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by 
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Abstract 

The following thesis presents an experimental study observing and measuring the change in two 

of the key features of the Richtmyer-Meshkov (RM) instability in a shock-accelerated, initially 

cylindrical gas column; that is, the counter-rotating vortex pair and the central spike; and the 

observation of secondary instabilities within the primary instability.  The formation of the 

instabilities is the result of a standing normal shock wave of air interacting with a cylindrical 

column of sulfur hexafluoride saturated with acetone. The experimental study is performed at 

two Mach numbers, 1.7 and 2.1, both with a maximum variation of 10% of either Mach number. 

The measurements of the size of these features of interest were compared to two external 

characteristics of the experiment: the actual timing after shock when the instability was measured 

and the distance downstream of the initial position of the cylindrical gas column.  The 

development of the instability is tracked from the moment of shock impact until transition to 

turbulence when the flow becomes well-mixed.  It was observed that the development of the 

instabilities with respect to the downstream distance point of observation was weakly correlated 

to the experimental Mach number.  In contrast, a stronger correlation between the downstream 

distance and the feature size was evident.   This behavior was previously observed for the 
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counter-rotating vortex pairs, but it is a new observation for the growth of the spike that forms 

due to shock focusing. 
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Chapter 1 

Introduction 

 

Where two fluids of different densities meet, there will be an interface.  Disturbing this interface 

will generate instabilities, and the type of instability is determined by how the interface was 

disturbed.  A fluid interface under the influence of gravity (in the case of a denser fluid vertically 

above a lighter fluid) will result in a Rayleigh-Taylor Instability (RTI) [1].  The energy that 

powers this instability is as a direct result of the action of gravity.  Once the denser fluid has 

replaced all the lighter fluid at the bottom of the vessel, the system receives no more energy.  In 

comparison, when the interface between two fluids of different densities is impulsively 

accelerated (either vertically or horizontally) the resulting disturbance is called the Richtmyer-

Meshkov Instability (RMI) [2].   The development of this instability is due to a misalignment of 

the density and pressure gradients, resulting in the deposition of vorticity on the interface, and 

any initial perturbation of the interface then grows with time until it transitions to pure turbulent 
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flow.  Unlike the RTI, the energy driving RMI is supplied in a very short time interval by the 

impulsive acceleration and then the system evolves to a stable state with no further outside 

energy input. 

Past experimental data have shown that quasi two-dimensional RMI evolution from an initially 

cylindrical density interface is dominated by a counter-rotating vortex pair (CRVP), with 

secondary instabilities eventually leading to turbulence. This was seen only in the case of an 

experimental setup involving a planar gas cylinder, like in the experimental setup used for this 

thesis (Figure 1.1). 

 

Figure 1.2: Initial conditions injection system and a section of the test section. 

 

 Here, a column of initial conditions gaseous fluid medium is forced to take the shape of a 

cylinder (usually by passing it through a cylindrical tube under the force of gravity) and injected 

into the test section.  There is a hole under the test section which allows the heavy gas column to 
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exit and helps keep the laminar flow and cylindrical shape of the column, preventing the fluid 

from filling the test section and the rest of the shock tube with initial conditions.  The resulting 

instability is visualized along the center plane of the column. 

However, numerical studies performed by Anderson et al. [3] suggest that this is an incomplete 

description of the RMI.  Anderson suggests that the RMI for a shocked gas cylinder also includes 

a central spike formed from the trailing line of the gas cylinder, and this spike is terminated by 

another small pair of counter-rotating vortices.  It was determined that the use of Mie 

visualization, in the form of glycol droplets illuminated by a visible-light  laser was not as 

effective in tracing the development of the RMI as the experimental method presented here: the 

use of acetone gas saturating the gaseous column of initial conditions and illuminated by an 

ultraviolet (UV) laser.  When using the latter visualization method, the experimental data match 

the numerical data much better than when Mie scattering was used. 

This thesis will examine the correlation between the Mach number of the shock wave and the 

growth of the RMI by measuring the two largest features of the flow.  This will be measured 

against the actual timing of the shock wave and the distance downstream from the injection point 

of the column of initial conditions (the second fluid), to determine if time or distance is of greater 

consequence to the development of RMI.  There will be discussion on the development of RMI, 

and proposed reasons for the flow morphology observed.   

 

1.1 History 

If one is to consider the history of RMI, then one should start by acknowledging the most 

common instabilities at the interface of two fluids.  The most common instability is the Kelvin-
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Helmholtz Instability (KHI).  In 1868, Hermann von Helmholtz theorized that a significant 

velocity difference across the interface between two fluids (that may or may not be of the same 

density) that resulted in the evolution of vortices across the interface.  When the growth of these 

vortices becomes large enough they can have enough energy, resulting in instability that 

deteriorates into turbulence.   William Thomson, the 1
st
 Baron Kelvin, followed up on this theory 

in 1871 [3]. KHI can be seen in everyday life in clouds and ocean waves.   

The Rayleigh-Taylor Instability (RTI) can be considered the “parent” of RMI.  A theory put 

forward in 1883 by John William Strutt, the 3
rd

 Baron Rayleigh describes RTI as an instability at 

the interface of two immiscible fluids of different densities when one of the fluids is under 

constant acceleration into the other.  Sir Geoffrey Ingram Taylor, OM, realized that this theory 

could be applied to other types of acceleration besides gravity [3].  Rayleigh considered an 

experiment where a denser fluid was suspended over a lighter one, both of which are acting 

under the Earth’s gravitational acceleration.  At first, the interface between the two liquids can be 

modeled as planar, but under the constant acceleration, the denser fluid begins to move 

downward.  The lighter fluid, in response, begins movement upwards in a “”finger-like” pattern” 

[4], developed due to the growth of initial disturbance at the interface.  Taylor noticed that the 

same situation would occur when, under an artificial acceleration, the lighter liquid was forced 

into the heavier liquid. 

