
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

2-8-2011

Prioritized Sensor Detection with Communication
Constraints: A Cyber-Physical Systems Approach
Randy Andres Cortez

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Cortez, Randy Andres. "Prioritized Sensor Detection with Communication Constraints: A Cyber-Physical Systems Approach."
(2011). https://digitalrepository.unm.edu/me_etds/9

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/9?utm_source=digitalrepository.unm.edu%2Fme_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


Prioritized Sensor Detection with
Communication Constraints: A

Cyber-Physical Systems Approach

by

Randy Andres Cortez

B.S., Mathematics, New Mexico Highlands University, 2005

M.S., Mechanical Engineering, University of New Mexico, 2007

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctorate of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2010



c©2010, Randy Andres Cortez

iii



Dedication

To my family and friends for their support, encouragement, and patience.

“Focus on the journey, not the destination. Joy is found not in finishing an activity

but in doing it.” – Greg Anderson

iv



Acknowledgments

This work is supported by the Department of Energy URPR Grant: DE-FG52-
04NA255590.

I would like to thank my advisor, professor Rafael Fierro, who gave me the
opportunity to carry out this research, for his kind support, and his believing in me
and my work. I would also like to thank professor Herbert Tanner, professor Ron
Lumia, and professor Greg Starr for serving as members on my committee.

Lastly I would like to thank my parents, Joseph and Babbie, my two sisters,
Mandy and Dee Dee, and especially Angela for their support and motivation.

v



Prioritized Sensor Detection with
Communication Constraints: A

Cyber-Physical Systems Approach

by

Randy Andres Cortez

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctorate of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2010



Prioritized Sensor Detection with
Communication Constraints: A

Cyber-Physical Systems Approach

by

Randy Andres Cortez

B.S., Mathematics, New Mexico Highlands University, 2005

M.S., Mechanical Engineering, University of New Mexico, 2007

Ph.D., Mechanical Engineering, University of New Mexico, 2010

Abstract

Currently in the literature there does not exist a framework which incorporates a

heterogeneous team of agents to solve the sensor network connectivity problem. An

approach that makes use of a heterogeneous team of agents has several advantages

when cost, integration of capabilities, or possible large search areas need to be inves-

tigated. A heterogeneous team allows for the robots to become “specialized” in their

abilities and therefore accomplish sub-goals more efficiently which in turn makes the

overall mission more efficient.

In Part I of this dissertation we address the problem of prioritized sensing of an

area with a homogeneous sensor network. We derive a decentralized and collision free

controller that drives the sensing agents to positions within the area that contain the
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highest probability of containing “good information.” We then apply this prioritized

sensing controller to a target search scenario, where a group of cooperating UAVs

must detect then track a maneuvering target within the search space.

In Part II of this dissertation we relax the assumption of network connectivity

within the sensor network and introduce mobile communication relays to the net-

work. This addition converts the homogeneous sensor network to a heterogeneous

one. Based on the communication geometry of both sensing and communication

relay agents we derive communication constraints within the network that guarantee

network connectivity. We then define a heterogeneous proximity graph that encodes

the communication links that exist within the heterogeneous network. By specifying

particular edge weights in the proximity graph, we provide a technique for biasing

particular connections within the heterogenous sensor network. Through a mini-

mal spanning tree approach, we show how to minimize communication links within

the network which allows for larger feasible motion sets of the sensing agents that

guarantee the network remains connected. We also provide an algorithm that allows

for adding communication links to the minimal spanning tree of the heterogeneous

proximity graph to create a biconnected graph that is robust to a single node failure.

We then combine the prioritized search algorithm from Part I and the communica-

tion constraints from Part II to provide a decentralized prioritized sensing control

algorithm for a heterogenous sensor network that maintains network connectivity.

Lastly, in Part III we describe our robotic testbed that has been built to validate

our proposed algorithms. We provide hardware experiments for both homogenous

and heterogeneous sensor networks.
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Chapter 1

Introduction

In this chapter we list some motivating applications that have lead to our current

problem formulation. A literature review of related work in the field is given and an

overview of our approach is explained. Lastly we present a short description of the

contributions of this work.

1.1 Motivation

Robotic motion planning is a well-addressed issue in autonomous systems, [1]. How-

ever a growing number of applications such as spatial distribution mapping, dynamic

sensing coverage, and dynamic target detection, have motivated navigation and con-

trol algorithms for teams of goal-oriented mobile sensor networks. When considering

control and coordination algorithms of reconfigurable sensor networks one must join

the coordination/navigation of the robots with the sensing cost or desired configu-

rations of the sensor network. In problems involving reconfigurable sensor networks,

a primary goal is to reconfigure the sensor network in such a way that the time

taken to reconfigure is minimized or the sensing coverage is maximized. This has
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Chapter 1. Introduction

useful applications in target detection and surveillance as well as spatial distribution

mapping, among many others.

Recently in the literature, connectivity maintenance has been considered as a

constraint on the reconfigurable sensor network. The constraint of maintaining con-

nectivity between sensor nodes is a relaxation to the typically assumed fixed com-

munication topology. The connectivity constraint complicates the motion planning

problem for the reconfigurable sensor network in the sense that sensors should only

move to areas in the search space where communication can be guaranteed. Typ-

ically the connectivity constraint is directly imposed on the sensor network, which

may greatly limit the sensor networks ability to investigate the search space. To

overcome this constraint on the reconfigurable sensor network we propose to add

“relay” agents to the communication topology. This allows for the reconfigurable

sensor network to have “a longer reach” to investigate the search space, with the

added cost of having to control a heterogeneous team of robots (sensors and relays).

In general, approaches to reconfigurable sensor networks use gradient type algo-

rithms to reconfigure the network for sensing optimality [2]. Using a gradient type

approach has been shown to be successful when the underlying density function is

static and the environment is free of obstacles. These local gradient type approaches

which address sensing coverage problems cannot however, address certain types of

reconfigurable sensor network problems. One very interesting problem, which we

consider here, is that of biasing certain regions of the area-of-interest to be searched

because of prior knowledge or because an underlying time constraint that prohibits

an exhaustive search of the area, i.e., emergency situations, search and rescue.

Gradient type approaches may fail to send the robots to places that have the highest

likelihood of containing the most useful information in the time allotted because of

the local nature of the gradient technique. Also the probability of certain regions

containing useful information will be changing as the robots search the area, which

2



Chapter 1. Introduction

makes the underlying density function in this scenario dynamic. The problem here

becomes, how to coordinate the sensor-enabled robot team in such a way that areas

within the region that have the most probability of containing “good” information

are searched first while also maintaining a connected communication network. The

label “good” here may mean a target of interest, hazardous material, a group

of people to be rescued, etc., depending on the particular application the robot

team is tasked with. Because of prior knowledge, or due to time constraints, the

robots should search the most likely areas of finding “good” information first and

continue until enough information is gathered or the time constraint is met. The

scenario stated here is quite different from other sensor network problems because

the reconfigurable sensor network is not trying to achieve optimal sensing coverage

over the area-of-interest nor exhaustively search the space, rather the robot team

is trying to search the most probable places of containing “good” information first

because the search is biased by prior knowledge or because of a time constraint may

greatly limit the robot team’s ability to search the entire area of interest.

Some motivating and practical applications include search and rescue oper-

ations [3], target detection [4], and hazardous contaminations [5] to name a few. In

these scenarios, regions within a given area that are most likely to contain humans,

enemy targets, or hazardous material, should be searched first while regions with less

probability of containing these features are searched later. As an added difficulty to

the prioritized search, we also require the communication topology to be connected

at each new network configuration.

3



Chapter 1. Introduction

1.2 Prior Work

1.2.1 Sensor Networks

Recent research in sensor networks concentrates on creating a sensor network that

can adapt to its environment. In this sense, the trend is towards reconfigurable sensor

networks. Addressing reconfigurable sensor networks is typically done by utilizing

mobile sensor platforms to adapt to the environment, [6] and [7]. Mobile robots give

the network the ability to react to changes in the environment through their mobility

by placing sensors to more interesting areas or places that may lack sensor coverage

due to spatial configurations or possible sensor failures. Mobile robots also allow

the network to verify or disregard abnormal (noisy) data coming from a sensor by

reconfiguring so that a second sensor can obtain data to compare with.

Much of the research in reconfigurable sensor networks focuses on surveillance

and tracking tasks. The goal in these applications is to identify and track targets

moving within the area the sensor network covers. In [6], Huntwork et al., create a

sensor network with both mobile sensor platforms as well as stationary sensors. The

network is not assumed to be configured in any optimized fashion, so mobile sensors

are used when a target is no longer visible by the stationary sensors, or cannot be

tracked at an adequate resolution. In [7], Singh et al., propose to reconfigure a mobile

sensor network through an active learning technique for the purpose of mapping lake

water current velocities to study hydrodynamic effects. Active learning assumes that

initially mobile sensor platforms are uniformly distributed in the area of investigation.

The mobile sensors then do a coarse survey of the area to obtain a rough estimate of

the features in the environment. Subsequent more refined passes over the area are

done over paths that are planned based on data from previous passes. In [8], Oh

et al., develop an efficient multi-sensor fusion algorithm that utilizes binary target

detection data from a sensor network to track the trajectory of the target by using

4



Chapter 1. Introduction

spatial correlation.

Cortés, Mart́ınez, and Bullo [2] and [9], use gradient climbing algorithms to dis-

tribute sensor platforms in an optimal fashion over the area in question to address

spatial distribution of the sensor platforms. Robot agents follow gradients that max-

imize a static density function that is weighted by a sensor performance function.

The area is divided up among the agents using Voronoi partitions. Hussein and Sti-

panovic [10] use a gradient climbing method for control of the sensor network as well,

but without having to partition the area among the team members, which reduces

computational overhead.

A large part of research in reconfigurable sensor networks is mostly concerned

with issues related to monitoring, surveillance, and target tracking, but there are

also applications beyond pure surveillance or tracking [7]. Mobile sensor platforms

can be used as reconfigurable sensor networks for mapping spatial distributions of

physical quantities [11]. We envision controlling a multi-robot team to map these

physical quantities, where the sensor network is reconfigured on-line based on the

information from the sensed environment.

1.2.2 Heterogeneous Multi-Robot Control

Research in the area of heterogeneous multi-robot control is beginning to receive

attention from the research community. Pimenta et al. [12] address the problem of

covering an environment with robots equipped with sensors which are heterogeneous

in the sense that the sensor footprints are different. They achieve optimal distributed

control laws by utilizing the locational optimization framework coupled with con-

straints. In a very similar approach, Lam and Liu [13] develop two algorithms for

mobile agent deployment for sensor coverage enhancement. The mobile agent team

is also seen as heterogeneous through different sensing radii, however the algorithms

5



Chapter 1. Introduction

developed rely on a circle packing technique as well as an artificial potential approach.

Another approach that looks at heterogeneity of the network through differing sen-

sor footprints can be found in [14]. In [15], Tanner and Christodoulakis address the

problem of coordinating UGVs and UAVs for cooperative intelligence, surveillance,

and reconnaissance missions. The controllers for both groups are achieved through

a swarm control approach. Lyapunov analysis establishes stability of the ground ve-

hicle motion and also insures the tracking performance of the aerial vehicles. In [16],

Kumar et al. derive a decentralized self sorting method based on artificial potentials

to segregate heterogeneous robot agents. These segregation methods may be useful

in deployment and organization of heterogeneous robot teams. Parker et al. [17],

[18] presents autonomous behaviors for tightly-coupled cooperation in heterogeneous

robot teams, specifically for navigation assistance. These behaviors enable “leader”

robots to assist in the navigation of “simple” robots that have no onboard capabilities

of obstacle avoidance.

1.2.3 Multi-Robot Coordination with Connectivity

Recently in the literature, connectivity maintenance has been considered as a con-

straint on the reconfigurable sensor network. The constraint of maintaining connec-

tivity between sensor nodes is a relaxation to the typically assumed fixed communica-

tion topology. The connectivity constraint complicates the motion planning problem

for the reconfigurable sensor network in the sense that sensors should only move

to areas in the search space where communication can be guaranteed. Typically

the connectivity constraint is directly imposed on the sensor network, which may

greatly limit its ability to investigate the search space. To overcome this constraint

on the reconfigurable sensor network we propose to add mobile communication “re-

lay” agents to the communication topology. This allows the reconfigurable sensor

network to have a “longer reach” to investigate the search space, with the added

6
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difficulty of having to control a heterogeneous team of robots (sensors and relays).

