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ABSTRACT 

 
 

 
 

Fluorescent labeling agents have greatly affected many biological applications in recent

years. Among different types of labeling agents, Cerium-doped LaF3 nanocrystals (NCs)

are considered to be a promising new class of luminescent materials. Usually, lanthanide-

doped nanocrystals production entails the use of ligands and high-temperature, which

limits their biological applications and lowers their processability. This thesis proposes a

simple and affordable synthesis of water-soluble LaF3: Ce doped nanocrystals without

using ligands and at low temperatures. Dispersion of the nanoparticles was carried out in

three different solvents including methanol, distilled-water and DI-chitosan. The effects

of different levels of dopant on the particle size, morphology and their luminescent

properties were investigated. Parametric performance of the synthesized materials was

investigated in light of several parameters:  different Ce concentrations, different solvents

and different fluorophores concentrations as well. In general higher fluorophores

concentration dispersed in DI- water solvent yielded better emission and better quantum

efficiency. 
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Chapter 1 

Introduction 

 

Nanoparticles with good fluorescence properties have attracted growing attentions in 

recent years. It is not only because they are considered as useful active components in 

lamps, displays (Stryganyuk et al. 2007), optical amplifiers (Hui et al. 2007), but also 

because lanthanide doped nanocrystals recently have been widely used for a variety of 

biological applications (Zhang et al. 2007; Meyssamy et al. 1999).  

 

In medical and biochemical research, organic fluorescent compounds are extensively 

used as optical markers for proteins or nucleic acids in the study of molecular and cellular 

processes (Stryganyuk et al. 2007). Quantum dots have been used as fluorescent labels 

(Stouwdam et al. 2003) and have already led to very promising results (Cooke et al. 

2006). However, a major drawback of Cd (S, Se) or InP quantum dots is their high 

toxicity, which hinders their usage at in vivo applications. At in vitro applications,  



 
 

2

quantum dots are often hampered by their complex water solubility and their fluorescence 

intermittency (Stouwdam and Veggel 2002).  

 

Recently, lanthanide ion-doped oxide nanoparticles have been proposed as biological 

fluorescent labels (Stouwdam et al. 2003), since they exhibit strong fluorescence and 

large Stokes shifts1. Typically the emission spectrum of such materials is characterized 

by narrow emission bandwidths independent of their particle size, and their colloidal 

synthesis is well described. Moreover, they exhibit long luminescence lifetimes, which 

enables time-sensitive detection.  

 

Compared to classical luminescent materials, fluorides are more advantageous for several 

reasons. Fluorides have low vibrational energies that subsequently will minimize the 

quenching of the excited state of the rare earth ion (e.g. Ce 3+)  (Wang et al. 2006 Chem. 

Mater. ). Fluorides also exhibit sufficient thermal and environmental stabilities. Rare 

earth fluorides have been utilized in several applications such as lighting and displays, 

photo electronics, biological labels, and optical amplifies (Justel et al. 1998). 

 

Several synthesis techniques have been carried out for rare earth fluorides such as  

thermoanalysis of organometallic precursors in surfactant solutions (Liu et al. 2007). 

Alternatively, synthetic methods using ligands have been reported for LaF3 (Stouwdam, 

et al. 2003; Stouwdam and Veggel 2004). 

 

                                                 
1 Stokes shift represent the energy loss between excitation and emission spectra of fluorescent molecules, 
typically in solutions, due to both energy relaxation of the excited electrons and due to energy losses to the 
surrounding through the solution.   
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Thesis Objective: 

The objective of this thesis is to investigate a simple and affordable synthesis route for 

cerium-doped lanthanum fluoride (LaF3) nanoparticles with uniform size and shape 

which are soluble in organic solvents for tunable optical properties. The method utilized 

in this thesis and described herein does not require usage of ligands and produces LaF3: 

Ce doped nanoparticles that can be well-dispersed and deagglomerated in water and/or 

organic solvents to form transparent colloidal solutions. Starting with lanthanide 

chlorides and ammonium fluoride in methanol solutions, a substitution reaction renders 

cerium doped lanthanum fluoride nanoparticles. Nanocrystals of LaF3 with 0%, 1%, 5%, 

and 10% Ce were obtained by this route. The current thesis provides investigation of the 

fluorescence performance of LaF3: Ce nanocrystals based on the following parameters: 

different Ce dopant concentrations, usage of DI- water solvent and DI- chitosan 

deagglomerater in the synthesis of LaF3: Ce nanocrystals and concentrations of the LaF3: 

Ce nanocrystals in different solutions. 

 

1.1  Light interactions with solids 

 

If a solid sample is illuminated by a light beam of certain intensity, in general, the 

intensity of the transmitted beam is lower than that of the incident beam. Several 

processes can contribute to this attenuation such as: 

 

• Absorption, if the beam frequency is resonant with a ground to excited state 

transition of the atoms in the solid. A fraction of this intensity is generally emitted 
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at a lower frequency than that of the incident beam, giving rise to the emission 

intensity. The reminant of the absorbed intensity is lost through nonradiative 

processes (heat). 

• Reflection with a different intensity from the external and internal surfaces. 

• Scattering, with a light spread in several directions, due to elastic (at the same 

frequency as the incident beam) or inelastic (at lower and higher frequencies than 

that of the incident beam – Raman scattering) processes. 

 

Optical spectroscopy analyzes frequencies and intensities of these emerging beams as a 

function of frequency and intensity of the incident beam. 

 

1.2  What are luminescence, fluorescence and photoluminescence? 

 

The word luminescence, including both fluorescence and phosphorescence, originates 

from the Latin word lumen, which means light. In spectroscopy the word luminescence is 

defined as a phenomenon in which the electronic state of a substance is excited by 

external energy stimulus and the excitation energy is given off as light. Here, the light 

includes not only electromagnetic waves in the visible region of 400 to 750 nm, but also 

those in the neighboring regions on both ends, i.e., near-ultraviolet (UV) and near-

infrared (IR) regions (Weber 1967 ). 
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The visible light emission from a substance during the time when it is exposed to exciting 

radiation is called fluorescence, while the after-glow if detectable by the human eye after 

the cessation of excitation is called phosphorescence.  

 

In excited singlet states, the electron in the excited orbital is paired (by opposite spin) to 

the second electron in the ground-state orbital. Consequently, return to the ground state is 

spin allowed and occurs rapidly by emission of a photon. The typical fluorescence 

lifetime is near 10 ns (10 x 10–9 s) (Lakowicz 2006). 

 

Phosphorescence is the emission of light from triplet-excited states, in which an electron 

in the excited orbital has the same spin orientation as the ground-state electron. 

Transitions to the ground state are forbidden and the emission rates are slow so that 

phosphorescence lifetimes are typically milliseconds to seconds (Klink et al. 1999). 

 

Photoluminescence occurs after excitation with light (i.e., radiation within the optical 

range). Luminescence can also be produced under excitation with an electron beam, and 

in this case it is called cathodoluminescence. This technique is conventionally used to 

investigate some characteristics of specimens, such as trace impurities and lattice defects, 

as well as to investigate crystal distortion. Excitation by high-energy electromagnetic 

radiation (sometimes called ionizing radiation) such as X-rays, α-rays (helium nuclei), β-

rays (electrons), or γ -rays leads to a type of photoluminescence called  

radioluminescence (Valeur 2002). 
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Thermoluminescence occurs when a substance emits light as a result of the release of 

energy stored in traps by thermal heating. This mechanism is different from thermally 

produced blackbody radiation. Electroluminescence occurs as a result of the passage of 

an electric current through a material, as in nightlight panels. 

 

Triboluminescence is the production of light by a mechanical disturbance, for instance, 

light that emerges when some adhesive tapes are unrolled. Acoustic waves (sound) 

passing through a liquid can produce sonoluminescence. Chemiluminescence appears as a 

result of a chemical reaction. As a particular class of chemiluminescence, 

bioluminescence occurs as a result of chemical reactions inside a biological organism.  

Fig 1.1 provides the classification of the different types of luminescence. 

 

 

Fig1. 1 Various types of luminescence with corresponding excitation (Valeur 2002) 

Fluorescence occurs when an atom, molecule or solid absorbs light photons from the UV-

visible light spectrum, known as excitation, and then rapidly emits light photons as it 
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returns to its ground state; the state of lowest energy of that electron, thus it is given more 

energy and convert to a higher electronic energy state what is called “excited state” (Fig 

1.2). In the excited state, an electron will not  stay there too long since it is not stable,  

then the electron gives back the energy in the form of light and  return to its ground state 

(Kitai 1993). (Fig 1.3) 

 

Fig 1.2 An electron becomes excited when it absorbs a photon (NASA Space Flight Center). 

