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ABSTRACT 

 
Many applications, e.g., motion planning, virtual reality, CAD, vehicle 

navigation, object recognition, photogrammetry, remote sensing, etc., all require a 

geometrical representation of the three dimensional structure of a scene. In this 

dissertation we study the problem of determining the 3D structure of a scene given 

images of it from various views.  

We built Biclops a two camera directed vision system. Each camera is mounted 

on a Pan-Tilt Unit which can be independently controlled. Biclops is built as a tool so 

that it can be picked up by an industrial robot. This eye in hand system is used to find the 

structure of the scene. Two robots are mounted on a Robot Transport Unit (RTU) on 

either end. We use lines in the images and find their intersection points and use them to 

make the necessary correspondence between the points in different views. Lines and 

point features and their corresponding entities are used to determine the 3D structure of 

the scene. The 3D structure is transferred to the other robot space for it to access the 

objects in the scene.  

 viii



The accuracy of 3D structure of the scene found is dependent on the accuracy of 

the various parameters of the underlined equipment. We go a step further to improve the 

accuracy of the parameters of various equipments used. We developed a new method 

called ViCKi (virtual close loop kinematic method) to calibrate the industrial robots and 

the RTU equipment using a laser pointer. We also calibrate the pan tilt units of the 

Biclops using the laser pointer tool. Various experiments are done to show the accuracy 

of the calibration methods.  

This calibrated equipment is used to find the 3D structure of a scene. Various 

experiments are done to prove the concept that using lines and intersection points are 

better than using the traditional corner features. The robot uses this 3D structure to pick 

up the objects. 

We also used the lines and intersection points to find a track painted on the 

ground. A robotic mobile platform is used and a vision system is built. The vision system 

takes pictures of the track and finds its 3D location. The RMP plans it trajectory to follow 

the track without losing the track out of sight. 
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Chapter 1. Introduction 

1.1. Introduction 
Many applications, e.g., motion planning, virtual reality, CAD, vehicle 

navigation, object recognition, photogrammetry, remote sensing, etc., all require a 

geometrical representation of the three dimensional structure of a scene. Inference of 3D 

structure of objects in a scene from its 2D projections is a long studied problem. One of 

the important methods is to determine the 3D shape of visible objects in a static scene 

from images acquired by two or more cameras or a single camera at multiple view points. 

The images obtained from numerous viewpoints are processed for various primitives 

such as points, lines, curves, planar entities, etc., which are the input to the system. For 

any of these primitives, the main problem boils down to the correspondence between 

those primitives in the images. Either human intervention is needed or extensive search 

techniques which include epipolar constraints, correlation, optical flow, etc., are 

developed to find these correspondences. All these search techniques are susceptible to 

image noise. Various algorithms are developed using point correspondences to determine 

the structure [1], [2], [3]. Points are very difficult features to detect in an image and are 

more susceptible to noise, unlike lines and curves which are easier to detect and are less 

susceptible to noise. When a point is detected in an image there is no means to correct or 

to minimize the error in the detection process. When, if an edge is detected in an image 

and using a least squares error minimization a curve is fit to the edge thus we have some 

means to minimize the errors due to the image acquisition. For points we have two 

degrees of freedom, i.e., its position, which can only be adjusted or corrected using very 

localized image patch, whereas for an edge the two degrees of freedom are its position 
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and orientation which can use the information from a larger area of the image making up 

this line, thus giving us a greater means to reduce the errors. This is the reason that many 

people have started using lines or curves or combinations of them as primitives [2]-[9]. 

1.2. CCD Cameras 
Most modern cameras are Charge-coupled-device (or CCD) cameras. A CCD 

sensor uses a rectangular grid of electron sites laid over a thin silicon wafer to collect the 

amount of light energy reaching each of them. When a photon strikes the electron site, an 

electron-hole pair is generated. The electrons are captured by applying a positive 

electrical potential to the corresponding gate. The electrons generated at each site are 

collected over a fixed period of time producing a digital image. 

1.3. Digital Image 
A real image is a continuous 2D picture for processing the image it has to be 

digitized somehow. CCD and other digital cameras now produce digital images directly. 

A digital image is a 2D grid representation of the image by using various properties of the 

particular elements of the grid called the pixels. The images pixels can be composed of 

any properties ranging from intensity, color red, blue and green values, infrared intensity, 

x-ray intensity, etc. For our purposes the images are either gray scale (intensity level from 

black to white) or color (red, green, blue). A digital image of width (W) and height (H) 

can be represented as 

( ) [ ) [ ), 0, , 0,I x y x W y H∀ ∈ ∈  ( 1.1) 
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1.4. Pinhole Camera Model 
A pinhole camera is a 

device where one side of a 

box has a pin hole and the 

opposite side is a translucent 

plate. This pinhole camera 

will project an inverted 

image on the translucent plate, of the light source in front of the box. Since the pinhole 

camera produces an inverted image it is convenient to consider a virtual image on a plane 

lying in front of the pinhole, at the same distance from pinhole as the actual image plane 

as shown in Figure 1.1 where the image is straight. 

 
Figure 1.1. A pinhole camera projecting an object onto the image 

plane. 

1.5. Perspective Projection 
Assuming the pin 

hole is very small one ray of 

light would pass through 

each point in the image 

plane of the plate, the 

pinhole, and some scene 

point. In reality, the pinhole 

will have a finite size, and 

each point in the image 

plane will collect light from 

a cone of rays with a finite 

solid angle. Imaging geometry will not strictly apply in pinhole cameras or real cameras. 

 
Figure 1.2. Perspective Projection. 
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In real cameras the projection is also complicated by the lens, aperture, etc. Despite all 

this the pinhole perspective projection model is mathematically convenient and often 

provides an acceptable approximation of the imaging process.  

Consider a coordinate system in pixels with the origin at the top left corner of the 

image, and the u-axis along the horizontal rows from left to right and the v-axis along 

vertical columns from top to bottom as shown in Figure 1.2. Consider a 3D coordinate 

system fixed at the camera focal point (C), with x and y axis parallel to the u and v axis 

respectively and z axis coming out of the camera. Let an orthogonal ray passing through 

the optical center intersect the image plane at a point (u0, v0) in pixel units. This point is 

called the “Principal Point”. The orthogonal distance between the optical center and the 

image plane is the “focal length” (f). Since we are measuring the distances in the image 

as pixels we need to know the scale factors of the two axis u and v. Let these scale factors 

be sx and sy.  

Consider a 3D point (x, y, z) projected into the image as a point (u, v). Based on 

similar triangles we get the two following equations 

( ) ( )0 0c c

c x

x

u u u u

c

x x
f z f

s

− −
= ⇔ =

⎛ ⎞⎜ ⎟
⎝ ⎠

z
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( 1.3) 

The parameters ‘fx’, ‘fy’, ‘u0’ and ‘v0’ are specific to this camera and do not depend on 

the position or orientation of the camera. They only depend on the camera lens and focus. 

These parameters are often referred to as “internal parameters” in contrast to “external 
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parameters” of a camera which are position and orientation of the camera coordinate 

system with respect to a global coordinate system. 

1.6. Goal 
The goals of this dissertation are to: 

• determine the 3D structure of a scene (a geometric representation of all 

the objects in a scene) using active automatic correspondence of lines and 

their intersection points in the images. 

• improve the accuracy of the 3D structure of scenes obtained by 

improving the camera calibration parameters, also going further by 

modeling the underlying equipment used and calibrating them.  

1.7. Problem Formulation 
Given a set of images of objects in a static scene taken by a calibrated camera (on 

a stationary or mobile robot) from various viewpoints, the aim is to determine the three 

dimensional structure of objects, i.e., to determine the 3D location of all the edges and 

corners of visible objects. By determining the 3D structure of all objects, the scene is 

reconstructed. For example consider a box in the field of view of the cameras. Images of 

this box are taken from various view points and the 3D locations of its edges are 

determined. Another objective is to model the underlying robot camera systems and 

calibrate their parameters to improve the accuracy. For example consider a hand in eye 

system. The 3D structure obtained using this system is solely dependent on the accuracy 

of the robot and the camera calibration parameters. We develop new algorithms to 

calibrate the robot, the RTU, pan- tilt mechanisms and the cameras to improve the 

accuracy of the parameters.  

 5



1.8. Contribution 

1.8.1. Industrial Robot and RTU Calibration 

We developed a new calibration procedure to calibrate industrial robots and other 

ancillary mechanisms. The proposed method uses a laser pointer tool on the robot’s end-

effector to aim at a fixed location on a distant object. By projecting the laser pointer onto 

a distant object, the resolution of observations is improved, increasing accuracy of 

measurements of the joint angles required for accurate calibration of the robot. The 

calibration procedures to calibrate industrial robots and RTU are described in detail in 

Chapter 4 and Chapter 5 respectively. 

1.8.2. Pan-Tilt cameras Calibration 

The robot and RTU calibration procedures improved the accuracy of their 

parameters allowing us to compute a more accurate position of the PTU origin. This 

alone is not sufficient for accurate position of the cameras on the PTUs. The PTUs have 

their own mechanisms which also need to be modeled for accurate position of the 

cameras with respect to the robots base coordinate system. A new calibration procedure is 

developed with complete pant-tilt model without any assumptions. The calibration 

procedure uses a single unknown 3D point in space. The robot motion and the pan-tilt 

motion are used to acquire various images of this point. The calibration is carried out 

using the acquired data. The details of the procedure are presented in Chapter 6.  

1.8.3. Automatic correspondence 

All the methods that use lines segments as primitives either assume 

1. correspondence is given or 
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2. the sequence of images is taken by a camera from viewpoints very close to 

each other such that the images are nearly similar to perform a region 

matching. 

A new method is proposed which does not make any of the above assumptions 

and uses the IDI points (indirectly determined intersection points) as the guide to 

determine the corresponding line segments automatically. No real image points are used 

so the errors in determining the (intersection) points are dependent on the errors in the 

lines which are easier to extract and are less susceptible to noise. The correspondence 

between the IDI points is made using the epipolar constraint.  

1.9. Outline of Dissertation 
The dissertation is arranged in chapters each describing one of the major aspects 

of the goal.  

1.9.1. Literature Review 

Chapter 2 describes in detail about the various technologies and their state of the 

art, used in this dissertation. 

1.9.2. Work-Cell 

Chapter 3 describes the work-cell in detail. It consists of two Staubli robots 

mounted on a rail transport unit.  

1.9.3. Robot Calibration 

The cameras that we use are mounted on Staubli robots. These robots are 

repeatable but not very accurate. Since the PTUs are mounted on the robot and accuracy 
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of their position depends on the accuracy of the robots parameter, so they need to be as 

accurate as possible. In Chapter 4 a new method called ViCKi is developed to calibrate 

the robot system. Robots are calibrated using this method and experiments are done to 

show the improvement in the accuracy of the system.  

1.9.4. Robot transport unit (RTU) Calibration 

The two Staubli RX-130 robots are mounted on a Robot transport unit (RTU) 

such that each one of them can be independently controlled to move along the track. 

Since the cameras are mounted on a robot which is mounted on the RTU, the accuracy of 

the RTU is important. The accuracy of RTU is also important in transferring the 3D 

information (objects 3D points, line positions etc) from one robot to the other. In Chapter 

5 RTU calibration methods are presented. Experiments show the improvement in the 

accuracy. 

1.9.5. Pan-Tilt Camera Calibration 

The camera system we used to acquire images of the workspace is called Biclops. 

Biclops is a custom-made, dual-camera motorized vision system. It consists of two 

FireWire color cameras, each attached to a pan-tilt unit (PTU). The PTUs are attached to 

a bracket, which is connected to a tool base. Biclops has four degrees of freedom, i.e., 

one pan axis and one tilt axis for each camera. The PTUs can be programmed to move the 

cameras to aim at any desired location in the workspace. Chapter 6 presents a new 

method to calibrate Biclops. Experiments show the enhanced accuracy.  
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1.9.6. Indirectly Determined Intersection (IDI) Points 

Chapter 7 describes various image processing routines and algorithms to find the 

image features. It describes IDI points and their extraction from images. Various 

experiments, which prove IDI point extraction is less error prone than other image points, 

are presented.  

1.9.7. 3D Structure Using IDI Points 

Chapter 8 describes in detail the underlined theory of 3D structure from IDI 

points. Experiments to compute the 3D structure and calibration are also presented. The 

theory is applied to different applications involving either the Staubli robots or the 

Segway robot. 
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Chapter 2. Previous work 

2.1. Three-dimensional Structure 

2.1.1. 3D Structure using Points 

Determination of three dimensional structure (3D position and orientation of all 

the objects in the scene) from motion and motion parameters is a long studied problem. 

One of the many approaches is to use point correspondences within various images 

obtained from a single camera or multiple cameras. Faugeras and Mourrain [1], [2] 

studied the geometric and algebraic relations and constraints between the corresponding 

points in number of images. These relations are of three types bilinear, trilinear and 

quadrilinear arising when we consider two, three and four images, respectively, among 

the N images. The bilinear relations are the well-known epipolar constraints. They also 

show that two trilinear relations imply the bilinear ones, the quadrilinear relations are in 

the ideal generated by the bilinearities and trilinearities and do not bring in new 

information. Faugeras and Mourrain [2] showed how the perspective projection equation 

can be suitably generalized and that in the case of three images there exist two 

independent trilinear relations between the coordinates of the images of a 3D line. For 

projective reconstruction from images, there exist a minimum number of entities that are 

required to compute a solution to the structure without ambiguities. For three views and a 

projective reconstruction Oskarsson, Zisserman and Astrom [3] derived the minimal 

number of entities that are required for a combination of points and lines. For three 

images, the minimal cases for combinations of points and lines are: “6 points,” “4 points 

and 3 lines,” “2 points and 6 lines” and “9 lines.” Thus knowing the minimum number of 

entities the 3D structure can be determined without any ambiguities. 
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2.1.2. 3D Structure using Lines 

Making point correspondence is a difficult process and usually involves human 

intervention or high level input. Also the process suffers from image noise. Many people 

have started to use the correspondence of lines and curves to determine the structure. 

Since a line has 2D of freedom when a correspondence between two lines is made we are 

only concerned with the match of the direction (thus the actual position of individual 

points on these lines need not correspond, giving them an extra degree of freedom to 

move along the line). Bartoli and Sturm [4] addressed the problem of camera motion and 

structure reconstruction from line correspondences across multiple views, from 

initialization to final bundle adjustment. Based on Plucker coordinates [4] to represent the 

lines, they proposed a maximum likelihood algorithm, relying on linearizing the Plucker 

constraint and on a Plucker correction procedure to compute the closest Plucker 

coordinates to a given 6-vector. However the correspondence of the lines in three images 

is assumed to be given. Hartley [5] developed a practical and rapid algorithm for 

projective reconstruction of a scene consisting of a set of lines seen in three or more 

images with uncalibrated cameras.  

Quan and Kanade [7] investigated the properties of projection of lines by affine 

cameras (hypothetical cameras with affine transformations) and proposed a linear 

algorithm for affine structure from line correspondences. The affine structure is a good 

approximation to the real one when the depth of objects is small. They introduced a one-

dimensional projective camera which converted the problem of “3D affine reconstruction 

of line directions” into a “2D projective reconstruction of points.” They also proposed a 

line based factorization method to handle redundant views. Quan and Kanade [8] 
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extended this factorization method to lines and developed a multi-step factorization 

method. Instead of one step factorization for points, a multi-step factorization method is 

developed for lines based on the decomposition of the shape and motion into 

substructures. Each of these substructures is then linearly solved by factorizing the 

appropriate measurement matrices.  

Taylor and Kriegman [9] developed a new method to determine the three 

dimensional structure of a scene composed of straight line segments using the image data 

obtained from a moving camera. The algorithm is formulated in terms of an objective 

function which measures the total squared distance in the image plane between the 

observed and projected edge segments. The objective function is then minimized with 

respective the line parameters and the camera position. Berthilsson and Åström [10] 

proposed an algorithm for reconstructing a general 3D curve from a number of 2D 

images taken by uncalibrated cameras. This algorithm is based on aligning the subspaces 

by using orthogonal projections and maximizing some of the largest Eigenvalues of the 

sum of these projections. No point correspondences except the end points are assumed.  

2.1.3. 3D Structure using Curves 

Kahl and Heyden [11] showed how to use corresponding conics to compute the 

fundamental/essential matrix and to reconstruct the scene. Kaminski, Michael Fryers [12] 

showed how one can compute, without any knowledge on the camera, the homography 

induced by a single planar curve. They derived the extended Kruppa’s equations that 

describe the epipolar constraint of two projections of a general algebraic curve. They also 

established the minimal number of algebraic curves required for a solution of the epipolar 

geometry as a function of the degree and genus. Papadopoulo and Faugeras [13] 
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discussed the problem of determining the structure and motion of rigid curve. They used 

long monocular sequences of images of the curve and computed the derivatives that are 

defined on the spatio-temporal surface generated by the curve. For general 3D rigid 

curves, there is exactly one constraint for each image point that relates these derivatives 

to the kinematic screw and its first order time derivative. 

2.1.4. Analysis of 3D Structure Methods 

Determining structure using line and curve correspondence has eased some of the 

problems with point correspondences. In detecting lines, the image noise is minimized in 

one degree of freedom, thus the equations of 2D lines do not suffer as much as points 

from image noise. Though the lines are easier to detect, the correspondence problem still 

remains. Most of the time human intervention is needed. Though human intervention is 

required less frequently for line correspondences than points, it is still undesirable. Some 

automatic means to make the line correspondences is needed. 

2.2. Calibration of Cameras  
Various applications like photogrammetry, remote sensing, motion planning, 

virtual reality, CAD, vehicle navigation, object recognition, etc., all require calibrated 

cameras. Thus, determining the camera calibration parameters is necessary. The 

calibration parameters can be determined using the point, line or curve correspondences 

in various images of objects in known locations. Luong and Faugeras [14] analyzed in 

detail the geometry of a pair of cameras and introduced the fundamental matrix which has 

all the relevant information to establish correspondences between features in two images. 

The fundamental matrix is the result of the epipolar constraints. Knowing a minimum of 

corresponding features this fundamental matrix can be computed numerically. Faugeras, 

 13



Luong, and Maybank [15] developed a method to calibrate cameras using just point 

correspondences in sequences of images without knowing the motion of the cameras. 

Luong and Faugeras [16] addressed the problem of determining the motion of the 

cameras and structure, using an uncalibrated moving camera. They showed that point 

correspondences between three images and the fundamental matrices computed from 

these point correspondences are sufficient to recover the internal parameters of the 

camera (calibration). They showed those point correspondences are sufficient to recover 

the motion parameters and to compute the perspective projection matrices which enable 

to reconstruct the 3D structure up to similarity.  

2.3. Calibration of Pan-Tilt Cameras  
Machine vision camera systems need quick, simple, easy and repeatable and 

accurate calibration methods. Many approaches to camera calibration exist. Some of 

these methods use a set of calibration points with known world coordinates. These world 

points can be obtained by either using a calibration object [17] in a known location or 

points marked in the workspace whose locations are measured. For example, a planar 

object with feature points clearly marked in a grid can be placed at a known location and 

moved by a known motion. Given this set of feature points with known world coordinates 

(Xi, Yi, Zi) and their projected locations in an image plane (ui, vi), the external and 

internal parameters are found which will best map the world points to their image points 

by determining the parameters which minimize the mean square distance between the 

observed and computed positions of a feature on the image plane.  

Other methods use geometric properties to calibrate cameras. These methods 

calibrate some of the internal camera parameters using invariant characteristics of 
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geometric objects and their images. These methods do not require the position of the 

object relative to the camera. The aspect ratio is found using the image of a sphere [18]. 

Spheres are also used to locate the principal point [19]. The vanishing points [20] of 

parallel lines drawn on the faces of a cube are used to compute the principal point and 

focal length. 

Some methods use only feature coordinates in the image plane to calibrate. These 

methods are called self calibration methods [21], [22], [23], [24] because they do not 

require known calibration points. It requires camera motion to take multiple images. 

Faugeras et al. [21] developed a method where a motion sequence of a single camera 

moving in an unconstrained manner can be used to calculate the internal camera 

parameters. This method does not require known world coordinates of the calibration 

points. It requires only feature correspondences from a set of images where the camera 

has undergone pure rotation. In this method, the internal parameters of the camera are 

determined including radial lens distortion. 

 Calibrating a camera mounted on a pan-tilt mechanism involves the added 

complexity of finding the location of the pan and tilt axes of rotation. Most of the existing 

methods of calibrating pan-tilt cameras have assumed PTUs with orthogonal axes, or 

have assumed a relatively simple geometric model of motion, in which the axes of 

rotation are orthogonal and aligned with the camera imaging optics [25], [26], [27]. 