Research in multi-robot coordination typically assumes that the underlying com-

munication topology is fixed and connected, [19], [20]. Recently however, research

has begun to focus on a relaxation of this assumption, namely considering the con-

nectivity of the multi-robot group as being a dynamic topology which should main-

tain some connectivity properties. In [21], Dimarogonas and Johansson present a

distributed control law that guarantees connectivity maintenance in a network of

multiple mobile agents. The control law is achieved through a potential field ap-

proach with guaranteed boundedness on the agents input. Muhammad et al., [22]

derive graph processes to pre-plan for formation tasks, taking into account the graph

connectivity. In [23], abstractions are used to enable multiple groups of agents to

form desired formations when communication between these groups is limited due

to high bandwidth cost. Michael et al., [24] implement a control algorithm that is

based on a consensus approach and market based auctions [25] on a group of seven

mobile robots. The local connectivity of the group is estimated by computing the

second smallest eigenvalue of the graph Laplacian, similar to the work in Kim and

Mesbahi [26]. In [27], Ji and Egerstedt address maintaining connectivity in ren-

dezvous and formation control problems. Spanos and Murray [28] derive a function

that measures local connectedness of the communication network. This function also

provides a sufficient condition for global connectedness of the communication net-

work. Fink and Kumar [29] explore methods for online mapping of Received Signal

Strength Indicator (RSSI) with mobile robots where the RSSI map can then be used

for control algorithms requiring inter-robot communications. Tekdas et al., [30], [31]

study the problem of computing the minimum number of robotic routers in order to

maintain connectivity of a single user to a base station. A similar approach is taken

by Burdakov et al., [32], where an array of possible relay chains are computed and

a user is allowed to choose the one that best fits their needs in terms of cost and

number of communication hops.
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Works more closely related to the work in this paper can be seen in the follow-

ing. Reference [33] develops a distributed controller to position a team of UAVs in a

configuration that optimizes communication-link quality to support a team of UGVs

performing a collaborative task, however the authors must assume the UGVs do not

move to guarantee the connectivity of the combined UAV, UGV network. Reference

[34] introduces the idea of periodic connectivity where the network must regain con-

nectivity at a fixed interval. The authors propose an implicit coordination algorithm

that allows all robots to plan assuming all other robots are stationary, then plans are

exchanged to improve performance. It is unclear how many communication rounds

are needed to reach a global consensus plan or if this type of algorithm will end up

in a deadlock configuration. Reference [35] presents an algorithm that allows a robot

to determine when it is feasible for it to move to a desired point by adjusting its

own position while maintaining network connectivity. This is achieved by solving

a convex optimization problem in an incremental fashion, however the extension to

multiple robots moving to multiple desired points is not addressed. In [36], Frew

presents an information-theoretic framework to integrate sensing and communica-

tion for planning of robot sensor networks. This approach takes uncertainty into

account, however it is not clear if any type of connectivity guarantees can be made

about the network. Also only static sensing scenarios can currently be addressed

in this framework. In [37] the authors derive a flocking controller to regulate the

distance between vehicles that address coverage and vehicles that address coordina-

tion. The distance requirements for the flocking controller are the communication

range of the vehicle types. Stachura and Frew [38] use a fixed planning hierarchy

for a finite horizon optimization that addresses cooperative target localization with

communication considerations. To determine trajectories for the sensor network the

first sensor plans its trajectory over the time horizon then subsequent sensors plan

based on the trajectories of the sensors that are higher in the hierarchy.

8



Chapter 1. Introduction

1.3 Problem Statement

Currently in the literature there does not exist a framework which incorporates a

heterogeneous team of agents to solve the sensor network connectivity problem in

search and sensing scenarios. An approach that makes use of a heterogeneous team

of agents has several advantages when cost, integration of capabilities, or possible

large search areas need to be investigated. A heterogeneous team allows for the

robots to become “specialized” in their abilities and therefore accomplish sub-goals

more efficiently which in turn makes the overall mission more efficient.

Our goal is to develop a framework that can guarantee connectivity in a group

of heterogeneous agents whose mission objective is a prioritized search of an area.

Such a framework would help to overcome the limitations imposed by a homogeneous

team of agents trying to accomplish the same mission.

1.4 Overview of Proposed Approach

A cyber-physical system (CPS) is a network of physically distributed sensors and

actuators capable of computation, communication, and control that relies highly on

the integration of these capabilities for its operation and interaction with the physical

environment in which it is deployed. Our solution, which involves the development of

a framework for a heterogeneous sensor network, can been viewed as a cyber-physical

system.

We envision a CPS to address this problem as a group of autonomous agents, pos-

sibly both ground and aerial vehicles, that are equipped with environmental sensing

capabilities, a communication network, as well as having the capability of receiving

control inputs. Through the interaction and coordination of the autonomous agents,

a connected network topology can be maintained which is critical to accomplish-
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Figure 1.1: Envisioned CPS with both ground and aerial vehicles used for obtaining
situational awareness in an emergency situation. Communication links between aerial
and ground vehicles enables coordination as well as the ability to relay real-time
environmental information to an end-user.

ing the mission objective. A visual representation of such a CPS can be seen in

Figure 1.1.

In our approach, we begin by developing a prioritized search algorithm for a

homogeneous sensor network where we assume network connectivity is guaranteed

over the search area. We then relax the assumption of network connectivity and

introduce specialized mobile “relay” agents to the network which are better equipped

to communicate over longer distances. We develop communication constraints for

the newly formed heterogeneous sensor network comprised of both sensing and relay

agents. These constraints lead to feasible motion sets for each sensing agent that

can be optimized with respect to the prioritized search and still guarantee network

connectivity. Therefore, our approach of controlling a heterogeneous sensor network

allows for the unification of prioritized search over an area while maintaining network

connectivity.
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1.5 Contributions of Dissertation

Although recent research has begun to address problems in heterogeneous multi-

robot control, it has been limited largely to problems where the sensing foot print is

different among the agents, or when the underlying vehicle dynamics differ between

agents. We propose to address the problem of controlling heterogeneous agents

within a team that have different objectives and “abilities” but contribute to an

overall mission. This differs from other works in the literature in the sense that we

are addressing the “coupling” of subgoals to achieve an overall global goal. Also, our

approach to connectivity maintenance does not rely on the algebraic connectivity

of the underlying graph topology like much of the current literature. Through a

geometric approach we are able to specify feasible motion sets that guarantee network

connectivity maintenance.

The problem addressed in this paper is slightly different from others in the liter-

ature since we are not trying to achieve a flocking or swarming behavior nor are we

interested in controlling formations while maintaining connectivity. These problems

have a similar theme, agents should be close to each other for the objective to be

accomplished. Sensing or search problems on the other hand, which we are address-

ing here, need the agents to “spread out” in order for the search algorithm to be

effective. This allows the agents to search in a parallel fashion. With this in mind,

our approach to multi-robot connectivity maintenance we propose adding specialized

agents that are better equipped (hardware) to relay information over longer distances

to the sensor network. This allows the sensor network to have a longer “reach” in

the search space. It also allows the sensing agents to be built in a way that the

communication hardware can be minimized. This may have benefits in hardware

costs and also the size and shape of the sensing agents.

To this end, we first develop an algorithm for a prioritized search of an area
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with a homogeneous sensor network. Our prioritized search algorithm guarantees

inter-robot collision avoidance as well as collision avoidance with general shaped ob-

stacles in the environment. The prioritized sensing controller is then applied to a

target search scenario, where a group of cooperating UAVs must detect then track

a maneuvering target within the search space. We then develop heterogeneous com-

munication constraints that describe under what conditions network connectivity

can be maintained. With these communication constraints in mind, we develop a

heterogenous proximity graph that describes the communication connections (links)

for a heterogeneous sensor network made up of sensing and relay agents. We then

derive edge weights for the communication graph that allows for shaping the flow

of information within the network and then show how to minimize the communi-

cation constraints of the network. The minimization of communication constraints

on the sensor network leads to a larger feasible search area for the sensing agents.

We then show how these communication constraints lead to a feasible motion set for

each agent in the network that guarantees connectivity. To address robustness of

the network to node failures, we provide an algorithm to add communication links

to the minimized network topology to create a biconnected graph. The biconnected

graph allows the network to remain connected in the case of a single node failure.

Lastly, we combine the prioritized search with the feasible motion sets to provide an

algorithm that can conduct a prioritized search of an area with maintaining network

connectivity. We also describe how the prioritized search algorithm with connectivity

constraints can be implemented in a decentralized fashion.

1.6 Organization of Dissertation

Part I consists of a first approach to reconfigurable sensor networks using a ho-

mogeneous sensor network. Particularly, in Chapter 2 we review some technical
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background used throughout the dissertation. In Chapter 3 we provide details on

how to do a prioritized search with a homogeneous sensor network. We also provide

a technique to address situations when robot team members have multiple sensing

capabilities. Chapter 4 shows the adaptability of our prioritized search algorithm by

applying it to a search and tracking problem for maneuvering targets of interest.

Part II extends our approach to reconfigurable sensor networks by introducing

specialized agents to the network. These specialized agents are introduced to over-

come relaxations to network connectivity. This shifts the focus of the approach from

controlling a homogeneous sensor network to controlling a heterogeneous sensor net-

work. In chapter 5 we develop communication constraints for the heterogeneous

sensor network that guarantees the network stays connected. Chapter 6 combines

the heterogeneous communication constraints with our prioritized search algorithm.

Part III looks at experimental results for both the homogeneous and heteroge-

neous sensor networks. Specifically, chapter 7 describes the experimental testbed

used for our qualitative validation of the proposed algorithms. Chapter 8 describes

results of the prioritized sensing algorithm for a homogeneous sensor network. Chap-

ter 9 details experimental results of the heterogeneous communication constraints.

Lastly, chapter 10 gives some concluding remarks and thoughts on future work di-

rections.
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Chapter 2

Technical Background

In this chapter we review some technical background relevant to our approach.

Specifically, Voronoi partitioning, randomized global optimization, mobile robot mo-

tion planning, and graph connectivity considerations. This technical background

lays down the foundation for our mathematical problem formulation.

2.1 Task Decomposition

We define task decomposition as “dividing” or partitioning the overall task among

the available autonomous agents. A natural way of accomplishing this decomposition

is the notion of Voronoi partitioning where the centroid of each Voronoi cell is taken

to be the position of a single mobile robot. Thus, a certain region within this area

(namely the corresponding Voronoi cell) is allocated to each robot for searching. This

is performed on an iterative basis, so the Voronoi partitions are dynamic in nature.

Using Voronoi partitions, the area to be mapped can be broken up dynamically

among the robot team members based on their current locations. Also by construc-

tion, Voronoi partitioning can be implemented in a decentralized fashion.
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Figure 2.1: Voronoi partitioning of a search space with six agents in R2. The different
colors represent each agents corresponding Voronoi Cell.

Our area to be searched, Q, is assumed to be a simple convex polygon in RN

including its interior. Let P be a set of n distinct points {p1, . . . , pn} that reside in

the interior of Q. Define the Voronoi Partition of the convex polygon Q, generated

by P to be the set of all points in Q such that all points in the region Vi(P ) are

closer to pi than any other point in Q,

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ ,∀pj ∈ P} .

An example of a Voronoi partitioning is shown in Figure 2.1. Dividing up the area

to be explored in this way, keeps us from assigning robots to specific regions which

may not be implementable in a decentralized fashion [39]. Using dynamic Voronoi
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partitions each robot can compute its partition with only knowledge of its neighbors’

locations. Thus, using Voronoi partitioning facilitates decentralized control designs.

Another advantage to using Voronoi partitions is in the case where there is a robot or

sensor failure. Because the Voronoi partitions are made dynamically, the team can

adjust their Voronoi partition configuration taking into account their new neighbors

excluding the failed robot. This procedure insures that all regions in the area will

be covered by a corresponding robot.

2.2 Global Optimization

There exists a number of algorithms that can solve the global optimization problem

for a general (non-convex) function such as a branch and bound technique, evo-

lutionary algorithms, and randomized algorithm methods [40]. However, because

our motivation for this research is focused on a decentralized framework, many of

these global optimization techniques are not applicable because of computation power

needed or because of the on-line nature of the control algorithm. Also another key

point to note is that the probability of detection (POD) map, which models where

we should prioritize our search, is updated as the search progresses. As regions are

searched by the robots, the POD map is decreased in those regions within the agents

sensing radius. This could possibly make the POD map vary greatly from one point

that has been searched to an adjacent point that has not been searched by the agent.

This limits our ability to make any claims as to certain properties the map (func-

tion to be optimized) will exhibit, e.g., Lipschitz continuity or if one can compute

lower bounds for feasible regions, which are needed for branch and bound techniques.

Also, evolutionary algorithms cannot strictly guarantee convergence to a global op-

timum. As a result of the limitations imposed by the decentralized, on-line design

of our approach, we propose the use of a randomized algorithm [40] to compute an
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approximate solution to the global optimization problem. A randomized algorithm

does not make any assumptions on the function to be optimized or the feasible set

of possible solutions and can be efficiently computed. Here we will state the general

Monte Carlo method used in our approach [41].

Let the objective function g(x), x ∈ A ⊂ RN and the set A be measurable where

g∗(x) is the global maximum of g(x). To approximate the global maximum g∗(x),

• Generate X1, . . . , XN independent identically distributed (i.i.d.) samples from

a p.d.f. f(x) such that f(x) > 0.

• Find Yk = g(Xk), k = 1, . . . ,N .

• Estimate g∗ by g̃∗ = max(Y1, · · · , YN ).

It is known that in general there does not exist a stopping condition for an

achieved accuracy g̃∗ − g∗ < ε for the approximate maximum to the global opti-

mization problem [42]. However one can look for stopping conditions to the global

optimization problem in statistical terms.

The probability of sampling at least one point inside the region of attraction of

the global maximum when taking N sample points from A is given by

Pr = 1− (1− α1)
N , (2.1)

where α1 is the probability of sampling a point in the region of attraction in one trial.

By choosing a lower bound on α1 and a required “accuracy” level Pr, the number

of function evaluations N needed to achieve a g̃∗ within the accuracy level can be

calculated [42].
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2.3 Multi-Robot Navigation

Over the years there has been extensive research in robotic motion planning focused

on a single agent, [1]. Recently techniques for multi-robot motion planning such as

flocking [43], formation control [44], and rendezvous problems [45],[46] have made

their way into the literature. One technique to multi-robot motion planning which

we focus on in this paper is that of navigation functions. A navigation function

is an artificial potential function with a unique minimum located at a goal point

whose domain of attraction includes the entire domain excluding the points covered

by obstacles. The construction of such a navigation function was first shown by

Rimon and Koditschek [47], and slight variations have since made their way into the

literature [48], [49]. A recent approach to navigation functions has combined robot

navigation and communication constraints [50]. One drawback to these particular

constructions of navigation functions is that they are difficult to compute in general

and also do not easily lend themselves to general shaped obstacles. To overcome

this limitation we consider the construction of a navigation function of the form

in [51], which relaxes the requirements on the navigation function, primarily that

the gradient of the navigation function need only be piecewise continuous and that

the navigation function at the boundaries need not be uniformly maximum. The

construction of a navigation function in this way still guarantees a unique minima

at the goal point.

Navigation functions involving multiple robots generally have each robot consider

all other robots to be moving obstacles [48]. In our approach however, we partition

the area among the robot team members, then each robot creates its own navigation

function based on its Voronoi partition Vi, the known obstacles in the area Cobs,

and the goal point calculated from the global optimization algorithm. In this way

each robot does not need to consider other robots as obstacles, since by construction

the Voronoi partition Vi is unique to robot pi. Our approach has the advantage of
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eliminating the need to keep track or “predict” where these “dynamic” obstacles are

or will be in the future.