 

Fig 1.3 An electron goes back to ground state when it emits a photon (NASA Space Flight Center). 
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Fluorimetry characterizes the relationship between absorbed and emitted photons at 

specified wavelengths. It is a precise, quantitative, and analytical technique that is 

inexpensive and easily mastered. All chemical compounds absorb energy which causes 

excitation of electrons bound in the molecule, such as increased vibrational energy or, 

under appropriate conditions, transitions between discrete electronic energy states. For a 

transition to occur, the absorbed energy must be equivalent to the difference between the 

initial electronic state and a high-energy state. This value is constant and characteristic of 

the molecular structure. This is termed the excitation wavelength. If conditions permit, an 

excited molecule will return to its ground state by emission of energy through heat and/or 

emission of energy quanta such as photons.  

 

Fluorescent compounds or fluorophores can be identified and quantified on the basis of 

their excitation and emission properties. The excitation spectra are determined by 

measuring the emission intensity at a fixed wavelength, while varying the excitation 

wavelength. The emission spectra are determined by measuring the variation in emission 

intensity wavelength for a fixed excitation wavelength (Lakowicz 2006). 

 

During the excited-state lifetime, typically 1-10 nanoseconds, the fluorophore energy S1' 

is dissipated and converts to a lower energy excited state S1 where fluorescence emission 

originates. That means not all absorbed energy converts to fluorescence emission when 

electrons return to ground state (Kitai 1993). The vibrational energy loss results in an 

emission spectrum with longer wavelengths compared to the absorption/excitation 

spectrum is represented by C (hνex – hνem) which is known as Stokes shift, where h is 
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Planck’s constant and ν is the frequency of light. Therefore emitted photons have longer 

wavelengths than excited photons. 

 

If S1'denotes an excited state of a substance S0, then fluorescence consists of the 

excitation:  S0 + hνex → S1' and emission: S1 → hνem + S0. Generally speaking, the 

absorbed photon is in the UV range, and the emitted light is in the visible range. 

 

Fig 1. 4 A diagram illustrating the processes of excitation and emission of fluorescence (Invitrogens).  
 
 
Quantum yield is the percentage of molecules in an excited electronic state that decay to 

ground state by fluorescent emission, i.e., rapid emission of a light photon in the range of 

200- 900 nm. This value is always less than or equal to unity and is characteristic of the 

molecular structure.  

 

Several factors contribute to the decay of the fluorophores and thus, reduce the 

fluorescence intensity and the quantum yield.  In general, decay processes can be 

classified as: internal or external conversions (So and Dong 2002). Internal conversion is 

a process at which the electron energy is converted to vibrational energy of the 

fluorophore itself. Since vibrational processes are driven by thermal processes, the 
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internal conversion rate typically increases with temperature, which accounts for the 

commonly observed decrease in fluorescence intensity with rising temperature. External 

conversion describes the process where the fluorophore loses electronic energy to its 

environment through collision with other solutes. Upon collision, the fluorophore is de-

excited nonradiatively.  A number of important solute ions, such as oxygen, are efficient 

fluorescence quenchers. Usually, a fluorophore can be chemically bound to a quencher to 

form a ‘dark complex’ – a product that does not fluoresce (So and Dong 2002). 

 

1.3  Types of fluorescence labeling materials 

 

Commonly, there are three types of florescence labeling materials: quantum dots (QDs), 

organic dyes, and fluorescent nanoparticles (NPs) (Wang et al. 2006 Nanotech.). Organic 

dyes have inherent drawbacks such as susceptibility to chemical and photochemical 

degradation (Kumar 2000), decomposition under repeated excitation, and photochemical 

instabilities (Miyazaki et al. 1981). Compared to organic dyes, QDs are relatively more 

photochemically stable. They have been observed to have much higher luminescence 

efficiencies compared to nanoparticles based on sulphides, selenides, or tellurides of zinc 

and cadmium (Tian et al. 1996; Porteanu et al. 2001). Moreover, QDs have narrow 

emission bandwidths, size-dependent emissions, and high quantum yields (Medintz et al. 

2005),  which lead to successful applications in some biological analysis. However, some 

limitations of QDs exist as well, such as poor stability against oxidation, chemical 

instability, and optical blinking (Wang et al. 2006 Phys. Lett.; Wang et al. 2006 J. Mater. 

Chem.). These limitations make them unsuitable for high sensitivity quantitative bioassay. 



 
 

11

Furthermore, these materials have inherent toxicity and inherent short luminescent 

lifetimes which make biological application difficult (Wang et al. 2006 Nanotech). 

 

1.4 Fluorescent nanoparticles  

 

Investigators have synthesized and observed the optical behavior of nanoparticles, 

motivated by their intriguing optical properties based on the premise of fewer defects at a 

reduced dimensionality in insulators, and the successful application of rare-earth doped 

nanocrystals (NCs) to radiation detection, mainly as gamma rays scintillators (Jiang et al. 

2004).  

 

Recently, emphasis has been placed on investigating the effect of reduced size on the 

luminescent properties of nanophosphors compared to their corresponding bulk materials 

(Cooke et al. 2006; McKigney et al. 2007). Bhargava et al. (1994), reported that the 

luminescence efficiency of surface-modified ZnS: Mn2+ nanophosphor increased with the 

decrease of particle size. The high-efficiency ZnS: Mn2+ nanophosphor has been 

explained via the following hypothesis:  there is a strong coupling between ZnS s–p 

electron and Mn2+ d electron in the nanophosphor by quantum effect. Bhargava claimed 

that the hypothesis was supported by observation of shorter luminescence lifetime (3.7 ns 

and 20.5 ns) of nanophosphor than the bulk one (1.8 ms).  

 

More recently, Cooker et al. (2006), have reported the reduced dimensional behavior of 

hydrothermally prepared Y2SiO5: Ce nanophosphors and their luminescent properties. 
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McKigney et al.(2007), reported radiation detection and nuclear spectroscopy of 

nanocomposite scintillators, comparing them with bulk-based scintillators. They found 

that, relative to bulk powder from which they were derived, the nanocomposite materials 

had improved properties which included enhanced light output, reduced cost, greater size 

scalability, and medium-dependent radiative lifetime.  

 

1.5  Lanthanide-doped nanoparticles 

 

Lanthanides, the name comes from lanthanum, are a series of fifteen metal elements from 

atomic number 57 through 71 in the periodic table. Pure lanthanides are silvery metals as 

shown in Fig 1.5. 

 

Fig 1.5 Pure Lanthanides are silvery metals (Metallium). 

 

The name of the series comes from the earliest discovered element in the group: 

lanthanum (No 57), alternatively they are referred to as “rare earth elements” (Beatty 

2007).  
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Lanthanide-doped nanocrystals emerged as a promising new class of biological 

fluorescent labels as alternatives to organic fluorophores and quantum dots, based on the 

their low toxicity (Beaurepaire et al. 2004). Moreover, the ease of extending the 

spectroscopic selectivity and manipulating the colors of lanthanide-doped nanocrystals 

(by using different lanthanide ions dopants) leads to extensive use in several bio 

applications. Moreover, they have long-lived luminescent lifetimes and high 

photochemical stability (Wang et al. 2006 Nanotech.).  

 

In the current investigation, water-soluble lanthanide-based nanocrystals have been 

synthesized by a simple method at low temperature. Their shapes, sizes, structures and 

luminescent properties were carefully investigated as will be presented in following 

chapters of this thesis.  
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Chapter 2 

Synthesis of nanocrystals 

 

2.1 Lanthanide-based nanocrystals synthesis methods 

 

Many techniques have been used to synthesize lanthanide-based nanocrystals. Usually, 

researchers made lanthanide-doped nanocrystals at high temperature or in combustion 

experiments to achieve desired phase purity. For example, Stryganyuk et al. (2007), 

synthesized Ce3+ doped LaPO4 nanophosphors by carrying out the solid-state reaction at 

1200 oC in air. Hui et al. (2007), reported a sol-gel combustion method to synthesize 

LuAG: Ce phosphors under lengthy high temperature treatment ( >1400 oC for 20-30 h). 

However, the nanoparticles yielded in high temperature processes led to low 

processability because they did not have any organic groups on the surface and 

subsequently were not dispersible in water (Wang et al. 2007). And thereby, their 

applications were very limited.  
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In recent years, growing attention has been paid to obtain water-soluble lanthanide-doped 

nanocrystals. Synthesis efforts have been established by using liquid phase synthesis in 

order to make nanoparticles more preferable for biological applications (Beaurepaire et al. 

