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ABSTRACT

Many applications, e.g., motion planning, virtual reality, CAD, vehicle
navigation, object recognition, photogrammetry, remote sensing, etc., all require a
geometrical representation of the three dimensional structure of a scene. In this
dissertation we study the problem of determining the 3D structure of a scene given
images of it from various views.

We built Biclops a two camera directed vision system. Each camera is mounted
on a Pan-Tilt Unit which can be independently controlled. Biclops is built as a tool so
that it can be picked up by an industrial robot. This eye in hand system is used to find the
structure of the scene. Two robots are mounted on a Robot Transport Unit (RTU) on
either end. We use lines in the images and find their intersection points and use them to
make the necessary correspondence between the points in different views. Lines and
point features and their corresponding entities are used to determine the 3D structure of
the scene. The 3D structure is transferred to the other robot space for it to access the

objects in the scene.

viii



The accuracy of 3D structure of the scene found is dependent on the accuracy of
the various parameters of the underlined equipment. We go a step further to improve the
accuracy of the parameters of various equipments used. We developed a new method
called ViCKi (virtual close loop kinematic method) to calibrate the industrial robots and
the RTU equipment using a laser pointer. We also calibrate the pan tilt units of the
Biclops using the laser pointer tool. Various experiments are done to show the accuracy
of the calibration methods.

This calibrated equipment is used to find the 3D structure of a scene. Various
experiments are done to prove the concept that using lines and intersection points are
better than using the traditional corner features. The robot uses this 3D structure to pick
up the objects.

We also used the lines and intersection points to find a track painted on the
ground. A robotic mobile platform is used and a vision system is built. The vision system
takes pictures of the track and finds its 3D location. The RMP plans it trajectory to follow

the track without losing the track out of sight.
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Chapter 1. Introduction

1.1. Introduction

Many applications, e.g., motion planning, virtual reality, CAD, vehicle
navigation, object recognition, photogrammetry, remote sensing, etc., all require a
geometrical representation of the three dimensional structure of a scene. Inference of 3D
structure of objects in a scene from its 2D projections is a long studied problem. One of
the important methods is to determine the 3D shape of visible objects in a static scene
from images acquired by two or more cameras or a single camera at multiple view points.
The images obtained from numerous viewpoints are processed for various primitives
such as points, lines, curves, planar entities, etc., which are the input to the system. For
any of these primitives, the main problem boils down to the correspondence between
those primitives in the images. Either human intervention is needed or extensive search
techniques which include epipolar constraints, correlation, optical flow, etc., are
developed to find these correspondences. All these search techniques are susceptible to
image noise. Various algorithms are developed using point correspondences to determine
the structure [1], [2], [3]. Points are very difficult features to detect in an image and are
more susceptible to noise, unlike lines and curves which are easier to detect and are less
susceptible to noise. When a point is detected in an image there is no means to correct or
to minimize the error in the detection process. When, if an edge is detected in an image
and using a least squares error minimization a curve is fit to the edge thus we have some
means to minimize the errors due to the image acquisition. For points we have two
degrees of freedom, i.e., its position, which can only be adjusted or corrected using very

localized image patch, whereas for an edge the two degrees of freedom are its position



and orientation which can use the information from a larger area of the image making up
this line, thus giving us a greater means to reduce the errors. This is the reason that many

people have started using lines or curves or combinations of them as primitives [2]-[9].

1.2. CCD Cameras

Most modern cameras are Charge-coupled-device (or CCD) cameras. A CCD
sensor uses a rectangular grid of electron sites laid over a thin silicon wafer to collect the
amount of light energy reaching each of them. When a photon strikes the electron site, an
electron-hole pair is generated. The electrons are captured by applying a positive
electrical potential to the corresponding gate. The electrons generated at each site are

collected over a fixed period of time producing a digital image.

1.3. Digital Image

A real image is a continuous 2D picture for processing the image it has to be
digitized somehow. CCD and other digital cameras now produce digital images directly.
A digital image is a 2D grid representation of the image by using various properties of the
particular elements of the grid called the pixels. The images pixels can be composed of
any properties ranging from intensity, color red, blue and green values, infrared intensity,
x-ray intensity, etc. For our purposes the images are either gray scale (intensity level from
black to white) or color (red, green, blue). A digital image of width (W) and height (H)

can be represented as

I(x,y)Vxe[0,W),ye[0,H) (1.1)



1.4. Pinhole Camera Model

A pinhole camera is a
device where one side of a
box has a pin hole and the
opposite side is a translucent
plate. This pinhole camera

will project an inverted

Image
Plane

Figure 1.1. A pinhole camera projecting an object onto the image

plane.

image on the translucent plate, of the light source in front of the box. Since the pinhole

camera produces an inverted image it is convenient to consider a virtual image on a plane

lying in front of the pinhole, at the same distance from pinhole as the actual image plane

as shown in Figure 1.1 where the image is straight.

1.5. Perspective Projection

Assuming the pin
hole is very small one ray of
light would pass through
each point in the image
plane of the plate, the
pinhole, and some scene
point. In reality, the pinhole
will have a finite size, and
each point in the image
plane will collect light from

a cone of rays with a finite

=4

Ray .-
3D Point

P,y z)

Principal Ray

Rnﬂ_ﬁ ]

e

Image Plane
Y.

Figure 1.2. Perspective Projection.

solid angle. Imaging geometry will not strictly apply in pinhole cameras or real cameras.
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In real cameras the projection is also complicated by the lens, aperture, etc. Despite all
this the pinhole perspective projection model is mathematically convenient and often
provides an acceptable approximation of the imaging process.

Consider a coordinate system in pixels with the origin at the top left corner of the
image, and the u-axis along the horizontal rows from left to right and the v-axis along
vertical columns from top to bottom as shown in Figure 1.2. Consider a 3D coordinate
system fixed at the camera focal point (C), with x and y axis parallel to the u and v axis
respectively and z axis coming out of the camera. Let an orthogonal ray passing through
the optical center intersect the image plane at a point (u, vo) in pixel units. This point is
called the “Principal Point”. The orthogonal distance between the optical center and the
image plane is the “focal length” (f). Since we are measuring the distances in the image
as pixels we need to know the scale factors of the two axis u and v. Let these scale factors
be sy and s,

Consider a 3D point (X, y, z) projected into the image as a point (u, v). Based on

similar triangles we get the two following equations

(=) _x _ (0-m)_x

(%)_ZC f. oz (12)

(=) 3 (w)
[7] z, /) z, (1.3)

The parameters ‘fy’, ‘fy’, ‘uo” and “vo’ are specific to this camera and do not depend on
the position or orientation of the camera. They only depend on the camera lens and focus.

These parameters are often referred to as “internal parameters” in contrast to “external



parameters” of a camera which are position and orientation of the camera coordinate

system with respect to a global coordinate system.

1.6. Goal

The goals of this dissertation are to:

e determine the 3D structure of a scene (a geometric representation of all
the objects in a scene) using active automatic correspondence of lines and
their intersection points in the images.

e improve the accuracy of the 3D structure of scenes obtained by
improving the camera calibration parameters, also going further by

modeling the underlying equipment used and calibrating them.

1.7. Problem Formulation
Given a set of images of objects in a static scene taken by a calibrated camera (on

a stationary or mobile robot) from various viewpoints, the aim is to determine the three
dimensional structure of objects, i.e., to determine the 3D location of all the edges and
corners of visible objects. By determining the 3D structure of all objects, the scene is
reconstructed. For example consider a box in the field of view of the cameras. Images of
this box are taken from various view points and the 3D locations of its edges are
determined. Another objective is to model the underlying robot camera systems and
calibrate their parameters to improve the accuracy. For example consider a hand in eye
system. The 3D structure obtained using this system is solely dependent on the accuracy
of the robot and the camera calibration parameters. We develop new algorithms to
calibrate the robot, the RTU, pan- tilt mechanisms and the cameras to improve the

accuracy of the parameters.



1.8. Contribution

1.8.1. Industrial Robot and RTU Calibration

We developed a new calibration procedure to calibrate industrial robots and other
ancillary mechanisms. The proposed method uses a laser pointer tool on the robot’s end-
effector to aim at a fixed location on a distant object. By projecting the laser pointer onto
a distant object, the resolution of observations is improved, increasing accuracy of
measurements of the joint angles required for accurate calibration of the robot. The
calibration procedures to calibrate industrial robots and RTU are described in detail in

Chapter 4 and Chapter 5 respectively.

1.8.2. Pan-Tilt cameras Calibration

The robot and RTU calibration procedures improved the accuracy of their
parameters allowing us to compute a more accurate position of the PTU origin. This
alone is not sufficient for accurate position of the cameras on the PTUs. The PTUs have
their own mechanisms which also need to be modeled for accurate position of the
cameras with respect to the robots base coordinate system. A new calibration procedure is
developed with complete pant-tilt model without any assumptions. The calibration
procedure uses a single unknown 3D point in space. The robot motion and the pan-tilt
motion are used to acquire various images of this point. The calibration is carried out

using the acquired data. The details of the procedure are presented in Chapter 6.

1.8.3. Automatic correspondence

All the methods that use lines segments as primitives either assume

1. correspondence is given or



2. the sequence of images is taken by a camera from viewpoints very close to
each other such that the images are nearly similar to perform a region
matching.

A new method is proposed which does not make any of the above assumptions
and uses the IDI points (indirectly determined intersection points) as the guide to
determine the corresponding line segments automatically. No real image points are used
so the errors in determining the (intersection) points are dependent on the errors in the
lines which are easier to extract and are less susceptible to noise. The correspondence

between the IDI points is made using the epipolar constraint.

1.9. Outline of Dissertation
The dissertation is arranged in chapters each describing one of the major aspects

of the goal.

1.9.1. Literature Review

Chapter 2 describes in detail about the various technologies and their state of the

art, used in this dissertation.

1.9.2. Work-Cell

Chapter 3 describes the work-cell in detail. It consists of two Staubli robots

mounted on a rail transport unit.

1.9.3. Robot Calibration

The cameras that we use are mounted on Staubli robots. These robots are

repeatable but not very accurate. Since the PTUs are mounted on the robot and accuracy



of their position depends on the accuracy of the robots parameter, so they need to be as
accurate as possible. In Chapter 4 a new method called ViCKi is developed to calibrate
the robot system. Robots are calibrated using this method and experiments are done to

show the improvement in the accuracy of the system.

1.9.4. Robot transport unit (RTU) Calibration

The two Staubli RX-130 robots are mounted on a Robot transport unit (RTU)
such that each one of them can be independently controlled to move along the track.
Since the cameras are mounted on a robot which is mounted on the RTU, the accuracy of
the RTU is important. The accuracy of RTU is also important in transferring the 3D
information (objects 3D points, line positions etc) from one robot to the other. In Chapter
5 RTU calibration methods are presented. Experiments show the improvement in the

accuracy.

1.9.5. Pan-Tilt Camera Calibration

The camera system we used to acquire images of the workspace is called Biclops.
Biclops is a custom-made, dual-camera motorized vision system. It consists of two
FireWire color cameras, each attached to a pan-tilt unit (PTU). The PTUs are attached to
a bracket, which is connected to a tool base. Biclops has four degrees of freedom, i.e.,
one pan axis and one tilt axis for each camera. The PTUs can be programmed to move the
cameras to aim at any desired location in the workspace. Chapter 6 presents a new

method to calibrate Biclops. Experiments show the enhanced accuracy.



1.9.6. Indirectly Determined Intersection (IDI) Points

Chapter 7 describes various image processing routines and algorithms to find the
image features. It describes IDI points and their extraction from images. Various
experiments, which prove IDI point extraction is less error prone than other image points,

are presented.

1.9.7. 3D Structure Using IDI Points

Chapter 8 describes in detail the underlined theory of 3D structure from IDI
points. Experiments to compute the 3D structure and calibration are also presented. The
theory is applied to different applications involving either the Staubli robots or the

Segway robot.



Chapter 2. Previous work
2.1. Three-dimensional Structure

2.1.1. 3D Structure using Points

Determination of three dimensional structure (3D position and orientation of all
the objects in the scene) from motion and motion parameters is a long studied problem.
One of the many approaches is to use point correspondences within various images
obtained from a single camera or multiple cameras. Faugeras and Mourrain [1], [2]
studied the geometric and algebraic relations and constraints between the corresponding
points in number of images. These relations are of three types bilinear, trilinear and
quadrilinear arising when we consider two, three and four images, respectively, among
the N images. The bilinear relations are the well-known epipolar constraints. They also
show that two trilinear relations imply the bilinear ones, the quadrilinear relations are in
the ideal generated by the bilinearities and trilinearities and do not bring in new
information. Faugeras and Mourrain [2] showed how the perspective projection equation
can be suitably generalized and that in the case of three images there exist two
independent trilinear relations between the coordinates of the images of a 3D line. For
projective reconstruction from images, there exist a minimum number of entities that are
required to compute a solution to the structure without ambiguities. For three views and a
projective reconstruction Oskarsson, Zisserman and Astrom [3] derived the minimal
number of entities that are required for a combination of points and lines. For three
images, the minimal cases for combinations of points and lines are: “6 points,” “4 points
and 3 lines,” “2 points and 6 lines” and “9 lines.” Thus knowing the minimum number of

entities the 3D structure can be determined without any ambiguities.
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2.1.2. 3D Structure using Lines

Making point correspondence is a difficult process and usually involves human
intervention or high level input. Also the process suffers from image noise. Many people
have started to use the correspondence of lines and curves to determine the structure.
Since a line has 2D of freedom when a correspondence between two lines is made we are
only concerned with the match of the direction (thus the actual position of individual
points on these lines need not correspond, giving them an extra degree of freedom to
move along the line). Bartoli and Sturm [4] addressed the problem of camera motion and
structure reconstruction from line correspondences across multiple views, from
initialization to final bundle adjustment. Based on Plucker coordinates [4] to represent the
lines, they proposed a maximum likelihood algorithm, relying on linearizing the Plucker
constraint and on a Plucker correction procedure to compute the closest Plucker
coordinates to a given 6-vector. However the correspondence of the lines in three images
is assumed to be given. Hartley [5] developed a practical and rapid algorithm for
projective reconstruction of a scene consisting of a set of lines seen in three or more
images with uncalibrated cameras.

Quan and Kanade [7] investigated the properties of projection of lines by affine
cameras (hypothetical cameras with affine transformations) and proposed a linear
algorithm for affine structure from line correspondences. The affine structure is a good
approximation to the real one when the depth of objects is small. They introduced a one-
dimensional projective camera which converted the problem of “3D affine reconstruction
of line directions” into a “2D projective reconstruction of points.” They also proposed a

line based factorization method to handle redundant views. Quan and Kanade [8]
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extended this factorization method to lines and developed a multi-step factorization
method. Instead of one step factorization for points, a multi-step factorization method is
developed for lines based on the decomposition of the shape and motion into
substructures. Each of these substructures is then linearly solved by factorizing the
appropriate measurement matrices.

Taylor and Kriegman [9] developed a new method to determine the three
dimensional structure of a scene composed of straight line segments using the image data
obtained from a moving camera. The algorithm is formulated in terms of an objective
function which measures the total squared distance in the image plane between the
observed and projected edge segments. The objective function is then minimized with
respective the line parameters and the camera position. Berthilsson and Astrom [10]
proposed an algorithm for reconstructing a general 3D curve from a number of 2D
images taken by uncalibrated cameras. This algorithm is based on aligning the subspaces
by using orthogonal projections and maximizing some of the largest Eigenvalues of the

sum of these projections. No point correspondences except the end points are assumed.

2.1.3. 3D Structure using Curves

Kahl and Heyden [11] showed how to use corresponding conics to compute the
fundamental/essential matrix and to reconstruct the scene. Kaminski, Michael Fryers [12]
showed how one can compute, without any knowledge on the camera, the homography
induced by a single planar curve. They derived the extended Kruppa’s equations that
describe the epipolar constraint of two projections of a general algebraic curve. They also
established the minimal number of algebraic curves required for a solution of the epipolar

geometry as a function of the degree and genus. Papadopoulo and Faugeras [13]
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discussed the problem of determining the structure and motion of rigid curve. They used
long monocular sequences of images of the curve and computed the derivatives that are
defined on the spatio-temporal surface generated by the curve. For general 3D rigid
curves, there is exactly one constraint for each image point that relates these derivatives

to the kinematic screw and its first order time derivative.

2.1.4. Analysis of 3D Structure Methods

Determining structure using line and curve correspondence has eased some of the
problems with point correspondences. In detecting lines, the image noise is minimized in
one degree of freedom, thus the equations of 2D lines do not suffer as much as points
from image noise. Though the lines are easier to detect, the correspondence problem still
remains. Most of the time human intervention is needed. Though human intervention is
required less frequently for line correspondences than points, it is still undesirable. Some

automatic means to make the line correspondences is needed.

2.2. Calibration of Cameras
Various applications like photogrammetry, remote sensing, motion planning,

virtual reality, CAD, vehicle navigation, object recognition, etc., all require calibrated
cameras. Thus, determining the camera calibration parameters is necessary. The
calibration parameters can be determined using the point, line or curve correspondences
in various images of objects in known locations. Luong and Faugeras [14] analyzed in
detail the geometry of a pair of cameras and introduced the fundamental matrix which has
all the relevant information to establish correspondences between features in two images.
The fundamental matrix is the result of the epipolar constraints. Knowing a minimum of

corresponding features this fundamental matrix can be computed numerically. Faugeras,
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Luong, and Maybank [15] developed a method to calibrate cameras using just point
correspondences in sequences of images without knowing the motion of the cameras.
Luong and Faugeras [16] addressed the problem of determining the motion of the
cameras and structure, using an uncalibrated moving camera. They showed that point
correspondences between three images and the fundamental matrices computed from
these point correspondences are sufficient to recover the internal parameters of the
camera (calibration). They showed those point correspondences are sufficient to recover
the motion parameters and to compute the perspective projection matrices which enable

to reconstruct the 3D structure up to similarity.

2.3. Calibration of Pan-Tilt Cameras
Machine vision camera systems need quick, simple, easy and repeatable and

accurate calibration methods. Many approaches to camera calibration exist. Some of
these methods use a set of calibration points with known world coordinates. These world
points can be obtained by either using a calibration object [17] in a known location or
points marked in the workspace whose locations are measured. For example, a planar
object with feature points clearly marked in a grid can be placed at a known location and
moved by a known motion. Given this set of feature points with known world coordinates
(Xi, Yi, Z;j) and their projected locations in an image plane (uj, vi), the external and
internal parameters are found which will best map the world points to their image points
by determining the parameters which minimize the mean square distance between the
observed and computed positions of a feature on the image plane.

Other methods use geometric properties to calibrate cameras. These methods

calibrate some of the internal camera parameters using invariant characteristics of
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geometric objects and their images. These methods do not require the position of the
object relative to the camera. The aspect ratio is found using the image of a sphere [18].
Spheres are also used to locate the principal point [19]. The vanishing points [20] of
parallel lines drawn on the faces of a cube are used to compute the principal point and
focal length.

Some methods use only feature coordinates in the image plane to calibrate. These
methods are called self calibration methods [21], [22], [23], [24] because they do not
require known calibration points. It requires camera motion to take multiple images.
Faugeras et al. [21] developed a method where a motion sequence of a single camera
moving in an unconstrained manner can be used to calculate the internal camera
parameters. This method does not require known world coordinates of the calibration
points. It requires only feature correspondences from a set of images where the camera
has undergone pure rotation. In this method, the internal parameters of the camera are
determined including radial lens distortion.

