demand for SHW systems to become

economic and reliable. Fault Detection and Diagnosis (FDD) in SHW systems is

an important part of maintaining proper performance, reducing power consumption

and unnecessary peak electricity demand. The aim of the current work is to develop

anomaly detection system that can reliably detect both anticipated and unforeseen

vi

faults and can be implemented in commercial SHW systems without any additional

sensors to the ones commonly needed for ordinary system control.

Adaptive Resonance Theory (ART)-based neural networks are chosen to perform

this task, because the ART-based neural networks are fast, efficient learners and

retain memory while learning new patterns. In particular, the ART networks can

be incorporated into SHW system controller without any extra sensors and have the

capability of an early detection of performance degradation faults. Other benefits

of ART-based neural networks are on-line fault detection for its high computational

efficiency and no involvement of faulty data for the training process.

A testbed for SHW system reliability is developed for the purposes of investi-

gating the fault detection system. The input patterns of the fault detection system

are generated from two sensors: collector plate temperature and water tank heat

exchanger outlet temperature, which are normally installed in residential SHW sys-

tems installed by commercial operators. One of the strengths of the system is that

only few data points are needed, meaning that it will not be necessary to instrument

SHW systems with additional sensors, something which would not be acceptable in

an aggressively competitive industry where reducing costs is paramount.

The training data for the fault detection system are generated from a verified

SHW system TRNSYS (Transient Systems Simulation) model. The simulation and

experimental results show that the ART-based anomaly detection has the capability

to accurately and efficiently detect degradation and failure. Faults are detected at

various levels depending on their severity. The ART-based anomaly detection can

be used for SHW real-time reliability monitoring, as well as, eventually, in larger,

more complex systems such as commercial building HVAC systems or subsystems.

vii

Contents

List of Figures xi

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Literature review on fault detection and diagnosis 4

1.2.1 Quantitative model-based methods in energy applications . . . 5

1.2.2 Qualitative model-based methods in energy applications . . . 9

1.2.3 Process history based methods in energy applications 11

1.3 Summary . 16

2 Neural networks 19

2.1 Biological neuron model . 19

2.2 The history of neural networks . 20

2.2.1 The stage of formation . 20

viii

Contents

2.2.2 The stage of dormancy . 21

2.2.3 The stage of resurgence . 22

2.3 Typical neural network model and ART based neural networks 23

2.3.1 ART1 neural network models 25

2.3.2 The hierarchical ART neural network 32

3 Development of the SHW testbed 36

3.1 SHWRT configuration and operation 38

3.2 SHWRT Instrumentation . 42

4 TRNSYS models 46

4.1 Development of the SHWRT TRNSYS model 46

4.2 Verification of the SHWRT TRNSYS model 51

4.3 Additional verification of the TRNSYS simulation model 54

4.4 Sensitivity analysis of the TRNSYS model 65

5 Application of Hierarchical ART 69

5.1 Test A: Failed Solar Loop Pump . 77

5.2 Test B: Impeller Degradation . 78

5.3 Test C: Thermosyphon . 79

6 Experimental results 81

ix

Contents

6.1 Test A: pump fault . 81

6.2 Test B: Impeller degradation . 83

6.3 Test C: Shading . 85

7 Conclusions and future work 88

Appendices 94

A Pump controller Matlab code 95

B Hierarchical ART GUI Code 99

B.1 Graphical design part . 99

B.2 Fuzzy ART network part . 116

B.3 Other functions . 117

C Double glazed collector TYPE 242 Fortran Code 119

x

List of Figures

1.1 End-Use Sector Shares of Total Consumption, 2010 (left) and resi-

dential energy consumption by end use (right) 2

1.2 Total U.S. shipments of solar thermal collectors. Since 2000, there

has been a 5% compounded annual growth rate (CAGR). Data re-

ported in 1000’s of sq.ft. MWth is calculated based upon an interna-

tionally agreed upon conversion factor of 0.7 kWth/m2. Source: U.S.

Energy Information Administration, Form EIA-63A, “Annual Solar

Thermal Collector Manufacturers Survey”. 3

1.3 Classification of diagnostic algorithms (Venkatasubramanian et al.,

2003a) . 6

1.4 General scheme of model-based FDD method (Isermann, 2005) . . . 7

2.1 Schematic of biological neurons . 20

2.2 McCulloch-Pitts model . 23

2.3 Signum function . 24

2.4 Log-Sigmoid function . 24

xi

List of Figures

2.5 ART1 architectural diagram. A binary pattern enters the F0 layer of

the neural network from the Input System. This pattern is processed

through the F1 layer to from another pattern of inputs denoted bi

into the competitive F2 layer. After that competitive process, with

the support of the gain control node labeled GC, an F2 winning node

is chosen that in term will output a template pattern tj back into

the F1 layer. The node labeled with ρ controls the granularity of the

choice process as described in the text. 27

2.6 Hierarchical ART system architecture. The figure illustrates the first

and second layer of a possibly multi-layered tree structure. The in-

ternal structure of the ART networks, labeled with Akl, has been

simplified for clarity. As described in the text, the system is trained

with multiple presentation epochs using a training data set. During

the first epoch, the Layer 0 ART learns to classify the data with a

relatively low ρ value, generating a coarse partitioning of the data.

During the second epoch, the training data is gated into Layer 1

ARTs according to this partitioning for finer grain classification. . . 33

3.1 SHWRT in pressure mode. In this model, the heat-transfer fluid

circulation is controlled by the electric pumps, valves, and controllers. 37

3.2 SHWRT in drainback mode. In this model, the heat-transfer fluid

is pumped from the tank to the collectors by a pump and back by

gravity to the storage tank. 37

xii

List of Figures

3.3 Principal components of the SHWRT: the solar loop is composed of

the solar collector, the solar pump, the heat exchanger and either

the expansion tank (for closed loop operation) or the drainback tank

(for drainback operation). Heat is stored in a stratified hot water

tank. The load loop is composed of cold tank, load pump and chiller.

Control and data logging are operated by a computer. 40

3.4 Hourly loads used for simulating typical residential usage. A load

pump operates while the control system calculates the energy draw

in real time. The load pump stops when the load is met. 41

3.5 Lennox LSC-18 collector . 42

3.6 Thermocouple tree in the solar tank, thermocouples were placed in

approximately vertical locations for both the outside skin and the

internal tree. 43

3.7 Schematic illustration of the sensors installed in the SHWRT: ther-

mocouples (TC), pressure sensors (P), flow meters (F), solar radia-

tion sensors (Rad), current transducers (Ct). ‘Energy’ represents a

point in which the energy generated in the loop is computed. 44

3.8 Solar pump control logic . 45

4.1 TRNSYS model of the SHWRT. Parameters for collectors, storage

tanks, pumps and heat exchanger are direct representation of their

real counterparts. Weather and irradiance data are from historical

TMY2 data bases, or from direct measurement. A Matlab module

is used to implement of the controller logic. Various output devices

collect data for off-line training of the ART algorithms. 47

xiii

List of Figures

4.2 Diagrams of the modeled (left) and actual (right) water tank in the

SHW system . 49

4.3 Comparison of collector plate temperatures, predicted by the TRN-

SYS model and measured. The measurement was made using a cal-

ibrated T-type thermocouple. 53

4.4 Useful energy gain by the solar collectors 54

4.5 Predicted and measured temperatures of the tank at node 1, at the

top of the tank, node 3, near the electric heater, and at node 8, near

the tank bottom. 55

4.6 Thermal network for a double glazed collector. (a) in terms of con-

duction, convention and radiation resistances, (b) in terms of com-

bined effective resistances between plates, (c) schematic for double

glazing flat plate collector. 57

4.7 Double glazed collector plate temperature for chrome double glazed

with black chrome coated absorber surface. 61

4.8 Single glazed collector plate temperature for chrome single glazed

with black chrome coated absorber surface. 61

4.9 Temperature comparison for chrome double glazed collector outer

glazing . 62

4.10 Temperature comparison for chrome single glazed collector glazing . 63

4.11 Temperatures of the tank at node 1, at the top of the tank, node6,

near the heat exchanger, and at node 8, near the tank bottom. . . . 64

4.12 Useful energy gain by the collectors 65

xiv

List of Figures

4.13 Collector plate temperature for various values. Dips are due to the

hourly water draws. 67

4.14 Collector glazing temperature for various values. Dips are due to the

hourly water draws. 67

4.15 Collector useful energy gain for various values. Dips are due to the

decrease of flow rate and the water tank outlet temperature during

the hourly water draws. 68

5.1 Generation of new classes as a function of time, for various vigilance

parameter (ρ) values. The time required for full training increases

with increasing vigilance parameter. 71

5.2 Three-dimensional projection of the class hyperboxes generated by

training. New data points falling outside the boxes are categorized

as a novelty and flagged. 72

5.3 Typical hourly irradiance from historical weather data, and corre-

sponding high-frequency data, simulating the passage of thin clouds

between the sun and the solar collector. Note that noise was only

added to data for cloudy days. 73

5.4 Generation of new categories as a function of time, for the smooth

and noisy data sets. The vigilance parameter is ρ =0.8. 74

5.5 The hierarchy of SHW data sets generalized by a four layer Hierar-

chical ART neural network. The vigilance levels are ρ1 = 0.65, ρ2 =

0.72, ρ3 = 0.78, ρ4 = 0.87. In this example, 3, 1, 3 and 14 categories

are created in layer 1, 2, 3 and 4 respectively. 75

5.6 The training module of the GUI of the hierarchical ART 76

xv

List of Figures

5.7 The testing module of the GUI of the hierarchical ART. Stars in the

bottom plot represent the faults detected by the ART system. 76

5.8 Pump failure happens between 130 and 134 hours 78

5.9 The impeller degradation can be detected when flow rate reduces to

90% of normal . 79

5.10 Thermosyphon happens late in the day and can be detected mostly

in the first layer. 80

6.1 SHW system conditions prior to and after pump fault 82

6.2 Attempts by the hierarchical ART network to create new classes,

signifying novelty, at hour 247, when the pump fails. The severity

is low initially, but quickly becomes high, signifying major deviation

from normal conditions. 83

6.3 Attempts by the hierarchical ART network to create new classes, sig-

nifying novelty, during a test in which flow rate is gradually reduced

over the course of four days. When flow rate decreases past a thresh-

old between 30% and 40%, increasingly severe novelty is signaled,

however even small changes in flow rate are detected early on, at

appropriately low severity levels. 84

6.4 Simulated shading of collectors, obtained by moving a cover repeat-

edly through the day. 86

6.5 Shading fault detection performance for regular inputs, and average

and standard deviation of plate temperature. 87

xvi

List of Tables

3.1 Components of the SHWRT . 38

4.1 Collector type 564 properties . 48

4.2 Properties of tank Type 534 used for the SHWRT model 50

4.3 User-supplied input parameters for the chrome single glazed collector

TYPE 244 . 59

4.4 User-supplied input parameters for the chrome double glazed collec-

tor TYPE 242 . 60

4.5 Water tank TYPE 1237 parameters 63

xvii

Chapter 1

Introduction

1.1 Motivation

The market for solar hot water (SHW) systems has grown rapidly over the past

five years, following tax incentives and utility rebates. Once considered to be an

inconsequential generation source, the cumulative total energy production potential

of these systems is beginning to capture the attention of utility operators, particularly

load planners.

As shown in Figure 1.1, the residential and commercial buildings account for 42%

of total U.S. energy consumption, and 18% of the residential energy consumption is

from water heating (DOE and EIA, 2011). In many places, solar hot water systems

can provide up to 85% of the residential water heating load. The compounded

annual growth rate of total U.S. shipments of solar thermal collectors between 2000

and 2009 is about 5% (Figure 1.2). The total U.S. market value in 2009 is around

900 MWth(DOE and EIA, 2010). Due to attractive federal and state incentives, the

SHW market is currently keeping growing. In 2007, sales in the U.S. only accounted

for 0.5% of the solar water heating market, with the U.S. solar water heating market

1

Chapter 1. Introduction

Figure 1.1: End-Use Sector Shares of Total Consumption, 2010 (left) and residential
energy consumption by end use (right)

size only reaching $800 million in 2009. However, recent legislative changes provide

regulatory initiatives that could create a large market in the U.S. According to a

study done by Frantzis and Goffri (2010), 35% of all new U.S. solar domestic water

heating systems are installed in Hawaii. China overwhelmingly led 2008 installations

with 75% of global installations, but Europe is the largest solar water heating market

(in terms of revenue) with nearly half of global solar water heating market value. The

2008 global solar water heating market was $12.4 billion and industry experts expect

that this market will experience a second, high growth phase as demand for energy

efficient methods grows.

Two concerns are emerging. First, many utilities are paying rebates to customers

who install these systems based on this assumption that the systems will operate

flawlessly for their expected lifetimes, typically 20-30 years. This assumption is

almost certainly false because these systems typically contain a variety of mechanical

components whose lifetimes are less than 20 years. Second, there are few data to

define the true reliability of these fielded systems. If these systems fail in the field, the

utility must be capable of supplying a corresponding amount of energy for domestic

2

Chapter 1. Introduction

Figure 1.2: Total U.S. shipments of solar thermal collectors. Since 2000, there has
been a 5% compounded annual growth rate (CAGR). Data reported in 1000’s of sq.ft.
MWth is calculated based upon an internationally agreed upon conversion factor of
0.7 kWth/m2. Source: U.S. Energy Information Administration, Form EIA-63A,
“Annual Solar Thermal Collector Manufacturers Survey”.

water heating. This is because one of the basic problems with SHW systems is that

when failures occur in installed systems, there are few negative consequences because

the backup water heating system silently assumes the load. Unless system owners are

regularly monitoring their systems, they do not notice when the solar components

are offline due to failures. Most SHW controllers have no capability to recognize a

failure in the system or to notify the owner that a problem exists.

Thus, new tools are needed to detect failures in systems. Even more desirable

would be tools and techniques that could predict impending failures. If these predic-

tive capabilities could be integrated into existing SHW controllers at low additional

cost, the unscheduled down time that systems experience could be substantially re-

duced. New tools also can be applied to other distributed energy resources of similar

3

Chapter 1. Introduction

nature, and other systems where reliability and performance is of concern. In this

study, the first objective is to develop and validate SHW simulation model. This

model is used to collect normal operation data. The second objective is to build

a testbed to validate the SHW simulation model. The third object is to develop a

practical fault detection technique for SHW system that:

1. can be developed based only on simulation fault-free data or historical fault-free

measurement data, and no faulty training data are required;

2. does not require the installation of extra sensors;

3. is robust under different operation conditions;

4. has high computational efficiency and can be implemented in on-line system

monitoring;

5. has the capability to detect complete or degradation faults.

1.2 Literature review on fault detection and diag-

nosis

A fault detection and diagnosis system (FDD) consists of the following three tasks:

1. Fault detection: detection of the fault occurrence.

2. Fault isolation: localization of the fault, and classification of the fault.

3. Fault identification: determination of the size and cause of the fault.

Research on FDD has been active over several decades. Methods for FDD as part

of the control process are receiving an increased interest due to increasing demands on

4

Chapter 1. Introduction

reliability and safety of various types of plants, such as HVAC systems, SHW systems,

FDD in these systems are an important part of maintaining proper performance,

reducing power consumption, unnecessary peak electricity demand, reducing wear on

various equipment and the CO2 emissions. FDD also plays an important role to meet

the stringent safety requirements in some disciplines, such as nuclear engineering,

chemical engineering, and aerospace engineering.

Methods of FDD can be broadly classified into two major categories: model based

methods and process history based methods. Model based methods use various kinds

of models to diagnose the cause of failures. Model based methods can be divided

into qualitative model based methods and quantitative model based methods. In

quantitative models the relationships between the inputs and outputs are expressed

by mathematical functions. In qualitative models these relations are expressed by

qualitative terms. For example, a qualitative model predicts whether the collector

outlet temperature increases or decreases with increasing the flow rate. Process his-

tory based methods are derived from historical process data. A detailed classification

of FDD methods is shown in Figure 1.3 (Venkatasubramanian et al., 2003a,b,c).

Today, FDD methods are fully integrated into chemical plants, aerospace appli-

cations, HVAC systems, heat pumps, chillers, air handling units (AHU) system. In

this section, a review of prior work in the area of FDD methods in energy applica-

tions with quantitative model-based methods, qualitative model-based models and

process history based methods is presented.

1.2.1 Quantitative model-based methods in energy applica-

tions

Quantitative model-based methods for fault detection and diagnosis are based on a

detailed model of the underlying physical process. The model compares the outputs

5

Chapter 1. Introduction

Figure 1.3: Classification of diagnostic algorithms (Venkatasubramanian et al.,
2003a)

of the real system with the expected value to detect and diagnose faults. The study

of quantitative model-based methods began in the early 1970s. Important reviews

in the field of quantitative model-based methods include those by Chow and Willsky

(1984), Isermann (1984), Basseville (1988), Gertler and Singer (1990), Frank (1990),

Isermann (1997), Frank et al. (2000), Isermann (2005).

Using the dependencies between different measurable signals, faults can be de-

tected in the processes, actuators and sensors. These dependencies are expressed

by explicit mathematical functions. The basic structure of the model-based FDD

method is shown in Figure 1.4. After collecting input signals U, output signals Y

and non-directly measurable variables N, the detection methods create features in-

cluding residuals r, parameter estimates Θ̂ or state estimates x̂. Then they analyze

symptoms by comparing these features with expected features.

6

Chapter 1. Introduction

Figure 1.4: General scheme of model-based FDD method (Isermann, 2005)

Some quantitative model-based methods were applied in fields as diverse as of

digital aircraft control and electrocardiography (Willsky, 1976). Clark (1978a) de-

veloped a simplified observer scheme which used only one observer driven by a single

sensor output. Then other outputs were regenerated and compared with estimated

outputs. The scheme was able to detect single sensor faults and verified by some

tests with a jetfoil boat control system. Clark (1978b) also developed a dedicated

observer scheme which used several observers for single sensor outputs. The multiple

sensor faults could be detected by comparing the measured outputs with the esti-

7

Chapter 1. Introduction

mated outputs. The robustness of the dedicated observer scheme was demonstrated

with respect to variations in two important physical parameters of a jetfoil boat

control system.

FDD methods for heating, ventilation, air conditioning and refrigeration

(HVAC &R) systems were first developed and applied in the late 1980s. Stallard

(1989) and McKellar (1987) developed model-based FDD for household refrigera-

tors. Wagner and Shoureshi (1992) presented two schemes: the limit and trend

checking scheme, and innovation-based failure diagnostic strategy, and applied these

to a residential heat pump system. The innovation-based fault detection scheme

used a fourth-order nonlinear compressor and condenser model, including a variable

structure system observer. The experimental results demonstrated that the fault

diagnostics for the thermofluid systems could detect five heat pump major failures

which included condenser fan motor failure, evaporator fan motor failure, capillary

tube blockage, compressor piston leakage, and sealed system leakage.

Norford et al. (2002) developed two methods for variable-air-volume (VAV) air-

handling-units (AHUs). One method was a first-principles-based model of system

components, the other was based on semi-empirical correlations of sub-metered elec-

trical power with flow rates or process control. First-principles-based models are

considered as quantitative model types. Both methods detected nearly all of the

faults which were in the air-mixing, filter-coil, and fan sections of the AHU. Com-

pared to the first-principles-based method, the electrical power correlation method

diagnosed more faults successfully. The first-principles-based models required many

sensors and were sensitive to the occurrence of non-ideal system behavior. Gray-

box (based on partial understanding of the system) electrical power models were

based on data collected from normal system operation under closed loop control,

which makes the models less sensitive to non-ideal system behavior and less likely to

generate false alarms. Therefore, gray-box modeling methods are more robust than

8

Chapter 1. Introduction

first-principles-based methods Norford et al. (2002).

Bendapudi and Braun (2002) designed a dynamic centrifugal chiller FDD model.

This model can be applied to other chillers, but the detailed physical characteris-

tics of the system and subsystem are difficult to obtain, since other chillers should

use similar controller and compressor. As pointed out by Bendapudi and Braun,

first-principles-based models were not widely used probably due to the difficulty in

creating the models and the complexity of implementing the models in real-time fault

diagnostic systems.

Thumati et al. (2011) built an on-line model-based fault detection and isolation

(FDI) scheme for HVAC systems. This was the first reported FDI scheme for HVAC

systems which had the capability of online fault diagnostic. An observer consists

of an on-line approximator in discrete-time (OLAD). The faults were detected by

comparing the observer outputs and the HVAC system states. A simulation example

demonstrated that this FDI scheme had the capability to detect expected faults

including cooling coil degradation, leakage in thermal space or insulation degradation.

As proposed by these previous researchers, quantitative models are based on a

detailed model derived from a theoretical analysis of the physical processes. Many

sensors are needed to implement a system which can compare the model to measured

values. These models are expensive to generate and maintain. As a result, the

quantitative models are not widely used.

1.2.2 Qualitative model-based methods in energy applica-

tions

Qualitative model-based methods use qualitative modeling techniques to detect and

diagnose faults. Qualitative model-based methods can be further divided into causal

9

Chapter 1. Introduction

models and abstraction hierarchies. The causal models are divided into three cate-

gories: signed digraphs (SDG), fault trees, and qualitative physics. The abstraction

hierarchies include those based on functional abstraction hierarchy models as well as

those based on functional abstraction hierarchy models. The bond graphs, case-based

reasoning and rule-based systems are also considered as qualitative model types.

The signed digraphs (SDG) use graphical models to capture the root cause. A

SDG is usually built by nodes and directed arcs, in which the nodes indicate state

variables, failure origins and alarm conditions, and directed arcs show the relationship

between these nodes. Shiozaki and Miyasaka (1999) developed a VAV AHU fault

diagnosis tool using SDG. A real-time fault diagnosis system could be created using

this tool. Maurya et al. (2003a,b) presented SDG methods which were used for safety

analysis and fault diagnosis in chemical process systems.

Fault tree analysis (FTA) converts the physical system into a structured logic

diagram in which the event symbols and logic symbols are used. FTA includes the

following four steps: system definition, fault-tree construction, qualitative evaluation,

quantitative evaluation (Fussell et al., 1974). Hessian et al. (1990) used FTA to diag-

nose faults for an existing control-room HVAC system. This logic-based methodology

was incorporated into the operating system design to improve system reliability.

Rule-based systems consist of a set of in-then-else rules which contains all of

the appropriate knowledge, a temporary working memory, and an inference engine

which examines all the rule conditions to draw conclusions. Luskay et al. (2003)

used rule-based models to diagnose the operating conditions of an AHU. However

this kind of models can be difficult to use for real-time diagnosis. For example, in

order to examine the outdoor-air temperature sensor, the outdoor-air damper was

required to close completely, then when the system reached steady-state, compared

the return-air temperature and the average mixed-air temperature. If the return-air

temperature was equal to the average mixed-air temperature, then the outdoor-air

10

Chapter 1. Introduction

temperature sensor was classified as faulty.

House et al. (2001) presented an air-handling unit performance assessment rules

(APAR) for fault detection in AHU. The APAR rules were based on qualitative

models. The simulation results showed that a stuck outdoor air damper and a manual

override of the control signal to the mixing box dampers were detected by the APAR.

Furthermore, the APAR was used by Schein et al. (2006) for fault detection in AHUs.

The expert rules in the APAR were derived from mass and energy balances. The

simulation and experimental results demonstrated that the APAR could detect a

variety of sensor, actuator, and control logic faults. It was possible to embed APAR in

commercial building AHU controllers. Schein and Bushby (2006) built a system-level

hierarchical FDD tool for HVAC systems. The advantage of this hierarchical FDD

tool was that it has the capability to infer a higher-level fault from multiple lower-

level fault reports. Other similar rule-based models for AHU and HVAC systems

were described by Katipamula et al. (1999, 2003).

Compared to quantitative models, qualitative models are easy to develop and ap-

ply, and can identify faults because the models are based on cause-effect relationships.

However, qualitative models are specific to a system and it is difficult to develop a

complete set of rules for complex systems, and as a consequence, qualitative models

are not widely used in complex systems.

1.2.3 Process history based methods in energy applications

Process history based methods are based on a large amount of historical process

data and use a priori knowledge to extract features. According to the extraction

process, the methods are divided into quantitative and qualitative methods. Meth-

ods that extract qualitative information include expert systems and qualitative trend

analysis (QTA). Quantitative methods include neural networks and statistically de-

11

Chapter 1. Introduction

rived models. Statistical models include those based on principal component analysis

(PCA)/partial least squares (PLS), and statistical classifiers.

Expert systems are computer programs which use a specialist’s knowledge to

solve specialized problems in a narrow field. Expert systems have been widely used

for fault diagnosis in many fields. Early papers about applications of expert systems

to fault diagnosis can be found in Nelson (1982); Kumamoto et al. (1984); PAU

(1986); Cardozo and Talukdar (1988). Kilma (1990) developed an expert system

for operational problems trouble-shooting in solar hot water systems. Based on an

expert system, Kaldorf and Gruber (2002) built a diagnostic tool-performance audit

tool (PAT) to supervise building performance. The faults, underperformance or ab-

normalities could be automatically detected by the PAT. Tassou and Grace (2005)

described a fault diagnosis system based on an expert system and fuzzy Jave toolkit

(a set of Jave classes which deal with fuzzy concepts and reasoning) for vapour com-

pression refrigeration systems. The fault diagnosis system was able to detect gradual

leakage and over charge conditions. Venkatasubramanian et al. (2003c) described the

application of expert systems in process industries while Patel and Kamrani (1996)

summarized the application of expert systems for diagnosis and maintenance.