2004).  

 

Among previous work, oxygen based systems, such as LaPO4, YVO4 and Y2SiO5 , were 

chosen as hosts for some lanthanide ions that emit in visible spectral region because they 

have high phonon energy (Beaurepaire et al. 2004; Cooke et al. 2006). Later, researchers 

found that the oxygen based ligands created inhomogeneous boundary surrounding the 

particle surface, which quenched their fluorescence (Diamente and Veggel 2005). 

Consequently, researchers started to pursue other materials as substitutes. Fluorides, 

which have lower phonon energy, became very popular due to their adequate thermal and 

environmental stability as well as their longer luminescent lifetimes (Stouwdam et al. 

2003). Additionally, their very low vibrational energies were established to minimize 

quenching of the excited state of the rare-earth ions (Wang et al. 2007).  

 

Since lanthanide-based nanocrystals and fluorides are both very promising, several 

studies of producing water soluble lanthanide-doped LaF3 nanocrystals have been 

reported recently. The synthesis of LaF3 nanocrystals coated by organic compounds 

containing S and P was first reported by Zhou et al. (2001). Then, Veggel et al. (2002) 

reported the synthesis of water soluble LaF3 nanocrystals using citrate or phosphate 

monoester-base ligands. In their research, ammonium di-n-octadecyldithiophosphate was 

used as the ligand against particles aggregation. However, the fluorescence was quenched 
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and the quantum yield was reduced at the same time because the bonded ligands created 

inhomogeneous domains near the particle surface and therefore they had poor 

dispersibility in solvents. (Stouwdam and Veggel 2002;  Wang et al. 2006 Nanotech.; 

Wang et al. 2006  J. Mater. Chem.) 

 

Alternatively, hydrothermal synthesis was used to obtain CeF: Tb/LaF (core/shell) 

nanoplates (Wang et al. 2006 Chem. Mater.) to investigate their photoluminescence. 

Despite the plethora of numerous investigations reported to date, little has been reported 

toward synthesizing LaF3: Ce nanocrystals with good dispersibility in organic solvents 

( Riwotzki et al. 2001) with particles synthesized at low temperature. In this thesis, a 

simple synthesis route of highly water-soluble LaF3: Ce nanocrystals is presented. The 

proposed synthesis is based on a modified approach to that was developed by Wang et al. 

( Wang et al. 2006 Nanotech.; Wang et al. 2006 J. Mater. Chem.), for other lanthanides 

such as Eu3+. Water-soluble LaF3 nanocrystals synthesis was carried out in aqueous 

solution at low temperature without using any ligands. These nanocrystals are easily 

dispersed in DI-water to form a stable colloidal solution, which provided easier control of 

the synthesis.  

 

2.2 Experiments details 

 

To control the concentration of Ce ions, calculations involving determination of proper 

quantities of each chemical need to be precisely made. Proportion of La3+ ions to Ce3+ 

ions can be related by the chemical reaction equation below:  
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XLaCl3 · 7H2O + ZCeCl3 · 7H2O + 3NH4F → LaxCezF3 + 3NH4Cl + 7H2O 

Here, X represents the molar percentage of La3+ ions, and Z refers to that of Ce3+ ions, 

where X + Z = 1. For example, if 5% Ce3+ doped LaF3 nanoparticles are expected to be 

prepared, Z = 5% = 0.05. Then X would be 0.95. The LaF3 Nanocrystals doped with Ce at 

other percentage (1% and 10%) can be calculated by the same means.  

 

2.2.1 Reagents 

During this synthesis, all chemicals were used as received without further purification. 

Ammonium fluoride (NH4F, 99%), Cerium chlorides hexahydrate (CeCl3. 7H2O, 

99.99%), and lanthanide chlorides hexahydrate (LaCl3. 7H2O, 99.99%) were obtained 

from Sigma-Aldrich (St Louis, USA). Chitosan was purchased from Sigma-Aldrich (St 

Louis, USA). And anhydrous methanol was purchase from Alfa Aesar (Ward Hill, USA). 

LaCl3 and CeCl3 were stored in an oven overnight at 75oC to eliminate the possibly 

absorbed water on the surface prior to synthesis. 

 
2.2.2 Synthesis of LaF3: Ce nanocrystals 

 

The proposed synthesis of highly water-soluble LaF3: Ce, follows the approach carried 

out by Wang et al. (2006 J. Mater. Chem.), reported for other lanthanide: Eu3+. Methanol 

and DI-water were used as solvents. An experiment was also carried out with DI- water 

and chitosan (DI-chitosan) in a similar method compared with the previous two. In this 

research, samples with different levels of Ce (0%, 1%, 3%, 5%, and 10%) were studied 
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with methanol, and some levels of Ce (0%, 1%, 5%, and 10%) were studied with DI-

water and DI-chitosan, respectively.  

 

Summary of the procedures for synthesis are shown as the flow chart in Fig 2.1. More 

details about the synthesis are given next.  

 

               

Fig 2.1 Flowchart of synthesis procedures 
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1)  Using methanol as solvent 

 

5% Ce 3+-doped LaF3 nanocrystals with methanol were prepared as follows: 0. 5670g 

(15.310 mmol) NH4F was dissolved in 70 mL solvent. 1.8004g (4.850 mmol) 

LaCl3.7H2O was dissolved in 7mL solvent water (Fig 2.2 left) followed by the addition of 

0.0951g (0.255 mmol) CeCl3.7H2O, then instilled drop by drop into the NH4F solution 

under vacuum (Fig 2.2 right). White precipitates appeared instantly.  

  

 

Fig 2.2 Dissolve solutions (left) and mix them (right) during the synthesis of LaF3: Ce Nanocrystals 

 

The mixture was heated at 60°C for 15 minutes at atmospheric pressure with continuous 

stirring at 20 rpm. Evaporation was stopped when the solution decreased to 50 mL in 

order to avoid solution supersaturation at less volume. Nanocrystals were separated from 

the colloidal solution using following two methods: 

a) Method-1: Filtration (Fig 2.3) 
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Filter papers from Sartorious, Inc., with pore size 0.22 nm were used. The solution 

was filtrated immediately by filter funnel, and nanoparticles were collected on filter 

paper. Then 20 mL methanol was added to wash nanoparticles again, as was repeated 

twice. Powders were collected from the filter paper and subsequently stored overnight 

at 75 oC in the oven.         

 

 
Fig 2.3 Use of funnels to separate LaF3: Ce nanocrystals from colloidal solution 

 

b) Method-2: Centrifugation (Fig 2.4) 

Centrifugation treatment was applied at 6,000 rpm for 5 min then at 10,000 rpm for 

10 min. Precipitates were washed and re-suspended in methanol, and then centrifuged 

at 10,000 rpm for 15 min. This procedure was repeated 3 times. Resulting powders of 

nanocrystals were subsequently dried overnight at 75oC in the oven. 
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Fig 2.4 Use of centrifuge to separate LaF3: Ce nanocrystals from colloidal solution 

0%, 1% and 10% Ce3+-doped LaF3 nanocrystals were prepared by using this method as 

well; stoichiometryically. 

 

2) Using DI- water as solvent 

 

5%  Ce3+-doped LaF3 nanocrystals with DI- water were prepared as follows: 1.8004 g 

(4.850 mmol) LaCl3.7H2O and 0.0951g (0.255 mmol) CeCl3.7H2O were dissolved 

completely in 7 mL Distilled- water (DI-water). 0. 5670 g (15.310 mmol) NH4F was 

dissolved in 70 mL DI- water and mixed with the above solution thoroughly. As a result, 

white precipitates appeared. Mixture was then consistently heated at 75°C for 2 hours at 

ambient pressure under stirring.  Precipitates were separated by centrifugation at 6,000 

rpm for 5 min and then at 10,000 rpm for 10 min. Precipitates were washed with DI-

water and applied centrifugation treatment at 10,000 rpm for 15 min; and these 

procedures were repeated 3 times. The resulting nanocrystals were stored in DI- water in 

oven at 75°C overnight until completely dry. 

 



 
 

22

The method for preparing 0%, 1% and 10% Ce3+-doped LaF3 nanocrystals were the same 

as stated above. Only stoichiometric amount of chemicals need to be adjusted. 

 

3) Using DI- chitosan as deagglomerator 

 

Chitosan is a natural biopolymer and its chemical formula as shown in Fig 2.5.  