Calibrating a camera mounted on a pan-tilt mechanism involves the added
complexity of finding the location of the pan and tilt axes of rotation. Most of the existing
methods of calibrating pan-tilt cameras have assumed PTUs with orthogonal axes, or
have assumed a relatively simple geometric model of motion, in which the axes of
rotation are orthogonal and aligned with the camera imaging optics [25], [26], [27].
While this simplification works well over small volumes, accuracy suffers in a larger
workspace, i.e., the camera model does not predict well the projection of a 3D feature
point. In [28] a more complete model of pan-tilt cameras was employed, making the

calibration suitable for use with low cost pan-tilt mechanisms. This method uses an
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existing tracking system consisting of stationary calibrated cameras. An LED point
feature in the workspace is tracked using the fixed cameras to build a virtual calibration
object that is then used to calibrate the pan-tilt cameras.

Most of the existing methods require either a known set of calibrated world points
or a large number of corresponding image features. Either of these requirements makes
the calibration process complicated and slow because the data gathering process must be
supervised for correctness. Even a few correspondence errors will reduce considerably
the accuracy of the resulting model. This chapter describes a simple method to calibrate
cameras and their PTUs using a single unknown stationary world point as the calibration
point. Note that the 3D location of the point is unknown at the start of the process, and is
determined during the calibration procedure. The data acquisition process is very much
simplified by using a single unknown stationary 3D point (with reasonable initial guess);
the extra effort to acquire multiple points is eliminated. Furthermore, with a single point
to detect, a faulty correspondence of a feature between two cameras can never occur.
Consequently, it is possible to use a very general model for pan-tilt camera motion and
minimize human effort, since feature correspondence is unnecessary, in the calibration

process.

2.4. Calibration of Industrial Robots
There has been considerable research in the field of robotic calibration. A brief

review is presented in [29]-[33]. Existing techniques can be classified into open-loop and
closed-loop approaches. Open-loop methods involve measuring the end-effector pose
which requires special equipment (such as theodolites, inclinometers, ball-bar, and

coordinate measuring machines [34]). The process of obtaining these measurements is
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time consuming and must be repeated for high precision systems. The resolution of
measurements near the end-effector is limited by the equipment used.

Closed-loop methods [35]-[41], on the other hand, use the joint angle
measurements already in the robot, and thereby can be considered self-calibrating. These
methods impose some constraints on the end-effector and the joint readings alone are
used to calibrate the robot using kinematic closed-loop equations. Some researchers in
the past have used linear constraints on the end-effector positions allowing the end-
effector to slide along a line, e.g., Newman et al. [35] used a laser line. Ikits et al. [36]
and Zhuang et al. [37] imposed plane constraints on the end-effector positions. Using a
plane constraint is problematic because it is difficult to be certain that the end effector is
exactly on the surface; neither above it nor indenting it.

Bennet et al. [38] considered manipulators as mobile closed kinematic chains. It is
difficult to move a physically closed kinematic chain from one position to other while
maintaining the physical constraints. Hence it is difficult to gather accurate joint readings.
Meggiolaro ef al. [39] used a single endpoint contact constraint, equivalent to a ball joint,
to calibrate the robot. The robot moves to different configurations that satisfy the contact
constraint. This method needs a physical contact point, and suffers from the same
problems as the plane constraint methods.

Gatla et al. developed a new method called “virtual closed kinematic chain”
(ViCKi) [66]. Unlike previous closed-loop methods, this approach does not require any
physical constraints. A laser tool is attached to the end-effector. This laser tool aims at an
arbitrary but fixed point on a distant object, thus creating a virtual closed kinematic chain.

This procedure can be used to collect the joint readings for various positions of the end
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effector that aim at that fixed location. The procedure capitalizes on the constraint that
the laser line must pass through the fixed point for all robot joint configurations. With
this redundant joint information, calibration is accomplished. The main advantage of this
method is that the distant laser point is very sensitive to the joint values, i.e., it magnifies
the error (a very fine adjustment in the joint angle configuration is needed to aim at a
particular point), which facilitates acquiring more accurate joint values for the

calibration.

2.5. RTU Calibration

Gatla et al. [66], developed a calibration approach called “virtual closed
kinematic chain” (ViCKi) to calibrate the industrial robots which is later applied to
calibrate the RTU calibration. Unlike previous closed-loop methods, this approach does
not require any physical constraints. We use this method to independently calibrate two
industrial robots on a RTU. The method is modified to determine the transformation of

one robot with respect to the other by calibrating the RTU parameters.
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Chapter 3. Work-cell

The workcell consists of two Staubli RX-130 robots mounted on a robot transport
unit (RTU) that moves the robots along a track. The various tools used include a Barrett
Hand, Probe, Laser Pointer and Biclops (dual-camera directed vision system). The

workcell also include a Robotic Mobile Platform (RMP) manufactured by Segway.

3.1. Staubli Robot
The  Staubli

RX-130 robot [65] as
shown in Figure 3.1
has six rotary degrees
of freedom. The
shoulder, arm, elbow,

and forearm, are

controlled by axes
VWrist
one, two, three and

four, respectively.

The wrist is
controlled by joint
axis five and tool
flange by joint axis
six. The rotations of
the forearm and wrist Figure 3.1. Staubli RX-130.

together give spherical degrees (roll, pitch and yaw) of freedom to the tool. This

19



configuration sets axis 1 perpendicular to axis 2. Axes 2 and 3 are parallel. Axis 4 is
perpendicular to 3 and 5. The last three joint axes intersect at a common point. This robot

is similar kinematically to the well known Unimation Puma 560.

3.1.1. Staubli Model

A model of the robot shown in Figure 3.1 is built with coordinate system
definitions according to Craig’s modified Denavit-Hartenberg (DH) [60], [61] and Hayati
(HR) [62] conventions combined. The coordinate systems are shown in Figure 3.2. We
adopt the use of the following notation: C6\, for cos(8,+ 6,), 61, for sin(0;+ 6,) and *Tg
for transformation matrix which transforms points described in frame B to points in
frame A.

The transformation matrix from frame ‘i-1’ to frame ‘i’ with DH parameters (ai, a;

6; and d;) is given by T=Ry(ai) Tx(ai)R,(6:)T,(d;) computed by

co, -6, 0 g
i .
Sa;80; Sa;CO,  Co; d;Co;
0 0 0 1

where o; is the angle between Z;.; and Z; measured about X; and ¢; is the distance between
Zi and Z; measured along X, 6; is the angle between X;.; and X; measured about Z; and
d; is the distance between X;.; and X; measured along Z,;.

The transformation matrix from frame ‘i-1’ to frame ‘i’ with Hayati parameters

(04, a; 6; and ;) is given by T=R.(a;) Tx(ai)Ry(Bi)R,(;) computed by
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' |-Co;Sp,CO+Sa;50  Ca;SP;SO,+Sa,CO  CoyCP; 0
0 0 0 1

(3.2)

where o; is the angle between Z;.; and Z; measured about X; and ¢; is the distance between
Zi and Z; measured along X, f3; is the angle of rotation about intermediate Y; axis and 6;

is the angle of rotation about Z;.

Table 3.1. Staubli DH
Parameters

o a 0; d; Bi
rad | mm | rad | mm | rad

1 X X 0* X X

N
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) ) ) *. FIXED AT SPECIFIED VALUE
Figure 3.2. Staubli Coordinate Frames. X- PARAMETER NOT USED

It is well known that the DH parameters have a singularity when neighboring joint
axes are parallel. When this singularity exists, the HR transformation is used. Therefore,
each transformation matrix is either DH or HR with four parameters, where the fourth
parameter is either ‘d’ or ‘B’. For the Staubli robot joints 2 and 3 are parallel.
Consequently we use HR for this transformation and DH for all other transformations.
Since the base coordinate frame ‘0’ is arbitrary it is chosen to coincide with the frame ‘1’
when the reading of joint 1 is zero. This reduces the transformations from frame ‘0’ to ‘1’

to just rotation about Z, by reading of joint 1 angle. Hence the joint offset is fixed at zero
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indicated by ‘*’ in the Table 3.1, the other three DH parameters for this transformations
are not used and denoted as ‘X’ in Table 3.1.

The coordinate system of the end-effector (frame 6) is also arbitrary. It is chosen
such that the x-axis of this frame coincides with x-axis of frame 5 when joint 6 read 180°.
Also, for the Staubli RX-130, d¢is set to a fixed value of 110mm.

Table 3.1 lists the DH/HR parameters of the complete robot model, where four
parameters for each transformation are required. Either ‘d” or ‘B’ is used for the fourth
parameter depending on whether the transformation is DH or HR. The parameter that
does not apply in each row is marked as ‘X’. The ‘0;’ listed in the table are the joint
offsets. These offsets are added to the actual readings of the joints to compute the
transformation matrices. Hence the total number of independent calibration parameters

required to characterize the robot alone is 24 — 4 (base) - 2(end effector) =18 parameters.

3.2. Robot Transport Unit (RTU)
The two Staubli RX-130 robots are mounted on a robot transport unit (RTU) on

each end. The robots can be independently controlled to move along the track as shown
in Figure 3.3. Each of the robots when at their home positions are at their extreme end of
the RTU which correspond to the RTU position ‘0’. Each of the robots has an

independent RTU home coordinate frame that is attached to the RTU.
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Figure 3.3. Two Staubli Rx130 robots mounted on RTU.

3.2.1. RTU Model

The motion of the robot on the RTU is linear which is modeled as a straight line
motion. The matrix transforming the coordinate systems from the Robot base coordinate

system to the RTU coordinate system is given by

CoCP SO.Cod -So D
o™ le™ o™
Rp —| =% l (3.3)
B | Co,S® SO.SP Co 0
" " m " " m m
0 0 0 1

where B is the base coordinate system of the robot and R is the base RTU coordinate
system for this particular robot. RTU base coordinate system for each robot is chosen
such that the x-axis is parallel to the RTU direction and the origin coincides with the

origin of robot’s base coordinate system when the robot’s RTU position is zero as shown
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in Figure 3.4. @; and @,, are the angles of rotation about z and then y to align the robot

base x-axis along the RTU direction and D is the RTU position of the robot. We use the
notation *'T, for transformation matrix of robotl with respect to its base RTU
coordinate system and “’T}, for transformation matrix of robot2 with respect to its base

RTU coordinate system. For each robot by knowing the parameters of the RTU direction
in the base coordinate system of the robot we can compute the transformations from one

robot RTU position to another RTU position.

&
Figure 3.4. Coordinate systems for the RTU and robots.
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3.2.2. Robots’ RTU Base Transformation

Since each robot is on either side of the robot and we choose independent

coordinate systems for the base RTU locations (robot’s RTU position = 0) we still need a

transformation “'T,, between them. Using this transformation matrix, the transformation

matrix from one robot base coordinate system at any RTU position to other robot’s base

coordinate system is given by

Bl _

R1
B2

-1
Rl. R2
Ty ]) Ty “Th, (3.4)

The transformation in above equation “'T,, is the transformation which needs to

be modeled. There are four independent parameters to transform these two base RTU
coordinate systems from one other considering the constraints that the RTU direction is
same in both systems, i.e., their x-axes are parallel. We chose the following sequence of
transformations to transform from one coordinate system to other. T= Tr (¥, ¥,

Y,)Rx(¥,)Rz(w) computed by

10 0 v,
Rl _|0 -C¥, -S¥, ¥,
R2°|0 -S¥, C¥, V.
0 0 0" 1

(3.5)

where ¥,, ¥,, ¥. are the translation parameters ¥, is the twist angle about RTU direction.
These are the parameters of the RTU robots system to be determined. There is a rotation
of 180° since the two x-axes are parallel but they are in opposite directions due to their

definitions.
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3.3. Laser Pointer Tool
A laser pointer tool consists of a laser pointer (with pivot to adjust orientation)

connected to a tool base. The tool can be picked up by the robot by connecting to the
toolbase. The laser tool’s pivot is adjusted to align its orientation approximately with the

z-axis of the end-effector and it is locked. The robot picks up this tool by connecting to

the tool base, as shown in Figure 3.5.

Figure 3.5. Staubli RX-130 robot carrying a laser pointer tool.
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3.3.1. Laser Tool Rough Alignment

The laser tool consists of a laser pointer (with pivot to adjust orientation)
connected to a tool base. The laser tool’s pivot is adjusted to align its orientation
approximately with the z-axis of the end-effector and it is fixed rigidly. To increase the
accuracy of the laser alignment it is aimed at a constant location and the robot end
effector is moved along the z-
axis. The change in the laser spot
position is noticed and the laser
is adjusted to minimize this error
as shown in the Figure 3.6.
Rotating the laser tool about the
z-axis makes a circle. The
smaller the radius of this circle
the better the tool is aligned.

Thus moving the laser forward

and backward and rotating it

Figure 3.6. Laser Rough Alignment.

about the z-axis the pivot is adjusted to reduce, but not eliminate, the alignment error.

3.3.2. Aiming Laser Tool

The robot can aim the laser tool at some location. There are infinite configurations
to aim the laser at a desired location, but a convenient location (either present location or
any location reachable) for the robot end effector is chosen to aim the laser. Given the

position of the robot end effector and the location of the 3D point to aim at, a simple
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trigonometric calculation as shown below gives us the required orientation for the laser

tool. This approach is described in the following equations.

d)( EX X
d,;r=<E, =P, (3.6)
dZ EZ PZ
yaw:atanZ(dy,dx) (3.7)

pitch :atan2(1/dx2 +dy2,dz) (38)

where (d,,d,,d.) is the direction of laser pointer that is required to aim the laser. It is
the difference between the target point (P, P,, P,) and the location of the end effector
(E,,E, ,E.). “atan2” gives the arc tangent angle in correct quadrant. “yaw” and “pitch”

are the orientation angles needed to aim the laser at the desired point. Thus knowing the
position E and the orientation of the laser (d) the laser can be aimed at the desired

location.

3.3.3. Laser Tool Model

Once the laser tool is attached to the robot, the robot can then aim the laser tool at
a desired location. The aimed location is accurate only if the whole system, i.e., robot and
laser tool models, have accurate parameters. The laser tool is not perfectly aligned with
the z-axis of the end effector (Z¢) and the misalignment needs to be modeled by a
transformation matrix. A coordinate system (O7X7Y7Z7) is chosen for the laser tool such
that the z-axis coincides with the laser line. Both the orientation of x-y axes and the origin
along the laser line are arbitrary. Four independent parameters are required to describe a

line (laser) in 3D space with respect to the end effector coordinate system. Since the laser
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z-axis (Z7) is closely aligned with the robot end effector z-axis (Zs) we choose the four
required parameters as, two rotations about x and y (These angles of rotations are close to
zero.) and two coordinates of translation in x-y plane (also close to zero). We choose the
x-y axis and the origin of laser coordinate system to coincide with the previous coordinate
system when the four parameters are zeros. Hence the initial guess of all four parameters

is zero. The transformation matrix is given by 7= R.(0,)R,(0,) T.(p-) T,(p,) computed by

w, 0 SO PxC0y
6. | SOxSO, Oy -SOLCO),  pySOxSO,+pyCOy
T,= (3.9)

-COxSO), SOy COCOy,  -pxCOLSOy+py,SOy
0 0 0 1

When a laser tool is picked up by a robot then the total number of parameters for

the model of the system (robot with the laser tool) are 18(robot) +4(laser) =22.

3.4. Biclops Tool

A directed vision

Tool Base
system tool called Biclops
Fight Ej_ — L
consists of two cameras  Bgp | |
fxly ‘
each of which is mounted on ___.__I-—;- |

e e | o g e

e T ¥

a pan and tilt unit (PTU). ”: B o | [Ii 1 -'fj')

The cameras wused are “_—[—%g: I—r.-[—u—._._,J
O - _%i

A602fc  color fire-wire )
Tilk Axig

Comers
(IEEE1394) cameras

Figure 3.7. Biclops with Pan and Tilt Axis shown.
manufactured by Basler. Each of these cameras is attached to a pan-tilt unit (PTU) from

Directed Perception. The PTU camera units are attached to a bracket on either side and a

tool base is connected to the middle of this bracket as shown in Figure 3.7.
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Figure 3.8. Staubli RX-130 robot carrying Biclops.

The robot picks up Biclops by connecting to the tool base as shown in Figure 3.8.
Each of the PTU camera units have two (pan and tilt) degrees of freedom (DOF). The
cameras are connected to a PC using IEEE1394 (firewire) cables and the PTUs are
connected to the PC using serial cables. The various features of Basler A602fc cameras
that can be controlled from the PC include area of interest (AOI), brightness, gain,
exposure time and color format. Each PTU can be commanded by the PC independently
to aim its camera at any desired location in the workspace.

Biclops is built using standard PTUs and a metal frame. Though the dimensions

of all the pieces are “known” through design, their accuracy cannot be assumed. Hence

we need to model Biclops to determine the dimensions empirically. The Biclops is
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modeled with DH parameters and the various coordinate systems in the Biclops system

are described below.

3.4.1. Biclops Model

The coordinate system at
which the robot holds Biclops is
the robot’s tool control frame
(TCF) which is indicated as
frame E in Figure 3.9. We have
defined D-H parameters for the
two joints of each PTU. A
coordinate frame is chosen on
the CCD of the camera at the top
left corner with the z axis out of
the camera towards the objects,
the x axis along the horizontal
right direction, and y axis along
the vertical down direction as
shown in Figure 3.10. All the
coordinate frames are shown in
Figure 3.9. Figure 3.10 shows

the image plane coordinate

.?2

Figure 3.9. Biclops coordinate systems.

Image Plane

Figure 3.10. Image plane coordinate systems.

b)
z.z I
o
Xy,
za'h )
4L | b ¥

systems with principal point (image center) (uo, vo), focal length (f), and the projection of

a 3D point p(x, y, z) to (u, v) in camera coordinates. Although pan and tilt axes are shown
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intersecting and orthogonal in the Figure 3.9 for clarity and simplicity, the model does
not assume this. The separation and the angle between the pan and tilt axes are included
in the D-H parameters that will be determined through the calibration procedure.

The transformation matrices used to convert points from one coordinate frame to
the next are given by the following equations. We use notation C6,, for cos(6,+ 6-), S0,
for sin(0;+ 6,) and ATy for transformation matrix which transforms points described in
frame B to points in frame A.

The transformation matrix from the base of the robot to the TCF frame is given by

CaCpCy-SaSy -CaCpSy-SaCy CaSp x
BT _| SaCBCy+CaSy -SaCpSy+CaCy SaSp y (3.10)
E~ -SpCy SpSy Cp  z '
0 0 0 1

where (x, y, z) is the position and o, f, y are the yaw, pitch and roll rotation angles,
respectively, of the TCF in robot base coordinate system. The transformation matrix from

the TCF frame to frame 0 is given by

C0,,CO, -C0,,50, 50, ity
E, _| 56,560,C0, +C0,S0, -50,50,50,+C0,CO, -S6.CO, t, (311)
071-C0,56,C0, +56,86,  CO,S6,50, +56,C0, COCO, i, '

0 0 0 1

where #, t,, and . are the translation and 6y, 0,, and 0. are x, y, z rotation parameters,
respectively, from the TCF frame to frame 0. The other transformation matrices using D-

H parameters are given by ( 3.12), ( 3.13) and ( 3.14),

Co, -56, 0 0

Oy _| 6, COp 00 (312)
0 0 10
0 0 01
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co,, -850, 0 @

Iy _ Cay80,, CoCO, -Say -d|Sy

2 Sa 56, Sa)CO, Cap diCa (3.13)

where 0, is the pan angle and 6, is the tilt angle. The D-H parameters from frame 1 to
frame 2 are 6,+6,, a;, a; and d;. The angle between X; and X, is 6;,+6,. The angle
between Z; and Z, is a;, the separation between Z; and Z, along X, is a;, and the

separation between X; and X, along 7 is d;.