A navigation function, f(p, gp, d) which is a function of p, the robots current

position, the goal point gp, and points inside the Voronoi partition not occupied by

obstacles d ∈ D, can be created by the following procedure [51].

• Make a graph out of the rectangular mesh of the obstacle grid map, with

vertices at the corners of each square and edges along the square edges. Remove

vertices and edges that are in the interior of obstacles.

• One of the vertices is chosen as the goal point, determined from the global

optimization algorithm.

• Solve the shortest-path problem in the graph. Mark each vertex with the

corresponding path length, and let this length be the value of f(·) at the

vertex.

• Divide the squares into triangles by drawing a diagonal through the corner with

the highest f(·) value.

• In the interior of each resulting triangle, let f(·) be a linear interpolation be-

tween f(·) at the three vertices.

Note that the shortest-path problem in the graph can be solved with polyno-

mial time algorithms [52]. Also the shortest-path problem to create this navigation

function is solved for a 4-neighborhood grid, i.e., L1 distance.

Alternative planning methods for addressing obstacle avoidance are based on cell

decomposition approaches. Cell decomposition is a well-known obstacle avoidance

method that decomposes the obstacle-free robot configuration space into a finite

collection of non-overlapping convex polygons, known as cells, within which a robot
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path is easily generated. Although it is computationally intensive, its advantage over

other robot path-planning approaches, such as roadmap or potential field methods,

is that, under proper assumptions, cell decomposition is resolution complete. Exact

cell decomposition is guaranteed to find a free path, whenever one exists, and oth-

erwise to return failure. Its disadvantages are that it is computationally intensive

in high-dimensional configuration spaces (e.g., robot manipulators), and that it does

not typically allow the user to incorporate other motion constraints, such as, non-

holonomic dynamics, or sensing/communication constraints. Also, it is not directly

applicable to cooperative networks, in which the path of one robot is influenced by

that of the other agents in the network.

2.4 Graph Connectivity

Many definitions given in this section can be found in texts on modern graph theory

such as [53]. We begin by considering a heterogeneous team of agents consisting of

n sensing agents and m relay agents. For our mathematical formulation we consider

each agent xi to have the following dynamics:

ẋi = Axi + Bui, (2.2)

where A is the system matrix, B is the input matrix, ui is the input, and i =

1, · · · , n + m. Without loss of generality, let xi denote the position of agent i. The

network of agents described by the system (2.2), gives rise to a dynamic graph G(x).

Definition 2.4.1. (Dynamic Graph): We Call G(x) = (V , E(x)) a dynamic graph

consisting of

• a set of vertices V = {v1, · · · , vn+m, } indexed by the set of agents, and

• a set of edges E(x) = {(i, j)|dij(x) < δ}, with dij = ‖xi − xj‖2 as the Euclidean

distance between agents i and j, and δ > 0.
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Definition 2.4.2. (Path of a Graph): A path is a sequence of distinct vertices such

that consecutive vertices share a common edge.

Definition 2.4.3. (Graph Connectivity): An non-empty graph G is called connected

if any two of its vertices are linked by a path in G.

Definition 2.4.4. (Tree): A tree is an undirected graph such that any two vertices

are connected by exactly one simple path.

Definition 2.4.5. (Spanning Tree): Given a non-empty, undirected, and connected

graph G with vertices V = {v1, · · · , vn+m, }, then a spanning tree of G is a subgraph

which is a tree that connects all vertices, V = {v1, · · · , vn+m, } together.

Definition 2.4.6. (Minimum Spanning Tree): A minimum spanning tree (MST)

is a spanning tree that has a weight equal to or less than the weight of any other

spanning tree. Note that the minimum spanning tree need not be unique.

Definition 2.4.7. (Euclidean Minimum Spanning Tree): A Euclidean minimum

spanning tree (EMST) is a minimum spanning tree such that the edge weights between

vertices are taken to be the Euclidean distance.

Definition 2.4.8. (Adjacency Matrix): Given a non-empty graph G with vertices

V = {v1, · · · , vn+m, } and edges in the set E, we define the adjacency matrix A = (aij)

such that, aij = 1 if (vi, vj) ∈ E, and aij = 0 otherwise.

Definition 2.4.9. (Graph Laplacian): Given a non-empty graph G with vertices

V = {v1, · · · , vn+m, } and edges in the set E, the graph laplacian is then, L(x) = D−A

where D is the valency or degree matrix, D = diag(
∑n+m

j=1 aij) and A is the adjacency

matrix.

Definition 2.4.10. (Algebraic Connectivity): Let λ1 ≤ . . . ≤ λn be the ordered

eigenvalues of the Laplacian Matrix L(x), then λ2 > 0 if and only if G(x) is connected.

λ2 > 0 is also known as the algebraic connectivity of the network.
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With these definitions, we can view the dynamic graph induced by the sensor

network in a matrix representation. This allows for a straight forward check if the

network is connected at any given configuration. Viewing the connectivity of the

network from a graph-theoretic point-of-view, the question now becomes how to

control the agents (vertices) such that the dynamic graph, G(x), induced by the

agents remains connected throughout the mission.
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Prioritized Sensor Detection

As a first approach, in this chapter we present our multi-vehicle coordination algo-

rithm found in [41] that deals with a connected homogeneous sensor network. The

algorithm combines Voronoi partitions, which divide the area to be searched among

the robot team members, a Monte Carlo optimization technique, which is used to

calculate goal points that correspond to points inside the Voronoi partitions that

have the highest probability of containing “good” information, and a modified navi-

gation function that steers the robots from their current positions to their respective

goal points while avoiding collisions with the environment and robot team members.

3.1 Control Algorithm for Prioritized Sensor De-

tection

From design, the control algorithm is decentralized and executed in parallel on all

robots. Here we assume n sensing agents which have a fixed and connected commu-

nication topology. Before we state the algorithm, a few bits of notation are needed.
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Let the probability of detection (POD) map, M(q), reflect the probability of detect-

ing “good information” over the area to be searched. Define β, to be a parameter

that reflects the reduction in the probability of detection map for points inside each

robots sensing radius, i.e., β is a measure of the reduction of the probability of find-

ing useful information after a region has been visited by a robot. Define the set

Di = Vi ∩Qfree. Di represents the set of all points in Vi (Voronoi partition) that are

not occupied by an obstacle. The general scheme is outlined below.

1. (Voronoi region) For i = 1, · · · , n determine the Voronoi partition Vi in Q.

2. (Global optimization) Apply the general Monte Carlo optimization method over

the set Di to determine an approximate maximum g̃∗ in Di of M(q).

3. (Check feasibility) Determine if g̃∗ is reachable by solving the shortest-path

problem from the graph that creates the navigation function. If the point is

reachable set the goal point gpi = g̃i
∗. If g̃i

∗ is not reachable then go to Step 2

and determine

g̃i
∗ = max(Y1, . . . , YN−1)

where we exclude g̃i
∗ that was calculated from the previous optimization.

4. (Navigation function) Create a navigation function, fi(pi, qpi, d) in Di with gpi

set as the goal point.

5. (Control actuation) Let ui = ṗi and apply the control

ui =


−k∇fi(·) if |ui| < umax

− k∇fi(·)
‖k∇fi(·)‖ · umax otherwise

(3.1)

where k = |pi − gpi| the distance of the robots current position pi to the goal

point gpi.
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6. (Local map update) For all points that are inside the sensing radius R, update

the M as,

M(pi) = βM(pi).

7. (Global map update) Robot i communicates with its neighbors and exchanges

its current position. All robots update their local maps with all other robots

local maps to create a synchronized global map.

8. (Termination) Check if t ≥ Tsearch if true, stop. Else goto Step 1. Tsearch is

taken to be the time allowed for the search.

In step 3 we check the feasibility of the goal point obtained from the optimization

algorithm. This is done because there may exist configurations of obstacles in the

Voronoi partition that cause points in Vi to be unreachable by the robots. If the

goal point obtained from the optimization algorithm is unreachable, that point is

disregarded and the next best point is taken. It is key to note that there will always

exist a feasible goal point for all the robots because in the most improbable case

the goal point would be the current robot position. Notice that this case does not

however cause robots to become “stuck,” since at each iteration of the algorithm

the Voronoi regions are updated based on the new positions of the robots at the

subsequent optimization is done over the new Voronoi partitions. Also notice that in

step 7 we assume that all robots can synchronize their local maps to create a global

map. This may seem like somewhat of a limitation on the ability of the control

algorithm to be implemented in a decentralized fashion, however it has been shown

that this can be done using only one-hop neighbors in the communication network

[54]. Although partitioning the search space among the robot team members does

place a constraint on the optimal solution, its usefulness is seen in the fact that it

keeps multiple robots from visiting adjacent points near the global optimum which

may be searched by a single robot as well as insuring collision avoidance among the
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robots. The partitioning also facilitates a more expansive search in the initial stages

of the algorithm.

3.2 Properties of Control Algorithm

Proposition 3.2.1. (Safety) The control algorithm outlined above guarantees colli-

sion avoidance with the environment as well as with other robot team members.

Proof. Notice that by construction, for any robot configuration P = {p1, . . . , pn}

the accompanying Voronoi partitions V1, . . . , Vn are disjoint. Also by construction

the navigation function, fi(·) is defined over only Di = Vi ∩ Qfree for all n robots.

Therefore any robot i starting inside Di and following the control described in (3.1)

will stay inside Di. This guarantees no inter-robot collisions will occur. Obstacle

avoidance within Di comes directly from the construction of the navigation function

and the control law described in equation (3.1).

It is also key to note that convergence to the goal point is also guaranteed using

a navigation function and the control law (negated gradient) in equation (3.1), [47].

This is true since by construction the navigation function fi(·) contains only one

minimum at the goal point. A well known result from calculus guarantees that fol-

lowing the negative gradient of a function containing a single minimum will converge

to the unique minimum.

3.3 Multi-Sensing Framework

As an extension to [41] we introduce the idea of a multi-sensing framework, where

robotic platforms are equipped with more than one sensing modality. This multi-

27



Chapter 3. Prioritized Sensor Detection

modal approach becomes very practical in such applications as search and rescue or

hazardous contaminations where more than one factor may play a role in decision

making. It may be more beneficial to have a radiation map as well as a temperature

map of the area in question before sending in rescue/clean up teams. The prob-

lem now becomes, how does one handle prioritizing searching/sensing with multiple

sensing capabilities.

From our previous work [41] we have shown how to prioritize searching/sensing

efforts through the use of a probability of detection map. To address the multi-sensing

framework we propose the use of logistic regression to express the contributions of

each sensing modality and its factor on the overall probability of detection (POD)

map. This approach allows one to weigh a particular sensing behavior over another

depending on need or usefulness of the sensing data.

The logistic function is defined in the following way,

f(y) =
1

1 + e−y
, (3.2)

where y is defined as

y = α0 + α1x1 + α2x2 + · · ·+ αkxk. (3.3)

In equation (3.2), the output represents the probability of a particular outcome. For

our purposes f(y) in (3.2) represents the probability of finding useful information

at a particular point in the area or interest. In (3.3), the parameters α1, α2, . . . , αk

are the regression coefficients which describe the contribution of the risk factors,

x1, x2, . . . , xk. α0 represents the probability of finding useful information given all

risk factors are equal to zero. For our purposes risk factors will be different sensors’

probability of detection maps, Mi(q). In this sense, through logistic regression we are

able to fuse a variety of different sensing objectives, Mi(q) (POD maps) into a single

objective that is weighted based on user need or the mission objective. Figure 3.1

shows a one-dimensional example of combining multiple POD maps. Notice that
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Figure 3.1: One-dimensional example of the linear regression algorithm. Three POD
maps (red, magenta, blue) with high probabilities of containing good information
at x = −2, 0, and 2 respectively, are combined into a single one-dimensional POD
map (black) that reflects the overall mission objective. Here the POD map with the
lowest probability (magenta) is the most important to the mission objective which
is reflected after the linear regression is done.

although the map represented by the blue line has the highest POD value initially,

when combined with the other POD maps it has the lowest POD value. This is due

to its regression coefficient, which is taken to be 0.6. In this way, although there

is a good indication that some useful information may be there, it may not be a

primary objective of the mission. Through this linear regression technique the user

can bias what the robots should search/sense first but also allow the possibility of

searching/sensing secondary objectives if time permits.
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3.4 Task Decomposition Revisited

Through experimentation of the prioritized sensing behavior, [41] we have found that

in practice, the Voronoi partitions created by the sensing agents do not always agree

throughout the robot network. This is due to localization errors among the agents

and also possibly due to corrupted position information being passed among the

agents. This seemingly small problem could have very big effects on the outcome

of the sensing mission. If the Voronoi partitions overlap, the collision avoidance

property of the control algorithm may be violated. If there is separation between the

regions, critical areas may never be searched by the agents.

Although an investigation was carried out to determine the best action to over-

come the boundary inconsistencies of the Voronoi partitions, it was apparent that

this problem was outside the scope of this research. One solution however, may

come in the form of more sophisticated localization techniques. In our initial imple-

mentation only odometry measurements were used to localize the sensor network.

Odometry is known to be inherently noisy and inconsistent due to wheel slippage.

A more sophisticated approach utilizing a Kalman filter and more robust sensors

such as GPS, laser range finders, an inertial measurement unit, etc. would produce

a better estimate of the position and orientation of the agents in the network. A

more accurate position and orientation estimation would then lead to more accurate

Voronoi boundaries across the network.

Another possible approach may include some type of cooperative localization sim-

ilar to [55] where a catadioptric camera system is used to determine reliable direction

vectors from one agent to all other agents in its field of view. Based on reliable direc-

tion and distance vectors the Voronoi boundaries can be computed accurately among

the agents in the network. Another approach to cooperative localization may use a

single known landmark similar to [56]. Whichever approach is chosen to overcome
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localization errors, our current framework can incorporate these changes to allow for

more accurate Voronoi boundaries.
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Prioritized Search and Adaptive

Tracking

Although we have applied the prioritized search algorithm to environmental sensing

situations, because of its general formulation it allows itself to other scenarios such

as prioritized search for maneuvering targets of interest. This chapter gives a brief

description of a book chapter submitted to the American Institute of Aeronautics

and Astronautics [57].