 

Fig 2.5 Chemical formula of chitosan 

 

Chitosan, a white-colored powder produced by deacetylation of chitin, has a number of 

applications because it has been shown to be biofunctional and biocompatible (Miyazaki 

et al. 1981; Kumar 2000). It has been widely used as a plant growth enhancer in 

agriculture and been adopted to cause the fine sediment particles to bind together as a 

part of filtration process(Goosen 1996). Moreover, it was allowed to be used as a carrier 

for drug and gene delivery which could be frequently seen at health stores due to its 

biocompatible properties (Muzzarelli et al. 1989; Miyazaki et al. 1990; Calvo et al. 1997). 

Researchers also used it as a bandage and a hemostatic agent to rapidly clot blood. In this 

work, we used chitosan to prevent nanocrystals from agglomeration and rendered the 
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nanocrystals water soluble based on similar objective pursued by another research group 

(Wang et al. 2006 Nanotech.). 

 

5% Ce 3+- doped LaF3 nanocrystals with DI- water were prepared as follows: 

0.2 M LaCl3 stock solution was prepared by dissolving LaCl3.7H2O in DI- water. 0.2 M 

CeCl3 stock solution was prepared by dissolving in DI- water as well. Chitosan solution 

was obtained by dissolving 0.2147 g (1.330 mmol) chitosan in diluted 0.05 M 

hydrochloric acid. NH4F solution was obtained by dissolving 0.2222 g (6.000 mmol) 

NH4F in 10mL DI- water. Mix 9.5 mL stock LaCl3 solution and 0.5 mL CeCl3 solution 

thoroughly, then introduce chitosan solution under stirring. After adding NH4F solution 

drop wise, white precipitates appeared instantly. Control the pH value of mixture at 6.5 

with diluted ammonia solution, then heat the mixture to 75°C for 2 h under stirring.  

 

The resulting products were collected by centrifugation at 6,000 rpm for 5 min, then 

10,000 rpm for 10min. Wash precipitates with mixture of DI- water and 0.5% acetic acid 

and re-suspend in DI- water, and then centrifug at 10,000rpm for 15 min. These 

procedures were repeated 3 times. Resulting powders of the nanocrystals were stored in 

DI- water and subsequently dried at 75oC in the oven at ambient temperature. 

 

The same method has been applied for preparing 0%, 1% and 10% Ce3+ -doped with 

LaF3 nanocrystals.  
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Chapter 3 

Microstructural Characterization 

 

Microstructural characterization methods include X-ray diffraction (XRD), scanning 

electronic microscopy (SEM) and transmission electron microscopy (TEM). The phase 

structures of nanoparticles were characterized by XRD. The morphologies of the 

nanoparticles were investigated by SEM and TEM. The particles size distribution (PSD) 

was carried out by an imaging software (Image J, NIH, USA) coupled with the TEM 

micrographs. 

 

3.1 X-ray Diffraction 

 

X-ray diffraction (XRD) is one of the most important characterization tools to determine 

crystal structure and lattice parameters of any crystalline compound (Warren 1990).  

Each crystalline solid can be presented as an infinite regular three-dimensional 

distribution of atoms in space. They form a series of parallel planes separated from one 



 
 

25

another by a distance d, which exists in a number of different orientations (Zhou et al. 

2001). In XRD, as a beam, which is based on constructive interference of monochromatic 

X-rays and a crystalline sample, travels through any substance, the resulting diffracted 

beams are detected and the intensity decreases with the distance traveled through the 

substance. If the sample is crystalline, the interaction of the incident rays will produce 

constructive interference (and a diffracted ray). Meanwhile, detected intensities of 

diffracted beams will vary in different directions. According to Bragg's Law (nλ =2d sin 

θ), which relates the wavelength of electromagnetic radiation (λ) to the diffraction angle 

(θ) and the lattice spacing in a crystalline sample (d), a unique diffraction pattern is 

produced, characteristic of the crystal structure of the sample . 

 

In this thesis, the X-ray diffraction was carried out using a Phillips powder 2θ X-ray 

diffractometer. This is to investigate the elemental compositions of the synthesized 

samples carried out in the three different solvents.  
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3.1.1 XRD for samples prepared using methanol 

 

 

Fig 3.1 XRD patterns of the LaF3: Ce nanocrystals with different Ce concentrations (0%, 3%, 5%, 8% and 
10%) with using methanol as solvent 
 

 

XRD patterns of the LaF3:Ce3+ nanocrystals with 0%, 3%, 5%, 8% and 10% Ce 

concentrations are shown in Fig 3.1. The phase evolution shown by XRD indicates that 

LaF3 appears to crystallize directly from 0% doping to 10% doping, and these samples 

are crystallized well: the peak intensities and positions of these nanocrystals are similar 

and agree well with the data in the Powder Diffraction File (PDF) standard card. It can 

also been found that when the Ce3+ ions are doped in the LaF3 host, no difference is 

observed between the diffraction patterns of LaF3: Ce3+ and LaF3. 
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3.1.2 XRD for samples prepared using DI- water 

 

Fig 3.2 XRD pattern of the LaF3: Ce at 0% with using DI- water as solvent. 
 

 
 

Fig 3.3 XRD patterns of the LaF3: Ce nanocrystals with different Ce concentrations (1%, 3%, 5%, and 10%) 
with using DI- water as solvent. 
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The XRD patterns of the LaF3: Ce nanocrystals with using DI- water are given in Figs 3.2 

and 3.3. The diffraction patterns also agree well with the pure hexagonal LaF3 and CeF3 

crystals in PDF. The results show that the structure and size of nanocrystals do not 

change when more Ce ions are doped. Compared with Fig 3.1, the diffraction peaks in 

Fig 3.2 and Fig 3.3 are sharper, clearly revealing that the particles made with Di- water 

are larger than those made with methanol. 

 

3.1.3 XRD for samples prepared using DI- chitosan 

 

 

Fig 3.4 XRD pattern of the LaF3: Ce at 0% with using DI- chitosan as solvent. 
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Fig 3.5 XRD patterns of the LaF3: Ce nanocrystals with different Ce concentrations (1%, 3%, 5%, and 10%) 
with using DI- chitosan as solvent. 
 

In Figs 3.4 and 3.5, analysis of the powder diffraction patterns shows that the spectrum 

peak positions and intensities agree well to the literature data of the bulk LaF3 and CeF3, 

suggesting that the compounds are free of impurity phases. That is to say, NH4Cl ions 

have been successfully washed off by solvents during synthesis. The identical shape and 

intensity of diffraction peaks of NCs with using DI- chitosan as those with using DI-

water show that the particle sizes are very close (Zhang and Lu 2007). And both of them 

offer larger particles size than those with using methanol. 

 

XRD patterns can be also used to estimate nanoparticles average sizes according to the 

Debye-Scherrer equation, D= 0.90 λ/ βcos θ (Wang et al. 2006 J. Mater. Chem.; 

Stryganyuk et al. 2007; Zhang and Lu 2007). In this equation, D is the average grain size, 
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λ refers to the x-ray wavelength, and β and θ are full width at half maximum (FWHM) of 

an observed peak and the observed peak angle, respectively (Wang et al. 2007). Here, 2θ, 

where strongest peak appears, is used to calculate the average size of NCs. From Figs 3.1 

to 3.5, it can be seen that 2θ appears around 28o for all cases. And NCs with methanol 

have broader bandwidths than those with DI- water and DI- chitosan, meaning β of 

methonal is smaller than that of DI- water and with DI- chitosan. By using Scherrer 

equation, we can estimate that the NCs with DI- water and DI- chitosan have larger 

particle sizes than those with methanol (Wang et al. 2007). 

 

3.2 Scanning electron microscopy  

 

In typical scanning electron microscopy (SEM), the electrons are transmitted from an 

electron gun trigger the sample surface to produce signal. Then the signals collect 

information about the surface composition, morphology and other properties and transmit 

them to receiver. In our research, the SEM measurements were carried out on a Hitachi 

S-5200 nano scanning electron microscope, exhibiting the surface morphology of 

nanoparticles.  
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% Ce Filtration By Funnel Filtration By Centrifuge 

3% 

8% 

 

Fig 3.6 SEM images of the LaF3: Ce nanocrystals with methanol obtained by a funnel and by a centrifuge, 
respectively. 

 

According to SEM images of nanoparticles with methanol shown in Fig 3.6, it can be 

seen that synthesized powder by using a funnel (left) was severely agglomerated, while 

the particles by using a centrifuge (right) offered less agglomeration. Thus, using a 

centrifuge to separate nanoparticles from collide solution instead of a funnel could offer 

better results. Therefore, a centrifuge was utilized in the next synthesis in this research. 
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3.2.1 SEM microscopy of samples prepared using methanol 

 

Through SEM analysis, we were able to identify particles with methanol of irregular 

shapes between 3 nm and 10 nm with an average size of close to 7 nm. And the particles 

were observed to form agglomerates. Figs 3.7 through 3.10 show SEM results of LaF3: 

Ce particles generated at various concentrations of NCs with methanol. 

