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ABSTRACT 

 

 Dynamic simulations provide insight into the operation of complex mechanisms 

under dynamic loading conditions.  These types of analyses are important to understand 

design margins and assure that a product meets its functional requirements during all 

operational environments.  Rigid body dynamic modeling techniques can be utilized to 

simulate mechanisms that experience small loads relative to the strength of the piece 

parts with movement that primarily occurs as rigid body motion. 

 The main advantage of a rigid body dynamic approach is that the number of 

unknowns that must be determined at each time step is dramatically less than the number 

of unknowns for a direct finite element approach.  Rigid body dynamic codes can 

incorporate the capability to model flexible piece parts within a primarily rigid body 
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model through the use of component mode synthesis (CMS) techniques.  CMS is a 

method of coupling substructures to represent a large finite element problem as a 

collection of smaller ones.   The number of degrees of freedom are reduced but the CMS 

method also provides design information and capabilities that are not available with a 

direct finite element approach.  One significant limitation of the CMS implementation is 

that only linear or non-linear elastic responses can be modeled, requiring a different 

analysis technique for problems with geometric or material non-linearity. 

 In this dissertation, a framework is developed to couple non-linear material behavior 

with a fixed interface CMS technique.  This new approach allows non-linear material 

behavior, such as plastic deformation, to be approximated without requiring the transition 

to a direct finite element model.  The plastic strain is determined from the modal response 

using classical plasticity theory and applied to the modal solution by projecting an 

effective nodal force vector on the modal coordinates to induce plastic deformation.  The 

method can be tailored to the frequency range of interest to provide excellent correlation 

with a full-fidelity finite element solution.  Numerical examples are provided to 

investigate the accuracy and convergence characteristics of the new method for specific 

problems. 
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Chapter 1  

Introduction 

 

 The goal of this research was to develop a framework for modeling non-linear 

material behavior using rigid body dynamic solution techniques.  Capabilities currently 

available within rigid body dynamics codes allow flexible bodies to be incorporated with 

the use of component mode synthesis (CMS) techniques, but the response is limited to 

elastic behavior.  There is no intermediary between a linear elastic response in a rigid 

body analysis and a full finite element analysis but there is a great difference in the 

required computational time and the design information provided. 

 The incorporation of flexible piece parts can improve the accuracy of a primarily 

rigid body model if specific piece parts experience large deflections as a result of applied 

dynamic loading.  Simulating the flexibility with CMS offers additional design 

information that is not available with a direct finite element procedure.  The natural 

frequencies and mode shapes of the flexible elements are provided directly during the 

CMS procedure, allowing the designer to improve designs that could potentially 

experience resonance or interference with other bodies.  Since the modal problem is 

solved independently from the dynamic solution, it only needs to be solved once and 

restart points are automatically provided. 

 The utility of the rigid body dynamic procedure coupled with CMS can be expanded 

by incorporating the ability to approximate non-linear behavior for flexible elements that 
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are loaded beyond their elastic limit.  This dissertation is devoted to the development of 

the non-linear theory and integration with a fixed interface CMS reduction technique.  

The theoretical background and information required to incorporate within a traditional 

finite element process are provided in the following chapters along with a collection of 

numerical examples to demonstrate potential applications and accuracy of the newly 

developed method. 

1.1 Motivation 

 Dynamic modeling can be used to investigate the response of complex mechanisms 

during operation or when exposed to environments.  This type of modeling is important 

to providing insight into the response, allowing the design to be characterized and 

improved.  For complex systems where the individual piece parts or subassemblies can be 

approximated as rigid bodies, the dynamic simulation can be performed using rigid body 

dynamic techniques.  The interaction between rigid bodies are approximated using linear 

or non-linear contact force and joint options. 

 In reality, no body is truly rigid.  This is only an approximation for cases when the 

body is very stiff or the loading is very small, which leads to very small deformations.  

Many of today’s rigid body dynamic software packages do include the capability to 

simulate the linear elastic response of selected piece parts through the use of a CMS 

method.  The flexible body is analyzed to determine the natural frequencies and 

associated mode shapes, with only the lowest frequencies being retained in the solution of 

the equations of motion to reduce computational expense.  The number of modes retained 

is dependent on the problem of interest and can have a significant impact on the accuracy 

of the solution. 
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 The benefit of the CMS method is that the size of the problem can be substantially 

smaller than that of a full fidelity finite element problem.  Rather than maintaining the 

inertia and stiffness terms associated with each degree of freedom, only a reduced set of 

modal shapes and frequencies are retained.  This reduces the size of the equations of 

motion being solved at each time step, which is an important consideration for dynamic 

problems.  For a static problem, the CMS method would not offer any computational 

benefit because the static portion of the equations of motion are only solved once.  For a 

dynamic problem, the equations of motion may be solved thousands to billions of times 

or more depending on the time step used and the simulated time interval. 

 The limitation of typical CMS method is that they only apply to linear elastic 

behavior.  If material or geometric non-linearity occurs in the structure, the response 

cannot be accurately predicted.  The preferred option for modeling a problem with non-

linearity is through the use of a full fidelity finite element procedure.  With the newly 

developed framework for incorporating non-linear material behavior with a CMS solution 

technique, this gap in capabilities is reduced. 

1.2 Use of Rigid Body Dynamics in Mechanism Design 

 Computational simulations can offer significant insight into the behavior of complex 

mechanisms under normal and abnormal operating conditions.  An example of a complex 

mechanism is the ratchet-driver shown in Figure 1-1.  The ratchet wheel is rigidly 

attached to a spur gear and mounted on a shaft with two radial ball bearings.  The drive 

arm is actuated by a rotary solenoid that opens the arm against the extension of the drive 

spring.  Once the arm is sufficiently open, the drive pawl drops over the next tooth 

because of the torque applied from a torsion spring.  As the solenoid is de-energized, the 
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drive arm returns as a result of the force applied by the extended spring and drives the 

wheel to the next index position.  The dynamic performance of this mechanism can 

readily be analyzed using rigid body modeling techniques. 

 

Figure 1-1:  Ratchet Driver Mechanism 

 Experimental testing can be performed to investigate the dynamic performance of 

complex mechanisms but it is typically impractical to experimentally test all possible 

loading conditions.  Computational simulations can be validated with the limited 

experimental data and utilized to supplement performance testing, quantify design 

margins, and identify/characterize failure modes.  During the earliest phases of the design 

process, simplistic analyses can be used to verify the intended function of the mechanism 

and help identify serious design flaws.  As the design matures, the fidelity of the analyses 

should mature, correspondingly. 

 The lowest fidelity models used in the early design phase should include many 

simplifying assumptions since the overall design is immature and subject to frequent 
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changes.  Substantial resources should not be invested in obtaining a high fidelity 

simulation if high fidelity results are not yet necessary.  For mechanisms that experience 

small loads relative to the strength of the components and motion occurs primarily as 

rigid body motion during operation, a rigid body solution technique is a good starting 

point [1].  Consideration of the appropriate integration scheme and time steps are 

required for the specific geometry and loading of the problem in order to obtain an 

accurate solution [2].  In the lowest fidelity rigid body dynamic simulation, all 

components are assumed to remain rigid with interactions represented as idealized joints 

and contact represented as external forces.  This type of solution can be very 

computationally efficient, which is important for a dynamic response since the 

simulations will typically be performed over a relatively long time interval.  Simulations 

in early design phases should only require minimal time for setup and solution because 

the design will likely require several changes. 