While this simplification works well over small volumes, accuracy suffers in a larger 

workspace, i.e., the camera model does not predict well the projection of a 3D feature 

point. In [28] a more complete model of pan-tilt cameras was employed, making the 

calibration suitable for use with low cost pan-tilt mechanisms. This method uses an 
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existing tracking system consisting of stationary calibrated cameras. An LED point 

feature in the workspace is tracked using the fixed cameras to build a virtual calibration 

object that is then used to calibrate the pan-tilt cameras. 

Most of the existing methods require either a known set of calibrated world points 

or a large number of corresponding image features. Either of these requirements makes 

the calibration process complicated and slow because the data gathering process must be 

supervised for correctness. Even a few correspondence errors will reduce considerably 

the accuracy of the resulting model. This chapter describes a simple method to calibrate 

cameras and their PTUs using a single unknown stationary world point as the calibration 

point. Note that the 3D location of the point is unknown at the start of the process, and is 

determined during the calibration procedure. The data acquisition process is very much 

simplified by using a single unknown stationary 3D point (with reasonable initial guess); 

the extra effort to acquire multiple points is eliminated. Furthermore, with a single point 

to detect, a faulty correspondence of a feature between two cameras can never occur. 

Consequently, it is possible to use a very general model for pan-tilt camera motion and 

minimize human effort, since feature correspondence is unnecessary, in the calibration 

process. 

2.4. Calibration of Industrial Robots 
There has been considerable research in the field of robotic calibration. A brief 

review is presented in [29]-[33]. Existing techniques can be classified into open-loop and 

closed-loop approaches. Open-loop methods involve measuring the end-effector pose 

which requires special equipment (such as theodolites, inclinometers, ball-bar, and 

coordinate measuring machines [34]). The process of obtaining these measurements is 
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time consuming and must be repeated for high precision systems. The resolution of 

measurements near the end-effector is limited by the equipment used.  

Closed-loop methods [35]-[41], on the other hand, use the joint angle 

measurements already in the robot, and thereby can be considered self-calibrating. These 

methods impose some constraints on the end-effector and the joint readings alone are 

used to calibrate the robot using kinematic closed-loop equations. Some researchers in 

the past have used linear constraints on the end-effector positions allowing the end-

effector to slide along a line, e.g., Newman et al. [35] used a laser line. Ikits et al. [36] 

and Zhuang et al. [37] imposed plane constraints on the end-effector positions. Using a 

plane constraint is problematic because it is difficult to be certain that the end effector is 

exactly on the surface; neither above it nor indenting it.  

Bennet et al. [38] considered manipulators as mobile closed kinematic chains. It is 

difficult to move a physically closed kinematic chain from one position to other while 

maintaining the physical constraints. Hence it is difficult to gather accurate joint readings. 

Meggiolaro et al. [39] used a single endpoint contact constraint, equivalent to a ball joint, 

to calibrate the robot. The robot moves to different configurations that satisfy the contact 

constraint. This method needs a physical contact point, and suffers from the same 

problems as the plane constraint methods.  

Gatla et al. developed a new method called “virtual closed kinematic chain” 

(ViCKi) [66]. Unlike previous closed-loop methods, this approach does not require any 

physical constraints. A laser tool is attached to the end-effector. This laser tool aims at an 

arbitrary but fixed point on a distant object, thus creating a virtual closed kinematic chain. 

This procedure can be used to collect the joint readings for various positions of the end 
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effector that aim at that fixed location. The procedure capitalizes on the constraint that 

the laser line must pass through the fixed point for all robot joint configurations. With 

this redundant joint information, calibration is accomplished. The main advantage of this 

method is that the distant laser point is very sensitive to the joint values, i.e., it magnifies 

the error (a very fine adjustment in the joint angle configuration is needed to aim at a 

particular point), which facilitates acquiring more accurate joint values for the 

calibration. 

2.5. RTU Calibration 
Gatla et al. [66], developed a calibration approach called “virtual closed 

kinematic chain” (ViCKi) to calibrate the industrial robots which is later applied to 

calibrate the RTU calibration. Unlike previous closed-loop methods, this approach does 

not require any physical constraints. We use this method to independently calibrate two 

industrial robots on a RTU. The method is modified to determine the transformation of 

one robot with respect to the other by calibrating the RTU parameters.  
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Chapter 3. Work-cell 
The workcell consists of two Staubli RX-130 robots mounted on a robot transport 

unit (RTU) that moves the robots along a track. The various tools used include a Barrett 

Hand, Probe, Laser Pointer and Biclops (dual-camera directed vision system). The 

workcell also include a Robotic Mobile Platform (RMP) manufactured by Segway. 

3.1. Staubli Robot 
The Staubli 

RX-130 robot [65] as 

shown in Figure 3.1 

has six rotary degrees 

of freedom. The 

shoulder, arm, elbow, 

and forearm, are 

controlled by axes 

one, two, three and 

four, respectively. 

The wrist is 

controlled by joint 

axis five and tool 

flange by joint axis 

six. The rotations of 

the forearm and wrist 

together give spherical degrees (roll, pitch and yaw) of freedom to the tool. This 

 
Figure 3.1. Staubli RX-130. 
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configuration sets axis 1 perpendicular to axis 2. Axes 2 and 3 are parallel. Axis 4 is 

perpendicular to 3 and 5. The last three joint axes intersect at a common point. This robot 

is similar kinematically to the well known Unimation Puma 560.  

3.1.1. Staubli Model 

A model of the robot shown in Figure 3.1 is built with coordinate system 

definitions according to Craig’s modified Denavit-Hartenberg (DH) [60], [61] and Hayati 

(HR) [62] conventions combined. The coordinate systems are shown in Figure 3.2. We 

adopt the use of the following notation: Cθ12 for cos(θ1+ θ2), Sθ12 for sin(θ1+ θ2) and ATB 

for transformation matrix which transforms points described in frame B to points in 

frame A.  

The transformation matrix from frame ‘i-1’ to frame ‘i’ with DH parameters (αi, ai 

θi and di) is given by T=Rx(αi)Tx(ai)Rz(θi)Tz(di) computed by 

S C S

S C C

Cθ -Sθ 0 ai i i
Cα θ Cα θ -Sα -d αi-1 i i i i i i iT =i Sα θ Sα θ Cα d αi i i i i i i

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ( 3.1) 

where αi is the angle between Zi-1 and Zi measured about Xi and ai is the distance between 

Zi-1 and Zi measured along Xi, θi is the angle between Xi-1 and Xi measured about Zi and 

di is the distance between Xi-1 and Xi measured along Zi.  

The transformation matrix from frame ‘i-1’ to frame ‘i’ with Hayati parameters 

(αi, ai θi and βi) is given by T=Rx(αi)Tx(ai)Ry(βi)Rz(θi) computed by 
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S C S S S C C

S C S S S C

Cβ θ -Cβ θ Sβ ai i i i i i
Sα β θ +Cα θ -Sα β θ +Cα θ -Sα β 0i-1 i i i i i i i i i i i iT =i -Cα β θ +Sα θ Cα β θ +Sα Cθ Cα β 0i i i i i i i i i i

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦1

 ( 3.2) 

where αi is the angle between Zi-1 and Zi measured about Xi and ai is the distance between 

Zi-1 and Zi measured along Xi, βi is the angle of rotation about intermediate Yi axis and θi 

is the angle of rotation about Zi.  

 
Figure 3.2. Staubli Coordinate Frames. 

Table 3.1. Staubli DH 
Parameters 

i αi 

rad 
ai 

mm 
θi 

rad 
di 

mm 
βi 

rad 

1 X X 0* X X 

2
π

−
2

 0 0 0 X 

3 0 625 -π  X 0 

4
π
2

 0 0 625 X 

5
π
2

 0 0 0 X 

6
π

−
2

 0 π* 110* X 

*- FIXED AT SPECIFIED VALUE 
X- PARAMETER NOT USED 

It is well known that the DH parameters have a singularity when neighboring joint 

axes are parallel. When this singularity exists, the HR transformation is used. Therefore, 

each transformation matrix is either DH or HR with four parameters, where the fourth 

parameter is either ‘d’ or ‘β’. For the Staubli robot joints 2 and 3 are parallel. 

Consequently we use HR for this transformation and DH for all other transformations. 

Since the base coordinate frame ‘0’ is arbitrary it is chosen to coincide with the frame ‘1’ 

when the reading of joint 1 is zero. This reduces the transformations from frame ‘0’ to ‘1’ 

to just rotation about Z0 by reading of joint 1 angle. Hence the joint offset is fixed at zero 
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indicated by ‘*’ in the Table 3.1, the other three DH parameters for this transformations 

are not used and denoted as ‘X’ in Table 3.1.  

The coordinate system of the end-effector (frame 6) is also arbitrary. It is chosen 

such that the x-axis of this frame coincides with x-axis of frame 5 when joint 6 read 180º. 

Also, for the Staubli RX-130, d6 is set to a fixed value of 110mm. 

Table 3.1 lists the DH/HR parameters of the complete robot model, where four 

parameters for each transformation are required. Either ‘d’ or ‘β’ is used for the fourth 

parameter depending on whether the transformation is DH or HR. The parameter that 

does not apply in each row is marked as ‘X’. The ‘θi’ listed in the table are the joint 

offsets. These offsets are added to the actual readings of the joints to compute the 

transformation matrices. Hence the total number of independent calibration parameters 

required to characterize the robot alone is 24 – 4 (base) - 2(end effector) =18 parameters. 

3.2. Robot Transport Unit (RTU) 
The two Staubli RX-130 robots are mounted on a robot transport unit (RTU) on 

each end. The robots can be independently controlled to move along the track as shown 

in Figure 3.3. Each of the robots when at their home positions are at their extreme end of 

the RTU which correspond to the RTU position ‘0’. Each of the robots has an 

independent RTU home coordinate frame that is attached to the RTU. 
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Figure 3.3. Two Staubli Rx130 robots mounted on RTU. 

3.2.1. RTU Model 

The motion of the robot on the RTU is linear which is modeled as a straight line 

motion. The matrix transforming the coordinate systems from the Robot base coordinate 

system to the RTU coordinate system is given by 

CΦ CΦ SΦ CΦ -SΦ Dl m l m m
-SΦ CΦ 0 0R l lT =B CΦ SΦ SΦ SΦ CΦ 0l m l m m

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦1

 ( 3.3)

 

where B is the base coordinate system of the robot and R is the base RTU coordinate 

system for this particular robot. RTU base coordinate system for each robot is chosen 

such that the x-axis is parallel to the RTU direction and the origin coincides with the 

origin of robot’s base coordinate system when the robot’s RTU position is zero as shown 
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in Figure 3.4. Φl and Φm are the angles of rotation about z and then y to align the robot 

base x-axis along the RTU direction and D is the RTU position of the robot. We use the 

notation  for transformation matrix of robot1 with respect to its base RTU 

coordinate system and  for transformation matrix of robot2 with respect to its base 

RTU coordinate system. For each robot by knowing the parameters of the RTU direction 

in the base coordinate system of the robot we can compute the transformations from one 

robot RTU position to another RTU position. 

1
R1

BT

2
R2

BT

 
Figure 3.4. Coordinate systems for the RTU and robots. 
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3.2.2. Robots’ RTU Base Transformation 

Since each robot is on either side of the robot and we choose independent 

coordinate systems for the base RTU locations (robot’s RTU position = 0) we still need a 

transformation  between them. Using this transformation matrix, the transformation 

matrix from one robot base coordinate system at any RTU position to other robot’s base 

coordinate system is given by 

2
R1

RT

( ) 1B1 R1 R1 R2T = T T TB2 B1 R2
−

B2  ( 3.4) 

 
The transformation in above equation  is the transformation which needs to 

be modeled. There are four independent parameters to transform these two base RTU 

coordinate systems from one other considering the constraints that the RTU direction is 

same in both systems, i.e., their x-axes are parallel. We chose the following sequence of 

transformations to transform from one coordinate system to other. T= Tr (Ψx, Ψy, 

Ψz)Rx(Ψα)Rz(π) computed by 

2
R1

RT

x

y

z

-1 0 0
0 -C -SR1T =R2 0 -S C
0 0 0 1

α α

α α

Ψ⎡ ⎤
Ψ Ψ Ψ⎢ ⎥

⎢ ⎥Ψ Ψ Ψ
⎢ ⎥⎣ ⎦

 ( 3.5) 

 
where Ψx, Ψy, Ψz are the translation parameters Ψα is the twist angle about RTU direction. 

These are the parameters of the RTU robots system to be determined. There is a rotation 

of 180° since the two x-axes are parallel but they are in opposite directions due to their 

definitions. 
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3.3. Laser Pointer Tool 
A laser pointer tool consists of a laser pointer (with pivot to adjust orientation) 

connected to a tool base. The tool can be picked up by the robot by connecting to the 

toolbase. The laser tool’s pivot is adjusted to align its orientation approximately with the 

z-axis of the end-effector and it is locked. The robot picks up this tool by connecting to 

the tool base, as shown in Figure 3.5.  

 
Figure 3.5. Staubli RX-130 robot carrying a laser pointer tool. 
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3.3.1. Laser Tool Rough Alignment 

The laser tool consists of a laser pointer (with pivot to adjust orientation) 

connected to a tool base. The laser tool’s pivot is adjusted to align its orientation 

approximately with the z-axis of the end-effector and it is fixed rigidly. To increase the 

accuracy of the laser alignment it is aimed at a constant location and the robot end 

effector is moved along the z-

axis. The change in the laser spot 

position is noticed and the laser 

is adjusted to minimize this error 

as shown in the Figure 3.6. 

Rotating the laser tool about the 

z-axis makes a circle. The 

smaller the radius of this circle 

the better the tool is aligned. 

Thus moving the laser forward 

and backward and rotating it 

about the z-axis the pivot is adjusted to reduce, but not eliminate, the alignment error. 

 
Figure 3.6. Laser Rough Alignment. 

3.3.2. Aiming Laser Tool  

The robot can aim the laser tool at some location. There are infinite configurations 

to aim the laser at a desired location, but a convenient location (either present location or 

any location reachable) for the robot end effector is chosen to aim the laser. Given the 

position of the robot end effector and the location of the 3D point to aim at, a simple 
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trigonometric calculation as shown below gives us the required orientation for the laser 

tool. This approach is described in the following equations.  

x x x

y y

z z

d E P
d E P
d E P

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

y

z

 ( 3.6) 

( )tan 2 ,y xyaw a d d=  ( 3.7) 

( )2 2tan 2 ,x y zpitch a d d d= +  ( 3.8) 

where ( xd , , ) is the direction of laser pointer that is required to aim the laser. It is 

the difference between the target point (

yd zd

xP , , ) and the location of the end effector 

(

yP zP

xE , , ). “atan2” gives the arc tangent angle in correct quadrant. “yaw” and “pitch” 

are the orientation angles needed to aim the laser at the desired point. Thus knowing the 

position E and the orientation of the laser (d) the laser can be aimed at the desired 

location. 

yE zE

3.3.3. Laser Tool Model 

Once the laser tool is attached to the robot, the robot can then aim the laser tool at 

a desired location. The aimed location is accurate only if the whole system, i.e., robot and 

laser tool models, have accurate parameters. The laser tool is not perfectly aligned with 

the z-axis of the end effector (Z6) and the misalignment needs to be modeled by a 

transformation matrix. A coordinate system (O7X7Y7Z7) is chosen for the laser tool such 

that the z-axis coincides with the laser line. Both the orientation of x-y axes and the origin 

along the laser line are arbitrary. Four independent parameters are required to describe a 

line (laser) in 3D space with respect to the end effector coordinate system. Since the laser 
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z-axis (Z7) is closely aligned with the robot end effector z-axis (Z6) we choose the four 

required parameters as, two rotations about x and y (These angles of rotations are close to 

zero.) and two coordinates of translation in x-y plane (also close to zero). We choose the 

x-y axis and the origin of laser coordinate system to coincide with the previous coordinate 

system when the four parameters are zeros. Hence the initial guess of all four parameters 

is zero. The transformation matrix is given by T= Rx(θx)Ry(θy)Tx(px)Ty(py) computed by 

C

S C S S

S C C S

Cθ 0 Sθ p θy y x y
Sθ θ Cθ -Sθ θ p θ θ +p θC

S
x y x x y x x y y x6T =7 -Cθ θ Sθ Cθ θ -p θ θ +p θx y x x y x x y y x
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ( 3.9) 

When a laser tool is picked up by a robot then the total number of parameters for 

the model of the system (robot with the laser tool) are 18(robot) +4(laser) =22.  

3.4. Biclops Tool 
A directed vision 

system tool called Biclops 

consists of two cameras 

each of which is mounted on 

a pan and tilt unit (PTU). 

The cameras used are 

A602fc color fire-wire 

(IEEE1394) cameras 

manufactured by Basler. Each of these cameras is attached to a pan-tilt unit (PTU) from 

Directed Perception. The PTU camera units are attached to a bracket on either side and a 

tool base is connected to the middle of this bracket as shown in Figure 3.7. 

 
Figure 3.7. Biclops with Pan and Tilt Axis shown. 
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Figure 3.8. Staubli RX-130 robot carrying Biclops. 

The robot picks up Biclops by connecting to the tool base as shown in Figure 3.8. 

Each of the PTU camera units have two (pan and tilt) degrees of freedom (DOF). The 

cameras are connected to a PC using IEEE1394 (firewire) cables and the PTUs are 

connected to the PC using serial cables. The various features of Basler A602fc cameras 

that can be controlled from the PC include area of interest (AOI), brightness, gain, 

exposure time and color format. Each PTU can be commanded by the PC independently 

to aim its camera at any desired location in the workspace.  

Biclops is built using standard PTUs and a metal frame. Though the dimensions 

of all the pieces are “known” through design, their accuracy cannot be assumed. Hence 

we need to model Biclops to determine the dimensions empirically. The Biclops is 
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modeled with DH parameters and the various coordinate systems in the Biclops system 

are described below. 

3.4.1. Biclops Model  

The coordinate system at 

which the robot holds Biclops is 

the robot’s tool control frame 

(TCF) which is indicated as 

frame E in Figure 3.9. We have 

defined D-H parameters for the 

two joints of each PTU. A 

coordinate frame is chosen on 

the CCD of the camera at the top 

left corner with the z axis out of 

the camera towards the objects, 

the x axis along the horizontal 

right direction, and y axis along 

the vertical down direction as 

shown in Figure 3.10. All the 

coordinate frames are shown in 

Figure 3.9. Figure 3.10 shows 

the image plane coordinate 

systems with principal point (image center) (u0, v0), focal length (f), and the projection of 

a 3D point p(x, y, z) to (u, v) in camera coordinates. Although pan and tilt axes are shown 

 
Figure 3.9. Biclops coordinate systems. 

 
Figure 3.10. Image plane coordinate systems. 
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intersecting and orthogonal in the Figure 3.9 for clarity and simplicity, the model does 

not assume this. The separation and the angle between the pan and tilt axes are included 

in the D-H parameters that will be determined through the calibration procedure. 

The transformation matrices used to convert points from one coordinate frame to 

the next are given by the following equations. We use notation Cθ12 for cos(θ1+ θ2), Sθ12 

for sin(θ1+ θ2) and ATB for transformation matrix which transforms points described in 

frame B to points in frame A. 

The transformation matrix from the base of the robot to the TCF frame is given by 

- - -
-

-
0 0

C C C S S C C S S C C S x
B S C C C S S C S C C S S yTE S C S S C z

α β γ α γ α β γ α γ α β
α β γ α γ α β γ α γ α β

β γ β γ β
+ +=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦0 1

0 1

t
t

 ( 3.10) 

where (x, y, z) is the position and α, β, γ are the yaw, pitch and roll rotation angles, 

respectively, of the TCF in robot base coordinate system. The transformation matrix from 

the TCF frame to frame 0 is given by  

-
- -

0 -
0 0

C S
S C S S S C C
S C S S S C C

C C Sy z y z y x
S C S C SE x y z x z x y z x z x y yT
C S C S C tx y z x z x y z x z x y z

θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ

+ +
=

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ( 3.11) 

where tx, ty, and tz are the translation and θx, θy, and θz are x, y, z rotation parameters, 

respectively, from the TCF frame to frame 0. The other transformation matrices using D-

H parameters are given by ( 3.12), ( 3.13) and ( 3.14),  

- 0
0 0 0

1 0 0 1 0
0 0 0 1

C Sp p
S Cp pT

θ θ
θ θ=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

 ( 3.12) 
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C C S dt tT
S S C dt t
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α θ α θ α α
α θ α θ α α

=
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⎢ ⎥
⎢ ⎥⎣ ⎦

 ( 3.13) 

where θp is the pan angle and θt is the tilt angle. The D-H parameters from frame 1 to 

frame 2 are θ1+θt, α1, a1 and d1. The angle between X1 and X2 is θ1+θt. The angle 

between Z1 and Z2 is α1, the separation between Z1 and Z2 along X1 is a1, and the 

separation between X1 and X2 along Z2 is d1. 