 

 

Fig 3.7 SEM images of the LaF3: Ce at 3% nanocrystals with methanol 
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Fig 3.8 SEM images of the LaF3: Ce at 5% nanocrystals with methanol 

 

 

Fig 3.9 SEM images of the LaF3: Ce at 8% nanocrystals with methanol 
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Fig 3.10 SEM images of the LaF3: Ce at 10% nanocrystals with methanol 

 

3.2.2 SEM microscopy for samples prepared using DI- water 

 

Figs 3.11 -3.14 are SEM micrographs of LaF3: Ce particles generated at various 

concentrations with DI- water. From the low magnification SEM images, one can see that 

the products are composed of nanoscale particles, and they have well-defined shapes 

compared to NCs with methanol. The high magnification SEM images indicate that the 

nanoparticles average size is about 20nm and approximately spherical in shape.  
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Fig 3.11 SEM images of the LaF3: Ce at 1% nanocrystals with DI- water 

 

 

Fig 3.12 SEM images of the LaF3: Ce at 3% nanocrystals with DI- water 
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Fig 3.13 SEM images of the LaF3: Ce at 5% nanocrystals with DI- water 

 

 

Fig 3.14 SEM images of the LaF3: Ce at 10% nanocrystals with DI- water 
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3.2.3 SEM microscopy for sample prepared using DI- chitosan 

 

From Figs 3.15 to 3.18, one can observe SEM micrographs of LaF3: Ce particles doped at 

various with DI- chitosan. The low magnification images show the general view of 

nanoparticles and the high yield of nanoparticles can be synthesized by this means. And 

the high magnification images indicate that the particles are with a mean diameter of 20 

nm and spherical in shape as well.  

 

 

Fig 3.15 SEM images of the LaF3: Ce at 1% nanocrystals with DI- chitosan 
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Fig 3.16 SEM images of the LaF3: Ce at 3% nanocrystals with DI- chitosan 

 

 

Fig 3.17 SEM images of the LaF3: Ce at 5% nanocrystals with DI- chitosan 
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Fig 3.18 SEM images of the LaF3: Ce at 10% nanocrystals with DI- chitosan 

 

3.3 Transmission Electron Microscopy  

 

The Transmission Electron Microscope (TEM, JOEL 2010) images of the NCs were 

acquired to investigate the structures, shapes as well as sizes of the nanoparticles. Images 

providing further insight into the nanometer-scale details of particles can be obtained. For 

our research, the TEM was operated at an acceleration voltage of 200 KV. Samples were 

prepared by diluting the solution to 0.1 g/L and sonicated sufficiently. Then a couple of 

drops of the diluted particle dispersion were put on a thick carbon-coated copper grid 

with excess solutions immediately removed. It was allowed to dry completely before the 

samples were placed in the TEM grids. 
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In Fig 3.19 and Fig 3.30 one can observe that nanoparticles are in the forms of spherical 

and hexagonal shapes and are well dispersed when generated from DI- water and DI-

chitosan synthetic routes independent of the Ce dopant amount. The powders synthesized 

in DI- water and DI- chitosan are less agglomerated than those obtained with methanol 

(see Figs 3.19 and 3.20). It can also be seen that the average particle size is in the range 

from 15 nm to 20 nm for both DI- water and DI- chitosan suspensions. Methanol based 

suspension exhibits an average size of about 7 nm with apparent agglomeration. This 

result agrees well with the XRD analysis regarding the particle size.  

 

3.3.1 TEM results of using methanol 

 

 

Fig 3.19 TEM images of the 3% doped- Ce3+ LaF3 nanocrystals with methanol 
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Fig 3.20 TEM images of LaF3: Ce at 5% (left) and at 10% (right) nanocrystals with methanol. 

 

3.3.2 TEM results of using DI- water   

 

 

Fig 3.21 TEM images of LaF3: Ce at 0% nanocrystals with DI- water. 
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Fig 3.22 TEM images of LaF3: Ce at 1% nanocrystals with DI- water. 

 

 

Fig 3.23 TEM images of LaF3: Ce at 3% nanocrystals with DI- water. 
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Fig 3.24 TEM images of LaF3: Ce at 5% nanocrystals with DI- water. 

 

 

Fig 3.25 TEM images of LaF3: Ce at 10 % nanocrystals with DI- water. 
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3.3.3 TEM results of using DI-chitosan 

 

Fig 3.26 TEM images of LaF3: Ce at 0 % nanocrystals with DI- chitosan 

 

 

Fig 3.27 TEM images of LaF3: Ce at 1 % nanocrystals with DI- chitosan 



 
 

45

 

Fig 3.28 TEM images of LaF3: Ce at 3 % nanocrystals with DI- chitosan 

 

 

 

Fig 3.29 TEM images of LaF3: Ce at 5 % nanocrystals with DI- chitosan. 
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Fig 3.30 TEM images of LaF3: Ce at 10 % nanocrystals with DI- chitosan 

 

 

Fig 3.31 TEM images of LaF3: Ce at 10 % nanocrystals with DI- water 
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Fig 3.32 TEM images of LaF3: Ce at 10 % nanocrystals with DI- chitosan 

 

From Figs 3.31 and 3.32, one can observe that in higher magnifications nanoparticles 

display lattice fringes, indicating that they have high crystallinity. In Fig 3.32, 

nanocrystals which are crystallized with the interplanar spacing of 0.322nm correspond to 

the (111) crystal plane of LaF3 in PDF standard card. And nanocrystals with interplanar 

spacing of 0.312nm correspond to the (102) crystal plane of CeF3. The consistent crystal 

lattice planes seen on nanocrystals prove that the elongated particles are not composed of 

agglomerated smaller particles. Instead, they are well-dispersed from each other (Veggel 

2002).  
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3.4 Particle Size Distribution (PSD) Analysis 

 

An image analysis software (Image J®) is used to analyze particle sizes from the TEM 

images of the LaF3: Ce3+ nanoparticles with DI- chitosan and DI- water. Because the 

samples with methanol only generate agglomerates, PSD analysis is not carried out. In 

the rest of the thesis, we will focus the fluorescence performance testing on fluorophores 

dispersed in DI- water only. 

 

A count of 400 particles is used in each case for the particle distribution analysis. They 

are collected from several images. Only particles with clear shape and boundary are 

chosen and measured. Figs 3.33 through Fig 3.42 show the size distribution results of 

particles from various conditions of synthesis using the student’s T-test approach. It was 

calculated that the particles with DI- chitosan have a mean diameter of 17.59 nm and a 

broad size distribution from 7 nm to 43 nm. Whereas the particles generated by using DI-

water are found to have an average size of 19.87 nm which is larger than DI- chitosan. 

And the fact that nanoparticles with methanol have smaller average particle size than 

those with DI- water and with DI- chitosan, respectively, agrees well with the estimation 

of particle size from XRD patterns. 
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3.4.1 PSD of sample prepared using DI- water 
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Fig 3.33 particle size distribution of LaF3: Ce at 0% nanocrystals with DI- water 
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Fig 3.34 particle size distribution of LaF3: Ce at 1% nanocrystals with DI- water 
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Fig 3.35 particle size distribution of LaF3: Ce at 3% nanocrystals with DI- water 
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 Fig 3.36 particle size distribution of LaF3: Ce at 5% nanocrystals with DI- water 
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Fig 3.37 Particle size distribution of LaF3: Ce at 10% nanocrystals with DI- water 

 

3.4.2 PSD for samples prepared using DI- chitosan 
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Fig 3.38 Particle size distribution of LaF3: Ce at 0% nanocrystals with DI- chitosan 
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Fig 3.39 Particle size distribution of LaF3: Ce at 1% nanocrystals with DI- chitosan 
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Fig 3.40 Particle size distribution of LaF3: Ce at 3% nanocrystals with DI- chitosan 
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Fig 3.41 Particle size distribution of LaF3: Ce at 5% nanocrystals with DI- chitosan 
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Fig 3.42 Particle size distribution of LaF3: Ce at 10% nanocrystals with DI- chitosan 
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Chapter 4  

Fluorescence Testing 

 

4.1 Fluorescence Measurement 

There are several factors that affect whether a compound will fluoresce or not, such as 

temperature of the environment, pH of the solution, concentrations of fluorophores, and 

sample internal properties. Here, we will focus our investigation on the influence on 

fluorescent properties induced by a few parameters, including changing the Ce dopant 

concentration, changing the fluorophore concentration, and using DI- water as solvent or 

DI- chitosan as deagglomerater in the synthesis of the LaF3: Ce nanocrystals. 