 As the design matures, the simplifying assumptions need to be critically reviewed to 

determine their impact on the accuracy of the solution.  Idealized joints between 

components may need to be replaced with more representative contact elements.  If a 

majority of the components experience substantial deformation, a different solution 

technique may be required to obtain higher fidelity results, such as a full fidelity finite 

element solution.  If only a minority of components experience significant deformation, 

modal techniques have been developed that can be readily incorporated in a primarily 

rigid body model with minimal impact on computational expense [3].  These modal 

solutions are an approximation of the full fidelity finite element representation of the 

substructure that can be solved with substantial computation savings.  The savings is 
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dependent on the particular problem but Figure 1-2 demonstrates the relative number of 

operations (see Section 6.3) for a modal solution based on the percent of retained modes. 

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

% Kept Modes

%
 F

u
ll

 S
o

lu
ti

o
n

 O
p

er
at

io
n

s Full Solution

Modal Solution

 

Figure 1-2:  Full Fidelity and Modal Computations 

 The limitation of the modal techniques is that they are typically limited to linear 

elastic behavior.  If the loadings exceed the elastic limits of the material, simulation 

accuracy will degrade.  This dissertation is focused on expanding the useful range of 

primarily rigid body solution techniques by incorporating non-linear material effects with 

the modal techniques that are currently available. 

1.3 Overview of Rigid Body Dynamic Codes 

 LMS Virtual.Lab (LMS International, Leuven, Belgium) and MSC.ADAMS (MSC 

Software, Santa Ana, CA) are examples of commercial rigid body dynamic software 

packages.  These codes incorporate many tools that allow models to be created with 

varying levels of fidelity.  The remainder of this section provides an overview of the 

process of setting up a rigid body simulation for a typical commercial code. 
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 Model geometry can either be imported from a computer-aided design (CAD) 

package or can be modeled directly using the integrated CAD software.  Once geometry 

is imported, joints and forces must be set up for each part interface.  If parts are 

mechanically attached through welding or other fastening methods, rigid constraints can 

be generated to constrain each of the six degrees of freedom between the two parts.  

There are many other joint options that can approximate various constraint conditions.  

Idealized joints can have as few as one degree of freedom for a revolute joint or as many 

as three degrees of freedom for a spherical joint.  Compound joints have more degrees of 

freedom because they are combinations of the simple joints.  A representative summary 

of available joint options is summarized in Table 1-1.  The simple joints are 

computationally inexpensive but the complex joints typically require iterations, which 

increase the run time of the simulation. 

Table 1-1:  Rigid Body Dynamics – Joint Options 

Joint Type Body 1 Body 2 Translational Rotational
Bracket Axis System Axis System 0 0
Planar Plane Plane 2 1

Spherical Point Point 0 3
Cylindrical Axis Axis System 1 1
Revolute Axis, Plane Axis, Plane 0 1

Screw Axis Axis 1 1
Translational Line, Plane Line, Plane 1 0

Universal Line, Point Line, Point 0 2
Spherical-Spherical Point Point
Revolute-Sprerical Line, Plane Point

Revolute-Cylindrical Line, Point Line
Revolute-Revolute Line, Plane Line, Plane

Revolute-Translational Line, Point Line, Plane
CV Joint Line, Point Line, Point

Point-Curve Point Curve
Point-Surface Point Surface
Slide-Curve Curve Curve
Roll-Curve Curve Curve

Compound
Compound
Compound

Compound
Compound
Compound
Compound

Compound
Compound
Compound

Required Inputs Degrees of Freedom
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 If parts interact through intermittent contact, there are several modeling options.  In 

order to provide a stable numeric solution all contact must be assumed to first occur at a 

single point.  Depending on the geometry of the parts in question, contact can be modeled 

with the options summarized in Table 1-2.  The descriptions provided in these tables are 

derived from the LMS Virtual.Lab help reference. 

Table 1-2:  Rigid Body Dynamics – Contact Options 

Force Element Description

Point to Point
The Point-Point Contact element models contact events between two 
bodies represented by spherical "points". When in contact a force of 
separation is generated between the two bodies.

Sphere to Extruded Surface

In Sphere-to-Extruded-Surface contact, the first body is designated 
the Sphere body, and the second is designated the Extruded body. 
The contact force is based on the depth of penetration and the relative 
velocity normal to the contact surface.

Sphere to Revolved Surface

Sphere-to-Revolved-Surface contact is the same as Sphere-to-
Extruded-Surface contact, except that the surfaces on the first body, 
rather than being extruded, are revolved about the body 1 axis within 
a user-defined angular range.

Extruded Surface to Revolved Surface

Extruded-Surface-to-Revolved-Surface contact is similar to Sphere-to-
Extruded Surface or Sphere-to-Revolved Surface, except that it allows 
contact between an extruded surface (as in Extruded-Surface-to-
Revolved-Surface) and a revolved surface (as in Sphere-to-Revolved 
Surface).

Sphere to Rail
The Sphere-to-Rail contact is similar to the Sphere-to-Extruded 
Surface contact, except that it allows variation along the extrusion 
direction (Swept instead of Extruded).

CAD Contact

The CAD Contact option allows you to model and simulate contact 
between bodies with arbitrary geometry.  The bodies for which contact 
is to be calculated are selected, and the complete solid geometry 
associated with each body participates in contact calculations.

Flexible Contact
The Flexible Contact force element generates action-reaction forces 
between a sphere on a rigid body and a deforming surface on a 
flexible body.

 

 Commercial rigid body software codes also have the capability of incorporating 

flexible elements.  If a piece part within a mechanism is expected to deflect during any of 

the environments being simulated, the rigid piece part can be replaced with a flexible 

element.  This approach offers several advantages over a full finite element model, such 

as the direct computation of un-restrained natural frequencies, automatic restart points, 

and computational savings.  The primary purpose of rigid body codes is to model rigid 
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body dynamics.  A model is solved through an iterative solution procedure over the 

desired time interval, with a relatively small set of equations of motion.  For a full finite 

element model, the numerical problem being solved is very large because the full inertia 

and stiffness matrices are retained.  This means that much greater processing capabilities 

are required to analyze a model over a large solution time. 

1.4 Related Research 

 Methods have been developed to incorporate non-linear behavior in a modal solution 

for dynamic simulations.  For materials that follow a non-linear elastic material stiffness 

curve, the predicted modal solution can be modified with a manifold calculation [4], [5].  