PCA, an effective tool in multivariate data analysis, reduces the original set

of correlated parameters to a reduced set of uncorrelated parameters (i.e. PCs).

PCA has been widely used in the FDD field. Wang and Xiao (2004) described a

FDD strategy based on PCA to detect degradation sensor faults in typical AHU.

The PCA models were based on heat balance and pressure-flow balance. Li (2009)

developed a automated fault detection and diagnosis (AFDD) methods based on

PCA for AHU. He applied the two PCA methods which included wavelet-PCA and

pattern matching-PCA to the HVAC system of the Iowa Energy Center Energy

Resource Station.

Neural networks have been broadly used in many areas including fault diagnosis.

12

Chapter 1. Introduction

The most popular neural networks are the back-propagation neural networks and

multi-layer perceptron neural networks (described in more detail later). Lee et al.

(1996) described a fault diagnosis method for AHU using back-propagation neural

networks. The training data include normal and faulty data collected from steady-

state operating conditions. The method consisted of two steps. First, the value of the

cooling coil valve control signal was predicted by back-propagation neural networks.

Then seven residual symptoms were used to define eight kinds of faults by a type of

if-then reasoning. This method was verified by experimental data and identified each

fault. In this method all the faults detected, such as the failure of the supply fan or

the return fan, were severe problems, but the system could not detect performance

degradation at the early stages. This method was used for steady state and could

not applied for transient state. In addition, if a new fault was added to the system,

it is necessary to retrain the system by back-propagation and possibly to add new

residual symptoms.

Lee et al. (1997) developed a fault diagnosis system for AHUs using a two-stage

artificial neural network (ANN). The operation of the AHU was divided into vari-

ous subcategories: normal, pressure control subsystem fault, flow control subsystem

fault, cooling coil subsystem fault, mixing box damper subsystem, and an unknown

type of fault. A fault occurring in a subsystem was classified by the stage one ANN,

then the cause of the fault was identified by the stage two ANN. The system was

able to identify eleven faults. If the failure of the supply air temperature sensor was

detected, a regression equation was used to recover an estimate for the supply air

temperature, then the cooling coil valve controller used this information to set the

supply air temperature to the setpoint value. This method was based on steady state

conditions and demonstrated by a simulation model of a laboratory-scale AHU.

Li et al. (1996) presented a fault diagnosis method for a heating system using

two multi-layered feed-forward neural networks with a tan-sigmoid transfer function.

13

Chapter 1. Introduction

This method was designed to diagnose seven failures. The first ANN was used to

discriminate the failure of heating curve (or an outside temperature reset, which con-

trols the supply water temperature) from the other failures and the second ANN was

able to classify the other six failures. Both ANNs were trained using an improved

back-propagation algorithm. Simulation results demonstrated that this method was

able to diagnose seven failures, with the exception that the first ANN could not

discriminate the heating curve from the other failures. Li et al. (1997) also built

another neural network prototype for fault detection and diagnosis of heating sys-

tems, in which ANN was also trained with an improved back-propagation algorithm.

The training data were collected from a simulation model of a reference heating

system. Then the prototype was tested on four other heating systems. The results

demonstrated that the ANN has the capability to diagnose faults in heating systems.

Morisot and Marchio (1999) built a fault detection model for a variable air vol-

ume (VAV) system using multi-layer perceptron neural networks. The training data

were collected from a dimensionless physical model which was specific for that VAV

system. The simulation results demonstrated that this model could detect two kinds

of faults: fouling and sensor deviation.

Lee et al. (2004) explored a subsystem level FDD scheme for AHU based on

general regression neural networks (GRNN). The scheme had three steps: process

estimation, residual generation and fault detection and diagnosis. No mathemat-

ical models were used to estimate the system and GRNN had a high computa-

tion efficiency. This method was suitable for real-time FDD. The simulation results

demonstrated that the GRNN was able to diagnose several abrupt and performance

degradation faults.

Du and Er (2004a,b) built a fault diagnosis method for AHU using dynamic

fuzzy 1 neural networks (DFNNs). DFNN was based on the ellipsoidal basis function

1or fuzzy logic, which deals with reasoning that is approximate rather than fixed and

14

Chapter 1. Introduction

(EBF) neural network and had four layers: input pattern in layer 1, membership

function in layer 2, possible IF-part for fuzzy rules in layer 3, and the THEN-part

for fuzzy rules in layer 4. The normal and faulty data were collected form an AHU

simulation model by MATLAB. The inputs were the residuals calculated at steady-

state conditions. The simulation results demonstrated that the training and diagnosis

processes were fast and the diagnosis rate was high.

Kalogirou et al. (2008) developed a fault diagnosis system for SHW systems

based on multi-layer perceptron neural networks. This fault diagnosis system could

detect two types of faults: collector faults and faults in insulation of the pipes. The

training data for this system required many sensors which are not typically installed

in residential SHW systems, such as a global radiation sensor, incidence angle sensor,

wind speed sensor. Moreover, these models have four limitations. First, most models

can not be used to extrapolate beyond the range of the training data. Second, a large

amount of training data are needed to represent both normal and faulty operation.

Third, the generalization of these models is very limited as they are specific to a

system or process. Fourth, extra sensors must be installed to collect training and

testing data.

Du et al. (2010) described a FDD strategy based on an Efficient Adaptive Fuzzy

Neural Network (EAFNN) method for an AHU. The structure of EAFNN was based

on the EBF which mentioned by Du and Er (2004a,b). The main advantage of the

EAFNN was that the unneeded hidden units were removed by Error Reduction Ratio

(ERR) method and a modified Optimal Brain Surgeon (OBS) technology. Comparing

with other earlier works, such as back-propagation (BP) based method, radial basis

function (RBF) based method and DFNN, the EAFNN had much lower root mean

square error (RMSE) than other methods. Simulation results demonstrated that this

method resulted in fast and efficient learning.

exact

15

Chapter 1. Introduction

Zhu et al. (2012) designed a FDD method for sensors in an AHU based on neural

network pre-processed by wavelet and fractal (NNPWF). The normal, faulty and

transitional operation conditions of the sensors data from the building automation

systems were collected for the training. The data were decomposed by three-level

wavelet analysis and the fractal dimensions information were extracted for the inputs

of a three-layer neural networks. Normal, faulty and transition operation conditions

could be identified by comparing the prediction with the objective vectors. Perfor-

mance test results showed that the diagnosis efficiency of the NNPWF was high and

this method could be used to diagnose other faults in HVAC systems.

1.3 Summary

Methods of fault detection and diagnostics (FDD) can be broadly classified into

three major categories: quantitative model-based methods, qualitative model-based

methods, and process history based methods (Venkatasubramanian et al., 2003a,b,c).

The quantitative models are based on a detailed model derived from a theoretical

analysis of the physical processes. Many sensors are needed to implement a system

which can compare the model to measured values. These models are expensive to

generate and maintain. Comparing to quantitative models, qualitative models are

easy to develop and apply, and can identify the faults because the models are based

on cause-effect relationships. However, qualitative models are specific to a system

and it is difficult to develop a complete set of rules for complex systems. Various

quantitative and qualitative model-based methods for FDD of building systems have

been presented in the literature.

Process history based methods are based on a large amount of historical process

data and use a priori knowledge to extract features. Neural networks are an im-

portant class of process history based methods. Neural networks are able to detect

16

Chapter 1. Introduction

and identify faults with high computation efficiency and can be embedded in SHW

operation and control systems.

For the case of neural network-based FDD methods, it is important to note that

in most of the cases described neural networks are trained to learn the steady-state

relationship between the dominant symptoms and the faults, and fault diagnosis is

based on the symptoms and dominant residuals. Only faults with the corresponding

dominant symptoms can be diagnosed, but faults with new symptoms can not be

detected. These methods are used for steady state and cannot applied for transient

state. In addition, faults with dominant symptoms are severe abrupt failures or

complete faults, and the methods are not effective for performance degradation faults.

In many cases, it was necessary to install many extra sensors which are not normally

installed in commercial SHW systems, such as a global radiation sensor, incidence

angle sensor, wind speed sensor. The generalization of these models is generally very

limited as it is specific to a system.

SHW systems are generally expected to last for at least 20 years with little or no

maintenance. However, in many cases failures occur far sooner due to a variety of

problems, many of which are undetected or detected long after the system has failed

because the backup heater silently assumes the heating load. Some of the failures may

cause the system to run inefficiently or even damage other system components, such

as when a system loses fluid in the solar loop and the pump runs dry, eventually

destroying itself. In recent years there has been an observed increasing demand

for SHW systems to become economic and reliable. FDD in SHW systems is an

important part of maintaining proper performance, reducing power consumption

and unnecessary peak power demand. The aim of the current work is to built a FDD

method for SHW systems which can be implemented in commercial SHW systems

without any extra instruments and is able to detect the performance degradation

faults at the early stage. ART-based neural networks are chosen, because the ART-

17

Chapter 1. Introduction

based neural networks can be incorporated into SHW systems without any extra

sensors and have the capability of an early detection of performance degradation

faults. Other benefits of ART-based neural networks are the possibility of on-line

fault detection allowed by high computational efficiency, and the ability to detect

fault conditions without exposure of “faulty” training data.

18

Chapter 2

Neural networks

Neural network consists of neurons, simulate human brain structures and informa-

tion processing (Haykin, 1998). The topic of neural network is a interdisciplinary

subject with application in artificial intelligence, pattern recognition, automatic con-

trol, cognitive science, neuroscience, nonlinear dynamical systems and meteorology,

among many others.

2.1 Biological neuron model

There are about 100 billion neurons in the brain. Neurons are cells that process and

transmit information by electro-chemical signals. As shown in Figure 2.1, a typical

neuron consists of soma or cell body, axon, dendrites and synapse. The dendrites are

tree-like receptive networks of nerve fibers that receive activation from other neu-

rons to the cell body. The cell body processes and thresholds the incoming activation

and convert it into output activation. The output activation was then carried out

by the axon, a single long fiber, to other neurons. The cleft between an axon of

one cell and a dendrite of another cell is called a synapse. The signal transmission

19

Chapter 2. Neural networks

through a synapse is by diffusion of chemicals called neuro-transmitters. The func-

tion of a neural network is jointly determined by the neurons and the strengths of

the synapses. An artificial neuron is a simple model of the biological neuron by a

simplified mathematical function, as shown in Figure 2.2.

Figure 2.1: Schematic of biological neurons

2.2 The history of neural networks

2.2.1 The stage of formation

During the formative stage, from 1943 ∼ 1969, a number of researchers developed

many neural network models and learning rules. The McCulloch-Pitts neuron model

was developed by the psychiatrist McCulloch and mathematician Pitts in 1943, un-

covering the prelude of correlatively international research about neural networks

20

Chapter 2. Neural networks

(McCulloch and Pitts, 1943). The structural of McCulloch-Pitts model is described

in section 2.3. In 1949 the Hebbian learning rule was proposed by neuropsychologist

Hebb, which states that the synapse between tow neurons should be strengthened if

the two neurons are active across the synapse (Hebb, 1949). In 1958 Rosenblatt pro-

posed the perceptron, which is the first model for classification of patterns, but can

only be applied in a convergent way if linearly separably (Rosenblatt, 1958). In 1960

Widrow and Hoff developed the Adeline neural network which is a adaptive linear

neuron network. Adeline neural networks adjust their weights during the training

process until the output is expected for the given input (Widrow and Hoff, 1960).

2.2.2 The stage of dormancy

In 1969 Minsky and Papert showed that there were many fundamental problems with

perceptron-like networks. A perceptron is the simplest type of neural network and

is also thought of as a binary classifier. For example, simple perceptrons can only

solve linearly separable problem, and cannot learn the logical function of exclusive-

or (XOR) (Minsky and Papert, 1969). These studies lead to the conclusion that

although perceptrons were interesting to study, they were ultimitely a ‘sterile’ direc-

tion of research. Influenced by Minsky and Papert, in combination with computer

hardware limitations, many researchers left this field.

Nevertheless, some researchers did some important work during the 1970s. In

1972 Kohonen developed a correlation matrix model for associative memory. The

model was trained by Hebb rules and was able to learn an association between a set

of inputs and outputs. The correlation matrix memories was able to classify data

(Kohonen, 1972). At the same time, Anderson developed a linear associator model

for associative memory, which was similar as Kohonen’s mode (Anderson, 1972).

Grossberg started to work on self-organizing networks (Grossberg, 1976a,b).

21

Chapter 2. Neural networks

2.2.3 The stage of resurgence

Neural networks re-emerged in the early 1980s. In 1982 the Hopfield network was

proposed by John Hopfield, which significantly contributed to the new era of neu-

ral networks (Hopfield, 1982). A Hopfield network is a type of recurrent network,

which could solve complex computational problem by using an energy function. The

now popular backward propagation of error learning method was first introduced

by Bryson and Ho (1969). In 1986 the back-propagation algorithm was developed

(Rumelhart et al., 1986). In the same year, summaries of the back-propagation algo-

rithm and multilayer perceptrons were given by Rumelhart and McClelland (Rumel-

hart and McClelland, 1986a,b). Other researchers also developed new neural network

models, such as adaptive resonance theory (ART). This neural architecture was de-

veloped by Grossberg and Carpenter (Carpenter and Grossberg, 1987; Carpenter

et al., 1991b). The self-organizing map (SOM) was created by Kohonen (Kohonen,

1990), and the Boltzmann machine, a type of stochastic recurrent neural network,

was invented by Hinton and Sejnowski (Ackley et al., 1985).

Two new concepts were primarily responsible for the resurgence of interest in

neural networks. The first was the Hopfield network which is a recurrent network with

symmetric synaptic connections. Hopfield explained the operation of this model with

the use of statistical physics. This paved the way for future research about realistic

models for neurobiological systems. The other important development was the back-

propagation algorithm which was used to train multilayer perceptron networks. The

back-propagation algorithm was the answer to the earlier critique of perceptrons

(Minsky and Papert, 1969). These new concepts and the availability of powerful new

computers promoted the innovation and development of the field of neural networks,

and neural networks have since been applied in many disciplines.

22

Chapter 2. Neural networks

2.3 Typical neural network model and ART based

neural networks

Figure 2.2: McCulloch-Pitts model

Neural network consists of neuron models. A typical McCulloch-Pitts model

(McCulloch and Pitts, 1943) is shown in Figure 2.2. The j-th neuron has many

inputs xi. The inputs x1,x2,. . . , xn are weighted by the weights w1j,w2j,. . . , wnj

respectively. The j-th neuron net input Nj is the summation of the weighted inputs:

Nj =
∑
i

wjixi. (2.1)

Letting yj be the j-th neuron output, the McCulloch-Pitts model is written as:

NETj =
∑
i

wijxi − θj (2.2)

yj = f(NETj), (2.3)

23

Chapter 2. Neural networks

where the θj is the bias of j-th neuron, NETj is the net input into the j-th neuron

and the activation function f is a hard threshold defined by signum function. As

shown in Figure 2.3, if the net input is larger than the bias, then the output yj is 1,

otherwise the output is -1.

Figure 2.3: Signum function

Consideration of time delay (between input and output), leads to an output of

the McCulloch-Pitts model which can be expressed as:

yj(t+ 1) = f(
∑
i

wijxi(t)− θj), (2.4)

where t is the time step.

Multi-layer perceptrons consist of McCulloch-Pitts neurons, in which the acti-

vation functions are usually nonlinear functions, such as the Log-Sigmoid function

shown in Figure 2.4.

Figure 2.4: Log-Sigmoid function

24

Chapter 2. Neural networks

The output range of the Log-Sigmoid function is from 0 to 1, and the Log-Sigmoid

function is defined as:

y =
1

1 + e−NET
. (2.5)

The McCulloch-Pitts model is a single layer perceptron and can be trained

for classification. But it can only solve linearly separable problem. The back-

propagation algorithm is the most popular algorithm for the supervised training

of multilayer perceptrons. It can be used for nonlinear classification problems. But

the training process is time consuming, and risks being trapped in a local minimum.

Once trained, the back-propagation network can’t recognize new patterns appear-

ing in a problem, or will give wrong predictions. In order to add the new patterns

into the network, the network has to be retrained. The generalization ability of

back-propagation network is limited.

2.3.1 ART1 neural network models

The objective of this research is to use adaptive resonance theory (ART) networks

to build a fault detection system. ART networks are a type of ANN with many ad-

vantages compared to more commonly used neural network systems (such as multi-

layer perceptrons) that were used to monitor and diagnose SHW systems. ART is

a well-established self-organizing neural technique for categorizing input patterns,

characterized by rapid, stable learning and high computational efficiency. Several

types of networks belong to the ART class. Here, the simplest of these, the ART1

architecture, is described briefly. The network has three layers, as depicted in Fig-

ure 2.5: input layer F0, the comparison layer F1 and the category layer F2. The

input vectors are normalized and use complement coding which can represent both

the presence and absence of features (Carpenter et al., 1991a). There are n neurons

(ui, i = 1, 2, . . . , n) in layer F1. Each of these has three inputs: one is from layer F0

25

Chapter 2. Neural networks

(representing bottom-up sensory information), one is the feedback signal from the

recognition layer F2 (representing top-down category expectation), while the third

is a signal from the gain control Gi. Each neuron in layer F1 has binary output ci

defined by:

ci = ci(xi, ti, Gi) =

 1, at least two inputs are 1

0, otherwise
, (2.6)

where xi is the i-th component of the bottom-up weights, and ti is the i-th component

of the top-down weights.

There arem neurons (uj, j = 1, 2, . . . ,m) in the recognition layer F2. Each neuron

in layer F1 is connected to all neurons in layer F2 through a bottom-up weight matrix

B = (bji)n×m, where bji represents the weight to neuron uj in layer F2 from neuron

ui in layer F1. Conversely, the analog output of each neuron in layer F2 is connected

to all neurons in layer F1 through a top-down weight matrix T = (tij)m×n, where

tij represents the weight from neuron uj in layer F2 to neuron ui in layer F1. The

matrices B and T both perform long-term memory (LTM) functions.

The input to the j-th neuron in layer F2 from layer F1 is given by

µj = xTBj =
n∑

i=1

bjiui, (2.7)

where Bj is the j-th column of the bottom-up weight matrix B.

The function µj (also known as the choice function) calculates a measure of

similarity between the input pattern (x1, x2, . . . , xn)
T and the LTM pattern stored in

Bj. In the comparison process represented by equation 2.8, the largest µj is chosen.

µj∗ = max
1≤j≤m

{µj}. (2.8)

The corresponding neuron uj∗ activates while inhibiting all other neurons in F2

(‘winner take all’ competition rule). If there are more than one maximum values,

26

Chapter 2. Neural networks

Figure 2.5: ART1 architectural diagram. A binary pattern enters the F0 layer of
the neural network from the Input System. This pattern is processed through the
F1 layer to from another pattern of inputs denoted bi into the competitive F2 layer.
After that competitive process, with the support of the gain control node labeled
GC, an F2 winning node is chosen that in term will output a template pattern tj
back into the F1 layer. The node labeled with ρ controls the granularity of the choice
process as described in the text.

the neuron j with the smallest index is chosen, resulting in the F2 output R, given

by:

R = {r1, . . . , rj∗ , . . . , rm}T

= {0, . . . , 1, . . . , 0}T . (2.9)

27

Chapter 2. Neural networks

The gain control G1 sends excitatory signals to the neurons in layer F1 and is

expressed by

G1 =

1,

n∪
i=1

xi ̸= 0 and

m∪
j=1

rj = 0

0, otherwise

, (2.10)

where ∪ is the union operation, xi is the i-th component of the bottom-up weights,

and rj is the j-th neuron output in layer F2. If there is an input vector x and output

from layer F2 R= 0, then G1=1. On the other hand, the gain control G2 is defined

by

G2 =

1,

n∪
i=1

xi ̸= 0

0, otherwise

. (2.11)

The gain control signal G2 depends only on the input vector x. If there is an

input vector, then the recognition is activated in layer F2.

The weight vector Tj∗ which is the column in T associated with the winner j∗,

representing feedback from the recognition process, is

tij∗ =
m∑
j=1

tijRj, (2.12)

where the tij is binary valued. A vigilance subsystem operated by the reset controller

in Figure 2.5 checks the appropriateness of the active F2 neuron, according to :

γj∗ =
|x ∩ Tj∗ |

|x|
≥ ρ, (2.13)

where |x| is the 1-normal |x| =
∑N

i=1 xi,∩ is the intersection operation, and ρ ∈ (0, 1]

is the vigilance parameter.

28

Chapter 2. Neural networks

If equation 2.13 is satisfied, then j∗ remains the winning neuron in the layer F2.

If not, the vigilance subsystem resets the current active neuron in layer F2 by forcing

γj∗ = 0. Another active neuron in layer F2 is chosen with maximum µj; this process

continues until a winning neuron j∗ in layer F2 satisfies the vigilance subsystem.

If no neuron satisfies the vigilance subsystem, then a new F2 neuron is recruited

(corresponding to a new class) and m is incremented by 1. This last mechanism is

what allows an ART network to learn new classes of pattens without losing prior

learning. High values of the vigilance parameter ρ result in fine-grained memory

with many classes which are the categories created in the layer F2, while low values

of ρ produce few broad classes. While in theory, learning could go on indefinitely by

adding new neurons to F2, a maximum number is set in practice.

In summary, the dynamics of the ART1 neural network can be described in the

sequence of instructions below.

1. Initialize:

m = 1 (2.14)

bji(0) =
1

n+ 1
(2.15)

tji(0) = 1 (2.16)

2. Read Input Pattern: present a binary pattern x = [x1, . . . , xn], where xi ∈

{0, 1}

3. Calculate the similarity µj (see Eq. 2.7)

4. Choose F2 node j∗ that satisfies Eq. 2.8

5. Perform vigilance criterion check

γj

 ≥ ρ, go to step 7

< ρ, go to step 6
(2.17)

29

Chapter 2. Neural networks

6. Mismatch reset:

Neuron j∗ in layer F2 is inhibited by forcing γj∗ = 0. Go to step 3, find

the maximum µj from the remaining neurons. If none of the µj satisfies the

vigilance criterion, then go to step 8.

7. Update weights

tij∗(p+ 1) = tij∗(p)xi (2.18)

bj∗i(p+ 1) =
tij∗(p)xi

α +
∑

i tij∗(p)xi

(2.19)

tij(p+ 1) = tij(p) (2.20)

bji(p+ 1) = bji(p), j ̸= j∗ (2.21)

where p is the index of the current timestep, and α is the choice parameter.

Go to step 2.

8. Create new F2 neuron, corresponding to new category. Set:

m = m+ 1 (2.22)

tim = 1 (2.23)

bmi =
1

n+ 1
(2.24)

Go to step 2.

Note that the long-term memory is updated in step 7. Short-term memory (STM)

operations, on the other hand, occur in the comparison and the recognition processes.

In some cases, for example when supervising the operation of thermo-mechanical

processes, inputs to the supervisory system are analog rather than binary. With

minor modifications, the ART1 network architecture can be used for this purpose.

This type of network, Fuzzy ART, has the same structure as the ART1 system, with

three main differences:

30

Chapter 2. Neural networks

1. The input patterns of Fuzzy ART can be analog (real valued), with xi ∈ [0, 1],

or binary valued, with xi ∈ {0, 1}.

2. Top-down weight vectors and bottom-up weight vectors are the same, i.e. B =

T T = W .

3. The intersection operation in the µj, in the learning rule and in the vigilance

criterion, is replaced by the fuzzy MIN operator ∧:

(x ∧ y)i = min(xi, yi). (2.25)

4. The weight vector wJ is updated according to the equation:

w
(new)
J = β(I ∧ w

(old)
J) + (1− β)w

(old)
J , (2.26)

where β is the learning rate, usually 1 for “fast learning” and β < 1 for “slow

learning”.

Compared with other neural networks, ART networks have the following advan-

tages when applied to monitoring and automatic detection for SHW systems:

1. An ART network is an unsupervised neural network, and is able to learn new

classes without weakening previously learned classes. The previously learned

knowledge is stored in the long-term memory. For most of the neural network

algorithms (such as multi-layer perceptron, back-propagation, radial basis func-

tion), when the training process is finished, these neural networks can be used

when the problems have stationary domain. If new patterns appear at their

inputs, these neural networks can not recognize these new patterns or will give

wrong predictions. In order to add the new patterns into the networks, both

the new and previous classes have to be retrained. These neural networks are

not suitable for the systems which operate in possibly noisy and unstationary

environments, such as SHW systems which are severely affected by weather

conditions and residential usage.

31

Chapter 2. Neural networks

2. An ART network has high computational efficiency and the training process

is much faster compared with multi-layer perceptron, back-propagation, radial

basis function. An ART network is suitable for the implementation of on-line

monitoring and automatic detection.

3. The monitoring and automatic detection based on ART network can be imple-

mented in larger, more complex systems such as commercial building HVAC

systems or subsystems.

2.3.2 The hierarchical ART neural network

By varying the vigilance parameter, it is possible to set the classification strategy

of an ART (binary or fuzzy) network from very coarse to very fine-grained. An

excessively fine-grained classification could result in many false alarms, while an

excessively coarse classification could miss important signals of a developing failure.

To overcome this dilemma, it is possible to utilize a series of ART networks, which are

connected in a hierarchical structure (Caudell et al., 1994). In these, an initial coarse-

grained classification (i.e. with low vigilance parameter) is followed by subsequent

finer-grained ones (with successively higher vigilance parameter).