We present a framework that combines high-level motion planning and low-level

real-time control for a team of UAVs tasked with searching and tracking a target of

interest. The high-level motion planning controller can be seen as a hybrid system

where the team of UAVs utilize a prioritized search of the area to seek out regions

having the highest probability of containing the target-of-interest and switch behav-

iors to an adaptive sampling-based filter for target tracking when the target enters

a UAV’s Field Of View (FOV). The low-level control of UAVs is done by utilizing a

nonlinear model and controller for quadrotor stabilization and way point tracking.

The proposed framework also allows for “human-in-the-loop,” which allows a human
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operator manual control of the UAV team.

The topic of networked UAVs for target search and tracking, although not entirely

new, has begun to gain interest in the controls community. Several approaches to

reconfiguring the UAV network have been investigated. A technique for dynamically

reconfiguring search spaces in order to enable Bayesian autonomous search and track-

ing missions with moving targets is presented in [58]. The authors in [59] develop a

framework for a group of fixed-wing UAVs to cooperatively search and localize static

targets using Bayesian filtering techniques and receding-horizon path planning. A

somewhat similar work to [59] can be found in [60]. The difference is that [60] takes

into account a dynamical model of quadrotors (i.e., UAVs), investigates several sens-

ing modalities, and puts more emphasis on developing scalable distributed estimation

techniques. Particle filtering under intermittent information for multi-agent scenar-

ios is investigated in [61]. Aforementioned approaches use probabilistic approaches

that enable planning techniques based on minimization of entropy (i.e, uncertainty).

Drawbacks of the Bayesian inference can be found, for example, in [62] or in an

interesting discussion initiated in [63].

The work in [64] presents a rule-based intelligent guidance strategy for au-

tonomous pursuit of mobile targets by UAVs in an area with threats, obstacles, and

restricted regions. A least-square estimation and kinematic relations are used to

estimate/predict the target states based on noisy position measurements. However,

only generic and simplified models/behaviors of both targets and UAVs are con-

sidered. A tightly integrated systems architecture for a decentralized Cooperative

Search, Acquisition, and Track (CSAT) mission management algorithm along with

actual hardware flight tests is presented in [65]. In a complimentary paper [66],

the authors propose an architecture similar to the one we propose in this chapter,

however this work does not consider the “human-in-the-loop” scenario and also

assume simplified target models.
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Our main concern is to design a framework that combines the high-level coordi-

nation/path planning of the UAV team and the low-level real-time control and also

allows for “human-in-the-loop.” This framework fills a gap in the literature which

in general considers the high-level coordination and low-level control independently.

Our framework is a bridge between these two approaches which provides a compre-

hensive top to bottom integration of high-level coordination and low-level control,

taking into account sophisticated UAV and target models.

4.1 Problem Formulation

Consider a team of n kinematic agents (UAVs), P = {p1, p2, . . . , pn}, each equipped

with a sensor/camera having a circular Field Of View (FOV) Bj, each tasked with

starting from some initial configuration and navigating to visit regions within the

area-of-interest (AOI) which contain the highest probability of containing a target-

of-interest first, while avoiding collisions with other UAVs. We assume there exists

a target-of-interest in the AOI. When the target-of-interest is identified, the UAVs

should track the identified target while minimizing their use of resources (sensor use

and computational load).

Let the probability of detection (POD) map reflect the probability of detecting

a target over the AOI. Define β > 0 to be a parameter that reflects the reduction

in the probability of detection map for points inside each robot’s FOV and δ > 0

that can be considered as a forgetting factor of past measurements. Consider the

AOI, Q ⊂ R3, with boundary ∂Q, to be a simple convex polygon. Let us denote the

POD map as M(q, t), where q ∈ Q. Here we assume that Q and its boundary ∂Q is

known a priori by all UAVs. From the high-level motion coordination perspective,

each UAV, pj is assumed to be holonomic with dynamics:

ṗj = uj, j = 1, · · · , n (4.1)
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where uj ∈ R3 is the control input of agent j. From the low-level real-time controller

perspective a twelve state dynamic model is used. In this formulation we assume

that the UAVs are faster than the targets-of-interest and UAVs fly at a constant

altitude above obstacles in the AOI. Also connectivity is assumed between the UAVs

and the fusion center.

The target, T , is assumed to be a unicycle unmanned ground vehicle (UGV) that

performs purely stochastic maneuvers within the AOI:

ẋ =


ẋT

ẏT

θ̇T

 =


vs cos θs,

vs sin θs,

ωs,

 (4.2)

where ωs and vs are stochastic input given to the UGV such that vs ∈ [vmin, vmax] and

ωs ∈ [ωmin, ωmax]. Modeling the target-of-interest as a unicycle with stochastic inputs

allows us to address three main behaviors seen in pursuit evasion games: adversarial,

non-adversarial, and collaborative.

4.2 Proposed Approach

Our approach to this particular problem is to develop a framework that combines the

high-level motion planning of the group and the low-level control and stabilization of

the UAVs. This approach enables the UAVs to bypass the coordination step and only

have to communicate with a fusion center to obtain waypoint information. Although

this may seem to be a drawback in the sense of a one-point failure, this approach

allows for an easy transition from an autonomous mode to a semi-autonomous mode

when a “human-in-the-loop” may be needed. This is an important consideration in

target search/tracking and surveillance scenarios where human intuition can play a

vital role in mission completion. Figure 4.1 shows a diagram of how the framework
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is structured and implemented. We believe that allowing for a “human-in-the-loop”

is an important element to our framework because human intuition or the human

perspective is something that can be very useful in search and surveillance scenarios.

Figure 4.1: Diagram of the framework the UAVs will employ to acquire and eventu-
ally capture a target of interest.

To transition from one behavior to another we introduce two boolean variables

that act as flags for the fusion center. Initially the variable IsDetected = false and

the UAVs employ the prioritized target search (PTS) algorithm. When the target is

detected by a UAV, IsDetected = true and the fusion center switches controllers to

the adaptive sampling-based filter for target tracking (AFTT).
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Initially the variable OverWrite = false, which is a flag that allows a human

operator to control the UAV team manually through inputs of desired waypoints. We

denote this by human machine interface (HMI). At any point during the prioritized

search or adaptive target tracking, the variable OverWrite can be changed to true,

to enable human intervention if needed.

The algorithm policy used by the fusion center to determine which algorithm, A,

to use to determine inputs for the UAV team is outlined below:

A =


PTS if IsDetected = false & OverWrite = false

AFTT if IsDetected = true & OverWrite = false

HMI if OverWrite = true.

4.3 Simulations

To simulate our heterogeneous framework we assume a rectangular AOI (30m×30m)

with four UAVs having FOV’s of 1.5m, 2.0m, 2.1m, and 2.5m. Maximum target

linear and angular velocities are set to 0.7m/s and 1.5rad/s respectively with UAV

maximum velocity set at 5m/s. The probability of detection map parameters β and δ

are set to 0.4 and 5×10−3. In Figure 4.2 we see that three areas have high probabilities

of containing the target-of-interest initially. The UAVs are shown in magenta as

well as their FOVs. The PTS algorithm is implemented to identify points in the

AOI that have the highest probability of containing the target-of-interest. Waypoint

information is relayed to the onboard low-level controller to navigate the UAVs to

those regions for searching.

When the target-of-interest is detected by one of the UAVs, their behavior changes

from the PTS algorithm to the AFTT algorithm for target tracking. Figure 4.3 shows

the reduction of the probability of detection map when the UAVs switch from the

PTS algorithm to the AFTT algorithm as well as their respective trajectories while
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Figure 4.2: The initial probability of detection map. UAVs and their respective
FOVs are shown in Magenta.

implementing the PTS algorithm.

Figure 4.4 shows a snapshot of the AFTT algorithm. The target-of-interest is

shown as a blue arrow and its trajectory is the blue hashed line. The red dotted line

shows the fitting circle used by the AFTT algorithm. Notice that the fitting circle is

a line, indicating a circle with almost infinite radius. The magenta hashed line shows

the tracking UAV’s trajectory. During this simulation only one UAV was actively

tracking, however the AFTT algorithm allows for “handing off” the target to other

UAVs if the target enters their FOV.

Comparison of waypoint tracking between a holonomic UAV model and the dy-

namic quadrotor model is shown in Figure 4.5. The trajectories of the holonomic

and dynamic quadrotor model are very similar, indicating the low-level controller
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Figure 4.3: The reduced probability of detection map at the moment the UAVs switch
from the searching algorithm (PTS) to the target tracking algorithm (AFTT). UAVs
are shown in Magenta and their trajectories are shown by dotted black lines.

does a good job of steering the quadrotors to the desired waypoints. Figures 4.6 and

4.7 show the dependence of quadrotor velocity to the distance from the desired way

point. The velocity is high when a new waypoint is received, and then decreases as

the quadrotor approaches the desired waypoint. In future implementations we will

design a path following algorithm which will enable speed profile requirements.
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Figure 4.4: Snapshot of the tracking algorithm. The target is seen as a blue arrow.
The fitting circle from AFTT algorithm is shown as a dotted red line. The blue line
is the target trajectory and the magenta line is the trajectory of the UAV that is
currently tracking.
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Figure 4.5: Comparison of waypoint tracking for holonomic UAV model and nonlin-
ear quadrotor model.
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Figure 4.6: Velocities of nonlinear quadrotor model (x and y components) during
waypoint tracking.
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Figure 4.7: Quadrotor velocity profile for a single waypoint. Both x and y compo-
nents are shown.
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Part II: Heterogeneous Sensor

Network
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Chapter 5

Connectivity Maintenance of a

Heterogeneous Sensor Network

In this chapter we discuss our approach to multi-robot connectivity maintenance.

We propose adding specialized agents that are better equipped (hardware) to relay

information over longer distances within the sensor network. This allows the sensor

network to have a longer “reach” in the search space. It also allows the sensing agents

to be built in a way that the communication hardware can be minimized. This may

have benefits in hardware costs and also the size and shape of the sensing agents in

the network.

5.1 Heterogeneity in Reconfigurable Sensor Net-

works

In this section we try to provide a discussion of what distinctions should be made

in the literature to better represent the idea of a heterogeneous system. This dis-
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tinction will help categorize heterogeneity in such a way that will allow for a better

characterization of the problem being approached.

Heterogeneity, in general, can be used to describe a system that is comprised of

members that have variations. In reconfigurable sensor networks these variations

may be as obvious as platform variations, i.e., a network of UAVs and UGVs, or as

subtle as the actual sensor footprint of the sensing nodes. The title of a “hetero-

geneous system” is adequate to describe both types of systems. Although this is a

fair description for both systems, the term heterogeneity doesn’t describe how these

variations come together to help solve an overall mission objective.

We propose to categorize heterogeneity into two main categories. The first being

hardware-based heterogeneity and the second one is considered objective-based het-

erogeneity. Hardware heterogeneity is just that, variations in the hardware between

members of the sensor network. This includes differing sensor footprints, communi-

cation ranges, vehicle models (platforms), sensing modalities, among many others.

Hardware-based heterogeneity has its difficulties in deriving controllers that can han-

dle these hardware variations while achieving an objective such as sensor coverage

[67].

On the other end of the spectrum is objective-based heterogeneity where multi-

ple sub-objectives must be met to achieve the overall mission objective. A simple

example may be a team of agents that need to search an area while also making sure

any possible exits from the area are covered by a sensing agent. The team may split

up, with a few patrolling possible exits while others do the search. We see that the

difficulties in objective-based heterogeneity is combing behaviors in a way that there

is cohesiveness as well as maintaining properties such as convergence, stability, etc.

Figure 5.1 gives a representation of how we view heterogeneous systems. In this

brief discussion, it is seen that heterogeneity by itself is not descriptive enough to
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Figure 5.1: Characterization of heterogeneous systems within reconfigurable sensor
networks.

explain the variations within system. We believe our categorized representation is

a more detailed way of characterizing the variations within a heterogeneous system

that will lead to a better understanding of the difficulties involved as well as the

issues being addressed for a particular heterogeneous system.

In the particular problem we are considering in this dissertation, the hetero-

geneity of our sensor network falls under both hardware-based and objective-based

heterogeneity. Our problem exhibits hardware-based heterogeneity since we are con-

sidering two types of vehicles, UAVs and UGVs, as well as agents with different
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communication ranges, i.e., relay and sensing agents. We also consider our system

to have objective-based heterogeneity from the fact that the sensing agents objective

is purely sensing the environment, while the relay agents objective is to react to the

sensing agents and keep the network connected.

From the fact that our approach involves a cyber-physical system, it is not surpris-

ing that our system exhibits both hardware-based and objective-based heterogeneity.

This can be seen from the tight integration of various capabilities for its operation

and interaction with the physical environment. There exists a need in the robotics

community to develop frameworks for cyber-physical systems, which undoubtedly

will involve addressing difficulties that arise within heterogeneous systems. With

any cyber-physical system, heterogeneity will be a key issue that must be addressed.

5.2 Problem Formulation

We begin by considering a heterogeneous team of agents consisting of n sensing

agents, which we will consider for this application as Unmanned Ground Vehicles

(UGVs), and m relay agents, which we will assume are Unmanned Aerial Vehicles

(UAVs), in two and three dimensions. Assume the n sensing agents are equipped

with sensors capable of sensing an environmental phenomena within a finite radius

Rs and communicating within a finite radius Rc(q) ≤ Rcmax . Here we assume that

the communication radius will change based on the positions of the robots. This

relaxation in the communication range allows us to model, to some degree, the

path loss in the communication channel [50]. Incorporating communication channel

characteristics, which has been largely ignored in the literature to date, allows for

a better system model. Also let us assume that the m relay agents are capable of

communicating over a finite radius Rrc such that Rrc > Rcmax i.e., the relay robots

are better equipped for communication than the sensing agents and the relay robots
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communication range is not dependent on location. Consider the area of interest Q,

assumed to be a simple convex polygon with boundary ∂Q, including its interior.