- 02 2 2
- -2 2 2 2 2 2 2 23

2 2 2 2 2 2 2
0 0 0 1

S C S
S C C

C S a
C C S dT
S S C d

θ θ
α θ α θ α α
α θ α θ α α

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ( 3.14) 

where θ2, α2,, a2 and d2 are D-H parameters from frame OX2Y2Z2 to frame OX3Y3Z3. The 

angle between X2 and X3 is θ2. The angle between Z2 and Z3 is α2. The separation 

between Z2 and Z3 along X2 is a2. The separation between X2 and X3 along Z3 is d2. 

3.5. Barrett Hand 
The Barrett Hand as shown in Figure 3.11 has 3-fingers, each finger has clutches 

which allow the finger to lock once it has encountered certain amount of force, thus 

enclosing the objects completely. Two of the three fingers can be commanded to rotate in 

plane (called spread of fingers) 180° symmetrically. By adjusting the spread angle of the 

fingers, it can grasp a wide variety of object shapes and sizes. 
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Figure 3.11. Staubli Carrying Barret Hand. 

3.6. Probe Tool 
A probe is a metallic pointer tool that can be attached to the robot using a tool 

changer. This tool is shown in Figure 3.12 is used usually to touch a point to determine 

its 3D location with respect to the robot base coordinate system. The probe is used in to 

find the 3D location of various points in the environment.  
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Figure 3.12. Staubli Carrying Probe Tool. 

3.7. Robotic Mobile Platform (RMP) 
The Segway RMP is based on the commercial Segway Human Transport. It is 

dynamically stable and balances itself to keep from falling over. The RMP accepts 

software commands and return state data on a dual channel CAN bus. The RMP is an 

inverted pendulum, and balances by moving forward and backward to keep itself under 

the center of mass above it.  

The RMP consists of a steel structure for mounting various sensors computers etc. 

It is also fitted with ballast plates which provide mass to the top of the structure thus 

making it more stable when in balance mode. The RMP is a modification of the human 

transporter (HT); it retains the handlebar for its key and display. Two E-stops are 

provided for emergency use. The E-stops are attached to cords. When either cord is 
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pulled, the RMP's power is immediately shut off. However, this also stops the active 

balancing and the RMP will fall over.  

 
Figure 3.13. Segway Robotic Mobile Platform 

An emergency landing system has been designed such that when the RMP falls 

over it lands on this system and the equipment mounted on the RMP will not damaged. 

This system consists of two angular arms on each side of the RMP with spring loaded 

wheels at the ends of these arms. If the RMP ever exceeds 40 degrees, the control system 

will not be able to recover its balance and it will fall. The arms are designed at an angle 

so that they only touch the ground when the RMP leans forward or backward more than a 

critical angle (35 degrees). Thus when the RMP auto balance is turned off and when the 

RMP is falling it will rest on these wheels. The wheels are also equipped with the 
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emergency shutoff switches (which are using the E-Stops) whenever they press against 

something, they turn the system off thus not allowing it to go into an unstable mode.  

The RMP is connected by a CAN card to a laptop computer which is secured to 

the top of the RMP. This laptop is the main server for the RMP. A Biclops directed vision 

system, described in Section 4.5 and modified for the RMP, is shown in Figure 3.14. A 

third PTU is used to control the direction of a laser pointer. 

 
Figure 3.14. Segway Robotic Mobile Platform with Biclops Directed Vision System. 
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Chapter 4. Robot Calibration 

4.1. Introduction 
It is well known that industrial robots are highly repeatable but not very accurate. 

Accuracy has not been deemed necessary by industry. Since most industrial applications 

are programmed by teach pendant to produce a sequence of points, replay of these points 

relied strictly on repeatability; accuracy simply does not matter. Most of the robotic 

applications that capitalize on repeatability, e.g., pick and place, have already been done. 

For more advanced applications, such as sensor based assembly, accuracy plays a 

significant role. Consequently, a simple, fast, and accurate robot geometric model 

computed through a calibration process is needed. The goal of this chapter is to describe a 

new approach to improve the accuracy of the 3D structure of the scene determined by the 

cameras fixed on the robot using PTUs. This goal is partially reached by calibrating the 

robots on which these PTU cameras are mounted.  

The main source of error in positioning and orientation of the robot is due to the 

inaccuracy in the parameters used to compute the position and orientation. The position 

and orientation of a robot can be represented by the forward kinematics using Denavit-

Hartenberg (DH) parameters [60], [61] for each link of the robot which depend on the 

dimensions of the links. Robot accuracy ultimately depends on the accuracy of the DH 

parameters. Some variation comes from the manufacturing process, primarily due to 

machining inaccuracy. Other variation comes from the assembly process, where the 

precise position and orientation of links and joints is not perfectly repeatable. Most 

manufacturers of robots do not focus on accuracy because, if accuracy is achieved by 

higher tolerance in machining, the cost of robot increases dramatically, adversely 

affecting the company’s sales potential. 
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Since it is economically unattractive to achieve accuracy by machining to higher 

tolerances, a software calibration approach to identify the DH parameter values is needed 

to advance the state of the art in robotics. After a calibration procedure in the robot 

factory, each robot controller can be updated, e.g., by writing non-volatile memory with 

the correct robot-specific DH parameter values instead of the standard design values. If 

this procedure is relatively rapid, all robots will leave the factory as accurate mechanisms 

that cost little more than they cost today. Also, for applications with higher accuracy 

demands like sensor based assembly, robotic surgery, etc., the complete set of the DH 

parameters can be used to compute the numerical inverse 

kinematics. This chapter describes a DH parameter calibration 

approach that fits this need. The Staubli robot and the laser tool 

both are calibrated. 

Table 4.1. Industrial 
Parameters 

Parameters Initial 
values 

α2 (deg) -90 
a2 (mm)  0 
θ2 (deg) 0 
d2 (mm) 0 
α3 (deg) 0 
a3 (mm) 625 
θ3 (deg) -180 
β3 (deg)  0 
α4 (deg) -90 
a4 (mm) 0 
θ4 (deg) 0 
d4 (mm) 625 
α5 (deg) 90 
a5 (mm) 0 
θ5 (deg)  0 
d5 (mm) 0 
α6 (deg) -90 
a6 (mm) 0 
lθx (deg) 0 
lθy (deg) 0 
px (mm) 0 
py (mm) 0 

4.2. Staubli Robot & Laser Pointer Model 
The aim of this chapter is to calibrate the two robots 

independently. The Staubli Robots are modeled as described in 

section 3.1.1. The robots parameters equivalents to the industrial 

parameters are shown in Table 4.1. These parameters are not 

accurate enough so we need to calibrate the robot to find these 

parameters. For the sake of calibration we used a laser tool as 

shown in Figure 4.1. The laser tool is attached to the robot and the 

whole system, i.e., the robot and the laser pointer tool consisting of 

the 22 parameters is calibrated.  
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Figure 4.1. Staubli RX-130 robot, mounted on RTU, carrying a laser pointer tool. 

4.3. Virtual Closed Kinematic Chain Calibration (ViCKi) 
Calibration is the process of determining accurate values of all parameters of the 

model. For the Staubli RX-130 robot and laser tool model we have 22 parameters to be 

determined. 

A new method called ViCKi [66], “virtual closed kinematic chain method,” has 

been developed to calibrate the robot. This method falls under the class of closed-loop 

methods where only joint readings are used to calibrate the robot. A laser tool is attached 

to the end-effector of the robot. The laser tool on the robot acts as a virtual telescopic 

(prismatic) link giving the robot 7 DOF, the seventh joint being the length of the laser 

line from the end effector to the projected laser point on an object, e.g., distant wall. Thus 
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aiming the laser pointer at a fixed point (on a plane or some object) creates a virtual 

closed kinematic chain. 

Calibration is accomplished by aiming the laser pointer at an arbitrary but fixed 

point P on an object (usually a plane), adjusting the joint values to maintain the laser on 

point P, using various joint configurations. This effectively becomes the single end point 

constraint for the 7 DOF system. The coordinates of the fixed point P in robot’s base 

frame are unknown and must be included in the calibration model’s parameters. Since the 

coordinates of the fixed point (P) are also included in the parameters to be determined, 

the scale factor of the model is indeterminate. To overcome this problem we need a 

second fixed point relative to the first fixed point. This can be accomplished in two ways. 

  
Figure 4.2. Calibration using two 3D fixed points. 
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A second fixed point is chosen such that the distance between the two fixed points 

is known (D) and the two parameters for the direction are included in the calibration 

model as shown in Figure 4.2. This can usually be achieved through a calibration plane. 

The same fixed point is used but the base of the robot is purely translated by 

known distance (D) and the two parameters for the unknown translation direction are 

included in the calibration model as shown in Figure 4.3. 

 
Figure 4.3. Calibrating using same 3D point but by translating base of robot. 

In our case, since we have a RTU (Robot transport unit) which can translate the 

robot along the rail by a known distance, we use the second alternative. This eliminates 
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the effort of measuring the distance between two fixed points in space. The translation 

can be directly noted from the RTU position which has position uncertainty less than 

±0.1mm. The complete calibration process now includes 18 parameters for the robot, 4 

for the laser tool, 3 for the 3D coordinates of the fixed point, and 2 for the direction of 

unknown translation, either of the second point from first or the second position of the 

base frame from the first position depending on the method used (which corresponds to 

the direction of the RTU with respect to the robot base coordinate system). 

The laser tool is aimed at the fixed point from various positions (robot joint 

configurations. The parameters of the model are determined by minimizing the sum of 

the normalized shortest distance of the fixed point from all the laser lines. Since the 

shortest distance error depends on the distance of the object plane from the end effector 

(i.e., length of the laser line) it is normalized with the length of the laser line.  

Consider a 3D point in space P1. Let its coordinates in the base frame of the robot 

be 
pxB1P = p y1
pz

⎧ ⎫
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 If we use method 1, with two fixed points, the second point is given by 
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 is the unit vector of the unknown direction of 

translation. D is the known distance of translation. If we use method 2, the same fixed 

point but from two different base locations, we have B1P1 and B2P1 where B1 and B2 are 

the two positions of the base. Now B1 is translated by a known distance D along an 

unknown direction 
-tx
-t y
-t z
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coordinates of the same point in base 2 coordinate system are given by 

1

p tx xB2 B1 B2P = P B p +D* ty y1 1
p tz z

⎧ ⎫ ⎧
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3DΦ
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 thus . B2 B1P P1 2≡

The two ways to perform calibration are shown in Figure 4.2 and Figure 4.3. 

Points B1 and B2 are the two positions of the robot on the RTU separated by a distance of 

D along the unknown direction of the translation. The ‘observation plane’ is an arbitrary 

plane (any arbitrary orientation facing the robot base) passing through the 3D point at 

which the laser is aimed and can be adjusted to coincide with the point. The coordinates 

of the 3D point P2 in the base coordinate system of B1 are identical to the coordinates of 

the point P1 in base coordinate system of B2. Since the robot base coordinate system is 

not yet determined, the direction of translation is unknown. The calibration procedure 

thus includes three parameters for the 3D point and two parameters for the unknown 

direction. We choose the angles of rotation about the z-axis followed by the y-axis so as 

to align the base frame x-axis along the translation direction. Since the direction of 

translation in our present case is almost aligned along the x-axis of our robot the initial 

guess for all rotation parameters is zero.  

We denote the parameters for the robot and laser tool as which is the list of 

22 parameters for the robot and the laser tool. The parameters for the 3D point are 

denoted as  and the parameters for the direction of translation as and .We have 

two sets of joint configurations, one for each fixed point (or one for each base position). 

We use the notation 1Ji for joint set 1, ith reading. For each joint configuration in first set 

transformation matrix from base to laser frame 

RLΦ

Φl mΦ

( )1 Φ 1Ti RL Ji is computed which gives the 
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position ( )1 1P Ji RLΦ i and the direction of the Z-axis ( )1 1Z Ji RLΦ i  of the laser line in 

columns 4 and 3, respectively, of the transformation matrix. The shortest distance of the 

3D point  from the laser line is determined and normalized with the length of the 

laser line. This is the error, i.e., the cost function 

3DΦ

( )1 1E J3Di RLΦ Φ i for this joint 

configuration. For the second set the error ( )2 1E Jii RL 3DΦ Φ′ is computed with the 3D point 

given by 

( ) ( )
( ) ( )

( )

cos Φl m
Φ =Φ cos Φ *D3D l m

n Φm

⎧ ⎫
⎪ ⎪
⎪ ⎪′ ⎨ ⎬
⎪ ⎪
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cos Φ

+ sin Φ3D
-si

mΦ

{

 ( 4.1) 

where and are the angles of rotation about z and then y to align the x-axis along the 

unknown translation and D is the known length of the translation. The translation 

direction in the present case is almost parallel to the x-axis of the robot base coordinate 

system hence zero can be used as the initial guess for these parameters. The complete 

parameter set 

lΦ

}mRL 3D lΦ Φ Φ ΦΦ=

N EΦ i=1
∑

is determined by minimizing the total sum of the 

squares error. The required parameter set for N readings in each set is obtained by minΦ

N N1 2 2 2=MI + Emin i ii=1
Φ ∑

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ( 4.2) 

4.3.1. Feedback System and Stability 

The calibration procedure requires many different robot joint configurations that 

aim the laser tool at the particular point on a distant object. This process can be time 

consuming if a teach pendant is used. Instead we use the approximate parameter values 
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and approximate coordinates of the 3D point and compute various joint values that aim at 

the fixed location. But since our computation is only approximate, the laser tool only 

aims close to the desired point. We developed a feedback system that uses the errors in 

the projected point to aim the laser tool at a desired point on a plane by adjusting the joint 

angles. The data acquisition process is thus accelerated by this feedback system that 

redirects the laser spot on a plane to a desired location.  

A model of the robot and laser tool is constructed in Simulink. Using approximate 

parameter values of the model, the joint values can be computed to aim the laser tool 

close to the desired point on a plane. The errors in aiming the laser at a fixed point due to 

errors in parameters are within ±10mm, which are well within the limits of the feedback 

system that can redirect the laser to the desired location from an initial location w, more 

than ±500mm away from the desired point. The feedback system uses the initial 

parameters and approximate position and orientation of the camera system to compute the 

inverse Jacobian. The system appears very stable since the direction of motion of each 

joint to move the desired laser point is not sensitive to the small differences in the robot 

calibration parameters. We have constructed two different feedback systems. The first 

uses position control as shown in Figure 4.4 to control the joint angles. The second uses a 

PID (position, integral and differential) control as shown in Figure 4.5. The gains and 

parameters for the PID feedback system are chosen to make the system stable.  

Using this approach, the calibration procedure can be automated in industry. A 

camera detects the laser point and is used as feedback to change the robot joint angles so 

as to move the laser point to the desired point P as shown in Figure 4.6.  
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Figure 4.4. Position control Feedback system to aim the laser tool, in Simulink. 

 
Figure 4.5. PID Feedback system to aim the laser tool, in Simulink. 
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Figure 4.6. Staubli Feedback system, using a camera. 

4.3.2. Minimization 

We employ a MATLAB minimization routine (lsqcurvfit) to compute the values 

of the parameters. The algorithm computes the solution for the system using Levenberg-

Marquardt (LM) algorithm and the solution obtained is perturbed with random noise and 

the algorithm is repeated. The amount of noise added to the solution in each subsequent 

step is reduced. This randomness in the initial guess to the LM algorithm and the 

repetition of the algorithm ensures a better solution. The user is referred to [63], [64] for 

description of the “trust region” problem and [59] for Levenberg-Marquardt Algorithm. 

The number of constraints required by the algorithm to converge to a good model is 

usually at least five times the number of parameters in the model. Therefore, we need at 

least 5*27=135 sample configurations that aim at the same point.  
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4.3.3. Procedure 

The procedure is summarized in these steps 

1. A very large set (M) of random joint configurations within the required 

ranges is generated automatically.  

2. Using the approximate parameter values of the robot, laser and the 3D 

point a subset (N) of joint configurations is selected that aim the laser tool 

close to the 3D point. 

3. The robot is moved to each of the N locations in the joint configuration set 

and the joint values are adjusted to aim the laser point at the constant 

location. This accurate joint configuration is stored. 

4. Step 3 is repeated for all of the N joint configurations. 

5. Move the Robot on the RTU by a known distance D=1000mm (or use a 

second fixed point at a known distance from first). 

6. Repeat the steps 1 through 4 by aiming at the same location used 

previously (or aim at the second fixed point). 

7. Using these data and a nonlinear minimization routine (lsqcurvfit), 

compute the parameter values. We used the shortest distance of the aimed 

point from the laser line normalized by the distance of the aimed point 

from origin of laser coordinate system as the cost function for 

minimization. 
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4.4. Analysis of ViCKi 

4.4.1. Magnification of Observation Error 

The present method uses a laser pointer tool on the robot’s end-effector to aim at 

a constant location on a distant object. Small variations in position and orientation of the 

end-effector are magnified on the distant object, thus the position of the laser point is 

sensitive to joint values. It can be shown mathematically that by projecting the laser 

pointer onto a distant object the resolution of observations is improved, effectively 

increasing the accuracy of measurements of the joint angles required to calibrate the 

robot. The observation plane is a plane which passes through the 3D fixed point. By 

adjusting the robot joint values, the laser tool can be aimed at the desired point. It should 

be noted that this observation plane can be chosen arbitrarily passing through the 3D 

fixed point; the only effect will be a change in the Jacobian used in feedback. Hence, 

without loss of generality assume the observation plane is parallel to X-Z and at a 

distance “β”, so that Y= β is the equation of the plane. Let the transformation matrix of 

the laser pointer with respect to the base of the robot be 

R R R Ox11 12 13
R R R O0 y21 22 23T =7 R R R Oz31 32 33

0 0 0 1
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥

 ( 4.3) 

Then we know that O= (Ox, Oy, Oz)T is the origin of the laser coordinate system and 

Z=(R13, R23, R33)T is the Z-axis, which is coincident with the laser line. Any general point 

on this line (i.e., on the laser line) is P=O+λZ. The laser is aimed at the observation plane 

(whose equation is Y=β) hence the aimed point (P) lies on the observation plane and its 

solution is 
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( )β-Oy
P =β O + λR = β  λ=y y 23 R23

⇒ ⇒  ( 4.4) 

 Using above equation we can compute the location of the laser point on the 

observation plane in its planar 2D coordinates (x-z in the present case), which is given by 

{ } ( ) ( )
T

R RT 13 33K K = O + β-O O + β-Ox z x y z yR R23 23

⎧ ⎫⎪
⎨
⎪ ⎪⎩ ⎭

⎪
⎬  ( 4.5) 

Since we choose β to be large, the change in the 2D point of projection is 

magnified as compared to just the change in the position and/or orientation of the end 

effector. (β-Oy) is the distance between the end-effector or TCF (Tool Control frame) and 

the plane. R13/R23 and R33/R23 are the tangents of the angles of the laser line with the 

Y- axis.  

Figure 4.7 shows the variations of the positions of the TCF and the laser point on 

planes at β=3000 mm and β=5000 mm with variations in joint 1 angle. It can be inferred 

from the plot that to have same error (0.1mm) in measurements of either TCF or laser 

position (on plane β=5000 mm), the errors in joint 1 angle are 0.01deg and 0.001deg 

respectively, i.e., the error for laser point is 10 times lower than that of TCF. 

Consequently, if the error associated with aiming the laser point at the desired point that 

is 5000mm away is less than 0.1mm, the error associated with joint 1 will be less than 

0.001deg. Figure 4.8 shows the variations of the positions of the TCF and the laser point 

on planes at β=3000mm and β=5000mm with variations in joint 2 angle. The variations in 

laser point and TCF have the same order of magnitude as variations in other joint angles. 

Thus this method is more accurate in obtaining the joint configuration data when 

compared to any method that uses the TCF position or orientation measurements. 
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Figure 4.7. Changes in positions of laser point and TCF with joint 1 angle. 