Cé’z -SHZ 0 ar
2 Ca,S0, Ca,Cl, -Sa~ -d,Sa
T, = 2772 2772 2 2572 (3.14)
3 Sa20502 SaZOCH2 ng aVZCoz2

where 6,, a,, a; and d, are D-H parameters from frame OX,Y,Z; to frame OX3Y3Zs3. The
angle between X, and X3 is 6. The angle between Z, and Z; is a,. The separation

between Z, and Z3 along X is a,. The separation between X, and X3 along Z3 is d,.

3.5. Barrett Hand

The Barrett Hand as shown in Figure 3.11 has 3-fingers, each finger has clutches
which allow the finger to lock once it has encountered certain amount of force, thus
enclosing the objects completely. Two of the three fingers can be commanded to rotate in
plane (called spread of fingers) 180° symmetrically. By adjusting the spread angle of the

fingers, it can grasp a wide variety of object shapes and sizes.
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Figure 3.11. Staubli Carrying Barret Hand.

3.6. Probe Tool

A probe is a metallic pointer tool that can be attached to the robot using a tool
changer. This tool is shown in Figure 3.12 is used usually to touch a point to determine
its 3D location with respect to the robot base coordinate system. The probe is used in to

find the 3D location of various points in the environment.
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Figure 3.12. Staubli Carrying Probe Tool.

3.7. Robotic Mobile Platform (RMP)
The Segway RMP is based on the commercial Segway Human Transport. It is

dynamically stable and balances itself to keep from falling over. The RMP accepts
software commands and return state data on a dual channel CAN bus. The RMP is an
inverted pendulum, and balances by moving forward and backward to keep itself under
the center of mass above it.

The RMP consists of a steel structure for mounting various sensors computers etc.
It is also fitted with ballast plates which provide mass to the top of the structure thus
making it more stable when in balance mode. The RMP is a modification of the human
transporter (HT); it retains the handlebar for its key and display. Two E-stops are

provided for emergency use. The E-stops are attached to cords. When either cord is
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pulled, the RMP's power is immediately shut off. However, this also stops the active

balancing and the RMP will fall over.

i~

Figure 3.13. Segway Robotic Mobile Platform
An emergency landing system has been designed such that when the RMP falls

over it lands on this system and the equipment mounted on the RMP will not damaged.
This system consists of two angular arms on each side of the RMP with spring loaded
wheels at the ends of these arms. If the RMP ever exceeds 40 degrees, the control system
will not be able to recover its balance and it will fall. The arms are designed at an angle
so that they only touch the ground when the RMP leans forward or backward more than a
critical angle (35 degrees). Thus when the RMP auto balance is turned off and when the

RMP is falling it will rest on these wheels. The wheels are also equipped with the

36



emergency shutoff switches (which are using the E-Stops) whenever they press against
something, they turn the system off thus not allowing it to go into an unstable mode.

The RMP is connected by a CAN card to a laptop computer which is secured to
the top of the RMP. This laptop is the main server for the RMP. A Biclops directed vision
system, described in Section 4.5 and modified for the RMP, is shown in Figure 3.14. A

third PTU is used to control the direction of a laser pointer.

Figure 3.14. Segway Robotic Mobile Platform with Biclops Directed Vision System.
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Chapter 4. Robot Calibration

4.1. Introduction

It is well known that industrial robots are highly repeatable but not very accurate.
Accuracy has not been deemed necessary by industry. Since most industrial applications
are programmed by teach pendant to produce a sequence of points, replay of these points
relied strictly on repeatability; accuracy simply does not matter. Most of the robotic
applications that capitalize on repeatability, e.g., pick and place, have already been done.
For more advanced applications, such as sensor based assembly, accuracy plays a
significant role. Consequently, a simple, fast, and accurate robot geometric model
computed through a calibration process is needed. The goal of this chapter is to describe a
new approach to improve the accuracy of the 3D structure of the scene determined by the
cameras fixed on the robot using PTUs. This goal is partially reached by calibrating the
robots on which these PTU cameras are mounted.

The main source of error in positioning and orientation of the robot is due to the
inaccuracy in the parameters used to compute the position and orientation. The position
and orientation of a robot can be represented by the forward kinematics using Denavit-
Hartenberg (DH) parameters [60], [61] for each link of the robot which depend on the
dimensions of the links. Robot accuracy ultimately depends on the accuracy of the DH
parameters. Some variation comes from the manufacturing process, primarily due to
machining inaccuracy. Other variation comes from the assembly process, where the
precise position and orientation of links and joints is not perfectly repeatable. Most
manufacturers of robots do not focus on accuracy because, if accuracy is achieved by
higher tolerance in machining, the cost of robot increases dramatically, adversely

affecting the company’s sales potential.
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Since it is economically unattractive to achieve accuracy by machining to higher
tolerances, a software calibration approach to identify the DH parameter values is needed
to advance the state of the art in robotics. After a calibration procedure in the robot
factory, each robot controller can be updated, e.g., by writing non-volatile memory with
the correct robot-specific DH parameter values instead of the standard design values. If
this procedure is relatively rapid, all robots will leave the factory as accurate mechanisms
that cost little more than they cost today. Also, for applications with higher accuracy
demands like sensor based assembly, robotic surgery, etc., the complete set of the DH
parameters can be used to compute the numerical inverse

kinematics. This chapter describes a DH parameter calibration  Table 4.1. Industrial

Parameters
approach that fits this need. The Staubli robot and the laser tool Parameters In{“al
values
. -90
both are calibrated. 0y (deg)
a, (mm) 0
0, (deg) 0
. . d, (mm 0
4.2. Staubli Robot & Laser Pointer Model O;Edeg; 0
The aim of this chapter is to calibrate the two robots a; (mm) 625
05(deg) | -180
independently. The Staubli Robots are modeled as described in Bs (deg) 0
oy (deg) -90
section 3.1.1. The robots parameters equivalents to the industrial ay (mm) 0
04 (deg) 0
parameters are shown in Table 4.1. These parameters are not d4 (mm) 625
o5 (deg) 90
accurate enough so we need to calibrate the robot to find these as (mm) 0
05 (deg) 0
parameters. For the sake of calibration we used a laser tool as ds (mm) 0
o (deg) -90
shown in Figure 4.1. The laser tool is attached to the robot and the f‘g((rgm)) 8
x (deg
whole system, i.e., the robot and the laser pointer tool consisting of ley((deg)) 8
px (mm
py (mm) 0

the 22 parameters is calibrated.
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Figure 4.1. Staubli F&-lSO robot, mounted on RTU, carrying a laser pointer tool.

4.3. Virtual Closed Kinematic Chain Calibration (ViCKi)

Calibration is the process of determining accurate values of all parameters of the
model. For the Staubli RX-130 robot and laser tool model we have 22 parameters to be
determined.

A new method called ViCKi [66], “virtual closed kinematic chain method,” has
been developed to calibrate the robot. This method falls under the class of closed-loop
methods where only joint readings are used to calibrate the robot. A laser tool is attached
to the end-effector of the robot. The laser tool on the robot acts as a virtual telescopic
(prismatic) link giving the robot 7 DOF, the seventh joint being the length of the laser

line from the end effector to the projected laser point on an object, e.g., distant wall. Thus
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aiming the laser pointer at a fixed point (on a plane or some object) creates a virtual
closed kinematic chain.

Calibration is accomplished by aiming the laser pointer at an arbitrary but fixed
point P on an object (usually a plane), adjusting the joint values to maintain the laser on
point P, using various joint configurations. This effectively becomes the single end point
constraint for the 7 DOF system. The coordinates of the fixed point P in robot’s base
frame are unknown and must be included in the calibration model’s parameters. Since the
coordinates of the fixed point (P) are also included in the parameters to be determined,
the scale factor of the model is indeterminate. To overcome this problem we need a

second fixed point relative to the first fixed point. This can be accomplished in two ways.

Unknown,
Translation

\Knuwn

Distance

\ \ | l"‘

_]'1 /‘/ Camera Feedback
1 System

Figure 4.2. Calibration using two 3D fixed points.
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A second fixed point is chosen such that the distance between the two fixed points
is known (D) and the two parameters for the direction are included in the calibration
model as shown in Figure 4.2. This can usually be achieved through a calibration plane.

The same fixed point is used but the base of the robot is purely translated by
known distance (D) and the two parameters for the unknown translation direction are

included in the calibration model as shown in Figure 4.3.

gy

Camera Feedback.
System

Translation

\,x

" Staubli N

Figure 4.3. Calibrating using same 3D point but by translating base of robot.

In our case, since we have a RTU (Robot transport unit) which can translate the

robot along the rail by a known distance, we use the second alternative. This eliminates
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the effort of measuring the distance between two fixed points in space. The translation
can be directly noted from the RTU position which has position uncertainty less than
+0.1mm. The complete calibration process now includes 18 parameters for the robot, 4
for the laser tool, 3 for the 3D coordinates of the fixed point, and 2 for the direction of
unknown translation, either of the second point from first or the second position of the
base frame from the first position depending on the method used (which corresponds to
the direction of the RTU with respect to the robot base coordinate system).

The laser tool is aimed at the fixed point from various positions (robot joint
configurations. The parameters of the model are determined by minimizing the sum of
the normalized shortest distance of the fixed point from all the laser lines. Since the
shortest distance error depends on the distance of the object plane from the end effector
(i.e., length of the laser line) it is normalized with the length of the laser line.

Consider a 3D point in space P; Let its coordinates in the base frame of the robot

px
be B IP]= P, If we use method 1, with two fixed points, the second point is given by
pZ
Bl Px Ly Tl . . .
Py= r, +D* L, where tyr 18 the unit vector of the unknown direction of
pZ tZ tZ

translation. D is the known distance of translation. If we use method 2, the same fixed
point but from two different base locations, we have Blp, and B?P, where B, and B, are

the two positions of the base. Now B is translated by a known distance D along an

-t -t t
. . X X X
unknown direction ), to reach B, we haveBz=B]+D* L[ B,=B,+D* fyp The

-t -t t
z z z
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coordinates of the same point in base 2 coordinate system are given by

px tx
B2p _Blp +3231: P, +D* L, thus

B2 BI
7 7 P
pZ ZLZ

= PZ'

The two ways to perform calibration are shown in Figure 4.2 and Figure 4.3.
Points B; and B, are the two positions of the robot on the RTU separated by a distance of
D along the unknown direction of the translation. The ‘observation plane’ is an arbitrary
plane (any arbitrary orientation facing the robot base) passing through the 3D point at
which the laser is aimed and can be adjusted to coincide with the point. The coordinates
of the 3D point P, in the base coordinate system of B, are identical to the coordinates of
the point P; in base coordinate system of B,. Since the robot base coordinate system is
not yet determined, the direction of translation is unknown. The calibration procedure
thus includes three parameters for the 3D point and two parameters for the unknown
direction. We choose the angles of rotation about the z-axis followed by the y-axis so as
to align the base frame x-axis along the translation direction. Since the direction of
translation in our present case is almost aligned along the x-axis of our robot the initial
guess for all rotation parameters is zero.

We denote the parameters for the robot and laser tool as @ rL which is the list of

22 parameters for the robot and the laser tool. The parameters for the 3D point are

denoted as @, and the parameters for the direction of translation as P, and @,,.We have

two sets of joint configurations, one for each fixed point (or one for each base position).
We use the notation 'J; for joint set 1, it reading. For each joint configuration in first set
transformation matrix from base to laser frame 'z (gza 1 )is computed which gives the

R Vi
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position ’p (@RL Jl)and the direction of the Z-axis!z. (ch

. IJl.) of the laser line in

columns 4 and 3, respectively, of the transformation matrix. The shortest distance of the

3D point @, from the laser line is determined and normalized with the length of the

laser line. This is the error, i.e., the cost function g (¢ @, J)for this joint
configuration. For the second set the error 2, (qs @, )is computed with the 3D point
given by

cos(@l)cos(d5m)

; %
3D Q53D+ Slﬂ(@l)cos((ﬁm) D (4.1)

-sin| P
m
where ¢ and @, are the angles of rotation about z and then y to align the x-axis along the
unknown translation and D is the known length of the translation. The translation
direction in the present case is almost parallel to the x-axis of the robot base coordinate
system hence zero can be used as the initial guess for these parameters. The complete

parameter set @:{@R . Dip D qsm} is determined by minimizing the total sum of the

squares error. The required parameter set ¢ . for N readings in each set is obtained by

1.2. N> 2] (42)

CD —MIN(D(Z E +Z E
1 i=1

4.3.1. Feedback System and Stability

The calibration procedure requires many different robot joint configurations that
aim the laser tool at the particular point on a distant object. This process can be time

consuming if a teach pendant is used. Instead we use the approximate parameter values
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and approximate coordinates of the 3D point and compute various joint values that aim at
the fixed location. But since our computation is only approximate, the laser tool only
aims close to the desired point. We developed a feedback system that uses the errors in
the projected point to aim the laser tool at a desired point on a plane by adjusting the joint
angles. The data acquisition process is thus accelerated by this feedback system that
redirects the laser spot on a plane to a desired location.

A model of the robot and laser tool is constructed in Simulink. Using approximate
parameter values of the model, the joint values can be computed to aim the laser tool
close to the desired point on a plane. The errors in aiming the laser at a fixed point due to
errors in parameters are within +10mm, which are well within the limits of the feedback
system that can redirect the laser to the desired location from an initial location w, more
than £500mm away from the desired point. The feedback system uses the initial
parameters and approximate position and orientation of the camera system to compute the
inverse Jacobian. The system appears very stable since the direction of motion of each
joint to move the desired laser point is not sensitive to the small differences in the robot
calibration parameters. We have constructed two different feedback systems. The first
uses position control as shown in Figure 4.4 to control the joint angles. The second uses a
PID (position, integral and differential) control as shown in Figure 4.5. The gains and
parameters for the PID feedback system are chosen to make the system stable.

Using this approach, the calibration procedure can be automated in industry. A
camera detects the laser point and is used as feedback to change the robot joint angles so

as to move the laser point to the desired point P as shown in Figure 4.6.
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Figure 4.6. Staubli Feedback system, using a camera.

4.3.2. Minimization

We employ a MATLAB minimization routine (Isqcurvfit) to compute the values
of the parameters. The algorithm computes the solution for the system using Levenberg-
Marquardt (LM) algorithm and the solution obtained is perturbed with random noise and
the algorithm is repeated. The amount of noise added to the solution in each subsequent
step is reduced. This randomness in the initial guess to the LM algorithm and the
repetition of the algorithm ensures a better solution. The user is referred to [63], [64] for
description of the “trust region” problem and [59] for Levenberg-Marquardt Algorithm.
The number of constraints required by the algorithm to converge to a good model is
usually at least five times the number of parameters in the model. Therefore, we need at

least 5*27=135 sample configurations that aim at the same point.
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4.3.3. Procedure

The procedure is summarized in these steps

1.

A very large set (M) of random joint configurations within the required
ranges is generated automatically.

Using the approximate parameter values of the robot, laser and the 3D
point a subset (N) of joint configurations is selected that aim the laser tool
close to the 3D point.

The robot is moved to each of the N locations in the joint configuration set
and the joint values are adjusted to aim the laser point at the constant
location. This accurate joint configuration is stored.

Step 3 is repeated for all of the N joint configurations.

Move the Robot on the RTU by a known distance D=1000mm (or use a
second fixed point at a known distance from first).

Repeat the steps 1 through 4 by aiming at the same location used
previously (or aim at the second fixed point).

Using these data and a nonlinear minimization routine (Isqcurvfit),
compute the parameter values. We used the shortest distance of the aimed
point from the laser line normalized by the distance of the aimed point
from origin of laser coordinate system as the cost function for

minimization.
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4.4. Analysis of VICKi

4.4.1. Magnification of Observation Error

The present method uses a laser pointer tool on the robot’s end-effector to aim at
a constant location on a distant object. Small variations in position and orientation of the
end-effector are magnified on the distant object, thus the position of the laser point is
sensitive to joint values. It can be shown mathematically that by projecting the laser
pointer onto a distant object the resolution of observations is improved, effectively
increasing the accuracy of measurements of the joint angles required to calibrate the
robot. The observation plane is a plane which passes through the 3D fixed point. By
adjusting the robot joint values, the laser tool can be aimed at the desired point. It should
be noted that this observation plane can be chosen arbitrarily passing through the 3D
fixed point; the only effect will be a change in the Jacobian used in feedback. Hence,
without loss of generality assume the observation plane is parallel to X-Z and at a
distance “f”, so that Y= f is the equation of the plane. Let the transformation matrix of

the laser pointer with respect to the base of the robot be

Ry Rpy Ry Oy
O, Ryp Ryy Ry3 Oy (4.3)

=

31 B3y Ryz Oz
0 0 1

Then we know that O= (O, Oy, 0,)" is the origin of the laser coordinate system and

7=(Ry3, Rys, R33)T is the Z-axis, which is coincident with the laser line. Any general point

on this line (i.e., on the laser line) is P=O+AZ. The laser is aimed at the observation plane

(whose equation is Y=/) hence the aimed point (P) lies on the observation plane and its

solution is
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(#-0y)
Ry3

(4.4)

Py=p =0+ iRy3=p = i=

Using above equation we can compute the location of the laser point on the

observation plane in its planar 2D coordinates (x-z in the present case), which is given by

T

(K KZ}T={OX+(ﬂ-Oy)]]:]3 OZ+(ﬁ—0y)R33} (45)

23 Ry3

Since we choose B to be large, the change in the 2D point of projection is
magnified as compared to just the change in the position and/or orientation of the end
effector. (B-Oy) is the distance between the end-effector or TCF (Tool Control frame) and
the plane. R13/R23 and R33/R23 are the tangents of the angles of the laser line with the
Y- axis.

Figure 4.7 shows the variations of the positions of the TCF and the laser point on
planes at f/=3000 mm and f=5000 mm with variations in joint 1 angle. It can be inferred
from the plot that to have same error (0.1mm) in measurements of either TCF or laser
position (on plane f=5000 mm), the errors in joint 1 angle are 0.01deg and 0.001deg
respectively, i.e., the error for laser point is 10 times lower than that of TCEF.
Consequently, if the error associated with aiming the laser point at the desired point that
is 5000mm away is less than 0.Imm, the error associated with joint 1 will be less than
0.001deg. Figure 4.8 shows the variations of the positions of the TCF and the laser point
on planes at f/=3000mm and f=5000mm with variations in joint 2 angle. The variations in
laser point and TCF have the same order of magnitude as variations in other joint angles.
Thus this method is more accurate in obtaining the joint configuration data when

compared to any method that uses the TCF position or orientation measurements.
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4.4.2. Optimum Distance for Observations

The proposed method magnifies the error in observations as discussed in previous
section. This magnification is directly dependent on the distance (f) of the observation
plane from base of the robot. Though the magnification increases with the distance of the
observation plane, the uncertainty in aiming the laser (due to limited resolution of the
joints) increases. Hence there is a maximum distance () beyond which the magnification
in error does not help in getting better joint angle data.

The uncertainty in origin of laser line (AO) and laser angle (A6) are given by the

following equations respectively.

AO =0, + Oy (4.6)
AO =0, +06 (4.7)
where Oy, and Og are mean and standard deviation of errors in origin of laser, and 6,, and
0, are the mean and standard deviation of errors in direction of laser due to limited
resolution of joints.
The uncertainty in aiming laser (AL) at a distance A is given by
AL = AO % Asin(A6) (4.8)
Let AP be the uncertainty in observations due to its finite resolution (of camera

system or human observer). To get better observations we have AL = AO+ Asin(Af) < AP.