The non-linear normal mode (NNM) method effectively maps the linear response to the 

non-linear curve.  A method to perform non-linear dynamic analyses with modal 

superposition is presented with example problems of cable and truss structures in 

reference [6].  A non-linear static and dynamic analysis procedure for framed structures is 

developed in reference [7].  Coupling of substructuring techniques and mode 

superposition are explored for the dynamic analysis of structures with perfectly-plastic 

material stiffness assumptions in reference [8].  This method was incorporated in the 

ADINA finite element code to reduce the computational time for a certain class of 

problems. 

 A collection of reduction techniques are investigated in [9] to demonstrate their 

effectiveness in non-linear simulations.  Techniques of transformation to different basis 

vectors, prescribed edge displacements, and reduction in mixed finite element modes are 

evaluated with representative example problems.  An explicit time integration method is 

combined with a non-linear reduction technique in [10].  Transformations of basis vectors 
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are applied using a Rayleigh-Ritz type technique but the vectors are augmented with 

vector derivative terms in [10] and [11].  A reduced approach for impulsively loaded 

structures is developed and evaluated in [12].  Incorporation of localized non-linear 

effects with a modal reduction framework is investigated in [13].  A survey of various 

techniques for dynamic substructuring are reviewed and classified in [14]. 

1.5 Overview of New Non-linear Framework 

 This dissertation presents a newly developed technique for incorporation of non-

linear material behavior with a fixed interface CMS technique.  The performance of the 

technique is investigated with the use of custom Matlab code.  All aspects of the finite 

element formulation, component sub-structuring, iteration of equations of motion, and 

post-processing operations are performed with the Matlab subroutines, which can be 

found in the appendices. 

 The linear elastic response is first predicted at each time step using the reduced 

modal response.  The nodal deformations are evaluated for each element to determine the 

state of strain and stress.  If the effective stress within the element exceeds the predefined 

yield criteria, the incremental plastic deformation of the element is calculated.  This 

plastic deformation is induced in the linear elastic modal solution by the application of a 

pseudoforce and an iterative solution technique is used to achieve convergence within the 

time step [15], [16]. 

 All calculations are performed within the Matlab subroutines, including all necessary 

pre and post processing.  The function that solves the dynamic, three-dimensional 

problem and calls all subroutines is Master3D.m.  In order to generate the global 
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equations of motion and apply boundary conditions, the subfunctions are called in the 

order shown in Figure 1-3. 

 

Figure 1-3:  Flow Chart for Pre-processing Calculations 

 The global equations of motion are converted to a CMS representation by applying 

the reduction techniques of a fixed interface method.  This transformation results in 

inertia and damping matrices that are not orthonormal, so a subsequent 
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orthonormalization is performed.  The inertia and damping matrices are converted to 

diagonal matrices and input into the iterative, implicit solver as indicated in Figure 1-4. 

 

Figure 1-4:  Subroutines for CMS Calculations 

 If a particular time step of the iterative dynamic solution only consists of elastic 

deformation, the calculations are performed as indicated in Figure 1-5.  Because the 

dynamic equations of motion are solved in a modal coordinate system, the modal 

displacement vector must be converted to the global coordinate system prior to evaluation 

of the elemental stress.  The plasticity subroutine calculates the effective stress and 

evaluates the yield function to determine whether the yielding has occurred within the 

time step.  If the deformation is only linear-elastic, the iterative procedure continues until 

convergence is achieved. 
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Figure 1-5:  Flow Chart for Elastic Time Step 

 If the time step does result in incremental plastic deformation, the calculations 

indicated in Figure 1-6 are performed.  The tangential stiffness matrix is determined and 

a plastic pseudoforce vector is calculated to induce the required plastic deformation when 

introduced into the elastic solution procedure.  A combination of initial and tangential 

stiffness methods are employed, with the stiffness matrix only being generated for the 

first elastic-plastic iteration. 
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Figure 1-6:  Flow Chart for Elastic-Plastic Time Step 

 Several additional diagnostic subroutines are utilized to calculated additional 

information and perform routine pre- and post-processing operations.  The detailed 

information about the calculations performed within all subroutines is provided in the 

remainder of this dissertation, with the complete collection of Matlab code provided in 

the Appendices. 
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1.6 Outline of Dissertation 

 The dissertation is organized into a series of chapters to provide a logical progression 

of the theory development, implementation, and testing of the non-linear dynamic 

solution procedure.  The initial chapters are devoted to providing the background 

information necessary to formulate the finite element problem and an overview of the 

development of modal analysis and sub-structuring techniques.  The background 

information is followed by the development of the plasticity algorithm and the 

incorporation with the fixed interface CMS technique.  Finally, the accuracy and 

performance of the technique is evaluated through a series of numerical examples and 

convergence studies. 
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Chapter 2  

Finite Element Analysis 

 

 The finite element method is a powerful technique for analyzing the response of 

complex physical behavior.  The finite element procedure basically consists of 

segmenting a geometric object into a finite number of discrete elements so that the 

complex problem can be approximated numerically.  The elements can be of various 

sizes and shapes depending on the geometry of the problem being solved.  There are also 

many diverse options in the formulation of the inertia, damping, and stiffness matrices 

that are tailored to specific loading conditions and problem types.  This chapter primarily 

provides background information of the elements and formulations used in this 

dissertation for solving structural problems. 

 One-dimensional elements may be used to solve very basic problems involving the 

axial extension of a flexible body.  Two-dimensional elements may be used to solve 

problems that can be approximated as plane stress, plane strain, or axi-symmetric.  The 

plane stress approximation can be used for problems where the stress across the thickness 

is assumed to be zero, such as for thin plates.  The plane strain approximation can be used 

for problems where the strain along the length is assumed to be zero, such as for very 

long cylinders.  The axi-symmetric approximation can be used for bodies that have an 

axis of symmetry.  Further information on one and two-dimensional finite elements can 
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be found in references [17], [18], and [19].  The remainder of this dissertation will focus 

on three-dimensional elements since it is the most general case. 

2.1 Three-Dimensional Elements 

 A solid three-dimensional body can be modeled as a combination of a finite number 

of three-dimensional elements of a prescribed shape.  Common examples of three-

dimensional finite element shapes are rectangular hexahedron, isoparametric hexahedron, 

right pentahedron, and tetrahedron.  Depending on the geometry being meshed, different 

element shapes may be required to reasonably approximate the shape.  Tetrahedron 

elements are the easiest to implement in an automated meshing scheme due to their 

triangular shape but they are typically inaccurate for bending conditions [20].  The 

problems investigated with this research all utilize hexahedron elements but the method 

could be easily extended to include other element shapes.  Two hexahedron elements are 

incorporated in the Matlab subroutines to apply to three-dimensional geometries.  The 

rectangular hexahedron, sometimes referred to as the brick element, has six sides and all 

corners are perpendicular.  The isoparametric hexahedron element is also incorporated to 

mesh more arbitrary shapes.  The isoparametric elements are not constrained to have all 

corners perpendicular and can be shaped to approximate curved surfaces.  The 

rectangular hexahedron is actually a special case of the isoparametric formulation with a 

slight difference in computational cost. 