A hierarchical ART (HART) network is illustrated in Figure 2.6, and an input

pattern under examination traverses from bottom to top. At the lowest level, the

pattern is either classified into an existing class, or a new class is created if the

pattern is novel. At this level, the vigilance parameter ρ00 is low, and the number

of classes is small. Novelty only arises if the pattern is substantially different from

any of the existing ones, such as would be the case for the catastrophic failure of

an important system component. Accordingly, creation of the new class would gen-

erally be associated with a ‘high-severity’ alarm. Following classification or novelty

detection (new classes which are created in the category layer), the input pattern

32

Chapter 2. Neural networks

Figure 2.6: Hierarchical ART system architecture. The figure illustrates the first
and second layer of a possibly multi-layered tree structure. The internal structure
of the ART networks, labeled with Akl, has been simplified for clarity. As described
in the text, the system is trained with multiple presentation epochs using a training
data set. During the first epoch, the Layer 0 ART learns to classify the data with a
relatively low ρ value, generating a coarse partitioning of the data. During the second
epoch, the training data is gated into Layer 1 ARTs according to this partitioning
for finer grain classification.

is routed to an ART network at the next level up, that is uniquely associated with

the class just chosen. All ART networks at this new level are characterized by a

vigilance parameter ρ1i > ρ00. Note that in principle each ρ1i could take different

values, although in the present case a single vigilance parameter (ρk) for each level k

is adopted. The input pattern is again classified, and either matched with an existing

class, or, if the pattern is novel, a new class is created. Novelty at this level may

result from a less severe failure, from progressive component degradation, or from

hitherto unseen, but normal operating conditions, a fairly common occurrence in re-

newable energy systems. An alarm would still be issued when the novelty is detected,

but with reduced severity (Caudell and Newman, 1993). The input pattern is then

33

Chapter 2. Neural networks

passed up the tree to the ART network at the next level until the penultimate level

is reached.

For the specific case of a cascade of Fuzzy ART modules (Caudell et al., 1994),

the specific steps for hierarchical classification of an input pattern are:

1. Initialize:

Set the number of layers, L+ 1,

Set the vigilance parameter, ρ0 < ρ1 < · · · < ρL,

Set the initial weights, wk:ij = 1

2. Read Input Pattern:

Present an analog pattern x = {x1, . . . , xn}T , where xi ∈ [0, 1]

3. Bottom-up and top-down learning process:

Input pattern for layer k is xk, (0 ≤ k ≤ L)

Input pattern for layer k + 1(k ≤ L) is xk+1 = xk

In layer F1K , if the class j of F2k is active and Fuzzy ART module k− 1 is in

resonance, y1k = xk ∧ wk:j; else y1k = xk.

In layer F2k, if the class j of F2k is active and Fuzzy ART module k − 1 is in

resonance, y2kj = 1; else y2kj = 0.

If the module k − 1 is in resonance, µk
j is calculated by

µk
j =

|xk ∧ wk:j|
α+ |wk:j|

, (2.27)

where α is the choice parameter. Note that α should be set to a small positive

value for single pass convergence with Fuzzy ART.

The vigilance criterion for layer k is

34

Chapter 2. Neural networks

|wk:J ∧ xk|
xk

≥ ρk (2.28)

where the index J corresponds to the maximum value of µk
j .

4. Update weights:

If the active class in layer F2k is J and inequality 2.28 is true, then update the

weights:

wnew
k:J = β(xk ∧ wold

k:J) + (1− β)wold
k:J (2.29)

5. Go to step 2 until no new class is created and the weights are stable.

The development of the ART networks used in this work is described in this

chapter. The training data for the ART network can be collected from historical

fault-free measurement or simulation models. In this study, training data for the ART

networks are generated by simulation. The SHW simulation model and verification

of the ART-based fault detection system by experiment and simulation are described

in the following chapters.

35

Chapter 3

Development of the SHW testbed

To demonstrate the capacity of ART-based neural networks to detect and predict

faults on a residential SHW system, a replica of a typical installation was constructed

- the solar hot water reliability testbed (SHWRT)(Menicucci et al., 2011). It has the

capability of being configured to represent two kinds of SHW systems, a closed-loop

active one (usually found in colder climates, with glycol-water antifreeze mixtures as

the heat medium, see Figure 3.1) and a drainback one (prevalent in warm climates,

with distilled water as the heat medium, see Figure 3.2).

In closed-loop active system, the system consists of collectors, pipes, pump, au-

tomatic valves, a storage tank, an expansion tank and heat exchanger. The pump is

controlled by a differential temperature controller. One temperature sensor is in the

solar collector, and one temperature sensor is in the water tank. When the temper-

ature of the collector is higher than the temperature in the water tank, the pump

will start to run, continuing until the collector cools. In this model, the heat-transfer

fluid is pumped from the tank to the collectors by a pump and back by gravity to

the storage tank. Compared to the closed-loop active system, this system has no

check valves and no expansion tank, and requires less maintenance.

36

Chapter 3. Development of the SHW testbed

Figure 3.1: SHWRT in pressure mode. In this model, the heat-transfer fluid circu-

lation is controlled by the electric pumps, valves, and controllers.

Figure 3.2: SHWRT in drainback mode. In this model, the heat-transfer fluid is

pumped from the tank to the collectors by a pump and back by gravity to the

storage tank.

37

Chapter 3. Development of the SHW testbed

3.1 SHWRT configuration and operation

Two principal features distinguish the SHWRT from a typical installation (Menicucci

et al., 2011):

1. The SHWRT is much more highly instrumented than a typical residential sys-

tem, so that every detail of its operation is known, for the purposes of post-

failure diagnosis, discovery of important monitoring parameters, etc.

2. While in a residential system the load results from the use of domestic hot

water, in the SHWRT the load is provided by a separate cooling system with

storage, which can be programmed to mimic arbitrary load profiles.

Table 3.1: Components of the SHWRT

Component Part Specification

Collectors Lennox LSC-18

Storage tank SunEarth SU80-HE-1

Load tank 55 gal drum; insulated

Load tank chiller Neslab RTE-8

Pumps B & G

Plumbing Copper, Type L and M

Instrumentation (pressure, flow, etc) Mostly Omega

TC acquisition Agilent 34970A

TCs Type K, Type T, welded in-house

Instrumentation controller National Instruments

Electrical device controller Custom designed, built with solid state

The principal components of the SHWRT are shown schematically in Figure 3.3

and listed in Table 3.1 in detail. These are: solar collector array, solar pump, load

38

Chapter 3. Development of the SHW testbed

pump, solar storage tank with integral heat exchanger, cooling tank, chiller, drain-

back tank, expansion tank and computer/data acquisition system. In the SHWRT,

the real load (resulting from typical domestic activities such as bathing & showering,

washing dishes etc.) is replaced by a simulated load, provided by a load tank and

a load pump, under computer control. The load tank is stratified, with the bottom

layer containing water at a temperature similar that found in a municipal water sup-

ply. To simulate the load, cold water drawn from the bottom of the load tank is

pumped to the bottom of the storage tank in precisely metered amounts. Because

the hot storage (solar) tank is full, the same volume of water flows from the top

of the solar tank to the top of the load tank. A temperature-controlled circulating

bath is used to remove heat from the load tank accumulated as a result of the load

simulation. Hot water is drawn from the top of the load tank, cooled in the bath,

and returned to the bottom of the tank at a set temperature. Aside from the obvi-

ous practical advantages, using a simulated load allows its consistent operation, so

that the variability of a real load is removed from the experimental parameter space,

thereby isolating the effects of weather and solar irradiance variability. For the pur-

poses of this experiment, a scaled version of the standard load profile published by

the Florida Solar Energy Center is used (Fairey and Parker, 2004). The load profile

used here is shown in Figure 3.4.

The solar loop can function in two modes: closed loop and drainback, by oper-

ating valves that either isolate the drainback tank or the expansion tank. When in

drainback mode, the system is not pressurized. When instructed to do so by the sys-

tem controller, the solar pump sends heat medium (a 50% propylene glycol / water

mixture in this case) to the collectors, where it is heated and returned to the solar

tank heat exchanger. From the heat exchanger, heat medium either flows back to

the pump (when in closed loop mode) or into the drainback tank (when in drainback

mode).

39

Chapter 3. Development of the SHW testbed

Figure 3.3: Principal components of the SHWRT: the solar loop is composed of the
solar collector, the solar pump, the heat exchanger and either the expansion tank
(for closed loop operation) or the drainback tank (for drainback operation). Heat is
stored in a stratified hot water tank. The load loop is composed of cold tank, load
pump and chiller. Control and data logging are operated by a computer.

The solar tank heat exchanger consists of a copper coil wrapped around the lower

quarter of the exterior of the solar storage tank. Good thermal contact between

the copper cols and the tank wall is ensured by a silicon-based heat conduction

compound. An electrical resistance heater (3 kW) in the tank heats the water when

solar heat is not available. The location of the heating element, close to the top of the

tank, ensures that solar heating, if available, is the default heating mechanism, and

that electric heating only occurs when the solar tank is almost completely discharged.

40

Chapter 3. Development of the SHW testbed

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24

L
o
a
d

(
W
a
t
t
-
h
o
u
r
s
)

Time (Hours)

Load Schedule

Figure 3.4: Hourly loads used for simulating typical residential usage. A load pump
operates while the control system calculates the energy draw in real time. The load
pump stops when the load is met.

The control system monitors the temperature of the solar collector plate (the

fin temperature), and the temperature of the heat exchanger outlet. When the

difference between the fin temperature and the heat exchanger outlet temperature

exceeds a specified value (7◦C in this case), the solar pump is activated. The solar

pump remains on until the temperature difference becomes negative. If the bottom

temperature is greater than a set threshold value (60◦C in the present case), or the fin

temperature is above a set limit (95◦C in the present case) then the tank is saturated

and can not absorb additional heat, so the pump is turned off.

The SHWRT system employs two Lennox LSC-18 collectors, with low-iron dou-

ble glazing and black chrome absorber, as shown in Figure 3.5 (Ortiz, 2008). The

collector was manufactured in the early 1980s and was certified by Solar Rating and

Certification Corporation (SRCC).

41

Chapter 3. Development of the SHW testbed

Figure 3.5: Lennox LSC-18 collector

3.2 SHWRT Instrumentation

The SHWRT is a testbed and as such it is much more highly instrumented than

a commercial system. For example, in a typical residential SHW system, there are

normally only two temperature sensors. One is located on the outlet of the collector

and the other is on the supply line, at the outlet of the solar storage tank. The

temperature difference between these two sensors is used by a commercial controller

to turn on and off the solar loop pump. The SHWRT, however, contains many more

sensors.

The solar tank and the load tank were instrumented with type T thermocouples.

A thermocouple tree consisting of eight thermocouples located along a CPVC pipe

was installed in approximately the center of the tank. The plastic pipe is used only to

hold each thermocouple in place, approximately equidistant from one another along

the vertical axis of the tank.

42

Chapter 3. Development of the SHW testbed

Similarly, thermocouples were placed along the outside skin of the metal tank

under the insulation in approximately the same vertical locations as those on the

internal tree. To install them the exterior skin of the tank was carefully cut and

the insulation was removed. The exterior metal surface of the water-bearing tank

was cleaned and the thermocouples were glued in place using thermal epoxy. Fig-

ure 3.6 shows graphically how the thermocouple trees are installed in the solar tank.

Figure 3.7 shows diagrammatically the array of sensors located on the system.

Figure 3.6: Thermocouple tree in the solar tank, thermocouples were placed in ap-
proximately vertical locations for both the outside skin and the internal tree.

43

Chapter 3. Development of the SHW testbed

Because this SHWRT system contained many more features than a commercial

system, its control system was much more sophisticated. As an example of this

complexity, Figure 3.8 shows the logic diagram for controlling the solar pump. Only

a small portion of this logic would be implemented in a commercial controller.

Figure 3.7: Schematic illustration of the sensors installed in the SHWRT: thermo-
couples (TC), pressure sensors (P), flow meters (F), solar radiation sensors (Rad),
current transducers (Ct). ‘Energy’ represents a point in which the energy generated
in the loop is computed.

44

Chapter 3. Development of the SHW testbed

Figure 3.8: Solar pump control logic

45

Chapter 4

TRNSYS models

Despite its speed in learning compared to other classes of ANNs, the number of pos-

sible combinations of operating conditions and weather / solar irradiance conditions

is so large that several years of training are needed to allow the ART network to

observe and categorize the majority of ‘normal’ operating states it is likely to en-

counter. Clearly, doing this experimentally or in the field is impractical. Model-based

training, on the other hand, is an attractive option, with the caveat that the model

must be an accurate representation of the real system, and must be accompanied by

accurate weather and irradiance date.

4.1 Development of the SHWRT TRNSYS model

The model of the SHWRT is implemented in TRNSYS, a module-based code specif-

ically designed for transient simulation of energy systems. In TRNSYS, a wide array

of standard components can be selected from module libraries. Tunable parameters

associated with each component allow the user to develop accurate representations

46

Chapter 4. TRNSYS models

F
ig
u
re

4.
1:

T
R
N
S
Y
S
m
o
d
el
of

th
e
S
H
W

R
T
.
P
ar
am

et
er
s
fo
r
co
ll
ec
to
rs
,
st
or
ag
e
ta
n
k
s,
p
u
m
p
s
an

d
h
ea
t
ex
ch
an

ge
r
ar
e

d
ir
ec
t
re
p
re
se
n
ta
ti
on

of
th
ei
r
re
al

co
u
n
te
rp
ar
ts
.
W
ea
th
er

an
d
ir
ra
d
ia
n
ce

d
at
a
ar
e
fr
om

h
is
to
ri
ca
l
T
M
Y
2
d
at
a
b
as
es
,

or
fr
om

d
ir
ec
t
m
ea
su
re
m
en
t.

A
M
at
la
b
m
o
d
u
le

is
u
se
d
to

im
p
le
m
en
t
of

th
e
co
n
tr
ol
le
r
lo
gi
c.

V
ar
io
u
s
ou

tp
u
t
d
ev
ic
es

co
ll
ec
t
d
at
a
fo
r
off

-l
in
e
tr
ai
n
in
g
of

th
e
A
R
T

al
go
ri
th
m
s.

47

Chapter 4. TRNSYS models

of real system components. Within TRNSYS, individual components are represented

by a set of differential or algebraic equations that closely approximate the system

physics. The modules are connected to each other via information or material flow

lines. The layout of the TRNSYS model of the SHWRT is shown in Figure 4.1.

Table 4.1: Collector type 564 properties

Parameter Value Units

Collector length 1.71 m

Collector width 1.61 m

Absorber plate thickness 0.0012 m

Conductivity of absorber material 194 kJ/hr ·m ·K

Number of tubes 20

Inner tube diameter 0.0044 m

Outer tube diameter 0.0064 m

Bond resistance 0.05 h ·m2 ·K/kJ

Fluid specific heat 4.19 kJ/kg ·K

Absorptance of the absorber plate 0.88 Fraction

Emissivity of the absorber plate 0.9 Fraction

Top loss mode 1

Number of identical covers 2

Index of refraction of cover material 1.53

Extinction coefficient, thickness product 0.005

Emissivity of the glass 0.9 Fraction

Plate spacing 0.025 m

Glass spacing 0.01 m

The principal components of the TRNSYS model are the solar collectors, the stor-

age tank, and the control system. The collector module from the TRNSYS Thermal

48

Chapter 4. TRNSYS models

Energy System Specialists (TESS) library that best matches the hardware installed

in the SHWRT is the type 564. A number of input parameters must be defined so

that the modeled collector is an accurate representation of the real one. Some of

these parameters, such as physical dimension, were measured directly. Others, such

as the bond thermal resistance between the riser tubes and the collector fins, are not

known and were estimated based on engineering judgment. The parameters used for

the type 564 module are listed in Table 4.1.

Ideally the model should be an exact representation of the real system. In reality,

it was impossible to match the model to the system because some components in the

system had no corresponding component within TRNSYS 16. For example, water

tank type 534 from the TRNSYS library mateched the testbed’s tank most closely,

however the heat exchanger is different. As shown in Figure 4.2, the type 534 heat

Figure 4.2: Diagrams of the modeled (left) and actual (right) water tank in the SHW
system

49

Chapter 4. TRNSYS models

exchanger is immersed inside the water tank, in direct contact with the water, while

the heat exchanger in the testbed’s tank consists of a copper tube coiled around the

outside of the tank, and thus not in direct contact with the water. Some of the

important parameters used to characterize tank type 534 are shown in Table 4.2.

Table 4.2: Properties of tank Type 534 used for the SHWRT model

Parameter Value Units

Number of tank nodes 8

Number of ports 1

Number of immersed heat exchangers 1

Inversion mixing flow rate -10 kJ/hr ·m ·K

Tank Volume 0.297 m3

Tank Height 1.4 m

Top loss coefficient 15 kJ/hr ·m2 ·K

Bottom loss coefficient 5 kJ/hr ·m2 ·K

Edge loss node # 1 5 kJ/hr ·m2 ·K

Edge loss node # 2 5 kJ/hr ·m2 ·K

Edge loss node # 3 2 kJ/hr ·m2 ·K

Edge loss node # 4 2 kJ/hr ·m2 ·K

Edge loss node # 5 15 kJ/hr ·m2 ·K

Edge loss node # 6 20 kJ/hr ·m2 ·K

Edge loss node # 7 20 kJ/hr ·m2 ·K

Edge loss node # 8 10 kJ/hr ·m2 ·K

Top loss temperature 22 ◦C

Bottom loss temperature 22 ◦C

Flue loss temperature 22 ◦C

Exit node 1

Number of miscellaneous heat flows 0

50

Chapter 4. TRNSYS models

The input parameters for the type 534 tank model within the TRNSYS were

adjusted based on trial and error comparisons until its predicted behavior mirrored

the real system sufficiently.

There are eight temperature sensors in the water tank from bottom to top. In

the TRNSYS model the water tank is divided into eight zones, each representing an

equal portion of the water tank from the bottom to the top. The location of the

nodes corresponds to the placement of the thermocouples in the water tank.

The upper four zones in the TRNSYS model perform very similarly to the real

zones, but the temperatures of the lower four zones are slightly different because

the heat exchanger is located in the lower part of the water tank. The wrap-around

heat exchanger displaced insulation in the bottom portion of the tank, resulting in

more heat loss in that part of the tank than in the upper half. These nuances were

incorporated into the model by adjusting the input parameters until the modeled

behavior of the tank reasonably represented the actual behavior.

The controller is implemented using a Matlab module (listed in full in Ap-

pendix A), based on the logic described previously. The weather data are typical

meteorological year (TMY) data sets which are derived from the 1991-2005 National

Solar Radiation Data Base (NSRDB) archives (Wilcox and Marion, 2008).

4.2 Verification of the SHWRT TRNSYS model

To ensure that the TRNSYS model is an accurate representation of the physical sys-

tem, several tests were performed on both the SHWRT and the model under identical

inputs (i.e. weather and solar irradiance conditions recorded via the SHWRT during

the experiment were used as inputs for the model). The validation experiment was

conducted from 4PM on December 13, 2010 (hour 8318) to 9AM on December 16,

51

Chapter 4. TRNSYS models

2010 (hour 8385).

The TRNSYS model produced a set of predicted behaviors for the solar system’s

various components, such as the temperatures in the tank, and the collector temper-

ature. These modeled values were then compared to the actual measurements for

each parameter.

After initial bug fixes, the overall error between the model’s predictions and the

measured values was reduced to an acceptable level, less than around 5%.

Some of the comparisons are shown in the following figures. As shown in Fig-

ure 4.3, the TRNSYS model predicts the collector plate temperature very accurately

during the day, both for cloudy and clear conditions. On the other hand, the model

predicts the night-time temperature accurately for clear conditions (nights after De-

cember 13 and 14), but underpredicts temperature for overcast conditions (the night

after December 15). The reason for the discrepancy is simple - the night of Decem-

ber 15 was cloudy, and the sky temperature model used in TRNSYS, described by

equation 4.1, is obtained from an empirical equation based on ambient temperature

(Swinbank, 1963):

Tsky = 0.0552T−1.5
a , (4.1)

where Tsky = sky temperature (◦C) and Ta = ambient temperature (◦C). This

does not account for humidity and cloud cover by overpredicting the radiant heat

loss to the sky, and underpredicting the sky temperature substantially under cloudy

conditions.

The predicted and measured temperatures of tank nodes 1, 3 and 8, located at the

top of the tank, at the heater coil, and near the bottom of the tank respectively, are

shown in Figure 4.5. The hourly water draws are clearly visible in the experimental

traces. For each hourly draw, the node temperature drops sharply until the lower

limit of the temperature control deadband is reached. At this point, the heater

52

Chapter 4. TRNSYS models

-10

 0

 10

 20

 30

 40

 50

 60

 70

 8320 8328 8336 8344 8352 8360 8368 8376 8384

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

Figure 4.3: Comparison of collector plate temperatures, predicted by the TRNSYS
model and measured. The measurement was made using a calibrated T-type ther-
mocouple.

is activated, and remains on until the temperature reaches the upper limit in the

deadband.

Figure 4.4 presents a comparison of the predicted and measured useful energy gain

by the solar collectors. As can be seen, the overall trends are reasonably accurately

predicted with a slight time lag. Because the TRNSYS runs according to the solar

time, and there is about a half hour difference between the solar time and our local

time. In general, the difference between the predicted and measured total energy,

based on the integral under the curves, is around 1%.

Small discrepancies in the temperature predictions can also be attributed to com-

53

Chapter 4. TRNSYS models

plex three-dimensional flows occurring in the tank, which can not be described by

the one-dimensional differential equations in TRNSYS. However, the model is suffi-

ciently accurate for initial training of the network, which can be further refined in

the field.

Figure 4.4: Useful energy gain by the solar collectors

4.3 Additional verification of the TRNSYS simu-

lation model

The ART network relies on the TRNSYS simulation model to provide the training

data. The accuracy of the predictions of the TRNSYS model is crucial to the cor-

rect training ART network. This section presents an additional test to validate the

predictions of a TRNSY glazing model, namely, the prediction of collector glazing

temperature.

Knowledge of the collector glazing temperature is valuable, since ultimately the

glazing is the major source of heat loss in a solar collector. The ability to predict

54

Chapter 4. TRNSYS models

 0

 20

 40

 60

 8320 8336 8352 8368 8384

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

 0

 20

 40

 60

 8320 8336 8352 8368 8384

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

 0

 20

 40

 60

 8320 8336 8352 8368 8384

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

Figure 4.5: Predicted and measured temperatures of the tank at node 1, at the top
of the tank, node 3, near the electric heater, and at node 8, near the tank bottom.

55

Chapter 4. TRNSYS models

glazing temperature for a variety of solar collector types (e.g. single glazed vs. dou-

ble glazed, painted vs. selective surface) provides an indication of the adaptability

of this fault detection system to other configurations. Calculation of glazing temper-

ature is complex, because the heat transfer mechanisms between the absorber plate

and the exterior of the collector are themselves complex. Both convective and radia-

tive processes are present in the calculation. Accurate estimates of material/surface

parameters may be needed to obtain accurate predictions. The sensitivity of the

predictions to knowledge of these parameters is also of interest.

The glazing model was incorporated into the SHWRT testbed model described

previously to validate its accuracy. The standard model for flat plate collectors was

replaced by a user defined one, based on the following theoretical considerations.

In the SHW testbed, two sensors, the outside temperature sensor and global inci-

dent solar radiation, comprise weather information relative to the collectors. Typical

weather data for the TRNSYS model come from TMY weather data, which include

wind velocity, relative humidity, total radiation on horizontal, horizontal diffuse ra-

diation, solar azimuth, etc. Some of these, such as wind speed, can affect the glazing

temperature.

Thus, using the glazed collector components from TRNSYS Thermal Energy Sys-

tem Specialists (TESS) library without some important weather information, some

error was expected. For example, TYPE 944 is a double glazed collector component

in TRNSYS 17. Using this model with user defined inputs to match the testbed col-

lector and with TMY weather data, the simulation model runs properly. However,

if the weather data are limited to only those recorded by the testbed and inputted

to the TRNSYS model, run-type errors were encountered. Thus, a glazing collector

model needed to be developed that would execute with the available weather data.

This also implied that some estimates of certain parameters were needed.

56

Chapter 4. TRNSYS models

The TRNSYS model of the chrome double and single glazed collectors (model:

LSC-18 & LSC-18S, by Lennox Industries, Inc.) is the same as the one used in the

previous SHWRT tests, except that the collector component for the chrome double

glazed collector is replaced by a user defined collector TYPE 242 and the chrome

single glazed collector component is replaced by a user defined collector TYPE 244.

The FORTRAN code of collector TYPE 242 is listed fully in Appendix C.

Figure 4.6: Thermal network for a double glazed collector. (a) in terms of conduction,
convention and radiation resistances, (b) in terms of combined effective resistances
between plates, (c) schematic for double glazing flat plate collector.

The thermal network for a double-cover collector is shown in Figure 4.6. The

collector energy top loss is the result of convection and radiation between parallel

plates. The energy transfer between the plate at Tp and the first cover at Tc1 is the

same as between any other two adjacent covers and is also equal to the energy loss

to the surroundings from the top cover (Duffie and Beckman, 1991):

qloss,top = hp−c1(Tp − Tc1) +
σ(T 4

p − T 4
c1)

1
ϵp
+ 1

ϵc
− 1

, (4.2)

where hp−c1 is the heat transfer coefficient between collector plate and the first cover.