Hence the distance of aiming A can be computed as
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(AP+AO)
A< ( a0, Jmin (4.9)

The distance computed by the above equation is the optimum distance of the
observation plane from the laser origin. A shorter distance does not magnify the errors
sufficiently and a longer distance does not provide better joint angle data.

The real robot has limited resolution. The encoder counts and the resolution of
each joint for Staubli robot are shown in Table 4.2. A large number (30000) of positions
in the workspace are determined. Two robots are created in simulation, one is moved to
each of the joint configurations, and the other is moved to the same joint configurations
but with offset equal to maximum joint resolution errors. The norm of the difference in
position and the angle between laser lines are computed. The mean and standard
deviation of these values for all joint configurations are computed. The mean and
standard deviation of the norm of position error were Op= 0.000236mm and Og=

0.0000577mm, respectively. The mean and standard

Table 4.2. Joint Resolutions
Joint | Encoders | Resolution
Counts/deg (deg)

deviation of the angle between laser lines were

6,,=0.00217deg and 6= 0.002583 deg respectively. 1 147219 6.79¢-6
2 147219 6.79e-6

If a camera system is used the resolution of the 3 115019 8.69¢-6

4 100124 9.99¢-6

camera system is 1 pixel which corresponds to the 5 30720 3.26e-5
6 36409 2.75e-5

resolution of approximately 0.05mm in the observation
plane. Hence we can safely use AP =3x0.05=0.15mm which accounts for other errors in
observations (computing center of laser point). The distance of aiming can be computed
using ( 4.9) as A = 1800mm. The average distance of the laser origin from base of the
robot is around 1200mm for various joint configurations. Hence the optimum distance of

the observation plane is £ =1800+1200=3000mm.

54



If observations are taken by a human, the resolution of observations can be around
AP =0.5mm. The distance of aiming can be computed by ( 4.9) as A = 6000mm. Hence

the optimum distance of the observation plane is f =6000+1200=7200mm.

4.4.3. Effect of Scaling Distance

The distance (D) between two 3D fixed points or the robot base positions as
described in Section 4.3 has a scaling effect on all the length parameters of the model.
The ratio of error in D is same as the ratio of errors in parameters. Hence choosing D
large enough to outweigh its uncertainty is necessary, ie., if D=1000mm and it

repeatability is 0.1mm then the length parameters have repeatability of 1.0x10™.

4.5. Experiments

45.1. Calibration with Precise Data in Simulation

Simulation of the calibration experiment was performed using very accurate joint
readings. A robot was created in Simulink with a known set of parameters different from
the industrial parameters (approximate DH parameters used by the robot manufacturer).
The feedback system was used to accurately aim the laser tool at a fixed point from two
different RTU locations (1000mm apart). The laser point is finely adjusted using the
feedback loop as discussed in section 4.3.1 until the errors in projected points were within
+0.0005mm and the joint configurations were recorded with full accuracy. These joint
configurations were used to calibrate the robot; the industrial parameter set was used as
the initial solution. The solution was compared to the actual parameters used to generate

the joint configuration data. The experiment was repeated with different fixed points and
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various sets of joint configurations. Table 4.3. Calibration Results (Precise Data)

Parameters| Actual Initial | Minimum STD
The deviations of the parameters from values Error (X10%
w(deg) | -89.99 | 90| -89.999012 | 8318

the actual parameters were computed. a, (mm) 0.05 0 0.049711 | 5.0281
0, (deg) -0.03 0| -0.030618 | 7.0947
Table 4.3 shows the results of |92(mm) 0.70 0 0.699360 | 4.2889
a3 (deg) 0.01 0 0.010936 | 3.0462
. : : 625.5 625 | 625.500531 | 1.8965

the calibration with accurate data. |—2(mm)

0;(deg) | -179.99 -180 | -179.997532 | 1.9343
Bs (deg) -0.04 0| -0.041009 | 6.8222
Column 2 shows the actual parameters o (deg) | 89.98 5o 89.991267 | 3.0276
. . . a, (mm) -0.001 0 -0.001211 | 5.4167
used by the simulation robot to obtain 6, (deg) 0.036 0 0.036303 | 15087
. d4 (mm) 626.25 625 | 626.253214 | 6.9792
the data, ie, the true robot = ;o900 90 | 90.011123 | 3.7837
as (mm) -0.53 0 -0.530183 | 8.6001
parameters. Column 3 shows the 05 (deg) 20.09 0 20.083865 | 8.5366
o - ds (mm) 0.55 0| 0550291 | 5.9356
initial ~ parameters used in the o (deg) | -90.02 | -90 | -90.012512 | 4.9655
ag (mm) 0.53 0 0.53094 | 8.9977
minimization routine. Column 4 [ g (deg) 0.05 0 0.049648 | 8.2163
10, (deg) 0.16 0 0.15952 | 6.4491
shows the optimum solution and | p,(mm) -0.18 0 -0.17961 | 8.1797
py (mm) 1.63 0 1.6293 | 6.6023

column 5 shows the

standard deviation of the LSS
parameters from the actual EE 10
parameters obtained by g
B
. . = 10 ¢
repeating the experiment g g
=
number of times. The & y45'L
results show that the E
10’ |
optimum solution obtained
by the calibration 16" L '

[ 1000 2000 3000 4000 snoa
No Of Iterations

Figure 4.9. Minimization Routine Residue (log scale) Vs Number of
Iterations.

experiment was very close
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to the actual solution. The standard deviation of the solution was very small (10'4)

indicating the stability of the procedure.

The minimization routine residue error was plotted against the number of

iterations as shown in Figure 4.9. The error in projection decreases as the model is

improved in each iteration.

4.5.2. Calibration with Noisy Data in Simulation

A real robot joint has limited resolution and can only be commanded to move to a

particular encoded value closest to the desired angle. The encoder counts per degree for

all six joints of Staubli were shown previously in Table 4.2. Therefore the accuracy of the

joints is limited by the number of
encoder counts per degree. In the
previous experiment we obtained the
joint readings with very high accuracy
which is not possible for the real
robot.

Hence, to make the simulation
more realistic, we use joint readings
with accuracy similar to that of the
real robot. This was achieved by
adding noise and rounding to the
closest encoder value of the joint. The
calibration experiment was repeated

with these noisy data.

Table 4.4. Calibration Results (Noisy Data)

Initial Minimum STD

Parameters| Actual values Error (X107

w(deg) | -89.99 | 90| -89.988292 | 3.2004

a, (mm) 0.05 0] 0.059942 | 9.6010
0, (deg) -0.03 0| -0.025602 | 7.2663
d, (mm) 0.70 0| 0.703400 | 4.1195
as (deg) 0.01 0| 0.013142 | 7.4457

a;(mm) | 6255 | 625 625503650 | 2.6795

0s(deg) | -179.99 | -180 | -179.986067 | 4.3992

Bs (deg) -0.04 0| -0.034084 | 93338
a(deg) | -89.98 | 90| -89.978802 | 6.8333
a;(mm) | -0.001 0| -0.000618 | 2.1256
0s(deg) | 0.036 0| 0.040585 | 8.3924
ds(mm) | 62625 | 625 | 626258698 | 6.2878
as(deg) | 90.01 90 | 90.019342 | 1.3377
as (mm) -0.53 0| -0.527355 | 2.0713
05 (deg) -0.09 0| -0.088396 | 6.0720
ds (mm) 0.55 0| 0558728 | 6.2989

as(deg) | -90.02 | 90| -90.017621 | 3.7048

ag (mm) 0.53 0| 0536458 | 5.7515
10, (deg) 0.05 0| 0.059668 | 4.5142
10, (deg) 0.16 0| 0.166649 | 0.4389
Py (mm) 0.18 0| -0.171296 | 0.2718
p, (mm) 1.63 0 1.630099 | 3.1269
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Table 4.4 shows the results of the calibration with noisy data. Column 2 shows the
true robot parameters used by the simulation. Column 3 shows the initial parameters used
in the minimization routine. Column 4 shows the optimum solution and column 5 shows
the standard deviation of the parameters from the actual parameters obtained by repeating
the experiment number of times.

The results show that the optimum solution obtained by the calibration
experiment with truncated joint data was very close to the actual solution but not as close
as the un-truncated data simulation case described in Section 4.5.1. As expected, the
standard deviation of the solution using discrete joint values was greater than that of the
continuous case, but it was small enough (107) to justify that the procedure produces a

usable result.

4.5.3. Calibration of Staubli Robot

The calibration experiment was performed on real Staubli RX130 robots. A point
was chosen on a distant plane and the various joint values that aim at this location were
determined as described in Section 4.3.3. We used the second method, i.e., the robot was
translated on an RTU (We assume that the direction of the translation is unknown.) and
the laser was aimed at the same point. The joint readings were used in a minimization
routine to find the parameters of the model. The calibration experiment used 540= 20*27
joint configurations, to compute the parameters. The experiment was repeated multiple
times with different fixed points and the calibration parameters resulting from these
calibrations (which all should be the same) were compared by computing the mean and

deviations of the parameters. Using various fixed points and conducting the experiment
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ensures that the parameters obtained are stable and accurate. The optimum solution is

also shown in the tables.

Table 4.5 and Table

Table 4.5. Calibration Results for Robot 1

4.6 shows the results of the | Parameters| Initial | Minimum Mean ST]%
values Error (X10™)

. . o (deg) -90 | -89.980456 | -89.981214 | 0.5407
calibration of the real robot- 2, (mm) 0 0.069093 0070235 | 12749
0, (deg) 0 -0.002119 -0.003301 | 1.3985

laser tool systems also the [ g, (mm) 0| 0688913 | 0.683071 | 1.6236
as (deg) 0] 0006887 | 0.007243 | 0.4739

direction of the RTU with [ a;(mm) 625 | 625.508587 | 625.506285 | 2.5518
0; (deg) -180 | -179.998170 | -180.002541 | 2.2271

respect to each robot is | B;(deg) 0| -0.043046 | -0.045487 | 2.4402
oy (deg) -90 | -89.989007 | -89.987637 | 1.4748

shown. Column 2 shows the | a,(mm) 0 -0.000193 -0.002914 | 2.8074
04 (deg) 0 0.036948 0.037581 0.404

initial parameters used in the dy4 (mm) 625 | 626.245066 | 626.243121 | 2.0783
o5 (deg) 90 90.008879 90.009645 | 0.6830

minimization routine, i.e., the | as(mm) 0 -0.526270 -0.524321 | 2.1335
05 (deg) 0 -0.097083 -0.099621 | 4.3357

model parameters provided | ds(mm) 0] 0546777 0545122 | 14124
0 (deg) -90 | -90.025081 -90.023421 | 1.7659

by the factory controller. ag (mm) 0 0.530810 0.534164 | 3.1956
10, (deg) 0 0.050220 0.056354 | 5.8913

Column 3 shows the 10, (deg) 0 0.167296 0.164381 | 2.6737
Py (mm) 0| -0.185588 | -0.1831072 | 2.3211

optimum solution; column 4 |_Px(mm) 0| 1638139 | 1.636521 | 1.6786
Dy(deg) 0| 0012141 | 0012201 | 1.1761

shows the mean of the D, (deg) 0 0.002541 0.002593 | 1.0572

parameters and column 5 shows the standard deviation of the parameters from multiple

trials. The standard deviation of the solution was also small (1 0’ ) indicating the stability

of the procedure. The accuracy of the obtained solution is discussed in next section.

59



4.5.4. Accuracy of Staubli Robot

To test the accuracy of

Table 4.6. Calibration Results for Robot 2

the calibration procedure and | Parameters iﬁ}ﬁi Mlgrlrn;?m Mean (ilT(])%)
a, (deg) 90 | -90.017231 | -90.018914 | 0.8172

to compare the accuracy of | a,(mm) 0] -0032134| -0.033294 | 2.3143
0, (deg) 0 0.011395 0.017531 | 1.8593

computed parameters with the | d,(mm) 0 0.986912 0.985234 | 1.2734
o3 (deg) 0 -0.612876 -0.614178 | 4.0712

industrial parameters, the laser | a;(mm) 625 | 624.987433 | 624.991747 | 3.2156
0; (deg) -180 | -180.120867 | -180.125123 | 4.5191

was aimed at a fixed location | Ps(deg) 0 0.033167 0.035199 | 0.7722
oy (deg) 90 | -90.114360 | -90.119038 | 5.1782

using Various robot ay (mm) 0 -0.341193 -0.347345 | 2.8141
04 (deg) 0 0.008118 0.009256 | 0.9054

configurations. The laser lines | ds(mm) | 625 | 626.873422 | 626.877954 | 3.1378
o5 (deg) 90 90.112369 90.112139 | 1.2700

were computed for each | _as(mm) 0] -0526270 [ -0.525183 | 0.8765
05 (deg) 0 0.019845 0.019882 | 1.7653

position using industrial d5 (mm) 0 0.753422 0.754841 2.7804
0 (deg) -90 | -90.067334 | -90.068136 | 5.2309

parameters and  calibrated ag (mm) 0 0.315344 0311782 | 6.7126
10, (deg) 0 -0.332719 -0.332910 | 3.3119

. 10, (deg) 0 0.912828 0.914921 | 2.4285

parameters. These laser lines . (mm) 0 0.876296 0878541 | 12077
) p, (mm) 0 1.221845 1.226981 | 2.9541

usually do not intersect at a =g ;) 0] -0572108| -0.578287 | 2.7691
D, (deg) 0 0.098826 0.099328 | 3.8715

common point. Therefore an

optimum 3D ‘closest point’ which is closest to all the lines was found in both cases. The
projections of all the lines onto a plane passing through this ‘closest point’ were plotted.
The larger the error in the parameters, the greater will be the scattering in the projected

points.
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Figure 4.10. Laser projection errors using industrial (red) and calibrated parameters (blue).

The errors in the projection using industrial and calibrated parameters for real
robot are shown in Figure 4.10. Since the robot was aiming at the same point from
various robot configurations, all of the projected points should be coincident. The spread
of these projected points relates to the accuracy of the estimated DH parameters of the
robot. Figure 4.10 shows that the spread of projected points. Using the original DH
parameters built into the commercial controller the maximum, mean and standard
deviation of the radius of spread were 11.25mm, 5.64mm and 1.89mm, respectively.
After calibration using the calibrated parameters the maximum, mean and standard

deviation of the radius of spread were 4.22mm, 1.05mm and 0.587mm, respectively. The
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improvement in the system is around 5.37(=5.64/1.05) times. Though the errors are
dependent on the distance of the observation plane from base of the robot the ratio of
errors or in other words the improvement ratio is independent of it. For small angular

AE AE A4, AE
errors AAlztan(AAl)zT‘ and A4, ~tan(A4,)~ ,82' Hence EZE}’ ie., the
2 2

improvement ratio in aiming is independent of the aiming distance. This ratio also gives
us the improvement in the angular errors of the end effector. Therefore the angular errors

are reduced around five times with the ViCKi method.

4.6. Industrial Automation
The present calibration method can be automated to calibrate industrial robots.

The feedback system studied in simulation can be extended to a real system. A camera, to
record the position of the laser point, can be used to read the error in aiming at a desired
point. These errors can be fed back to the system to compute the changes in joint values
required to adjust the laser point closer to the required location. An initial set of joint
values which aim at a fixed location were computed using the approximate parameters
and using this feedback system it is very easy to obtain the data required for calibration

making the process suitable for automation.

4.7. Limitations
The present method of calibration does not take into account other sources of

error such as temperature, load variations, and elasticity of the arms. Having a general
model which includes other effects apart from the inaccurate geometric model can also be
calibrated using the procedure herein. The robot should be able to connect to the laser

tool or at least be able to hold the laser tool rigidly if there is no provision for tool
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interchange. Selection of a high quality laser whose light does not diverge significantly

with the distance of projection is also important.

4.8. Conclusions
An accurate calibration procedure is developed for industrial robots. Most of the

previous methods that calibrate a robot use the pose of the end-effector measured by
some ancillary equipment. The accuracy of measurements of the end-effectors position
and orientation is limited by the measuring equipment and its resolution. Other closed-
loop methods use physical constraints such as linear, planar or other end point
constraints. The methods that use a planar constraint on the end effector have limitations
in obtaining accurate joint readings that satisfy the constraints due to the presence of
contact forces. The methods using linear constraints have difficulty maintaining the end
effector constraints while obtaining the readings. The single end point method has
restrictions in obtaining the joint configuration readings for various poses due to the
physically constrained environment. The proposed method uses a laser pointer tool on the
robot’s end-effector to aim at a fixed location on a distant object. By projecting the laser
pointer onto a distant object, the resolution of observations is improved, increasing
accuracy of measurements of the joint angles required for accurate calibration of the
robot. The method is verified using both simulation and real experiments. It is also shown
in simulation that the method can be automated by a feedback system. The calibration of
the two industrial robots is accomplished and the accuracy of their parameters is
improved. These accurate robots parameters give us a more accurate position of the PTU

camera systems attached to them.
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Chapter 5. RTU Calibration

5.1. Introduction
The goal of the dissertation is to find accurate 3D structure. The accuracy of the

computed 3D points depends in the positions of the cameras with respect to global
coordinate system. The cameras are mounted on the PTUs and PTU are picked up by the
robots moving on the RTU. Hence the accuracy of the 3D structure depends on RTU
model parameters accuracy. Also the present application involves multiple robots
interacting with each other; it is necessary to determine their global location with respect
to each other. The relative global locations of one robot from the other are usually
computed by using inaccurate industrial design parameters. Hence a software calibration
approach to identify the DH parameter values of the global position of one robot with
respect to other is needed to increase our overall accuracy.

We use our ViCKi method to include the Rail Transport unit also and calibrate the

global positioning of one robot with respect to other.

5.2. RTU and Staubli Models

We used the model of Staubli as described in section 3.1.1. The total number of
independent calibration parameters (22) which describe the complete robot laser system
for each robot are already determined using the industrial robot calibration (ViCKi) as
described in Chapter 4. We used method 2 where the robot is translated on the RTU to
get two different locations to aim the laser. One of the side effects of the calibration
procedure was that we found the direction of the translation of the robot with respect to

the robots base. This direction of translation gives us the direction of the RTU with
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respect to the robot base coordinate systems. Thus we also know the two parameters for

the RTU direction ®@; and ®,,,.

>
Figure 5.1. Coordinate systems for the RTU and robots.

Since we already know the two robot-laser systems parameters we can compute
the transformation matrices *'T,, and *’T,, for any particular joint configurations.

The model of RTU and Staubli system is described section 3.2.1. The
transformation from any RTU position of one robot to any RTU position of the other
robot on the RTU is given by ( 3.4). All the required parameters are already calibrated
except the transformation parameters ¥,, ¥,, ¥- and ¥, from one robot RTU base to other

robot RTU base. The calibration procedure in this chapter describes the ViCKi extension
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to determine these parameters. Then, the transformation matrix in ( 3.5) will be able to

convert from one robot base coordinate system to other from any RTU positions.

5.3. Virtual Closed Kinematic Chain Calibration (ViCKi)

Section 4.3 describes a new method ViCKi to calibrate the industrial robots. We
have used that method to calibrate both the robots. Thus all 22 parameters for the robot

laser system and the two parameters for the RTU direction with respect to the robot base

coordinate system are determined for each robot.

| Cuspern Peedbuel
Byxtzn

Raobot 2 ‘“\

Figure 5.2. RTU is calibrated by aiming at same point by two robots’ lasers.