2.1.1 Rectangular Hexahedron 

 The rectangular hexahedron consists of eight nodal points positioned at the corners 

of a six-sided solid element.  Various finite element codes and literature use differing 
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definitions of the nodal arrangement but the form used for this work is identified in 

Figure 2-1.  Differing formulations will have the nodes numbered in other orientations 

but will provide the same results if carried out consistently. 

 

Figure 2-1:  Rectangular Hexahedron Element 

 Each of the eight nodes of the rectangular element has a total of three degrees of 

freedom because each node can displace in the x, y, and z directions.  Other formulations 

can include rotational degrees of freedom but only the linear displacements are included 

in this formulation.  Therefore, 24 variables are required to completely describe the state 

of the element.  The displacement functions are written in the form: 

 { }e

e

u

v N u

w

 
   =   
  

 (2-1)

The terms u, v, and w are the displacements in the x, y, and z direction of the element, 

which are defined in terms of the shape function of the element and the nodal 

displacements, u.  In terms of the individual displacements of the element, the terms can 

alternatively be written as: 
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(2-2)

The terms ui, vi, and wi are the displacements in the x, y, and z direction of the nodes 

numbered 1 thru 8.  For use in (2-1), the nodal displacements are written as: 
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  (2-3)

The shape functions, Ne, are written in terms of a mapped set of coordinates (ξi, ηi, ζi): 

 ( )( )( )1
1 1 1

8
e
i i i iN ξ ξ η η ζ ζ= + + +  (2-4)

Expressed in a different form, the shape function can be written as a 3 x 24 matrix for use 

in (2-1): 
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   =   
  





 (2-5)

The mapped coordinate system is based on a defined relationship between the Cartesian 

coordinate system and the length, width, and height of the element.  The dimensions a, b, 

and c are defined to be half the length, width, and height of the element, respectively: 
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η =  

z
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ζ =  

(2-6)

This relationship maps the locations of the corners of the elements from the Cartesian 

coordinates to a more generic dimension that varies from -1 to +1. 

 The inertia matrix of the rectangular hexahedron is determined through integration 

of: 

 [ ] Te e

e V
m N N dVρ    =      (2-7)

where V is the volume of the element and ρ is the density of the material.  In terms of the 

physical coordinates of the element: 

 [ ] Te e

e
m N N dxdydzρ    =        (2-8)

Or, in terms of the mapped coordinates of the element (ξi, ηi, ζi): 

 [ ] 1 1 1

1 1 1

Te e

e
m N N abcd d dρ ξ η ζ

+ + +

− − −
   =        (2-9)

The integration over the volume is performed using Gaussian-Legendre integration [21].  

Alternatively, the integral can be solved directly for the rectangular hexahedron element. 

 The element stiffness matrix is generated by first determining the strain-

displacement matrix of the element.  The strain-displacement matrix is defined in terms 

of the Cartesian coordinate system: 
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 (2-10)

The strain-displacement matrix for a single element is of size 6 x 24 for the rectangular 

hexahedron formulation.  The stiffness matrix can be calculated directly using the strain-

displacement matrix in the Cartesian coordinate system, but for subsequent calculations it 

in be more convenient to define the strain-displacement matrix in terms of a mapped 

coordinate system for ease of integration.  This relationship will require the use of chain 

rule differentiation and utilizes the following relationships derived from differentiation of 

(2-6): 

 

1

x a

ξ∂ =
∂  

1

y b

η∂ =
∂  

1

z c

ζ∂ =
∂  

(2-11)

Application of the chain rule to differentiation of the terms of (2-10) with use of (2-4), 

results in the following relationships, where i varies from 1 to 8: 
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(2-12)

 The stress within the element is defined as a function of the strain within the element 

and the material elasticity matrix according to the Hooke’s law relationship: 

 { } [ ]{ }Dσ ε=  (2-13)

Note that the variable, D, is defined as the elasticity matrix, which is sometimes 

represented with the variable C.  The variable, C, will be reserved to define the damping 

matrix for the dynamic equations of motion.  For an isotropic elastic constitutive model, 

the elasticity matrix is defined as: 
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( )1f υ= +  
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2
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(2-14)

where E is the modulus of elasticity and ν is the Poisson’s ratio of the material.  Analysis 

indicates that the best position to evaluate the stress of the three-dimensional element is at 

the center [22]. 
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 The element stiffness matrix is defined in terms of the strain-displacement matrix 

and the material stiffness matrix, integrated over the volume of the element: 

 [ ] [ ] [ ][ ]T

e
k B D B dxdydz=     (2-15)

Or more generally in terms of the mapped coordinate system: 

 [ ] [ ] [ ][ ]1 1 1

1 1 1

T

e
k abc B D B d d dξ η ζ

+ + +

− − −
=     (2-16)

Following the procedure used to find the element inertia matrix, the integration is 

performed using Gauss-Legendre integration.  For the quadratic variation defined in 

(2-4), the exact solution can be obtained by using a 2 x 2 x 2 integration scheme. 

2.1.2 Isoparametric Hexahedron 

 The isoparametric hexahedron element is a more general variation of the rectangular 

hexahedron.  The primary difference is that the sides of the element do not have to be 

perpendicular, which results in improved approximation of three-dimensional bodies that 

have curved surfaces.  The rectangular hexahedron formulation is a special case of the 

isoparametric formulation and does not need to be retained directly.  Information on 

isoparametric hybrid hexahedral elements and assumed stress elements can be found in 

references [23] and [24].  The general shape of the isoparametric hexahedron is shown in 

Figure 2-2. 
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Figure 2-2:  Isoparametric Hexahedron (Physical Coordinates) 

The nodes of the isoparametric hexahedron are mapped from physical coordinates into 

isoparametric coordinates in order to improve the ability to integrate over the element.  

The mapping results in an element that is equivalent to a rectangular hexahedron as 

shown in Figure 2-3. 

 

Figure 2-3:  Isoparametric Hexahedron (Isoparametric Coordinates) 

 It is slightly more difficult to map the general Cartesian coordinates into the mapped 

coordinates for the isoparametric element because the lengths of the sides of the elements 

are not equal.  The introduction of the Jacobian matrix is required to correctly map the 

volume of the element from the Cartesian coordinates to the mapped coordinates: 
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 (2-17)

The inertia matrix is defined using (2-8) and (2-17): 

 [ ] 1 1 1

1 1 1

Te e

e
m N N J d d dρ ξ η ζ

+ + +

− − −
   =        (2-18)

The element stiffness matrix can be defined using (2-15) and (2-17): 

 [ ] [ ] [ ][ ]1 1 1

1 1 1

T

e
k B D B J d d dξ η ζ

+ + +

− − −
=     

(2-19)

After generation of the elemental stiffness matrix, it can be assembled into the global 

stiffness matrix to correspond with the appropriate degrees of freedom. 

 The elemental inertia and stiffness matrices are integrated using Gaussian integration 

for the three-dimensional isoparametric element.  The inertia matrix, in (2-18), can be 

evaluated using a 3 x 3 x 3 integration scheme.  This integration requires evaluation at 27 

points, but the computational effort can be reduced by employing a fourteen point 

integration scheme that has be shown to provide similar accuracy [25]. 