4.2 Measurement Apparatus 

 

Current spectrofluorometers are capable of recording both excitation and emission 

spectra. An emission spectrum is the wavelength distribution of an emission measured at 

a single constant excitation wavelength. An excitation spectrum is the dependence of 
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emission intensity, measured at a single emission wavelength, upon scanning the 

excitation wavelength. Such spectra can be presented on either a wavelength scale or a 

wave number scale. Alternatively, light of a given energy can be described in terms of its 

wavelength λ, frequency ν, or wave numberν . The usual units for wavelength are 

nanometers, and wave numbers are given in units of cm–1. Wavelengths and wave 

numbers are easily interconverted by taking the reciprocal of each value. However, most 

commercially available instrumentation yields spectra on the wavelength scale, and such 

spectra are more familiar and thus easier to interpret visually.  

 

For an ideal instrument, the directly recorded emission spectra would represent the 

photon emission rate or power emitted at each wavelength, over a wavelength interval 

determined by the slit widths and dispersion of the emission monochromator. Similarly, 

the excitation spectrum would represent the relative emission of the fluorophores at each 

excitation wavelength. For most fluorophores the quantum yield and emission spectra are 

independent of excitation wavelength. As a result, the excitation spectrum of a 

fluorophore can be superimposed on its absorption spectrum (Molecular Devices). 

 

However, such identical absorption and excitation spectra are rarely observed since 

excitation intensity is different at each wavelength. Even under ideal circumstances such 

correspondence of the excitation and absorption spectra requires the presence of only a 

single type of fluorophore, and the absence of other complicating factors, such as a 

nonlinear response resulting from a high optical density of the sample or the presence of 

other chromophores in the sample. Emission spectra recorded on different instruments 
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can be different because of the wavelength-dependent sensitivities of the instruments ( 

Molecular Devices). 

 

Fig 4.1 shows a schematic diagram of a generic spectrofluorometer: this instrument has a 

xenon lamp as a source of exciting light. Such lamps are generally useful because of their 

high intensity at all wavelengths ranging upward from 250 nm. The instrument shown is 

equipped with monochromators to select both the excitation and emission wavelengths.  

Both monochromators are motorized to allow automatic scanning of wavelength. The 

fluorescence is detected with photomultiplier tubes and quantified with the appropriate 

electronic devices. The output is usually presented in graphical form and stored digitally. 
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Fig 4.1 Schematic diagram of a spectrofluorometer, from ( Molecular Devices) 

 

In an ideal case, the recorded excitation and emission spectra would represent the relative 

photon intensity per wavelength interval. To obtain such "corrected" emission spectra, 

individual components must have the following characteristics (Lakowicz 2006): 

1. The light source must yield a constant photon output at all wavelengths; 

2. The monochromator must pass photons of all wavelengths with equal efficiency; 

3. The monochromator efficiency must be independent of polarization; and 

4. The detector (photomultiplier tube) must detect photons 
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Unfortunately, light sources, monochromators, and photomultiplier tubes with such ideal 

characteristics are not available. As a result, one is forced to compromise on the selection 

of components and to correct for the nonideal response of the instrument.  

 

Measurements of photoluminescent excitation and emission spectra were performed 

using a Varian Cary Eclipse Fluorescence Spectrophotometer (Fig 4.2). The LaF3: Ce 

nanocrystals solution with concentrations at 0.3 g/L and 1 g/L were carefully prepared 

and fully sonicated. The solution remains clear and homogeneous at 0.3 g/L, while a little 

bit white at 1 g/L. The excitation spectra were obtained by setting excitation mode as 

“Zero order excitation scanning” and slit value as “2.5”, ranging from 200 nm to 900 nm.  

 

Fig 4.2 Varian Cary Eclipse Fluorescence Spectrophotometer (Varian). 
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4.3 Fluorescence results 

4.3.1 Excitation spectra 

The fluorescence tests were carried out for both excitation and emission spectra for LaF3: 

Ce nanocrystals at different Ce concentrations and in different solution concentrations. In 

this chapter, the effect of Ce concentrations (0%, 1%, 5% and 10%) on excitation and 

emission spectra would be primarily studied.  

Figs 4.3- 4.6 show the room temperature excitation spectra of LaF3: Ce3+ doped with 

different Ce percentages (0%, 1%, 5% and 10%) with different solvents in 0.3 g/L 

solution and 1.0 g/L solution, respectively. It can be seen that the excitation spectra for 

Ce3+ contain five bands which are centered in 250 nm, 351 nm, 391 nm, 531 nm and 611 

nm for all cases. All spectra look quite similar. Their shapes and positions show little 

changes with the increase of Ce-doped concentration. It is also noticed that when using 

DI- water, the excitation intensity of the LaF3: Ce nanocrystals increases with the 

increase of Ce concentration. When LaF3 NCs were doped with 5% Ce3+, the intensity 

reaches the maximum, and then decreases with the further increase of Ce concentration. 

No obvious shift of the excitation peaks and trends were observed as solution 

concentration was changed from 0.3 g/L to 1.0 g/L. In the other hand, when using DI-

chitosan, it can be seen that LaF3: Ce3+ doped at 1% shows the highest intensity. As Ce 

concentration increases to 5%, the excitation intensity decreases. And when dopant 

concentration reaches 10%, the intensity touches the bottom. Compared to excitation 

spectra with DI- chitosan in 1.0 g/L, excitation spectra in 0.3 g/L remain the same 

intensity trend with different Ce concentrations.  
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Fig 4.3 PL excitation spectra for LaF3: Ce3+ NCs with DI- water at 0.3 g/L at different Ce concentrations. 

 

Fig 4.4 PL excitation spectra for LaF3: Ce3+ NCs with DI- water at 1.0 g/L at different Ce concentrations. 
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Fig 4.5 PL excitation spectra for LaF3: Ce3+ NCs with DI- chitosan at 0.3 g/L at different Ce concentrations. 

 

 
Fig 4.6 PL excitation spectra for LaF3: Ce3+ NCs with DI- chitosan at 1.0 g/L at different Ce concentrations. 
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4.3.2 Emission spectra 

Figs 4.7 to 4.10 show the emission spectra of LaF3: Ce at different Ce concentrations. To 

investigate emission spectra conveniently, three emission patterns were plotted in one. In 

emission patterns, emission wavelength from 200 nm~ 675 nm was excited at 250 nm. 

The emission wavelength from 675 nm~ 725 nm was excited at 351 nm, and wavelength 

from 725 nm~ 850 nm was excited at 391nm. However, no emission spectra obtained 

when excited at 531 nm or 611 nm. For all images below (Fig 4.7-Fig 4.10), one can 

observe that the emission spectra consist of a broad band from 250 nm to 400 nm with a 

maximum at 305 nm, and three sharper peaks centered at 499 nm, 700 nm, and 782 nm. 

 

Fig 4.7 PL emission spectra of LaF3: Ce3+ NCs with DI- water at 0.3 g/L with different Ce concentrations 

 

Fig 4.7 shows the photoluminescent emission spectra of LaF3: Ce nanocrystals with 

different Ce concentrations (0%, 1%, 5% and 10%). It shows that the emission intensity 
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increases as the Ce concentration increases from 0% to 5%. After this, emission intensity 

falls down when 10% Ce ions were doped.  

 

Fig 4.8 PL emission spectra of LaF3: Ce3+ NCs with DI- water at 1.0 g/L with different Ce concentrations.  

 

From Fig 4.8, it was found that the emission spectra intensity increases as the Ce 

concentration increases except the peak at 500 nm.  
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Fig 4.9 PL emission spectra of LaF3: Ce3+ NCs with DI- chitosan at 0.3 g/L with different Ce 

concentrations.  

 
In Fig 4.9, it is found that emission spectra shows no trend when λex = 250 nm. However, 

when λex = 351 nm and λex = 391 nm, the emission spectra decreases as the Ce dopant 

percentage increases. 
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Fig 4.10 PL emission spectra of LaF3: Ce3+ NCs with DI- water at 1.0 g/L with different Ce concentrations.  

 

In Fig 4.10, it is found that emission intensity decreases as Ce ions increases. 