Define Cobs as the union of all obstacles in the region Q, and let Qf = Q \ Cobs be

the area within Q that is free of obstacles. Let us define the probability of detection

map M(q), which reflects the probability of detecting an environmental phenomena

over the area to be searched. For our mathematical formulation we consider each

agent xi to have the following dynamics:

ẋi = Axi + Bui, (5.1)

where A is the system matrix, B is the input matrix, ui is the input, and i =

1, · · · , n + m. We are assuming a linear controllable system under the premise that

the dynamics from both ground vehicles as well as aerial vehicles with an autopilot

system can be conservatively estimated in such a way. This is an abstraction to the

real dynamics of both ground and aerial vehicles with the assumption that there

exists well tuned low-level controllers for each vehicle type. Here we are considering

our sensor network to be heterogeneous not only because relay and sensing agents

have different communication ranges but also because they play different roles in the

sensor network.

5.3 Communication Constraints

In our scenario there exists three particular communication link possibilities. The

first being, relay/sensor communication, where a sensor communicates directly to a

relay agent. The second, relay/relay communication, where a relay shares a commu-

nication link with another relay agent. The last communication link possibility is

sensor/sensor communication where sensors communicate directly with each other.

For the following formulation let us consider the case where the communication ra-
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dius of the sensing robots is not location dependent, i.e. Rc(q) = Rc. Note that

each agents communication range describes the range over which the agent can both

send and receive information. For ease of notation let us also consider that the relay

agents fly at constant altitude, h, and their communication range will be taken as

its two dimensional projection at this constant height.

Similar to the work on homogeneous networks of Bullo et al., [68], we now formu-

late the connectivity constraint set for each particular communication link possibility

of our heterogeneous network based on the geometry of the communication radii. For

the following definitions we will use B̄(p, r) to denote a closed ball of radius r centered

at p in R2.

Definition 5.3.1. (Relay/Sensor connectivity constraint set) Consider two agents,

one relay agent i located at position pi and one sensing agent j located at position

pj such that ||pi − pj||2 ≤ Rrc. Then the connectivity constraint set of agent i with

respect to agent j is

Υdrs(pi, pj) = B̄(
pi + pj

2
,
Rrc

2
). (5.2)

Figure 5.2 shows an example of the relay/senosr connectivity constraint set.

Definition 5.3.2. (Relay/Relay connectivity constraint set) Consider two relay

agents, one agent i located at position pi and one agent j located at position pj such

that ‖pi − pj‖2 ≤ Rrc. Then the connectivity constraint set of agent i with respect to

agent j is

Υdrr(pi, pj) = B̄(
pi + pj

2
,
Rrc

2
). (5.3)

Figure 5.3 shows an example of the relay/relay connectivity constraint set.
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Figure 5.2: Motion constraints set for sensor/relay connection. The red dots repre-
sents the relay and sensing agents. The blue disk represents the motion constraint
set that guarantees connectivity.

Definition 5.3.3. (Sensor/Sensor connectivity constraint set) Consider two sensing

agents, one agent i located at position pi and one agent j located at position pj such

that ‖pi − pj‖2 ≤ Rc. Then the connectivity constraint set of agent i with respect to

agent j is

Υdss(pi, pj) = B̄(
pi + pj

2
,
Rc

2
). (5.4)

Figure 5.4 shows an example of the sensor/senosr connectivity constraint set.

Remark 5.3.4. Notice that definition 5.3.1 and definition 5.3.2 are the same. This

is due to the fact that sensors communication radius can be ignored when a communi-

cation link exists between a sensor and relay, since the sensors communication radius
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Figure 5.3: Motion constraints set for relay/relay connection. The red dots represents
two relay agents. The blue disk represents the motion constraint set that guarantees
connectivity.

is smaller that that of the relay agent. This is also a consequence of the assumption

that the sending and receiving channels are symmetric.

Definition 5.3.5. (Connectivity constraint set for relay agent w.r.t. heterogeneous

network) Consider a group of agents containing both sensing and relay agents located

at P = {p1, p2, . . . , pn+m}. Then the connectivity constraint set of relay agent i with

respect to all other agents in the group is

Υdhr
(pi,P) = {x ∈ Υdrr(pi, pj)|q ∈ P\{pi} s.t. ‖q − pi‖2 ≤ Rrc}. (5.5)

Figure 5.5 shows an example of a relay connectivity constraint set w.r.t. the

heterogeneous network.
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Figure 5.4: Motion constraints set for sensor/sensor connection. The red dots rep-
resents two sensing agents. The blue disk represents the motion constraint set that
guarantees connectivity.

Before we can state the definition of the connectivity constraint set for a sensing

agent with respect to the heterogeneous network we need some preliminaries. Let pi

be a sensing agent, then

Λss = ∩n
j=1Υss(pi, pj), where pj ∈ sensors, (5.6)

Λsr = ∩m
k=1Υsr(pi, pk), where pk ∈ relays. (5.7)

Now we can define the connectivity constraint set for a sensing agent with respect

to the heterogeneous network.

Definition 5.3.6. (Connectivity constraint set for sensor agent w.r.t. heterogeneous

network) Consider a group of agents containing both sensing and relay agents located

at P = {p1, p2, . . . , pn+m}. Then the connectivity constraint set of a sensor agent i
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Figure 5.5: Motion constraint set for a relay agent w.r.t. the network, Υdhr
(pi,P).

The green area represents the motion constraint set that guarantees connectivity for
relay agent pi w.r.t. the heterogeneous network.

with respect to all other agents in the group is

Υdhs
(pi,P) = Λss ∩ Λsr. (5.8)

Figure 5.6 shows an example of a sensors connectivity constraint set w.r.t. the

heterogeneous network. The connectivity constraint sets defined in (5.3.1) - (5.3.6)

define the set of allowable positions that each robot may take such that the com-

munication network will remain connected. Thus the connectivity constraint sets

defines the feasible motion for each individual robot to remain connected with the

network.
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Figure 5.6: Motion constraint set for a sensor agent w.r.t. the network, Υdhs
(pi,P).

The green area represents the motion constraint set that guarantees connectivity for
sensor agent pi w.r.t. the heterogeneous network.

5.4 Heterogeneous Proximity Graph

Due to the heterogeneity of our sensor network, we must define an appropriate prox-

imity graph. As a reminder, a proximity graph describes connections between a set

of vertexes based on their relative distances.

Definition 5.4.1. (Proximity Graph, [68]) Let S ⊂ RN . A proximity graph G as-

sociates to a set of distinct points P = {p1, . . . , pn} ⊂ S, an undirected graph with

vertex set P and whose edge set is given by EG(P) ⊆ {(p, q) ∈ P × P|p 6= q}.

We see that due to the heterogeneity of our network, the edge set of our proximity

graph should depend on the agent type. The following definition describes how the

edge set should be created for our heterogeneous proximity graph.
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Definition 5.4.2. (Heterogeneous r(p)-disk graph, Gdisk(r(p))(P)) Two agents pi and

pj are neighbors if they are located within a distance r(p) = Rc if both pi and pj are

sensing agents or r(p) = Rrc if one of the agents is a relay agent, i.e.,

(pi, pj) ∈ EGdisk(r(p))
(P) if

 ‖pi − pj‖2 ≤ Rc and pi, pj both sensing agents

‖pi − pj‖2 ≤ Rrc and pi or pj is a relay agent.

(5.9)

An example of the Gdisk(r(p))(P) graph is shown in Figure 5.7. In the Gdisk(r(p))(P)

graph, edges depend on the agent distances as well as agent connection combinations.

Figure 5.7: Example of Heterogeneous r(p)-disk graph, Gdisk(r(p))(P) with three relay
robots (blue squares) and five sensing robots (black circles). The red lines represent
edges in the graph between respective agents.

The heterogeneous r(p)-disk proximity graph, Gdisk(r(p))(P), allows us to represent

the network topology of our heterogeneous system. It is seen that depending on the
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configuration of the network there may exist heavy redundancy in the connections

(Figure 5.7). This redundancy comes at the cost of more constraints on each agent,

therefore reducing the size of the set of possible inputs that guarantee connectivity.

This reduction stems from the fact of the intersection of multiple sets.

Let us now define the the weighted complete graph which we will denote as, G

throughout the rest of this paper.

Definition 5.4.3. (Weighted Complete Graph, G) Let S ⊂ RN . The weighted com-

plete graph G associates to a set of distinct points P = {p1, . . . , pn+m} ⊂ S, an

undirected graph with vertex set P and whose edges e = (pi, pj) ∈ EG(P) has the

following weights w(e),

w(e) =

 ||pi − pj||2 + Rrc if pi, pj both sensing agents

||pi − pj||2 if pi or pj is a relay agent.
(5.10)

5.5 Minimizing Motion Constraints

With a formal way of representing the motion constraints for each agent with respect

to the heterogeneous group, we now are left with trying to minimize the constraints

(links) in such a way that we expand the input set the agents can choose from

that still guarantees connectivity at the next time step. One solution is to take

Gdisk(r(p))(P) and run a minimum spanning tree algorithm to determine a subgraph

of the r(p)-disk graph that has the minimum number of connections needed to remain

connected. A key result from modern graph theory is that assuming Gdisk(r(p))(P)

is connected their always exist a minimal spanning tree [69]. The usefulness of the

minimum spanning tree approach is that it allows us to weigh connections between

agents. This may be useful in enforcing relay/sensor connections over sensor/sensor
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connections since relay/sensor connections offer a greater motion set for the agents

as opposed to the sensor/sensor connections because of the larger communication

radius. Another reason to bias certain network connections when possible is be-

cause relay nodes are better equipped to handle communication data, i.e., higher

bandwidth. Figure 5.8 shows the Euclidean Minimum Spanning Tree (EMST) for

the r(p)-disk graph weighted by the Euclidean distance between connected vertexes,

GEMST,G. It is key to note that the EMST is a subgraph of the Gdisk(r(p))(P) graph

and contains the minimal number of connection to maintain a connected graph.

Figure 5.8: Example of GEMST,G with three relay robots (blue squares) and five
sensing robots (black circles). The red lines represent edges in the graph between
respective agents. Notice the graph is connected.
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5.5.1 Shaping the Network Configuration

To help bias relay/sensor connections over sensor/sensor connections with respect

to the Minimum Spanning Tree (MST) we now formulate a weighting factor for sen-

sor/sensor connections. From definitions (5.3.1) and (5.3.3) we see that the motion

constraint set for relay/sensor connections is larger than sensor/sensor connections

due to a larger communication radius. With the help of Figure 5.9 we look at the

scenario of one relay and two sensing agents. In terms of the MST, all connections

that have a possibility of being biased can be broken down in this way. For ease of

notation we will refer to the MSTGdisk(r(p))
as just the MST.

Figure 5.9: Figure of one relay agent (blue square) and two sensing agents (black
circle) used to formulate weighting factor for sensor/sensor connections.

Let ‖pi − pj‖2 = l, ‖pi − pk‖2 = l1 and ‖pj − pk‖2 = l2. Let us assume that

l < l1 ≤ Rrc and l2 ≤ Rc. From construction of the MST, the red solid edges

between pi, pj, and pk in Figure 5.9 will be chosen since

l + l2 < l1 + l2,
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l + l2 < l + l1.

Let ε > 0 denote the minimum distance between two sensing agents, i.e., physical

footprint. Under other circumstance ε can also be considered the threshold distance

where two sensing agents should communicate directly. To bias the relay/sensor

connection (red dotted line) a weighting factor ξ1, must be constructed such that

when l2 = ε, ξ1l2 ≥ Rrc. Defining ξ1 =
(

Rrc

ε
+ δ1

)
with δ1 ≥ 0 we get the following,

ξ1l2 =

(
Rrc

ε
+ δ1

)
l2

ξ1l2 = Rrc + δ1ε

ξ1l2 ≥ Rrc. (5.11)

Therefore, with the connection weighting factor ξ1 we now have the following,

l + l1 ≤ l + ξ1l2,

l + l1 ≤ l1 + ξ1l2.

Weighting the sensor/sensor connection (edge) by a factor of ξ1 allows us to bias

the MST to chose the relay/sensor connections. Figure 5.10 shows a connected

Gdisk(r(p)) graph with many redundant connections. Figure 5.11 and Figure 5.12 show

the difference in network connections between the MST and the connection weighted

MST (MSTCW ) respectively, where sensor/sensor connections are weighted by the

factor ξ1. Notice that in the MSTCW graph, the relay/sensor connections are chosen

over sensor/sensor connections.

To understand the effect of choosing relay/sensor connections over sensor/sensor

connections, we calculate the area covered by the motion sets for the various graph

representations. Figure 5.13 shows the difference in the area of the motion constraint

sets for the Gdisk(r(p)), GMST , and the GMSTCW
graph for each agent in the network.

Notice that GMSTCW
graph allows for the largest motion constraint set area for sensing

agents (vertex 6-13).
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Figure 5.10: The Gdisk(r(p)) with many redundant connections.

We sum the total areas of the feasible motion sets for each graph representation

of the network in Figure 5.11 and Figure 5.12, and see that the Gdisk(r(p)) totalled

167 units2, the MST totalled 337 units2, and the MSTCW totalled 462 units2. This

gives us a good indication that the MSTCW graph “frees” up more area for the

sensing agents to investigate than the other network graph representations. This is

attributed to the fact that relay agents have a larger communication radius.

In a similar fashion we can bias relay/relay connections. This may be advanta-

geous for certain mission objectives or when large amounts of data may need to be

transferred directly to a relay node. It may not be efficient or even possible to send

large amounts of data through a sensing node to reach another relay node.

Using Figure 5.15, as previously stated let us assume the minimum distance

between any two agents is ε > 0. Let us also assume that from Figure 5.15 that

l, l1, l2 < Rrc and for convenience assume l1 < l2 < l. From the point of view of the
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Figure 5.11: Example of the MST for thirteen agents with no connection weights.

MST the red edges between pi, pj, and pk in Figure 5.15 will be chosen since

l1 + l2 < l1 + l,

l1 + l2 < l + l2.