2.1.3 Improvement of Stiffness Matrix Accuracy 

 The use of the inertia matrices defined for the rectangular and isoparametric 

elements will produce accurate results for the mass properties of the full system, but the 

elemental stiffness matrix requires further attention.  Analytical analysis of the eight node 

rectangular elements indicates that the simple element is susceptible to locking, which 

will produce spurious modes in certain loading situations [26].  The spurious modes 

occur because the element can deform in specific orientations that will indicate zero 
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strain energy.  Since it is physically impossibly for an element to deform without 

producing some strain energy, the accuracy of the solution is affected if these loading 

situations occur. 

 A possible method for improving the stiffness formulation for the eight node 

elements is to introduce incompatible modes [27], [28], [29], and [30].  The shape 

functions of the incompatible modes are defined: 
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 (2-20)

These functions are often termed bubble functions because their quadratic shape enables 

the deformation of the element to approximate a curved shape, resembling a bubble.  The 

incompatible modes are introduced into the original displacement formulation, (2-2): 

 
8 3

1 1

e
i i i i

i i

u u N a P
= =

= +   (2-21)

where the variables ai are the displacements of the bubble degrees of freedom.  In terms 

of matrices and vectors, the relationship is written: 

 { } { } { } [ ]T Teu u N a P = +   (2-22)

Since the values of the vector, a, are unknown, they must be determined in order to solve 

for the elemental displacements.  The element strain formulation is then defined: 

 { } [ ]{ } [ ]{ }B u G aε = +  (2-23)

where G is the bubble strain function and is defined: 
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for an isoparametric hexahedron element.  The subscript i denotes that the matrix is of 

rank 6 x 9, with i varying from 1 to 3.  The partial derivatives in (2-24) are obtained 

from: 
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 (2-25)

where J is the Jacobian matrix. 

 The unknown vector, a, is derived by first considering a static situation.  The full 

solution is substructured into two systems, one for the original element stiffness 

formulation and one for the bubble formulation: 
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 (2-26)

The integrals are defined as matrices for ease of derivation as: 
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        =     
         

 (2-27)

Since the second row of equations is equal to zero, the vector, a, is determined through 

static condensation: 

 { } [ ] [ ]{ }1
a H E u

−= −  (2-28)

which can then be substituted into the first row of equation (2-27) to produce: 

 [ ]{ } [ ] [ ] [ ]{ } { }1T
K u E H E u f

−− =  (2-29)

Both terms on the left side of the equation are functions of the elemental displacements, 

u, and it is apparent that the bubble element terms effectively reduce the stiffness of the 

element.  The modified stiffness matrix is defined: 

 [ ] [ ] [ ] [ ]1ˆ T
K K E H E

−  = −   (2-30)

This modified stiffness replaces the original stiffness matrix in the equations of motion 

and eliminates the dilatational shear locking of the original hexahedron formulation. 

2.2 Selective Substitution 

 The introduction of the incompatible modes eliminates the shear locking associated 

with the deviatoric strains but a further modification is required to eliminate the 

dilatational shear locking.  One such technique is to employ selective reduced integration 

or selective substitution of the shear terms of the strain-displacement matrix [26].  For a 

three-dimensional element, the xy strain-displacement terms, Bxy, are replaced with the 

Jacobian weighted average over the four Gaussian integration points of a particular face 

of the element: 
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where Jg is the determinant of the Jacobian at the particular Gaussian integration point.  

The three-dimensional element will have six faces, requiring the weighted average to be 

computed six times per element. 

2.3 Lagrangian Dynamics 

 The benefit of Lagrangian dynamics is that the problem is not based on physical 

coordinate systems.  The scalar quantities of energy and work can be substituted for the 

vector quantities of force, torque, and momentum.  The derivation of the Lagrangian 

equation is based on Newton’s Laws and the d’Alembert principle [17].  The general 

form of Lagrange’s equation is defined: 

 [ ] [ ] [ ]L T U= −  (2-32)

Where T is the kinetic energy and U is the strain energy of the system (or potential 

energy in the general case).  This equation is expressed in a rate form as: 

 { }d T D U
f

dt u u u

 ∂ ∂ ∂     + + =      ∂ ∂ ∂       
 (2-33)

Where u is a generalized displacement and f is a generalized force associated with the 

displacement. 

 The total strain energy, dissipation function, and kinetic energy of the of the structure 

are: 

 [ ] { } [ ]{ }1

2

T
T u K u=    (2-34)
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 [ ] { } [ ]{ }1

2

T
U u K u=  (2-36)

The derivatives of the total strain energy, dissipation function, and kinetic energy are: 

 [ ]{ }d T
M u

dt u

 ∂  =  ∂  
 (2-37)

 [ ]{ }cD
C u

u

∂  = ∂ 



 (2-38)

 [ ]{ }U
K u

u

∂  = ∂ 
 (2-39)

Lagrange’s equation is then written as the familiar equations of motion for a dynamic 

system: 

 [ ]{ } [ ]{ } [ ]{ } { }M u C u K u f+ + =   (2-40)

This is the general equations of motion for a multi-body system, where each row of the 

equations corresponds to a single degree of freedom within the system.  For the case 

when there is only one degree of freedom, (2-40) reduces to the equation of motion for a 

point: 

 mx cx kx f+ + =   (2-41)

Since the finite element method is based on the assumption that a structure is divided into 

a finite number of individual elements, the multi-body equations of motion are used 

throughout the remainder of this work. 
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2.4 Static Analysis 

 The easiest form of finite element analysis is a static solution.  This type of 

simulation might be used to determine the deflection of a flexible member under a static 

loading condition.  The solution is not dependent on time and all material properties are 

considered constant.  The goal of a static analysis is to determine the solution to 

equations of the form: 

 [ ]{ } { }K u f=  (2-42)

where K is the stiffness matrix, u is a vector of nodal displacements, and f is a vector of 

nodal forces.  The stiffness matrix is symmetric and of the same rank as the number of 

nodal displacements.  The size of the nodal displacement vector is equal to the number of 

degrees of freedom of the system.  For a two-dimensional analysis, each node is able to 

displace in two directions so the size of the displacement vector is equal to two times the 

number of nodes.  For a three-dimensional analysis, each node has three degrees of 

freedom and the size of the displacement vector is equal to three times the number of 

nodes. 

 For a typical finite element problem, the variables of force are known and the 

variables of stiffness are determined based on the geometry of the body and the material 

properties.  The variable of interest is the deflection caused by the application of the 

forces.  The solution is then defined by: 

 { } [ ] { }1
u K f

−=  (2-43)

In very large finite element problems, the stiffness matrix is rarely inverted directly 

because of the computation cost, but is rather converted through an LU decomposition or 
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similar approach.  Further information about solutions of large systems of equations can 

be found in references [31], [32], and [33]. 