Using the theory behind RTI, in 1960 Robert D. Richtmyer predicted the Richtmyer-Meshkov 

instability: an instability at the interface of two immiscible fluids of different densities when one 

of the fluids is under an impulsive acceleration into the other.  The result is said to be the 

impulsively-accelerated limit of RTI.  Richtmyer’s theory was experimentally verified by E. E. 

Meshkov nine years later.   Richtmyer considered a system consisting of two inviscid, 
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incompressible fluids with a sharp, well defined interface between them.  This interface was 

made to undergo an acceleration profile in the form of a delta function.  From this, a 

hydrodynamic instability develops because of the misalignment of the pressure and density 

gradients.  The misalignment generates vorticity. 

The two factors that determine the amount of vorticity deposited are the strength of the pressure 

gradient and the strength of the density gradient.  The former is measured by the strength of the 

impulsive acceleration, specifically, the Mach number, M (M = v/c, where v is the velocity of the 

shock front and c is the speed of sound in the medium.  As for the strength of the density 

gradient, the Atwood number, as defined below is used.  

    
     

     
           (1.2) 

   and     represent the densities of air and second gas respectively.   

According the Richtmyer’s linear stability theory, the development of RMI begins with a small 

perturbation of the amplitude that follows an initial linear growth with time.  This linear period is 

followed by a non-linear period defined by “bubble and spike” instability: spikes when a heavier 

fluid penetrates a lighter fluid and bubbles when a lighter fluid penetrates a heavier one.  This 

non-linear period evolves into full turbulence, as KHI and possibly other instabilities also 

develop at the interface and the two fluids mix.   

One of the key differences between RTI and RMI is how the perturbations develop.  RTI can 

only occur when the heavy fluid is “above” the lighter fluid with respect to the direction of the 

acceleration (for example, due to gravity). The perturbations of RTI grow exponentially with 

time for a sufficiently small amplitude.  With RMI, the fluid is under an impulsive acceleration, 
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so relative position to the other fluid is of no importance.  As a result, the RMI grows at a nearly 

constant rate at early timings.  

 

1.2 Governing Equations 

In any velocity field, the vorticity (or curl) is defined as 

                         (1.2.1) 

The vorticity is like a vector whose magnitude is related to the rotational motion of an element of 

a fluid and whose direction is perpendicular to this motion.    The vorticity production equation 

was derived from the Navier-Stokes equation (equation 1.2.2).  The material derivative 
   

  
 is 

defined in equation 1.2.3.    ,  , P,   represent the velocity, body forces (gravity), pressure and 

dynamic viscosity respectively.   The resulting vorticity equation for an inviscid fluid and no 

body forces is shown by equation 1.2.4 

  
    

  
                             (1.2.2) 

 

  
 

 

  
                  

        (1.2.3) 

 
      

  
                                

               

        (1.2.4) 

In the last equation the first term represents the vorticity generation as a result of the velocity 

gradient (vortex stretching).  The second term is the vorticity generation due to the 

compressibility.  With the initial vorticity of the flow equal to zero, this reduces both terms to 



7 
 

zero.  The third term represents the baroclinic vorticity production, which represents the 

generation of vorticity dues to the misalignment of the pressure and density gradients. 

Richtmyer proposed a growth equation to describe how the perturbations grew with time 

(equation 1.2.5). 

  

  
                (1.2.5) 

  is growth of the amplitude of small pertubations, t is the time, k is the wavenumber, given by 

   
  

 
 (or twice pi divided by the perturbation wavelength), A is the Atwood number,    is the 

piston velocity and   is the initial perturbation amplitude.   

In general, there are certain equations that can be used to describe the behavior of a shock wave 

before, during, and after shock passage.  These equations are used to describe a standing normal 

shock wave passing through perfect gas [5].   In a standing normal shock wave, a stationary 

wave front is perpendicular to the direction of flow. 

 
    

   
 

    

   
         (1.2.6) 

       
   

 
  

         
   

 
  

          (1.2.7) 

        
            

        (1.2.8) 

The symbols are as follows:   is the specific heat ratio; and the state variables p1, p2, M1, M2, T1 

and T2 are the pressures, Mach numbers, and temperatures before and after the shock wave has 

occurred.  If we define the state before the shock with p1, M1, and T1, we have enough 
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information to calculate the state after the shock occurs.  For example, to calculate the pressure 

ratio 
  

  
 once can manipulate equation 1.2.8 to give 

  

  
  

      
 

      
          (1.2.9) 

A value for M2 can be calculated as shown below 

  
   

  
  

 

   
  

   
  

   
         (1.2.10) 

One should note that the value of M2 is dependent only on M1 and  .   Combining equations 

1.2.8 and 1.2.9 reduces the number of variables required to calculate the pressure ratio from three 

to two. 

 
  

  
  

  

   
  

    
   

   
        (1.2.11) 

Utilizing a similar procedure, we can generate an expression for the temperature ratio 

  

  
  

     
     

 
   

    
  

     
   

     

   

      
  

 
       (1.2.12) 

Combining equations 1.2.11 and 1.2.12 we can show the pressure ratio in terms of M1 and  . 

  

  
 

         
 

        
    

        (1.2.13) 

This ratio is as of a direct result of the gas compression [5]. 

As mentioned above, the preceding equations are for a standing normal shock wave and assumed 

to be applicable for only perfect gases.  In the experiment presented here, the use of sulfur 

hexafluoride gas saturated with acetone does not deviate from this ideal by much. For an ideal 
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gas, the intermolecular forces are assumed to be zero, the volume of the particles is negligible 

compared to the volume of the container it occupies and only elastic collisions occur between the 

particles and the walls of the container.   This simplifying assumption reduces the equations to a 

simpler form; if not, one would have to include correction factors and the effects of the 

intermolecular forces in the equation and final results.  In these experiments, sulfur hexafluoride 

experiences real gas effects, including the intermolecular forces when under compression (like 

during the initial stages of shock). 