 
Figure 4.8 Changes in positions of laser point and TCF with joint 2 angle. 
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4.4.2. Optimum Distance for Observations 

The proposed method magnifies the error in observations as discussed in previous 

section. This magnification is directly dependent on the distance (β) of the observation 

plane from base of the robot. Though the magnification increases with the distance of the 

observation plane, the uncertainty in aiming the laser (due to limited resolution of the 

joints) increases. Hence there is a maximum distance (β) beyond which the magnification 

in error does not help in getting better joint angle data.  

The uncertainty in origin of laser line (ΔO) and laser angle (Δθ) are given by the 

following equations respectively. 

O O Om sΔ = +  ( 4.6) 

m sθ θ θΔ = +  ( 4.7) 

where Om and Os are mean and standard deviation of errors in origin of laser, and θm and 

θs are the mean and standard deviation of errors in direction of laser due to limited 

resolution of joints. 

The uncertainty in aiming laser (ΔL) at a distance λ is given by  

sin( )L O λ θΔ = Δ ± Δ  ( 4.8) 

Let ΔP be the uncertainty in observations due to its finite resolution (of camera 

system or human observer). To get better observations we have sin( )L O Pλ θΔ = Δ ± Δ ≤ Δ . 

Hence the distance of aiming λ can be computed as 
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( )
sin( ) min

P O
θ

λ
⎛ ⎞Δ ±Δ
⎜ ⎟

Δ⎝ ⎠
≤  ( 4.9) 

The distance computed by the above equation is the optimum distance of the 

observation plane from the laser origin. A shorter distance does not magnify the errors 

sufficiently and a longer distance does not provide better joint angle data. 

The real robot has limited resolution. The encoder counts and the resolution of 

each joint for Staubli robot are shown in Table 4.2. A large number (30000) of positions 

in the workspace are determined. Two robots are created in simulation, one is moved to 

each of the joint configurations, and the other is moved to the same joint configurations 

but with offset equal to maximum joint resolution errors. The norm of the difference in 

position and the angle between laser lines are computed. The mean and standard 

deviation of these values for all joint configurations are computed. The mean and 

standard deviation of the norm of position error were Om= 0.000236mm and Os= 

0.0000577mm, respectively. The mean and standard 

deviation of the angle between laser lines were 

θm=0.00217deg and θs= 0.002583 deg respectively.  

If a camera system is used the resolution of the 

camera system is 1 pixel which corresponds to the 

resolution of approximately 0.05mm in the observation 

plane. Hence we can safely use ΔP =3x0.05=0.15mm which accounts for other errors in 

observations (computing center of laser point). The distance of aiming can be computed 

using ( 4.9) as λ ≈ 1800mm. The average distance of the laser origin from base of the 

robot is around 1200mm for various joint configurations. Hence the optimum distance of 

the observation plane is β =1800+1200=3000mm. 

Table 4.2. Joint Resolutions 
Joint Encoders 

Counts/deg 
Resolution 

(deg) 
1 147219 6.79e-6 
2 147219 6.79e-6 
3 115019 8.69e-6 
4 100124 9.99e-6 
5 30720 3.26e-5 
6 36409 2.75e-5 
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If observations are taken by a human, the resolution of observations can be around 

ΔP =0.5mm. The distance of aiming can be computed by ( 4.9) as λ ≈ 6000mm. Hence 

the optimum distance of the observation plane is β =6000+1200=7200mm. 

4.4.3. Effect of Scaling Distance 

The distance (D) between two 3D fixed points or the robot base positions as 

described in Section 4.3 has a scaling effect on all the length parameters of the model. 

The ratio of error in D is same as the ratio of errors in parameters. Hence choosing D 

large enough to outweigh its uncertainty is necessary, i.e., if D=1000mm and it 

repeatability is 0.1mm then the length parameters have repeatability of 1.0x10-4. 

4.5. Experiments 

4.5.1. Calibration with Precise Data in Simulation 

Simulation of the calibration experiment was performed using very accurate joint 

readings. A robot was created in Simulink with a known set of parameters different from 

the industrial parameters (approximate DH parameters used by the robot manufacturer). 

The feedback system was used to accurately aim the laser tool at a fixed point from two 

different RTU locations (1000mm apart). The laser point is finely adjusted using the 

feedback loop as discussed in section 4.3.1 until the errors in projected points were within 

±0.0005mm and the joint configurations were recorded with full accuracy. These joint 

configurations were used to calibrate the robot; the industrial parameter set was used as 

the initial solution. The solution was compared to the actual parameters used to generate 

the joint configuration data. The experiment was repeated with different fixed points and 
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various sets of joint configurations. 

The deviations of the parameters from 

the actual parameters were computed.  

Table 4.3 shows the results of 

the calibration with accurate data. 

Column 2 shows the actual parameters 

used by the simulation robot to obtain 

the data, i.e., the true robot 

parameters. Column 3 shows the 

initial parameters used in the 

minimization routine. Column 4 

shows the optimum solution and 

column 5 shows the 

standard deviation of the 

parameters from the actual 

parameters obtained by 

repeating the experiment 

number of times. The 

results show that the 

optimum solution obtained 

by the calibration 

experiment was very close 

Table 4.3. Calibration Results (Precise Data) 

Parameters Actual Initial 
values 

Minimum 
Error 

STD 
(X10-4) 

α2 (deg) -89.99 -90 -89.999012 8.318 
a2 (mm) 0.05 0 0.049711 5.0281 
θ2 (deg) -0.03 0 -0.030618 7.0947 
d2 (mm) 0.70 0 0.699360 4.2889 
α3 (deg) 0.01 0 0.010936 3.0462 
a3 (mm) 625.5 625 625.500531 1.8965 
θ3 (deg) -179.99 -180 -179.997532 1.9343 
β3 (deg) -0.04 0 -0.041009 6.8222 
α4 (deg) -89.98 -90  -89.991267 3.0276 
a4 (mm) -0.001 0 -0.001211 5.4167 
θ4 (deg) 0.036 0 0.036313 1.5087 
d4 (mm) 626.25 625  626.253214 6.9792 
α5 (deg) 90.01 90  90.011123 3.7837 
a5 (mm) -0.53 0  -0.530183 8.6001 
θ5 (deg) -0.09 0 -0.088865 8.5366 
d5 (mm) 0.55 0 0.550291 5.9356 
α6 (deg) -90.02 -90 -90.012512 4.9655 
a6 (mm) 0.53 0 0.53094 8.9977 
lθx (deg) 0.05 0 0.049648 8.2163 
lθy (deg) 0.16 0 0.15952 6.4491 
px (mm) -0.18 0 -0.17961 8.1797 
py (mm) 1.63 0 1.6293 6.6023 

 
Figure 4.9. Minimization Routine Residue (log scale) Vs Number of 

Iterations. 
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to the actual solution. The standard deviation of the solution was very small (10-4) 

indicating the stability of the procedure.  

The minimization routine residue error was plotted against the number of 

iterations as shown in Figure 4.9. The error in projection decreases as the model is 

improved in each iteration.  

4.5.2. Calibration with Noisy Data in Simulation 

A real robot joint has limited resolution and can only be commanded to move to a 

particular encoded value closest to the desired angle. The encoder counts per degree for 

all six joints of Staubli were shown previously in Table 4.2. Therefore the accuracy of the 

joints is limited by the number of 

encoder counts per degree. In the 

previous experiment we obtained the 

joint readings with very high accuracy 

which is not possible for the real 

robot.  

Hence, to make the simulation 

more realistic, we use joint readings 

with accuracy similar to that of the 

real robot. This was achieved by 

adding noise and rounding to the 

closest encoder value of the joint. The 

calibration experiment was repeated 

with these noisy data.  

Table 4.4. Calibration Results (Noisy Data) 

Parameters Actual Initial 
values 

Minimum 
Error 

STD 
(X10-3) 

α2 (deg) -89.99 -90 -89.988292 3.2004 
a2 (mm) 0.05  0 0.059942 9.6010 
θ2 (deg) -0.03 0 -0.025602 7.2663 
d2 (mm) 0.70 0 0.703400 4.1195 
α3 (deg) 0.01 0 0.013142 7.4457 
a3 (mm) 625.5 625  625.503650 2.6795 
θ3 (deg) -179.99 -180 -179.986067 4.3992 
β3 (deg) -0.04  0 -0.034084 9.3338 
α4 (deg) -89.98 -90 -89.978802 6.8333 
a4 (mm) -0.001 0 -0.000618 2.1256 
θ4 (deg) 0.036 0 0.040585 8.3924 
d4 (mm) 626.25 625 626.258698 6.2878 
α5 (deg) 90.01 90  90.019342 1.3377 
a5 (mm) -0.53 0 -0.527355 2.0713 
θ5 (deg) -0.09  0 -0.088396 6.0720 
d5 (mm) 0.55 0 0.558728 6.2989 
α6 (deg) -90.02 -90  -90.017621 3.7048 
a6 (mm) 0.53 0 0.536458 5.7515 
lθx (deg) 0.05 0 0.059668 4.5142 
lθy (deg) 0.16 0  0.166649 0.4389 
px (mm) -0.18 0 -0.171296 0.2718 
py (mm) 1.63 0 1.630099 3.1269 
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Table 4.4 shows the results of the calibration with noisy data. Column 2 shows the 

true robot parameters used by the simulation. Column 3 shows the initial parameters used 

in the minimization routine. Column 4 shows the optimum solution and column 5 shows 

the standard deviation of the parameters from the actual parameters obtained by repeating 

the experiment number of times.  

The results show that the optimum solution obtained by the calibration 

experiment with truncated joint data was very close to the actual solution but not as close 

as the un-truncated data simulation case described in Section 4.5.1. As expected, the 

standard deviation of the solution using discrete joint values was greater than that of the 

continuous case, but it was small enough (10-3) to justify that the procedure produces a 

usable result.  

4.5.3. Calibration of Staubli Robot 

The calibration experiment was performed on real Staubli RX130 robots. A point 

was chosen on a distant plane and the various joint values that aim at this location were 

determined as described in Section 4.3.3. We used the second method, i.e., the robot was 

translated on an RTU (We assume that the direction of the translation is unknown.) and 

the laser was aimed at the same point. The joint readings were used in a minimization 

routine to find the parameters of the model. The calibration experiment used 540= 20*27 

joint configurations, to compute the parameters. The experiment was repeated multiple 

times with different fixed points and the calibration parameters resulting from these 

calibrations (which all should be the same) were compared by computing the mean and 

deviations of the parameters. Using various fixed points and conducting the experiment 
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ensures that the parameters obtained are stable and accurate. The optimum solution is 

also shown in the tables. 

Table 4.5 and Table 

4.6 shows the results of the 

calibration of the real robot-

laser tool systems also the 

direction of the RTU with 

respect to each robot is 

shown. Column 2 shows the 

initial parameters used in the 

minimization routine, i.e., the 

model parameters provided 

by the factory controller. 

Column 3 shows the 

optimum solution; column 4 

shows the mean of the 

parameters and column 5 shows the standard deviation of the parameters from multiple 

trials. The standard deviation of the solution was also small 

Table 4.5. Calibration Results for Robot 1 

Parameters Initial 
values 

Minimum 
Error Mean STD 

(X10-3) 
α2 (deg) -90 -89.980456 -89.981214  0.5407 
a2 (mm)  0 0.069093 0.070235  1.2749 
θ2 (deg) 0 -0.002119 -0.003301  1.3985 
d2 (mm) 0 0.688913 0.683071 1.6236 
α3 (deg) 0 0.006887 0.007243  0.4739 
a3 (mm) 625 625.508587 625.506285  2.5518 
θ3 (deg) -180 -179.998170 -180.002541  2.2271 
β3 (deg)  0 -0.043046 -0.045487  2.4402 
α4 (deg) -90 -89.989007 -89.987637  1.4748 
a4 (mm) 0 -0.000193 -0.002914  2.8074 
θ4 (deg) 0 0.036948 0.037581  0.404 
d4 (mm) 625 626.245066 626.243121  2.0783 
α5 (deg) 90 90.008879 90.009645  0.6830 
a5 (mm) 0 -0.526270 -0.524321  2.1335 
θ5 (deg)  0 -0.097083 -0.099621  4.3357 
d5 (mm) 0 0.546777 0.545122  1.4124 
α6 (deg) -90 -90.025081 -90.023421  1.7659 
a6 (mm) 0 0.530810 0.534164  3.1956 
lθx (deg) 0 0.050220 0.056354  5.8913 
lθy (deg) 0 0.167296 0.164381  2.6737 
px (mm) 0 -0.185588 -0.1831072  2.3211 
py (mm) 0 1.638139 1.636521  1.6786 
Φl(deg) 0 0.012141 0.012201 1.1761 
Φm(deg) 0 0.002541 0.002593 1.0572 

( )310− indicating the stability 

of the procedure. The accuracy of the obtained solution is discussed in next section.  
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4.5.4. Accuracy of Staubli Robot 

To test the accuracy of 

the calibration procedure and 

to compare the accuracy of 

computed parameters with the 

industrial parameters, the laser 

was aimed at a fixed location 

using various robot 

configurations. The laser lines 

were computed for each 

position using industrial 

parameters and calibrated 

parameters. These laser lines 

usually do not intersect at a 

common point. Therefore an 

optimum 3D ‘closest point’ which is closest to all the lines was found in both cases. The 

projections of all the lines onto a plane passing through this ‘closest point’ were plotted. 

The larger the error in the parameters, the greater will be the scattering in the projected 

points.  

Table 4.6. Calibration Results for Robot 2 

Parameters Initial 
values 

Minimum 
Error Mean STD 

(X10-3) 
α2 (deg) -90 -90.017231 -90.018914 0.8172 
a2 (mm)  0 -0.032134 -0.033294 2.3143 
θ2 (deg) 0 0.011395 0.017531  1.8593 
d2 (mm) 0 0.986912 0.985234  1.2734 
α3 (deg) 0 -0.612876 -0.614178  4.0712 
a3 (mm) 625 624.987433 624.991747  3.2156 
θ3 (deg) -180 -180.120867 -180.125123  4.5191 
β3 (deg)  0 0.033167 0.035199  0.7722 
α4 (deg) -90 -90.114360 -90.119038 5.1782 
a4 (mm) 0 -0.341193 -0.347345  2.8141 
θ4 (deg) 0 0.008118 0.009256 0.9054 
d4 (mm) 625 626.873422 626.877954 3.1378 
α5 (deg) 90 90.112369 90.112139 1.2700 
a5 (mm) 0 -0.526270 -0.525183 0.8765 
θ5 (deg)  0 0.019845 0.019882 1.7653 
d5 (mm) 0 0.753422 0.754841 2.7804 
α6 (deg) -90 -90.067334 -90.068136 5.2309 
a6 (mm) 0 0.315344 0.311782 6.7126 
lθx (deg) 0 -0.332719 -0.332910 3.3119 
lθy (deg) 0 0.912828 0.914921 2.4285 
px (mm) 0 -0.876296 -0.878541 1.2077 
py (mm) 0 1.221845 1.226981 2.9541 
Φl(deg) 0 -0.572108 -0.578287 2.7691 
Φm(deg) 0 0.098826 0.099328 3.8715 
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Figure 4.10. Laser projection errors using industrial (red) and calibrated parameters (blue). 

The errors in the projection using industrial and calibrated parameters for real 

robot are shown in Figure 4.10. Since the robot was aiming at the same point from 

various robot configurations, all of the projected points should be coincident. The spread 

of these projected points relates to the accuracy of the estimated DH parameters of the 

robot. Figure 4.10 shows that the spread of projected points. Using the original DH 

parameters built into the commercial controller the maximum, mean and standard 

deviation of the radius of spread were 11.25mm, 5.64mm and 1.89mm, respectively. 

After calibration using the calibrated parameters the maximum, mean and standard 

deviation of the radius of spread were 4.22mm, 1.05mm and 0.587mm, respectively. The 
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improvement in the system is around 5.37(=5.64/1.05) times. Though the errors are 

dependent on the distance of the observation plane from base of the robot the ratio of 

errors or in other words the improvement ratio is independent of it. For small angular 

errors ( ) 1
1 1tan EA A

β
Δ

Δ ≈ Δ ≈  and ( ) 2
2 2tan EA A

β
Δ

Δ ≈ Δ ≈ . Hence 1

2 2

A E
A E

Δ Δ
=

Δ Δ
1 , i.e., the 

improvement ratio in aiming is independent of the aiming distance. This ratio also gives 

us the improvement in the angular errors of the end effector. Therefore the angular errors 

are reduced around five times with the ViCKi method. 

4.6. Industrial Automation 
The present calibration method can be automated to calibrate industrial robots. 

The feedback system studied in simulation can be extended to a real system. A camera, to 

record the position of the laser point, can be used to read the error in aiming at a desired 

point. These errors can be fed back to the system to compute the changes in joint values 

required to adjust the laser point closer to the required location. An initial set of joint 

values which aim at a fixed location were computed using the approximate parameters 

and using this feedback system it is very easy to obtain the data required for calibration 

making the process suitable for automation. 

4.7. Limitations 
The present method of calibration does not take into account other sources of 

error such as temperature, load variations, and elasticity of the arms. Having a general 

model which includes other effects apart from the inaccurate geometric model can also be 

calibrated using the procedure herein. The robot should be able to connect to the laser 

tool or at least be able to hold the laser tool rigidly if there is no provision for tool 
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interchange. Selection of a high quality laser whose light does not diverge significantly 

with the distance of projection is also important. 

4.8. Conclusions 
An accurate calibration procedure is developed for industrial robots. Most of the 

previous methods that calibrate a robot use the pose of the end-effector measured by 

some ancillary equipment. The accuracy of measurements of the end-effectors position 

and orientation is limited by the measuring equipment and its resolution. Other closed-

loop methods use physical constraints such as linear, planar or other end point 

constraints. The methods that use a planar constraint on the end effector have limitations 

in obtaining accurate joint readings that satisfy the constraints due to the presence of 

contact forces. The methods using linear constraints have difficulty maintaining the end 

effector constraints while obtaining the readings. The single end point method has 

restrictions in obtaining the joint configuration readings for various poses due to the 

physically constrained environment. The proposed method uses a laser pointer tool on the 

robot’s end-effector to aim at a fixed location on a distant object. By projecting the laser 

pointer onto a distant object, the resolution of observations is improved, increasing 

accuracy of measurements of the joint angles required for accurate calibration of the 

robot. The method is verified using both simulation and real experiments. It is also shown 

in simulation that the method can be automated by a feedback system. The calibration of 

the two industrial robots is accomplished and the accuracy of their parameters is 

improved. These accurate robots parameters give us a more accurate position of the PTU 

camera systems attached to them. 
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Chapter 5. RTU Calibration 

5.1. Introduction 
The goal of the dissertation is to find accurate 3D structure. The accuracy of the 

computed 3D points depends in the positions of the cameras with respect to global 

coordinate system. The cameras are mounted on the PTUs and PTU are picked up by the 

robots moving on the RTU. Hence the accuracy of the 3D structure depends on RTU 

model parameters accuracy. Also the present application involves multiple robots 

interacting with each other; it is necessary to determine their global location with respect 

to each other. The relative global locations of one robot from the other are usually 

computed by using inaccurate industrial design parameters. Hence a software calibration 

approach to identify the DH parameter values of the global position of one robot with 

respect to other is needed to increase our overall accuracy. 

We use our ViCKi method to include the Rail Transport unit also and calibrate the 

global positioning of one robot with respect to other. 

5.2. RTU and Staubli Models 
We used the model of Staubli as described in section 3.1.1. The total number of 

independent calibration parameters (22) which describe the complete robot laser system 

for each robot are already determined using the industrial robot calibration (ViCKi) as 

described in Chapter 4. We used method 2 where the robot is translated on the RTU to 

get two different locations to aim the laser. One of the side effects of the calibration 

procedure was that we found the direction of the translation of the robot with respect to 

the robots base. This direction of translation gives us the direction of the RTU with 
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respect to the robot base coordinate systems. Thus we also know the two parameters for 

the RTU direction Φl and Φm. 

 
Figure 5.1. Coordinate systems for the RTU and robots. 

Since we already know the two robot-laser systems parameters we can compute 

the transformation matrices   and  for any particular joint configurations. 1
1

B
ET 2

2
B

ET

The model of RTU and Staubli system is described section 3.2.1. The 

transformation from any RTU position of one robot to any RTU position of the other 

robot on the RTU is given by ( 3.4). All the required parameters are already calibrated 

except the transformation parameters Ψx, Ψy, Ψz and Ψα from one robot RTU base to other 

robot RTU base. The calibration procedure in this chapter describes the ViCKi extension 
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to determine these parameters. Then, the transformation matrix in ( 3.5) will be able to 

convert from one robot base coordinate system to other from any RTU positions. 