57

Chapter 4. TRNSYS models

Equation 4.2 can be written as:

qloss,top = (hp−c1 + hr,p−c1)(Tp − Tc1), (4.3)

where

hr,p−c1 =
σ(Tp + Tc1)(T

2
p + T 2

c1)
1
ϵp
+ 1

ϵc
− 1

. (4.4)

The thermal resistances R1, R2 and R3 can be expressed as:

R1 =
1

hc2−a + hr,c2−a

(4.5)

R2 =
1

hc1−c2 + hr,c1−c2

(4.6)

R3 =
1

hp−c1 + hr,p−c1

(4.7)

For the double glazed collector, the top loss coefficient from the collector plate

to the ambient is:

Ut =
1

R1 +R2 +R3

(4.8)

The new temperature of plate j can be expressed in terms of the temperature of

plate i as:

Tj = Ti −
Ut(Tp − Ta)

hi−j + hr,i−i

(4.9)

For the single glazed collector, similar expressions can be derived. The parameters

used for the chrome single glazed collector TYPE 244 module are listed in Table 4.3,

and the parameters used for the chrome double glazed collector TYPE 242 module

are listed in Table 4.4.

58

Chapter 4. TRNSYS models

Table 4.3: User-supplied input parameters for the chrome single glazed collector

TYPE 244

Parameter Value Units

Collector length 1.71 m

Collector width 0.805 m

Absorber plate thickness 0.0012 m

Conductivity of absorber material 194 kJ/hr ·m ·K

Number of tubes 10

Inner tube diameter 0.0044 m

Outer tube diameter 0.0064 m

Bond resistance 0.05 h ·m2 · k/kJ

Fluid specific heat 3.747 kJ/kg · k

Absorptance of the absorber plate 0.5 Fraction

Emissivity of the absorber plate 0.2 Fraction

Number of identical covers 1

Index of refraction of cover material 1.53

Extinction coefficient, thickness product 0.005

Emissivity of the glass 0.2 Fraction

Plate spacing 0.035 m

The validation experiment was conducted from 2pm on November 15, 2011 (hour

7646) to 9am on November 19, 2011 (hour 7737). As shown in Figure 4.7 and Fig-

ure 4.8, the collector plate temperatures of the TRNSYS model is consistent with

our measured data, except at night. While in the TRNSYS model the sky tem-

perature is calculated from equation 4.1 (which only relates to the outside ambient

temperature), in reality it is also influenced by other factors, such as relate humidity,

sunny day or cloudy day, and so on. The calculations performanced here can assist

59

Chapter 4. TRNSYS models

in determining whether a more accurate sky temperature model is necessary for the

purposes of ART training.

Table 4.4: User-supplied input parameters for the chrome double glazed collector

TYPE 242

Parameter Value Units

Collector length 1.71 m

Collector width 0.805 m

Absorber plate thickness 0.0012 m

Conductivity of absorber material 194 kJ/hr ·m ·K

Number of tubes 10

Inner tube diameter 0.0044 m

Outer tube diameter 0.0064 m

Bond resistance 0.05 h ·m2 · k/kJ

Absorptance of the absorber plate 0.55 Fraction

Emissivity of the absorber plate 0.5 Fraction

Number of identical covers 2

Index of refraction of cover material 1.53

Extinction coefficient, thickness product 0.005

Emissivity of the glass 0.15 Fraction

Plate spacing 0.025 m

Glass spacing 0.01 m

Figure 4.9 and Figure 4.10 present comparisons of the predicted and measured

glazing temperatures of the single and double glazed collectors. As can be seen,

the nighttime sky temperature estimation errors produce some errors that are not

of consequence to this application. The reason for the discrepancy may be that the

wind velocity sensor is not installed in the testbed and in the TRNSYS simulation

60

Chapter 4. TRNSYS models

 0

 10

 20

 30

 40

 50

 60

 70

 80

 7646 7662 7678 7694 7710 7726

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

Figure 4.7: Double glazed collector plate temperature for chrome double glazed with

black chrome coated absorber surface.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 7646 7662 7678 7694 7710 7726

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

Figure 4.8: Single glazed collector plate temperature for chrome single glazed with

black chrome coated absorber surface.

61

Chapter 4. TRNSYS models

model the information on the wind velocity is collected from TMY weather data.

As can be seen, the overall trends are reasonably accurately predicted with a slight

time lag. Because the TRNSYS runs according to the solar time, and there is about

a half hour difference between the solar time and our local time.

 0

 5

 10

 15

 20

 25

 30

 7646 7662 7678 7694 7710 7726

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

Figure 4.9: Temperature comparison for chrome double glazed collector outer glazing

During the course of this work, a new version of TRNSYS, with a more complete

component library, became available. For example, TRNSYS 17 includes a model

of a tank with wrap-around heat exchanger. This is the TYPE 1237 tank. The

parameters of the TYPE 1237 are listed in Table 4.5. The predicted and measured

temperatures of tank node 1, 6 and 8, located at the top of the tank, at the heat

exchanger, and near the bottom of the tank respectively, are shown in Figure 4.11.

When comparing measured water tank temperatures with those predicted by TRN-

SYS, As can be seen, the measured water tank temperatures are lower than the

temperatures in the simulation model at night. This is probably due to incorrect

parameter settings for the water tank, such as edge loss coefficient, bottom loss

coefficient, etc. Overall the error is small and acceptable.

62

Chapter 4. TRNSYS models

 0

 5

 10

 15

 20

 25

 30

 35

 7646 7662 7678 7694 7710 7726

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

Figure 4.10: Temperature comparison for chrome single glazed collector glazing

Table 4.5: Water tank TYPE 1237 parameters

Parameter Value Units

Number of tank nodes 8

Number of ports 1

Number of miscellaneous heat flows 0

Tank volume 0.297 m3

Tank height 1.4 m

Fluid specific heat 4.19 kJ/kg ·K

Fluid density 1000 kg/m3

Fluid thermal conductivity 2.14 kJ/hr ·m ·K

Fluid viscosity 3.21 kg/m · hr

Fluid thermal expansion coefficient 0.00026 1/K

Top loss coefficient 2 kJ/hr ·m2 ·K

Bottom loss coefficient 2 kJ/hr ·m2 ·K

HX loss coefficient 2 kJ/hr ·m2 ·K

63

Chapter 4. TRNSYS models

 0

 10

 20

 30

 40

 50

 60

 7646 7662 7678 7694 7710 7726

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

 0

 10

 20

 30

 40

 50

 60

 7646 7662 7678 7694 7710 7726

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

 0

 10

 20

 30

 40

 50

 60

 7646 7662 7678 7694 7710 7726

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Measured data
TRNSYS model

Figure 4.11: Temperatures of the tank at node 1, at the top of the tank, node6, near
the heat exchanger, and at node 8, near the tank bottom.

64

Chapter 4. TRNSYS models

Figure 4.12 presents a comparison of the predicted and measured useful energy

gain by the single and double glazed collector. As can be seen, the simulation value

is about 20% higher than the measured value. This is probably due to incorrect

parameter settings for the collectors, such as incorrect absorptance of the plate,

emissivity of the plate or the glass, etc.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7646 7662 7678 7694 7710 7726

P
o
w
e
r

(
k
J
/
H
r
)

Time (Hours)

Measured data

TRNSYS model

Figure 4.12: Useful energy gain by the collectors

4.4 Sensitivity analysis of the TRNSYS model

An analysis was conducted to determine the sensitivity of the TRNSYS model pre-

dictions to various collector parameters. This information is useful to determine

which parameters are most important to the accuracy of the overall prediction of

performance of the system which in turn is essential for accurate training of the fault

detection system. The analysis focused on a painted-fin single glazed collector model.

65

Chapter 4. TRNSYS models

Five parameters were considered for this analysis: plate emissivity, plate absorp-

tance, glass emissivity, back heat loss coefficient or edge heat loss coefficient, and

index of refraction of cover material. The plate emissivity, plate absorptance, glass

emissivity, and index of refraction of cover material influence the solar irradiance

transmission and absorptance by the plate and cover. The overall heat loss coeffi-

cient is the sum of the top, bottom and edge loss coefficient. The back and edge heat

loss coefficient influence the overall heat loss by the collector to the environment.

The influence of these five parameters on the collector plate temperature, collector

glazing temperature and collector useful energy gain is shown in Figure 4.13, Fig-

ure 4.14, and Figure 4.15 respectively. As shown in these three figures, there are

some dips caused by the hourly water draws.

Sensitivity studies were conducted for predictions of the plate temperature, which

is a major driver of the glazing temperature. As shown in Figure 4.13, the plate

temperature is most sensitive to plate absorptance. A change in the plate absorptance

from 0.95 to 0.75 produces 7◦C decreases in the plate peak temperatures. 0.75 and

0.95 are in normal range of the plate absorptance. A change in the back heat loss

coefficients from 15kJ/hr·m2·K to 5 kJ/hr·m2·K produces 4◦C increases in the plate

peak temperatures. The original edge heat loss coefficient is 18 kJ/hr ·m2 ·K and

the top heat loss coefficient is calculated by empirical equations which are included

in the Appendix C. The plate temperature is less affected by changes in the plate or

glass emissivity, or the index of refraction of cover material.

As shown in Figure 4.14, the glazing temperature is most sensitive to the index

of refraction of cover material and back or edge heat loss coefficient. A change in

the plate absorptance from 0.95 to 0.75 produces 5◦C decreases in the glazing peak

temperatures. The glazing temperatures are only slightly affected by plate emissivity,

glass emissivity, heat loss coefficients, or the index of refraction of cover material.

Figure 4.15 shows the results of the tests for the collector’s useful energy gain

66

Chapter 4. TRNSYS models

 0

 10

 20

 30

 40

 50

 60

 70

 6800 6804 6808 6812

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Original plate T
Plate emissivity reduced by 0.2
Plate absorptance reduced by 0.2

 0

 10

 20

 30

 40

 50

 60

 70

 6800 6804 6808 6812

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Original plate T
Glass emissivity reduced by 0.2

heat loss coeff. reduced by 10 kJ/hr.m
2
.K

cover refractive index reduced by 0.2

Figure 4.13: Collector plate temperature for various values. Dips are due to the
hourly water draws.

and it shows that it is most sensitive to the plate absorptance and back heat loss

coefficient. A change in the plate absorptance from 0.95 to 0.75 produces decreases

in the predicted total energy gain by about 16%. A change in the back heat loss

coefficients from 15kJ/hr ·m2 ·K to 5 kJ/hr ·m2 ·K produces about 12% increases

in the total energy gain. The total energy gain are only slightly affected by plate or

glass emissivity, or the index of refraction of cover material.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 6800 6804 6808 6812

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Original glazing T
Plate emissivity reduced by 0.2
Plate absorptance reduced by 0.2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 6800 6804 6808 6812

T
e
m
p
e
r
a
t
u
r
e

(
C
)

Time (Hours)

Original glazing T
Glass emissivity reduced by 0.2

heat loss coeff. reduced by 10 kJ/hr.m
2
.K

cover refractive index reduced by 0.2

Figure 4.14: Collector glazing temperature for various values. Dips are due to the
hourly water draws.

67

Chapter 4. TRNSYS models

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 6800 6804 6808 6812R
a
t
e

o
f

e
n
e
r
g
y

g
a
i
n

(
k
J
/
h
r
)

Time (Hours)

Original useful energy gain
Plate emissivity reduced by 0.2
Plate absorptance reduced by 0.2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 6800 6804 6808 6812R
a
t
e

o
f

e
n
e
r
g
y

g
a
i
n

(
k
J
/
h
r
)

Time (Hours)

Original useful energy gain
Glass emissivity reduced by 0.2

heat loss coeff. reduced by 10 kJ/hr.m
2
.K

cover refractive index reduced by 0.2

Figure 4.15: Collector useful energy gain for various values. Dips are due to the
decrease of flow rate and the water tank outlet temperature during the hourly water
draws.

68

Chapter 5

Application of Hierarchical ART

As noted earlier, while in principle the ART ANN could be trained in the field, this

is generally impractical. In addition, faults should be detected from the first day

of operation of a new system. In fact it is common for certain types of faults to

occur early in the life of a system - a process known as infant mortality, which is still

common in SHW systems as a result of the fact that each installation is in many

ways a unique system. These early failures should be captured quickly and corrected,

as they are critical to ensure that the system has a good chance of producing the

benefits expected from its installation.

There are two time scales which dominate the operating conditions of a SHW

system - daily variation and seasonal variation. Although in principle the ART net-

work could learn to distinguish the two scales following the regular learning process,

in this work the seasonal time scale was separated from the daily time scale by per-

forming training on a monthly basis. The underlying assumption is that seasonal

variation is small over the course of a month, and that daily patterns for a certain

month should be classifiable, over the long term, as belonging to that month. The

data used in the training are hourly historical weather data for Albuquerque, NM,

69

Chapter 5. Application of Hierarchical ART

from which temperatures and irradiance measurements are extracted.

To train the ART ANN, the TRNSYS model is operated with the same con-

trol algorithm as the physical experiment, which in turn is representative of fielded

systems. The time-step is three minutes, sufficiently small to capture parameter

(collector plate temperature and water tank outlet temperature) variations resulting

from system operation. For this particular case, the model is operated using a data

set corresponding to the month of January for each of the years from 2000 to 2004.

The purpose of model-based training is to allow the long-term memory to form

by exposing the network to a set of inputs large enough that exposure to additional

inputs does not result in the creation of additional classes in the recognition layer.

The size of the set of input patterns required to do this is a function of the vigilance

parameter chosen. For the set of inputs composed of tank outlet temperature, plate

temperature, derivative of plate temperature and time of day, the learning curve is

shown in Figure 5.1. The rate of new class creation is high at early times, and asymp-

totes to zero for large enough times. The number of classes created at long times

increases exponentially with vigilance parameter. The time for complete learning

also increases with vigilance parameter, requiring just one January for ρ = 0.5, and

five instances of January for ρ = 0.8.

The parameters used for training of the ART network are those commonly found

in SHW systems, for example collector plate temperature and heat exchanger outlet

temperature. An additional parameter generally available to a system controller is

date and time. From these inputs, it is also possible to extract secondary parameters,

for example the derivative of temperature. Finally, it is possible to provide as inputs

a time history of temperatures, instead of only the current temperature. In principle,

if the time derivative of temperature is important, the ART network should learn to

compute this - given lengthier training.

70

Chapter 5. Application of Hierarchical ART

 0

 15

 30

 45

 60

 75

 31 62 93 124 155

N
u
m
b
e
r

o
f

c
a
t
e
g
o
r
i
e
s

Jan. 2000 Jan. 2001 Jan. 2002 Jan. 2003 Jan. 2004

ρ=0.8
ρ=0.7

ρ=0.6
ρ=0.5

ρ=0.4
ρ=0.3

ρ=0.2
ρ=0.1

Figure 5.1: Generation of new classes as a function of time, for various vigilance
parameter (ρ) values. The time required for full training increases with increasing
vigilance parameter.

In this particular case, the inputs used are tank outlet temperature, plate temper-

ature, derivative of plate temperature and time of day. When the number of inputs is

greater then three, classes in the recognition layer are described by hyperboxes which

are difficult to represent visually. To illustrate the creation of classes, the projection

in the three dimensional space (formed by the inputs of plate temperature, time

derivative of plate temperature, and time) of the hyperboxes is shown in Figure 5.2.

Clustering of data belonging to individual classes (e.g. cloudy day vs. sunny day) is

clearly visible.

Knowledge of the necessary time resolution of the training data is crucial for

understanding the applicability of the ART ANN to real-time fault detection and

71

Chapter 5. Application of Hierarchical ART

Time derivative of T Co
ll
ec
to
r
av
er
ag
e
T

T
i
m
e

sunny day
cloudy day

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.2: Three-dimensional projection of the class hyperboxes generated by train-
ing. New data points falling outside the boxes are categorized as a novelty and
flagged.

monitoring. One important concern is that historical weather and solar data are

generally available at relatively low resolution, typically one hour, while a fielded

system may have access to data at one-second resolution. The obvious question that

arises is whether training based on one-hour data is comparable to training based

on one-second resolution, and if so, whether an ANN trained with one-hour data

is capable of responding in real time to a fault, especially a high-severity one that

may require fast response. To answer the first question, an ANN was trained under

identical conditions, save for the training data. One set of training data was the

standard one-hour weather data, the other was the same data with a superimposed

noise signal. A typical day in the set is shown in Figure 5.3.

The learning curves which result from the smooth and noisy data sets are plotted

in Figure 5.4, for a vigilance parameter of 0.8. The categorization process appears

72

Chapter 5. Application of Hierarchical ART

 0

 1000

 2000

 3000

 4000

 0 4 8 12 16 20 24

R
a
d
i
a
t
i
o
n

(
k
J
/
h
r
.
m
2
)

Time (Hours)

radiation original

 0

 1000

 2000

 3000

 4000

 0 4 8 12 16 20 24

R
a
d
i
a
t
i
o
n

(
k
J
/
h
r
.
m
2
)

Time (Hours)

radiation with noise

Figure 5.3: Typical hourly irradiance from historical weather data, and corresponding
high-frequency data, simulating the passage of thin clouds between the sun and the
solar collector. Note that noise was only added to data for cloudy days.

to be similar, with learning from the noisy data occurring slightly more slowly, but

ultimately generating two more categories. However, the results seem to indicate that

learning from smooth (hourly) data can be used to monitor events on the sub-hour

scale.

To demonstrate that the input patterns can be classified into class hierarchies by

the Hierarchical ART neural network, the following test is conducted using TRN-

SYS simulation data to train and test the Hierarchical ART neural network. The

data set contains three kinds of failures of SHW systems: pump failure, degrada-

73

Chapter 5. Application of Hierarchical ART

 0

 5

 10

 15

 20

 25

 30

 35

 0 31 62 93 124 155

N
u
m
b
e
r

o
f

c
a
t
e
g
o
r
i
e
s

Jan. 2000 Jan. 2001 Jan. 2002 Jan. 2003 Jan. 2004

radiation hourly
radiation with noise

Figure 5.4: Generation of new categories as a function of time, for the smooth and
noisy data sets. The vigilance parameter is ρ =0.8.

tion and thermosiphon. The input patterns of the neural network are collector plate

mean temperature over a window of 12 minutes, variation of the collector plate

temperature, time of day, and temperature difference between collector plate tem-

perature and water tank outlet temperature. The input vectors are normalized and

use complement coding which can represent both the presence and absence of fea-

tures (Carpenter et al., 1991a). The neural network is trained off-line on a training

set from a TRNSYS fault-free model. The test result shows in Figure 5.5. Major

faults are detected near the root of the tree, while minor faults are nearer to the

branch terminals.

A graphical user interface (GUI) is created for the hierarchical ART. The GUI

provides an interface for the training module and testing module. In the training

module (as shown in Figure 5.6), the user sets the choice parameter (which is defined

74

Chapter 5. Application of Hierarchical ART

by equation 2.19), the number of layers, the vigilance parameters and the number

of inputs, then chooses the training data file and runs the training process. When

the training process is done, in the testing module (as shown in Figure 5.7), the

user chooses the testing data file (i.e. the data from an experiment or from other

TRNSYS simulation) and runs the test. In Figure 5.7, the x-axis is a temporal

reference number, and the y-axis is the fault detection layer. The stars indicate

faults detected by the ART system. Appendix B contains a listing of the GUI code.

Figure 5.5: The hierarchy of SHW data sets generalized by a four layer Hierarchical
ART neural network. The vigilance levels are ρ1 = 0.65, ρ2 = 0.72, ρ3 = 0.78, ρ4 =
0.87. In this example, 3, 1, 3 and 14 categories are created in layer 1, 2, 3 and 4
respectively.

75

Chapter 5. Application of Hierarchical ART

Figure 5.6: The training module of the GUI of the hierarchical ART

Figure 5.7: The testing module of the GUI of the hierarchical ART. Stars in the
bottom plot represent the faults detected by the ART system.

76

Chapter 5. Application of Hierarchical ART

5.1 Test A: Failed Solar Loop Pump

The application of Hierarchical ART technology began with simulated tests using

a verified TRNSYS model. In the first test, called Simulated Test A, the model is

used to simulate a failure. The model was run using a 3 minute time step over a

simulation period of five days. These consecutive days were selected at random for a

period in January, 2005. January was chosen because that was the month in which

the ART had been trained and was also the time in which an actual test would be

conducted. During the simulation run, the solar pump was shut down from 10am

to 2pm on Friday, Saturday and Sunday. Thus 14,880 data points were collected, in

which there are 1,053 time steps that reflected a failed pump, which stops pumping

and completely fails. A severe fault, such as this one, should be detected quickly by

the ART network. Evidence of this recognition should appear in the first or second

level of the ART hierarchy.

With vigilance levels ρ1 = 0.58, ρ2 = 0.68, ρ3 = 0.74, ρ4 = 0.8, most of the 1,053

times that involved a broken pump caused ART to attempt to create new classes at

the first layer, while only 26 of 13,827 normal data caused attempts to create new

classes at any level. This corresponds to a detection rate of 99.8% for this simulated

test and a false alarm rate of 0.2%. Figure 5.8 shows the test results on a Saturday in

January 2005, in which all 81 data points corresponding to a broken pump, between

the time 130 hours and 134 hours, resulted in an attempt to create new classes in

the first layer, while 2 normal data points at 134.05 and 134.1 hours also attempt to

create new classes in the first layer.

77

Chapter 5. Application of Hierarchical ART

 0

 1

 2

 3

 4

 129 130 131 132 133 134 135

F
a
u
l
t

D
e
t
e
c
t
i
o
n

L
a
y
e
r

Time (Hours)

Attempt to create new categories

Figure 5.8: Pump failure happens between 130 and 134 hours

5.2 Test B: Impeller Degradation

Another test was designed to assess whether a slowly diminishing solar loop flow rate

can be detected by the ART system. The flow rate might be reduced if the solar

pump impeller is being peened by debris (such as a ball of solder) in the piping. A

slowly diminishing flow rate might be a prelude to pump failure in which the pump

degrades to a point that it can no longer overcome the pressure head in the loop and

flow stops.

A test of this condition was simulated with the TRNSYS model in which the flow

rate is progressively reduced from 1 to 0.8 in five weeks (1 the first week, 0.95 the

second week and so on). The simulation was conducted from a three week period

starting in January. Vigilance levels were the same as those in Test A. Starting from

the third week when the flow rate reduced to 90%, new classes are created every

day. As the flow rate continues to decrease, additional new classes are created in the

78

Chapter 5. Application of Hierarchical ART

 0

 1

 2

 3

 4

 416 417 418 419 420 421 422 423 424

F
a
u
l
t

D
e
t
e
c
t
i
o
n

L
a
y
e
r

Time (Hours)

Attempt to create new categories

Figure 5.9: The impeller degradation can be detected when flow rate reduces to 90%
of normal

daytime and more categories are shown in the first layer or the second layer, which

has lower vigilance levels. The results for one day in the third week are shown in

Figure 5.9. In that Figure, 15 of 480 data sets attempted to create new classes, most

of which are in the second and third layer. These results mean that the impeller

degradation can be detected as soon as the flow rate decreases to 90% of normal.

5.3 Test C: Thermosyphon

A third simulated test is for a mode of failure in which a faulty check-valve in

the collector loop allows for nighttime reverse thermosyphoning. When the water

temperature in the water tank is higher than the collector’s temperature (usually at

night), the water in the tank’s heat exchanger rises to the top of the collector and

79

Chapter 5. Application of Hierarchical ART

the cold water in the collector moves down to the heat exchanger through the non-

operating pump. In this simulated test, vigilance levels are the same as that in Test

A and B are applied. The simulated test starts on January 1st, 2005. Figure 5.10

shows the results of this test for one day in January 2005. Starting from about

5pm, 62 data points create new classes in the third layer. Because the temperature

difference between the collector and the water tank is still small, the flow rate is

low. As a result, thermosyphoning has little influence on the input parameters that

are used for the neural networks. However, from about 8pm to midnight, with the

temperature difference increasing, 66 data points resulted in attempts to create new

classes in the second layer. In addition, in the early morning 58 data points create

new classes in the third layer and 14 data points create new classes in the fourth

layer. Thus the ART system has the capability to detect this fault condition.

 0

 1

 2

 3

 4

 0 6 12 18 24

F
a
u
l
t

D
e
t
e
c
t
i
o
n

L
a
y
e
r

Time (Hours)

Attempt to create new categories

Figure 5.10: Thermosyphon happens late in the day and can be detected mostly in
the first layer.

80

Chapter 6

Experimental results

After training the hierarchical ART neural network using a fault-free, verified TRN-

SYS model with 5 years of weather data (2000-2004), as described previously (He

et al., 2011), a number of tests were performed to assess the ability of the network

to detect various kinds of fault or degradation. The tests performed were: (1) pump

failure; (2) pump degradation; and (3) shading. All the tests were conducted on the

SHWRT.

6.1 Test A: pump fault

The pump failure test was conducted from January 7th, 2011 (5pm) through January

12th (10am). For the first 3 days, the system was operated normally. On the morning

of the 4th day (January 11th) at about 8am, a solar loop pump failure which was

similar to a real pump failure was simulated. The pump starts up normally but soon

thereafter begins to pump erratically, then fails completely, replicating the condition

where debris in the solar loop blocks the impeller. The temperature and flow rate

conditions measured during the experiment are shown in Figure 6.1. The collector

81

Chapter 6. Experimental results

plate temperature becomes unusually high due to lack of coolant flow, while the tank

heat exchanger outlet temperature is lower than normal due to lack of solar heat.

The flow rate is zero after pump failure.