The choice to use sulfur hexafluoride was based on the ability to get the highest possible Atwood 

number from a gaseous medium that was also safe to use.  Sulfur hexafluoride has a high 

density, which would then result in a higher overall Atwood number, defined below, where    

and   represent the densities of air and second gaseous fluid medium respectively.   

   
     

     
          (1.2.14) 

 

 

1.3 Goals of Study 

The experiment presented here is in support of recent numerical work done regarding oblique 

shock wave interactions with gas column cylinders.  This work seeks to experimentally validate 

the data provided by the numerical work.  The need for an experimental validation of 

numerically simulated work is of great significance due to the fact that it is critical to 

understanding the processes by which fluid instabilities develop with respect to time and distance 

from the incidence of shock.  There are some numerical observations which have not been 
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experimentally validated.  The work presented here seeks to confirm the observations of 

Anderson et al. with respect to two key characteristics in RMI development, and provide 

conclusions about how these characteristics came to be.   

Some additional discussions will be presented to elucidate on the causes behind the occurrence 

of some features that were first observed in the numerical simulations of Anderson et al.  The 

measurement of these features was not considered as part of this thesis. 
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Chapter 2 

History of Work Done on the  

Richtmyer-Meshkov Instability 

 

The first mention of RMI was done in a paper authored by Richtmyer in 1960. [6] In this, he 

discussed work previously done by G.I. Taylor on the Rayleigh-Taylor instability.  Richtmyer’s 

paper went further to consider the case of impulsive acceleration where compressibility cannot 

be neglected.  Richtmyer considered a linear model for a shock moving from a light fluid to a 

heavy fluid, based on Euler’s work.   Meshkov was able to prove that this proposed instability 

existed in 1969 by use of a shock tube.  Like Richtmyer, Meshkov’s experiments considered a 

shock moving from a light to a heavy fluid, but he also considered the reverse case of a heavy 

fluid impulsively penetrating a light fluid. 

Within the same decade, Rudinger and Somers presented theoretical and experimental studies on 

the behavior of spherical and cylindrical gas bubbles impulsively accelerated by shock waves, 
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with the intent to use the bubbles as passive tracers in the flow.   The bubbles were created from 

hydrogen, helium, and sulfur hexafluoride and measured using a schlieren system.  Their results 

determined that bubble displacement, for gases lighter than air, was larger than the surrounding 

air, and the converse was true for gases heavier than air.   Rudinger and Somers also proposed an 

expression that related the bubble velocity to the gas velocity by considering the formation of a 

vortex shape (a ring for a spherical bubble and a vortex pair for a cylindrical bubble).  This 

expression is shown in equation 2.1. 

  

  
    

        

        
         (2.1) 

   is the bubble velocity,    is the gas velocity, and   is the ratio of bubble to gas densities 

    
  

  
     Equation 2.1 can be rewritten using an Atwood number (Equation 2.2) 

  

  
    

  

             (2.2) 

In 1987, Haas and Sturtevant conducted experiments to observe planar shock waves that interact 

with cylindrical or spherical volumes of gas.  They used helium and R22 to test cases of 

cylindrical and spherical initial conditions, respectively, and shock waves of Mach 1.2.  The 

initial conditions were 5 cm in diameter and were generated by filling a shape created by 

stretching a 0.5 micrometer nitrocellulose membrane around two Pyrex disks of thickness 3 

millimeters (that the ends of the cylinder). Haas and Sturtevant used a spark shadowgraph optical 

system to visualize the deformation of the initial conditions after the shock wave occurred.  They 

compared their results for the velocities of the instabilities to the linear stability analysis from 

Richtmyer and Rudinger’s theory, finding that the experimental velocities in the results were 

larger than the predicted values.  This was primary due to the wall effects of the shock tube. 



13 
 

Picone and Boris in 1988 used the experimental results that Haas and Sturtevant generated to 

validate numerical simulations using the fluid dynamics code FAST2D.  FAST2D considers 

inviscid, compressible fluid dynamics to solve Euler equations using a flux corrected transport 

method.  Picone and Boris found a solid qualitative agreement between both their numerical 

simulation data and the experimental data of Haas and Sturtevant, and the recorded velocities of 

the upstream and the downstream edges of the instability.  Picone and Boris’ numerical data 

were also used to examine the vorticity generated by the shock wave interaction with the bubble, 

and to verify Picone’s proposed non-linear theory for the late timing vorticity. 

In 1993, J. W. Jacobs conducted experiments using sulfur hexafluoride cylindrical columns and 

helium at low Mach numbers (M = 1.095).  Jacobs pioneered studies of shock wave interactions 

using initial conditions consisting of a laminar jet of gas, which eliminated the need for a 

membrane that would have separated the initial conditions from the surrounding atmosphere. As 

the membrane was not a passive instrument (affecting initial condition flow structure and 

disrupting visualization) this proved to be an advantage.  Jacobs’ experimental cylindrical 

column was 0.8 centimeters in diameter, considerably smaller than the diameter of the initial 

conditions in experiments performed by Haas and Sturtevant.  The initial conditions were seeded 

with bi-acetyl gas, which had the ability of fluorescing with a 430 nm wavelength laser source 

that was manipulated into a planar sheet.  Called Planar Laser Induced Fluorescence (PLIF), this 

method was used to visualize cross-sectional areas of the resulting fluid instabilities.  The PLIF 

images were very much like the experimental image results of Haas and Sturtevant in 

morphology.  Jacobs observed the formation of KHI for late times for sulfur hexafluoride initial 

conditions at the edge of the counter rotating vortex pair. Jacobs was able to compute the 

displacement of the instability as a function of time; he found that the theory of Rudinger and 
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Somers provided a final velocity of the counter-rotating vortex pair that was lower than the 

experimentally determined velocity. 

Rightley, Vorobieff, and Benjamin performed a series of shock tube experiments in 1997 

involving a gas curtain of sulfur hexafluoride impulsively accelerated by a Mach 1.2 shock wave.  