5.3. Virtual Closed Kinematic Chain Calibration (ViCKi) 
Section 4.3 describes a new method ViCKi to calibrate the industrial robots. We 

have used that method to calibrate both the robots. Thus all 22 parameters for the robot 

laser system and the two parameters for the RTU direction with respect to the robot base 

coordinate system are determined for each robot. 

 
Figure 5.2. RTU is calibrated by aiming at same point by two robots’ lasers. 

The calibration is performed by aiming the laser pointer at an arbitrary point P on 

a distant object (usually a plane), then adjusting the joint values of the other robot to aim 
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its laser pointer at P as shown in Figure 5.2. The joint configurations and the RTU 

locations of both the robots are recorded. We are aiming at the same physical point by the 

two lasers on two robots. This effectively becomes a virtual closed loop for the two, 7 

DOF systems. It is not necessary to know the coordinates of the point P. For each 

configuration, we use the constraint that the laser lines intersect. The parameters of the 

model are estimated by minimizing the sum of the normalized shortest distance of the 

two laser lines. Since the shortest distance error depends on the distance of the object 

plane from the end effectors (i.e., length of the laser lines) it is normalized with the mean 

length of the laser lines. We denote the 22 parameter set for the first robot, laser system 

as 1 . The two parameters for the direction of RTU in first robots base frame as RLΦ 1
lmΦ . 

We use the notation 1  for joint readings of first robot, ith reading. The transformation 

matrix for robot 1 with respect to its base RTU coordinate system, denoted as R1, is 

given by 

iJ

( ) ( )1 1 1 1 1 1
1 11

R R 1 1 B
i E l m i E RL iB Φ Φ D Φ JT T T=  ( 5.1)

 
The transformation matrix for robot 2 with respect to its base RTU coordinate 

system (R2) is given by 

( ) ( )2 2 2 2 2 2
2 22

R R 2 2 B
i E l m i E RL iB Φ Φ D Φ JT T T=  ( 5.2)

 

We use the unknown transformation matrix  to compute the transformation 

matrix for robot 2 with respect to robot 1’s base RTU coordinate system R1 frame as 

1
2

R
RT

( )1 2
2 2

R R1 R
i E R xyz i ETT Tα= Ψ 2  ( 5.3)

 
Using equation ( 5.1) the position and direction of the laser line for first robot are 

found in columns 4 and 3 respectively. Using equation ( 5.2) the position and direction of 
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the laser line for second robot are found in columns 4 and 3 respectively. The shortest 

distance of these two lines is determined and normalized with the mean length of the 

laser lines. This is the error, i.e., the cost function for this reading given by 

( )1 1 1 1 2 2 2 2Φ Φ Φ J Φ Φ Φ JRL l m i RL l m i xyzEi αΨ  ( 5.4)
 

The unknown parameter set { }x y z= αΨ Ψ Ψ Ψ Ψ is determined by minimizing 

the total sum of the squares error 

N 2=MIN Emin ii=1
Ψ ∑Ψ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ( 5.5)
 

 
where  is the required parameter set obtained by minimizing the total sum of 

squares of errors and N is the number of readings. We have developed a MATLAB 

routine which uses Levenberg-Marquardt (LM) 

minΨ

[59] algorithm (MATLAB routine: 

lsqcurvefit) repeatedly by varying the solution obtained with random percentage values 

and using it as the initial solution for next repetition. The magnitude of the random 

percentage values is reduced with each repetition. Introducing randomness to initial 

values for LM algorithm reduced its chances of getting struck in local minima.
 

5.3.1. Feedback system 

The feedback system described in section 4.3.1 , redirects the laser spot on a plane 

to a desired location. We used the same feedback system to accelerate the data 

acquisition process. Models of the RTU with two robot-laser systems are constructed in 

Simulink. The errors in aiming the laser at a fixed point due to errors in parameters are 

within ±10mm, which are well within the limits of the feedback system that can correct 

errors of ±500mm away from the desired point. 

 68



A camera detects the laser point and the error is used as feedback to change the 

robot joint angles so as to move the laser point to the desired point. 

5.3.2. Procedure 

The procedure is summarized in these steps 

1) The second robot aims its laser at an arbitrary point on a distant plane. 

2) Using the approximate parameter values of the robot laser systems and the 

3D point, the first robot aims its laser at the same point. 

3) The first robot’s joint values are adjusted such that the centroids of both 

laser points are as close to each other as possible. The joint readings of 

both robots and their RTU positions are recorded.  

4) Steps 1 to 3 are repeated large number of times (N = 500). For each 

reading, the robot’s joint configurations and its RTU locations are varied 

to span their domain, i.e., to exercise all degrees of freedom, often known 

as the persistent excitation problem. 

5) Using these data and a nonlinear minimization routine, compute the 

parameter values. 

5.4. Experiments 

5.4.1. Calibration with Precise Data in Simulation 

Simulation of the calibration experiment was performed. Two robots were created 

in Simulink with known sets of parameters different from the industrial parameters 

(approximate DH parameters used by the robot manufacturer) on an RTU with known 

parameters. The experiment is conducted in simulation as discussed in section 5.3.2. The 
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actual known parameters for the robot 

laser systems are used and the 

parameters of the RTU are estimated 

and compared with the known values. 

The experiment was repeated multiple 

times with different joint configurations and RTU positions. The deviations of the 

parameters from the actual parameters were computed. Table 5.1 shows the results. 

Columns 2 and 3 show the true parameters used to obtain data and the initial parameters 

used in the minimization routine respectively. Columns 3 and 4 show the optimum 

solution and standard deviation from true parameters respectively. 

Table 5.1. Calibration Results (with actual robots 
parameters) 

Parameters Actual Initial 
values 

Minimum 
Error 

STD 
(X10-4) 

Ψx (mm) 5654 5650 5654.0001 4.6231 
Ψy (mm) 3 0 2.9995 3.1274 
Ψz (mm) 3 0 3.0003 2.2855 
Ψα (deg) 0.01 0 0.008 0.6141 

5.4.2. Calibration with Noisy Data in Simulation 

Simulation of the calibration experiment was performed. Two robots were created 

in Simulink with known sets of parameters different from the industrial parameters 

(approximate DH parameters used by the robot manufacturer) on an RTU with known 

parameters. The experiment is conducted in simulation as discussed in section 5.3.2. The 

robots’ joints have finite resolutions as shown in Table 4.2. Hence to make the simulation 

more realistic noise is added to the joint values with magnitude of the maximum 

resolution. These joint configurations were used to calibrate the RTU. The experiment 

was repeated multiple times with different joint configurations and RTU positions. The 

deviations of the parameters from the actual parameters were computed. Table 5.2 shows 

the results of the calibration with noisy data. 
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Columns 2 and 3 show 

the true parameters used to 

obtain data and the initial 

parameters used in the 

minimization routine 

respectively. Columns 3 and 4 show the optimum solution and standard deviation from 

true parameters respectively. The standard deviation of the solution was small enough 

(10-3) to justify that the procedure produces a usable result. 

Table 5.2. Calibration Results (Noisy Simulation) 

Parameters Actual Initial 
values 

Minimum 
Error 

STD 
(X10-3) 

Ψx (mm) 5654 5650 5654.0043 3.2561 
Ψy (mm) 3 0 2.9978 2.8954 
Ψz (mm) 3 0 3.0016 2.5475 
Ψα (deg) 0.01 0 0.014 0.3271 

5.4.3. Calibration of RTU with two Staubli Robots 

The calibration experiment was performed on the real RTU with two Staubli 

RX130 robots. The experiment was repeated multiple times with different joint 

configurations and RTU positions. The mean and standard deviation of the calibration 

parameters were computed. 

Table 5.3 shows the 

results of the calibration of the 

real system. Column 2 shows the 

initial parameters used in the 

minimization routine. Column 3 

shows the optimum solution. Column 4 and 5 show the mean and standard deviation of 

the parameters and from multiple trials. The standard deviation of the solution was also 

small (10-3 mm/deg) indicating the stability of the procedure.  

Table 5.3. Calibration Results 

Parameters Initial 
values 

Minimum 
Error Mean STD 

(X10-3) 
Ψx (mm) 5654 5654.8610 5654.8604 3.4381 
Ψy (mm) 0 -3.3288 -3.3272 1.5725 
Ψz (mm) 0 1.4338 1.4321 1.3431 
Ψα (deg) 0 0.0134 0.0135 0.4352 
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5.4.4. Accuracy of RTU Transformation 

To compare the accuracy of computed parameters with the approximate 

parameters, the laser was aimed at a fixed 3D point using various joint configurations and 

RTU positions of first robot. Then the calibration parameters are used to transform the 

laser lines into the other robot’s base coordinate system, and, these laser lines are 

projected on to a plane passing through the transformed 3D point. Since these are the 

same laser lines, they should intersect at the transformed 3D point, but due to the errors in 

the parameters this will not be the case. The errors of the projection are compared by 

using the laser lines before transforming, and after transforming using un-calibrated, 

calibrated parameters to find the improvement. The larger the error in the parameters, the 

greater will be the scattering in the projected points.  

The maximum, mean and standard deviation of the radius of spread before 

transformation due to errors in robots parameters were 4.34mm, 1.12mm and 0.573mm 

respectively. These points were transformed to the other robots coordinate system using 

calibrated and un-calibrated RTU parameters for the transformation. The errors due to the 

inaccuracy of the RTU parameters are shown in Figure 5.3.  

The maximum, mean and standard deviation of the radius of spread were 

16.07mm, 5.22mm and 2.72mm respectively using uncalibrated RTU parameters. 

Transforming using calibrated parameters the maximum, mean and standard deviation of 

the radius of spread were reduced to 4.43mm, 1.78mm and 0.817mm respectively which 

are comparable to the errors associated with a single calibrated robot, i.e., very little error 

is added to the system as a result of adding the RTU into the system. 
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Figure 5.3. Errors in aiming the laser at fixed points after transformation using un-calibrated and 

calibrated parameters. 

5.5. Limitations 
The present method of calibration does not take into account other sources of 

error such as temperature, load variations, and elasticity of the arms and backlash. Having 

a general model which includes other effects apart from the inaccurate geometric model 

can also be calibrated using the procedure herein. Selection of a good laser whose light 

does not diverge much with the distance of projection is important. 

5.6. Conclusions 
The calibration procedure developed in previous chapter is extended to include 

the RTU also. The two robots on the RTU are calibrated independently in previous 

chapter and their relative global position and orientation accuracy is improved in this 
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chapter. The method is verified using both simulation and real experiments. It is also 

shown in simulation that the method can be automated by a feedback system.  
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Chapter 6. Pan-Tilt Camera Calibration 

6.1. Introduction 
The previous chapters calibrated the robots and the RTU giving us more accurate 

parameters for their models. Using those parameters the location and orientation of the 

base coordinate system of the Biclops is found accurately. The problem still remains that 

the PTU parameters are not accurate. This chapter particularly focuses on calibration of 

the PTU and the camera systems. This relation between the 3D coordinates of points in 

the workspace and their 2D image locations can be computed by using those parameters. 

The calibration includes internal and external parameters of the camera. Calibration of 

internal parameters finds the relationship between image coordinates and ray directions in 

the camera coordinate system. This relationship is described by the perspective projection 

of the ideal pinhole camera model. The parameters which need to be determined are the 

focal length, the principal point (image center pixel) and scale factors in the x and y 

directions. It is possible to include compensation for lens distortion when a more accurate 

model is desired. Calibration of external parameters involves finding the position and 

orientation of the camera in some world coordinate system (here the base of the PTU 

coordinates). External camera calibration is important in stereo vision where one needs to 

find the relative position of the coordinate systems of the two cameras and it is also 

important in hand-eye coordination in robots. Introducing pan-tilt motion to the cameras 

makes the external calibration dependent on the values of the pan and tilt angles. The 

calibration problem is to identify the values of the internal and external parameters of 

each camera in a stereo pair so that they can work together effectively, e.g., to determine 

3D points of interest through triangulation. 
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6.2. Biclops Model 
The Biclops is modelled as described in section 3.4.1. The parameters for the 

Biclops are not accurate. These parameters need to be calibrated. The calibration 

parameters for the camera can be divided into two groups. One group is the internal 

parameters which do not depend on the position or orientation of the camera. The other 

group of parameters is the one that affects the accuracy of the position and orientation of 

the camera with respect to some coordinate system, i.e., the robot end effector in this 

case. 

6.2.1. External Parameters 

The transformation matrix which converts points from the base of the robot to a 

coordinate frame fixed on the camera is called the external transformation matrix. The 

external transformation matrix gives the location and orientation of the camera in the 

base coordinate frame of the robot (knowing the TCF position and orientation). The 

parameters of this external transformation matrix described in section 3.4.1 denoted by 

(tx, ty, tz, θx, θy, θz, θ1, α1, a1, d1, θ2, α2, a2, d2), are the external parameters. 

6.2.2. Internal Parameters 

The transformation matrix that converts points from the coordinate frame fixed on 

the camera to the 2D image coordinates is given by the following expression 

fp 0 u 0x 0IT = 0 fp v 0y3 0
0 0 1 f

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 ( 6.1) 

where f is the focal length, (u0, v0) is the location of the point where the axis of the 

camera intersects the image plane, i.e., the principal point. Parameters px, py are the 

number of pixels per mm (inverse scale factors) in the x and y directions, respectively, of 
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the image. The parameters f, u0, v0, px and py are the internal parameters. This model does 

not include the lens distortion and the pixel skew, though the model can be easily 

extended to include them.  

6.2.3. Calibration Matrix 

nts from the base coordinate frame of the robot to 

the ima

( 6.2) 

This matrix is clearly dependent on the values of the pan and tilt axis an

because

6.3. Calibration 
rocess of determining the values of all the parameters 

{ tx, ty,

mathematically by 

The matrix that transforms poi

ge coordinate frame is defined to be the calibration matrix, given by ITB. 

-1 -1 -1 -1 -1( ) ( ) ( ) ( ) ( )I I 2 1 0 E BT = T T T T T TB E3 3 2 1 0  

gles 

 of 0T1 and 1T2. ITB can be computed for any pan and tilt angles of a PTU if all the 

internal and external parameters are known. Given a 3D point XB in the base coordinate 

frame of the robot, the calibration matrix is used to compute the location of the point in 

the image by W= ITB XB. Vector W= {w1 w2 w3}T contains the homogenous coordinates 

of the image point U(u, v), computed by u=w1/w3, v=w2/w3. 

Calibration is the p

 tz, θx, θy, θz,, θ1, α1, a1, d1, θ2, α2,, a2 , d2 f, u0, v0, px, py }of the model Ф. Given a 

point in the workspace, the corresponding image point can be computed using the values 

in Ф. The error between the computed and the observed points, as registered in the image 

plane, is called the projection error, and is the result of error in the estimation of the 

model parameters. Thus, choosing model parameter values that minimize the mean 

square projection error is the goal of the calibration procedure. This is described 
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n 2
i ii=1Φ

Φ = (U (Φ,X ,θ ,θ ,T )-U )im Min pi ti i∑  ( 6.3) 

where is the observed image point and i( , , , , )i i pi tiU X Tθ θΦiU is the computed image point 

of the projected 3D point Xi in the base coordinate frame of the robot when the pos

lues are θpi, and 

nts with respect to some pan, tilt angles and 

end ef ctor p

ition 

of the end effector is Ti and pan and tilt va θti respectively. In ( 6.3), Ti= 

(x, y, z, α, β, γ } is the set of translation and rotation values of the end effector, parameter 

‘n’ is the total number of 3D points observed, and Фm is the required parameter set that 

minimizes the mean square projection error. 

 To calibrate the model, the usual approach is to use a large set of 3D 

points and their corresponding 2D image poi

fe osition and orientation. The mean square of the projection error is 

minimized using Levenberg-Marquardt [59] nonlinear minimization. This procedure 

requires a known set of 3D points (Xi) in the workspace which are difficult to measure 

and time consuming to collect. The innovation of the proposed approach is that the 

calibration procedure herein is altered to use a single 3D point (X) and images of the 

point from various camera positions and orientations are taken. The modified calibration 

is represented by equation 

n 2
i=1Φ

Φ = (U (Φ,X,θ ,θ ,T )-U )im Min i pi ti i∑  ( 6.4) 

The second distinguishing characteristic of the calibration procedure is to replace 

the known 3D point with an unknown but stationary 3D point in the workspace.

coordin

 The 

ates of the unknown 3D point are added to the set of calibration parameters to get 

a new set {Ф, X}. The calibration procedure itself will determine the 3D location of the 

point (X). The final calibration is represented by equation 
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n 2
i pi ti ii=1{Φ,X}

{Φ,X} = (U ({Φ,X},θ ,θ ,T )-U )im Min ∑  ( 6.5) 

where X is the unknown stationary 3D point in the base coordinate frame of the robot. 

Using a single stationary 3D point does not affect the excitation of all the degre

6.4. Experiments 

6.4.1. Laser Pointer Tool 

 calibration is 

ent 

must b

gu

oach provides a s eck on 

es of 

freedom of calibration as we still have the pan, tilt and the end effector location and 

orientation that can be varied extensively by moving the robot that carries Biclops.  

To determine that a

accurate, an independent measurem

e made. To enable this, a laser 

pointer tool that can be attached to the 

robot wrist has been fabricated. It 

consists of a laser pointer (with pivot to 

adjust orientation) connected to a tool 

base. The robot picks up this tool by 

connecting to the tool base, as shown in Fi

at any location in the workspace. This appr

the calibration procedure. After the calibration procedure, the location of the calibration 

point can be computed and the laser pointing tool can overlay its laser point on the 

calibration point, thus verifying the results of the procedure. 

re 6.1. The robot can then aim the laser too

imple but effective ch

l 

 
Figure 6.1. Staubli RX-130 robot carrying a laser 

pointer tool. 
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6.4.2. Experimental Setup 

The workcell consists of two 

Staubli RX-130 robots, one carrying 

Biclops and the other carrying the laser 

tool, as shown in Figure 6.2. These robots 

are on a robot transport unit (RTU) and 

can be moved along the track. An accurate 

calibration of the RTU system has been 

done which gives the transformation from 

the base of one robot to the other, measured experimentally to be within 1mm. The laser 

pointer aims at an arbitrary stationary location in the workspace. The robot carrying 

Biclops moves through a sequence of locations to exercise all of the degrees of freedom 

on the camera and PTUs. At each programmed location, the cameras on Biclops capture 

an image. 

 
Figure 6.2. Workcell with two Staubli RX-130 

robots on the RTU and laser point projected onto 
the wall . 

6.4.3. Image Acquisition and Processing 

The cameras on Biclops can be programmed for specific values of exposure time. 

Since the laser spot is quite bright relative to the other parts of the scene, a short exposure 

time ensures capturing only that spot. We assume that there are no other high intensity 

light sources in the workspace. This makes it very easy to process the images quickly to 

determine the location of the laser point in the images.  
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6.4.4. Procedure 

The number of constraints required by the Levenberg-Marquardt algorithm to 

converge to a good model is usually five times the number of parameters in the model. 

Consequently, we used 60, 2D image points, which is equivalent to 120 constraints. Since 

the positions of the robot and values of the pan-tilt mechanism are under computer 

control, it is easy to ensure that each variable is exercised from minimum to maximum 

values. This persistent excitation prevents ill-conditioned matrices that result in poor 

models. The algorithm for the calibration procedure is as follows: 

1) A laser pointer is aimed at an arbitrary location. 

2) Random pan, tilt and TCF position and orientations are computed. This set 

is reduced to 60 positions, where the laser point is in the field of view of 

both cameras. 

3) Biclops is moved by the robot to each of the set of positions and images of 

the laser point are captured. 

4) These images are processed to determine the 2D coordinates of the laser 

point. 

5) Once the data are collected for all positions the minimization routine 

(Levenberg-Marquardt) is used to determine the calibration parameters.  

6.4.5. Results 

Calibration of the pan-tilt cameras on Biclops requires only one unknown point to 

determine the values of the model parameters. Ideally, the same values of the model 

parameters should be obtained regardless of the location of the unknown point. In this 
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section we repeat the calibration procedure of using different unknown points to measure 

the difference between the models obtained. 

Table 6.1 shows the 

19 parameter values for 

each camera along with the 

obtained coordinates of the 

unknown stationary 3D 

point in two different trials 

using different unknown 3D 

points.  

An initial estimate of 

the parameters was 

determined from the “as 

designed” dimensions of the 

Biclops pan-tilt system. The Levenberg-Marquardt nonlinear minimization routine was 

used on the calibration data to compute values for the parameters that minimize the 

projection error. The model parameter values obtained from the two different unknown 

3D points were within acceptable limits, as shown in Table 6.1. For Trial 1, the 

“unknown” point was measured at (500, -3198, 1368). The computed values for the left 

and right cameras, the last three parameters in the model, show very small errors. 