To bias direct relay/relay connections (Figure 5.15 red dotted line), we use a weight-

ing factor ξ2 = ε
l
. Choosing ξ2 in this way insures that a direct relay/relay connection

will be chosen over the multi-hop connection by the MST algorithm in Figure 5.15,

i.e., relay→ sensor→ relay. This is seen from the fact that,

ξ2l =
ε

l
l,

ξ2l = ε.

Therefore, now the distance between pi and pk is ε from the point of view of the MST

algorithm. Since the minimum distance of any two agents is ε the MST will choose

62



Chapter 5. Connectivity Maintenance of a Heterogeneous Sensor Network

Figure 5.12: The MSTCW graph for the thirteen agents. Notice how the relay/sensor
connections are chosen over sensor/sensor connections.

the direct relay/relay link. Figure 5.16 shows the network configuration using both

ξ1 and ξ2 as connection weights (MSTCW ).

Distributed Minimum Spanning Tree

In a classic paper by Gallager et al. [70], it was shown that there exists a distributed

algorithm to compute the minimum weight spanning tree of a connected, undirected

graph with N nodes and E edges. It was also shown that at most 5N log2N +

2E messages need to be passed to determine the minimum weight spanning tree.

Much work has focused on improving the time complexity of this algorithm and an

approximate MST can be calculated in almost optimal time [71].
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Figure 5.13: Comparison of the area of the motion constraint sets for the Gdisk(r(p)),
MST, and MSTCW . Notice that in the MSTCW graph the motion constrain set area
is higher for sensors (vertexes 6-13) than in the MST graph.

These key results allow the robots to compute the MST of the heterogeneous

proximity graph with only local information from adjacent robots. This is very

useful because it also allows the feasible motion constraint sets to be calculated in

a distributed fashion. For a summary of these distributed algorithms the reader is

referred to [70] and [71].
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Figure 5.14: Figure showing the total area covered by the motion constraint sets by
the three different graph representations.

5.6 Properties of the Heterogeneous Motion Con-

straints

This section details some properties of the heterogeneous motion constraint for agents

described in (5.1).

Theorem 5.6.1. Consider a relay agent, pi, with dynamics described in (5.1), such

that (5.1) is at least stabilizable and having a motion constraint set as defined in

(5.3.1). If pi takes a goal point gpi
∈ Υdrs(pi, pj) at time t1, then pi will be connected

to pj when it reaches gpi
at time t2.

Proof. Given the fact that the dynamics of pi are at least stabilizable implies that

there exists a static control law u(t) = −Kx(t) such that the closed loop system is

asymptotically stable, i.e., limt→∞ x(t) = gpi
.

By definition gpi
∈ Υdrs(pi, pj) which implies that ‖gpi

− pj‖2 < Rrc, hence pi at

65



Chapter 5. Connectivity Maintenance of a Heterogeneous Sensor Network

Figure 5.15: Figure of two relay agents (blue squares) and one sensing agent (black
circle) used to formulate weighting factor for relay/relay connections.

position gpi
at time time t2 is connected with pj.

Theorem 5.6.2. Consider a relay agent, pi, with dynamics described in (5.1), such

that (5.1) is at least stabilizable and having a motion constraint set as defined in

(5.3.2). If pi takes a goal point gpi
∈ Υdrr(pi, pj), at time t1, then pi will be connected

to pj when it reaches gpi
at time t2.

Proof. The proof is similar to the proof in Theorem 5.6.1.

Theorem 5.6.3. Consider a sensing agent, pi, with dynamics described in (5.1),

such that (5.1) is at least stabilizable and having a motion constraint set as defined

in (5.3.3). If pi takes a goal point gpi
∈ Υdss(pi, pj), at time t1 then pi will be

connected with pj when it reaches gpi
at time t2.

Proof. The proof is similar to the proof in Theorem 5.6.1.
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Figure 5.16: Example MSTCW for thirteen agents with both sensor/sensor and
relay/relay connection weights. Notice the relay/sensor connections are chosen over
sensor/sensor connections and relay/relay connections are chosen.

Theorem 5.6.4. Consider a relay agent, pi, with dynamics described in (5.1), such

that (5.1) is at least stabilizable and having a motion constraint set as defined in

(5.3.5). If pi takes a goal point gpi
∈ Υdhr

(pi,P) at time t1, then pi will be connected

with all agents at time t2 that it was connected with at t1 when it reaches gpi
.

Proof. Given the fact that the dynamics of pi are at least stabilizable implies that

there exists a static control law u(t) = −Kx(t) such that the closed loop system is

asymptotically stable, i.e., limt→∞ x(t) = gpi
.

By definition gpi
∈ Υdhr

(pi,P) which implies that

∀q ∈ P\{pi}s.t. ‖q − gpi
‖2 < Rrc,
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hence pi at position gpi
at time time t2 is connected with all pj ∈ P that it was

connected to at time t1.

Theorem 5.6.5. Consider a sensing agent, pi, with dynamics described in (5.1),

such that (5.1) is at least stabilizable and having a motion constraint set as defined

in (5.3.6). If pi takes a goal point gpi
∈ Υdhs

(pi,P) at time t1, then pi will be

connected with all agents at time t2 that it was connected with at t1 when it reaches

gpi
.

Proof. Given the fact that the dynamics of pi are at least stabilizable implies that

there exists a static control law u(t) = −Kx(t) such that the closed loop system is

asymptotically stable, i.e. limt→∞ x(t) = gpi
.

By definition gpi
∈ Υdhs

(pi,P) which implies that

∀q ∈ P\{pi}s.t. ‖q − gpi
‖2 < Rrc,

if q is a relay agent and

∀q ∈ P\{pi}s.t. ‖q − gpi
‖2 < Rc,

if q is a sensing agent. Hence pi at position gpi
at time time t2 is connected with all

pj ∈ P that it was connected to at time t1.

Theorem 5.6.6. For Rrc, Rc ∈ R+ and Rc < Rrc, then GMST,G ⊂ Gdisk(r(p)) if and

only if Gdisk(r(p)) is connected, where G is the weighted complete graph described in

definition 5.4.3 with vertex set P = {p1, p2, . . . , pn+m}.

Proof. (⇒) If GMST,G ⊆ Gdisk(r(p)) then Gdisk(r(p)) is connected by definition of GMST,G,

i.e., MST is connected.

(⇐) (By Contradiction) Assuming Gdisk(r(p)) is connected but GMST,G 6⊆ Gdisk(r(p))

implies two possible scenarios, (i) there exists two vertices pi, pj ∈ EGMST,G such that
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||pi − pj||2 > Rc where pi, pj are both sensing agents or,(ii) there exists two vertices

pi, pj ∈ EGMST,G such that ||pi − pj||2 > Rrc where pi or pj is a relay agent.

(i) If we remove the edge linking pi and pj from EGMST,G then the tree becomes

disconnected with two connected components, T1 and T2 such that pi ∈ T1 and

pj ∈ T2. Since by assumption Gdisk(r(p)) is connected, there must exist pk, pl ∈ P such

that pk ∈ T1, pl ∈ T2 and ||pk − pl||2 < Rc if both pk and pl are sensing agents or

||pk−pl||2 < Rrc if either pk or pl is a relay agent. If we add the edge (pk, pl) to the set

of edges of T1∪T2, then the resulting graph G∗ is acyclic, connected, and contains all

vertices in P . This implies G∗ is a spanning tree. Since ||pk− pl||2 ≤ Rc < ||pi− pj||2
we can conclude that G∗ has a smaller length than EGMST,G from the definition of

the edge weights of the complete weighted graph G in definition 5.4.3. This is a

contradiction of the definition of the MST.

(ii) Under the same argument as (i) and replacing Rc with Rrc it can be shown

similarly that the result is a contradiction of the MST.

For the Gdisk(r(p)) graph we take the edge weights between two connected vertices

to be Euclidean distance between the two agents represented by the nodes in the

graph. Therefore the MST for the Gdisk(r(p)) graph becomes the EMST.

Theorem 5.6.7. For Rrc, Rc ∈ R+ and Rc < Rrc, if Gdisk(r(p)) is connected then,∑
e∈GMST,Gdisk(r(p))

w(e) ≤
∑

e∈GMST,G

w(e).

Proof. From theorem 5.6.6 we have that GMST,G ⊂ Gdisk(r(p)) which implies that

EGMST,G ∈ EGdisk(r(p))
. We also know that by definition EGMST,Gdisk(r(p))

∈ EGdisk(r(p))
.

Looking at the edge weights of GMST,Gdisk(r(p))
(Euclidean distance) we have,

w(e) =

 ||pi − pj||2 ≤ Rc if pi, pj both sensing agents

||pi − pj||2 ≤ Rrc if pi or pj is a relay agent.
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For the edge weights of GMST,G described in definition 5.4.3 we see that,

w(e) =

 ||pi − pj||2 + Rrc if pi, pj both sensing agents

||pi − pj||2 if pi or pj is a relay agent.

Since Rrc > 0 by definition, the edge weights of all possible links chosen by the MST

algorithm for the GMST,G graph will be greater than or equal to those chosen for the

GMST,Gdisk(r(p))
graph.

Remark 5.6.8. In a centralized scenario or when the Gdisk(r(p)) graph is the complete

graph, theorem 5.6.7 provides a straightforward method for checking whether the MST

of the Gdisk(r(p)) was computed correctly.

5.7 Case Study: Centroidal Heterogeneous Mo-

tion Constraint Set Configurations

This section looks at the particular situation when the heterogeneous team moves

towards their respective centroid of their feasible motion set. This centroidal con-

figuration is a straightforward way to test the claims of Theorem 5.6.4 and Theo-

rem 5.6.5. It is key to note that the centroidal configuration is just one of many

different possible ways of testing the claims of Theorem 5.6.4 and Theorem 5.6.5.

5.7.1 Simulations

By construction, the centroid C∗i of each agents motion constraint set (MCSi) lives in

the interior of its motion constraint set. Therefore by setting C∗i as the goal point for

each agent i,∀i = 1, . . . , n+m, then the heterogeneous team should remain connected

when each goal point is reached by the respective agents. Figure 5.17 depicts the
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centroidal heterogeneous motion constrain set configuration for two relay agents and

one sensing agent. The red stars denote the centroid of each agents constraint set.

Algorithm 1 Centroidal Behavior (gpi
= C∗i )

while t < tfinal do

for xi = 1, . . . , n + m do

Calculate C∗i from MCSi (Equations (5.2)-(5.8))

gpi
⇐ C∗i

while ∆t < Ts do

ui(t) = −Kxi(t)

end while

end for

end while

Figure 5.17: Figure showing the centroidal heterogeneous motion constraint set con-
figurations. Each respective agent calculates its own centroid w.r.t. its constraint
set and then moves towards it.
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For this simulation we set Rc = 3m, and Rrc = 10m. We use m = 4 relay agents

and n = 10 sensing agents initially in a random configuration but in such a way that

the heterogeneous team is initially connected. Each agent i,∀i = 1, . . . , n + m, then

uses its neighbors of the GMSTCW
graph to calculate the centroid of their respective

motion constraint set. Each agent is modeled as a double integrator (5.1), and a

state feedback control law is used to drive the agents from their current position to

their respective goal points (C∗i ). Every Ts = 0.05 seconds, position information is

exchanged among the team members and an updated GMSTCW
graph is calculated.

Based on the new information, new centroids are updated and used as the goal point.

An outline is given in Algorithm 1. The simulation lasts for a total of five seconds.

Figure 5.18: Centroidal configuration for a heterogeneous team that moves towards
goal points that are the centroid of their respective motion constraint set.

Figure 5.18 show the final configuration of the heterogeneous team after five

seconds of the centroid seeking behavior. Figure 5.19 and Figure 5.20 show the

connectivity with respect to the second smallest eigenvalue criteria (λ2 (G) > 0 ⇒
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Figure 5.19: Graph of the second smallest eigenvalue for the Gdisk(r(p)) graph for the
centroidal behavior.

G is connected) for the Gdisk(r(p)) and GMSTCW
graph respectively. We see that both

graphs stay connected at all times, however only the GMSTCW
graph is used to cal-

culate the constraint sets. Note that the larger λ2

(
Gdisk(r(p))

)
, the more connections

exist in the graph. Figure 5.19 shows that in the Gdisk(r(p)) graph there exist redun-

dant links that allows for some robustness to node failures, however it is unclear at

this point to what extent this is true.
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Figure 5.20: Graph of the second smallest eigenvalue for the GMST,G graph for a
simulation of the centroidal behavior.

5.7.2 Node Redundancy and Network Robustness

We can see from Figure 5.18 that utilizing the GMSTCW
graph to compute connectivity

constraint sets may leave the network vulnerable to single point failures. We can

also notice that from Figure 5.19 that in the underlying heterogenous proximity

graph, Gdisk(r(p)), there exists redundant links during the simulation. However, from

the nature of the dynamic graph, constraints must be imposed on the agents to

insure that redundant links exist within the network. One approach to insuring

redundant links in the network and therefore network robustness to node failure is

computing a k-vertex-connected graph and then enforcing this connections through
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our connectivity constraint sets.

Definition 5.7.1. (Menger’s Vertex Connectivity)[72] A graph is k-vertex-connected

if and only if any two distinct vertices are connected by at least k independent paths.

Note that two independent paths do not have any internal vertex in common.

One important property of a k-vertex-connected graph is that the graph remains

connected when fewer than k vertices are removed [72]. If we can compute a 2-vertex-

connected graph, also known as a biconnected graph (GB), we will maintain network

connectivity if one node fails in the network. This redundancy in the network does

come at a small cost however. We showed that the fewer links that we take into

account when calculating the connectivity constraints lead to larger motion sets for

the agents. By enforcing redundancy in the the network we will be shrinking these

motion sets.

In the computer science literature computing a biconnected graph is not a new

problem. Work has been done on determining approximations to this problem as

well as optimal solutions to special cases of the biconnected graph [73]. Although

algorithms do exist in the literature, the problem we are looking at may also be con-

sidered a special case of the general problem. By default we are computing the MST

of our heterogeneous proximity graph, we would like to compute the biconnected

graph using the paths already computed by the MST. In other words we would like

to compute a second path from each pair of nodes that is independent of the MST

paths. Algorithm 2 outlines how to compute a biconnected graph using the MST of

a complete graph.