Visualization was done using the glycol droplet seeding method.  Rightley et. al. executed 

experiments which took quantitative measurements of the width of the instability as it mixed and 

used a point vortex row model based off the work of Jacobs et. al. to calculate the circulation .   

Rightley et. al. performed analysis of the ability of the glycol droplets to follow the flow in 

acting as a passive tracer.  Their calculations showed a 3 microsecond delay for a particle of 0.5 

micrometers of diameter to catch up with the piston velocity behind the shock.  The conclusion 

was the particles do not follow the flow perfectly, but closely enough that the droplet particles 

can follow the formed instability and produce reasonably accurate data from the post-shock flow.  

In 1998, Rightley and his team continued this experimental setup to investigate the transition of 

RMI to turbulence.  They used second-order structure functions based on the concentration of 

light scattered by the gas curtain.  The team performed experimental runs for initial conditions 

with regular and multi-mode perturbations.  From this, they discovered that the structure function 

approaches power-law behavior with an exponent close to 2/3 as the gas curtain approached a 

fully mixed state; often seen as a signature characteristic of fully developed turbulence. 

Vorobieff continued a similar series of experiments using Particle Image Velocimetry (PIV) 

measurements with a new team of Prestridge, Rightley and Benjamin.  The benefit of the PIV 

was that it permitted the creation of velocity fields that were used to calculate the circulation in 

the flow.  The circulation found was in good agreement to the model of circulation offered by 

Rightley. 
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In 2002, Zoldi compared experimental and numerical treatments of a cylindrical column of sulfur 

hexafluoride also accelerated by a shock of Mach number 1.2.  The initial conditions were also 

seeded with glycol droplets and visualization was done using PIV.   The numerical validation 

was done using the code RAGE: a multi-dimensional, adaptive mesh Eulerian hydrodynamic 

code.  Zoldi performed the experiments at the same facility as Rightley, Vorobieff, and 

Prestridge.  Zoldi’s numerical results were in good qualitative agreement with experimental ones.  

When quantitative analysis was performed between Zoldi’s experimental and numerical results 

(done by comparing the instability’s height and width, the counter-rotating vortex pair spacing, 

the convective velocity and the circulation) the images showed that sulfur hexafluoride cylinder 

was bigger and more dispersed than the pattern of the glycol droplets that was used as a passive 

tracer.   It should be noted that, in order to match the experimental results, the concentration of 

the sulfur hexafluoride was decreased to 60% and the density gradient was scattered to remove a 

distinct interface between the initial conditions and the air. 

In 2010, Ukai conducted numerical simulations for traditional and multi-phase RMI where there 

was a single-mode perturbation.   These simulations considered 3 cases: a light to heavy case 

with no particle tracers, a light to heavy case with particle tracers, and a light gas accelerated into 

a region with tracers and no heavy gas.  Ukai found that the Stokes number (St, a measure of 

particle response time over some characteristic distance) and seeding density are key factors in 

how the particles responds to the shock wave.  The particles behaved as passive tracers, with 

nearly instantaneous acceleration for low Stokes numbers (St << 1), and the instability follows 

RMI and Richtmyer’s theory.  For a large Stokes number, the particles moved relative to the 

flow, and acceleration was non-impulsive.  This would give a Rayleigh-Taylor instability 

behavior.  
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From 2007, Vorobieff and Truman led a team of students at the University of New Mexico in 

performing experimental validation of RMI under multi-phase conditions using cylindrical 

column initial condition using both glycol fog droplets and PLIF with acetone.  Experiments 

were performed at Mach 1.13, 1.2, 1.7, and 2.01, and at angles 0, 15 and 30 degrees to the 

horizontal. 
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Chapter 3 

Experimental Setup 

 

All experiments performed for this thesis were done at the Shock Tube facility at the University 

of New Mexico, Mechanical Engineering Department.  For each experimental run, at least two 

images were taken: a background shot and a dynamic shot; with the intent that the background 

shot would be subtracted from the dynamic shot to make the final processed image as clear as 

possible.  Both images were taken in grayscale. 

 

3.1 Shock Tube 

The tiltable 6061-T6 aluminum shock tube consisted of four sections: (1) a driver section with a 

thin film Mylar diaphragm that separated the driver section from (2) a driven section, connected 

to (3) a Lexan test section which emptied into (4) a runoff section.  Figure 3.1.1 shows a drawing 

of the experimental apparatus while Figure 3.1.2. shows the actual setup of the facility.  Each 
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section connected to the other using 6061-T6 aluminum flanges drilled with octagonal bolt 

pattern.   

 

Figure 3.1.1: Drawing of the experimental apparatus. 

 

 
Figure 3.1.2:: Photograph of the overall shock tube laboratory setup (tilted at a 30 degree angle 

to the horizontal).  The control center (pictured in the middle) is where the data collection occurs. 
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The driver section had a circular, cross-sectional area of 3.75 inches outer diameter and 2.75 inch 

inner diameter.  The circular cross-section was to eliminate high stress concentrations which 

would build up in a non-circular cross-section during the repetitions of the experimental 

procedure. This section also housed a shaft connected to an electronic-driven solenoid which, 

upon use of an external trigger, actuated an arrow-head shaped puncturing bit through the Mylar 

separating the driver section from the driven section (Figure 3.1.3, 3.1.4) The driven section was 

of a four square inches outer size (three square inch inner size) cross-sectional area, and made of 

the same type of Aluminum as the driver.  Along the top of the driven section were two pressure 

transducers, located 2.59 meters apart. A pair of aluminum flanges connected the driven section 

to the test section, which was also a four square inch cross-sectional area. Using Lexan in the test 

section, instead of aluminum, allowed for undistorted views of the instabilities as they develop in 

each experimental run.  The test section also included a pair of holes at the upstream side of the 

section.  These holes, located at the top and bottom faces of the test section, were placed so that 

the initial conditions may fall vertically through both holes under the influence of gravity. 