2.5 Dynamic Analysis 

 A typical dynamic analysis is performed when the response of a system must be 

determined over some time interval.  Since the motion of the system is dependent on 

time, the effects of inertia and damping must be included.  A dynamic solution involves 

determining the solution to the system of equations: 

 [ ]{ } [ ]{ } [ ]{ } ( ){ }M u C u K u f t+ + =   (2-44)

The difference between the static and dynamic solutions is the introduction of the mass 

and damping matrices in (2-44).  As defined previously, the variable C is used to indicate 

the damping matrix of the structure while the variable D is reserved to define the material 

properties matrix.  In the theory of elasticity, the variable C is typically used to indicate 

the material stiffness matrix but is instead defined as D in this dissertation.  The force 

variable is indicated as a function of time because it is allowable, indeed probable, for the 

force to vary over the time interval of interest. 

 Due to the complexity and interdependency of the dynamic equation of motion, the 

equation cannot be solved directly.  Instead, a solution must be obtained using an iterative 

approach.  The two basic types of iterative solution procedures are explicit and implicit.  

With an explicit solution procedure, the determination of the current iteration is 

completely based on information obtained during the previous iteration.  Of the two 

methods, the explicit procedure is simpler but it is also highly dependent on the size of 
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the time step between iterations.  If the time step is too large, the integration will be 

unstable and inaccurate results will result. 

 Implicit integration procedures can be unconditionally stable for larger time steps but 

are typically more computationally expensive.  With an implicit solution procedure, the 

determination of the current iteration is based on information from the current iteration as 

well as information from the previous iteration.  This class of solution procedures is 

sometimes identified as predictor-corrector methods.  It is acceptable to use combinations 

of implicit and explicit integration for many of the mixed integration methods.  For the 

remainder of this dissertation, the Newmark-Beta method was used to determine the 

iterative solution to the dynamic equations of motion. 

2.5.1 Newmark-Beta Integration Method 

 The Newmark-Beta method is actually a family of solutions based on the assumption 

that the acceleration varies linearly across the time step.  The original formulation of the 

method can be found in reference [34].  Many variations have been developed to improve 

the efficiency of the algorithm, such as the method defined in reference [35].  The 

development of a domain decomposition method can be found in [36].  The algorithm is 

used in dynamic systems to determine the displacement, velocity, and acceleration of 

each point at every time step across the time interval of interest.  The values based on the 

information from the previous converged time step will remain constant and are used to 

determine the following parameters: 

 { } { } { }* 1 1
1

2n n
u u u

tβ β
 = − − − Δ  

    (2-45)
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 { } { } { }* 1 1
2n n

u u t u
γ γ
β β

   = − + Δ −   
   

  
 

(2-46)

 { } [ ]{ } [ ]{ }* * *b M u C u= + 
 

(2-47)

where the subscript, n, indicates the result at the previous iteration. 

 The stiffness matrix for the linear-elastic response will not change throughout the 

dynamic simulation and can be computed and inverted prior to the first time step: 

 [ ] [ ] [ ]
1

1*
2

1
K M C K

tt

γ
ββ

−
−    = + +   ΔΔ   

(2-48)

The effective internal force is required for each iteration with the previous iteration 

identified as k-1: 

 { }( ) { } { }( ) { }1 1 *
1

k k

nb f p b
− −

+= − −  (2-49)

where p is the internal resisting force vector.  The incremental elastic displacement is 

calculated as: 

 { }( ) { }( )1 1*k k
u K b

− − ΔΔ =    (2-50)

The total change in displacement for the iteration and the predicted displacement are 

defined for the first iteration: 

 { }( ) { }( )k k
u uΔ = ΔΔ  (2-51)

 { }( ) { } { }( )k k

nu u u= + ΔΔ  (2-52)

 Once the solution has converged, the final values of displacement, velocity, and 

acceleration are written: 

 { } { }( )
1

k

n
u u

+
=  (2-53)
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 { } { } { }( )*

1

k

n
u u u

t

γ
β+

= + Δ
Δ

   (2-54)

 { } { } { }( )*
21

1 k

n
u u u

t β+
= + Δ

Δ
 

 
(2-55)

The values of the variables γ and β determine the assumptions for the variation of 

acceleration and velocity during the time interval.  According to reference [18], the 

Newmark-Beta can be made unconditionally stable by choosing values for γ and β that 

conform to the requirements: 

 

1
2γ ≥  

( )2
1

2
4

γ
β

+
≥  

(2-56)

For the case when β=¼ and γ=½, the result will be a constant acceleration across the time 

interval equal to the average of the predicted and corrected acceleration.  These 

parameters of γ and β are used throughout the remainder of this dissertation. 

2.5.2 Internal Resisting Force Vector 

 The internal resisting force vector is defined as the internal force within the structure 

as a result of the external loadings.  This variable is used to define the force induced on 

the structure after the previous iteration and input into (2-49) for the current iteration.  

For a linear-elastic problem, the incremental form of the equations of motion are defined: 

 [ ]{ }( ) [ ]{ }( ) [ ]{ }( ) { }
1 1 1 1

k k k

n n n n
M u C u K u f

+ + + +
+ + = 

 (2-57)

Using (2-52), the stiffness term can be re-written as: 

 [ ]{ }( ) [ ]{ }( ) [ ]{ }( ) { }
1 1 1

k k k

n n n
M u C u K u f

+ + +
+ + ΔΔ = 

 (2-58)
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Since the displacement at the previous iteration is known, that term can be moved to the 

right side of the equation.  If the structure will only experience non-linear deformation, 

the stiffness matrix will remain unchanged and the equation does not require any further 

modification.  However, if the structure will experience non-linear deformation, the 

internal force term is alternatively defined in terms of the current state of stress within the 

element: 

 { } [ ] [ ][ ]{ } [ ] { }T T

el el elV V
p B D B u dV B dVσ= =   

(2-59)

where the subscript, el, is used to denote the terms for a single element.  This relationship 

is expressed in the incremental form by only integrating over the incremental change in 

force.  Once the force terms have been computed for each element, they are assembled 

into the global internal resisting force vector.  The process is similar to that used to 

assemble the global inertia and stiffness matrices of the structure. 

 



  37 

 

Chapter 3  

Component Mode Synthesis 

 

 Due to the ever increasing complexity of problems being solved and the limitations 

of computer hardware, methods were developed during the early days of numerical 

computation to improve the efficiency of numerical simulations.  Many techniques were 

investigated to reduce the computational effort required to solve large static and dynamic 

problems with minimal computational effort.  Modal analysis techniques were developed 

to decouple the large set of ordinary differential equations and minimize the effort 

required to solve an iteration of the equations of motions [37], [38].  Substructuring 

methods were developed to approximate full structures as a collection of discrete 

substructures, allowing the simulation to be performed in parts.  These advances proved 

especially beneficial in the simulation of dynamic systems, which require the solution of 

the equations of motion over large time intervals with many individual time steps. 