It is straightforward to show that the graph GB obtained from Algorithm 2 is

a biconnected graph. With the construction of the biconnected graph we now have

the connections (links) that will insure redundancy in the network. Using the bicon-

nected graph to compute connectivity constraints allows the network to be robust to
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Algorithm 2 Biconnected Graph Algorithm (GB)

Assume a complete graph, G with n + m vertices, compute MSTG.

Label each vertex from i = 1, . . . , n + m.

for each vertex pair (i, j) do

remove each internal vertex within the MSTG path connecting the vertices and

replace with the remaining set or subset of vertices.

if no internal vertex then

add an internal vertex within the MSTG path.

end if

if remaining set of vertices is empty then

the path is the direct path between (i, j).

end if

end for

single point failures. An example of the MST and a biconnected graph is shown in

Figure 5.21 and Figure 5.22 respectively. Algorithm 2 is a general way of obtaining a

biconnected graph given the MST of a complete graph and does not address how to

compute the minimally weighted biconnected graph. Further investigation is needed

to modify the algorithm in order to address this particular problem as well as when

the particular graph is not the complete graph.
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Figure 5.21: Minimum Spanning Tree (MST) of five agents. With one node failure
the network will become disconnected.
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Figure 5.22: Biconnectivity graph of five agents utilizing the MST. Notice that one
node failure will not make the network disconnected.
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Chapter 6

Prioritized Sensing with

Connectivity Constraints

In this chapter we combine our prioritized sensing behavior with the heterogeneous

connectivity constraints to create an algorithm that can send sensing agents to areas

with the highest possibility of having good information while also guaranteing that

the heterogenous network will remain connected. We also evaluate the performance

of the heterogeneous algorithm against its homogeneous equivalent to determine the

usefulness of heterogeneity within our approach. We also test the prioritized sensing

behavior with various number of relays to understand when adding relays to the

network begins to show diminishing returns.

6.1 Feasible Motion Sets: Sensing Agents

To combine the prioritized sensing objective with the network connectivity con-

straints we need to merge our probability of detection map, (M(q)), and the con-

nectivity constraint sets we computed in Chapter 5. To do this we refer back to the
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prioritized sensing algorithm presented in Chapter 3, particularly the set Di, which

is the set of points within robot i’s Voronoi partition not occupied by obstacles. For

ease of notation let us define Υi as the connectivity constraint set for robot i as were

defined in Section 5.3. Let us now define the feasible motion set, Si, for robot i as

the following,

Si = Di ∩Υi. (6.1)

The feasible motion set Si for robot i is the set of points within its Voronoi

partition which is not occupied by obstacles and is limited to the points where net-

work communication links can be maintained. Now we have a set, Si, which we

can optimize over that will guarantee network connectivity throughout the search

process. The updated prioritized search algorithm which takes into account network

connectivity is outlined in Algorithm 3.

In Algorithm 3 it is seen that when network connectivity is taken into consider-

ation, the set over which the probability of detection map is being optimized may

“shrink” due to the intersection of the two sets Di and Υi. This makes sense since

now the algorithm has to come to a compromise between the sensing objective and

the network connectivity objective. Proposition 6.1.1 states a property of the feasible

motion set.

Proposition 6.1.1. Given the set Di and motion constraint set Υi, then the feasible

motion set Si 6= ∅.

Proof. This comes as a consequence of the construction of Di and Υi. Mainly the fact

that Di will always contain at least agent i’s current position pi. Also by construction

Υi will also always contain at least pi. Therefore in the worst case scenario, Si =

Di ∩Υi = pi.

It can be seen by the construction of the feasible motion sets for the sensing
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Algorithm 3 Prioritized Sensing with Connectivity Constraints

while t < tfinal do

for xi = 1, . . . , n do

Calculate Υi from GMSTCW
(Equations (5.2)-(5.8))

Determine Vi ∈ Q

Calculate Si = Di ∩Υi

Optimize over Si to determine an approximate maximum g̃∗ in Si of M(q)

if g̃∗ is reachable then

gpi
⇐ g̃∗

else

g̃i
∗ = max(Y1, . . . , YN−1) excluding g̃∗ that was previously calculated

end if

Calculate fi(pi, qxi, d) in Si with gxi set as the goal point.

ui = −k∇fi(·) where k = |pi − gxi|

∀q ∈ Rs, M(q) = βM(q)

Exchange map information with neighbors in GMSTCW
graph

end for

end while

agents that taking network connectivity into consideration may produce a suboptimal

prioritized search in some cases. This is due to the fact that the set of optimal

solutions that guarantee connectivity Υi, may not contain the global optimal over

an agents particular Voronoi partition. Proposition 6.1.2 states when the algorithm

will produce the optimal solution with respect to the prioritized sensing algorithm.

Proposition 6.1.2. If Si = Di ∩ Υi = Di then the goal point gpi
calculated in

Algorithm 3 is an optimal solution to the prioritized sensing algorithm presented in

Section 3.1.

Proof. Si = Di ∩ Υi = Di implies that Di ⊂ Υi, i.e. the set Si includes all possible
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global optima as if connectivity constraints were ignored. Therefore the goal point

gpi
is the optimal point in the set Di which is the optimal solution to the prioritized

sensing algorithm outlined in section 3.1.

Proposition 6.1.2 tells us that if the communication constraints sets are “suffi-

ciently large,” then the connectivity constraints can be ignored without losing net-

work connectivity. This is very intuitive in the sense that if an agent can communicate

over a larger area than it has been allotted to search, it shouldn’t have to consider

network connectivity as a constraint on its search/sensing behavior.

6.2 Feasible Motion Sets: Relay Agents

Our approach to addressing connectivity maintenance of a sensor network is to con-

vert the network to a heterogeneous one by adding relay agents capable of better

communication capabilities. For this particular application we are assuming that

sensing agents are UGVs and relay agents are UAVs flying at a constant altitude.

With these assumptions relay agent collisions with sensing agents in the network

are not considered. Also, relay agents communication range is considered to be its

projection on the two dimensional space.

For the motion planning of relay agents in the network, Algorithm 1 is used to

compute the centroid of each relay agents motion constraint set (MCSi). Therefore,

relay agent i’s feasible motion set is MCSi. It was observed in section 5.7 that

Algorithm 1 produces behavior of the relay agents that acts to balance the network

in terms of the distances between its connected links. This is a desirable behavior

in sensing/search problems because it allows the network to “stretch” as sensing

agents move towards the outer regions of the search space. In essence, as a sensing

agent moves towards uninvestigated areas it “pulls” a relay agent with it in order to
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maintain connectivity of the network.

From algorithm 1 we have the following property which addresses collisions be-

tween relay agents at a constant altitude.

Proposition 6.2.1. Given MSTGdisk(r(p))
and goal points gpi

computed from Algo-

rithm 1, no two relay agents will occupy the same position at time kTs,∀k ∈ Z+.

Proof. Let us assume that agent i and agent j do occupy the position at time kTs.

From Algorithm 1 it seen that this can only occur when agent i and agent j share an

edge in the MSTGdisk(r(p))
and also share edges with the same agents (vertexes) in the

MSTGdisk(r(p))
. This however is a contradiction of the construction of the minimum

spanning tree (MST), i.e. the MST is a tree. In other words, links between any two

agents (vertexes) are unique. Therefore, no two agents can occupy the same position

at time kTs,∀k ∈ Z+.

Proposition 6.2.1 states that at each iteration of the algorithm no two relay agents

will occupy the same position within the search space. This however is not enough

to guarantee collision avoidance for all time t. Since we are assuming a second

order system for the agents, we cannot speak to the trajectories between time kTs

and (k + 1)Ts, i.e., the agents may experience overshoot, steady state error, etc.

However, with a well tuned system, collisions between relay agents can be addressed

during their arrivals to their respective goal points.

This leads us to the final property when Algorithm 1 and Algorithm 3 are utilized

to control a heterogenous sensor network composed of relay (UAVs) and sensing

(UGVs) agents.

Theorem 6.2.2. Given a heterogeneous sensor network as described in Section 5.2

where relay agents utilize inputs described by Algorithm 1 and sensing agents utilize
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inputs described in Algorithm 3, then the heterogeneous sensor network will remain

connected and collision free throughout the search process.

Proof. Collision avoidance for the sensing agents within the network is guaranteed

from Proposition 3.2.1. Also, since we are assuming that relay agents are UAVs

flying above sensing agents (UGVs), sensor and relay agent collisions are avoided.

Lastly, collisions avoidance between relay agents is guaranteed by Proposition 6.2.1.

Connectivity maintenance is guaranteed by Theorems 5.6.4 and Theorem 5.6.5.

Remark 6.2.3. It is also key to notice that by construction Algorithm 1 and Algo-

rithm 3 can be implemented in a decentralized fashion. With an initially connected

network, the Voronoi partitions can be constructed with only neighboring agents

knowledge. Under the assumption that there exist synchronization within the net-

work and all agents can broadcast position information with a unique id, then the

heterogeneous proximity graph as well as the MST of the heterogeneous proximity

graph can be constructed in a decentralized fashion [71].

6.3 Simulations

For the following simulations relay agents apply Algorithm 1 while sensing agents

apply Algorithm 3 . To understand how the communication constraints as well as

adding relay agents to the sensor network affects the prioritized sensing behavior,

we simulate two scenarios. For the first simulation we implement Algorithm 3 on a

heterogeneous network made up of 7 sensing agents and 4 relay agents. The search

space is taken to be 60m× 60m square area, with the communication ranges for the

sensing agents, Rc = 3m and Rrc = 16m for the relay agents. The sensing agents in

the network are initialized in a random configuration with the relay agents situated

at (-8m,-8m),(-8m,8m),(8m,-8m),(8m,8m) such that the initial configuration of the

84



Chapter 6. Prioritized Sensing with Connectivity Constraints

Figure 6.1: Probability of Detection Map after 50 iterations of the algorithm. Notice
that most of the area has been searched with exception to the upper left hand corner.

heterogeneous network is connected. The sensing radius of the sensing agents are

taken to be 3m and the parameter that reflects the reduction of the probability of

detection map, β is taken to be 0.8. Each simulation lasts for 50 iterations of the

algorithm, approximately 120 seconds. Table 6.1 summarizes the results for five

simulations.

Table 6.1: Heterogeneous Sensor Network (7 sensing, 4 relay agents): Prioritized
Sensing

Simulation Number Average POD per m2 Maximum POD Value

1 0.0043 0.178

2 0.0104 0.337

3 0.0034 0.168

4 0.0031 0.124

5 0.0147 0.333
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Figure 6.1 shows the reduced POD map, M(q), after 50 iterations of the algorithm

with seven sensing agents and four relay agents. Notice that most of the area has

already been searched and has been reduced to around 0.14.

In the second set of simulations we assume there are no relay agents in the

network. All parameters were kept the same as in the first set of simulations except

only 7 sensing agents were used in the sensor network. This set of simulations shows

how the prioritized sensing algorithm performs when the communication constraints

are imposed on the homogeneous network of only sensing agents without the help

of specialized relay agents. The results of this set of simulations are summarized in

Table 6.2.

Table 6.2: Homogeneous Sensor Network (7 sensing agents): Prioritized Sensing
Simulation Number Average POD per m2 Maximum POD Value

1 0.143 0.98

2 0.144 0.99

3 0.144 0.98

4 0.142 0.97

5 0.146 0.99

Figure 6.2 shows the reduction of the POD map after 50 iterations when the

connectivity constraints are imposed directly on the homogeneous sensor network of

seven sensing agents. Notice that the majority of the area has yet to be searched

and the most probable areas of containing good information have not been searched.

This shows how much the connectivity constraints of the network can inhibit an

efficient search of the area.

From Table 6.2 we see that imposing the communication constraints directly on

the network with only sensing agents hinders the prioritized sensing algorithm sig-

nificantly. The main reason for such poor results as compared to the heterogeneous

network with relays (Table 6.1) is the fact the communication radius of each sensing
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Figure 6.2: Probability of Detection Map after 50 iterations of the algorithm with a
homogeneous sensor network with connectivity constraints. Notice that most of the
area has not been searched within the time allotted.

agent is very small, 3m, as compared to the search area they are tasked to explore,

60m×60m. From the first two sets of simulations it is clear that utilizing a heteroge-

neous sensor network is advantages when the area to be scanned is much larger than

that of the communication radius of the sensing agents. As we first hypothesized,

the relay agents enable the sensor network to have a larger reach, thus enabling

a more efficient behavior of the prioritized sensing algorithm when communication

constraints are taken into consideration.

The next set of simulations we look at is when relay agents are replaced by more

sensing agents. In this scenario the sensor network is comprised of 15 sensing agents

and zero relay agents. This set of simulations should give us an indication if simply

adding more sensing agents to the network can overcome the constriction of the
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network constraints. Table 6.3 shows the results for this particular scenario.

Table 6.3: Large Homogeneous Sensor Network (15 sensing agents): Prioritized Sens-
ing

Simulation Number Average POD per m2 Maximum POD Value

1 0.128 0.98

2 0.125 0.97

3 0.122 0.97

4 0.124 0.98

5 0.131 0.98

Comparing Table 6.1 with Table 6.3 we see that even with more than twice the

amount of sensing agents in the network compared to the previous simulations, the

communication constraints do not allow the network to “stretch out” enough to

efficiently search the area in the time allotted. This clearly shows the advantage of

using specialized agents, relays in this case, to help extend the range of the sensor

network.

To understand the effect of adding relay agents to the sensor network we conduct

several simulations of the algorithm with different numbers of relay agents for 50

iterations, approximately 120 seconds. Table 6.4 summarizes the outcome of these

particular simulations. Note that when 16 relay agents are used in the sensor network,

complete communication coverage of the search area is obtained.