(Figure 1.1)  

The injection system, from which these initial conditions originated, will be discussed in the next 

section. The runoff section, which ensured that the shock holds its shape well after it passes the 

test section, was connected to the downstream edge of the shock tube.  The shock tube was kept 

immobile during the experiment by a system of C and I beams attached to a concrete wall at the 

downstream end of the shock tube.   

The mechanism by which the experiments were performed as follows: The driver section was 

pressurized using helium gas until a specified pressure reading (85 ± 5 psi for Mach 1.7 and 180 

± 5 for Mach 2.1, with a no more than10% variation in either Mach number). 
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Figure 3.1.3: Solenoid driven puncture head in the driver section housing. 

 
Figure 3.1.4: Mylar distribution, flanges and latches. 
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(used to close and 

seal shock tube) 
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At this time, the external trigger was pressed so that the Mylar was punctured and a shockwave 

was generated.  The shock wave traveled past two pressure transducers that recorded the shock 

speed and validated the quality of the shock wave.  The shock wave then interacted with the 

initial condition column in the test section, generating the Richtmyer-Meshkov instability, and 

eventually the flow volume of interest was advected out of the test section.  The evolution of the 

instability at different locations downstream and different time intervals was recorded by 

imaging the test section. 

The images taken were measured to determine the growth of the central spike of the RMI (spike 

growth) with respect to time and downstream distance and the streamwise extent growth of the 

RMI (vortex growth) with respect to time and downstream distance.  Vortex pair size and spike 

length were measured as shown in Figure 4.1.1, and is section Post-Processing Techniques.  

 

3.2 Injection System 

For the experiment, the initial conditions were cylindrical, comprised of sulfur hexafluoride 

(SF6) with about 1% by volume of acetone tracer.   SF6 was bubbled through liquid acetone and 

the resulting vapor fluoresces strongly in ultra-violet light.  The gas mix was stored in a reservoir 

tank (of dimensions 12’’ x 20 ‘’ x 16’’).   This reservoir also held a container of ice to reduce the 

temperature of the vapor, which helped stabilize the vapor as it exited the injection system, 

giving a laminar flow through the test section and out the exit hole for at least 6 inches. The 

vapor flowed from the reservoir to the test section via gravity through an injection nozzle that is 

6.35mm in diameter.   
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The density of the vapor was calculated directly using a precision scale and a lightweight plastic 

container of known volume.   The container was placed in the reservoir and allowed to fill with 

the vapor of the experiment. The container was covered with a lid, removed from the reservoir, 

and placed on the scale.  The mass was recorded, and the container was opened, emptied and 

weighed again.  The difference in mass between the full container and the empty container (with 

the lid) was used in the calculation of   .  This process was repeated multiple times to produce a 

good average density value. This value, in combination with the density of air (  ) was then used 

below to calculate the Atwood number.  Based on the values for   and   , the Atwood number 

was 0.5. 
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3.3 Visualization 

Laser pulses were used to illuminate a horizontal plane in the test section, at a height of 3.81 cm 

from the floor of the section.  The lasers were New Wave Gemini, whose original frequency  

(1066 nm) can be doubled or quadrupled to produce 532 nm or 266 nm pulses respectively, with 

a pulse duration of about 5 ns.   The latter produced fluorescence with acetone with a 

fluorescence wavelength of about 480 nm. The laser beam was projected through a combination 

of spherical and cylindrical lenses mounted on an optical rail (connected to the laser beam head 

assembly for stability) to create a laser sheet (Figure 3.3.1).  With the assistance of a mirror 

oriented appropriately, the laser sheet illuminated a horizontal plane.  

Shock arrival at the first transducer triggered the NI-Scope software used to record the pressure 

traces from both transducers. Shock arrival at the second transducer was used to trigger the lasers 

via a delay generator.  The delay generator acted as a timer for the laser pulses that acted as the 

“flash” for each exposure.  The delay allowed for each shot to be double exposed. 

The images were captured using an Apogee Alta U42 camera (pixel resolution 2048 x2048 at 16 

grayscale bits per pixel). This camera contained a CCD that is both backward-facing and 

thermoelectrically-cooled, and the resulting quantum efficiency is about 90% for a range of 

wavelengths from 480 to 670 nm.   
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Figure3.3.1: Right and top views of Laser and lens system.  The system is housed in a Lexan 

enclosure to protect the lenses from dust, accidental damage and shock wave effects during 

experimental runs.   
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Chapter 4 

Post Processing Techniques 

 

To obtain the data from each shot, certain measurements, corrections and equipment positions 

were employed.  The following subsections of Chapter 4 will discuss these in depth. 

 

4.1 Measurement of the Counter-Rotating Vortex Pair and 

the Central Spike 

Two morphological features of the flow were measured: the streamwise extent or width of the 

counter-rotating vortex pair and the length of the central spike that forms due to shock focusing 

as the shock wave traverses the initial conditions.  Figure 4.1.1 shows the measurements against 

an RMI image. 
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The choice of these measurements was made partially to compare with past work done on RMI 

evolution of cylindrical gas columns.  Earlier studies also reported the streamwise extent of the 

vortex pair.  The spike, however, was not quantified by these studies, likely because it was not 

properly resolved.   

 

Figure 4.1.1: Measurement of the streamwise extent and spike length of an RMI image. 

 

4.2 Angle of the Camera/Mirror  

In order for the images to be collected, a mirror was mounted to the top of the test section at an 

angle of 45 degrees to the horizontal, as seen in Figure 4.2.1. 

Previous work discussed the problem of the gas injection system preventing visualization of 

images in the early times.  In the present work, the mirror was mounted on a rail above the test 

section for the mirror to slide along as the camera (and data observation points) move 
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downstream.  The positioning of this rail also allowed for better images of the shock hitting the 

initial conditions, since it allowed the initial conditions to be completely viewed without 

obstruction.   