Similarly, for Trial II, where the “unknown” point was measured to be (700, -2148, 

1254), the last three parameters in the model also show small error, certainly acceptable 

from the standpoint of grasping an object.  

Table 6.1. Calibration Parameters 

 Trial I 
Point (500, -3198, 1368) 

Trial II 
Point (700, -2148, 1254) 

Parameters Left Right Left Right 
tx (mm) 111.4615 -80.7387 111.3205 -80.0354 
ty (mm) -60.2324 122.6854 -60.35 121.9943 
tz (mm) 221.7315 230.9312 221.37 230.2173 
θx (deg) 0.0592 0.1125 0.0761 0.0925 
θy (deg) -0.0854 -0.2831 -0.0732 -0.2478 
θz (deg) 45.7232 45.5747 45.9421 45.0732 
α1 (deg) 90.2854 90.3832 90.5531 90.2987 
a1 (mm) -8.9323 -9.5688 -9.0615 -9.8233 
θ1 (deg) 88.1076 86.7735 87.9864 86.1378 
d1 (mm) 9.8212 10.1115 9.5616 10.4156 
α2 (deg) 89.9718 90.2965 90.0515 90.3193 
a2 (mm) 54.1533 44.8755 54.3460 44.8043 
θ2 (deg) -90.0723 -90.6572 -90.1289 -90.0667 
d2 (mm) 42.7024 27.9636 42.5957 27.5537 
f (mm) 12.2565 11.9414 12.17111 11.9871 
u0 (pxls) 322.4034 333.5779 323.10 334.1599 
v0 (pxls) 260.584 264.3231 259.6133 265.1217 
px (pxls /mm) 101.0467 101.4207 100.9734 101.8278 
py (pxls /mm) 101.0243 100.2475 100.9958 100.0450 
3D-X (mm) 499.297 498.265 700.325 699.654 
3D-Y (mm) -3197.035 -3196.214 -2148.014 -2147.092 
3D-Z (mm) 1368.093 1367.215 1254.032 1253.256 
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The 

calibration process 

was repeated in a 

similar fashion 90 

times to test the 

accuracy of the 

calibration. The 

histogram of the 

projection error for 

the set of points was 

plotted as shown in 

Figure 6.3 and Figure 

6.4. The projection 

error had range [0.5 

to 2.8] pixels and 

mean close to 1 pixel.  

 
Figure 6.3. Histogram of the Projection errors for left camera. 

Using the 

model computed for 

each camera and 

triangulating to a 

point 1000 mm away, 

a 1 pixel error creates 

an error of 3 mm. The time required for the complete calibration procedure is limited by 

 
Figure 6.4. Histogram of the Projection errors for right camera. 
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the speed of the motion of the robot and PTUs. The procedure takes about three minutes 

to run. This compares favorably with the 20 to 30 minutes required for our previous 

calibration procedure that used a multi-point calibration grid. We are unaware of 

published calibration times for alternative approaches. Calibration using a grid requires 

more complex image processing and human involvement to verify the correctness of the 

corresponding image point locations; these problems were eliminated completely in the 

present method.  

6.5. Conclusions 
A novel method is developed to calibrate a pair of cameras mounted on PTUs 

where a pair of cameras analyzes images from a single fixed point in space. The 

correspondence problem has been eliminated completely, and image processing has been 

simplified to finding the only bright dot in an image. 

 A complete model without any assumptions about the PTU geometry is 

considered. The present method does not require either an extensive set (or any, for that 

matter) of known calibration points in the workspace or an expensive routine to make the 

image features correspondences.  

 A single unknown stationary 3D point in the workspace, designated by 

aiming a laser pointer at some surface in the workspace, is sufficient to derive the vision 

system model parameters. The values of robot location, pan, and tilt can be generated 

automatically using inverse kinematics (with initial approximation of the parameters) so 

that the algorithm can run unattended whenever needed. 
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Chapter 7. IDI-Points 

7.1. Introduction 
In this chapter we introduce the various image processing functions to find the 

low level features in images like the edges, corners and lines. A new image feature called 

Indirectly Determined Intersection Point (IDI) is presented. The various low level image 

processing needed to locate these IDI points in the image is presented. The geometrical 

and image properties of IDI points are presented. It is also shown how these points are 

less sensitive to image noise as compared to the traditional corners in an image. Various 

experiments are presented to prove this concept.  

7.2. Sum of Squared Difference 
It is often required to match two image regions to see how similar they look. A 

measure of similarity is defined where each pixel is compared with its corresponding one 

to see how different it is. This method is called Sum of Squared Difference (SSD). For an 

image patch of size (2W+1, 2H+1) at (u, v) and at the patch shifted to (u+x, v+y) is 

defined as 

( ) ( ) ( )( )2
, , ,

W H

u W H
S x y I u v I u x v y

=− −

= − +∑ ∑ +  ( 7.1) 

7.3. Linear Filtering 
Filtering is an operation on the digital image producing a new image. Consider a 

digital image, ( ) [ ) [ ), 0, , 0,I x y x W y H∀ ∈ ∈ , now applying a function on the image 

results in another image ( )( ),GI G I x y=  the operation ‘G’ is called the filter. A filter can 

be usually any kind of operation resulting in any size of the image (may not be same as 

the original). A linear filter is a filter which uses only linear operations on the image thus 

 85



the filter of a linear combination of images will be equal to the same linear combination 

of the individual images filtered first. Let I1 and I2 be two images and G be a linear 

transform. Then for any two constants a and b, the linear filter ‘G’ satisfies the following 

equation 

( ) ( )( ) ( )( ) ( )( )1 2 1 2, , ,G aI x y bI x y aG I x y bG I x y+ = + ,

),

 ( 7.2) 

7.4. Convolution 
Convolution is a linear filter. The resulting image pixels are a linear combination 

of the image pixels in its neighborhood. An array of the weights is chosen to apply on the 

neighborhood pixels of each pixel. This array of weights is called as the kernel and they 

are kept same throughout the operation. The resulting image is a new array with a 

weighted sum of the neighborhood pixel values. Convolution is shift-invariant - meaning 

that the value of the output depends on the pattern in an image neighborhood, rather than 

the position of the neighborhood. The convolution operation can be represented as 

( ) ( ) (, ,
a b

c
i a j b

I x y K I K i j I x i y j
=− =−

= ∗ = − −∑ ∑  ( 7.3) 

where K is the kernel of size (2a+1,2b+1). The edges of the image are handled specially 

by either zero padding or mirroring the inner pixels, or ignoring the edge pixels all 

together to output an image of size (W-2a, H-2b). 

7.5. Smoothing or Blurring (Low Pass Filter) 
A digital image is usually accompanied with noise due to either the imaging 

device itself or the image capturing method of the device. This noise needs to be removed 

by a smoothing operation. Smoothing or Blurring uses a smoothing kernel and convolves 

the image with it. It is also referred to as a low pass filter since effectively it filters out the 
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high frequency noise and retains the low frequencies. Simple blurring uses a kernel with 

all same weights. Gaussian blurring uses Gaussian kernel with the weights given by a 

Gaussian distribution  

( )
2 2

22
2

1,
2

x y

G x y e σ

πσ

+
−

=  ( 7.4) 

where σ is the standard deviation of the distribution. The kernel size depends on the 

standard deviation. The amount of blurring is depends on the kernel size and values. 

7.6. Edge Detection (High Pass Filter) 
Assuming that objects in the scene are approximately uniform in intensity the 

edges in images are the pixels that separate one area from another. They are defined by 

the pixels where there are discontinuities. It is also referred to as high pass filter since it 

only retains the higher frequency edges and filters out the low frequencies. Since noise 

can be present in the images and can pass through the edge detection process, it is 

essential to remove the noise in the image before edge detection. Images are usually 

almost always smoothed using a Gaussian to reduce the noise. 

There are many methods for edge detection, but most of them can be grouped into 

two categories, derivative based and zero-crossing based. The derivative based methods 

detect edges by first computing a measure of edge strength, usually a first-order 

derivative expression such as the gradient magnitude, and then searching for local 

maxima of the gradient magnitude in the gradient direction. The zero crossing based 

methods search for zero crossings in a second order derivative based expressions of the 

image. The expressions may consist of Laplacian or a non linear differential expression.  

The gradient of the image at each pixel is a 2D vector with the components given 

by the derivatives in the horizontal and vertical directions. The gradient vector is a vector 
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along which there is a maximum change in intensity. Its magnitude is the change in that 

direction. 

7.6.1. Roberts 

Roberts edge detection is one of the earliest edge detection algorithms. The edges 

are computed by using two diagonal gradient approximations. The operation is 

represented as two convolutions with 2x2 kernels.  

1

1 0
0 1

D ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 ( 7.5) 

2

0 1
1 0

D ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 ( 7.6) 

 And the edge strength is computed as the sum of the absolute values of the gradients, the 
edges correspond to the local maximum of the edge strength. 

1 2E D D= +  ( 7.7) 

7.6.2. Prewitt Edge Detection 

Prewitt edge detection [67] uses a set of (in general 8) convolution kernels each of 

which is sensitive to edges in a different orientation, and convolves the image with them. 

For each pixel the local edge gradient magnitude is estimated with the maximum 

response of all 8 kernels at this pixel location. The orientation is given by the kernel 

which gave maximum response. This edge detection method is also called edge template 

matching, because a set of edge templates is matched to the image, each representing an 

edge in a certain orientation. The kernel for positive x direction is given by 
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7.6.3. Sobel 

The Sobel operator is a discrete differentiation operator, approximating the 

gradient of the image. It uses two 3×3 kernels which are convolved with the original 

image to calculate approximations of the horizontal (Gx) and vertical (Gy) derivatives.  
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 ( 7.10) 

Sobel edge detection is based on convolving the image with these kernels. The 

kernels are small, separable, and integer valued and is therefore relatively inexpensive in 

terms of computations. The kernels are composed of the Gaussian and the gradient terms 

as can be seen in the separation in x and y direction. The edge strength and the direction 

can be computed as 

2 2
x yG G G= +  ( 7.11) 

arctan y

x

G
G

⎛ ⎞
Θ = ⎜ ⎟

⎝ ⎠
 ( 7.12) 
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7.6.4. Canny 

The Canny method [68] finds edges by looking for local maxima of the gradient 

of image. The gradient is calculated using the derivative of a Gaussian filter. The method 

uses two thresholds, to detect strong and weak edges, and includes the weak edges in the 

output only if they are connected to strong edges. This method is therefore less likely 

than the others to be fooled by noise, and more likely to detect true weak edges. Non 

maximum gradient intensity is suppressed in the direction normal to the edge direction. 

7.7. Line Detection 
Edges in the images indicate the discontinuities which often correspond to the 

objects’ boundaries. For many tasks, it becomes a fundamental problem to detect object 

boundaries which are often straight lines. Edge detection is the preliminary process which 

detects the discontinuous pixels. But due to noise we often see more edges than necessary 

or sometimes the edge pixels can be missing in between line segments. Line detection is 

the process of finding and fitting lines to the edge data. 

7.7.1. Hough Transforms 

Hough transforms [70] were developed by Paul Hough to detect straight lines in 

edge images. It is a voting method where each edge pixel votes the various possible lines 

that pass through the pixel point. It is difficult to consider all infinite lines that pass 

through a point so the line parameter space is discretized. Consider a straight line with 

can be represented by 

Y mX c= +  ( 7.13) 

where m is the slope and c is the y-intercept. Every line can be represented by a 

point (m, c) in the parameter space. So each edge in the image used to vote all the 
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possible lines through point. Since ‘m’ ranges from 0 to ∞ for horizontal to vertical lines 

hence it is difficult to digitize this parameter space. To avoid this problem Duda and Hart 

[71] introduced an alternate representation of the line as 

cos( ) sin( )X Y rθ θ+ =  ( 7.14) 

where r is the perpendicular distance from the origin to the line and θ is the angle the 

perpendicular line makes with x-axis. Parameters space (r, θ) is digitized where θ ranges 

from 0 to 180 and r depends on the image size. Lines are found with Hough transform by 

first scanning the edge image and determining all the possible lines that pass through the 

pixel. These lines are points in the parameter space which are voted accordingly. After all 

the edges finish voting the parameter space image is then scanned for peaks which should 

correspond to the lines in the original image. Each peak is used and its neighborhood is 

suppressed to avoid multiple lines corresponding to the same line in the original image 

but with sight change. O'Gorman and Clowes suggested that the local gradient of the 

image intensity can be used to control the accumulation process. The gradient direction is 

often found as a side effect when computing the gradient intensity magnitude. If a given 

image point (x,y) lies on a line, then the local direction of the gradient gives the θ 

parameter corresponding to the line, and r can be computed using ( 7.14). Since the 

estimated gradient direction is less accurate, a range of θ (±25°) is used and r for 

corresponding θ is computed and voted. This reduces the computation time by reducing 

the number of useless votes, thus enhancing the visibility of the spikes corresponding to 

real lines in the image.  

Stephens [72] developed The Probabilistic Hough Transform where a model of 

feature error characteristics is proposed combining normally distributed measurement 
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errors with uniformly distributed correspondence errors. The Probabilistic Hough 

Transform H(y) is defined as the log of the probability density function (PDF) of the 

output parameters, given all available input features given by 

( ) ( )( )1 2ln | , nH y f y x x x=

)

 ( 7.15) 

where ( ,ix x y  is the input feature, i.e., is the edge and ( ),iy r α is a specific point in 

Hough space.  

Using Bayes theorem we get 

( ) ( )( ) ( )0
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= +∑ +  ( 7.16) 

The conditional individual feature probability is calculated using 
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where cos( ) sin( )X Y rε θ θ= + −  (the lateral error), and φ θ α= −  (the orientation error) 

and p is the probability of individual point being on a line and σ and ρ are the standard 

deviations of the lateral and orientation errors. Thus the Hough accumulation value is 

computed by this individual conditional probability function. The peaks in the Hough 

transform are used to locate the lines in an image. These peaks are used to search on the 

corresponding line in the image to find the line segments. The different parameters are 

the tolerance to the gaps in segments and the minimum length of the segments that are 

required. 

7.7.2. Radon Transforms (Fan Transform)  

The Radon transform is a projection of a two-dimensional function I(x,y) into a 

set of line integrals. It is equivalent to rotating the image by the given angle and taking its 
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projection vertically on to the new x-axis for all valid regions of the image. The Radon 

transform at a particular angle (θ) is a line integral of the function perpendicular to that 

angle given by 

( ) ( ) ( ) ( )( )( ) cos sin , sin cosR x I x y x y dθ θ θ θ θ
∞

−∞

′ ′ ′ ′ ′= − +∫ y′  ( 7.18) 

where  
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 ( 7.19) 

Each projection angle produces a 1D vector. The Radon projections for angles (0-

180) form a Radon image. One property of the Radon transform is that the peaks in the 

Radon image correspond to the lines in the original image. The Radon transformed image 

is thresholded to locate peaks and the same kind of local suppression of non maxima is 

done as in Hough transforms to locate the individual lines. 

7.8. Corner Detection 
For various algorithms it is important to locate point features in the images which 

are also referred to as corners which are small, two dimensional points of interest. The 

most unique points in the images are the corners. A corner is defined as a point where 

two or more edges meet, in other words corners are points where there are more than one 

image gradient. These often arise as the result of geometric discontinuities, such as the 

corners of real world objects, but they may also arise from small patches of texture. Most 

algorithms are capable of detecting both kinds of points of interest. The corners should 

have variation in two directions to locate them. The corner detection algorithms proceed 

to first detect corner strength at each image point. The corner strength is then thresholded 
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to obtain initial locations of the corners. Then post processing is usually done to localize 

these points to sub pixel accuracy and while rejecting the non maximum local corners. 

7.8.1. Edge Contour Based 

At corners of regions, the edge boundary changes direction rapidly. Several 

methods were developed which segment the image first and locate the edge chains and 

analyze their properties. Some techniques involve parameterizing edges with cubic 

splines. Langridge [73] and Medioni [74] determine edges by looking for fast changes in 

the spline first derivative. They locate points where large deviations of the spline occur 

from the control point. The Curvature Scale Space [75] detector computes the radius of 

curvature of the contour and detects maxima of curvature where there is a large 

difference between maxima and the closest minima. These methods rely on segmentation 

and contour generation method. Haralick and Shapiro [76] detect edgels and use these as 

candidate points for corners. They fit a line to the nearby edges of a point and look for its 

intersection with a circle around the point. Corners are found by thresholding the image 

gradient directions, since the edge direction is changes rapidly near them. They suggest 

using either a straight line or a cubic polynomial for the line fitting. Cooper [77] uses the 

idea that along an edge the image looks similar. They first finds edges and their directions 

then take a patch on an edge and compare it to the patches on either side in the direction 

of the local contour to detect self similarity. Corners are detected where large deviation 

occurs. Kitchen and Rosenfeld [78] look for rapid changes in the edge direction by 

measuring the derivative of the gradient direction along an edge, multiplied by the 

magnitude of the gradient. The resulting corner response is given by 
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where g is the image or a 2D polynomial fitted locally to the image. And the subscript 

indicates the derivative in that direction. A quadratic polynomial gave good results. 

7.8.2. Wang and Brady 

Wang and Brady [79] propose a detector which searches for large total surface 

curvature on an image edge. The algorithm searches for high curvature. To ensure the 

points lie on an edge the gradient has to be large, so the points are also thresholded on 

gradient magnitude. A further restriction that corners should lie on the steepest part of the 

edge. The edge strength derived is given by 

22 2C I S I= ∇ − ∇  ( 7.21) 

where S is the applied threshold. This method is very good for 90° corners and it 

performs poorly for ‘T’ corners.  

7.8.3. Moravec 

A corner is defined to be a point with low self-similarity. Moravec [80] proposed 

a feature detector which measures self similarity of an image by taking the sum of square 

difference (SSD) between a patch centered on the pixel and nearby, largely overlapping 

patches. The similarity is measured by taking the sum of squared differences (SSD) 

between the two patches. A lower number indicates more similarity. Pixels in a region of 

uniform intensity will have similar nearby patches. Pixel on an edge will have patches 

similar along the edge and different normal to the edge. Pixels on a feature point will 

have varying nearby patches in all directions. 
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 The corner strength(C) is defined as the minimum SSD between the patch and its 

neighbors. A local maxima of the corner strength is used to locate the corners. One of the 

main problems with this operator is that it is not isotropic, if an edge is present that is not 

in the direction of the neighbors, it is less likely to be detected. 

7.8.4. Harris 

Harris [81] built upon Moravec's corner detector by computing an approximation 

to the second derivative of the SSD with respect to the shift. This method is 

computationally more efficient and can be made isotropic. The approximate second 

derivative of the SSD with respect to the shift is given by 
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 ( 7.22) 

where the gradients are the average values in a circular patch around the point making it 

isotropic. 

( )( )2
HC H k trace H= −  ( 7.23) 

where k is a constant. This is large if both eigenvalues are large, and it avoids explicit 

computation of the eigenvalues. Thresholding and non-maximal suppression is then used 

on the corner strength image. Shi and Tomasi [82] suggested using the smallest 

eigenvalue of H as the corner strength function.  

Zheng et al. [83] perform an analysis of the computation of H, and found some 

suitable approximations which allowed them to compute only two smoothed images, 

instead of the three previously required. They also derive a function k(x, y) to replace 

constant k in the Harris corner strength in order to improve detection and stability. They 
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also showed that computation of the local SSD roughly measures the rate of change of 

edge direction. The resulting response function is  

( )( )2 2 2 2 2 2,x yy y xx x yC I I I I k x y I I= + − +  ( 7.24) 

7.8.5. Scale Space Based 

An alternative approach to find corners is to use the Laplacian of the image, more 

precisely the Laplacian of Gaussian (LoG). Since the LoG kernel is symmetric, this is 

effectively performing feature mapping. Gaussian variance determines the size (or scale) 

of features of interest. These locations of maxima of the LoG over different scales are 

stable. Lowe [84] obtains scale invariance by convolving the image with a Difference of 

Gaussians (DoG) kernel at various scales, the maximum of DoG in both space and scale 

are retained as corner locations. DoG is used since it is a good approximation for LoG 

and faster to compute. The DoG kernel also responds strongly to edges. To reject edge 

like features, the eigenvalues of the Hessian of the image are computed at each scale and 

points are rejected with large ratio of the eigenvalues. 

 Harris-Laplace [85] features are detected using a similar approach. An image 

pyramid is built with 1.2 as scale and features are detected by computing CH at each layer 

of the pyramid. Features are selected if they are a local maximum of CH in the image. 