-50

 0

 50

 100

 150

 200

 168 192 216 240 264
-0.03

 0.006

 0.042

 0.078

 0.114

 0.15

T
e
m
p
e
r
a
t
u
r
e

(
C
)

F
l
o
w

R
a
t
e

(
l
i
t
e
r
/
s
e
c
)

Time (Hours)

Collector Fin T
To Collector T

Flow Rate

Figure 6.1: SHW system conditions prior to and after pump fault

As discussed previously, the input patterns to the neural network are collector

plate mean temperature (averaged over the previous 12 minutes), time derivative

of the collector plate temperature, time of day, and temperature difference between

collector plate and water tank heat exchanger outlet temperature. As shown in

Figure 6.2, the hierarchical ART detects the simulated pump failure very rapidly,

initially at low-severity but quickly settling on a string of high-severity faults. It

is also interesting to note that the detection of the pump failure simulated in the

TRNSYS model followed exactly the same pattern as with the experimental results.

82

Chapter 6. Experimental results

 0

 1

 2

 3

 4

 168 192 216 240 264

F
a
u
l
t

D
e
t
e
c
t
i
o
n

L
a
y
e
r

Time (Hours)

Attempt to create new categories

Figure 6.2: Attempts by the hierarchical ART network to create new classes, signi-
fying novelty, at hour 247, when the pump fails. The severity is low initially, but
quickly becomes high, signifying major deviation from normal conditions.

6.2 Test B: Impeller degradation

The pump degradation test was conducted by introducing an additional pressure

drop in the flow loop, resulting in a reduction in flow rate. This test was conducted

from February 24th, through March 7th, 2011. It simulates a condition in which

debris in a solar loop, such as drops of solder introduced during construction, are

slowly peening the edges of the impeller blades, compromising their ability to move

water and resulting in a reduction in the flow rate over time. This process normally

occurs over months of normal operation and continues until the impeller is incapable

of overcoming the head in the supply piping upon startup (in a drainback system).

In this case the process was speeded up to a four-day period due to constraints in

the testing schedule.

83

Chapter 6. Experimental results

 0

 1

 2

 3

 4

 1416 1440 1464 1488 1512 1536

F
a
u
l
t

D
e
t
e
c
t
i
o
n

L
a
y
e
r

Day1(10%) Day2(20%) Day3(30%) Day4(40%) Day5(normal)

Mar.1 Mar.2 Mar.3 Mar.4 Mar.5

Attempt to create new categories

Figure 6.3: Attempts by the hierarchical ART network to create new classes, signi-
fying novelty, during a test in which flow rate is gradually reduced over the course
of four days. When flow rate decreases past a threshold between 30% and 40%,
increasingly severe novelty is signaled, however even small changes in flow rate are
detected early on, at appropriately low severity levels.

The SHWRT’s SHW system operated normally for four days using the Solar

Rating Certification Corporation’s standard hot water draw profile (shown in Fig-

ure 3.4). On the fifth day, and for four consecutive days following, the solar loop flow

was gradually reduced by around 10% per day. As described in the previous chapter,

the solar loop flow was reduced by 5% per week in the degradation test with the

TRNSYS simulation data. Regardless of the reduction rate, both the simulation and

experimental results indicate that the ART system started to detect the faults when

the flow rate reduced to 90%. The faults were detected at three levels (4, 3 and 2)

in the simulated degradation test (shown in Figure 5.9). In contrast, the faults were

detected only at at level 4 in the experiment. This difference is probably because

the simulation test and the experiment test were run in different seasons and two

84

Chapter 6. Experimental results

different sets of training data were used for the fault detection system.

Figure 6.3 shows the ART system’s error reporting during the period in which

the flow was being reduced. On the x-axis is a temporal reference number. The grey

shaded boxes indicate each consecutive day. The black dots indicate the detection of

an unusual condition. Note that the severity level of the error on y-axis is in reverse

order, with a “1” representing the most severe unusual condition.

As can be seen, the ART system begins to detect unusual conditions as soon

as the flow was reduced. By the fourth day, the system has escalated the level of

severity significantly. When the flow was reset to its normal range, the number of

detected unusual conditions dropped dramatically.

6.3 Test C: Shading

The primary cause of shading of residential solar collectors is trees. Because growth

is gradual, it is difficult for the system owner to notice the problem, which could

therefore extend over years of operation. Correspondingly, it is also difficult for a

fault detection system to notice a problem -shading caused by a tree could easily

fall in the same class as shading caused by clouds. To assess the capacity of the

system to detect shading, the collectors were partially covered with movable panels,

which were shifted through the day to mimic shading caused by a tree, as shown in

Figure 6.4.

Two sets of detection results for the shading test are shown in Figure 6.5. One

uses the same inputs as the previous tests, namely plate temperature, time derivative

of plate temperature, and tank heat exchanger outlet temperature. The other uses

only two inputs, the standard deviation of the plate temperature over the last five

days at 1 PM, and the standard deviation of the same. The vigilance levels for the

85

Chapter 6. Experimental results

two tests are, respectively, 0.58, 0.68, 0.74, 0.8 and 0.4, 0.45, 0.5, 0.55.

Figure 6.4: Simulated shading of collectors, obtained by moving a cover repeatedly
through the day.

For both input combinations, the ART network detects shading. However, detec-

tion of shading with the ‘standard’ inputs required a recalibration of the vigilance

parameters, to an extent where cloudy weather is also mistakenly signaled as a po-

tential fault. On the other hand, the five-day mean and standard deviation inputs

successfully detect shading, but do not confuse it with cloudy weather. The reason

for the better performance of the second set of inputs is simple. The first set of in-

puts allows recognition of patterns which are collected for short periods (12 minutes).

Over this length of time, shading could look exactly the same as a cloud, which could

also reduce total heat collection for a similar amount of time. Unlike other faults,

shading produces patterns that could match existing categories - the difference being

that the faults are replicated at the same time every day. Using inputs that average

sensor information over the course of several days allows the detection of regular

faults which have a different signature from semi-random (weather) events over the

long term, such as shading, very dirty or broken glazing, loss of coolant.

Therefore, a novelty detection system should be built with a dual rule - one which

detects faults visible over short times, and one which looks at long-term variability.

The two systems could run in parallel.

86

Chapter 6. Experimental results

 0

 1

 2

 3

 4

 3264 3288 3312 3336 3360 3384 3408 3432 3456 3480 3504 3528 3552 3576 3600

F
au

lt
D

et
ec

tio
n

La
ye

r

Time (Hours)

Attempt to create new categories

 0

 1

 2

 3

 4

 3264 3288 3312 3336 3360 3384 3408 3432 3456 3480 3504 3528 3552 3576 3600

F
au

lt
D

et
ec

tio
n

La
ye

r

Time (Hours)

Normal days Shading days Normal days

Attempt to create new categories

Figure 6.5: Shading fault detection performance for regular inputs, and average and
standard deviation of plate temperature.

87

Chapter 7

Conclusions and future work

A fault detection system for SHW systems is presented in this work. This fault

detection system has several advantages. First, the input patterns of the fault detec-

tion system are generated from two sensors: collector plate temperature and water

tank heat exchanger outlet temperature, which are normally installed in residential

SHW systems installed by commercial operators. Second, the fault detection sys-

tem can be developed based only on simulation fault-free data or historical fault-free

measurement data, and no faulty training data are required. Third, various types

of fault and performance degradation have been detected successfully and faults are

detected at various levels depending on their severity. Fourth, the fault detection

system has high computational efficiency and can be implemented in on-line system

monitoring.

The ART-based fault detection system is developed and tested in Albuquerque,

NM, future research should focus on enhancing the capabilities of fault diagnostics.

Conclusions and some possible future for this work are presented in this chapter.

Through various examples, the viability of using an autonomous system which is

able to detect degradation and failure of a solar hot water heating system is demon-

88

Chapter 7. Conclusions and future work

strated. The viability of such a system has many contributing factors, including

performance, the potential for low-cost implementation, the capacity to adapt to

various configurations, and robustness. From the point of view of performance, it

was shown, both in numerical simulation and in experiment, that faults of all types,

from fatal ones which need immediate attention to ones that are in early stages of

development and are not immediately visible even to an expert human operator are

detected successfully.

By using an adaptive system, there is no need to anticipate all the possible

failures, or combinations thereof, which could occur. It is enough to train the ART

network from model results, without knowing much detail about the physics of the

process. While this is an attractive feature, there are two potential pitfalls. One

is that building an accurate model of a solar system in TRNSYS is not trivial, and

requires a considerable amount of expertise. However, it is theoretically possible to

automate this process, once sources of data for the system components is identified.

The other is that the required fidelity of the model is at this point unknown. One

positive indication is that training outcomes with one-hour data files differed very

little from training done using simulated one-second data files. However, it will be

necessary to identify which model parameters must be specified with high precision,

and which ones have little effect.

One of the strengths of the system is that only few data streams are needed,

meaning that it will not be necessary to instrument solar hot water systems with

additional sensors, something which would not be acceptable in an aggressively com-

petitive industry where reducing costs is paramount. On the other hand, it will be

necessary to conduct further research in identifying the optimal inputs to provide to

the ART network. For example, it was seen in this research that inputs which work

very well for identifying a certain class of faults, having to do with the circulation

of the heat medium, did not allow the ART network to successfully identify faults

89

Chapter 7. Conclusions and future work

connected with the ability of the system to absorb radiation (i.e. shading). One way

to overcome this difficulty would be to train parallel ARTs, each used to detect dif-

ferent kinds of faults. Alternatively, a larger set of inputs could be chosen to train a

single ART, which would then produce a set of higher-dimensional classes of normal

operating conditions.

Finally, it was shown how a hierarchical ART architecture would provide a num-

ber of useful features, including a higher classification efficiency, as well as an indi-

cation of the level of severity of the problem. Research is ongoing towards resolving

some of the issues noted here, but I am confident that ART-based anomaly detection

will find application in SHW system monitoring services, as well as, eventually, in

larger, more complex systems such as commercial building HVAC systems or sub-

systems.

In the future I plan to make advances in the steps to commercialization of the ART

technology, based on the needs of potential customers who may be interested in this

technology. In particular, I will investigate streamlining of the modeling and training

process to make it possible for non-experts to conduct the task. I will also investigate

the availability of information to allow this streamlining. Finally, I will examine the

computational complexity of possible implementations of the technology, either in

a distributed fashion on locally processing devices, or in a centralized fashion. In

particular, I have the following plans:

1. False alarm rate analysis. As discussed in Chapter 5, Figure 5.1 shows the

relationship between the number of classes and the training samples for different

vigilance parameters. From this figure, we can see that the vigilance parameter

levels out sooner with low vigilance values and the number of training samples

required for the training process can be predicted from these curves. The

number of training samples can also be determined by the analysis of false

alarm rate for different vigilance parameters. If a novelty is due to normal

90

Chapter 7. Conclusions and future work

variation, it is a false alarm. The false alarm rate will level out with increasing

training samples. This false alarm rate may level out sooner with low vigilance

values. High vigilance parameter may get a higher reasoning false alarm rate

value, which means the false alarm rate will convergent to a high value with

increasing training data and more novelties are due to normal variation. Low

false alarm rate is important for a robust fault detection method. The false

alarm rate can be used as a sensible criterion for choosing number of training

samples and vigilance values.

2. Optimization of vigilance parameters. The prediction of alarms is depen-

dent on the vigilance parameters. Alarms can be detected at varying levels of

severity by a suitable set of vigilance parameters. As discussed in Chapter 6,

for the shading test some false alarms are created by the ART system with the

same vigilance parameters. It is difficult to choose a set of vigilance parameters

which works for all the tests. Users of the ART fault detection are not expected

to have the technical knowledge about the ART network. I will develop an ad-

vanced ART network which can choose the vigilance parameters automatically.

Genetic algorithms (GAs) have the ability of global searching in a parallel man-

ner based on the mechanics of natural selection and natural genetics, and many

researchers combine the ART networks with GAs to improve the performance

of ART networks. For example, when GAs are used, the dimension of the ART

network input space can be reduced, which in turn reduce the training time

was reduced (Punitha et al., 2007). Kaylani et al. (2007) used GAs to solve the

category proliferation problem in ART. One application of GAs in the current

project will be using GAs to select a set of appropriate vigilance parameters for

the ART-based fault detection. The normal and faulty data are generated from

simulation models or historical measured data. Then the vigilance parameters

will be chosen by training the GAs with these normal and faulty data. The

generalization of ART will be improved and the ART-based fault detection will

91

Chapter 7. Conclusions and future work

be able to apply to more complex, larger distributed energy systems.

3. Sensitivity analysis for model detail. I have, to this point, made a model

that, to the best of my capacity, is an accurate reflection of the real system.

In a commercial situation, a vendor will have a good idea of the equipment

installed, but will not have a detailed knowledge of how to model the systems.

The model will then need to be generated automatically. The question is, how

detailed does the model need to be to provide adequate training? I will change

the level of refinement of the TRNSYS models that are used for training, and

then verify the ability of the trained ART network to detect novelty, including

detection at the appropriate severity level.

4. Sensitivity to inputs. So far, I have used inputs typical of domestic SHW

systems, including a sensor mounted on the collector and one mounted at the

storage water tank. Operators of monitoring systems, who are our most likely

customers, may want to monitor parameters that are different from the ones

in my study, for example ones mounted exclusively near the storage tank, to

avoid costly rooftop installation. I need to understand if the ART networks

can work in a satisfactory manner with a variety of inputs, other than the ones

I have successfully used so far. I will test use of a variety of inputs for the ART

network, and select the ones which work best while satisfying constraints that

may be imposed by service providers.

5. Availability of information. After investigating the appropriate level of

detail that should be used in the model for training purposes, I need to de-

termine how much of this information is available from existing sources, for

example the SRCC (Solar Rating and Certification Corporation). The idea

is that a vendor, a homeowner or a service provider will go to a web site to

build their system, with the ability to choose individual components from a

predefined menu. Components in the menus will need to have the necessary

92

Chapter 7. Conclusions and future work

information to build the TRNSYS model, including parameters such as col-

lector net absorber area, surface radiant characteristics, heat exchanger type

and dimensions, etc. Other parameters will need to be measured directly, for

example the tilt and orientation of the collector, the length of pipes connecting

components, etc. The system will also need to be able to assign reasonable

default values in case the information is not readily available.

6. Computational complexity and space complexity of the ART-based

neural networks analysis. I will analyze the numbers of allowable categories

which are created during the training process and the runtime for a single epoch

with the training data set. Because of the high computational efficiency of the

ART-based neural networks, the fault detection system can run as a real-time

monitor system.

The above recommendations will improve the accuracy and robustness of the

fault detection system. This dissertation research is an important early step for

commercialization the ART-based fault detection system.

93

Appendices

A Pump Controller Matlab Code 1

B Hierarchical ART GUI Code 2

C Double glazed collector TYPE 242 Fortran Code 3

94

Appendix A

Pump controller Matlab code

% SolarCollector.m

% --

%

% Simple first-order solar collector model (M-file called by TRNSYS type 155)

%

% Data passed from / to TRNSYS

% ----------------------------

%

% trnTime (1x1) : simulation time

% trnInfo (15x1) : TRNSYS info array

% trnInputs (nIx1) : TRNSYS inputs

% trnStartTime (1x1) : TRNSYS Simulation Start time

% trnStopTime (1x1) : TRNSYS Simulation Stop time

% trnTimeStep (1x1) : TRNSYS Simulation time step

% mFileErrorCode (1x1) : Error code for this m-file. It is set to 1 by TRNSYS and the m-file should set it to 0 at the

% end to indicate that the call was successful. Any non-zero value will stop the simulation

% trnOutputs (nOx1) : TRNSYS outputs

%

%

% Notes:

% ------

%

% You can use the values of trnInfo(7), trnInfo(8) and trnInfo(13) to identify the call (e.g. first iteration, etc.)

% Real-time controllers (callingMode = 10) will only be called once per time step with trnInfo(13) = 1 (after convergence)

%

% The number of inputs is given by the size of trnInputs and by trnInfo(3)

% The number of expected outputs is given by trnInfo(6)

% --

% This example implements a very simple solar collector model. The component is iterative (should be called at each

% TRNSYS call)

%

% trnInputs

% ---------

%

95

Appendix A. Pump controller Matlab code

% trnInputs(1) : T, collector outlet temperature

% trnInputs(2) : T, water tank top temperature

% trnInputs(3) : T, water tank bottom temperature

% trnInputs(4) : forcing function

% trnInputs(5) : T, outside ambient temperature

%

% trnOutputs

%

% trnOutputs(1) : pump on/off signal

% trnOutputs(2) : sky temperature

%

% MKu, October 2004

% --

% TRNSYS sets mFileErrorCode = 1 at the beginning of the M-File for error detection

% This file increments mFileErrorCode at different places. If an error occurs in the m-file the last succesful step will

% be indicated by mFileErrorCode, which is displayed in the TRNSYS error message

% At the very end, the m-file sets mFileErrorCode to 0 to indicate that everything was OK

mFileErrorCode = 100 % Beginning of the m-file

% --- Solar collector parameters--

% --

mFileErrorCode = 110 % After setting parameters

% --- Process Inputs ---

% --

T_coll_out = trnInputs(1);

Tank_top_T = trnInputs(2);

Tank_bot_T = trnInputs(3);

Forcing_func = trnInputs(4);

Ambient_T = trnInputs(5);

T_dp=5;

mFileErrorCode = 120 % After processing inputs

% --- First call of the simulation: initial time step (no iterations) --

% --

% (note that Matlab is initialized before this at the info(7) = -1 call, but the m-file is not called)

if ((trnInfo(7) == 0) & (trnTime-trnStartTime < 1e-6))

% This is the first call (Counter will be incremented later for this very first call)

nCall = 0;

% This is the first time step

nStep = 1;

% Initialize history of the variables for plotting at the end of the simulation

nTimeSteps = (trnStopTime-trnStartTime)/trnTimeStep + 1;

history.onoff = zeros(nTimeSteps,1);

history.en = zeros(nTimeSteps,1);

96

Appendix A. Pump controller Matlab code

% No return, we will calculate the solar collector performance during this call

mFileErrorCode = 130 % After initialization

end

% --- Very last call of the simulation (after the user clicks "OK"): Do nothing --

% --

if (trnInfo(8) == -1)

mFileErrorCode = 1000;

mFileErrorCode = 0; % Tell TRNSYS that we reached the end of the m-file without errors

return

end

% --- Post convergence calls: store values ---

% --

if (trnInfo(13) == 1)

mFileErrorCode = 140; % Beginning of a post-convergence call

history.onoff(nStep) = on_pump;

history.en(nStep) = en_pump;

% history.func(nStep) = Forcing_func;

mFileErrorCode = 0; % Tell TRNSYS that we reached the end of the m-file without errors

return % Do not update outputs at this call

end

% --- All iterative calls --

% --

% --- If this is a first call in the time step, increment counter ---

if (trnInfo(7) == 0)

nStep = nStep+1;

end

% --- Get TRNSYS Inputs ---

nI = trnInfo(3); % For bookkeeping

nO = trnInfo(6); % For bookkeeping

T_coll_out = trnInputs(1);

Tank_top_T = trnInputs(2);

Tank_bot_T = trnInputs(3);

Forcing_func = trnInputs(4);

Ambient_T = trnInputs(5);

mFileErrorCode = 150; % After reading inputs

97

Appendix A. Pump controller Matlab code

% --- Calculate solar collector performance ---

dis_pump = 0;

en_pump = 1;

on_pump = 1;

if Tank_bot_T > 60

dis_pump == 1;

else

dis_pump == 0;

end

if T_coll_out > 97

dis_pump == 1;

else

dis_pump == 0;

end

if nStep == 1

if (Tank_bot_T < 55) && (T_coll_out < 97)

en_pump = 1;

else

en_pump =0;

end

end

if en_pump == 1

if (T_coll_out - Tank_bot_T) >7

on_pump = 1*Forcing_func;

else

on_pump = 0;

end

else

on_pump = 0;

end

if history.onoff(nStep-1) > 0

if (T_coll_out-Tank_bot_T) > 0

on_pump = 1*Forcing_func;

else

on_pump = 0;

end

end

sky_T = 0.0552*(Ambient_T+273.15)^1.5-273.15;

% --- Set outputs ---

trnOutputs(1) = on_pump;

trnOutputs(2) = sky_T;

mFileErrorCode = 0; % Tell TRNSYS that we reached the end of the m-file without errors

return

98

Appendix B

Hierarchical ART GUI Code

B.1 Graphical design part

function varargout = ART_SHW(varargin)

% ART_SHW M-file for ART_SHW.fig

% ART_SHW, by itself, creates text1 new ART_SHW or raises the existing

% singleton*.

%

% H = ART_SHW returns the handle to text1 new ART_SHW or the handle to

% the existing singleton*.

%

% ART_SHW(’CALLBACK’,hObject,eventData,handles,...) calls the local

% function named CALLBACK in ART_SHW.M with the given input arguments.

%

% ART_SHW(’Property’,’Value’,...) creates text1 new ART_SHW or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before scoutdetails_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to ART_SHW_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help ART_SHW

% Last Modified by GUIDE v2.5 02-May-2011 15:10:42

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

99

Appendix B. Hierarchical ART GUI Code

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @ART_SHW_OpeningFcn, ...

’gui_OutputFcn’, @ART_SHW_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before ART_SHW is made visible.

function ART_SHW_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to ART_SHW (see VARARGIN)

% Choose default command line output for ART_SHW

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes ART_SHW wait for user response (see UIRESUME)

% uiwait(handles.figure1);

%Plot helicopter pictures on startup

% scout = imread(’scout.bmp’);

% axes(handles.axes1);

% image(scout);

% axis off;

%

% yaw_pedals = imread(’Yaw Pedals.jpg’);

% axes(handles.axes3);

% image(yaw_pedals);

% axis off;

%

% collective_lever = imread(’Collective Stick.jpg’);

% axes(handles.axes4);

% image(collective_lever);

% axis off;

%

% cyclic_stick = imread(’Cockpit Instruments.jpg’);

% axes(handles.axes5);

% image(cyclic_stick);

% axis off;

% --- Outputs from this function are returned to the command line.

100

Appendix B. Hierarchical ART GUI Code

function varargout = ART_SHW_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

%Scout Details

function tab1_ResizeFcn(hObject, eventdata, handles)

% hObject handle to uipanel1 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%Control Details

function tab2_ResizeFcn(hObject, eventdata, handles)

% hObject handle to uipanel1 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%Control Details

function tab3_ResizeFcn(hObject, eventdata, handles)

% hObject handle to uipanel1 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in exit.

function exit_Callback(hObject, eventdata, handles)

% hObject handle to exit (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

close ART_SHW;

% --- Executes on button press in train.

function train_Callback(hObject, eventdata, handles)

% hObject handle to train (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles = guidata(ART_SHW);

set(handles.tab1,’Visible’,’on’);

set(handles.tab2,’Visible’,’off’);

% set(handles.tab3,’Visible’,’off’);

% --- Executes on button press in test.

function test_Callback(hObject, eventdata, handles)

% hObject handle to test (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles = guidata(ART_SHW);

set(handles.tab1,’Visible’,’off’);

101

Appendix B. Hierarchical ART GUI Code

set(handles.tab2,’Visible’,’on’);

% set(handles.tab3,’Visible’,’off’);

% --- Executes on button press in result.

% function result_Callback(hObject, eventdata, handles)

% % hObject handle to result (see GCBO)

% % eventdata reserved - to be defined in text1 future version of MATLAB

% % handles structure with handles and user data (see GUIDATA)

%

% set(handles.tab1,’Visible’,’off’);

% set(handles.tab2,’Visible’,’off’);

% set(handles.tab3,’Visible’,’on’);

% --- Executes when figure1 is resized.

function figure1_ResizeFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

function text1_Callback(hObject, eventdata, handles)

% hObject handle to text1 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text1 as text

% str2double(get(hObject,’String’)) returns contents of text1 as text1 double

% --- Executes during object creation, after setting all properties.

function text1_CreateFcn(hObject, eventdata, handles)

% hObject handle to text1 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have text1 white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function text2_Callback(hObject, eventdata, handles)

% hObject handle to text2 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text2 as text

% str2double(get(hObject,’String’)) returns contents of text2 as text1 double

% --- Executes during object creation, after setting all properties.