 

 

Figure 4.2.1: Layout of mirror to the top of the test section. 
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Chapter 5 

Results 

 

5.1 Mie Visualization 

One of the key motivations for this thesis is to understand the discrepancy between the 

experiments using a traditional Mie tracer (like glycol droplets) and an acetone tracer compared 

to a numerical study mimicking the experimental conditions (as described in the previous 

section).  Through earlier work, we have seen that the use of particles as tracers (for example, 

glycol fog droplets) will give serviceable results with a fair degree of accuracy [7], but with the 

caveat that they do not respond to the impulsive acceleration without delay and they do not show 

some characteristics (for example the central spike or secondary instabilities) of the RMI [8].  

Indeed, Zoldi was able to show that there was a distinct difference between the area of the sulfur 

hexafluoride column and the actual area that the particle tracer occupied.   This led to the 
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decision to use PLIF as the method of image collection, as the acetone tracer travelled better with 

the shock than the particles have done. 

 

 
Figure 5.2.5: Experimental flow visualization using PLIF and Mie scattering of droplets for three 

Mach numbers.  Flow direction is from left to right.  Experimental images are inverted, so darker 

areas correspond to flow seeded with droplets (label “Mie”) or marked with acetone tracer 

(labeled “PLIF”).  Extent of imaged area is 10.09 cm.  Individual image timings (with time = 0 

corresponding to shock reaching the center of the gas column) are labeled. [9] 

 

5.2 Numerics versus Mie Scattering 

Past work also highlighted the issue with particle lag, and showed that there is a delay between 

the shock acceleration of gases and the acceleration of the particles.  This delay indicates that 

Mie-scattering visualization, despite being accepted as reasonably accurate at least at low Mach 

numbers [10] is also deficient in visualization results.  To determine what Mie visualization may 

have omitted, a numerical model with the same experimental conditions was used to generate 

RMI in a perfect setting. Then the comparison between what we expect to see (numerical) and 
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what is actually observed (Mie experimental visualization) was conducted.  It was seen that the 

Mie visualization omitted the central spike and small vortices at its end, as well as the secondary 

instabilities (KHI and baroclinic) within the counter-rotating vortex pair.  These secondary 

instabilities enhance the conditions that lead to turbulence, so their observation and analysis, 

while beyond the scope of this particular thesis, is of importance to the understanding of 

turbulence development in fluids. 

In previous work [8], modeling of the RMI was performed by using the Second-order 

Hydrodynamic Automatic Mesh Refinement Code (SHAMRC).  SHAMRC is defined as “a two- 

and three-dimensional code that solves the conservation equations of fluid motion on an Eulerian 

grid, using operator-split explicit time-marching scheme that is second order accurate in both 

space and time.” [11]  The equations for mass, momentum and energy conservation are divided 

into Lagrangian and Eulerian terms, and the solution is divided into two corresponding phases.  

In the Langrangian phase, the conservation equations are solved as if we are moving with the 

flow for half a time step (a Lagrangian reference frame).   Afterwards, any remaining energy 

transfer effects are applied.   The results of the Lagrangian phase are then run through a Eulerian 

mesh, beginning the second phase.  This is done like an advection calculation, where the fluxes 

of hydrodynamic variables are considered.   As a result, the consideration of particles and/or 

droplets can be included in the calculation.  As the experiment presented here was based on 

RMI-dominated flow, the consideration did not include the effects of the tracer particles in the 

second phase of the code.  

In the model, the computational domain was limited to a two-dimensional viewpoint, 

representing the flow in a horizontal plane down the middle of the test section of a shock tube.  

The Cartesian mesh that was used for this model had a step of 0.005 cm fixed in both the 
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streamwise (x-) and normal-to-streamwise (y-) directions.  The mesh extended from the origin 

(or the center of the shock tube’s cross-section) to the test section walls, covering a distance of 

3.81 cm in the y direction.  The length of the streamwise domain used for computation was 40 

cm, allowing the flow evolution to be observed for the same region as it would have been 

experimentally.  Due to the assumption of symmetry with respect to the x-axis, only one half of 

the domain was modeled (the area from the x-axis centerline to the shock tube side wall).  This 

brings the total number of required zones down to 6 million. 

Air at high temperature and pressure traveling at a specific velocity were placed upstream of the 

initial conditions in order to generate the shock waves used in the simulations.  The flow was 

kept steady by feeding it in from the left boundary.  The gas properties that appropriate for Mach 

1.7 and Mach 2.1 were generated using Rankine-Hugoniot relations. 

For this experiment, the initial conditions were treated as an ideal gas with density    

      kg/m
3
  and the gas constant       .  The density and the gas constant of the surrounding 

air were          kg/m
3
 and       .  These would correspond to an Atwood number (A) of 

0.5, which matches the experimental Atwood number. 

 

5.3 Experimental Results 

The following results were generated for two Mach numbers, Mach 1.7 and Mach 2.1, through 

the experimental process outlined above.  The experimental data received was in the form of a 

multiple digital images of RMI obtained at different timings.  These times ranged from 460 to 

1500 microseconds after shock, for Mach number 1.7, and from 367 to 745 microseconds for 
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Mach 2.1.  The distance from the initial conditions ranges from 2.168 to 29.0305 cm for Mach 

1.7 and 2.688 to 13.543 cm for Mach 2.1.   

Through post processing, using the screws of the test section as markers, the image scale could 

be accurately calculated.  The post processing techniques also included background image 

subtraction, which would subtract a background image that was acquired before each shot from 

dynamic exposure.   The subtracted image was run through a second automated program to 

distinguish the RMI from the background of the image.  This program would convert the 

information contained in a grayscale pixel into one of two binary values based on a 

predetermined level of brightness assigned as the base value for illumination.  Thus, the image 

was converted into a series of either black or white pixels, making the image clearer to view 

without the variations of grey created as a result of under-saturated sections of the RMI.  The 

images were then aligned so that the start of the RMI fell within the same spot of the image.  

This made the measurement of the RMI characteristics significantly easier.  