The calibration is performed by aiming the laser pointer at an arbitrary point P on

a distant object (usually a plane), then adjusting the joint values of the other robot to aim
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its laser pointer at P as shown in Figure 5.2. The joint configurations and the RTU
locations of both the robots are recorded. We are aiming at the same physical point by the
two lasers on two robots. This effectively becomes a virtual closed loop for the two, 7
DOF systems. It is not necessary to know the coordinates of the point P. For each
configuration, we use the constraint that the laser lines intersect. The parameters of the
model are estimated by minimizing the sum of the normalized shortest distance of the
two laser lines. Since the shortest distance error depends on the distance of the object
plane from the end effectors (i.e., length of the laser lines) it is normalized with the mean

length of the laser lines. We denote the 22 parameter set for the first robot, laser system
as '®,, . The two parameters for the direction of RTU in first robots base frame as '®, .
We use the notation 'J, for joint readings of first robot, i reading. The transformation
matrix for robot 1 with respect to its base RTU coordinate system, denoted as R1, is

given by

RliTEI = RITBl (1¢1 1@m ID) BliTEl (IQSRL lJi) (5.1)
The transformation matrix for robot 2 with respect to its base RTU coordinate

system (R2) is given by

R2iT52 = R2T32 ( 2@1 2®m ZD) BZiTEz (2¢RL 2‘]1‘) (5.2)
We use the unknown transformation matrix *'T},, to compute the transformation

matrix for robot 2 with respect to robot 1’s base RTU coordinate system R1 frame as

RiTEz = RITRz (\nyza ) RZiTE2 (5.3)

Using equation ( 5.1) the position and direction of the laser line for first robot are

found in columns 4 and 3 respectively. Using equation ( 5.2) the position and direction of
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the laser line for second robot are found in columns 4 and 3 respectively. The shortest
distance of these two lines is determined and normalized with the mean length of the

laser lines. This is the error, i.e., the cost function for this reading given by

1 1s 1 1, 2 25 2 2
El‘( PRrL P Py i TPRL TP “Ppy T lnyzoz) (5.4)

The unknown parameter set ‘P={‘I’x Y, ¥, ¥ a}is determined by minimizing

the total sum of the squares error
N 2

Ymin=MINg | 2 Ei (5.5)
i=

where v . is the required parameter set obtained by minimizing the total sum of

squares of errors and N is the number of readings. We have developed a MATLAB
routine which uses Levenberg-Marquardt (LM) [59] algorithm (MATLAB routine:
Isqcurvefit) repeatedly by varying the solution obtained with random percentage values
and using it as the initial solution for next repetition. The magnitude of the random
percentage values is reduced with each repetition. Introducing randomness to initial

values for LM algorithm reduced its chances of getting struck in local minima.

5.3.1. Feedback system

The feedback system described in section 4.3.1 , redirects the laser spot on a plane
to a desired location. We used the same feedback system to accelerate the data
acquisition process. Models of the RTU with two robot-laser systems are constructed in
Simulink. The errors in aiming the laser at a fixed point due to errors in parameters are
within £10mm, which are well within the limits of the feedback system that can correct

errors of £500mm away from the desired point.
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A camera detects the laser point and the error is used as feedback to change the

robot joint angles so as to move the laser point to the desired point.

5.3.2. Procedure

The procedure is summarized in these steps

1) The second robot aims its laser at an arbitrary point on a distant plane.

2) Using the approximate parameter values of the robot laser systems and the
3D point, the first robot aims its laser at the same point.

3) The first robot’s joint values are adjusted such that the centroids of both
laser points are as close to each other as possible. The joint readings of
both robots and their RTU positions are recorded.

4) Steps 1 to 3 are repeated large number of times (N = 500). For each
reading, the robot’s joint configurations and its RTU locations are varied
to span their domain, i.e., to exercise all degrees of freedom, often known
as the persistent excitation problem.

5) Using these data and a nonlinear minimization routine, compute the

parameter values.

5.4. Experiments

5.4.1. Calibration with Precise Data in Simulation

Simulation of the calibration experiment was performed. Two robots were created
in Simulink with known sets of parameters different from the industrial parameters
(approximate DH parameters used by the robot manufacturer) on an RTU with known

parameters. The experiment is conducted in simulation as discussed in section 5.3.2. The

69



actual known parameters for the robot Table 5.1. Calibration Results (with actual robots
parameters)

Initial | Minimum STD
the | Parameters| Actual values Error (X10%)
Wx (mm) 5654 | 5650 | 5654.0001 | 4.6231

laser systems are used and

parameters of the RTU are estimated Py (mm) 3 0 39995 | 3.1274
, Pz (mm) 3 0 3.0003 | 2.2855
and compared with the known values. [ (deg) 0.01 0 0.008 | 0.6141

The experiment was repeated multiple

times with different joint configurations and RTU positions. The deviations of the
parameters from the actual parameters were computed. Table 5.1 shows the results.
Columns 2 and 3 show the true parameters used to obtain data and the initial parameters
used in the minimization routine respectively. Columns 3 and 4 show the optimum

solution and standard deviation from true parameters respectively.

5.4.2. Calibration with Noisy Data in Simulation

Simulation of the calibration experiment was performed. Two robots were created
in Simulink with known sets of parameters different from the industrial parameters
(approximate DH parameters used by the robot manufacturer) on an RTU with known
parameters. The experiment is conducted in simulation as discussed in section 5.3.2. The
robots’ joints have finite resolutions as shown in Table 4.2. Hence to make the simulation
more realistic noise is added to the joint values with magnitude of the maximum
resolution. These joint configurations were used to calibrate the RTU. The experiment
was repeated multiple times with different joint configurations and RTU positions. The
deviations of the parameters from the actual parameters were computed. Table 5.2 shows

the results of the calibration with noisy data.
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Columns 2 and 3 show
Table 5.2. Calibration Results (Noisy Simulation)

the tI'ue parameters used tO Parameters Actual Inltlal Mlnlmum ST]?3
values Error (X107)
. .o Yx (mm) 5654 5650 5654.0043 3.2561
obtain data and the initial Py (mm) 3 5 39978 55954
. Pz (mm) 3 0 3.0016 | 2.5475
arameters used in the
P Yo (deg) 0.01 0 0014 | 03271
minimization routine

respectively. Columns 3 and 4 show the optimum solution and standard deviation from
true parameters respectively. The standard deviation of the solution was small enough

(10°) to justify that the procedure produces a usable result.

5.4.3. Calibration of RTU with two Staubli Robots

The calibration experiment was performed on the real RTU with two Staubli
RX130 robots. The experiment was repeated multiple times with different joint
configurations and RTU positions. The mean and standard deviation of the calibration

parameters were computed.

Table 5.3 shows  the Table 5.3. Calibration Results
. . P Initial Minimum M STD
results of the calibration of the arameters | oo Error can 1 x10?)
Yx (mm) 5654 5654.8610 | 5654.8604 3.4381
real system. Column 2 ShOWS the "Py (mm) 0 -3.3288 -3.3272 1.5725
—_ t 4 e e 0 1.4338 14321 | 13431
initial parameter in
parameters use ° | Wa(deg) 0 0.0134 | 00135 | 04352

minimization routine. Column 3

shows the optimum solution. Column 4 and 5 show the mean and standard deviation of

the parameters and from multiple trials. The standard deviation of the solution was also

small (10 mm/deg) indicating the stability of the procedure.
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5.4.4. Accuracy of RTU Transformation

To compare the accuracy of computed parameters with the approximate
parameters, the laser was aimed at a fixed 3D point using various joint configurations and
RTU positions of first robot. Then the calibration parameters are used to transform the
laser lines into the other robot’s base coordinate system, and, these laser lines are
projected on to a plane passing through the transformed 3D point. Since these are the
same laser lines, they should intersect at the transformed 3D point, but due to the errors in
the parameters this will not be the case. The errors of the projection are compared by
using the laser lines before transforming, and after transforming using un-calibrated,
calibrated parameters to find the improvement. The larger the error in the parameters, the
greater will be the scattering in the projected points.

The maximum, mean and standard deviation of the radius of spread before
transformation due to errors in robots parameters were 4.34mm, 1.12mm and 0.573mm
respectively. These points were transformed to the other robots coordinate system using
calibrated and un-calibrated RTU parameters for the transformation. The errors due to the
inaccuracy of the RTU parameters are shown in Figure 5.3.

The maximum, mean and standard deviation of the radius of spread were
16.07mm, 5.22mm and 2.72mm respectively using uncalibrated RTU parameters.
Transforming using calibrated parameters the maximum, mean and standard deviation of
the radius of spread were reduced to 4.43mm, 1.78mm and 0.817mm respectively which
are comparable to the errors associated with a single calibrated robot, i.e., very little error

is added to the system as a result of adding the RTU into the system.
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Figure 5.3. Errors in aiming the laser at fixed points after transformation using un-calibrated and
calibrated parameters.

5.5. Limitations
The present method of calibration does not take into account other sources of

error such as temperature, load variations, and elasticity of the arms and backlash. Having
a general model which includes other effects apart from the inaccurate geometric model
can also be calibrated using the procedure herein. Selection of a good laser whose light

does not diverge much with the distance of projection is important.

5.6. Conclusions
The calibration procedure developed in previous chapter is extended to include

the RTU also. The two robots on the RTU are calibrated independently in previous

chapter and their relative global position and orientation accuracy is improved in this
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chapter. The method is verified using both simulation and real experiments. It is also

shown in simulation that the method can be automated by a feedback system.
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Chapter 6. Pan-Tilt Camera Calibration

6.1. Introduction

The previous chapters calibrated the robots and the RTU giving us more accurate
parameters for their models. Using those parameters the location and orientation of the
base coordinate system of the Biclops is found accurately. The problem still remains that
the PTU parameters are not accurate. This chapter particularly focuses on calibration of
the PTU and the camera systems. This relation between the 3D coordinates of points in
the workspace and their 2D image locations can be computed by using those parameters.
The calibration includes internal and external parameters of the camera. Calibration of
internal parameters finds the relationship between image coordinates and ray directions in
the camera coordinate system. This relationship is described by the perspective projection
of the ideal pinhole camera model. The parameters which need to be determined are the
focal length, the principal point (image center pixel) and scale factors in the x and y
directions. It is possible to include compensation for lens distortion when a more accurate
model is desired. Calibration of external parameters involves finding the position and
orientation of the camera in some world coordinate system (here the base of the PTU
coordinates). External camera calibration is important in stereo vision where one needs to
find the relative position of the coordinate systems of the two cameras and it is also
important in hand-eye coordination in robots. Introducing pan-tilt motion to the cameras
makes the external calibration dependent on the values of the pan and tilt angles. The
calibration problem is to identify the values of the internal and external parameters of
each camera in a stereo pair so that they can work together effectively, e.g., to determine

3D points of interest through triangulation.
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6.2. Biclops Model

The Biclops is modelled as described in section 3.4.1. The parameters for the
Biclops are not accurate. These parameters need to be calibrated. The calibration
parameters for the camera can be divided into two groups. One group is the internal
parameters which do not depend on the position or orientation of the camera. The other
group of parameters is the one that affects the accuracy of the position and orientation of
the camera with respect to some coordinate system, i.e., the robot end effector in this

case.

6.2.1. External Parameters

The transformation matrix which converts points from the base of the robot to a
coordinate frame fixed on the camera is called the external transformation matrix. The
external transformation matrix gives the location and orientation of the camera in the
base coordinate frame of the robot (knowing the TCF position and orientation). The
parameters of this external transformation matrix described in section 3.4.1 denoted by

(to ty, tz, Ox, Oy, 04, 01, a4, ay, d;, 0>, az, a3 dy), are the external parameters.

6.2.2. Internal Parameters

The transformation matrix that converts points from the coordinate frame fixed on

the camera to the 2D image coordinates is given by the following expression

fpy O ug 0
Ty= 0 fpy 0 0 (6.1)
0 0 1 f

where f is the focal length, (uo, vo) is the location of the point where the axis of the
camera intersects the image plane, i.e., the principal point. Parameters py, py are the

number of pixels per mm (inverse scale factors) in the x and y directions, respectively, of
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the image. The parameters f, uo, vo, px and py are the internal parameters. This model does
not include the lens distortion and the pixel skew, though the model can be easily

extended to include them.

6.2.3. Calibration Matrix

The matrix that transforms points from the base coordinate frame of the robot to

the image coordinate frame is defined to be the calibration matrix, given by 'Tg.

=1 () () () () () (52

I s I 3 (ZT

This matrix is clearly dependent on the values of the pan and tilt axis angles
because of °T; and 'T,. 'Tg can be computed for any pan and tilt angles of a PTU if all the
internal and external parameters are known. Given a 3D point Xp in the base coordinate
frame of the robot, the calibration matrix is used to compute the location of the point in

the image by W="'Tg Xg. Vector W= {w; w» w3} contains the homogenous coordinates

of the image point U(u, v), computed by u=w1/ws, v=wy/ws.

6.3. Calibration

Calibration is the process of determining the values of all the parameters
{ te ty, ts, Ox, Oy, O,, O1, 01, ay, dy, Or, a2, a2, da f, uo, Vo, px, py }of the model ®. Given a
point in the workspace, the corresponding image point can be computed using the values
in @. The error between the computed and the observed points, as registered in the image
plane, is called the projection error, and is the result of error in the estimation of the
model parameters. Thus, choosing model parameter values that minimize the mean
square projection error is the goal of the calibration procedure. This is described

mathematically by
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3 732

whereU ;is the observed image point and U,(®, X,,0,,.6,.T,)is the computed image point
of the projected 3D point X; in the base coordinate frame of the robot when the position
of the end effector is T; and pan and tilt values are 6,;, and 60; respectively. In ( 6.3), Ti=
(x, v, z, a, B, y } 1s the set of translation and rotation values of the end effector, parameter
‘n’ is the total number of 3D points observed, and ®,, is the required parameter set that
minimizes the mean square projection error.

To calibrate the model, the usual approach is to use a large set of 3D
points and their corresponding 2D image points with respect to some pan, tilt angles and
end effector position and orientation. The mean square of the projection error is
minimized using Levenberg-Marquardt [59] nonlinear minimization. This procedure
requires a known set of 3D points (Xj) in the workspace which are difficult to measure
and time consuming to collect. The innovation of the proposed approach is that the
calibration procedure herein is altered to use a single 3D point (X) and images of the
point from various camera positions and orientations are taken. The modified calibration

is represented by equation

q’m‘l\/gnél (Ui (@.X.0,;.04.T; Ui’ (6.4)

The second distinguishing characteristic of the calibration procedure is to replace
the known 3D point with an unknown but stationary 3D point in the workspace. The
coordinates of the unknown 3D point are added to the set of calibration parameters to get
a new set {®, X}. The calibration procedure itself will determine the 3D location of the

point (X). The final calibration is represented by equation
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n
(@ X)m= pip 2 (U;(19X].0

=2
Mig, 2 pi ¥ T)-UD) (6.5)

where X is the unknown stationary 3D point in the base coordinate frame of the robot.
Using a single stationary 3D point does not affect the excitation of all the degrees of
freedom of calibration as we still have the pan, tilt and the end effector location and

orientation that can be varied extensively by moving the robot that carries Biclops.

6.4. Experiments

6.4.1. Laser Pointer Tool

To determine that a calibration is
accurate, an independent measurement
must be made. To enable this, a laser
pointer tool that can be attached to the
robot wrist has been fabricated. It

consists of a laser pointer (with pivot to

s Lait [+

adjust orientation) connected to a tool . . _
Figure 6.1. Staubli RX-130 robot carrying a laser

ointer tool.
base. The robot picks up this tool by pel

connecting to the tool base, as shown in Figure 6.1. The robot can then aim the laser tool
at any location in the workspace. This approach provides a simple but effective check on
the calibration procedure. After the calibration procedure, the location of the calibration
point can be computed and the laser pointing tool can overlay its laser point on the

calibration point, thus verifying the results of the procedure.
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6.4.2. Experimental Setup

The workcell consists of two
Staubli RX-130 robots, one carrying
Biclops and the other carrying the laser
tool, as shown in Figure 6.2. These robots
are on a robot transport unit (RTU) and

can be moved along the track. An accurate

calibration of the RTU system has been ~ Figure 6.2. Workeell with two Staubli RX-130
robots on the RTU and laser point projected onto

done which gives the transformation from the wall .

the base of one robot to the other, measured experimentally to be within 1mm. The laser

pointer aims at an arbitrary stationary location in the workspace. The robot carrying

Biclops moves through a sequence of locations to exercise all of the degrees of freedom

on the camera and PTUs. At each programmed location, the cameras on Biclops capture

an image.

6.4.3. Image Acquisition and Processing

The cameras on Biclops can be programmed for specific values of exposure time.
Since the laser spot is quite bright relative to the other parts of the scene, a short exposure
time ensures capturing only that spot. We assume that there are no other high intensity
light sources in the workspace. This makes it very easy to process the images quickly to

determine the location of the laser point in the images.
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6.4.4. Procedure

The number of constraints required by the Levenberg-Marquardt algorithm to
converge to a good model is usually five times the number of parameters in the model.
Consequently, we used 60, 2D image points, which is equivalent to 120 constraints. Since
the positions of the robot and values of the pan-tilt mechanism are under computer
control, it is easy to ensure that each variable is exercised from minimum to maximum
values. This persistent excitation prevents ill-conditioned matrices that result in poor
models. The algorithm for the calibration procedure is as follows:

1) A laser pointer is aimed at an arbitrary location.

2) Random pan, tilt and TCF position and orientations are computed. This set
is reduced to 60 positions, where the laser point is in the field of view of
both cameras.

3) Biclops is moved by the robot to each of the set of positions and images of
the laser point are captured.

4) These images are processed to determine the 2D coordinates of the laser
point.

5) Once the data are collected for all positions the minimization routine

(Levenberg-Marquardt) is used to determine the calibration parameters.

6.4.5. Results

Calibration of the pan-tilt cameras on Biclops requires only one unknown point to
determine the values of the model parameters. Ideally, the same values of the model

parameters should be obtained regardless of the location of the unknown point. In this
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section we repeat the calibration procedure of using different unknown points to measure

the difference between the models obtained.