3.1 Modal Analysis Overview 

 Every flexible structure has some inherent natural frequencies and mode shapes.  The 

modal frequencies of a structure are the eigenvalues, and the mode shapes are the 

eigenvectors.  This information is very important in the design of mechanisms to 

understand how a piece part or assembly of piece parts will respond under a time 

dependent forcing function.  If the substructures are excited at their natural frequencies,  
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large deformations and damage can result.  Mechanisms must be designed to operate 

within frequency spectra that will not result in damage or failure due to excitation of the 

natural frequency of any piece parts.   

 The natural frequency of an un-damped substructure is based on the distribution of 

mass and the stiffness of the part.  In general, increasing the mass or reducing the 

stiffness of a structure will result in lower natural frequencies.  Decreasing the mass or 

increasing the stiffness will result in higher natural frequencies.  The lowest natural 

frequencies of a structure occur with minimal deformation energy and usually result in 

the most simple mode shapes, while the higher frequency mode shapes are typically very 

complex.  Figure 3-1 shows an example of the mode shapes of the drive spring from the 

ratchet driver mechanism shown in Figure 1-1. 
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Figure 3-1:  Mode Shapes of Extension Spring (10 lowest natural frequencies) 
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Note that the mode shapes are in the three orthogonal axes of the Cartesian coordinate 

system.  The first and second natural frequencies produce essentially the same mode 

shape, just along a different axis.  The longitudinal mode shapes are not dependent on the 

radial orientation and occur at higher frequencies due to the increased stiffness in the 

longitudinal direction.  A list of the natural frequencies associated with the mode shapes 

in Figure 3-1 is shown in Table 3-1. 

Table 3-1:  Extension Spring Natural Frequencies 

Mode Frequency (Hz)
1 284
2 285
3 1122
4 1123
5 1250
6 1324
7 2379
8 2384
9 2489
10 2634  

 The process for determining the mode shapes and frequencies for a finite element 

structure is based on the solution of the un-damped equations of motion.  The simplest 

way to derive the solution procedure is to start with the process for a single degree of 

freedom system. 

3.1.1 Single Degree of Freedom Systems 

 A single degree of freedom system consists of a single degree of freedom with one 

lumped mass, damper, and linear stiffness.  An example of a single degree of freedom is 

shown in Figure 3-2. 
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Figure 3-2:  Single Degree of Freedom System 

The homogenous equation of motion for the single degree of freedom system is: 

 0mu cu ku+ + = 
 

(3-1)

This homogenous equation can be solved by assuming a solution of the form: 

 tu eλ=
 

(3-2)

The first and second derivatives of displacement with respect to time are: 

 tu eλλ=
 

(3-3)

 2 tu eλλ=  (3-4)

These results are plugged into the original homogeneous equation of motion: 

 02 =++ ttt keecem λλλ λλ  (3-5)

Since there is an exponential in each of the terms, the exponential can be divided out.  

Also, divide by m: 

 02 =++
m

k

m

cλλ  (3-6)

There are two solutions to (3-6) that can be determined by solving the quadratic equation.  

The discriminant of the quadratic equation should not be negative to provide two real 

roots: 
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(3-7)

Therefore, the general solution of the homogeneous equation of motion is: 

 1 2
1 2

t tu C e C eλ λ= +  (3-8)

For a single degree of freedom with a time dependent forcing function, the equation of 

motion is: 

 ( )mu cu ku f t+ + =   (3-9)

The homogeneous solution remains unchanged, but the particular solution will depend on 

the shape of the forcing function.  For example, if the forcing function is sinusoidal, then 

the particular solution will include a sinusoidal term. 

3.1.2 Multiple Degree of Freedom Systems 

 A multiple degree of freedom consists of two or more degrees of freedom with more 

than one lumped mass, damper, and linear stiffness.  An example of a two degree of 

freedom system is shown in Figure 3-3. 

 

Figure 3-3:  Two Degree of Freedom System 
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 The solution of a multiple degree of freedom system follows the same basic 

approach as the solution for a single degree of freedom system.  The homogeneous 

equation of motion is given by: 

 [ ]{ } [ ]{ } [ ]{ } 0M u C u K u+ + =   (3-10)

where M is the inertia matrix of the system, C is the damping matrix of the system, and K 

is the stiffness matrix of the system.  For the example two degree of freedom system in 

Figure 3-3, the inertia damping, and stiffness matrices are: 

 [ ] 1

2

0

0

m
M

m

 
=  
 

 (3-11)

 [ ] 1 2 2

2 2

c c c
C

c c

+ − 
=  −   (3-12)

 [ ] 1 2 2

2 2

k k k
K

k k

+ − 
=  −   (3-13)

The equation of motion for a system that includes forcing functions is given by: 

 [ ]{ } [ ]{ } [ ]{ } ( ){ }M u C u K u f t+ + =   (3-14)

For a finite element problem, these matrices will become very large because the rank of 

each matrix will be equal to the number of degrees of freedom.  For a large structure, the 

matrices will become so large that substantial computing resources will be required to 

solve the equations of motion.  Computational resources proved to be especially 

problematic for the earliest systems when computing resources were very limited.  Much 

research was conducted to develop methods of decoupling the full problem, allowing a 

large system could be divided into a collection of discrete subsystems. 
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3.2 Substructuring Overview 

 Component substructuring is the technique of dividing a very large finite element 

problem into a combination of smaller problems.  The initial motivation for the creation 

of such techniques was due to the limited computational resources during the early days 

of finite element analysis.  The key to the substructuring methods is that the number of 

degrees of freedom are reduced for the individual substructures, which reduces the 

computational effort required to solve the equations of motion for the overall structure. 

3.2.1 Early Component Mode Synthesis 

 One of the first methods of coupling of substructures was developed and published in 

1965 [39] and [40].  Hurty proposed dividing the structure into rigid body modes (R), 

constraint modes (C), and natural modes (N).  The mass matrix is partitioned as: 

 [ ]
RR RC RN

CR CC CN

NR NC NN

M M M

M M M M

M M M

 
 =  
  

 (3-15)

The stiffness matrix was partitioned as: 

 [ ]
RR RC RN

CR CC CN

NR NC NN

K K K

K K K K

K K K

 
 =  
  

 (3-16)

Since the first row and first column are rigid body modes, their stiffness matrices are 

zero.  The CN matrix is also zero because the constraints are fixed for normal modes.  

The simplified stiffness matrix then becomes: 
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 [ ]
0 0 0

0 0

0 0

CC

NN

K K

K

 
 =  
  

 (3-17)

The reduced matrices are then input into the dynamic equations of motion.  The 

elimination of some of the terms reduces the size of the equations of motion and 

decreases the computational effort required to iteratively solve a dynamic problem.  This 

formulation was incorporated in a finite element program to perform structural dynamic 

analysis [41]. 