102

Appendix B. Hierarchical ART GUI Code

function text2_CreateFcn(hObject, eventdata, handles)

% hObject handle to text2 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have text1 white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function text3_Callback(hObject, eventdata, handles)

% hObject handle to text3 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text3 as text

% str2double(get(hObject,’String’)) returns contents of text3 as text1 double

% --- Executes during object creation, after setting all properties.

function text3_CreateFcn(hObject, eventdata, handles)

% hObject handle to text3 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have text1 white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in runtrain.

function runtrain_Callback(hObject, eventdata, handles)

% hObject handle to runtrain (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

clear out_results wij01 wij12 wij23 wij34

global max0 min0 CAT01 CAT12 CAT23 CAT34 wij01 wij12 wij23 wij34 F1 alpha rho Nolayer rho

str1=get(handles.text1,’string’);

str2=get(handles.text2,’string’);

str3=get(handles.text3,’string’);

str4=get(handles.text4,’string’);

str5=get(handles.text5,’string’);

str6=get(handles.text6,’string’);

str7=get(handles.text7,’string’);

str8=get(handles.text8,’string’);

% vala=str2num(stra);

% valb=str2num(strb);

% valc=vala+valb;

% set(handles.text3,’string’,num2str(valc))

103

Appendix B. Hierarchical ART GUI Code

alpha=str2num(str1);

Nolayer=str2num(str2);

% alpha=1e-5; %choice parameter

rho(1)=str2num(str3);

rho(2)=str2num(str4);

rho(3)=str2num(str5);

rho(4)=str2num(str6);

F1=2*str2num(str7);

% rho=[0.65 0.72 0.78 0.87];

% daystep=480;

% daynum=0;

% daymonth=31;

% [node(:,1),node(:,2),node(:,3)]= textread(’train1week.txt’,’%f %f %f’);

% [node(:,1),node(:,2),node(:,3)]=textread(str8,’%f %f %f’);

if F1/2==1

[node(:,1),node(:,2)]=textread(str8,’%f %f’);

elseif F1/2==2

[node(:,1),node(:,2),node(:,3)]=textread(str8,’%f %f %f’);

elseif F1/2==3

[node(:,1),node(:,2),node(:,3),node(:,4)]=textread(str8,’%f %f %f %f’);

elseif F1/2==4

[node(:,1),node(:,2),node(:,3),node(:,4),node(:,5)]=textread(str8,’%f %f %f %f %f’);

elseif F1/2==5

[node(:,1),node(:,2),node(:,3),node(:,4),node(:,5),node(:,6)]=textread(str8,’%f %f %f %f %f %f’);

elseif F1/2==6

[node(:,1),node(:,2),node(:,3),node(:,4),node(:,5),node(:,6),node(:,7)]=textread(str8,’%f %f %f %f %f %f %f’);

elseif F1/2==7

[node(:,1),node(:,2),node(:,3),node(:,4),node(:,5),node(:,6),node(:,7),node(:,8)]=textread(str8,’%f %f %f %f %f %f %f %f’);

elseif F1/2==8

[node(:,1),node(:,2),node(:,3),node(:,4),node(:,5),node(:,6),node(:,7),node(:,8),node(:,9)]=

textread(str8,’%f %f %f %f %f %f %f %f %f’);

elseif F1/2==9

[node(:,1),node(:,2),node(:,3),node(:,4),node(:,5),node(:,6),node(:,7),node(:,8),node(:,9),node(:,10)]=

textread(str8,’%f %f %f %f %f %f %f %f %f %f’);

elseif F1/2==10

[node(:,1),node(:,2),node(:,3),node(:,4),node(:,5),node(:,6),node(:,7),node(:,8),node(:,9),node(:,10),node(:,11)]=

textread(str8,’%f %f %f %f %f %f %f %f %f %f %f’);

end

wij01(1,:)=ones(1,F1);

CAT01=0;

out_results=0;

a1_test(1,1:F1)=0;

a2_test(1,1:F1)=0;

snode=size(node);

for i=1:snode(1,2)-1

min0(i)=min(node(:,i+1));

max0(i)=max(node(:,i+1));

end

104

Appendix B. Hierarchical ART GUI Code

min0(1)=min0(1)-30;

for i=1:snode(1,1)

for j=2:snode(1,2)

node(i,j)=(node(i,j)-min0(j-1))/(max0(j-1)-min0(j-1));

end

end

clear i j

np=snode(1,1);

for point=1:1:np

out_results(point,1)=node(point,1);

for i=1:(F1/2)

out_results(point,i+1)=node(point,i+1);

a0(point,2*i-1)=node(point,i+1);

a0(point,2*i)=1-a0(point,2*i-1);

end

end

clear node point

for k=1:Nolayer

if k==1

CAT=CAT01;

wijtest=wij01;

[CAT_temp,wijold_temp,map_temp]=fuzzyart(a0,wijtest,CAT,rho(k));

CAT01=CAT_temp;

wij01=wijold_temp;

count1(1:CAT01)=0;

for point=1:1:np

count1(map_temp(point))=count1(map_temp(point))+1;

a1_temp{1,map_temp(point)}(1,count1(map_temp(point)))=point;

for h=1:F1

a1{1,map_temp(point)}(count1(map_temp(point)),h)=a0(point,h);

end

out_results(point,snode(1,2)+k)=map_temp(point);

end

clear CAT_temp wijold_temp map_temp point h

end

if k==2

CAT12(1:CAT01)=0;

for h=1:CAT01

if count1(h)>0

for r=1:count1(h)

for t=1:F1

a1_test(r,t)=a1{1,h}(r,t);

end

end

clear r t

wij12{1,h}(1,:)=ones(1,F1);

wijtest(1,1:F1)=wij12{1,h}(1,1:F1);

105

Appendix B. Hierarchical ART GUI Code

CAT=CAT12(h);

[CAT_temp,wijold_temp,map_temp]=fuzzyart(a1_test,wijtest,CAT,rho(k));

CAT12(h)=CAT_temp;

[line12,col12]=size(wijold_temp);

for r=1:line12

for t=1:col12

wij12{1,h}(r,t)=wijold_temp(r,t);

end

end

clear r t

for r=1:count1(h)

out_results(a1_temp{1,h}(1,r),snode(1,2)+k)=map_temp(r);

end

clear wijtest map_temp wijold_temp CAT CAT_temp line12 r a1_test

end

end

clear count1 a1_temp a1 h r t

for h=1:CAT01

count2{h}(1:CAT12(h))=0;

end

clear h

for point=1:1:np

count2{1,out_results(point,snode(1,2)+k-1)}(1,out_results(point,snode(1,2)+k))=count2{1,out_results(point,snode(1,2)+k-1)}

(1,out_results(point,snode(1,2)+k))+1;

a2_temp{1,out_results(point,snode(1,2)+k-1)}{1,out_results(point,snode(1,2)+k)}

(1,count2{1,out_results(point,snode(1,2)+k-1)}(1,out_results(point,snode(1,2)+k)))=point;

for h=1:F1

a2{1,out_results(point,snode(1,2)+k-1)}{1,out_results(point,snode(1,2)+k)}(count2{1,out_results(point,snode(1,2)+k-1)}

(1,out_results(point,snode(1,2)+k)),h)=a0(point,h);

end

end

clear point h

end

if k==3

for h=1:CAT01

CAT23(h,1:CAT12(h))=0;

end

clear h

for h=1:CAT01

for r=1:CAT12(h)

if count2{1,h}(1,r)>0

for t=1:count2{1,h}(1,r)

for u=1:F1

a2_test(t,u)=a2{1,h}{1,r}(t,u);

end

end

clear t u

wij23{1,h}{1,r}(1,:)=ones(1,F1);

wijtest(1,1:F1)=wij23{1,h}{1,r}(1,1:F1);

CAT=CAT23(h,r);

[CAT_temp,wijold_temp,map_temp]=fuzzyart(a2_test,wijtest,CAT,rho(k));

106

Appendix B. Hierarchical ART GUI Code

CAT23(h,r)=CAT_temp;

[line23,col23]=size(wijold_temp);

for t=1:line23

for u=1:col23

wij23{1,h}{1,r}(t,u)=wijold_temp(t,u);

end

end

clear t u

for t=1:count2{1,h}(1,r)

out_results(a2_temp{1,h}{1,r}(1,t),snode(1,2)+k)=map_temp(t);

end

clear a2_test wijtest map_temp wijold_temp CAT_temp t

end

end

end

clear count2 a2_temp a2 h r t u

for h=1:CAT01

for r=1:CAT12(h)

count3{1,h}{1,r}(1,1:CAT23(h,r))=0;

end

end

clear h r

for point=1:1:np

count3{1,out_results(point,snode(1,2)+k-2)}{1,out_results(point,snode(1,2)+k-1)}(1,out_results(point,snode(1,2)+k))

=count3{1,out_results(point,snode(1,2)+k-2)}{1,out_results(point,snode(1,2)+k-1)}

(1,out_results(point,snode(1,2)+k))+1;

a3_temp{1,out_results(point,snode(1,2)+k-2)}{1,out_results(point,snode(1,2)+k-1)}{1,out_results(point,snode(1,2)+k)}

(1,count3{1,out_results(point,snode(1,2)+k-2)}{1,out_results(point,snode(1,2)+k-1)}

(1,out_results(point,snode(1,2)+k)))=point;

for h=1:F1

a3{1,out_results(point,snode(1,2)+k-2)}{1,out_results(point,snode(1,2)+k-1)}{1,out_results(point,snode(1,2)+k)}

(count3{1,out_results(point,snode(1,2)+k-2)}{1,out_results(point,snode(1,2)+k-1)}

(1,out_results(point,snode(1,2)+k)),h)=a0(point,h);

end

end

clear point h

end

if k==4

for h=1:CAT01

for r=1:CAT12(h)

CAT34{1,h}(r,1:CAT23(h,r))=0;

end

end

clear h r

for h=1:CAT01

for r=1:CAT12(h)

for t=1:CAT23(h,r)

if count3{1,h}{1,r}(1,t)>0

for u=1:count3{1,h}{1,r}(1,t)

for v=1:F1

107

Appendix B. Hierarchical ART GUI Code

a3_test(u,v)=a3{1,h}{1,r}{1,t}(u,v);

end

end

clear u v

wij34{1,h}{1,r}{1,t}(1,:)=ones(1,F1);

wijtest(1,1:F1)=wij34{1,h}{1,r}{1,t}(1,1:F1);

CAT=CAT34{1,h}(r,t);

[CAT_temp,wijold_temp,map_temp]=fuzzyart(a3_test,wijtest,CAT,rho(k));

CAT34{1,h}(r,t)=CAT_temp;

[line34,col34]=size(wijold_temp);

for u=1:line34

for v=1:col34

wij34{1,h}{1,r}{1,t}(u,v)=wijold_temp(u,v);

end

end

clear u v

for u=1:count3{1,h}{1,r}(1,t)

out_results(a3_temp{1,h}{1,r}{1,t}(1,u),snode(1,2)+k)=map_temp(u);

end

clear a3_test wijtest map_temp wijold_temp CAT_temp u

end

end

end

end

clear count3 a3_temp a3 h r t u v

end

end

clear a0 node3

nr=size(out_results);

fid = fopen(’results_train.txt’,’wt’);

for k=1:np

for h=1:(F1/2+1)

fprintf(fid,’%f ’,out_results(k,h));

end

for h=(nr(1,2)-Nolayer+1):nr(1,2)

fprintf(fid,’%2d ’,out_results(k,h));

end

fprintf(fid,’\n’);

end

clear k

fclose(fid);

set(handles.text9,’string’,’Training is done!’)

function text9_Callback(hObject, eventdata, handles)

% hObject handle to text9 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text9 as text

% str2double(get(hObject,’String’)) returns contents of text9 as text1 double

108

Appendix B. Hierarchical ART GUI Code

% --- Executes during object creation, after setting all properties.

function text9_CreateFcn(hObject, eventdata, handles)

% hObject handle to text9 (see GCBO)

% eventdata reserved - to be defined in text1 future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have text1 white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function text11_Callback(hObject, eventdata, handles)

% hObject handle to text11 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text11 as text

% str2double(get(hObject,’String’)) returns contents of text11 as a double

% --- Executes during object creation, after setting all properties.

function text11_CreateFcn(hObject, eventdata, handles)

% hObject handle to text11 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in runtest.

function runtest_Callback(hObject, eventdata, handles)

% hObject handle to runtest (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

clear ntest numtest ntest2 ntest3 ttest out_test err_test

global max0 min0 CAT01 CAT12 CAT23 CAT34 wij01 wij12 wij23 wij34 F1 alpha rho Nolayer rho

str9=get(handles.text10,’string’);

% [ntest(:,1),ntest(:,2),ntest(:,3)]= textread(’NN05117_3min.txt’,’%f %f %f’);

if F1/2==1

[ntest(:,1),ntest(:,2)]=textread(str9,’%f %f’);

elseif F1/2==2

[ntest(:,1),ntest(:,2),ntest(:,3)]=textread(str9,’%f %f %f’);

elseif F1/2==3

[ntest(:,1),ntest(:,2),ntest(:,3),ntest(:,4)]=textread(str9,’%f %f %f %f’);

elseif F1/2==4

[ntest(:,1),ntest(:,2),ntest(:,3),ntest(:,4),ntest(:,5)]=textread(str9,’%f %f %f %f %f’);

elseif F1/2==5

109

Appendix B. Hierarchical ART GUI Code

[ntest(:,1),ntest(:,2),ntest(:,3),ntest(:,4),ntest(:,5),ntest(:,6)]=textread(str9,’%f %f %f %f %f %f’);

elseif F1/2==6

[ntest(:,1),ntest(:,2),ntest(:,3),ntest(:,4),ntest(:,5),ntest(:,6),ntest(:,7)]=textread(str9,’%f %f %f %f %f %f %f’);

elseif F1/2==7

[ntest(:,1),ntest(:,2),ntest(:,3),ntest(:,4),ntest(:,5),ntest(:,6),ntest(:,7),ntest(:,8)]=

textread(str9,’%f %f %f %f %f %f %f %f’);

elseif F1/2==8

[ntest(:,1),ntest(:,2),ntest(:,3),ntest(:,4),ntest(:,5),ntest(:,6),ntest(:,7),ntest(:,8),ntest(:,9)]=

textread(str9,’%f %f %f %f %f %f %f %f %f’);

elseif F1/2==9

[ntest(:,1),ntest(:,2),ntest(:,3),ntest(:,4),ntest(:,5),ntest(:,6),ntest(:,7),ntest(:,8),ntest(:,9),ntest(:,10)]=

textread(str9,’%f %f %f %f %f %f %f %f %f %f’);

elseif F1/2==10

[ntest(:,1),ntest(:,2),ntest(:,3),ntest(:,4),ntest(:,5),ntest(:,6),ntest(:,7),ntest(:,8),ntest(:,9),ntest(:,10),ntest(:,11)]=

textread(str9,’%f %f %f %f %f %f %f %f %f %f %f’);

end

numtest=size(ntest);

for i=1:numtest(1,1)

for j=2:numtest(1,2)

if ntest(i,j)>max0(j-1)

ntest(i,j)=max0(j-1);

elseif ntest(i,j)<min0(j-1)

ntest(i,j)=min0(j-1);

end

ntest(i,j)=(ntest(i,j)-min0(j-1))/(max0(j-1)-min0(j-1));

end

end

err_num=0;

for m=1:numtest(1,1)

out_test(m,1)=ntest(m,1);

for i=1:(F1/2)

out_test(m,i+1)=ntest(m,i+1);

ttest(2*i-1)=ntest(m,i+1);

ttest(2*i)=1-ttest(2*i-1);

end

for i=1:Nolayer

if i==1

CATa=CAT01;

wijtest=wij01;

end

if i==2

CATa=CAT12(out_test(m,numtest(1,2)+i-1));

[line12,col12]=size(wij12{1,out_test(m,numtest(1,2)+i-1)});

for h=1:line12

for r=1:col12

wijtest(h,r)=wij12{1,out_test(m,numtest(1,2)+i-1)}(h,r);

end

end

clear h r

end

if i==3

110

Appendix B. Hierarchical ART GUI Code

CATa=CAT23(out_test(m,numtest(1,2)+i-2),out_test(m,numtest(1,2)+i-1));

[line23,col23]=size(wij23{1,out_test(m,numtest(1,2)+i-2)}{1,out_test(m,numtest(1,2)+i-1)});

for h=1:line23

for r=1:col23

wijtest(h,r)=wij23{1,out_test(m,numtest(1,2)+i-2)}{1,out_test(m,numtest(1,2)+i-1)}(h,r);

end

end

clear h r

end

if i==4

CATa=CAT34{1,out_test(m,numtest(1,2)+i-3)}(out_test(m,numtest(1,2)+i-2),out_test(m,numtest(1,2)+i-1));

[line34,col34]=size(wij34{1,out_test(m,numtest(1,2)+i-3)}{1,out_test(m,numtest(1,2)+i-2)}

{1,out_test(m,numtest(1,2)+i-1)});

for h=1:line34

for r=1:col34

wijtest(h,r)=wij34{1,out_test(m,numtest(1,2)+i-3)}{1,out_test(m,numtest(1,2)+i-2)}

{1,out_test(m,numtest(1,2)+i-1)}(h,r);

end

end

clear h r

end

wijtest(CATa+1,1:F1)=1;

for r=1:CATa+1

Ti(r)=norm(min(ttest,wijtest(r,:)),1)/(alpha+norm(wijtest(r,:),1));

end

clear r

while 2>0

[Tmax_test,Jmax_test]=max(Ti);

if norm(min(ttest,wijtest(Jmax_test,:)),1)>=rho(i)*norm(ttest,1)

break;

end

if Tmax_test==0

break;

end

Ti(Jmax_test)=0;

end

if (Jmax_test==CATa+1) || (Tmax_test==0)

out_test(m,numtest(1,2)+i)=9999;

err_num=err_num+1;

for j=1:numtest(1,2)

err_test(err_num,j)=out_test(m,j);

end

for u=1:i

err_test(err_num,numtest(1,2)+u)=out_test(m,numtest(1,2)+u);

end

err_test(err_num,numtest(1,2)+Nolayer+1)=i;

clear u

if i<Nolayer

for u=(i+1):Nolayer

err_test(err_num,numtest(1,2)+u)=0;

out_test(m,numtest(1,2)+u)=0;

111

Appendix B. Hierarchical ART GUI Code

end

end

% err_num=err_num+1;

break;

else

out_test(m,numtest(1,2)+i)=Jmax_test;

end

clear Ti wijtest CATa

end

end

clear ntest3

nt=size(out_test);

fid = fopen(’results_test.txt’,’wt’);

for k=1:numtest(1,1)

for h=1:(F1/2+1)

fprintf(fid,’%f ’,out_test(k,h));

end

for h=(nt(1,2)-Nolayer+1):nt(1,2)

fprintf(fid,’%2d ’,out_test(k,h));

end

fprintf(fid,’\n’);

end

clear k

fclose(fid);

if err_num>0

nc=size(err_test);

fid = fopen(’errors.txt’,’wt’);

for k=1:err_num

for h=1:(F1/2+1)

fprintf(fid,’%f ’,err_test(k,h));

end

for h=(nc(1,2)-Nolayer):nc(1,2)

fprintf(fid,’%2d ’,err_test(k,h));

end

fprintf(fid,’\n’);

end

clear k

fclose(fid);

end

clear out_results wij01 wij12 wij23 wij34

set(handles.text11,’string’,’Testing is done!’)

if err_num>0

axes(handles.axes1)

plot(err_test(:,1),err_test(:,nc(1,2)),’*’)

set(handles.axes1,’Xlim’,[out_test(1,1) out_test(nt(1,1),1)])

set(handles.axes1,’Ylim’,[0 Nolayer])

112

Appendix B. Hierarchical ART GUI Code

set(handles.axes1,’XTick’,[out_test(1,1):24:out_test(nt(1,1),1)])

set(handles.axes1,’YTick’,[0:1:Nolayer])

handles.legend_plot1 = legend(’errors’);

end

guidata(hObject, handles);

function text4_Callback(hObject, eventdata, handles)

% hObject handle to text4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text4 as text

% str2double(get(hObject,’String’)) returns contents of text4 as a double

% --- Executes during object creation, after setting all properties.

function text4_CreateFcn(hObject, eventdata, handles)

% hObject handle to text4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function text5_Callback(hObject, eventdata, handles)

% hObject handle to text5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text5 as text

% str2double(get(hObject,’String’)) returns contents of text5 as a double

% --- Executes during object creation, after setting all properties.

function text5_CreateFcn(hObject, eventdata, handles)

% hObject handle to text5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function text6_Callback(hObject, eventdata, handles)

% hObject handle to text6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

113

Appendix B. Hierarchical ART GUI Code

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text6 as text

% str2double(get(hObject,’String’)) returns contents of text6 as a double

% --- Executes during object creation, after setting all properties.

function text6_CreateFcn(hObject, eventdata, handles)

% hObject handle to text6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function text8_Callback(hObject, eventdata, handles)

% hObject handle to text8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text8 as text

% str2double(get(hObject,’String’)) returns contents of text8 as a double

% --- Executes during object creation, after setting all properties.

function text8_CreateFcn(hObject, eventdata, handles)

% hObject handle to text8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in radiobutton1.

function radiobutton1_Callback(hObject, eventdata, handles)

% hObject handle to radiobutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of radiobutton1

if get(hObject,’value’)

[filename,pathname,index]=uigetfile({’*.txt’;’*.dat’},’training data file’);

if index

set(handles.text8,’string’,[pathname filename])

end

end

114

Appendix B. Hierarchical ART GUI Code

function text7_Callback(hObject, eventdata, handles)

% hObject handle to text7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text7 as text

% str2double(get(hObject,’String’)) returns contents of text7 as a double

% --- Executes during object creation, after setting all properties.

function text7_CreateFcn(hObject, eventdata, handles)

% hObject handle to text7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function text10_Callback(hObject, eventdata, handles)

% hObject handle to text10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of text10 as text

% str2double(get(hObject,’String’)) returns contents of text10 as a double

% --- Executes during object creation, after setting all properties.

function text10_CreateFcn(hObject, eventdata, handles)

% hObject handle to text10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in radiobutton2.

function radiobutton2_Callback(hObject, eventdata, handles)

% hObject handle to radiobutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

115

Appendix B. Hierarchical ART GUI Code

% Hint: get(hObject,’Value’) returns toggle state of radiobutton2

if get(hObject,’value’)

[filename,pathname,index]=uigetfile({’*.txt’;’*.dat’},’training data file’);

if index

set(handles.text10,’string’,[pathname filename])

end

end

% --- Executes on button press in pushbutton11.

function pushbutton11_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton11 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

savePlotWithinGUI(handles.axes1,handles.legend_plot1);

B.2 Fuzzy ART network part

function [CAT_out,wijold_out,map_out]=fuzzyart(node_in,wijold_in,CAT_in,rho_in)

beta=1;

alpha_in=1e-5; %choice parameter

wijold_mod=1;

ns=size(node_in);

niter=1;

% while 1>0,

for niter=1:2

for npoint=1:ns(1)

for h=1:ns(2)

a_in(h)=node_in(npoint,h);

end

for j=1:CAT_in+1

T(j) = norm(min(a_in,wijold_in(j,:)),1)/(alpha_in+norm(wijold_in(j,:),1));

end

while 1>0,

[Tmax_out,Jmax_out]=max(T);

if norm(min(a_in,wijold_in(Jmax_out,:)),1) >= rho_in*norm(a_in,1)

map_out(npoint)=Jmax_out;

break;

end

T(Jmax_out)=0;

if Tmax_out==0

Jmax_out = CAT_in+1;

break;

end

end

wijold_in(Jmax_out,:)=beta*min(a_in,wijold_in(Jmax_out,:))+(1-beta)*wijold_in(Jmax_out,:);

116

Appendix B. Hierarchical ART GUI Code

if Jmax_out==CAT_in+1

CAT_in=CAT_in+1;

wijold_in = aug(wijold_in,1);

end

end

if size(wijold_in)==size(wijold_mod)

if norm(wijold_in-wijold_mod)<0.0002

break;

end

end

wijold_mod=wijold_in;

end

CAT_out=CAT_in;

wijold_out=wijold_in;

B.3 Other functions

function aa=aug(a,n)

[lines,cols]=size(a);

u=ones(1,cols);

for i=1:n

a = [a;u];

end

aa = a;

function rectang(x1,y1,x2,y2,cc)

sym=sprintf(’-:-:-:’);

col=sprintf(’ymcrgbk’);

str1=col(mod(cc,4)+1);

str2=sym(mod(cc,4)+1);

col3=sprintf(’%s’,str1);

lsty3=sprintf(’%s’,str2);

h=line([x1,x2],[y1,y1]);

set(h,’Color’,col3,’LineStyle’,lsty3);

% set(h,’Color’,col3);

% set(h,’LineStyle’,lsty3);

hold on

h=line([x2,x2],[y1,y2]);

set(h,’Color’,col3,’LineStyle’,lsty3);

hold on

h=line([x2,x1],[y2,y2]);

set(h,’Color’,col3,’LineStyle’,lsty3);

hold on

h=line([x1,x1],[y2,y1]);

117

Appendix B. Hierarchical ART GUI Code

set(h,’Color’,col3,’LineStyle’,lsty3);

hold on

118

Appendix C

Double glazed collector TYPE 242

Fortran Code

SUBROUTINE TYPE242 (TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL,*)

C**

C Object: a

C Simulation Studio Model: Type242

C

C Author: b

C Editor: d

C Date: January 2010 last modified: January 2010

C

C

C ***

C *** Model Parameters

C ***

C Collector length m [0.;+Inf]

C Collector width m [0.;+Inf]

C Absorber plate thickness m [0.;+Inf]

C Conductivity of absorber material kJ/hr.m.K [0.;+Inf]

C Number of tubes - [1;+Inf]

C Inner tube diameter m [0.;+Inf]

C Outer tube diameter m [0.;+Inf]

C Bond resistance h.m2.K/kJ [0.;+Inf]

C Fluid specific heat kJ/kg.K [0.0;+Inf]

C Absorptance of the absorber plate Fraction [0.;1.]

C Emissivity of the absorber plate Fraction [0.;1.]

C Top loss mode - [1;1]

C Number of identical covers - [0;+Inf]

C Index of refraction of cover material - [0.;+Inf]

C Extinction coefficient, thickness product - [0.;1.]

C Emissivity of the glass Fraction [0.;1.]