Figure 6.3 shows a graph of how the maximum POD value after the algorithm

was run for 50 iterations changed with additional relay agents in the network. We

can see a fairly good improvement of the maximum POD value with the addition of

up to 8 relay agents. In these simulations, adding more than 8 relay agents to the

network did not significantly change the outcome of the algorithm in the allotted

time.
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Table 6.4: Adding Relay Agents to Sensor Network (15 sensing agents): Prioritized
Sensing

Number of Relay Agents Average POD per m2 Maximum POD Value

1 0.044 0.504

2 0.031 0.396

3 0.018 0.387

4 0.002 0.174

5 0.002 0.161

8 7.9×10−5 0.020

10 7.2×10−5 0.009

16(Full Coverage) 6.3×10−7 0.001

Figure 6.3: Change in maximum POD map value with additional relay agents in the
sensor network. The simulations lasted 50 iterations of the algorithm or about 120
seconds.
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Chapter 7

Multi-Vehicle Testbed for

Decentralized Environmental

Sensing

In this chapter we present our multi-vehicle testbed that was designed for verification

and validation of cooperative control algorithms involving environmental sensing [74].

The multi-vehicle testbed allows for a straightforward transition from simulation to

experimenting on actual hardware and has the flexibility to interface various types

of sensors, vehicles, as well as enable indoor and outdoor experiments.

7.1 Introduction

Recently in the literature much attention has been paid to the development of mo-

bile robot teams capable of accomplishing various tasks through cooperation which

would be very inefficient if done by a single robot. Among the recent advances in

mobile robots is the idea of a dynamic or reconfigurable sensor network, where each
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robot is equipped with sensors that are capable of measuring some parameter of the

environment and able to reconfigure the network configuration based on these mea-

surements. Through cooperation the robot team should accomplish different tasks

such as optimal sensor coverage, target tracking, or spatial distribution mapping.

Some motivating and practical applications include search and rescue operations [3],

[75], target detection [76], [4], and hazardous contaminations [5] to name a few.

Although much attention has been paid to creating cooperative control algorithms

for dynamic sensor networks less attention has been paid to the validation and ver-

ification of these control algorithms on experimental hardware. The focus of this

paper is to expand our current experimental testbed to accommodate environmental

sensing applications.

To facilitate the development of novel cooperative control algorithms specifically

for environmental sensing, monitoring, and mapping, we extend our current multi-

vehicle testbed to enable a quick turnaround from simulations of the control algo-

rithms to actual hardware implementation.

With this addition, limitations in the cooperative control algorithms can be iden-

tified and subsequently addressed in further research. This approach to verification

and validation facilitates cooperative control algorithms that are implementable in

real-wold scenarios.

The addition to our multi-vehicle testbed consists of four Pioneer P3-AT mobile

robots each equipped with an environmental sensor suite. The multi-vehicle testbed

was designed to interface various types of sensors as well as various numbers of

vehicles and types. Sensors and robots can be added and removed on the fly based

on user need. Also, the multi-vehicle testbed is able to carry out indoor as well as

outdoor experiments.
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7.1.1 Related Experimental Testbeds

We expand on our original testbed [77] COMET, to include mechanisms that allow for

environmental sensing which enable validation and verification of cooperative control

algorithms that depend on measurements of the sensed environment. The original

COMET testbed consisted of ten all-terrain vehicles which are based on the Tamiya

TXT-1 chasis. The COMET testbed is used for validation of cooperative control

algorithms, however in its first generation lacked environmental sensing capabilities.

Along the same lines, the experimental testbed at the GRASP Laboratory at the

University of Pennsylvania [78] was designed for large-scale multi-robot systems for

experimental validation of distributed robot applications in a strictly indoor environ-

ment. This testbed was specifically designed to address situations such as formation

control, search and pursuit of targets of interest, and cooperative manipulation tasks.

In a similar design to the testbed presented in this dissertation, the authors of [79]

utilize a group of 16 SwarmBots to validate a coverage control algorithm that is based

upon information of the sensed environment. Sensory information was simulated

during one of the experiments to compare the performance against a known ground

truth then during a second experiment sensory information was taken from onboard

light sensors.

The GRASP testbed is more tailored for validating control algorithms such as for-

mation control, search and pursuit of targets, and cooperative manipulation, rather

than sensing environmental data which is the focus of our testbed. Also, the group

of SwarmBots use only a single source of data rather than data from multiple spatial

distributions in the environment which our current testbed is equipped to handle.
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7.2 Hardware Description

7.2.1 Vehicle Description

The Pioneer P3-AT stores up to 252 Wh of hot-swappable batteries. The P3-AT can

reach speeds of 0.8 m/s and carry a payload of up to 30 kg as well as climb a steep

45% gradient. Also, laser-based navigation options, integrated inertial correction to

compensate for slippage, GPS, bumpers, gripper, vision, stereo rangefinders, and

compass options are available commercially for the P3-AT [80].

Our current testbed can accommodate laser-based navigation, GPS navigation, as

well as gripper/manipulator tasks. Although this paper concentrates on experiments

conducted with the Pioneer P3-AT robots, our testbed also contains ten all-terrain

vehicles which are based on the Tamiya TXT-1 chasis as well as a Drangonflyer

X-Pro quadrotor and two AscTec Hummingbird quadrotors.

7.2.2 Environmental Sensor Suite

The environmental sensor suite consists of a Phidgets 8/8/8 USB interface I/O board

capable of measuring eight digital and eight analog inputs and capable of driving eight

digital outputs. The Phidgets I/O board can accommodate pressure, temperature,

humidity, light intensity, and magnetic field sensors as well as many others.

A special aluminium plate and mounting system was created to interface the

environmental sensor suite. The plate and mounting system allows for multiple sensor

configurations as well as the ability to mount multiple accessories on each robotic

platform. Figure 7.1 shows the custom built aluminum plate with four precision light

sensors and three magnetic sensors. Also shown is a Hokuyo UHG-08LX laser range

finder. The addition of the custom plate and mounting brackets allow for a quick
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Figure 7.1: Pictured are four precision light sensors (top) three magnetic sensors
(middle) and a Hokuyo UHG-08LX laser range finder (bottom) all mounted on a
custom fixture that is attached to a robot.

swapping of sensors and accessories to address a variety of experimental tests.

7.3 Player/Stage/Gazebo/USARSim Interface

One of the most widely used robotics software packages is the Player/Stage/Gazebo

(PSG) [81]. The PSG project consists of libraries that provide access to communica-

tion and interface functionality on robot hardware. The robot “server” Player, pro-

vides an architecture where multiple modules, also known as drivers, can be written

independently and connected via a custom middleware that relies on TCP commu-

nication. Users write “client” applications (control algorithms) that connect to and

command modules (drivers) running on a Player “server.” Additionally, PSG pro-

vides a 2D simulator, Stage, and a 3D physics-based simulation environment Gazebo.

Additionally USARSim [82] is a high-fidelity simulator of robots as well as environ-
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ments which is based upon the Unreal Tournament game engine which can be used

with a Player “server.” USARSim allows for realistic robotic environments with kine-

matically accurate robot models. These simulators provide a transparent transition

from simulation code using a virtual environment to the actual robot hardware.
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Prioritized Sensor Detection:

Homogeneous Sensor Network

In this chapter we study the results from an experiment conducted to validate the

prioritized sensor detection algorithm found in Section 3.1. The algorithm was con-

ducted on a network of homogeneous mobile sensors where connectivity between

sensors was assumed in the network was assumed.

8.1 Experimental Results

Experimental tests were conducted at the Marhes laboratory located at the Uni-

versity of New Mexico. Three Pioneer P3-AT mobile robots were each equipped with

a Hokuyo UHG-08LX laser range finder capable of a 240 degree scanning area used

for obstacle avoidance as well as an environmental sensor suite used for mapping spa-

cial distributions. Each sensor suite consists of a Phidgets USB 8/8/8 interface kit

that enables measurements from eight analog inputs and eight digital inputs as well

as the ability to drive eight digital outputs. Four precision light sensors capable of
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measuring a range of 1 lux to 1000 lux was used to create a spatial distribution map-

ping of light intensity. Three magnetic sensors were also used in the multi-sensing

experiment to map magnetic intensities.

Figure 8.1 depicts the experimental setup of our environmental testbed for the

multi-sensing experiment. The two spatial distribution quantities that our sensors

are measuring are magnetic intensity as well as light intensity. In Figure 8.1 we see

that a magnetic source (large magnet) is placed at (0.5m,−1.5m) and a light source

is emanating directly above (0m, 2m) in the search space. The magnetic source used

during the experiment was a “C” shaped ferrite magnet placed in a box, which is

capable of producing a magnetic intensity of 126 gauss at a distance of 40cm. The

light source used for the experiment was a 100watt flood lamp placed 2.5m above

the ground. Also two obstacles were placed in the search area to show the collision

avoidance capability of the control algorithm.

Figure 8.2 shows the initial POD map used for the experiment. Each robot first

calculates its own Voronoi partition based on its position as well as its neighbors.

Next the point that has the highest probability of containing “good” information is

calculated. For our experiment “good” information represents a magnetic or light

source. We notice in Figure 8.2 that after 30 iterations of the algorithm the POD

map has been reduced by a factor of two. Figure 8.4 shows the points in the search

space that the robots took measurements from, in other words, where the highest

probability of obtaining good magnetic or light readings.

Figure 8.3 depicts the magnetic and light intensity maps after 30 iterations of

the control algorithm. We see that indeed the highest intensity values coincide with

locations of the magnetic and light sources respectively. We also notice that two

of the robots were taking measurements that coincided with the magnetic and light

sources, however the third robot was taking measurement that did not coincide with

a source. This shows the dependence of the control algorithm on prior information.
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Figure 8.1: The experimental setup for the prioritized multi-sensing control algo-
rithm. Notice the magnetic source, light source, and obstacles.

Although the experiment was only ran for 30 iterations, in simulation it is observed

that the third robot would eventually make its way towards one of the other robots

to help reduce the POD map or begin reducing the POD map in areas that have yet

to be reduced.
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Figure 8.2: The figure on the left shows the probability of detection map M(q) which
reflects the likelihood of detecting “good” information in the region. The figure on
the right shows the probability of detection map after 30 iterations of the control
algorithm for the multi-sensing behavior. Notice that the probability of detection
has been reduced significantly, from about 0.95 to nearly 0.5.

Figure 8.3: The figure on the left shows the magnetic intensity map after 30 iterations
of the cooperative control algorithm. We see that the highest concentration of the
magnetic field is near (.5m,-1.5m). The figure on the right shows the light intensity
map after 30 iterations of the cooperative control algorithm. We see that the light
is concentrated near (0m,2m).
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Figure 8.4: The robot trajectories during the multi-sensing experiment. The red
dots correspond with the robots initial positions and the yellow, blue, and green
dots represent the goal points the robots navigated to.
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Chapter 9

Centroidal Motion Constraint Set

Configurations: Heterogeneous

Sensor Network

In this chapter we implement the centroidal heterogeneous motion constraint set

configurations presented in Section 5.7. This hardware experiment was conducted to

validate the claims of Theorem 5.6.4 and Theorem 5.6.5.

9.1 Experimental Results

This section looks at the particular situation when the relay agent of the heteroge-

neous team moves towards its centroid of its feasible motion set. The rest of the

heterogeneous network consists of two sensing agents. In this particular network

configuration the relay robots behavior mimics that of balancing the network in the

form of keeping equidistance between the two sensing agents. In this sense, the relay

agent is trying to give equal network considerations to each sensing agent.
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Figure 9.1: Diagram of hardware experiments using the centroid seeking behavior.

For the hardware implementation of the communication constraints, we chose to

implement Algorithm 1 on a single relay robot. Two sensing robots were given pre-

defined trajectories and were tasked with taking light intensity measurements along

these trajectories. The relay robot calculates its feasible motion set based on the

positions of the sensing agents and then moves towards its centroid. Position infor-

mation of the sensing agents were updated every 0.5 seconds. For this experiment

we used Rrc = 3.2m and Rc = 1.0m for the communication radius of the relay and

sensing agents respectively. Figure 9.1 shows a diagram of how the experiment was

implemented and Figure 9.2 shows a snapshot of the hardware setup. The ad-hoc

network consisting of three XBee wireless RF Modules was used to communicate

sensing data between robots. This allowed for the light intensity map to be built

103



Chapter 9. Centroidal Motion Constraint Set Configurations: Heterogeneous Sensor Network

Figure 9.2: Experimental snapshot showing the two sensing agents and a single relay
agent.

in a distributed fashion. A wireless local area network (WLAN) was used to send

a real-time light intensity map from the relay robot to an end user using a laptop

outside the experimental area. Figure 9.3 shows the evolution of the second smallest

eigenvalue of the Gdisk(r(p)) graph and shows that the heterogeneous network stays

connected for the entire experiment.
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Figure 9.3: The second smallest eigenvalue of the Gdisk(r(p)) graph during experi-
ments of the centroidal behavior. The network remains connected throughout the
experiment.
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Chapter 10

Conclusion and Future Work

In this dissertation we addressed prioritized sensing behaviors with communication

constraints for a heterogeneous sensor network made up of sensing agents and mobile

communication relays. First we provided a collision free motion controller that drives

sensing agents to areas within their search area that contain the highest probabil-

ity of containing “good information.” We also provided a technique for combining

different sensing objectives which relied on logistic regression. Secondly, we derived

connectivity constraints for a heterogeneous sensor network which allowed for the

development of feasible motion sets that guarantee network connectivity for agents

within the network. Lastly, we showed how to reduce the number of communica-

tion constraints to allow the sensing agents to maximize their feasible motion sets

and thus allow for a larger search area while maintaining network connectivity. A

technique for shaping the network configuration was also presented that allows for

biasing particular communication links within the network which shapes the flow of

information within the sensor network.

Future research directions include formulating network connectivity in a proba-

bilistic sense, i.e., assign a probability of becoming disconnected given certain con-
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figurations rather than a strick geometric approach to connectivity maintenance.

Another area for extending this framework lies in relaxing the assumption that the

sending and receiving range of each agent is symmetric. One question that can be

asked is, how does having a larger sending range than receiving range change the

heterogeneous proximity graph construction and what are the implications to the

efficiency of the prioritized search? Also a more in depth investigation is needed

to understand the robustness of the network to node failures and how it may be

incorporated in our current framework.
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