 

4.3.3 Stokes shift 

Figs 4.11 to 4.14 present the information about excitation and emission spectra in same 

image. In excitation spectra, the peaks marked 1), 2) and 3) represent the excitation peaks 

obtained from zero order excitation scanning. Their values were very close to 250 nm, 

351 nm and 391 nm, respectively. The peaks beyond 391 nm were not labeled here 

because there were no corresponding emission spectra obtained upon testing. In emission 

spectra, the peaks marked a), b) and c) were excited at 250 nm. And the emission peaks 

marked d) and e) were excited at 351 nm and 391 nm, respectively. 
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 To calculate the Stokes shift, peaks 1), 2) and 3) were chosen to obtain excitation 

wavelengths, and peaks b), d) and e) were chosen to achieve emission wavelengths. The 

Stokes shift was calculated by (hc/λex –hc/λem) (J).  

 

Fig 4.11 PL excitation and emission spectra of LaF3: Ce3+ NCs with DI- water at 0.3 g/L  
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Fig 4.12 PL excitation and emission spectra of LaF3: Ce3+ NCs with DI- water at 1.0 g/L  

 

Fig 4.13 PL excitation and emission spectra of LaF3: Ce3+ NCs with DI- chitosan at 0.3 g/L  
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Fig 4.14 PL excitation and emission spectra of LaF3: Ce3+ NCs with DI- chitosan at 1.0 g/L  
 
 

Table 4.1 Stokes shift table of DI- water in 0.3 g/L solution 

 

DI-water 
0.3 g/L 

Excitation 
wavelength 
λex (nm) 

Emission 
Wavelength 
λem (nm) 

Stokes Shift 
ΔE = (hc/λex  –
hc/λem) (10-19 J) 

1% 234.92  ± 1.5 499.16 ± 1.5 4.477 ± 0.066 

5% 247.88 ± 1.5 499.16 ± 1.5 4.034 ± 0.060 

10% 250.00 ± 1.5 499.16 ± 1.5 3.966 ± 0.060 

1% 351.40 ± 1.5 700.89 ± 1.5 2.819 ± 0.030 

5% 351.40 ± 1.5 700.84 ± 1.5 2.819 ± 0.030 

10% 351.40 ± 1.5 700.83 ± 1.5 2.819 ± 0.030 

1% 391.90 ± 1.5 742.45 ± 1.5 2.393 ± 0.025 

5% 391.90 ± 1.5 742.45 ± 1.5 2.393 ± 0.025 

10% 390.78 ± 1.5 742.46 ± 1.5 2.408 ± 0.025 
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Table 4.2 Stokes shift table of DI- water in 1.0 g/L solution 

 

DI-water 
1.0 g/L 

Excitation 
wavelength 
λex  (nm) 

Emission 
Wavelength 
λem (nm) 

Stokes Shift 
ΔE = (hc/λex –
hc/λem) ( 10-19 J) 

1% 241.89± 1.5 499.16 ± 1.5 4.233 ± 0.063 

5% 233.80 ± 1.5 499.16 ± 1.5 4.517 ± 0.066 

10% 243.01 ± 1.5 499.16 ± 1.5 4.195 ± 0.062 

1% 351.40 ± 1.5 700.83 ± 1.5 2.819 ± 0.030 

5% 351.40 ± 1.5 700.83 ± 1.5 2.819 ± 0.030 

10% 351.39 ± 1.5 700.83 ± 1.5 2.819 ± 0.030 

1% 390.78 ± 1.5 781.56 ± 1.5 2.542 ± 0.024 

5% 391.89 ± 1.5 781.56 ± 1.5 2.527 ± 0.024 

10% 390.79 ± 1.5 781.56 ± 1.5 2.542 ± 0.024 

 

Table 4.3 Stokes shift table of DI- chitosan in 0.3 g/L solution 

 

DI-
chitosan 
0.3 g/L 

Excitation 
wavelength 
λex (nm) 

Emission 
Wavelength 
λem (nm) 

Stokes Shift 
ΔE = (hc/λex–
hc/λem) (10-19 J) 

1% 250.00 ± 1.5 499.16 ± 1.5 3.966 ± 0.060 

5% 247.48 ± 1.5 498.04 ± 1.5 4.038 ± 0.061 

10% 248.88 ± 1.5 499.16 ± 1.5 4.002 ± 0.060 

1% 351.40 ± 1.5 700.84 ± 1.5 2.819 ± 0.030 

5% 350.28 ± 1.5 700.84 ± 1.5 2.837 ± 0.030 

10% 350.28 ± 1.5 700.84 ± 1.5 2.837 ± 0.030 

1% 390.78 ± 1.5 781.56 ± 1.5 2.542 ± 0.024 

5% 391.90 ± 1.5 781.56 ± 1.5 2.527 ± 0.024 

10% 390.01 ± 1.5 782.96 ± 1.5 2.556 ± 0.024 
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Table 4.4 Stokes shift table of DI- chitosan in 1.0 g/L solution 

 

DI-
chitosan 
1.0 g/L 

Excitation 
wavelength 
λex (nm) 

Emission 
Wavelength 
λem (nm) 

Stokes Shift 
ΔE = (hc/λex –
hc/λem) (10-19 J) 

1% 247.48 ± 1.5 499.16 ± 1.5 4.047 ± 0.061 

5% 245.25 ± 1.5 499.16 ± 1.5 4.120 ± 0.061 

10% 248.88 ± 1.5 499.16 ± 1.5 4.002 ± 0.060 

1% 351.40 ± 1.5 700.84 ± 1.5 2.819 ± 0.030 

5% 351.40 ± 1.5 700.83 ± 1.5 2.819 ± 0.030 

10% 351.39 ± 1.5 700.84 ± 1.5 2.819 ± 0.030 

1% 390.78 ± 1.5 781.56 ± 1.5 2.542 ± 0.024 

5% 391.89 ± 1.5 781.56 ± 1.5 2.527 ± 0.024 

10% 391.89 ± 1.5 781.56 ± 1.5 2.527 ± 0.024 

 
 

 

Tables 4.1 to 4.4 show Stokes shift decreased as more Ce ions were doped in most cases. 

In other words, higher impurity in nanoparticles induced by higher dopant concentration 

decreased Stokes shift, and subsequently decreased energy loss and improved their 

fluorescence properties. 
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Chapter 5 

Discussion 

 

5.1 Discussion 

 

To investigate LaF3: Ce nanoparticle fluorescence, the effects of different Ce 

concentrations, the type of solvents/ deagglomerater, and the fluorophore concentrations 

will be analyzed. In Chapter 4, we shed some light on the effect of varying Ce dopant 

concentrations on both emission, excitation spectra and on the Stokes shift. In this 

chapter, we will focus on the other two factors: the effect of the solvent/ deagglomerater 

used in synthesis and the effect of different fluorophore concentrations. 

 
 
5.1.1 Comparison of excitation 
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1) Effects of DI- water solvent and DI- chitosan deagglomerater 
 

 
Fig 5.1 Excitation spectra (λ = 850 nm) of 0% Ce3+ doped LaF3 nanocrystals in 0.3 g/L solution (left) and in 
1.0 g/L solution (right), respectively  
 

 
 

Fig 5.2 Excitation spectra (λ = 850 nm) of 1% Ce3+ doped LaF3 nanocrystals in 0.3 g/L solution (left) and in 
1.0 g/L solution (right), respectively  
 

 
 

Fig 5.3 Excitation spectra (λ = 850 nm) of 5% Ce3+ doped LaF3 nanocrystals in 0.3 g/L solution (left) and in 
1.0 g/L solution (right), respectively  
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Fig 5.4 Excitation spectra (λ = 850 nm) of 10% Ce3+ doped LaF3 nanocrystals in 0.3 g/L solution (left) and 
in 1.0 g/L solution (right), respectively  
 
 
Figs 5.1 to 5.4 show how DI- water solvent and DI- chitosan deagglomerater affected the  

LaF3 NCs excitation spectra when doped with 0%, 1%, 5% and 10% Ce ions in 0.3 g/L or 

1.0 g/L solvent. It can be seen that in DI- water case, when 0% or 1% Ce ions are doped 

with LaF3 NCs, solution with DI- water shows lower intensity than with DI- chitosan. 

However, as the Ce concentration increases to 5% and 10%, respectively, the solution 

using DI- water shows higher excitation intensity than using DI- chitosan. The same trend 

occurs in both 0.3 g/L and in 1.0 g/L cases. 