The general trend seen for a comparison of counter-rotating vortex length and spike length to the 

actual timing is that the length increases with timing (Figures 5.2.1 and 5.2.2).  We see that the 

Mach 2.1 graph is shifted left of the Mach 1.7 graph for both figures, indicating a similar growth 

pattern for both Mach numbers, but letting us know that the Mach 2.1 graph is evolving faster 

than the Mach 1.7 graph.  The evolution time of the counter-rotating vortex pair and central spike 

is strongly correlated to Mach number. 

In contrast, when comparing both the spike length and the counter-rotating vortex pair, we see 

that there is an almost perfect collapse of the Mach 2.1 plot onto the Mach 1.7 plot.  (Figures 

5.2.3 and 5.2.4).  This would suggest that the evolution of the counter-rotating vortex pair and 
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the central spike with distance is weakly correlated to Mach number.  In other words, two RMIs 

at the same location down the shock tube should have roughly the same size growth of their 

features, despite them having different Mach numbers. This being said, the time for the two 

RMIs of different Mach numbers to arrive at that location/size will not be the same, as made 

evident by the figures 5.2.1 and 5.2.2, as the larger Mach number will arrive first.  

A visual representation of what this means from an evolutionary standpoint is seen below:  while 

it is seen that the RMI develops similarly for different Mach numbers, the actual timings at 

which each image are taken is considerably different. (Figure 5.2.5)  According to the linear 

theory proposed by Richtmyer, the growth rate of the primary instability is  

                       (5.3.1)  

 (a variant of equation 1.2.5) where    is the piston velocity of the shock (or the difference 

between the mean velocity of the density interface before and after the shock); A is the Atwood 

number;    is the pre-shock amplitude of the initial interface perturbation and k is the 

characteristic wave number.  We see that      is directly proportional to  , as the other terms 

in the equation can be treated like constants.  It is expected that as    increases,      increases 

as well.   

For short-term growth rates, this result allows us to introduce a dimensionless time variable, 

                    (5.3.2) 

t is the time after shock acceleration (or the actual timing).  For multiple shocks at the same 

Atwood number with the same initial conditions, the plot of RMI amplitude as a function of   
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would give a normalization of the RMI plots for different Mach numbers. Using that same 

equation, it can be seen that there is a linear correlation between   and the downstream distance  

x =               (5.3.3) 

For any given position, we have seen that two RMIs of different initial Mach number will have 

the same size primary characteristics at the same downstream position.  This is due to the   

values of the RMIs being equal.  To do so would require a constant value of  , which is 

dependent on    and t to having an inverse relationship; i.e. when the piston velocity increases, 

the time decreases, and when the piston value decreases, the time increases.  Thus, we see that 

the space domain growth of a primary instability characteristic (spike, counter-rotating vortices) 

is a function of  .  The substitution of 5.3.3 into 5.3.2 allows us to rewrite equation 5.3.2 as  

                (5.3.4) 

 

Figure 5.3.1: Plot of Counter-Rotating Vortex Pair Length vs. Actual Timing for Mach 1.7 and 

Mach 2.1 experimental runs. 
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Figure 5.3.2: Plot of Spike Length vs. Actual Timing for Mach 1.7 and Mach 2.1 experimental 

runs. 

 

 
Figure 5.3.3: Plot of Counter-Rotating Vortex Pair Length vs. Downstream Distance for Mach 

1.7 and Mach 2.1 experimental runs. 
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Figure 5.3.4: Plot of Spike Length vs. Downstream Distance for Mach 1.7 and Mach 2.1 

experimental runs. 
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Chapter 6 

Morphology Characteristics 

 

6.1 RMI  

In past papers, for example [12], the term “spike” was used to reference a different feature of the 

RMI morphology. The “spike” was a region of the perturbed interface that was occupied by the 

lighter gas.  Abarzhi and Hermann state that in the non-linear regime, one will see a structure of 

bubbles and spikes appearing; bubbles appear when the light fluid penetrates the heavy fluid and 

a “spike” appears when the heavy fluid penetrates the light one.  In their research, Abarzhi and 

Herrmann referred to the past research of Pavlenko (2000) [13], Chebotareva (1999) [14], Jacobs 

and Sheeley (1996) [15], Bonazza and Sturtevant (1996) [16].  It is very important to realize that 

this spike is not the same spike referred to as the “central spike” in this research.  The spike 

discussed in this research is due to shock focusing, that is, the gaseous column of initial 

conditions acts as a gaseous lens, focusing the shock in the downstream direction; similar to how 
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a convex lens focuses light.  Focusing occurs because the speed of sound in sulfur hexafluoride 

is much slower than that in air.  More on the central spike will be discussed in Section 6.3. In 

review, the previous use of the term “spike” refers to the morphological behavior which occurs 

for all heavy into light interactions of the fluid; the central spike discussed in this thesis refers to 

a specific behavior that happens for heavy fluid into light fluid penetration with a gaseous initial 

condition column setup. 

The basic morphology of RMI in a heavy gas column case is described in this section and seen 

visually in Figure 6.1.1.  When the shock wave hits the gaseous column, initial vorticity is 

deposited due to the misalignment of the pressure and density gradients.  The column undergoes 

a compression as the opposite-sign vorticity is deposited on the top and bottom edges of the 

compressed cylinder [11] which leads the outer ends to begin curling inwards in the direction of 

flow, forming the counter-rotating vortex pair.   

The use of PLIF has presented better imaging of the counter-rotating vortex pair than the use of 

particles.  Through PLIF, the observation of secondary instability development within the 

counter-rotating vortex pair was observed.  These will be discussed later in section 6.4. 
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Figure 6.1.1. Inverted color image capture of an RMI with key features indicated. Note the 

counter-rotating vortex pair, the spike, and the lion’s tail, or small scale counter-rotating vortex 

pair located at the end of the spike. 