Table 6.1 shows the

Table 6.1. Calibration Parameters

Trial 1 Trial 11

19 parameter values for Point (500, -3198, 1368) | Point (700, -2148, 1254)

Parameters Left Right Left Right
. tx (mm) 1114615 | -80.7387 | 1113205 | -80.0354
each camera along with the [y (mm) 260.2324 | 122.6854 260.35 | 121.9943
tz (mm) 2217315 | 2309312 22137 | 2302173
obtained coordinates of the | 0x (deg) 0.0592 0.1125 0.0761 0.0925
Oy (deg) 20.0854 | 02831 |  0.0732 |  -0.2478
: 0z (deg) 457232 | 455747 | 459421 | 45.0732
unknown  stationary 3D - (deg) 90.2854 | 90.3832 | 90.5531 | 90.2987
. . . al (mm) 89323 | -9.5688 |  9.0615 | -9.8233
point in two different trials g7 (geo) 88.1076 | 86.7735 | 87.9864 | 86.1378
dI (mm) 9.8212 | 10.1115 95616 | 10.4156
using different unknown 3D | a2 (deg) 89.9718 90.2965 90.0515 90.3193
a2 (mm) 541533 | 44.8755 | 543460 | 44.8043
points. 02 (deg) 290.0723 | -90.6572 | 90.1289 | -90.0667
d2 (mm) 427024 | 279636 | 42.5957 | 275537
L . f (mm) 122565 | 11.9414 | 1217111 | 11.9871
An initial estimate of /i) 322.4034 | 333.5779 323.10 | 334.1599
v0 (pxls) 260.584 | 2643231 | 259.6133 | 265.1217
the  parameters  was | px (pxls/mm) | 101.0467 | 1014207 | 100.9734 | 101.8278
py (pxls /mm) | 101.0243 | 100.2475 | 100.9958 | 100.0450
3D-Y (mm) | -3197.035 | 3196214 | -2148.014 | -2147.092
3D-Z (mm) 1368.093 | 1367215 | 1254.032 | 1253.256

designed” dimensions of the

Biclops pan-tilt system. The Levenberg-Marquardt nonlinear minimization routine was
used on the calibration data to compute values for the parameters that minimize the
projection error. The model parameter values obtained from the two different unknown
3D points were within acceptable limits, as shown in Table 6.1. For Trial 1, the
“unknown” point was measured at (500, -3198, 1368). The computed values for the left
and right cameras, the last three parameters in the model, show very small errors.
Similarly, for Trial II, where the “unknown” point was measured to be (700, -2148,
1254), the last three parameters in the model also show small error, certainly acceptable

from the standpoint of grasping an object.
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calibration  process
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Figure 6.3 and Figure Eight oy
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a 1 pixel error creates

an error of 3 mm. The time required for the complete calibration procedure is limited by
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the speed of the motion of the robot and PTUs. The procedure takes about three minutes
to run. This compares favorably with the 20 to 30 minutes required for our previous
calibration procedure that used a multi-point calibration grid. We are unaware of
published calibration times for alternative approaches. Calibration using a grid requires
more complex image processing and human involvement to verify the correctness of the
corresponding image point locations; these problems were eliminated completely in the

present method.

6.5. Conclusions
A novel method is developed to calibrate a pair of cameras mounted on PTUs

where a pair of cameras analyzes images from a single fixed point in space. The
correspondence problem has been eliminated completely, and image processing has been
simplified to finding the only bright dot in an image.

A complete model without any assumptions about the PTU geometry is
considered. The present method does not require either an extensive set (or any, for that
matter) of known calibration points in the workspace or an expensive routine to make the
image features correspondences.

A single unknown stationary 3D point in the workspace, designated by
aiming a laser pointer at some surface in the workspace, is sufficient to derive the vision
system model parameters. The values of robot location, pan, and tilt can be generated
automatically using inverse kinematics (with initial approximation of the parameters) so

that the algorithm can run unattended whenever needed.
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Chapter 7. IDI-Points

7.1. Introduction

In this chapter we introduce the various image processing functions to find the
low level features in images like the edges, corners and lines. A new image feature called
Indirectly Determined Intersection Point (IDI) is presented. The various low level image
processing needed to locate these IDI points in the image is presented. The geometrical
and image properties of IDI points are presented. It is also shown how these points are
less sensitive to image noise as compared to the traditional corners in an image. Various

experiments are presented to prove this concept.

7.2.  Sum of Squared Difference

It is often required to match two image regions to see how similar they look. A
measure of similarity is defined where each pixel is compared with its corresponding one
to see how different it is. This method is called Sum of Squared Difference (SSD). For an
image patch of size (2W+1, 2H+1) at (u, v) and at the patch shifted to (u+x, vty) is

defined as

H

S(x,y)= _ZV:‘V (I(u,v)—l(u+x,v+y))2 (7.1)

-H

7.3. Linear Filtering

Filtering is an operation on the digital image producing a new image. Consider a
digital image,(x,y)Vxe[0,W),y€[0,H), now applying a function on the image
results in another image [ = G([ (x, y)) the operation ‘G’ is called the filter. A filter can

be usually any kind of operation resulting in any size of the image (may not be same as

the original). A linear filter is a filter which uses only linear operations on the image thus
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the filter of a linear combination of images will be equal to the same linear combination
of the individual images filtered first. Let I; and I, be two images and G be a linear
transform. Then for any two constants a and b, the linear filter ‘G’ satisfies the following

equation

G(a]1 (x,y)+bl2 (x,y)) =aG (Il (x,y))+bG(]2 (x,y)) (7.2)

7.4. Convolution

Convolution is a linear filter. The resulting image pixels are a linear combination
of the image pixels in its neighborhood. An array of the weights is chosen to apply on the
neighborhood pixels of each pixel. This array of weights is called as the kernel and they
are kept same throughout the operation. The resulting image is a new array with a
weighted sum of the neighborhood pixel values. Convolution is shift-invariant - meaning
that the value of the output depends on the pattern in an image neighborhood, rather than
the position of the neighborhood. The convolution operation can be represented as

a b

Ic(x,y):K*I:i;;)K(i,j)I(x—i,y—j) (7.3)
where K is the kernel of size (2a+1,2b+1). The edges of the image are handled specially

by either zero padding or mirroring the inner pixels, or ignoring the edge pixels all

together to output an image of size (W-2a, H-2b).

7.5. Smoothing or Blurring (Low Pass Filter)

A digital image is usually accompanied with noise due to either the imaging
device itself or the image capturing method of the device. This noise needs to be removed
by a smoothing operation. Smoothing or Blurring uses a smoothing kernel and convolves

the image with it. It is also referred to as a low pass filter since effectively it filters out the
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high frequency noise and retains the low frequencies. Simple blurring uses a kernel with
all same weights. Gaussian blurring uses Gaussian kernel with the weights given by a

Gaussian distribution

G(x,y)= e 2 (7.4)

270

where o is the standard deviation of the distribution. The kernel size depends on the

standard deviation. The amount of blurring is depends on the kernel size and values.

7.6. Edge Detection (High Pass Filter)

Assuming that objects in the scene are approximately uniform in intensity the
edges in images are the pixels that separate one area from another. They are defined by
the pixels where there are discontinuities. It is also referred to as high pass filter since it
only retains the higher frequency edges and filters out the low frequencies. Since noise
can be present in the images and can pass through the edge detection process, it is
essential to remove the noise in the image before edge detection. Images are usually
almost always smoothed using a Gaussian to reduce the noise.

There are many methods for edge detection, but most of them can be grouped into
two categories, derivative based and zero-crossing based. The derivative based methods
detect edges by first computing a measure of edge strength, usually a first-order
derivative expression such as the gradient magnitude, and then searching for local
maxima of the gradient magnitude in the gradient direction. The zero crossing based
methods search for zero crossings in a second order derivative based expressions of the
image. The expressions may consist of Laplacian or a non linear differential expression.

The gradient of the image at each pixel is a 2D vector with the components given

by the derivatives in the horizontal and vertical directions. The gradient vector is a vector
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along which there is a maximum change in intensity. Its magnitude is the change in that

direction.

7.6.1. Roberts

Roberts edge detection is one of the earliest edge detection algorithms. The edges
are computed by using two diagonal gradient approximations. The operation is

represented as two convolutions with 2x2 kernels.

1 0

D { } (79
0 -1
0 1

D, [ } (79
-1 0

And the edge strength is computed as the sum of the absolute values of the gradients, the
edges correspond to the local maximum of the edge strength.

E =|D/|+|D,| (7.7)

7.6.2. Prewitt Edge Detection

Prewitt edge detection [67] uses a set of (in general 8) convolution kernels each of
which is sensitive to edges in a different orientation, and convolves the image with them.
For each pixel the local edge gradient magnitude is estimated with the maximum
response of all 8 kernels at this pixel location. The orientation is given by the kernel
which gave maximum response. This edge detection method is also called edge template
matching, because a set of edge templates i1s matched to the image, each representing an

edge in a certain orientation. The kernel for positive x direction is given by

88



G=[-1 =21 (7.8)
-1 1 1
7.6.3. Sobel

The Sobel operator is a discrete differentiation operator, approximating the
gradient of the image. It uses two 3x3 kernels which are convolved with the original

image to calculate approximations of the horizontal (Gy) and vertical (Gy) derivatives.

1 0 -1 1
G.=2 0 =2|=2|[1 0 -1] (7.9)
1 0 -1 1

1 2 1 1
G,={0 0 0= 0|1 2 1] (7.10)
-1 =2 -1 |-1

Sobel edge detection is based on convolving the image with these kernels. The
kernels are small, separable, and integer valued and is therefore relatively inexpensive in
terms of computations. The kernels are composed of the Gaussian and the gradient terms
as can be seen in the separation in x and y direction. The edge strength and the direction

can be computed as

G=,G’+G/} (7.11)

G
©® = arctan (Eyj (7.12)

pY
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7.6.4. Canny

The Canny method [68] finds edges by looking for local maxima of the gradient
of image. The gradient is calculated using the derivative of a Gaussian filter. The method
uses two thresholds, to detect strong and weak edges, and includes the weak edges in the
output only if they are connected to strong edges. This method is therefore less likely
than the others to be fooled by noise, and more likely to detect true weak edges. Non

maximum gradient intensity is suppressed in the direction normal to the edge direction.

7.7. Line Detection
Edges in the images indicate the discontinuities which often correspond to the

objects’ boundaries. For many tasks, it becomes a fundamental problem to detect object
boundaries which are often straight lines. Edge detection is the preliminary process which
detects the discontinuous pixels. But due to noise we often see more edges than necessary
or sometimes the edge pixels can be missing in between line segments. Line detection is

the process of finding and fitting lines to the edge data.

7.7.1. Hough Transforms

Hough transforms [70] were developed by Paul Hough to detect straight lines in
edge images. It is a voting method where each edge pixel votes the various possible lines
that pass through the pixel point. It is difficult to consider all infinite lines that pass
through a point so the line parameter space is discretized. Consider a straight line with

can be represented by

Y=mX+c (7.13)

where m is the slope and c is the y-intercept. Every line can be represented by a

point (m, c¢) in the parameter space. So each edge in the image used to vote all the
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possible lines through point. Since ‘m’ ranges from 0 to o for horizontal to vertical lines
hence it is difficult to digitize this parameter space. To avoid this problem Duda and Hart
[71] introduced an alternate representation of the line as
X cos(@)+Ysin(@)=r (7.14)
where r is the perpendicular distance from the origin to the line and 0 is the angle the
perpendicular line makes with x-axis. Parameters space (r, 0) is digitized where 0 ranges
from 0 to 180 and r depends on the image size. Lines are found with Hough transform by
first scanning the edge image and determining all the possible lines that pass through the
pixel. These lines are points in the parameter space which are voted accordingly. After all
the edges finish voting the parameter space image is then scanned for peaks which should
correspond to the lines in the original image. Each peak is used and its neighborhood is
suppressed to avoid multiple lines corresponding to the same line in the original image
but with sight change. O'Gorman and Clowes suggested that the local gradient of the
image intensity can be used to control the accumulation process. The gradient direction is
often found as a side effect when computing the gradient intensity magnitude. If a given
image point (x,)) lies on a line, then the local direction of the gradient gives the 6
parameter corresponding to the line, and » can be computed using ( 7.14). Since the
estimated gradient direction is less accurate, a range of 6 (£25°) is used and r for
corresponding 6 is computed and voted. This reduces the computation time by reducing
the number of useless votes, thus enhancing the visibility of the spikes corresponding to
real lines in the image.

Stephens [72] developed The Probabilistic Hough Transform where a model of

feature error characteristics is proposed combining normally distributed measurement
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errors with uniformly distributed correspondence errors. The Probabilistic Hough
Transform H(y) is defined as the log of the probability density function (PDF) of the

output parameters, given all available input features given by
H(3)=In(f(3|%.%,%,)) (7.15)
where X,(x,y) is the input feature, i.e., is the edge andy, (r,«r)is a specific point in

Hough space.

Using Bayes theorem we get

H(;):illn(f(xi|y)))+1n(fo)+c (7.16)

The conditional individual feature probability is calculated using

sy U=p) p &£ _ ¢
f(x’4|y)_27zrmaX +27r0'p = 2p° (7.17)

where ¢ = X cos(f)+ Y sin(@)—r (the lateral error), and ¢ =6 —« (the orientation error)

and p is the probability of individual point being on a line and ¢ and p are the standard
deviations of the lateral and orientation errors. Thus the Hough accumulation value is
computed by this individual conditional probability function. The peaks in the Hough
transform are used to locate the lines in an image. These peaks are used to search on the
corresponding line in the image to find the line segments. The different parameters are
the tolerance to the gaps in segments and the minimum length of the segments that are

required.

7.7.2. Radon Transforms (Fan Transform)

The Radon transform is a projection of a two-dimensional function /(x,y) into a

set of line integrals. It is equivalent to rotating the image by the given angle and taking its
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projection vertically on to the new x-axis for all valid regions of the image. The Radon

transform at a particular angle (0) is a line integral of the function perpendicular to that

angle given by
R,(x)= _[ I(x' cos(0)—y'sin(@),x'sin(6)+ ' cos(ﬁ))dy’ (7.18)
where

x' cos(0) sin(0) |[x
A= (7.19)

y —sin(@) cos(6) ||y
Each projection angle produces a 1D vector. The Radon projections for angles (0-
180) form a Radon image. One property of the Radon transform is that the peaks in the
Radon image correspond to the lines in the original image. The Radon transformed image

is thresholded to locate peaks and the same kind of local suppression of non maxima is

done as in Hough transforms to locate the individual lines.

7.8. Corner Detection
For various algorithms it is important to locate point features in the images which

are also referred to as corners which are small, two dimensional points of interest. The
most unique points in the images are the corners. A corner is defined as a point where
two or more edges meet, in other words corners are points where there are more than one
image gradient. These often arise as the result of geometric discontinuities, such as the
corners of real world objects, but they may also arise from small patches of texture. Most
algorithms are capable of detecting both kinds of points of interest. The corners should
have variation in two directions to locate them. The corner detection algorithms proceed

to first detect corner strength at each image point. The corner strength is then thresholded
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to obtain initial locations of the corners. Then post processing is usually done to localize

these points to sub pixel accuracy and while rejecting the non maximum local corners.

7.8.1. Edge Contour Based

At corners of regions, the edge boundary changes direction rapidly. Several
methods were developed which segment the image first and locate the edge chains and
analyze their properties. Some techniques involve parameterizing edges with cubic
splines. Langridge [73] and Medioni [74] determine edges by looking for fast changes in
the spline first derivative. They locate points where large deviations of the spline occur
from the control point. The Curvature Scale Space [75] detector computes the radius of
curvature of the contour and detects maxima of curvature where there is a large
difference between maxima and the closest minima. These methods rely on segmentation
and contour generation method. Haralick and Shapiro [76] detect edgels and use these as
candidate points for corners. They fit a line to the nearby edges of a point and look for its
intersection with a circle around the point. Corners are found by thresholding the image
gradient directions, since the edge direction is changes rapidly near them. They suggest
using either a straight line or a cubic polynomial for the line fitting. Cooper [77] uses the
idea that along an edge the image looks similar. They first finds edges and their directions
then take a patch on an edge and compare it to the patches on either side in the direction
of the local contour to detect self similarity. Corners are detected where large deviation
occurs. Kitchen and Rosenfeld [78] look for rapid changes in the edge direction by
measuring the derivative of the gradient direction along an edge, multiplied by the

magnitude of the gradient. The resulting corner response is given by
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_ 8.8,78,8.728.8,

C 2 2
&:8,

(7.20)

where g is the image or a 2D polynomial fitted locally to the image. And the subscript

indicates the derivative in that direction. A quadratic polynomial gave good results.

7.8.2. Wang and Brady

Wang and Brady [79] propose a detector which searches for large total surface
curvature on an image edge. The algorithm searches for high curvature. To ensure the
points lie on an edge the gradient has to be large, so the points are also thresholded on
gradient magnitude. A further restriction that corners should lie on the steepest part of the

edge. The edge strength derived is given by

2 24/
C=vI-S|v’I| (7.21)
where S is the applied threshold. This method is very good for 90° corners and it

performs poorly for ‘T’ corners.

7.8.3. Moravec

A corner is defined to be a point with low self-similarity. Moravec [80] proposed
a feature detector which measures self similarity of an image by taking the sum of square
difference (SSD) between a patch centered on the pixel and nearby, largely overlapping
patches. The similarity is measured by taking the sum of squared differences (SSD)
between the two patches. A lower number indicates more similarity. Pixels in a region of
uniform intensity will have similar nearby patches. Pixel on an edge will have patches
similar along the edge and different normal to the edge. Pixels on a feature point will

have varying nearby patches in all directions.
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The corner strength(C) is defined as the minimum SSD between the patch and its
neighbors. A local maxima of the corner strength is used to locate the corners. One of the
main problems with this operator is that it is not isotropic, if an edge is present that is not

in the direction of the neighbors, it is less likely to be detected.

7.8.4. Harris

Harris [81] built upon Moravec's corner detector by computing an approximation
to the second derivative of the SSD with respect to the shift. This method is
computationally more efficient and can be made isotropic. The approximate second
derivative of the SSD with respect to the shift is given by

Poid
H=| .. (7.22)

i 7
where the gradients are the average values in a circular patch around the point making it

isotropic.

C, = |H|—k(tmce(H))2 (7.23)
where k is a constant. This is large if both eigenvalues are large, and it avoids explicit
computation of the eigenvalues. Thresholding and non-maximal suppression is then used
on the corner strength image. Shi and Tomasi [82] suggested using the smallest
eigenvalue of H as the corner strength function.

Zheng et al. [83] perform an analysis of the computation of H, and found some
suitable approximations which allowed them to compute only two smoothed images,
instead of the three previously required. They also derive a function k(x, y) to replace

constant k in the Harris corner strength in order to improve detection and stability. They
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also showed that computation of the local SSD roughly measures the rate of change of

edge direction. The resulting response function is

x Ty yoxx

C=L1,+II, ~k(x.y)(I}+1}) (7.24)

7.8.5. Scale Space Based

An alternative approach to find corners is to use the Laplacian of the image, more
precisely the Laplacian of Gaussian (LoG). Since the LoG kernel is symmetric, this is
effectively performing feature mapping. Gaussian variance determines the size (or scale)
of features of interest. These locations of maxima of the LoG over different scales are
stable. Lowe [84] obtains scale invariance by convolving the image with a Difference of
Gaussians (DoG) kernel at various scales, the maximum of DoG in both space and scale
are retained as corner locations. DoG is used since it is a good approximation for LoG
and faster to compute. The DoG kernel also responds strongly to edges. To reject edge
like features, the eigenvalues of the Hessian of the image are computed at each scale and
points are rejected with large ratio of the eigenvalues.

Harris-Laplace [85] features are detected using a similar approach. An image
pyramid is built with 1.2 as scale and features are detected by computing Cy at each layer

of the pyramid. Features are selected if they are a local maximum of Cy in the image.

7.8.6. SUSAN

Another class of corner detectors is which observe a small patch at a point to look
for corner like shape. Smith [86] used this idea to compute the corner strength by looking
at the proportion of pixels near to a center, or nucleus, which are very different from the

nucleus. They introduced USAN (the univalue segment assimilating nucleus) which
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computes a weighted sum of the number of pixels inside a disc whose intensity is within
some threshold of the center value. Pixels closer in intensity to the nucleus receive a
higher weighting. A low value for the USAN indicates a two dimensional feature, since
the center pixel is very different from most of its surroundings. SUSAN (Smallest

USAN) is a local minima of the USAN which are the likely corner points.