 

The resulting intensity difference indicates that when Ce concentration is lower than 5%, 

the solution with DI- chitosan can emit more fluorescence; while the Ce concentration 

keeps increasing to 10%, solution with DI- water would give higher excitation spectra 

intensity. 
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2) Effects of the LaF3: Ce fluorophore concentration 
 

 
Fig 5.5 Excitation spectra (λ = 850 nm) of 0% Ce3+ doped LaF3 nanocrystals with DI-water (left) and with 
DI– chitosan (right), respectively. 

 
Fig 5.6 Excitation spectra (λ = 850 nm) of 1% Ce3+ doped LaF3 nanocrystals with DI-water (left) and with 
DI- chitosan (right), respectively. 

 

 
Fig 5.7 Excitation spectra (λ = 850 nm) of 5% Ce3+ doped LaF3 nanocrystals with DI-water (left) and with 
DI- chitosan (right), respectively. 
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Fig 5.8 Excitation spectra (λ = 850 nm) of 10% Ce3+ doped LaF3 nanocrystals with DI-water (left) and with 
DI- chitosan (right), respectively. 
 

 
Figs 5.5- 5.8 reveal the effects of different fluorophore concentrations on LaF3: Ce NCs 

excitation spectra. One can notice that when other conditions are kept identical, 1.0 g/L 

solution always results in higher intensities than 0.3 g/L solutions. This indicates that 

higher solution concentration can generate higher emission intensity. 

 
 
5.1.2 Comparison of emission 
 
 
To compare the nanoparticles emission spectra conveniently, three different emission 

spectra are plotted in one pattern. From the excitation scanning, we know all of them can 

be excited at 250 nm, 351 nm, and 391 nm. The emission wavelengths ranging from 200 

nm to 675 nm was excited at 250 nm. The emission wavelength at 650 nm~ 725 nm was 

excited at 351nm. Additionally, the wavelength at 725 nm~ 850 nm was excited at 391 

nm. 
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1) Effects of DI- water solvent and DI- chitosan deaggolmerater on the emission 
spectra 
 

  
Fig 5.9 Emission spectra of 0% Ce3+ doped LaF3 nanocrystals in 0.3 g/L solution (left) and in 1.0 g/L 
solution (right), respectively 
 
 

 
 
Fig 5.10 Emission spectra of 1% Ce3+ doped LaF3 nanocrystals in 0.3 g/L solution (left) and in 1.0 g/L 
solution (right), respectively 
 
  

 
Fig 5.11 Emission spectra of 5% Ce3+ doped LaF3 nanocrystals in 0.3 g/L solution (left) and in 1.0 g/L 
solution (right), respectively  
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Fig 5.12 Emission spectra of 10% Ce3+ doped LaF3 nanocrystals in 0.3 g/L solution (left) and in 1.0 g/L 
solution (right), respectively  
 
 
As can be seen from Fig 5.9 to Fig 5.12, solutions of LaF3 nanocrystals doped with 1%, 

5% and 10% with DI- water generate higher intensity than those with DI- chitosan when 

we keep other parameters identical. It shows that LaF3: Ce3+ nanocrystals which use DI-

water as solvent can provide better fluorescent properties than using DI- chitosan 

deagglomerater. Instead, adding chitosan in synthesis quenches the nanoparticle 

fluorescence.  

 

One can also observe from the particles size distribution figures for samples with 

chitosan (Figs 3.38 to3.42) and those for DI- water (Figs 3.33 to 3.37) that the NCs in the 

chitosan possess more relatively small particles than those in DI- water solvent.  Samples 

with smaller size would possess higher surface area and more defects. These defects will 

lead to more nonradioactive decay on the surface of smaller crystals and thus will reduce 

the luminescence efficiency (Zhu et al. 2007). Similar observation was cited in the work 

of Li et al., (2008),  where coating CeF3: Tb3+ with LaF3 shells would increase the 

distance between the luminescent lanthanide ions and then decrease the surface quencher 

thus reducing the nonradioactive pathways.  
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Furthermore, while the main use of chitosan is to deagglomerate NCs, it plays a negative 

role in hampering the emission intensity. Such negative behavior can be attributed to the 

high content of oxygen in chitosan which acts as an external quencher. 

 

2) Effect of different fluorophore concentrations on the emission spectra 
 
 

  
 
Fig 5.13 Emission spectra of 0% Ce3+ doped LaF3 nanocrystals with DI-water (left) and with DI-chitosan 
(right), respectively  
 
 
 

 
Fig 5.14 Emission spectra of 1% Ce3+ doped LaF3 nanocrystals with DI-water (left) and with DI-chitosan 
(right), respectively  
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Fig 5.15 Emission spectra of 5% Ce3+ doped LaF3 nanocrystals with DI-water (left) and with DI-chitosan 
(right), respectively  
 
 

 
 
Fig 5.16 Emission spectra of 10% Ce3+ doped LaF3 nanocrystals with DI-water (left) and with DI-chitosan 
(right), respectively  
 

Figs 5.13 - 5.16 reveal the effects of different fluorophore concentrations on LaF3: Ce 

NCs emissions spectra. One can notice that when other conditions are kept the same, 1.0 

g/L solution always generates higher intensity than 0.3 g/L. The fact that this result 

agrees well with the trend from Figs 5.5 to 5.8, testifies that the emission intensity is 

proportional to the amplitude of the excitation spectrum at the excitation wavelength. 

And it also indicates that higher solution concentration can generate higher emission 

intensity. 
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Chapter 6 

Conclusions and future work 

 

6.1 Conclusions 
 
 
In summary, the highly water-soluble lanthanide-doped LaF3 have been synthesized in 

aqueous solutions: methanol, DI- water and DI- chitosan. The LaF3 nanocrystals with 

methanol have a relatively smaller mean size of about 7 nm, but offer agglomeration. 

Those nanoparticles with DI- water and DI- chitosan are in a mean size of about 19 nm 

and 17 nm, respectively, with a nearly hexagonal shape. In addition, they have high 

crystallinity and well dispersion in solvents. Through photoluminescence tests, the 

nanoparticles with DI- water /DI- chitosan exhibited strong luminescence in visible 

regions.  

 

Effects of parameters including Ce concentrations, DI- water and DI- chitosan used in the 

synthesis as well as fluorophore concentrations on nanoparticles fluorescence were 

investigated. We summarize the major findings based on these parameters as follows: 
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• Solutions with higher LaF3: Ce fluorophore concentration provide stronger 

fluorescence than those with lower solution concentration. This is because 

solutions at higher concentration contain more nanoparticles which can absorb 

and emit more photons and generate more fluorescence. 

 

• A solution with DI- water provides stronger fluorescence than that with DI-

chitosan, which is possibly due to the solution’s pH value and particle size. As 

mentioned before, during the process to synthesize nanocrystals with DI- chitosan, 

pH of the solution was adjusted to 6.5 with diluted ammonia solution or acetic 

acid in order to prevent nanoparticles aggregation and precipitation. But the fact 

that pH of the solution tested by pH paper was not accurate enough may also 

affect their photoluminescence. Furthermore, nanoparticles size affected 

fluorescence as well. The observation from PSD suggests that nanoparticles with 

DI- water offer relatively larger particles size than those with DI- chitosan, and 

subsequently have less surface area and less defects leading to stronger 

photoluminescence.  

 

• One may think that higher Ce concentration provides higher fluorescence. 

However, the extra fluorescence obtained decrease as dopant amount increases 

due to concentration quenching effect. The fluorescent tests give us the 

information about the maximum quantum yield. For DI- water, quantum yield 

would increase when Ce concentration reaches 5%, and then fall down. While 
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with DI- chitosan, nanoparticles quantum yield reaches maximum at 1% and 

decreases when doping more Ce ions. 

 

Besides the factors mentioned above, some environmental conditions may also play a 

role of affecting fluorescent results, for instance, temperature, light exposure and so on. 

 

6.2 Future work 
 
 
To date, little work has been done about LaF3: Ce nanocrystals. Further studies are 

currently underway to investigate LaF3: Ce nanocrystals characterizations using other 

techniques such as X-ray fluorescence. Furthermore, different rare earth elements 

including Er, Eu, Pr and Sm are very promising alternative dopants to investigate using 

the same simple synthesis means as well.  

 

To reduce the surface defects leading to nonradioactive decay, growth of a crystalline 

shell of inorganic material will be carried out in future work. These core/shell structures  

were shown as effective in enhancing the luminescence efficiency on CeF3: Tb3+ @ LaF3 

(Core-Shell) nanoplates (Stouwdam et al. 2003; Wang et al. 2006 Chem. Mater.; Li et al. 

2008). Several factors affecting fluorescence results need to be taken into account as well; 

for example, temperature of environment, pH of the solution, size of the sample, and 

samples store condition.  
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