 

6.2 Growth of the Counter-Rotating Vortex Pair and 

Central Spike  

As seen in Chapter 5, higher Mach numbers give an increase in growth of both the counter-

rotating vortex pair and the central spike.  By the mechanism of RMI, we know that the 

instability is dependent on the deposition of vorticity to develop.  The increase in size of both the 

counter-rotating vortex pair and the central spike with higher Mach number (for the same timing) 

indicates that the amount of vorticity deposited also increases with increasing Mach number.   
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The result obtained in this experiment matches earlier results.  For example, in the 2008 paper 

published by Balakumar, Orlicz, Tomkins and Prestridge [17], the graphical representation of 

structure width very much follows the shape of Figure 4.1.1.    Balakumar et al. generated each 

point from an average of 5 measurements, while this experiment used each data point.  This may 

explain a slight deviation from their results. Balakumar et al. observed that for a Mach 1.2 shock, 

there was a shock compression between t = 15 – 30 microseconds.  This experiment’s tabulated 

data results suggests that a compression most likely occurred as there was a decrease in central 

spike values at about 15 – 20 seconds after shock for Mach 1.7.  In 1993, Jacobs, Jenkins, Klein 

and Benjamin showed the same trend in experimental results when they plotted the growth in the 

thickness of a sulfur hexafluoride curtain with respect to time for a Mach 1.2 shock [17]. The 

experimental data for the growth of the counter-rotating vortex pair agrees with previously 

published data as well.  Prestridge, Vorobieff, Rightley and Benjamin showed that the 

streamwise extent with respect to time followed the same general trend as our experimental data, 

inasmuch as the vortex growth is concerned.  

6.3 Shock Focusing 

The concept of shock focusing is one that is only seen in experiments and simulations 

concerning a cylindrical heavy gas column subjected to “classical” RMI [17].  Shock focusing is 

the mechanism through which the central spike is developed [19].  Recall that the counter-

rotating vortex pair contains secondary instabilities (see section 6.4) that consist of KHI and 

baroclinic instabilities, causing an increase in pressure buildup by the vortex pair.  The 

cylindrical initial conditions acts the same way that a lens would, focusing the high pressure 

along a center-line projection downstream of the RMI.    As the RMI moves to full turbulence, 

small scale instabilities develop on the downstream end of the spike; these then weaken due to 
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diffusion of the instability into the surrounding air.  Figure 6.3.1 shows the conversion from 

initial conditions to shock focused. 

 

Figure 6.3.1: Numerical simulation [8] of transition from initial conditions to spike development 

due to shock focusing.  The image on the left shows the circular pre-shock initial conditions.  

The image on the right includes an overlay of the initial conditions on the post-shock RMI.  The 

initial conditions, acting as a lens, focus the high pressure region to a point of convergence down 

the centerline of the RMI, resulting in the formation of the shock.   Convergence is usually seen 

for heavy gas perturbations.  

 

6.4 Secondary Instability Development  

Within the counter-rotating vortex pair, secondary instabilities were observed.  These structures 

were not easily observed using particle tracers (due to the particle lag, and the inability of the 

particles to travel with the region of lower pressure and density where these secondary 

instabilities occur).  Jacobs suggested that these instabilities were caused by a combination of 

shear-driven Kelvin-Helmholtz instabilities and secondary baroclinic instabilities.  Each of these 

instabilities affect separated parts of the vortices: the KHI causes perturbations to occur at the 

edge of the vortex, while the baroclinic instabilities affect the vortex core.  The core of the vortex 

is an area of low pressure, and the sulfur hexafluoride and air are transmitted by a mass 
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movement of horizontal air into the core, causing the pressure and density misalignment.  The 

secondary vortex instability can ultimately develop into a three-dimensional turbulent mixing 

zone [20] even if the initial perturbation was two dimensional.  

 

Figure 6.4.1: A numerical simulation of RMI [8].  The colored area of the counter-rotating vortex 

pair consists of secondary instabilities, such as KHI and baroclinic instabilities. 
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Chapter 7 

Conclusions 

 

In review, this thesis presented the experimental results into the investigation of fluid instabilities 

generated by shock acceleration into a gaseous fluid cylindrical column of sulphur hexafluoride 

saturated with acetone.  This experiment was performed at the shock tube facility of the 

University of New Mexico.  The images were acquired using planar laser induced fluorescence 

(PLIF) techniques on a horizontal plane, and the images acquired were processed by automated 

programs which used features of known dimensions in the images to generate a scale.  Four sets 

of measurements were recorded for comparison between Mach numbers. 

On the base level, it was seen that there was a correlation between the size of the centralized 

spike and the counter-rotating vortices when considering the growth of these features with 

respect to the actual timing of the shot.  An increase in Mach number directly resulted in faster 

development of the same phase of the RMI than an instability of a lower Mach number: that is, 
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counter-rotating vortices and spikes of Mach 2.1 for the same timing were bigger than for 

Mach1.7.  In comparison, there was a weak correlation between the growth of these same 

characteristics and the downstream distance.  The graphical data collapsed almost seamlessly 

from one Mach number to another.  This suggests that, at any distance along the test section of 

the shock tube from the injection point, the size of the instability is the same, regardless of the 

Mach number.  The combination of these two conclusions leads one to believe that the spatial 

development of RMI at any point along test section is the same despite the Mach number of the 

shock wave, but the timing for a shock wave to develop to that size will be different for two 

different Mach numbers.  We can then expect a shock wave traveling at a higher initial Mach 

number to decompose into turbulence much quicker than a lower one, but both Mach numbers 

should approach turbulence at about the same location. 

 

7.1 Future Work 

As this thesis goes to print, experimental work is being performed on further discovery into the 

mechanism of instabilities that develop when oblique shock waves interact with a cylindrical gas 

column.  Currently, the shock tube is tilted at an angle of 30 degrees.  The intention is to collect 

data at multiple angles to the horizontal (from 0 degrees to 45) for comparison and to create a 

data repository of experimental data for multiphase fluid instabilities, specifically RMI, RTI and 

Kelvin-Helmholtz. 
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