C Plate spacing m [0.;+Inf]

C Glass spacing m [0.;+Inf]

119

Appendix C. Double glazed collector TYPE 242 Fortran Code

C ***

C *** Model Inputs

C ***

C Inlet temperature C [-Inf;+Inf]

C Inlet flow rate kg/hr [0.0;+Inf]

C Ambient temperature C [-Inf;+Inf]

C Sky temperature C [-Inf;+Inf]

C Wind velocity m/s [0.;+Inf]

C Incident solar radiation kJ/hr.m^2 [0.0;+Inf]

C Total horizontal radiation kJ/hr.m^2 [0.0;+Inf]

C Horizontal diffuse radiation kJ/hr.m^2 [0.0;+Inf]

C Ground reflectance Fraction [0.0;1.0]

C Incidence angle degrees [-360;+360]

C Collector slope degrees [-360;+360]

C Back heat loss coefficient kJ/hr.m^2.K [0.;+Inf]

C Edge heat loss coefficient kJ/hr.m^2.K [0.;+Inf]

C Fluid heat transfer coefficient - [0.;+Inf]

C Atmospheric pressure atm [0.;+Inf]

C ***

C *** Model Outputs

C ***

C Temperature at outlet C [-Inf;+Inf]

C Flow rate at outlet kg/hr [0.0;+Inf]

C Useful energy gain kJ/hr [0.0;+Inf]

C Collector F’- [-Inf;+Inf]

C Collector FR - [-Inf;+Inf]

C Collector top losses kJ/hr [-Inf;+Inf]

C Collector back losses kJ/hr [-Inf;+Inf]

C Collector edge losses kJ/hr [-Inf;+Inf]

C Mean fluid temperature C [-Inf;+Inf]

C Plate temperature C [-Inf;+Inf]

C Incidence angle modifier - [-Inf;+Inf]

C Overall heat loss coefficient kJ/hr.m^2.K [-Inf;+Inf]

C RHO DIFFUSE OUT - [-Inf;+Inf]

C TAU ALPHA OUT - [-Inf;+Inf]

C First glass temperature C [-Inf;+Inf]

C Second glass temperature C [-Inf;+Inf]

C ***

C *** Model Derivatives

C ***

C (Comments and routine interface generated by TRNSYS Studio)

C**

C TRNSYS acess functions (allow to acess TIME etc.)

USE TrnsysConstants

USE TrnsysFunctions

C---

C REQUIRED BY THE MULTI-DLL VERSION OF TRNSYS

!DEC$ATTRIBUTES DLLEXPORT :: TYPE242 !SET THE CORRECT TYPE NUMBER HERE

C---

C---

C TRNSYS DECLARATIONS

IMPLICIT NONE !REQUIRES THE USER TO DEFINE ALL VARIABLES BEFORE USING THEM

120

Appendix C. Double glazed collector TYPE 242 Fortran Code

DOUBLE PRECISION XIN !THE ARRAY FROM WHICH THE INPUTS TO THIS TYPE WILL BE RETRIEVED

DOUBLE PRECISION OUT !THE ARRAY WHICH WILL BE USED TO STORE THE OUTPUTS FROM THIS TYPE

DOUBLE PRECISION TIME !THE CURRENT SIMULATION TIME - YOU MAY USE THIS VARIABLE BUT DO NOT SET IT!

DOUBLE PRECISION PAR !THE ARRAY FROM WHICH THE PARAMETERS FOR THIS TYPE WILL BE RETRIEVED

DOUBLE PRECISION STORED !THE STORAGE ARRAY FOR HOLDING VARIABLES FROM TIMESTEP TO TIMESTEP

DOUBLE PRECISION T !AN ARRAY CONTAINING THE RESULTS FROM THE DIFFERENTIAL EQUATION SOLVER

DOUBLE PRECISION DTDT !AN ARRAY CONTAINING THE DERIVATIVES TO BE PASSED TO THE DIFF.EQ. SOLVER

DOUBLE PRECISION TIME0,TFINAL,DELT

INTEGER*4 INFO(15) !THE INFO ARRAY STORES AND PASSES VALUABLE INFORMATION TO AND FROM THIS TYPE

INTEGER*4 NP,NI,NOUT,ND !VARIABLES FOR THE MAXIMUM NUMBER OF PARAMETERS,INPUTS,OUTPUTS AND DERIVATIVES

INTEGER*4 NPAR,NIN,NDER !VARIABLES FOR THE CORRECT NUMBER OF PARAMETERS,INPUTS,OUTPUTS AND DERIVATIVES

INTEGER*4 IUNIT,ITYPE !THE UNIT NUMBER AND TYPE NUMBER FOR THIS COMPONENT

INTEGER*4 ICNTRL !AN ARRAY FOR HOLDING VALUES OF CONTROL FUNCTIONS WITH THE NEW SOLVER

INTEGER*4 NSTORED !THE NUMBER OF VARIABLES THAT WILL BE PASSED INTO AND OUT OF STORAGE

CHARACTER*3 OCHECK !AN ARRAY TO BE FILLED WITH THE CORRECT VARIABLE TYPES FOR THE OUTPUTS

CHARACTER*3 YCHECK !AN ARRAY TO BE FILLED WITH THE CORRECT VARIABLE TYPES FOR THE INPUTS

C---

C---

C USER DECLARATIONS - SET THE MAXIMUM NUMBER OF PARAMETERS (NP), INPUTS (NI),

C OUTPUTS (NOUT), AND DERIVATIVES (ND) THAT MAY BE SUPPLIED FOR THIS TYPE

PARAMETER (NP=18,NI=16,NOUT=16,ND=0,NSTORED=0)

C---

C---

C REQUIRED TRNSYS DIMENSIONS

DIMENSION XIN(NI),OUT(NOUT),PAR(NP),YCHECK(NI),OCHECK(NOUT),

1 STORED(NSTORED),T(ND),DTDT(ND)

INTEGER NITEMS

C---

C---

C ADD DECLARATIONS AND DEFINITIONS FOR THE USER-VARIABLES HERE

C PARAMETERS

DOUBLE PRECISION RDCONV,PI,LENGTH,WIDTH,THICK_ABSORBER,K_ABSORBER,

1 DIA_TUBE_I,DIA_TUBE_O,R_BOND,CP_FLUID,ABS_PLATE,EMISS_PLATE,

1 REFR_INDEX,KL_COVER,RHO_DIFFUSE,TAU_ALPHA_N,TAU_ALPHA,M,X,FR,

1 T_FLUID_IN,FLOW_IN,T_AMB,T_SKY,WINDSPEED,GT,GH,GDH,RHO_GROUND,

1 ANGLE_INC,SLOPE,U_BACK,U_EDGES,H_FLUID,U_TOP,U_L,AREA,W,XKAT,

1 EFFSKY,EFFGND,COSSLOPE,FSKY,FGND,GDSKY,GDGND,XKATDS,XKATDG,

1 XKATB,T_FLUID_OUT,T_PLATE_MEAN,H_CONV,H_RAD,H_RADIATION,T_K,

1 T_FLUID_MEAN,TMC,TAC,F,C,STF1,STF2,F_PRIME,QU,Q_TOP,Q_BACK,

1 Q_EDGES,FPP,T_FLUID_OUT_OLD,P_ATM,P_KPA,T_GLASS1,T_GLASS2,

1 T_GLASS1_OLD,T_GLASS2_OLD,AIRPROPS,EMISS_GLASS,HR_PC1,HR_C1C2,

1 HR_C2A,RADCOEPP,RADCOEPA,H_RAD_GRAY,K_VISC,THERM_COND,PRAND_N,

1 T_PG1,T_G1G2,RAYLEIGH_PG1,RAYLEIGH_G1G2,RAYLEIGH_NUM,DETA_TPG1,

1 DETA_TG1G2,DIS_PG1,DIS_G1G2,NUSSELT_PG1,NUSSELT_G1G2,

1 H_CONV_PG1,H_CONV_G1G2,NUSSELT_NUM,H_CONVECTION,

1 T_PLATE_MEAN_OLD,U_TOP2

INTEGER N_TUBES,ICOUNT,MODE_U,N_COVERS

CHARACTER(LEN=MAXMESSAGELENGTH)::MESSAGE1,MESSAGE2

DIMENSION AIRPROPS(5)

IUNIT=INFO(1)

ITYPE=INFO(2)

C---

121

Appendix C. Double glazed collector TYPE 242 Fortran Code

C---

C DATA STATEMENTS

DATA RDCONV/0.017453292/

DATA MESSAGE1/’An illegal overall heat transfer coefficient has be

1en calculated by the model. Please check the entering information

1 carefully.’/

DATA MESSAGE2/’Unable to find a stable solution for the mean plate

1 temperature.’/

C---

C---

C GET GLOBAL TRNSYS SIMULATION VARIABLES

TIME0=getSimulationStartTime()

TFINAL=getSimulationStopTime()

DELT=getSimulationTimeStep()

C---

C---

C SET THE VERSION INFORMATION FOR TRNSYS

IF(INFO(7).EQ.-2) THEN

INFO(12)=16

RETURN 1

ENDIF

C---

C---

C DO ALL THE VERY LAST CALL OF THE SIMULATION MANIPULATIONS HERE

IF (INFO(8).EQ.-1) THEN

RETURN 1

ENDIF

C---

C---

C PERFORM ANY ’AFTER-ITERATION’ MANIPULATIONS THAT ARE REQUIRED HERE

C e.g. save variables to storage array for the next timestep

IF (INFO(13).GT.0) THEN

NITEMS=0

C STORED(1)=... (if NITEMS > 0)

C CALL setStorageVars(STORED,NITEMS,INFO)

RETURN 1

ENDIF

C

C---

C---

C DO ALL THE VERY FIRST CALL OF THE SIMULATION MANIPULATIONS HERE

IF (INFO(7).EQ.-1) THEN

C SET SOME INFO ARRAY VARIABLES TO TELL THE TRNSYS ENGINE HOW THIS TYPE IS TO WORK

INFO(6)=NOUT

INFO(9)=1

INFO(10)=0 !STORAGE FOR VERSION 16 HAS BEEN CHANGED

C SET THE REQUIRED NUMBER OF INPUTS, PARAMETERS AND DERIVATIVES THAT THE USER SHOULD SUPPLY IN THE INPUT FILE

C IN SOME CASES, THE NUMBER OF VARIABLES MAY DEPEND ON THE VALUE OF PARAMETERS TO THIS MODEL....

NIN=NI

NPAR=NP

NDER=ND

122

Appendix C. Double glazed collector TYPE 242 Fortran Code

C SET THE REQUIRED NUMBER OF INPUTS BASED ON THE MODE FOR THE TOP LOSSES

MODE_U=JFIX(PAR(12)+0.5)

IF(MODE_U.LT.1) CALL TYPECK(-4,INFO,0,12,0)

IF(MODE_U.GT.2) CALL TYPECK(-4,INFO,0,12,0)

IF(MODE_U.EQ.1) THEN

NIN=15

ELSE

NIN=16

ENDIF

C CALL THE TYPE CHECK SUBROUTINE TO COMPARE WHAT THIS COMPONENT REQUIRES TO WHAT IS SUPPLIED IN

C THE TRNSYS INPUT FILE

CALL TYPECK(1,INFO,NIN,NPAR,NDER)

C SET THE YCHECK AND OCHECK ARRAYS TO CONTAIN THE CORRECT VARIABLE TYPES FOR THE INPUTS AND OUTPUTS

DATA YCHECK/’TE1’,’MF1’,’TE1’,’TE1’,’VE1’,’IR1’,’IR1’,’IR1’,

1 ’DM1’,’DG1’,’DG1’,’HT1’,’HT1’,’HT1’,’PR4’,’HT1’/

DATA OCHECK/’TE1’,’MF1’,’PW1’,’DM1’,’DM1’,’PW1’,’PW1’,’PW1’,

1 ’TE1’,’TE1’,’DM1’,’HT1’,’DM1’,’DM1’,’TE1’,’TE1’/

C CALL THE RCHECK SUBROUTINE TO SET THE CORRECT INPUT AND OUTPUT TYPES FOR THIS COMPONENT

C CALL RCHECK(INFO,YCHECK,OCHECK)

C SET THE NUMBER OF STORAGE SPOTS NEEDED FOR THIS COMPONENT

NITEMS=0

C CALL setStorageSize(NITEMS,INFO)

C RETURN TO THE CALLING PROGRAM

RETURN 1

ENDIF

C---

C---

C DO ALL OF THE INITIAL TIMESTEP MANIPULATIONS HERE - THERE ARE NO ITERATIONS AT THE INTIAL TIME

IF (TIME .LT. (getSimulationStartTime() +

. getSimulationTimeStep()/2.D0)) THEN

C SET THE UNIT NUMBER FOR FUTURE CALLS

IUNIT=INFO(1)

ITYPE=INFO(2)

C READ IN THE VALUES OF THE PARAMETERS IN SEQUENTIAL ORDER

LENGTH=PAR(1)

WIDTH=PAR(2)

THICK_ABSORBER=PAR(3)

K_ABSORBER=PAR(4)

N_TUBES=JFIX(PAR(5)+0.5)

DIA_TUBE_I=PAR(6)

DIA_TUBE_O=PAR(7)

R_BOND=PAR(8)

CP_FLUID=PAR(9)

ABS_PLATE=PAR(10)

EMISS_PLATE=PAR(11)

MODE_U=JFIX(PAR(12)+0.5)

N_COVERS=JFIX(PAR(13)+0.5)

123

Appendix C. Double glazed collector TYPE 242 Fortran Code

REFR_INDEX=PAR(14)

KL_COVER=PAR(15)

EMISS_GLASS=PAR(16)

DIS_PG1=PAR(17)

DIS_G1G2=PAR(18)

C CHECK THE PARAMETERS FOR PROBLEMS AND RETURN FROM THE SUBROUTINE IF AN ERROR IS FOUND

IF(LENGTH.LE.0.) CALL TYPECK(-4,INFO,0,1,0)

IF(WIDTH.LE.0.) CALL TYPECK(-4,INFO,0,2,0)

IF(THICK_ABSORBER.LE.0.) CALL TYPECK(-4,INFO,0,3,0)

IF(K_ABSORBER.LE.0.) CALL TYPECK(-4,INFO,0,4,0)

IF(N_TUBES.LT.1) CALL TYPECK(-4,INFO,0,5,0)

IF(DIA_TUBE_I.LE.0.) CALL TYPECK(-4,INFO,0,6,0)

IF(DIA_TUBE_O.LE.0.) CALL TYPECK(-4,INFO,0,7,0)

IF(DIA_TUBE_O*DBLE(N_TUBES).GT.WIDTH)

1 CALL TYPECK(-4,INFO,0,7,0)

IF(DIA_TUBE_O.LE.DIA_TUBE_I) CALL TYPECK(-4,INFO,0,7,0)

IF(R_BOND.LT.0.) CALL TYPECK(-4,INFO,0,8,0)

IF(CP_FLUID.LE.0.) CALL TYPECK(-4,INFO,0,9,0)

IF(ABS_PLATE.LE.0.) CALL TYPECK(-4,INFO,0,10,0)

IF(ABS_PLATE.GT.1.) CALL TYPECK(-4,INFO,0,10,0)

IF(EMISS_PLATE.LT.0.) CALL TYPECK(-4,INFO,0,11,0)

IF(EMISS_PLATE.GT.1.) CALL TYPECK(-4,INFO,0,11,0)

IF(N_COVERS.LT.0) CALL TYPECK(-4,INFO,0,13,0)

IF(REFR_INDEX.LE.0.) CALL TYPECK(-4,INFO,0,14,0)

IF(KL_COVER.LT.0.) CALL TYPECK(-4,INFO,0,15,0)

C SET THE TRANSMITTANCE-ABSORPTANCE PRODUCT AT NORMAL INCIDENCE AND THE REFLECTANCE OF THE COVER

C TO DIFFUSE RADIATION

RHO_DIFFUSE=-1.

TAU_ALPHA_N=TAU_ALPHA(N_COVERS,0.D0,KL_COVER,REFR_INDEX,

C TAU_ALPHA_N=TAU_ALPHA(N_COVERS,45.,KL_COVER,REFR_INDEX,

1 ABS_PLATE,RHO_DIFFUSE)

C CHECK THE PARAMETERS FOR PROBLEMS AND RETURN FROM THE SUBROUTINE IF AN ERROR IS FOUND

C IF(...) CALL TYPECK(-4,INFO,0,"BAD PARAMETER #",0)

C PERFORM ANY REQUIRED CALCULATIONS TO SET THE INITIAL VALUES OF THE OUTPUTS HERE

C PERFORM ANY REQUIRED CALCULATIONS TO SET THE INITIAL VALUES OF THE OUTPUTS HERE

OUT(1)=XIN(1)

OUT(2:8)=0.

OUT(9)=XIN(1)

OUT(10)=XIN(1)

OUT(11:12)=0.

OUT(13)=RHO_DIFFUSE

OUT(14)=TAU_ALPHA_N

OUT(15)=0.

OUT(16)=0.

C PERFORM ANY REQUIRED CALCULATIONS TO SET THE INITIAL STORAGE VARIABLES HERE

NITEMS=0

C STORED(1)=...

C PUT THE STORED ARRAY IN THE GLOBAL STORED ARRAY

C CALL setStorageVars(STORED,NITEMS,INFO)

C RETURN TO THE CALLING PROGRAM

RETURN 1

124

Appendix C. Double glazed collector TYPE 242 Fortran Code

ENDIF

C---

C---

C *** ITS AN ITERATIVE CALL TO THIS COMPONENT ***

C---

C---

C RE-READ THE PARAMETERS IF ANOTHER UNIT OF THIS TYPE HAS BEEN CALLED

IF(INFO(1).NE.IUNIT) THEN

C RESET THE UNIT NUMBER

IUNIT=INFO(1)

ITYPE=INFO(2)

C READ IN THE VALUES OF THE PARAMETERS IN SEQUENTIAL ORDER

LENGTH=PAR(1)

WIDTH=PAR(2)

THICK_ABSORBER=PAR(3)

K_ABSORBER=PAR(4)

N_TUBES=JFIX(PAR(5)+0.5)

DIA_TUBE_I=PAR(6)

DIA_TUBE_O=PAR(7)

R_BOND=PAR(8)

CP_FLUID=PAR(9)

ABS_PLATE=PAR(10)

EMISS_PLATE=PAR(11)

MODE_U=JFIX(PAR(12)+0.5)

N_COVERS=JFIX(PAR(13)+0.5)

REFR_INDEX=PAR(14)

KL_COVER=PAR(15)

EMISS_GLASS=PAR(16)

DIS_PG1=PAR(17)

DIS_G1G2=PAR(18)

ENDIF

C---

C---

C RETRIEVE THE CURRENT VALUES OF THE INPUTS TO THIS MODEL FROM THE XIN ARRAY IN SEQUENTIAL ORDER

T_FLUID_IN=XIN(1)

FLOW_IN=XIN(2)

T_AMB=XIN(3)

T_SKY=XIN(4)

WINDSPEED=XIN(5)

GT=XIN(6)

GH=XIN(7)

GDH=XIN(8)

RHO_GROUND=XIN(9)

ANGLE_INC=XIN(10)

SLOPE=XIN(11)

U_BACK=XIN(12)

U_EDGES=XIN(13)

H_FLUID=XIN(14)

P_ATM=XIN(15)

IF(MODE_U.GT.1) THEN

125

Appendix C. Double glazed collector TYPE 242 Fortran Code

U_TOP=XIN(16)

ELSE

U_TOP=0.

ENDIF

C---

C---

C CHECK THE INPUTS FOR PROBLEMS

IF(FLOW_IN.LT.0.) CALL TYPECK(-3,INFO,2,0,0)

IF(WINDSPEED.LT.0.) CALL TYPECK(-3,INFO,5,0,0)

IF(GT.LT.0.) CALL TYPECK(-3,INFO,6,0,0)

IF(GH.LT.0.) CALL TYPECK(-3,INFO,7,0,0)

IF(GDH.LT.0.) CALL TYPECK(-3,INFO,8,0,0)

IF(RHO_GROUND.LT.0.) CALL TYPECK(-3,INFO,9,0,0)

IF(RHO_GROUND.GT.1.) CALL TYPECK(-3,INFO,9,0,0)

IF(U_BACK.LT.0.) CALL TYPECK(-3,INFO,12,0,0)

IF(U_EDGES.LT.0.) CALL TYPECK(-3,INFO,13,0,0)

IF(H_FLUID.LE.0.) CALL TYPECK(-3,INFO,14,0,0)

IF(P_ATM.LE.0.) CALL TYPECK(-3,INFO,15,0,0)

IF(P_ATM.GT.5.) CALL TYPECK(-3,INFO,15,0,0)

IF(U_TOP.LT.0.) CALL TYPECK(-3,INFO,16,0,0)

IF(ERRORFOUND()) RETURN 1

C---

C---

C RETRIEVE THE VALUES IN THE STORAGE ARRAY FOR THIS ITERATION

C NITEMS=

C CALL getStorageVars(STORED,NITEMS,INFO)

C STORED(1)=

C---

C---

C CHECK THE INPUTS FOR PROBLEMS

C IF(...) CALL TYPECK(-3,INFO,’BAD INPUT #’,0,0)

C IF(IERROR.GT.0) RETURN 1

C---

C---

C *** PERFORM ALL THE CALCULATION HERE FOR THIS MODEL. ***

C---

C ADD YOUR COMPONENT EQUATIONS HERE; BASICALLY THE EQUATIONS THAT WILL

C CALCULATE THE OUTPUTS BASED ON THE PARAMETERS AND THE INPUTS. REFER TO

C CHAPTER 3 OF THE TRNSYS VOLUME 1 MANUAL FOR DETAILED INFORMATION ON

C WRITING TRNSYS COMPONENTS.

C SET PI

PI=4*DATAN(1.D0)

C CALCULATE THE AREA OF THE COLLECTOR

AREA=LENGTH*WIDTH

C CALCULATE THE TUBE-TO-TUBE DISTANCE

W=WIDTH/DBLE(N_TUBES)

C RETRIEVE THE TRANSMITTANCE ABSORPTANCE PRODUCT AT NORMAL INCIDENCE AND THE REFLECTANCE TO DIFFUSE

RHO_DIFFUSE=OUT(13)

126

Appendix C. Double glazed collector TYPE 242 Fortran Code

TAU_ALPHA_N=OUT(14)

C GET THE INCIDENCE ANGLE MODIFIER

IF(N_COVERS.LT.1) THEN

XKAT=1.

ELSE

C USE THE RELATIONS OF BRANDEMUEHL TO GET THE EFFECTIVE INCIDENCE ANGLES FOR DIFFUSE RADIATION

EFFSKY=59.68-0.1388*SLOPE+0.001497*SLOPE*SLOPE

EFFGND=90.-0.5788*SLOPE+0.002693*SLOPE*SLOPE

COSSLOPE=DCOS(SLOPE*RDCONV)

FSKY=(1.+COSSLOPE)/2.

FGND=(1.-COSSLOPE)/2.

GDSKY=FSKY*GDH

GDGND=RHO_GROUND*FGND*GH

C USE THE TAU_ALPHA FUNCTION FOR THE COMPONENT IAM VALUES

XKATDS=TAU_ALPHA(N_COVERS,EFFSKY,KL_COVER,REFR_INDEX,ABS_PLATE,

1 RHO_DIFFUSE)/TAU_ALPHA_N

XKATDG=TAU_ALPHA(N_COVERS,EFFGND,KL_COVER,REFR_INDEX,ABS_PLATE,

1 RHO_DIFFUSE)/TAU_ALPHA_N

XKATB=TAU_ALPHA(N_COVERS,ANGLE_INC,KL_COVER,REFR_INDEX,

1 ABS_PLATE,RHO_DIFFUSE)/TAU_ALPHA_N

C CALCULATE THE OVERALL IAM

IF(GT.GT.0.) THEN

XKAT=(XKATB*(GT-GDSKY-GDGND)+XKATDS*GDSKY+XKATDG*GDGND)/GT

ELSE

XKAT=0.

ENDIF

ENDIF

C GUESS AN OUTPUT TEMPERATURE

T_FLUID_OUT=T_FLUID_IN

C GUESS THE MEAN PLATE ND MEAN FLUID TEMPERATURES

T_PLATE_MEAN=(T_FLUID_IN+T_FLUID_OUT)/2.

C T_PLATE_MEAN=100.

T_FLUID_MEAN=(T_FLUID_IN+T_FLUID_OUT)/2.

C GUESS THE GLASS1 AND GLASS2 TEMPERATURES

T_GLASS1=T_PLATE_MEAN-5.

T_GLASS2=T_PLATE_MEAN-10.