7.8.6. SUSAN 

Another class of corner detectors is which observe a small patch at a point to look 

for corner like shape. Smith [86] used this idea to compute the corner strength by looking 

at the proportion of pixels near to a center, or nucleus, which are very different from the 

nucleus. They introduced USAN (the univalue segment assimilating nucleus) which 
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computes a weighted sum of the number of pixels inside a disc whose intensity is within 

some threshold of the center value. Pixels closer in intensity to the nucleus receive a 

higher weighting. A low value for the USAN indicates a two dimensional feature, since 

the center pixel is very different from most of its surroundings. SUSAN (Smallest 

USAN) is a local minima of the USAN which are the likely corner points. 

7.8.7. Trajkovic and Hedley 

Trajkovic and Hedley [87] proposed that a patch is not self similar if pixels 

generally look different from the center of the patch. This is measured by considering a 

circle. The pixel value at the center of the circle cf , and the opposite points 1pf 2pf on the 

diameter are used to compute the corner response as 

( ) (( )2 2

1 2min p c p cC f f f f= − + − )  ( 7.25) 

7.9. Curve detection 

7.9.1. Active Contour Models 

Kass, Witkin and Terzopoulos [42] developed Active Contour Models which 

provide a solution to the image processing problem of determining the silhouette. Active 

Contour Models, known colloquially as “snakes,” [42]-[45] are energy-minimizing 

curves that deform to fit image features. A snake is a list of control points that move and 

reach the feature of interest (for example the edge boundary of the object) in the image. 

The number of control points can be fixed or varied dynamically. The snake control 

points move in such a manner that the total energy reaches a minimum. The total energy 

of the snake is the combined energy of all the control points. The energy function of each 

point is composed of gradients of the three types of forces:  
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Internal forces: These forces give the model tension and stiffness which eliminate 

discontinuities in the contour. 

External forces: External constraints come from high-level sources such as human 

operators or automatic initialization procedures. The aim of these kinds of constraints is 

to draw the contour towards some desired features in the images (e.g., corner points). 

Image forces: Image energy is used to drive the model towards salient features 

such as light and dark regions, edges and terminations.  

The internal energy 

function is intended to 

enforce a shape on the 

deformable contour and to 

maintain a constant distance 

between the points in the 

contour. Additional terms can 

be added to influence the 

motion of the contour. The 

external energy function 

attracts the deformable 

contour to interesting features, such as object boundaries, in an image. Any energy 

expression that accomplishes this attraction can be considered for use. The image 

gradient energy function attracts the deformable contour to edges in the image. An energy 

expression proportional to the gradient magnitude will attract the contour to any edge. 

Active contour models are a simple solution to low level silhouette detection. Figure 7.1 

 
Figure 7.1. Active Contour Models. 
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shows the active contour model. The snake keeps moving towards the target as the 

energy function is minimized. 

7.10. Indirectly Determined Intersection (IDI) Points 
In this section we introduce new image features called IDI points, which is part of 

the contribution of this dissertation. We develop an error minimization routine to 

precisely locate line segments in the images. IDI points are the intersections of two or 

more such lines.  

For determining the 3D structure of an object it is necessary to find the actual (or 

virtual) 3D points or lines fixed to the objects. These 3D points and lines are viewed in 

the images and we are thus interested in locating these features. Points are 2D features 

there are 2 DOF (the x and y position) for locating these points in the image. The image 

points determined by various corner or feature point detection methods are basically 

image points which have been found by various image processing functions. If the 

corners are detected by analyzing the local image patches then we also find points which 

locally look like corners but do not necessarily correspond to the 3D fixed points with 

respect to the object. We are not really interested in these points. The corner points found 

may also be affected by the noise in the image. All points found by various corner 

detection processes do not necessarily correspond to the object fixed 3D points. On the 

other hand lines have 2DOF (the position and the orientation). It is less error prone to 

localize these lines to the object edges than the points. This is the reason we have 

introduced the IDI points. 

Definition: Error Minimized and Precisely Located (EMPL) Lines 
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EMPL lines are lines in the image which have been previously located and then a 

minimization procedure is applied to reduce an error function and adjust their location 

precisely. 

The EMPL lines are less affected by noise by definition, since there is a 

minimization procedure to localize the lines based on various edge points on the lines. 

We develop a routine to precisely locate these individual line segments.  

Definition: - Indirectly determined Intersection points 

IDI points are 2D image points obtained by intersection of a pair of lines, EMPL 

lines, or an EMPL line and a detected curve. The lines are previously found by 

processing the edges in the image and minimizing the errors. The curves are found by 

active contour models. 

Since IDI points are defined as the intersection of a pair EMPL lines, more often 

than not these IDI points correspond to the 3D object points. Various methods are 

introduced in following chapter to reject the points which do not correspond to the real 

object fixed points.  

7.11.  Locating EMPL Lines 
The first step in finding the IDI points is to find EMPL lines. EMPL lines are 

found by first detecting the edges in the image. We use the Canny edge detection which 

finds the edges by using the derivative of a Gaussian and the non maximum values in the 

direction of the gradient within a neighborhood of the edgels are suppressed to thin the 

edges. Figure 7.2 shows a digital image of a metal object and canny edges are found as 

shown in the Figure 7.3. 
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Hough transforms are 

used to locate the straight 

lines in the image. The 

straight lines segments are 

found and localized using the 

Hough transform parameter 

map. Given the edge strength 

of an image I and the list of 

line segments produced by 

Hough transform, each of these lines are localized further by using the raw image edge 

data (the gradient magnitude and direction). The Derivative of Gaussian of the image is 

used and it is adaptively 

thresholded in the local 

region of the found line to 

reject all points with values 

which are lower than the 

determined threshold. The 

values of the gradient which 

is above the threshold are 

retained along with its 

gradient direction.  

 
Figure 7.2. A digital image of a metal object. 

 
Figure 7.3. Canny Edge Image of a metal object. 
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A minimization procedure is applied to each line segment in the raw edge data 

image. The error function is sum of the least squares of the orientational errors and 

positional errors of the points in the image within a region (bounding box) of the given 

line as shown in Figure 7.4. If all the points in the bounding box contribute equally to the 

error function, it will be affected by noise, so only a set of selected points which are 

above a threshold are used. A 

restriction on the gradient 

direction is also applied. 

Points with large gradient 

deviations are not used as 

they correspond to noise.. 

The error for each pixel is 

also weighted according to 

their gradient magnitude to 

allow the line to correctly adjust to the desired position. The error function is represented 

as 

 
Figure 7.4. Bounding box for a line in consideration. 
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 ( 7.26) 

where (x, y) is the image point and eI is its gradient magnitude and θ  is its direction. A 

local coordinate system (i, j) is chosen x-axis is along the line and y-axis is in the normal 

direction. Tθ  is a constant threshold applied to the angle error. T is the threshold which is 

computed locally in the region around the whole line using the mean as  
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where L is the length of the line and δ  is a constant width in consideration on both sides 

of the line, N is the total number of such image points which belong to the region which 

is approximately equal to ( )+2 1N δ= L  and α  is a constant. The threshold could also 

be computed by using the peak of the gradient as 
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The threshold used in ( 7.26) can also be a variable along the line segment 

computed locally in a small region dividing the line into small segment locally given by 

any of the following equations 
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where ε is a constant length of the segment on two sides of the point along the line in 

consideration and p is a point along the line. 

The thresholds computed by these two methods did not have much difference 

though one is a function along the length of the line the other is a constant for the whole 

line segment for smaller line segments. For longer line segments it is better to choose the 

variable threshold. 
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The total error 

computed by ( 7.26) for each 

point within the bounding 

rectangle around the line is 

used. This error function is 

minimized with respect to the 

line parameters. The Figure 

7.5 shows the located edge 

segments in an image. The 

IDI points are found by finding the intersection points of all possible pair of EMPL lines 

computed.  

 
Figure 7.5. EMPL lines corresponding to edges of an object. 

7.12. Comparison of IDI points and Corners 

7.12.1. Location Accuracy 

The accuracy of the IDI points depend on the accuracy of the EMPL lines since 

the EMPL lines are localized in the image using the image gradients. The accuracy of the 

lines are dependent on the length of the segments used since using longer line segments 

gives us more accurate localization. Thus the IDI points are more accurate as compared 

to the corners which only use very small image patch around to localize. 

7.12.2. Detection Volume 

Corner detection methods usually depend on the very local image gradients. This 

dependency often affects the volume of feature points found. The corner detection 
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methods also detect points where there might be lighting variance. These points detected 

are often difficult to differentiate from the actual ones of interest. 

7.13. Experiments 

7.13.1. Single Line Projection 

An object with straight edges is placed on a rotary table at various locations. 

Biclops is used to take images of this object from various locations. We only concentrate 

on a single visible edge for this experiment. The images are processed to find the edges in 

the image and the edge images are used to locate various line segments in the image.  

 
Figure 7.6. Parameter errors of EMPL lines of various lengths. 

For this experiment the corresponding line segment to the edge in consideration is 

picked manually. The parameters of the line segment extracted are compared to the actual 

parameters obtained by the projection of the 3D object edge in to the image and 
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correcting it manually. By correcting the edge in the image manually we are avoiding the 

errors due to camera locations and object locations. Thus the only errors are due to the 

noise in images and their acquisition. The errors in the parameters are noted down. The 

two parameters for each line used are the (r, θ). Apart from this the length of the line 

segment is also known.  

The experiment is repeated with various lengths of edges. The errors in the 

parameters are plotted as shown in Figure 7.6.  

 
Figure 7.7. Orientation errors (deg) of EMPL lines plotted against length (pix) of the segments. 

The positional errors of the lines segments are plotted against the lengths of the 

line segments as shown in Figure 7.7. The orientational errors of the line segments are 

plotted against the length of the line segments as shown in Figure 7.8.  
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It can be seen clearly that the errors depend on the length of the line segments. 

The error decreases as the segments get larger up to a certain order. The errors are not 

affected too much for larger length segments. This experiment proves that by utilizing 

more image information, i.e., longer length segments, the errors in line extraction are 

reduced.  

 
Figure 7.8. Positional error (pix) of EMPL lines plotted against length (pix) of the segments. 

7.13.2.  Comparison: Corners vs. IDI Points 

Corner detectors are not usually very robust and often require expert supervision 

or large redundancies have to be introduced to prevent the effect of individual errors from 

dominating the recognition task. The underlined hypothesis here is that the image noise 

has less effect in finding the 3D object points using the IDI points than using the regular 

corner points.  
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Figure 7.9. Histograms of errors (Pixels) of IDI Points and Corners. 

To prove this concept an object with straight edges is placed on a rotary table at a 

known location. Biclops is used to take images of this object from various known 

locations. The object is placed such that two prominent edges are visible all the time. 

Images of this pair of intersecting lines at a known location are captured from various 

viewpoints. These lines are projected on to the images and their intersecting points 

computed.  

The images are processed to find the edges in the image and the edge images are 

used to locate various line segments in the image. The two line segments corresponding 

to the two edges in consideration are picked manually. The two EMPL lines picked are 

used to find their IDI point.  

The images are also processed by the Harris corner detection method to find the 

corners in the image. The thresholds are selected so as to find the required corners. Sub 
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pixel localization is carried out to find the precise locations of these corners. The corners 

picked by the algorithm are compared to the desired location and a best match is chosen. 

Sometimes the corner in consideration is not detected. In this case the rest of the process 

is ignored. 

 
Figure 7.10. IDI points and Corner Points errors (Pixels). 

The Object 3D points and lines are projected into the image by using their known 

locations these are corrected manually and used as ground truth corners. The IDI point 

and the detected corners are compared to the ground truth corner locations. The corners’ 

locations in the image usually did not correspond to the IDI points. The experiment is 

repeated with various locations of the object.  

The histograms of norms of the errors are plotted in Figure 7.9. The image point 

errors for both IDI points and corners are plotted in Figure 7.10. It can be clearly seen 
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that the IDI points have less errors compared to the localized corners. IDI points gave a 

better localization of the points (though these may not necessarily be the image corners). 

This experiment proves that points located by intersection of the EMPL lines, i.e., 

the IDI points are less error sensitive as compared to the corners detected by usual 

localized image processing methods.  

The comparison is done in the number of points found correctly and the number 

of the real points of interest missed and the number of points found which do not 

correspond to any fixed points on the object. We found that the number of corners found 

was large as compared to the IDI points general. 

7.14. Conclusion 
It is necessary to find image points which more often correspond to object fixed 

points than not. So we have introduced the concept of IDI points. This chapter introduced 

EMPL lines which are obtained by Hough transforms and then further localized by error 

minimization procedure. EMPL lines are used to locate the IDI points in the images. 

Experiments prove the concept that IDI points more often correspond to the object fixed 

points. Also it is shown empirically that the IDI points are less affected by noise. 
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Chapter 8. 3D-Structure Using IDI Points 

8.1. Introduction 
Many applications, e.g., motion planning, virtual reality, CAD, vehicle 

navigation, object recognition, photogrammetry, remote sensing, etc., all require a 

geometrical representation of the three dimensional structure of a scene. Inference of 3D 

structure of objects in a scene from its 2D projections is a long studied problem. One of 

the important methods is to determine the 3D shape of visible objects in a static scene 

from images acquired by two or more cameras or a single camera at multiple view points. 

The images obtained from numerous viewpoints are processed for various primitives 

such as points, lines, curves, planar entities, etc., which are the input to the system. 

8.2. 3D Structure 
The 3D structure of a scene is a geometrical representation of all the objects in the 

scene. The geometrical representation of the scene consists of a set of 3D points and lines 

that make up the objects. For the sake of convenience a coordinate system may be 

defined with respect to the objects, called object coordinate system. All the object points 

and edges or curves in consideration are expressed in this object coordinate system or the 

global coordinate system as desired. 

8.3. Perspective Projection Modelling 
A pinhole model for the cameras is assumed. The pinhole model is described in 

detail in Section 1.4. The perspective projection is presented in section 1.5 and the 

coordinate systems are shown in Figure 1.2. Considering the projection of a 3D point and 

its image projection and using similar triangles we get two following equations 
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where focal length of the camera is expressed in pixels along u and v axis as xf and 

yf respectively and given by xf s  and yf s respectively. Putting the above two 

equations in a matrix form we get 
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where ‘κ’ is the homogenous coordinates scale factor. The above equation transforms a 

point in the cameras 3D coordinate system to the image coordinates, i.e., it projects the 

point into the image. The transformation matrix used for this purpose is the internal 

parameter matrix [K]. The inverse transformation can also be represented as  
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 ( 8.4) 

Since ‘κ’ is an arbitrary constant the above solution is not a unique 3D point, in fact it is a 

ray that passes through the camera optical center {0}c. 

In general we will not be working in the camera 3D coordinate system, there is 

always another coordinate system with respect to which we have all the 3D point 

locations. So to project the points from that coordinate system to the images we will need 
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the transformation matrix between the two coordinate systems, i.e., we will need the 

position (translation vector T) and orientation (rotation matrix R) of the camera with 

respect to that coordinate system. This transformation is called the external parameter 

matrix. The transformation is given by 
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The inverse transformation is given by 

⎧ ⎫ ⎡ ⎤ ⎧ ⎫

{ } { } { }
1 T TR T R R T

X
3 30 1 0 1T To c c

X X= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 ( 8.6) 

The rotation matrix R is an orthonormal ma ix hence its inverse is its transpose. S

−
⎡ ⎤−⎡ ⎤

tr ince 

the origin of the camera coordinate system is the camera center we get the camera center 

as TC R T= − . Using the camera external parameter matrix the point in the given 

coordinate system can be projected in to the image as  
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Using the inverse camera transformation matrix the camera ray can be expressed i

Breaking down the above equation in to its components clearly shows this is a ray 

n the 

given coordinate system as 
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passing through the camera center 
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Thus the cameras project the 3D space onto a 2D image plane as given by ( 8.7). So for 

every 3D point that is in the view there is a 2D image point. Considering the inverse 

problem for every image point there exist a ray that passes through the point and the 

camera optical axis given by ( 8.8). 

8.4. Triangulation 
Images from a particular camera position and orientation will only give us some 

clue about where the 3D points are located. From a single view we cannot judge the 

point’s depth as measured from the camera optical axis. We will need more that a single 

view for each point that needs to be located in 3D. Two camera views are necessary to 

locate a 3D point in a scene.  

The process of 

locating the 3D points is 

called triangulation [88]. The 

triangulation process 

involves finding the 

directional vectors of the 2D 

projection in both cameras 

and finding their intersection 

as the required 3D point. In 

reality the two rays may not 

intersect at all due to errors from various sources hence a point closest to both lines is 

 
Figure 8.1. Triangulation of a 3D point. 
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used. The closest point to both the lines is the midpoint of the common normal. For more 

than two rays the goal of triangulation is to find a point lying on all these lines. Since 

most of the time the lines accompany errors they do not intersect. So we are looking for a 

point which is closest to all the given rays. The closest distance of a point from a line is 

its perpendicular distance from the line. A point location is found by minimizing the 

perpendicular distance of the point to the given rays. 

8.5. Triangulating edges 
Consider the two 

images of a straight line (L) 

from two different views as 

shown in Figure 8.2. Let 

the equations of the line in 

first and second image be 

 
Figure 8.2. Projection of a 3D line in two images. 

[ ] { }1 1
0B U =  ( 8.10) 

[ ] { }2 2
0B U =  ( 8.11) 

where [ ] [ ]1 2 3B b b b=  is the row vector of the coefficients of the equation of a 2D line 

in an image. 

 Using equation ( 8.7) in ( 8.10) and ( 8.11) we get 
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Thus for two images from two different views (where the views are not 

degenerate giving parallel planes) we get two first order equations which in general 

represent the two planes in 3D as shown in Figure 8.2 whose intersection is the required 

line. Thus by knowing the 2D equations of the projected lines in two images, the 3D 

equation of the line can be computed. 

8.6. Epipolar Geometry-Fundamental Matrix 
Consider the two 

images of a point ‘X’ in 3D 

from two different views, as 

shown in the Figure 8.3. Let 

the corresponding points in 

the two images be {x}1 and 

{x}2. 

 
Figure 8.3. Projection of a 3D point in two images. 

{ } [ ] { }XPx ii =  ( 8.14) 

For every point projected in one image, there is an epipolar constraint which 

restricts the corresponding point in the other image to lie on a line called epipolar line. 

Geometrically the epipolar constraint implies that the 3D point, the projected points in the 

images and the centers of the cameras all lie in a plane, as shown in Figure 8.3. Using the 

epipolar constraint for corresponding points in different images leads to the relation 
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where {x}i and {x}j are the corresponding points in two different images and [F] is the 

fundamental matrix [14] which is unique for a particular set of images. The fundamental 

matrix [14] can be computed from the camera matrices P, P’  

[ ]x
F e P P+′ ′=  ( 8.16) 

where +P  is the pseudo-inverse of P , [ ]×′e  is the cross product matrix of the epipole in 

the second image as shown in the e′ Figure 8.3, the epipole is given projecting the camera 

center C of the first camera into the second image as 

CPe ′=′  ( 8.17) 

The camera center ‘C’ is the null vector of the Projection matrix P, given by 

0=PC  ( 8.18) 

Thus for every pair of images, there exists a constant fundamental matrix that can 

be computed using various linear and nonlinear methods [7], [8], [10], [14], [47]. 

8.7. Correspondence 
As we have seen finding the 3D structure requires more than one view of an 

object. Using two views of a point we could compute the 3D location of a point and using 

two views of a line we could find the 3D line. The problem seems to be solved but if only 

we know which points are projected where in the two images, i.e., we need to know the 

corresponding points in the images. For humans it is often very easy to locate 

corresponding points in various images though the views are radically different. For most 

of the applications like photogrammetry, image registration etc, it is usually fine to allow 

the humans to intervene and provide this necessary information. In this work we 

investigate automatic methods to find the corresponding points. Some applications 
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usually use views of objects that are close to each other so that the images look similar. 

They use the sum of square differences (SSD) to match the image patches around the 

points.  

8.8. Automatic Bundle Correspondence 
One of the 

contributions of this 

dissertation is to develop an 

algorithm for automatic 

correspondence of the points 

and lines in two images. We 

developed a bundle 

correspondence algorithm 

which considers all possible matches and uses the topology and intersection constraints to 

reject or confirm the potential matches. All the points and lines are considered in a bundle 

to find the various corresponding entities. 

 
Figure 8.4. Correspondence of Lines and Intersection points. 