7.8.7. Trajkovic and Hedley

Trajkovic and Hedley [87] proposed that a patch is not self similar if pixels
generally look different from the center of the patch. This is measured by considering a

circle. The pixel value at the center of the circle f,, and the opposite points f, f,, on the

diameter are used to compute the corner response as
. 2 2
C:mm((fpl—fc) +(fp2—fc)) (7.25)

7.9. Curve detection

7.9.1. Active Contour Models

Kass, Witkin and Terzopoulos [42] developed Active Contour Models which
provide a solution to the image processing problem of determining the silhouette. Active
Contour Models, known colloquially as “snakes,” [42]-[45] are energy-minimizing
curves that deform to fit image features. A snake is a list of control points that move and
reach the feature of interest (for example the edge boundary of the object) in the image.
The number of control points can be fixed or varied dynamically. The snake control
points move in such a manner that the total energy reaches a minimum. The total energy
of the snake is the combined energy of all the control points. The energy function of each

point is composed of gradients of the three types of forces:
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Internal forces: These forces give the model tension and stiffness which eliminate

discontinuities in the contour.

External forces: External constraints come from high-level sources such as human

operators or automatic initialization procedures. The aim of these kinds of constraints is

to draw the contour towards some desired features in the images (e.g., corner points).

Image forces: Image energy is used to drive the model towards salient features

such as light and dark regions, edges and terminations.

The internal energy
function is intended to
enforce a shape on the
deformable contour and to
maintain a constant distance
between the points in the
contour. Additional terms can
be added to influence the
motion of the contour. The
external energy function

attracts the deformable
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Figure 7.1. Active Contour Models.

contour to interesting features, such as object boundaries, in an image. Any energy

expression that accomplishes this attraction can be considered for use. The image

gradient energy function attracts the deformable contour to edges in the image. An energy

expression proportional to the gradient magnitude will attract the contour to any edge.

Active contour models are a simple solution to low level silhouette detection. Figure 7.1
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shows the active contour model. The snake keeps moving towards the target as the

energy function is minimized.

7.10. Indirectly Determined Intersection (IDI) Points
In this section we introduce new image features called IDI points, which is part of

the contribution of this dissertation. We develop an error minimization routine to
precisely locate line segments in the images. IDI points are the intersections of two or
more such lines.

For determining the 3D structure of an object it is necessary to find the actual (or
virtual) 3D points or lines fixed to the objects. These 3D points and lines are viewed in
the images and we are thus interested in locating these features. Points are 2D features
there are 2 DOF (the x and y position) for locating these points in the image. The image
points determined by various corner or feature point detection methods are basically
image points which have been found by various image processing functions. If the
corners are detected by analyzing the local image patches then we also find points which
locally look like corners but do not necessarily correspond to the 3D fixed points with
respect to the object. We are not really interested in these points. The corner points found
may also be affected by the noise in the image. All points found by various corner
detection processes do not necessarily correspond to the object fixed 3D points. On the
other hand lines have 2DOF (the position and the orientation). It is less error prone to
localize these lines to the object edges than the points. This is the reason we have
introduced the IDI points.

Definition: Error Minimized and Precisely Located (EMPL) Lines
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EMPL lines are lines in the image which have been previously located and then a
minimization procedure is applied to reduce an error function and adjust their location
precisely.

The EMPL lines are less affected by noise by definition, since there is a
minimization procedure to localize the lines based on various edge points on the lines.
We develop a routine to precisely locate these individual line segments.

Definition: - Indirectly determined Intersection points

IDI points are 2D image points obtained by intersection of a pair of lines, EMPL
lines, or an EMPL line and a detected curve. The lines are previously found by
processing the edges in the image and minimizing the errors. The curves are found by
active contour models.

Since IDI points are defined as the intersection of a pair EMPL lines, more often
than not these IDI points correspond to the 3D object points. Various methods are
introduced in following chapter to reject the points which do not correspond to the real

object fixed points.

7.11. Locating EMPL Lines
The first step in finding the IDI points is to find EMPL lines. EMPL lines are

found by first detecting the edges in the image. We use the Canny edge detection which
finds the edges by using the derivative of a Gaussian and the non maximum values in the
direction of the gradient within a neighborhood of the edgels are suppressed to thin the
edges. Figure 7.2 shows a digital image of a metal object and canny edges are found as

shown in the Figure 7.3.
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Hough transforms are
used to locate the straight
lines in the image. The
straight lines segments are
found and localized using the
Hough transform parameter
map. Given the edge strength
of an image I and the list of

line segments produced by

4
Figure 7.2. A digital image of a metal object.

Hough transform, each of these lines are localized further by using the raw image edge

data (the gradient magnitude and direction). The Derivative of Gaussian of the image is

used and it is adaptively
thresholded in the local
region of the found line to
reject all points with values
which are lower than the
determined threshold. The
values of the gradient which
is above the threshold are
retained along with its

gradient direction.
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A minimization procedure is applied to each line segment in the raw edge data
image. The error function is sum of the least squares of the orientational errors and
positional errors of the points in the image within a region (bounding box) of the given
line as shown in Figure 7.4. If all the points in the bounding box contribute equally to the
error function, it will be affected by noise, so only a set of selected points which are

above a threshold are used. A "

restriction on the gradient ApprunimtLioo

Location
direction is also applied.
) . . Ori i
Points with large gradient . resihen
Bounding Box
deviations are not used as
they correspond to noise..
The error for each pixel is Line position
Talmags r Line
. . Orizin Crrisptation
also weighted according to I
their gradient magnitude to Figure 7.4. Bounding box for a line in consideration.

allow the line to correctly adjust to the desired position. The error function is represented

as

|[E|((x cos(0) + Y sin@) - r) + (0-a)’)V(L.|> T,

60— 1,
. a|<T,

X,y

(7.26)
ov\fe\ <T,

0-a|>T,
where (x, y) is the image point and 7, is its gradient magnitude and @ is its direction. A

local coordinate system (i, j) is chosen x-axis is along the line and y-axis is in the normal

direction. 7, is a constant threshold applied to the angle error. T is the threshold which is

computed locally in the region around the whole line using the mean as
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ZZ‘I (.7) ‘ (7.27)

le

where L is the length of the line and ¢ is a constant width in consideration on both sides

of the line, N is the total number of such image points which belong to the region which

is approximately equal to N = 2(5 +1)L and «a is a constant. The threshold could also

be computed by using the peak of the gradient as

T'=«a Maxéé](‘l l]

i=[0,L]

) (7.28)

The threshold used in ( 7.26) can also be a variable along the line segment
computed locally in a small region dividing the line into small segment locally given by
any of the following equations

ZZ‘I p+i.j),| (7.29)

16]

T(p)za [gjyax”](‘l p+i, ]) ‘) (7.30)
where ¢is a constant length of the segment on two sides of the point along the line in
consideration and p is a point along the line.

The thresholds computed by these two methods did not have much difference
though one is a function along the length of the line the other is a constant for the whole

line segment for smaller line segments. For longer line segments it is better to choose the

variable threshold.
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The total error
computed by ( 7.26) for each
point within the bounding
rectangle around the line is
used. This error function is
minimized with respect to the
line parameters. The Figure

7.5 shows the located edge

segments in an image. The
IDI points are found by finding the intersection points of all possible pair of EMPL lines

computed.

7.12. Comparison of IDI points and Corners

7.12.1.Location Accuracy

The accuracy of the IDI points depend on the accuracy of the EMPL lines since
the EMPL lines are localized in the image using the image gradients. The accuracy of the
lines are dependent on the length of the segments used since using longer line segments
gives us more accurate localization. Thus the IDI points are more accurate as compared

to the corners which only use very small image patch around to localize.

7.12.2.Detection VVolume

Corner detection methods usually depend on the very local image gradients. This

dependency often affects the volume of feature points found. The corner detection
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methods also detect points where there might be lighting variance. These points detected

are often difficult to differentiate from the actual ones of interest.

7.13. Experiments

7.13.1.Single Line Projection

An object with straight edges is placed on a rotary table at various locations.
Biclops is used to take images of this object from various locations. We only concentrate
on a single visible edge for this experiment. The images are processed to find the edges in
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Figure 7.6. Parameter errors of EMPL lines of various lengths.

the image and the edge images are used to locate various line segments in the image.
For this experiment the corresponding line segment to the edge in consideration is
picked manually. The parameters of the line segment extracted are compared to the actual

parameters obtained by the projection of the 3D object edge in to the image and
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correcting it manually. By correcting the edge in the image manually we are avoiding the
errors due to camera locations and object locations. Thus the only errors are due to the
noise in images and their acquisition. The errors in the parameters are noted down. The
two parameters for each line used are the (r, 8). Apart from this the length of the line
segment is also known.

The experiment is repeated with various lengths of edges. The errors in the

parameters are plotted as shown in Figure 7.6.
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Figure 7.7. Orientation errors (deg) of EMPL lines plotted against length (pix) of the segments.

The positional errors of the lines segments are plotted against the lengths of the
line segments as shown in Figure 7.7. The orientational errors of the line segments are

plotted against the length of the line segments as shown in Figure 7.8.
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It can be seen clearly that the errors depend on the length of the line segments.

The error decreases as the segments get larger up to a certain order. The errors are not

affected too much for larger length segments. This experiment proves that by utilizing

more image information, i.e., longer length segments, the errors in line extraction are
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Figure 7.8. Positional error (pix) of EMPL lines plotted against length (pix) of the segments.

reduced.

7.13.2. Comparison: Corners vs. IDI Points

Corner detectors are not usually very robust and often require expert supervision

or large redundancies have to be introduced to prevent the effect of individual errors from

dominating the recognition task. The underlined hypothesis here is that the image noise

has less effect in finding the 3D object points using the IDI points than using the regular

corner points.
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Figure 7.9. Histograms of errors (Pixels) of IDI Points and Corners.
To prove this concept an object with straight edges is placed on a rotary table at a

known location. Biclops is used to take images of this object from various known
locations. The object is placed such that two prominent edges are visible all the time.
Images of this pair of intersecting lines at a known location are captured from various
viewpoints. These lines are projected on to the images and their intersecting points
computed.

The images are processed to find the edges in the image and the edge images are
used to locate various line segments in the image. The two line segments corresponding
to the two edges in consideration are picked manually. The two EMPL lines picked are
used to find their IDI point.

The images are also processed by the Harris corner detection method to find the

corners in the image. The thresholds are selected so as to find the required corners. Sub
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pixel localization is carried out to find the precise locations of these corners. The corners
picked by the algorithm are compared to the desired location and a best match is chosen.

Sometimes the corner in consideration is not detected. In this case the rest of the process
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Figure 7.10. IDI points and Corner Points errors (Pixels).
is ignored.

The Object 3D points and lines are projected into the image by using their known
locations these are corrected manually and used as ground truth corners. The IDI point
and the detected corners are compared to the ground truth corner locations. The corners’
locations in the image usually did not correspond to the IDI points. The experiment is
repeated with various locations of the object.

The histograms of norms of the errors are plotted in Figure 7.9. The image point

errors for both IDI points and corners are plotted in Figure 7.10. It can be clearly seen
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that the IDI points have less errors compared to the localized corners. IDI points gave a
better localization of the points (though these may not necessarily be the image corners).

This experiment proves that points located by intersection of the EMPL lines, i.e.,
the IDI points are less error sensitive as compared to the corners detected by usual
localized image processing methods.

The comparison is done in the number of points found correctly and the number
of the real points of interest missed and the number of points found which do not
correspond to any fixed points on the object. We found that the number of corners found

was large as compared to the IDI points general.

7.14. Conclusion
It is necessary to find image points which more often correspond to object fixed

points than not. So we have introduced the concept of IDI points. This chapter introduced
EMPL lines which are obtained by Hough transforms and then further localized by error
minimization procedure. EMPL lines are used to locate the IDI points in the images.
Experiments prove the concept that IDI points more often correspond to the object fixed

points. Also it is shown empirically that the IDI points are less affected by noise.
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Chapter 8. 3D-Structure Using IDI Points

8.1. Introduction

Many applications, e.g., motion planning, virtual reality, CAD, vehicle
navigation, object recognition, photogrammetry, remote sensing, etc., all require a
geometrical representation of the three dimensional structure of a scene. Inference of 3D
structure of objects in a scene from its 2D projections is a long studied problem. One of
the important methods is to determine the 3D shape of visible objects in a static scene
from images acquired by two or more cameras or a single camera at multiple view points.
The images obtained from numerous viewpoints are processed for various primitives

such as points, lines, curves, planar entities, etc., which are the input to the system.

8.2. 3D Structure

The 3D structure of a scene is a geometrical representation of all the objects in the
scene. The geometrical representation of the scene consists of a set of 3D points and lines
that make up the objects. For the sake of convenience a coordinate system may be
defined with respect to the objects, called object coordinate system. All the object points
and edges or curves in consideration are expressed in this object coordinate system or the

global coordinate system as desired.

8.3. Perspective Projection Modelling

A pinhole model for the cameras is assumed. The pinhole model is described in
detail in Section 1.4. The perspective projection is presented in section 1.5 and the
coordinate systems are shown in Figure 1.2. Considering the projection of a 3D point and

its image projection and using similar triangles we get two following equations
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(%) e T (8.)
(%j ) Zc, /, Z_ (82)

where focal length of the camera is expressed in pixels along u and v axis as f, and

Jf,respectively and given by f /s, and f /sy respectively. Putting the above two

equations in a matrix form we get

Ku f. 0 u, O
kve=l0 f, v, O
K 0 0 1 0

(8.3)

where ‘K’ is the homogenous coordinates scale factor. The above equation transforms a
point in the cameras 3D coordinate system to the image coordinates, i.e., it projects the
point into the image. The transformation matrix used for this purpose is the internal

parameter matrix [K]. The inverse transformation can also be represented as

- ) i

Ve 0
| o KV K" o |[(«U

° %p % 0 K Q{X}C{@T le} (8.4)

0 0 1 0 1

0 0 0 1

—_ N e =

c

Since ‘x’ is an arbitrary constant the above solution is not a unique 3D point, in fact it is a
ray that passes through the camera optical center {0}..

In general we will not be working in the camera 3D coordinate system, there is
always another coordinate system with respect to which we have all the 3D point

locations. So to project the points from that coordinate system to the images we will need
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the transformation matrix between the two coordinate systems, i.e., we will need the
position (translation vector T) and orientation (rotation matrix R) of the camera with
respect to that coordinate system. This transformation is called the external parameter

matrix. The transformation is given by

X Tho Mo N L X
y By Tyn By LY R T ¢
= Xt == X Xt = |P|1X
A K R PR e PV T IR L KRS
i) lo o o 1)1,

The inverse transformation is given by

ol o o

The rotation matrix R is an orthonormal matrix hence its inverse is its transpose. Since

the origin of the camera coordinate system is the camera center we get the camera center

as C=-R'T. Using the camera external parameter matrix the point in the given

coordinate system can be projected in to the image as

ORI A R R RES) (87

Using the inverse camera transformation matrix the camera ray can be expressed in the

given coordinate system as

RT —R'T||K" o.|(«U
X! =|_ _ 3 .
g S ) (5

Breaking down the above equation in to its components clearly shows this is a ray

passing through the camera center
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x c, d,
yt =—R'T+xR'K"'U 3¢, t+k1d, (8.9)
z], c, d,

Thus the cameras project the 3D space onto a 2D image plane as given by ( 8.7). So for
every 3D point that is in the view there is a 2D image point. Considering the inverse
problem for every image point there exist a ray that passes through the point and the

camera optical axis given by ( 8.8).

8.4. Triangulation
Images from a particular camera position and orientation will only give us some

clue about where the 3D points are located. From a single view we cannot judge the
point’s depth as measured from the camera optical axis. We will need more that a single
view for each point that needs to be located in 3D. Two camera views are necessary to
locate a 3D point in a scene.

The process of
locating the 3D points is
1D Peim
called triangulation [88]. The {_ /
triangulation process
involves finding the
directional vectors of the 2D

projection in both cameras

and finding their intersection X

as the required 3D point. In fmage1 Dmage 2

reality the two rays may not Figure 8.1. Triangulation of a 3D point.

intersect at all due to errors from various sources hence a point closest to both lines is
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used. The closest point to both the lines is the midpoint of the common normal. For more
than two rays the goal of triangulation is to find a point lying on all these lines. Since
most of the time the lines accompany errors they do not intersect. So we are looking for a
point which is closest to all the given rays. The closest distance of a point from a line is
its perpendicular distance from the line. A point location is found by minimizing the

perpendicular distance of the point to the given rays.

8.5. Triangulating edges

Consider the two
images of a straight line (L)
from two different views as
shown in Figure 8.2. Let
the equations of the line in

first and second image be

C
__ X5
Tnage 1 " b S
Figure 8.2. Projection of a 3D line in two images.
[8],{U}, =0 (8.10)
[B].{U}, =0 (811)

where [B]=[b b, b,] isthe row vector of the coefficients of the equation of a 2D line

in an image.

Using equation ( 8.7) in ( 8.10) and ( 8.11) we get
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[8],{U}, =0 =[] [P], {x}, =0 (812

o

[8],U}, =0 = [B][PL, (], =0 (819

Thus for two images from two different views (where the views are not
degenerate giving parallel planes) we get two first order equations which in general
represent the two planes in 3D as shown in Figure 8.2 whose intersection is the required
line. Thus by knowing the 2D equations of the projected lines in two images, the 3D

equation of the line can be computed.

8.6. Epipolar Geometry-Fundamental Matrix
Consider the two

images of a point ‘X’ in 3D A 3D Point
from two different views, as
shown in the Figure 8.3. Let
the corresponding points in

the two images be {x}, and

{x}2.

tmage 1 . . v Image 2
(] [F{], =0

Figure 8.3. Projection of a 3D point in two images.
{x}i = [P]i {X} (8.14)
For every point projected in one image, there is an epipolar constraint which
restricts the corresponding point in the other image to lie on a line called epipolar line.
Geometrically the epipolar constraint implies that the 3D point, the projected points in the
images and the centers of the cameras all lie in a plane, as shown in Figure 8.3. Using the

epipolar constraint for corresponding points in different images leads to the relation
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T
{xf, [Fl{x}, =0 (8.15)
where {x}; and {x}; are the corresponding points in two different images and [F] is the

fundamental matrix [14] which is unique for a particular set of images. The fundamental

matrix [14] can be computed from the camera matrices P, P

F =[] PP (8.16)
where P* is the pseudo-inverse of P, [e’]x is the cross product matrix of the epipole in
the second image e’ as shown in the Figure 8.3, the epipole is given projecting the camera
center C of the first camera into the second image as

e'=P'C (8.17)

The camera center ‘C’ is the null vector of the Projection matrix P, given by
PC=0 (8.18)
Thus for every pair of images, there exists a constant fundamental matrix that can

be computed using various linear and nonlinear methods [7], [8], [10], [14], [47].

8.7. Correspondence
As we have seen finding the 3D structure requires more than one view of an

object. Using two views of a point we could compute the 3D location of a point and using
two views of a line we could find the 3D line. The problem seems to be solved but if only
we know which points are projected where in the two images, i.e., we need to know the
corresponding points in the images. For humans it is often very easy to locate
corresponding points in various images though the views are radically different. For most
of the applications like photogrammetry, image registration etc, it is usually fine to allow
the humans to intervene and provide this necessary information. In this work we

investigate automatic methods to find the corresponding points. Some applications
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usually use views of objects that are close to each other so that the images look similar.
They use the sum of square differences (SSD) to match the image patches around the

points.

8.8. Automatic Bundle Correspondence
One of the

contributions of this
dissertation is to develop an

algorithm  for  automatic

correspondence of the points

and lines in two images. We |

developed a bundle

correspondence  algorithm

Figure 8.4. Correspondence of Lines and Intersection points.
which considers all possible matches and uses the topology and intersection constraints to
reject or confirm the potential matches. All the points and lines are considered in a bundle
to find the various corresponding entities.