C INITIALIZE A FEW VARIABLES

ICOUNT=1

T_FLUID_OUT_OLD=T_FLUID_OUT

T_GLASS1_OLD=T_GLASS1

T_GLASS2_OLD=T_GLASS2

C SET THE TOP LOSS COEFFICIENCT

100 IF(MODE_U.EQ.1) THEN

C SET THE TOP LOSS FROM CONVECTION AND RADIATION

IF(N_COVERS.LT.1) THEN

127

Appendix C. Double glazed collector TYPE 242 Fortran Code

P_KPA=P_ATM*101.325

T_K=T_AMB+273.15

CALL WINDCOEF(WINDSPEED,LENGTH,WIDTH,T_K,P_KPA,H_CONV)

H_CONV=H_CONV*3.6 !CONVERT W/M2/K TO KJ/H/M2.K

H_RAD=H_RADIATION(T_PLATE_MEAN,T_SKY,EMISS_PLATE)

U_TOP=H_CONV+H_RAD

C USE KLEIN’S TOP LOSS CORRELATION

ELSE

LENGTH=PAR(1)

WIDTH=PAR(2)

THICK_ABSORBER=PAR(3)

K_ABSORBER=PAR(4)

N_TUBES=JFIX(PAR(5)+0.5)

DIA_TUBE_I=PAR(6)

DIA_TUBE_O=PAR(7)

R_BOND=PAR(8)

CP_FLUID=PAR(9)

ABS_PLATE=PAR(10)

EMISS_PLATE=PAR(11)

MODE_U=JFIX(PAR(12)+0.5)

N_COVERS=JFIX(PAR(13)+0.5)

REFR_INDEX=PAR(14)

KL_COVER=PAR(15)

EMISS_GLASS=PAR(16)

DIS_PG1=PAR(17)

DIS_G1G2=PAR(18)

T_FLUID_IN=XIN(1)

FLOW_IN=XIN(2)

T_AMB=XIN(3)

T_SKY=XIN(4)

WINDSPEED=XIN(5)

GT=XIN(6)

GH=XIN(7)

GDH=XIN(8)

RHO_GROUND=XIN(9)

ANGLE_INC=XIN(10)

SLOPE=XIN(11)

U_BACK=XIN(12)

U_EDGES=XIN(13)

H_FLUID=XIN(14)

P_ATM=XIN(15)

C SET THE MEAN FLUID TEMPERATURE

P_KPA=P_ATM*101.325

T_K=T_AMB+273.15

IF (GT.GE.50.) THEN

CALL WINDCOEF(WINDSPEED,LENGTH,WIDTH,T_K,P_KPA,H_CONV)

HR_PC1=H_RAD_GRAY(T_PLATE_MEAN,T_GLASS1,EMISS_PLATE,

1 EMISS_GLASS)/3.6

HR_C1C2=H_RAD_GRAY(T_GLASS1,T_GLASS2,EMISS_GLASS,

128

Appendix C. Double glazed collector TYPE 242 Fortran Code

1 EMISS_GLASS)/3.6

HR_C2A=H_RADIATION(T_GLASS2,T_SKY,EMISS_GLASS)*

1 DABS(T_GLASS2-T_SKY)/DABS(T_GLASS2-T_AMB+1.D-3)/3.6

T_PG1=(T_PLATE_MEAN+T_GLASS1)/2.+273.15

T_G1G2=(T_GLASS1+T_GLASS2)/2.+273.15

DETA_TPG1=DABS(T_PLATE_MEAN-T_GLASS1)

DETA_TG1G2=DABS(T_GLASS1-T_GLASS2)

CALL AIRPROP(T_PG1,P_KPA,AIRPROPS)

K_VISC=AIRPROPS(2)

THERM_COND=AIRPROPS(4)

PRAND_N=AIRPROPS(3)

RAYLEIGH_PG1=RAYLEIGH_NUM(T_PG1,DETA_TPG1,DIS_PG1,K_VISC,

1 PRAND_N)

NUSSELT_PG1=NUSSELT_NUM(RAYLEIGH_PG1,SLOPE)

H_CONV_PG1=H_CONVECTION(NUSSELT_PG1,THERM_COND,DIS_PG1)

CALL AIRPROP(T_G1G2,P_KPA,AIRPROPS)

K_VISC=AIRPROPS(2)

THERM_COND=AIRPROPS(4)

PRAND_N=AIRPROPS(3)

RAYLEIGH_G1G2=RAYLEIGH_NUM(T_G1G2,DETA_TG1G2,DIS_G1G2,

1 K_VISC,PRAND_N)

NUSSELT_G1G2=NUSSELT_NUM(RAYLEIGH_G1G2,SLOPE)

H_CONV_G1G2=H_CONVECTION(NUSSELT_G1G2,THERM_COND,DIS_G1G2)

U_TOP=1/(H_CONV_PG1+HR_PC1)+1/(H_CONV_G1G2+HR_C1C2)+

1 1/(H_CONV+HR_C2A+1.D-3)

U_TOP=1/U_TOP

T_GLASS1=T_PLATE_MEAN-U_TOP*(T_PLATE_MEAN-T_AMB)/

1 (H_CONV_PG1+HR_PC1)

T_GLASS2=T_GLASS1-U_TOP*(T_PLATE_MEAN-T_AMB+1.D-3)/

1 (H_CONV_G1G2+HR_C1C2)

U_TOP=U_TOP*3.6

ENDIF

ENDIF

ELSE

U_TOP=XIN(16)

ENDIF

C SET THE OVERALL LOSS COEFFICIENT

U_L=U_TOP+U_BACK+U_EDGES

IF(U_L.LE.0.) THEN

CALL MESSAGES(-1,MESSAGE1,’FATAL’,IUNIT,ITYPE)

RETURN 1

ENDIF

C SET SOME REQUIRED VARIABLES

M=(U_L/K_ABSORBER/THICK_ABSORBER)**0.5

129

Appendix C. Double glazed collector TYPE 242 Fortran Code

F=DTANH((M*(W-DIA_TUBE_O)/2.))/(M*(W-DIA_TUBE_O)/2.)

X=1./(U_L*(DIA_TUBE_O+(W-DIA_TUBE_O)*F))+R_BOND+

1 1./PI/DIA_TUBE_I/H_FLUID

C SET THE COLLECTOR EFFICIENCY FACTOR

F_PRIME=1./U_L/W/X

C CALCULATE THE COLLECTOR HEAT REMOVAL FACTOR

IF(FLOW_IN.LE.0.) THEN

FR=0.

ELSE

FR=FLOW_IN*CP_FLUID/AREA/U_L*(1.-DEXP(-AREA*U_L*F_PRIME/

1 FLOW_IN/CP_FLUID))

ENDIF

C CALCULATE THE COLLECTOR USEFUL ENERGY GAIN

QU=AREA*FR*(GT*TAU_ALPHA_N*XKAT-U_L*(T_FLUID_IN-T_AMB))

C CALCULATE THE COLLECTOR OUTLET TEMPERATURE

IF (FLOW_IN.LE.0.) THEN

T_FLUID_OUT=GT*XKAT*TAU_ALPHA_N/U_L+T_AMB

T_PLATE_MEAN=T_FLUID_OUT

T_FLUID_MEAN=T_FLUID_OUT

C IF ((T_PLATE_MEAN-T_AMB).LE.0.) THEN

IF (GT.LE.50.) THEN

T_PLATE_MEAN_OLD=T_PLATE_MEAN

P_KPA=P_ATM*101.325

T_K=T_AMB+273.15

CALL WINDCOEF(WINDSPEED,LENGTH,WIDTH,T_K,P_KPA,H_CONV)

150 T_PLATE_MEAN=T_AMB-EMISS_GLASS*5.67D-8*((T_PLATE_MEAN+273.15)

1 **4-(T_SKY+273.15)**4)/H_CONV

IF (DABS(T_PLATE_MEAN-T_PLATE_MEAN_OLD).GT.0.001) THEN

T_PLATE_MEAN_OLD=T_PLATE_MEAN

GOTO 150

ENDIF

H_CONV=H_CONV*3.6

T_GLASS1=T_PLATE_MEAN

T_GLASS2=T_PLATE_MEAN

T_FLUID_OUT=(T_PLATE_MEAN+T_AMB)/2.

T_FLUID_MEAN=T_PLATE_MEAN

Q_TOP=AREA*H_CONV*(T_AMB-T_GLASS2)

Q_BACK=AREA*U_BACK*(T_PLATE_MEAN-T_AMB)

Q_EDGES=AREA*U_EDGES*(T_PLATE_MEAN-T_AMB)

ENDIF

ELSE

T_FLUID_OUT=T_FLUID_IN+QU/FLOW_IN/CP_FLUID

FPP=FR/F_PRIME

T_FLUID_MEAN=T_FLUID_IN+QU/AREA*(1.-FPP)/FR/U_L

130

Appendix C. Double glazed collector TYPE 242 Fortran Code

T_PLATE_MEAN=T_FLUID_IN+QU/AREA*(1.-FR)/FR/U_L

Q_TOP=AREA*U_TOP*(T_PLATE_MEAN-T_AMB)

Q_BACK=AREA*U_BACK*(T_PLATE_MEAN-T_AMB)

Q_EDGES=AREA*U_EDGES*(T_PLATE_MEAN-T_AMB)

ENDIF

C SEE IF CONVERGENCE HAS BEEN REACHED

IF((ICOUNT.LT.200).AND.(DABS(T_FLUID_OUT_OLD-T_FLUID_OUT

1).GT.0.001).AND.(DABS(T_GLASS1_OLD-T_GLASS1).GT.0.001).

1 AND.(DABS(T_GLASS2_OLD-T_GLASS2).GT.0.001)) THEN

ICOUNT=ICOUNT+1

T_FLUID_OUT_OLD=T_FLUID_OUT

T_GLASS1_OLD=T_GLASS1

T_GLASS2_OLD=T_GLASS2

GOTO 100

ENDIF

C WARN THE USER IF CONVERGENCE HAS NOT BEEN OBTAINED

IF(ICOUNT.GE.50) THEN

CALL MESSAGES(-1,MESSAGE2,’WARNING’,IUNIT,ITYPE)

ENDIF

C---

C---

C---

C SET THE STORAGE ARRAY AT THE END OF THIS ITERATION IF NECESSARY

C NITEMS=

C STORED(1)=

C CALL setStorageVars(STORED,NITEMS,INFO)

C---

C---

C REPORT ANY PROBLEMS THAT HAVE BEEN FOUND USING CALLS LIKE THIS:

C CALL MESSAGES(-1,’put your message here’,’MESSAGE’,IUNIT,ITYPE)

C CALL MESSAGES(-1,’put your message here’,’WARNING’,IUNIT,ITYPE)

C CALL MESSAGES(-1,’put your message here’,’SEVERE’,IUNIT,ITYPE)

C CALL MESSAGES(-1,’put your message here’,’FATAL’,IUNIT,ITYPE)

C---

C---

C SET THE OUTPUTS FROM THIS MODEL IN SEQUENTIAL ORDER AND GET OUT

OUT(1)=T_FLUID_OUT

OUT(2)=FLOW_IN

OUT(3)=QU

OUT(4)=F_PRIME

OUT(5)=FR

OUT(6)=Q_TOP

OUT(7)=Q_BACK

OUT(8)=Q_EDGES

OUT(9)=T_FLUID_MEAN

OUT(10)=T_PLATE_MEAN

OUT(11)=XKAT

OUT(12)=U_L

OUT(13)=RHO_DIFFUSE

OUT(14)=TAU_ALPHA_N

131

Appendix C. Double glazed collector TYPE 242 Fortran Code

OUT(15)=T_GLASS1

OUT(16)=T_GLASS2

C---

C EVERYTHING IS DONE - RETURN FROM THIS SUBROUTINE AND MOVE ON

RETURN 1

END

C---

132

References

D.H. Ackley, G.E. Hinton, and T.J. Sejnowski. A learning algorithm for boltzmann

machines. Cognitive Science, 9:147–169, 1985.

James A. Anderson. A simple neural network generating an interactive memory.

Mathematical Biosciences, 14(34):197 – 220, 1972.

Michle Basseville. Detecting changes in signals and systemsa survey. Automatica,

24(3):309 – 326, 1988.

S. Bendapudi and J.E. Braun. A review of literatture on dynamic models for vapor

compression equipment. Technical Report HL 2002-9, Report Number 4036-5, Ray

Herrick Laboratories, Purdue University, 2002.

A. Bryson and Y. Ho. Applied optimal control: optimization, estimation, and control.

Ginn/Blaisdell, 1969.

E. Cardozo and S.N. Talukdar. A distributed expert system for fault diagnosis.

Power Systems, IEEE Transactions on, 3(2):641 –646, may 1988.

Gail A. Carpenter and Stephen Grossberg. A massively parallel architecture for a

self-organizing neural pattern recognition machine. Computer Vision, Graphics,

and Image Processing, 37(1):54 – 115, 1987.

Gail A. Carpenter, Stephen Grossberg, and John H. Reynolds. Artmap: Supervised

133

REFERENCES

real-time learning and classification of nonstationary data by a self-organizing

neural network. Neural Networks, 4(5):565 – 588, 1991a.

Gail A. Carpenter, Stephen Grossberg, and David B. Rosen. Fuzzy art: Fast stable

learning and categorization of analog patterns by an adaptive resonance system.

Neural Networks, 4(6):759 – 771, 1991b.

T.P. Caudell and D.S. Newman. An adaptive resonance architecture to define nor-

mality and detect novelties in time series and databases. In Proceedings of the

INNS World Congress on Neural Networks, volume IV, pages 166–176, Portland,

July 1993.

T.P. Caudell, S.D.G. Smith, R. Escobedo, and M. Anderson. Nirs: Large scale

art-1 neural architectures for engineering design retrieval. Neural Networks, 7:

1339–1350, 1994.

E. Chow and A. Willsky. Analytical redundancy and the design of robust failure

detection systems. Automatic Control, IEEE Transactions on, 29(7):603 – 614,

Jul 1984.

R.N. Clark. A simplified instrument failure detection scheme. Aerospace and

Electronic Systems, IEEE Transactions on, AES-14(4):558 –563, July 1978a.

R.N. Clark. Instrument fault detection. Aerospace and Electronic Systems, IEEE

Transactions on, AES-14(3):456 –465, May 1978b.

DOE and EIA. Solar thermal collector manufacturing activities 2009. Technical

report, U.S. Department of Energy, U.S. Energy Information Administration, 2010.

DOE and EIA. Annual energy review 2010. Technical report, U.S. Department of

Energy, U.S. Energy Information Administration, 2011.

134

REFERENCES

J. Du and Meng Joo Er. An artificial intelligence approach towards fault diagnosis

of an air-handling unit. In Control Conference, 2004. 5th Asian, volume 3, pages

1594 – 1601 Vol.3, july 2004a.

J. Du and Meng Joo Er. Fault diagnosis in air-handling unit system using dy-

namic fuzzy neural network. In Proceedings of the 6th International FLINS

Conference,Blankenberge, Belgium, pages 483–488, 2004b.

J. Du, Meng Joo Er, and Leszek Rutkowski. Fault diagnosis of an air-handling

unit system using a dynamic fuzzy-neural approach. In Proceedings of the 10th

international conference on artificial intelligence and soft computing, pages 58–65,

2010.

J.A. Duffie and W.A. Beckman. Solar engineering of thermal processes. John Wiley

& Sons, New York, USA, second edition, 1991.

P. Fairey and D. Parker. A review of hot water draw profiles used in performance

analysis of residential domestic hot water systems. Technical Report FSEC-RR-

56-04, Florida Solar Energy Center/University of Central Florida, 2004.

P. M. Frank, S. X. Ding, and T. Marcu. Model-based fault diagnosis in technical

processes. Transactions of the Institute of Measurement and Control, 22(1):57–101,

2000.

Paul M. Frank. Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy: A survey and some new results. Automatica, 26(3):459 – 474,

1990.

Lisa Frantzis and Shalom Goffri. Solar water heater supply chain market analysis:

Study for the city of milwaukee. Technical report, Navigant Consulting, Inc., 2010.

Jerry B. Fussell, Gary J. Powers, and R. G. Bennetts. Fault trees - state of the art

discussion. Reliability, IEEE Transactions on, R-23(1):51 –55, april 1974.

135

REFERENCES

Janos Gertler and David Singer. A new structural framework for parity equation-

based failure detection and isolation. Automatica, 26(2):381 – 388, 1990.

S. Grossberg. Adaptive pattern classification and universal recoding: I. parallel

development and coding of neural feature detectors. Biological Cybernetics, 23:

121–134, 1976a. ISSN 0340-1200.

S. Grossberg. Adaptive pattern classification and universal recoding: Ii. feedback,

expectation, olfaction, illusions. Biological Cybernetics, 23:187–202, 1976b. ISSN

0340-1200.

S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1998.

H. He, D. Menicucci, T.P. Caudell, and A. Mammoli. Real-time fault detection

for solar hot water systems using adaptive resonance theory neural networks. In

Proceedings of ASME 2011 5th International Conference on Energy Sustainability

& 9th Fuel Cell Science, Engineering and Technology Conference, Washington

DC,ESFuelCell2011-54885, 2011.

D.O. Hebb. The organization of behavior: A neuropsychological theory. New York,

Wiley, 1949.

Jr. Hessian, R.T., B.B. Salter, and E.F. Goodwin. Fault-tree analysis for system

design, development, modification, and verification. Reliability, IEEE Transactions

on, 39(1):87 –91, apr 1990.

J.J. Hopfield. Neural networks and physical systems with emergent collective com-

putational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–

2558, 1982.

J.M. House, H. Vaezi-Nejad, and J.M. Whitcomb. An expert rule set for fault de-

tection in air-handling units. ASHRAE Transactions, 107:858–871, 2001.

136

REFERENCES

R. Isermann. Supervision, fault-detection and fault-diagnosis methods an introduc-

tion. Control Engineering Practice, 5(5):639 – 652, 1997.

Rolf Isermann. Process fault detection based on modeling and estimation methodsa

survey. Automatica, 20(4):387 – 404, 1984.

Rolf Isermann. Model-based fault-detection and diagnosis status and applications.

Annual Reviews in Control, 29(1):71 – 85, 2005.

S. Kaldorf and P. Gruber. Practical experiences from developing and implementing

an expert system diagnostic tool. ASHRAE Transactions, 108:826–840, 2002.

Soteris Kalogirou, Sylvain Lalot, Georgios Florides, and Bernard Desmet. Develop-

ment of a neural network-based fault diagnostic system for solar thermal applica-

tions. Solar Energy, 82(2):164 – 172, 2008.

S. Katipamula, R.G. Pratt, D.P. Chassin, Z.T. Taylor, K. Gowri, and M.R. Brambley.

Automated fault detection and diagnostics for outdoor-air ventilation systems and

economizers:methodology and results from field testing. ASHRAE Transactions,

105:555–567, 1999.

Srinivas Katipamula, Michael R. Brambley, and Larry Luskay. Automated proac-

tive techniques for commissioning air-handling units. Journal of Solar Energy

Engineering, 125(3):282–291, 2003.

A. Kaylani, A. Al-Daraiseh, M. Georgiopoulos, M. Mollaghasemi, G.C. Anagnos-

topoulos, and A.S. Wu. Genetic optimization of art neural network architectures.

In Neural Networks, 2007. IJCNN 2007. International Joint Conference on, pages

379 –384, aug. 2007.

J. Kilma. An expert system to aid trouble-shooting of operational problems in solar

hot water systems. ASHRAE Transactions, 96:1530–1538, 1990.

137

REFERENCES

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464 –1480,

sep 1990.

Teuvo Kohonen. Correlation matrix memories. Computers, IEEE Transactions on,

C-21(4):353 –359, april 1972.

Hiromitsu Kumamoto, Kenji Ikenchi, Koichi Inoue, and Ernest J. Henley. Appli-

cation of expert system techniques to fault diagnosis. The Chemical Engineering

Journal, 29(1):1 – 9, 1984.

Won-Yong Lee, John M. House, and Nam-Ho Kyong. Subsystem level fault diagnosis

of a building’s air-handling unit using general regression neural networks. Applied

Energy, 77(2):153 – 170, 2004.

W.Y. Lee, C. Park, J.M. House, and G.E. Kelly. Fault diagnosis of an air-handling

unit using artificial neural networks. ASHRAE Transactions, 102(1):540–549, 1996.

W.Y. Lee, J.M. House, and D.R. Shin. Fault diagnosis and temperature sensor

recovery for an air-handling unit. ASHRAE Transactions, 103(1):621–633, 1997.

S. Li. A Model-Based Fault Detection and Diagnostics Methodology for Secondary

HVAC Systems. PhD thesis, Drexel University, 2009.

X. Li, V. Hossein, and J. Visier. Development of a fault diagnosis method for heating

system using neural networks. ASHRAE Transactions, 102:607–614, 1996.

X. Li, J. Visier, and H. Vaezi-Nejad. A neural network prototype for fault detection

and diagnosis of heating systems. ASHRAE Transactions, 103:634–644, 1997.

Larry Luskay, Michael Brambley, and Srinivas Katipamula. Methods for automated

and continuous commissioning of building systems. Technical report, ARTI Report

ARTI-21CR/610-30040-01. Arlington, Virginia: Air Conditioning and Refrigera-

tion Technology Institute, 2003.

138

REFERENCES

Mano Ram Maurya, Raghunathan Rengaswamy, and Venkat Venkatasubramanian.

A systematic framework for the development and analysis of signed digraphs for

chemical processes. 1. algorithms and analysis. Industrial & Engineering Chemistry

Research, 42(20):4789–4810, 2003a.

Mano Ram Maurya, Raghunathan Rengaswamy, and Venkat Venkatasubramanian.

A systematic framework for the development and analysis of signed digraphs

for chemical processes. 2. control loops and flowsheet analysis. Industrial &

Engineering Chemistry Research, 42(20):4811–4827, 2003b.

W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biology, 5:115–133, 1943.

M.G. McKellar. Failure diagnosis for a household refrigerator. Master’s thesis, Pur-

due University, West Lafayette, Indiana., 1987.

D. Menicucci, H. He, A. Mammoli, T.P. Caudell, and J. Burch. Testing and evalua-

tion for solar hot water reliability. Technical report, Sandia National Lab, 2011.

M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry.

Cambridge, Mass., MIT Press, 1969.

O. Morisot and D. Marchio. Fault detection and diagnosis on hvac variable air volume

system using artificial neural network. In Proc. IBPSA Building Simulation 1999,

Kyoto, Japan, 1999.

W.R. Nelson. Reactor: an expert system for diagnosis and treatment of nuclear

reactor accidents. In Proceedings of the Second National Conference on Artificial

Intelligence, Los Altos, California, pages 296–301, 1982.

L. K. Norford, J. A. Wright, R. A. Buswell, D. Luo, C. J. Klaassen, and A. Suby.

Demonstration of fault detection and diagnosis methods for air-handling units.

HVAC&R Research, 8(1):41–71, 2002.

139

REFERENCES

Mario L. Ortiz. A trnsys model of a solar thermal system with thermal storage and

absorption cooling. Master’s thesis, University of New Mexico, 2008.

Sanjiv A. Patel and Ali K. Kamrani. Intelligent decision support system for diagnosis

and maintenance of automated systems. Computers and Industrial Engineering,

30(2):297 – 319, 1996.

L.F. PAU. Survey of expert systems for fault detection, test generation and mainte-

nance. Expert Systems, 3(2):100–110, 1986.

A. Punitha, C.P. Sumathi, and T. Santhanam. A combination of genetic algorithm

and art neural network for breast cancer diagnosis. Asian Journal of Information

Technology, 6(1):112–117, 2007.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6):386 – 408, 1958.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-

sentations by back-propagating errors. Nature, 323:533–536, 1986.

D.E. Rumelhart and J.L. McClelland. Parallel distributed processing: explorations

in the microstructure of congnition. Foundations, volume 1. MIT Press, 1986a.

D.E. Rumelhart and J.L. McClelland. Parallel distributed processing: Explorations

in the microstructure of cognition. Psychological and biological models, volume 2.

MIT Press, 1986b.

Jeffrey Schein and Steven T. Bushby. A hierarchical rule-based fault detection and

diagnostic method for hvac systems. HVAC&R Research, 12(1):111–125, 2006.

Jeffrey Schein, Steven T. Bushby, Natascha S. Castro, and John M. House. A rule-

based fault detection method for air handling units. Energy and Buildings, 38(12):

1485 – 1492, 2006.

140

REFERENCES

J. Shiozaki and F. Miyasaka. A fault diagnosis tool for hvac systems using qualitative

reasoning algorithms. In Proceedings of the Building Simulation 1999, 6th IBPSA

conference, Kyoto, Japan, 1999.

L.A. Stallard. Model based expert system for failure detection and identification

of household refrigerators. Master’s thesis, Purdue University, West Lafayette,

Indiana., 1989.

W. C. Swinbank. Long-wave radiation from clear skies. Quarterly Journal of the

Royal Meteorological Society, 89(381):339–348, 1963.

S.A. Tassou and I.N. Grace. Fault diagnosis and refrigerant leak detection in vapour

compression refrigeration systems. International Journal of Refrigeration, 28(5):

680 – 688, 2005.

B.T. Thumati, M.A. Feinstein, J.W. Fonda, A. Turnbull, F.J. Weaver, M.E. Calkins,

and S. Jagannathan. An online model-based fault diagnosis scheme for hvac sys-

tems. In Control Applications (CCA), 2011 IEEE International Conference on,

pages 70 –75, sept. 2011.

Venkat Venkatasubramanian, Raghunathan Rengaswamy, and Surya N Kavuri. A

review of process fault detection and diagnosis: Part ii: Qualitative models and

search strategies. Computers and Chemical Engineering, 27(3):313 – 326, 2003b.

Venkat Venkatasubramanian, Raghunathan Rengaswamy, Surya N. Kavuri, and

Kewen Yin. A review of process fault detection and diagnosis: Part iii: Pro-

cess history based methods. Computers and Chemical Engineering, 27(3):327 –

346, 2003c.

Venkat Venkatasubramanian, Raghunathan Rengaswamy, Kewen Yin, and Surya N.

Kavuri. A review of process fault detection and diagnosis: Part i: Quantitative

141

REFERENCES

model-based methods. Computers and Chemical Engineering, 27(3):293 – 311,

2003a.

J. Wagner and R. Shoureshi. Failure detection diagnostics for thermofluid systems.

Journal of Dynamic Systems, Measurement, and Control, 114(4):699–706, 1992.

Shengwei Wang and Fu Xiao. Ahu sensor fault diagnosis using principal component

analysis method. Energy and Buildings, 36(2):147 – 160, 2004.

B. Widrow and M.E. Hoff. Adaptive switching circuits. In 1960 IRE WESCON

Convention Record Part IV: Computers: Man-machine Systems, pages 96–104,

Los Angeles, 1960.

S. Wilcox and W. Marion. Users manual for tmy3 data sets. Technical Report

NREL/TP-581-43156, National Renewable Energy Laboratory, 2008.

Alan S. Willsky. A survey of design methods for failure detection in dynamic systems.

Automatica, 12(6):601 – 611, 1976.

Yonghua Zhu, Xinqiao Jin, and Zhimin Du. Fault diagnosis for sensors in air handling

unit based on neural network pre-processed by wavelet and fractal. Energy and

Buildings, 44(0):7 – 16, 2012.

142