The problem is put together as follows, given two images and various EMPL lines 

and their IDI points, the points and lines in each image need to be paired with the points 

and lines in the other image. In each image we have a list of IDI points and a list of 

EMPL lines and the intersection information is stored, i.e., which EMPL lines intersect at 

which IDI points. We use the fundamental matrix for the correspondence. The epipolar 

lines for the IDI points in one image are computed in the second image and vice versa. If 

two IDI points correspond then epipolar lines of those points should pass through the 
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corresponding points. We use this information to match up the IDI points and the EMPL 

lines.  

The points in one image are used to find the epipolar lines in the other image. 

Now for each point we also have the list of lines passing through it (intersecting at this 

point). The other image is investigated for various lines that intersect the epipolar line. 

These lines are potential matches to the lines that pass through the point. Also the 

intersecting points of the epipolar line with all the lines in the other image are potential 

matches to the point. So for one point and the lines that intersect at this point we have the 

list of matches. 

Consider a cube 

projected into two images as 

shown in Figure 8.5. 

Consider the point X 

projected into first image as 

x1. Now lines L1, L2 and L3 

intersect at this point. 

Considering the two IDI 

points on the line L2, the 

corresponding epipolar lines for two points are shown. Now the various points where 

these corresponding epipolar lines intersect the lines in the other image are potential 

matches to the points. Considering the topology there is a line connecting the two points 

in image. The epipolar line of bottom point intersects with three lines in the other image. 

The epipolar line of top point intersects with 5 lines (of which 3 are same). Considering 

 
Figure 8.5. Using epipolar constraint for correspondence. 
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that the three lines L1, L2 and L3 intersect at a single point the corresponding point to X is 

immediately known. Now only does one line exists that intersects the two epipolar lines. 

This line is the line corresponding to L2. And the two intersecting points of the 

corresponding lines with the epipolar line are the corresponding points to the top and 

bottom points. The process is also repeated by considering the points and lines in second 

image and the epipolar lines in the first image. Ambiguities are resolved by considering 

all the points and lines from both images. Thus using various topological and intersecting 

constrains the correspondence is established. There might be some points and lines which 

do not have corresponding lines and points in the other image. Sometimes we introduce 

more IDI points in an image when breaking a line into two. 

8.8.1. Summary of Bundle Correspondence 

• Make a list of EMPL lines and IDI points 

• Save list of EMPL lines passing through an IDI point 

• Save a list of IDI points on an EMPL line. 

• Use calibration to find the Fundamental Matrix 

• Find epipolar lines in the one image of all the IDI points in another image and 

vice versa 

• Find the intersections of the extended EMPL lines and the epipolar lines. This 

also gives us the information where this intersection is with respect the EMPL 

line segment whether inside the end points or whether to outer side of one end 

point. Store this information from both images. 

• Start applying the constraints available with some tolerance to image noise. 

• Go through each IDI point in one image  
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• The intersection of extended EMPL lines and the epipolar lines of the IDI point 

are stored as possible matches to the IDI point. And store these EMPL lines as 

possible matches to the EMPL lines passing through the IDI point in first image. 

• Make the possible matches list of all the IDI points and all the EMPL lines in one 

image to the other and vice versa. 

• Go through the list of EMPL lines in one image and the list of IDI points on it. To 

find more information about its corresponding EMPL line, the list of IDI points 

on this EMPL line is used. Since this line is passing through these IDI points it 

should intersect the epipolar lines of those points in the other image. Using this 

information the possible matches are reduced.  

• Same step as above but it is done from image two to image one.  

• Go through the list of EMPL lines in image 1. We know the list of IDI points on 

this line. Use these points to locate their corresponding epipolar lines in the other 

image. 

• Thus considering the chains of IDI points and the EMPL lines the topology is 

utilized to come up with the final matches of corresponding entities. 

8.8.2. Practical Issues 

Non Unique Point  

Sometimes in a real scene, more than two edges (say three) intersect at a point. 

Due to image noise when considering a pair of EMPL out of these (three edges) they 

intersect at some location, which is not often the same as the other pair. In other words all 

the EMPL lines do not intersect at a unique point. We allow a tolerance to the IDI points 

to declare them as unique. This tolerance in distance is in fact the part of the topology, 
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i.e., even if we make two points instead of one unique point the distance between the two 

points in the image is very small thus the topology information will automatically solve 

this issue. They could in reality be two different points but seen as one or are very close 

to each other. Again this is taken care by the topology. 

EMPL Line segment length 

In practice when finding EMPL lines we may have shorter segments (or two 

broken lines). To solve this problem the EMPL lines found are kept with the confirmed 

lengths and the unconfirmed extensions in length. These extended line segments are used 

to intersect the epipolar lines instead of the confirmed lengths. The intersection points 

(with the epipolar lines) too far on the extension are trusted less. 

The extension tolerance in the segments is also used to join segments too close 

and confirm to the topology. 

False Augmented EMPL segment 

Sometimes due to the image view, two unique edges of an object so happens that 

they line up to show as one single line. The topology of the intersection with other lines 

shows that the line should be broken into two pieces to give a better match to their 

counterparts in the other image.  

False Intersection 

Sometimes it seems that two lines are intersecting in an image but truly they 

might not. These false matches if made initially will be corrected by using the constraints 

from adjacent points and lines. Consider two lines which do not intersect in 3D space. 

These lines may be projected as intersected lines in a particular image. When the epipolar 
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line to the intersecting point is investigated in the other image, the lines do not intersect 

on this epipolar line at the same location. 

8.9. Bundle Adjustment 
Once the correspondence is established for a point or a line in two or more images 

the triangulation methods for points and lines gives us the 3D points and lines. In other 

words the models of the 

objects are found.  

The errors in the 

internal and external camera 

parameters of various views 

contribute to the errors in the 

computed 3D objects’ 

structure.  

The errors in the 

models found can be 

corrected by a global optimization procedure called bundle adjustment. 

 
Figure 8.6. Projection of a 3D line in three images. Also shown is 

the predicted line. 

The reasonably accurate models found are projected into all the image views. If 

the computed positions are correct then these projected points and lines in the other 

image should have less error when compared with the actual IDI points and the EMPL 

lines found. But there are errors in the projections, often called reprojection errors. 

Considering that the parameters to the optimization problem are the 3D structure 

points and the camera parameters the reprojection errors are minimized to obtain an 

optimum solution. Figure 8.6 shows the two end points of a line segment projected into 3 
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images. From first two images once correspondence is established the 3D points can be 

computed. Using this computed 3D points it can be projected into the third image. Now 

we already have the points in the image found by image process. The projected points 

and the computed points should be the same but usually not, so the errors between these 

points are found. Now if the 3D line is modified to correct error we will introduce the 

error in the other two images. To avoid the problem the 3D points are varied and all the 

three projections of the line in the three images are minimized at a time getting an 

optimum solution. This is called the bundle adjustment [89]. 

Usually it involves n points viewed from m camera poses. And the parameters of 

the different camera views are also included in the optimization. Let Xij be the projection 

of the ith point on jth image. Let ‘aj’ be a vector of all the parameters of the camera pose j. 

Let ‘bi’ be the vector of all the 3D points. Let the projection of all the ‘bi’ in image j be 

given by ( ),ij j ix R a b′ = . Now we can measure the point’s error in the images. The error is 

not valid for points which are not visible which should not be summed. So the total error 

is given by 

( )
1 1

,
n m

ij j i ij
i j

E R a bδ
= =

= −∑∑ x  ( 8.19) 

where ijδ is the visibility parameter. It is zero if the point is not found in the image and 

one if the point is found in the image. By minimizing this total error with respect to all 

the parameters, i.e., the camera external parameters and the 3D points we get the desired 

solution as 
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Note that each camera view adds 6 parameters to the bundle adjustment. So it is 

really good to include the camera parameters in the bundle adjustment only if we are 

looking at a large number of points in different views. Since we are dealing with only 

small set of points in our experiment we have not included the camera parameters in the 

adjustment. Our cameras are accurately calibrated using various methods discussed 

previously. We use the bundle adjustment idea only to improve the accuracy of the 3D 

points using 

( )
1..

1.. min
1 1

,min
i n

n m

i n ij j i ij
b i j

b Rδ
=

=
= =

= −∑∑ a b x  ( 8.21) 

8.9.1. Camera Calibration  

The bundle adjustment can also be used to find the camera internal parameters. 

Since we used Biclops we have two cameras so there are two sets of internal camera 

parameters, one for each camera. These internal camera parameters can also be included 

in the bundle adjustment. But it is usually a good idea to find the internal camera 

parameters by other means so that the minimization procedure of the bundle adjustment 

becomes less complex and faster to solve. Thus a large number of views of a large 

number of points give a better approximation of the parameters of the camera model. 

Since we have already calibrated the cameras (internal parameters) and the underlined 

equipment (external parameters) we did not needed to include these parameters into the 

bundle adjustment. Figure 8.7 shows the flow chart of the complete procedure to obtain 
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3D structure from images. The dotted lines show how camera calibration parameters can 

be included in the minimization procedure to find the final values. 

 
Figure 8.7. Flow chart. 

8.10. 3D Modelling 
For the sake of convenience in this dissertation the models of various objects are 

constructed with points and lines alone. The model of an object consists of the number of 

points and the number of lines connecting two or more of these points. The curves are 

only used to approximate with lines. The total set of points and lines together is 

considered as the 3D model of the object. 

8.11. Grasping 
Once the model of an object is computed it is used to plan how to pick up the 

object. For simple planar objects we use a curvature aided grasping algorithm developed 

by Gatla et al. [90]. The model is used to make various points on the silhouette of the 
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object similar to an active contour. The algorithm traverses the list of points and finds the 

best locations to place the fingers of the Barrett hand to grasp the object. For objects that 

are not planar, we use the topmost layer points to make a decision as to where to place 

the fingers. 

8.12. Experiments 

8.12.1. Correspondence Test 

A cube is placed on the rotator table and the robot picks up the Biclops and takes 

pictures of the cube from various locations. A pair of intersecting lines (of the cube) is 

used. The EMPL lines and their IDI points in the images are determined. The epipolar 

constraint is used to find the epipolar lines of the IDI points in the second image. The 

corresponding lines and points are picked manually. The corresponding IDI points in the 

second image should lie on the epipolar lines. This hypothesis is tested in the other image 

by measuring the shortest distance of the IDI point from the epipolar line. Figure 8.8 

shows the shortest distances of the IDI points from the epipolar lines. It can be seen that 

the errors are very small, i.e., within a pixel. These epipolar errors are dependent on 

various factors which include the errors in the external parameters of the cameras and the 

noise in the images. 

8.12.2. Triangulation Test (Projection of a pair of intersecting lines) 

The corresponding IDI points are also used to triangulate and find the 3D points. 

The 3D points are compared with the known 3D locations. Figure 8.9 shows the 

triangulation error magnitudes. It can be seen from the histogram that the errors are very 

small, indicating a very good calibration of the equipment. 
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Figure 8.8. Histogram of Epipolar Errors(pix) for IDI points 

 
Figure 8.9. Histogram of Triangulation errors (mm) for IDI points. 
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8.12.3. Pick and Place Objects 

The experimental setup consists of two Staubli robots on either end of a robotic 

transport unit (RTU). The details of the workcell are described in Chapter 3. The goal of 

our experiments is to find the 3D structure of a scene and be able to pick up the objects 

and manipulate them. The experimental setup consists of two Staubli robots each on 

either end of a robot transport unit. 

Various objects are placed on the rotary table. The robot is commanded to pick up 

Biclops and move to various locations. The PTUs are also commanded to move to some 

desired orientation so as to be able to see the object. The cameras are commanded to 

takes pictures of the object. The position of the RTUs, the robot joint configurations and 

the pan and tilt angles of all the views are noted down.  

 
Figure 8.10. Image of a box from view 1 
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Using the noted values and the calibration parameters, the projection matrices (the 

position and orientation) of all the views are calculated. The images from various views 

are processed to detect the edges. Figure 8.10 and Figure 8.11 shows two such views of a 

box.  

 
Figure 8.11. Image of a box from view 2 

 

Figure 8.12 and Figure 8.13 show the edge processing of the two images. Note 

that there is lot of image clutter in the background. For the experiments we are only 

processing image in the region of interest (i.e., the rotary table top).  

The edge images are processed by the Hough transforms to find various line 

segments. The segments are localized to find the required EMPL lines.  

 Figure 8.14 and Figure 8.15 shows the EMPL lines located in the images. The 

IDI points are the various intersection points of the EMPL lines.  
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Table 8.1 and Table 8.2 show the IDI points found 

for the two views presented. They are arranged according to 

the correspondence.  

We used the bundle correspondence algorithm to 

find the corresponding entities of the various IDI points and 

EMPL lines in all pairs of images. The corresponding 

entities are used to triangulate to get the initial 3D structure.  

Table 8.1. IDI points of view 1 
X Y 

210.6899 193.7236 

262.125 155.625 

370.375 194.375 

325.375 236.625 

209.1891 242.4985 

321.875 285.875 

364.25 242.75 

The 3D structure found is reprojected onto all views 

and refined using the bundle adjustment minimization. The 

3D structure is represented in the base coordinate system of 

the robot holding the Biclops tool. This 3D structure is 

transferred to the other robots space and the robot uses this 

information to pick up the objects. For the sake of 

computing the errors some of the objects are placed at 

known locations and the 3D structure of the object is 

compared with the known values. Table 8.3 shows the 

triangulation errors of the eight points of the computed box 

model. Figure 8.16 shows the computed model of the box 

projected into the image view 1. The points are marked 

with labels to show them. The model is made up of list of 

points and the list of edges connecting two or more of those 

points. 

Table 8.2. IDI points of view 2 
X Y 

273.375 200.625 

336.375 165.375 

430.875 207.125 

370.5214 246.2504 

274.4724 247.7511 

370.25 294.25 

429.625 255.875 

Table 8.3. Errors in 3D points 
Errors(mm) 

2.3317 

4.0694 

0.5461 

3.6288 

3.3109 

2.3775 

0.8161 

0.5343 

 132



 
Figure 8.12. Negative Edge image of Image view 1. 

  

 
 Figure 8.13. Negative Edge image of Image 2. 
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 Figure 8.14. EMPL lines shown on Image view 1. 

 
 Figure 8.15. EMPL lines shown on Image 2. 
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Figure 8.16. Model of the box projected 

This experiment is repeated with various objects on the rotary table. Figure 8.17 

shows a triangular object and the computed model is projected into the image view as 

shown in Figure 8.18. 

Figure 8.19 shows a metal bracket object and the computed model is projected 

into the image view as shown in Figure 8.20. Figure 8.21 shows a cylinder object and the 

computed model is projected into the image view as shown in Figure 8.22. The cylinder 

is a special case. The image views are carefully planned to span around it with left and 

right camera views being close we have an approximate model made up of multiple 

points and lines approximating the cylinder. 
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Figure 8.17. A triangular object on rotary table. 

  
Figure 8.18. A triangular object Model projected. 
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 Figure 8.19. A metal bracket on rotary table. 

 
 Figure 8.20. A metal bracket model projected. 
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Figure 8.21. A cylindrical object on rotary table. 

 
Figure 8.22. A cylindrical object model projected. 
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8.12.4. RMP Lane Following 

A robotic mobile platform (RMP) from Segway is used and a vision system is 

built. The vision system consists of two cameras each mounted on a PTU. The Segway 

RMP is described in detail in Section 3.7.  

A track is marked on the ground as shown in Figure 8.23. The track is built using 

straight line segments. The goal of this experiment is compute the location of the marked 

track and to follow the track.  

For this experiment the PTUs are fixed and the cameras are pointing at the ground 

in front of it. The pictures of the track are captured. Figure 8.24 shows the image of the 

track as seen from one of the cameras. The images are processed to find the edges in 

them. The edge image is used and the Hough transforms are computed to locate line 

segments in the image. We localize the line segments to find the EMPL lines. The EMPL 

lines in the images are used to find the IDI points of the track. Figure 8.25 shows the 

EMPL lines and the IDI point found.  

The cameras are calibrated individually and the transformation between them is 

found as before. The calibration is used in the bundle correspondence to find the 

corresponding entities in the images. These corresponding IDI points of the track are 

triangulated to find the 3D locations of the points on the road plane. This information is 

used by the Segway to plan its motion. 

Figure 8.23 shows the RMP at the start of the trajectory. The images are used and 

the 3D information about the lines is computed. The RMP calculates the velocity and 

angular velocity need to follow the track.  
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The calibration information is also used to know where the future track is going to 

be. The RMP plans its path so as to keep the trajectory in its view all the time. It is to be 

noted that the cameras are looking at a distance. Thus a delay needs to be added in 

reacting to the trajectory. Also if the RMP waits to make a turn then by the time it 

reaches the intersection path it will no longer see the track.  

To overcome this problem the RMP plans its motion by slowly moving in a curve 

from current direction to the final direction so as to keep the trajectory in view all the 

time. Figure 8.26, Figure 8.27 and Figure 8.28 shows the RMP following the track. 

 
Figure 8.23. A Track marked on the ground. 
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Figure 8.24. One of the images looking at the track. 

 
Figure 8.25. EMPL lines and the IDI point found for the track. 
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Figure 8.26. Segway RMP following the track. 

 
Figure 8.27. Segway RMP following the track. 
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Figure 8.28. Segway RMP following the track. 

8.13. Conclusion 
Image processing is usually the first step for finding the 3D structure. The low 

level features found in the images need to be identified across various views. This is 

called correspondence. We have introduced a new approach, IDI points, as image 

features. We developed an automatic bundle correspondence algorithm that uses the 

calibration parameters of the image views and the topology information. The 

correspondence is established with this algorithm. Experiments are done to show the 

epipolar errors and the triangulation errors are small. Various objects are placed on a 

rotary table at known locations, pictures are taken, and the 3D structure of various objects 

is found. This structure information is transferred to another robots’ space and the objects 
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are picked up by the second robot. Experiments are done using a mobile robot to use the 

features and locate a track in 3D and follow it. 
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Chapter 9. Conclusion 
Many applications, e.g., motion planning, virtual reality, CAD, vehicle 

navigation, object recognition, photogrammetry, remote sensing, etc., all require a 

geometrical representation of the three dimensional structure of a scene. In this 

dissertation we studied the problem of determining the 3D structure of a scene given 

images of it from various views.  

A robotic tool called Biclops, a two camera directed vision system is built. Each 

camera is mounted on a Pan-Tilt Unit which can be independently controlled. This eye in 

hand system is used to find the structure of the scene. There are two robots mounted on a 

robot transport unit.  

The 3D structure of the scene is necessary to manipulate the objects in the scene. 

We developed a new image feature called IDI points which are intersections of a pair of 

EMPL lines or an EMPL line and a Curve. An automatic bundle adjustment 

correspondence method is developed which is used to match up the points and lines in 

one image to the other. The corresponding features the lines and points are used to 

determine the 3D structure of the scene. The 3D structure is transferred to the other robot 

space for it to manipulate the objects in the scene.  

The accuracy of 3D structure of the scene is dependent on the accuracy of the 

various parameters of the underlined equipment. We go a step further and improved the 

accuracy of the parameters of various equipments used. We developed a new method 

called ViCKi (virtual close loop kinematic method) to calibrate the industrial robots and 

the RTU equipment. We also calibrated the pan tilt units of the Biclops. Various 

experiments are done to show the accuracy of the calibration methods.  
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The calibrated equipment is used to find the 3D structure of a scene. The robot 

used the 3D structure to pick up the objects. 

9.1. Limitations 
We have worked mostly with man-made objects that have straight edges. 

Occasionally we used some curved objects like cylinders. The cylinders usually do not 

have any straight edges but we will see straight edges in image views. The straight edges 

that we find usually do not correspond at all since they are not real object edges but they 

are only perceived as edges. To overcome this difficulty, we have to take pictures of the 

object from relatively close view points so the errors in the correspondence are small and 

we will be approximating the cylinder with multifaceted polyhedra.  

We have used the curves only to locate IDI points which are at the intersection of 

the curve with EMPL lines. Occasionally we used maximum inflection points as IDI 

points but they only correspond to other images taken from closer view points. 

The approach is limited to facetted objects with edges only, objects like sphere, 

cylinder etc which do not correspond to this form are only approximated closely. 

9.2. Future Directions 
We have not included the radial distortion of the cameras. Even though the 

distortion is not that significant we expect to see an improvement in the accuracy of the 

computed 3D structure when calibrated with distortion parameters.  

One of the limitations was that our scene was stationary. We would like to add a rigid 

body motion to our objects in the scene and add those parameters into optimization 

function. An interesting experiment would be to use our bundle correspondence online 

and track an object as it moves through the scene. 
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