The problem is put together as follows, given two images and various EMPL lines
and their IDI points, the points and lines in each image need to be paired with the points
and lines in the other image. In each image we have a list of IDI points and a list of
EMPL lines and the intersection information is stored, i.e., which EMPL lines intersect at
which IDI points. We use the fundamental matrix for the correspondence. The epipolar

lines for the IDI points in one image are computed in the second image and vice versa. If

two IDI points correspond then epipolar lines of those points should pass through the
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corresponding points. We use this information to match up the IDI points and the EMPL
lines.

The points in one image are used to find the epipolar lines in the other image.
Now for each point we also have the list of lines passing through it (intersecting at this
point). The other image is investigated for various lines that intersect the epipolar line.
These lines are potential matches to the lines that pass through the point. Also the
intersecting points of the epipolar line with all the lines in the other image are potential
matches to the point. So for one point and the lines that intersect at this point we have the
list of matches.

Consider a  cube
projected into two images as
shown in  Figure 8.5.
Consider the point X

projected into first image as

x1. Now lines L;, L, and Ls C

intersect at this  point.

Considering the two IDI
points on the line L,, the Figure 8.5. Using epipolar constraint for correspondence.

corresponding epipolar lines for two points are shown. Now the various points where
these corresponding epipolar lines intersect the lines in the other image are potential
matches to the points. Considering the topology there is a line connecting the two points
in image. The epipolar line of bottom point intersects with three lines in the other image.

The epipolar line of top point intersects with 5 lines (of which 3 are same). Considering
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that the three lines L;, L, and L; intersect at a single point the corresponding point to X is
immediately known. Now only does one line exists that intersects the two epipolar lines.
This line is the line corresponding to L,. And the two intersecting points of the
corresponding lines with the epipolar line are the corresponding points to the top and
bottom points. The process is also repeated by considering the points and lines in second
image and the epipolar lines in the first image. Ambiguities are resolved by considering
all the points and lines from both images. Thus using various topological and intersecting
constrains the correspondence is established. There might be some points and lines which
do not have corresponding lines and points in the other image. Sometimes we introduce

more IDI points in an image when breaking a line into two.

8.8.1. Summary of Bundle Correspondence

e Make a list of EMPL lines and IDI points

e Save list of EMPL lines passing through an IDI point

e Save a list of IDI points on an EMPL line.

e Use calibration to find the Fundamental Matrix

e Find epipolar lines in the one image of all the IDI points in another image and
vice versa

e Find the intersections of the extended EMPL lines and the epipolar lines. This
also gives us the information where this intersection is with respect the EMPL
line segment whether inside the end points or whether to outer side of one end
point. Store this information from both images.

e Start applying the constraints available with some tolerance to image noise.

e Go through each IDI point in one image
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The intersection of extended EMPL lines and the epipolar lines of the IDI point
are stored as possible matches to the IDI point. And store these EMPL lines as
possible matches to the EMPL lines passing through the IDI point in first image.
Make the possible matches list of all the IDI points and all the EMPL lines in one
image to the other and vice versa.

Go through the list of EMPL lines in one image and the list of IDI points on it. To
find more information about its corresponding EMPL line, the list of IDI points
on this EMPL line is used. Since this line is passing through these IDI points it
should intersect the epipolar lines of those points in the other image. Using this
information the possible matches are reduced.

Same step as above but it is done from image two to image one.

Go through the list of EMPL lines in image 1. We know the list of IDI points on
this line. Use these points to locate their corresponding epipolar lines in the other
image.

Thus considering the chains of IDI points and the EMPL lines the topology is

utilized to come up with the final matches of corresponding entities.

8.8.2. Practical Issues

Non Unique Point

Sometimes in a real scene, more than two edges (say three) intersect at a point.

Due to image noise when considering a pair of EMPL out of these (three edges) they

intersect at some location, which is not often the same as the other pair. In other words all

the EMPL lines do not intersect at a unique point. We allow a tolerance to the IDI points

to declare them as unique. This tolerance in distance is in fact the part of the topology,
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i.e., even if we make two points instead of one unique point the distance between the two
points in the image is very small thus the topology information will automatically solve
this issue. They could in reality be two different points but seen as one or are very close
to each other. Again this is taken care by the topology.

EMPL Line segment length

In practice when finding EMPL lines we may have shorter segments (or two
broken lines). To solve this problem the EMPL lines found are kept with the confirmed
lengths and the unconfirmed extensions in length. These extended line segments are used
to intersect the epipolar lines instead of the confirmed lengths. The intersection points
(with the epipolar lines) too far on the extension are trusted less.

The extension tolerance in the segments is also used to join segments too close
and confirm to the topology.

False Augmented EMPL segment

Sometimes due to the image view, two unique edges of an object so happens that
they line up to show as one single line. The topology of the intersection with other lines
shows that the line should be broken into two pieces to give a better match to their
counterparts in the other image.

False Intersection

Sometimes it seems that two lines are intersecting in an image but truly they
might not. These false matches if made initially will be corrected by using the constraints
from adjacent points and lines. Consider two lines which do not intersect in 3D space.

These lines may be projected as intersected lines in a particular image. When the epipolar
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line to the intersecting point is investigated in the other image, the lines do not intersect

on this epipolar line at the same location.

8.9. Bundle Adjustment

Once the correspondence is established for a point or a line in two or more images
the triangulation methods for points and lines gives us the 3D points and lines. In other

words the models of the

' Predicied ling in third imag
objects are found. L (3D Ling ) B‘S = B i
133 Observed line in third image

The errors in the
internal and external camera

parameters of various views

contribute to the errors in the

computed 3D objects’

structure. 3 3
Image 1 Image 3
The errors in the Inage 2
Figure 8.6. Projection of a 3D line in three images. Also shown is
models  found can  be the predicted line.

corrected by a global optimization procedure called bundle adjustment.

The reasonably accurate models found are projected into all the image views. If
the computed positions are correct then these projected points and lines in the other
image should have less error when compared with the actual IDI points and the EMPL
lines found. But there are errors in the projections, often called reprojection errors.

Considering that the parameters to the optimization problem are the 3D structure
points and the camera parameters the reprojection errors are minimized to obtain an

optimum solution. Figure 8.6 shows the two end points of a line segment projected into 3
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images. From first two images once correspondence is established the 3D points can be
computed. Using this computed 3D points it can be projected into the third image. Now
we already have the points in the image found by image process. The projected points
and the computed points should be the same but usually not, so the errors between these
points are found. Now if the 3D line is modified to correct error we will introduce the
error in the other two images. To avoid the problem the 3D points are varied and all the
three projections of the line in the three images are minimized at a time getting an
optimum solution. This is called the bundle adjustment [89].

Usually it involves n points viewed from m camera poses. And the parameters of
the different camera views are also included in the optimization. Let Xj; be the projection
of the i™ point on j" image. Let ‘a;” be a vector of all the parameters of the camera pose j.

Let ‘b;’ be the vector of all the 3D points. Let the projection of all the ‘b;” in image j be

given by x; = R (a j,bi> . Now we can measure the point’s error in the images. The error is

not valid for points which are not visible which should not be summed. So the total error

is given by

E=ZZ5U

i=1 j=1

R(aj,bl.)—xii

(8.19)
where J,1s the visibility parameter. It is zero if the point is not found in the image and

one if the point is found in the image. By minimizing this total error with respect to all
the parameters, i.e., the camera external parameters and the 3D points we get the desired

solution as
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<aj:l..m’bi:l..n >min = min Zé‘u

<‘1/=1..m ’b,=1.‘n> i=l j=1

R(aj,bl.)—xy.

(8.20)

Note that each camera view adds 6 parameters to the bundle adjustment. So it is
really good to include the camera parameters in the bundle adjustment only if we are
looking at a large number of points in different views. Since we are dealing with only
small set of points in our experiment we have not included the camera parameters in the
adjustment. Our cameras are accurately calibrated using various methods discussed
previously. We use the bundle adjustment idea only to improve the accuracy of the 3D

points using

(8.21)

8.9.1. Camera Calibration

The bundle adjustment can also be used to find the camera internal parameters.
Since we used Biclops we have two cameras so there are two sets of internal camera
parameters, one for each camera. These internal camera parameters can also be included
in the bundle adjustment. But it is usually a good idea to find the internal camera
parameters by other means so that the minimization procedure of the bundle adjustment
becomes less complex and faster to solve. Thus a large number of views of a large
number of points give a better approximation of the parameters of the camera model.
Since we have already calibrated the cameras (internal parameters) and the underlined
equipment (external parameters) we did not needed to include these parameters into the

bundle adjustment. Figure 8.7 shows the flow chart of the complete procedure to obtain
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3D structure from images. The dotted lines show how camera calibration parameters can

be included in the minimization procedure to find the final values.
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Figure 8.7. Flow chart.

8.10. 3D Modelling

For the sake of convenience in this dissertation the models of various objects are
constructed with points and lines alone. The model of an object consists of the number of
points and the number of lines connecting two or more of these points. The curves are
only used to approximate with lines. The total set of points and lines together is

considered as the 3D model of the object.

8.11. Grasping

Once the model of an object is computed it is used to plan how to pick up the
object. For simple planar objects we use a curvature aided grasping algorithm developed

by Gatla et al. [90]. The model is used to make various points on the silhouette of the
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object similar to an active contour. The algorithm traverses the list of points and finds the
best locations to place the fingers of the Barrett hand to grasp the object. For objects that
are not planar, we use the topmost layer points to make a decision as to where to place

the fingers.

8.12. Experiments

8.12.1.Correspondence Test

A cube is placed on the rotator table and the robot picks up the Biclops and takes
pictures of the cube from various locations. A pair of intersecting lines (of the cube) is
used. The EMPL lines and their IDI points in the images are determined. The epipolar
constraint is used to find the epipolar lines of the IDI points in the second image. The
corresponding lines and points are picked manually. The corresponding IDI points in the
second image should lie on the epipolar lines. This hypothesis is tested in the other image
by measuring the shortest distance of the IDI point from the epipolar line. Figure 8.8
shows the shortest distances of the IDI points from the epipolar lines. It can be seen that
the errors are very small, i.e., within a pixel. These epipolar errors are dependent on
various factors which include the errors in the external parameters of the cameras and the

noise in the images.

8.12.2.Triangulation Test (Projection of a pair of intersecting lines)

The corresponding IDI points are also used to triangulate and find the 3D points.
The 3D points are compared with the known 3D locations. Figure 8.9 shows the
triangulation error magnitudes. It can be seen from the histogram that the errors are very

small, indicating a very good calibration of the equipment.
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Figure 8.9. Histogram of Triangulation errors (mm) for IDI points.
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8.12.3.Pick and Place Objects

The experimental setup consists of two Staubli robots on either end of a robotic
transport unit (RTU). The details of the workcell are described in Chapter 3. The goal of
our experiments is to find the 3D structure of a scene and be able to pick up the objects
and manipulate them. The experimental setup consists of two Staubli robots each on
either end of a robot transport unit.

Various objects are placed on the rotary table. The robot is commanded to pick up
Biclops and move to various locations. The PTUs are also commanded to move to some
desired orientation so as to be able to see the object. The cameras are commanded to
takes pictures of the object. The position of the RTUs, the robot joint configurations and

the pan and tilt angles of all the views are noted down.

Figure 8.10. Image of a box from view 1
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Using the noted values and the calibration parameters, the projection matrices (the
position and orientation) of all the views are calculated. The images from various views
are processed to detect the edges. Figure 8.10 and Figure 8.11 shows two such views of a

box.

Figure 8.11. Image of a box from view 2

Figure 8.12 and Figure 8.13 show the edge processing of the two images. Note
that there is lot of image clutter in the background. For the experiments we are only
processing image in the region of interest (i.e., the rotary table top).

The edge images are processed by the Hough transforms to find various line
segments. The segments are localized to find the required EMPL lines.

Figure 8.14 and Figure 8.15 shows the EMPL lines located in the images. The

IDI points are the various intersection points of the EMPL lines.
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Table 8.1 and Table 8.2 show the IDI points found
for the two views presented. They are arranged according to
the correspondence.

We used the bundle correspondence algorithm to
find the corresponding entities of the various IDI points and
EMPL lines in all pairs of images. The corresponding
entities are used to triangulate to get the initial 3D structure.

The 3D structure found is reprojected onto all views
and refined using the bundle adjustment minimization. The
3D structure is represented in the base coordinate system of
the robot holding the Biclops tool. This 3D structure is
transferred to the other robots space and the robot uses this
information to pick up the objects. For the sake of
computing the errors some of the objects are placed at
known locations and the 3D structure of the object is
compared with the known values. Table 8.3 shows the
triangulation errors of the eight points of the computed box
model. Figure 8.16 shows the computed model of the box
projected into the image view 1. The points are marked
with labels to show them. The model is made up of list of
points and the list of edges connecting two or more of those

points.
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Table 8.1. IDI points of view 1

X Y
210.6899 193.7236
262.125 155.625
370.375 194.375
325.375 236.625
209.1891 242.4985
321.875 285.875
364.25 242.75

Table 8.2. IDI points of view 2

X Y
273.375 200.625
336.375 165.375
430.875 207.125

370.5214 | 246.2504
274.4724 | 247.7511

370.25 294.25

429.625 255.875

Table 8.3. Errors in 3D points

Errors(mm)

2.3317

4.0694

0.5461

3.6288

3.3109

23775

0.8161

0.5343
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Figure 8.12. Negative Edge image of Image view 1.

| R 7 NT)

Figure 8.13. Negative Edge image of Image 2.
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Figure 8.15. EMPL lines shown on Image 2.
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This experiment is repeated with various objects on the rotary table. Figure 8.17

Figure 8.16. Model of the box prdjected

shows a triangular object and the computed model is projected into the image view as
shown in Figure 8.18.

Figure 8.19 shows a metal bracket object and the computed model is projected
into the image view as shown in Figure 8.20. Figure 8.21 shows a cylinder object and the
computed model is projected into the image view as shown in Figure 8.22. The cylinder
is a special case. The image views are carefully planned to span around it with left and
right camera views being close we have an approximate model made up of multiple

points and lines approximating the cylinder.
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Figure 8.17. A triangular object on rotary table.

A

Figure 8.18. A triangular object Model projected.
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Figure 8.19. A metal bracket on rotary able.

Figure 8.20. A metal bracket model projected.
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Figure 8.21. A cylindrical object on rotary table.
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Figure 8.22. A cylindrical object model projected.
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8.12.4.RMP Lane Following

A robotic mobile platform (RMP) from Segway is used and a vision system is
built. The vision system consists of two cameras each mounted on a PTU. The Segway
RMP is described in detail in Section 3.7.

A track is marked on the ground as shown in Figure 8.23. The track is built using
straight line segments. The goal of this experiment is compute the location of the marked
track and to follow the track.

For this experiment the PTUs are fixed and the cameras are pointing at the ground
in front of it. The pictures of the track are captured. Figure 8.24 shows the image of the
track as seen from one of the cameras. The images are processed to find the edges in
them. The edge image is used and the Hough transforms are computed to locate line
segments in the image. We localize the line segments to find the EMPL lines. The EMPL
lines in the images are used to find the IDI points of the track. Figure 8.25 shows the
EMPL lines and the IDI point found.

The cameras are calibrated individually and the transformation between them is
found as before. The calibration is used in the bundle correspondence to find the
corresponding entities in the images. These corresponding IDI points of the track are
triangulated to find the 3D locations of the points on the road plane. This information is
used by the Segway to plan its motion.

Figure 8.23 shows the RMP at the start of the trajectory. The images are used and
the 3D information about the lines is computed. The RMP calculates the velocity and

angular velocity need to follow the track.
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The calibration information is also used to know where the future track is going to
be. The RMP plans its path so as to keep the trajectory in its view all the time. It is to be
noted that the cameras are looking at a distance. Thus a delay needs to be added in
reacting to the trajectory. Also if the RMP waits to make a turn then by the time it
reaches the intersection path it will no longer see the track.

To overcome this problem the RMP plans its motion by slowly moving in a curve
from current direction to the final direction so as to keep the trajectory in view all the

time. Figure 8.26, Figure 8.27 and Figure 8.28 shows the RMP following the track.

Figure 8.23. A Track marked on the ground.
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Figure 8.24. One of the images looking at the track.

Figure 8.25. EMPL lines and the IDI point found for the track.
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Figure 8.26. Segway RMP following the track.

Figure 8.27. Segway RMP following the track.
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Figure 8.28. Segway RMP following the track.

8.13. Conclusion
Image processing is usually the first step for finding the 3D structure. The low

level features found in the images need to be identified across various views. This is
called correspondence. We have introduced a new approach, IDI points, as image
features. We developed an automatic bundle correspondence algorithm that uses the
calibration parameters of the image views and the topology information. The
correspondence is established with this algorithm. Experiments are done to show the
epipolar errors and the triangulation errors are small. Various objects are placed on a
rotary table at known locations, pictures are taken, and the 3D structure of various objects

is found. This structure information is transferred to another robots’ space and the objects
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are picked up by the second robot. Experiments are done using a mobile robot to use the

features and locate a track in 3D and follow it.
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Chapter 9. Conclusion
Many applications, e.g., motion planning, virtual reality, CAD, vehicle

navigation, object recognition, photogrammetry, remote sensing, etc., all require a
geometrical representation of the three dimensional structure of a scene. In this
dissertation we studied the problem of determining the 3D structure of a scene given
images of it from various views.

A robotic tool called Biclops, a two camera directed vision system is built. Each
camera is mounted on a Pan-Tilt Unit which can be independently controlled. This eye in
hand system is used to find the structure of the scene. There are two robots mounted on a
robot transport unit.

The 3D structure of the scene is necessary to manipulate the objects in the scene.
We developed a new image feature called IDI points which are intersections of a pair of
EMPL lines or an EMPL line and a Curve. An automatic bundle adjustment
correspondence method is developed which is used to match up the points and lines in
one image to the other. The corresponding features the lines and points are used to
determine the 3D structure of the scene. The 3D structure is transferred to the other robot
space for it to manipulate the objects in the scene.

The accuracy of 3D structure of the scene is dependent on the accuracy of the
various parameters of the underlined equipment. We go a step further and improved the
accuracy of the parameters of various equipments used. We developed a new method
called ViCKi (virtual close loop kinematic method) to calibrate the industrial robots and
the RTU equipment. We also calibrated the pan tilt units of the Biclops. Various

experiments are done to show the accuracy of the calibration methods.
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The calibrated equipment is used to find the 3D structure of a scene. The robot

used the 3D structure to pick up the objects.

9.1. Limitations
We have worked mostly with man-made objects that have straight edges.

Occasionally we used some curved objects like cylinders. The cylinders usually do not
have any straight edges but we will see straight edges in image views. The straight edges
that we find usually do not correspond at all since they are not real object edges but they
are only perceived as edges. To overcome this difficulty, we have to take pictures of the
object from relatively close view points so the errors in the correspondence are small and
we will be approximating the cylinder with multifaceted polyhedra.

We have used the curves only to locate IDI points which are at the intersection of
the curve with EMPL lines. Occasionally we used maximum inflection points as IDI
points but they only correspond to other images taken from closer view points.

The approach is limited to facetted objects with edges only, objects like sphere,

cylinder etc which do not correspond to this form are only approximated closely.

9.2. Future Directions
We have not included the radial distortion of the cameras. Even though the

distortion is not that significant we expect to see an improvement in the accuracy of the
computed 3D  structure = when  calibrated with  distortion  parameters.
One of the limitations was that our scene was stationary. We would like to add a rigid
body motion to our objects in the scene and add those parameters into optimization
function. An interesting experiment would be to use our bundle correspondence online

and track an object as it moves through the scene.
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