3.2.2 Free Interface CMS 

 Free interface methods were developed with the fundamental assumption that the 

boundary degrees of freedom are free.  The natural frequencies of the unrestrained 

structure are retained directly.  The eigenvalues of the structure are determined from the 

un-damped equations of motion as: 

 [ ] [ ]( ){ }2 0i iK Mω ϕ− =  (3-18)

where the subscript i indicates that the eigenvalue and eigenvector are determined for 

each degree of freedom.  However, not every eigenvector needs to be retained to obtain 

an accurate solution because most natural frequencies all well above the force frequencies 

in real world problems.  The individual eigenvectors are assembled into columns in the 

transformation matrix, φN, and  neglecting the higher frequency eigenvalues results in a 

matrix that has fewer columns than rows.  Zero frequency modes will be present for a 

free interface method because the structure will have rigid body modes that must be 

eliminated.  The retained eigenvectors form a transformation matrix that transforms the 

modal coordinates to the global coordinates: 
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 { } [ ]{ }Nu qϕ=  (3-19)

 Substituting the transformation matrix into the un-damped equation of motion 

provides: 

 [ ][ ]{ } [ ][ ]{ } { }N NM q K q fϕ ϕ+ =  (3-20)

Premultiply by the transpose of the transformation matrix to obtain: 

 [ ] [ ]{ } [ ] [ ][ ]{ } [ ] { }T T T

N N N NM q K q fϕ ϕ ϕ ϕ+ =  (3-21)

The transformed inertia, stiffness, and force matrices are defined for convenience: 

 

[ ] [ ][ ]T

N NM Mϕ ϕ  =   

[ ] [ ][ ]T

N NK Kϕ ϕ  =   

{ } [ ] { }T

Nf fϕ=  

(3-22)

Since the transformation matrix results in orthonormalized coordinates, the effective 

inertia and stiffness matrix will be diagonal.  If the effective matrices are normalized 

based on the inertia, the equation of motion can be further simplified to: 

 { } [ ]{ } { }q q f+ Λ =  (3-23)

where the matrix, Λ, contains the eigenvalues of the un-damped problem along the 

diagonal. 

 The difficulty of the free interface method is in the constraints between the 

individual substructures.  The boundary degrees of freedom for any interacting 

substructures must be equal.  Therefore, the boundary degrees of freedom between two 

substructures is written: 

 { } { }I I II II
B Bq qϕ ϕ   =     (3-24)
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where the subscript indicates the boundary displacements and the superscripts indicate 

substructure I and II.  Through linear algebra, the boundary degrees of freedom of one of 

the structures is calculated in terms of the modal displacements of the other structure and 

represented with a second transformation matrix: 

 { } [ ]{ }q T r=  (3-25)

where r is the reduces set of modal coordinates.  The equations of motion of the complete 

structure are written: 

 [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ] { }T T T T

NT M T r T K T q T fϕ+ =  (3-26)

 The free interface method is particularly useful for problems that will utilize 

experimental modal information of specific substructures.  The coupling of experimental 

and computational methods for free interface methods have been investigated in 

reference [42].  Information of the experimental determination of modal results can be 

found in reference [43].  The convergence of the free interface CMS method is typically 

weak, meaning that many modes must be retained to obtain a reasonably accurate 

solution.  Other free interface formulations have been developed to improve the results 

[44], [45], and [46].  A comparison of free interface methods is incorporated in 

commercial finite element programs is discussed in [47]. 

3.2.3 Fixed Interface CMS 

 A method of coupling structures for dynamic analysis was developed and published 

in 1968 [48].  The coupling of the substructures in this method is fixed.  The mass and 

stiffness matrices are partitioned based on boundary (b) and interior (i) degrees of 

freedom and the un-damped equations of motion are written: 
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0ii ib i ii ib i

bbi bb b bi bb b

M M u K K u

fM M u K K u

         
+ =        

        


  (3-27)

The upper line of the substructured equation is equal to zero, allowing that portion of the 

problem to be simplified by applying a reduction technique.  Since the equations are 

homogeneous, the modal solution of the internal portion of the solution can be 

determined from: 

 { } { } 0ii i ii iM u K u   + =     (3-28)

The eigenproblem is written: 

 ( ){ }2 0ii ii
i iK Mω ϕ   + =     (3-29)

where the subscript i indicates that the eigenvalues and eigenvectors are determined for 

each degree of freedom.  The eigenvectors are organized into columns and stored in the 

matrix, φN.  For real world problems, it is not necessary to retain all of the original natural 

frequencies of the structure because only the first few modes of the structure are 

activated.  This results in an eigenvalue matrix that has fewer column than rows because 

the higher frequency modes are neglected.  Determination of the number of modes that 

should be kept is dependent on the problem of interest and the expected excitation 

frequencies [49]. 

 To complete the transformation matrix, the displacement of the internal nodes must 

be related to the displacement of the boundary nodes of the structure.  In the fixed 

interface CMS approach, this is accomplished using the Guyan reduction technique [50].  

Neglecting the acceleration in (3-27), the equation is written: 

 
0ii ib i

bbi bb b

K K u

fK K u

     
=    
    

 (3-30)
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Upon solving the top portion of the subdivided equation, the following relationship is 

obtained: 

 { } { } 0ii i ib bK u K u   + =     (3-31)

Equation (3-31) can be solved for the displacement of the internal nodes in terms of the 

displacement of the boundary nodes to provide: 

 { } { } [ ]{ }1i ii ib b b
Cu K K u uϕ

−
   = − =     (3-32)

where φC is defined to be the constraint modes of the substructure.  The complete 

transformation matrix is then written as: 

 [ ]
0

i
N C

b bb

q qu

I u uu

ϕ ϕ       
= = Φ      
      

 (3-33)

The transformation matrix is substituted into the original equation of motion by 

substituting for the global displacements: 

 [ ][ ]{ } [ ][ ]{ } [ ][ ]{ } { }M q C q K q fΦ + Φ + Φ =   (3-34)

Premultiply both sides of (3-34) by the transpose of the transformation matrix to obtain: 

 { } { } { } { }M q C q K q f    + + =       (3-35)

where the following relations have been defined: 

 [ ] [ ][ ]T
M M  = Φ Φ   (3-36)

 [ ] [ ][ ]T
C C  = Φ Φ   (3-37)

 [ ] [ ][ ]T
K K  = Φ Φ   (3-38)

 { } [ ] { }T
f f= Φ

 
(3-39)
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The transformation to the effective inertia and damping matrices reduces the size of the 

original equations of motion because all of the modes for the internal degrees of freedom 

were not retained.  With the fixed interface CMS method, the convergence is generally 

good because all of the boundary degrees of freedom are retained without any reduction.  

One major disadvantage of this method compared to the free interface CMS method is 

that the size of the reduced problem is larger as a result of the boundary degrees of 

freedom.  If the structure is split into many different substructures, the number of 

boundary degrees of freedom are increased and must all be retained.  Another 

disadvantage of the original fixed interface CMS method is that the effective inertia and 

stiffness matrices are not orthonormal but this can be corrected in a subsequent operation. 

3.3 Orthonormalization 

 It is important to note that the equations of motion defined in (3-35) are not a 

function of orthonormalized coordinates because Φ is a transformation matrix rather than 

just the eigenvalue matrix of the original equations of motion.  The complexity of the 

dynamic problem can be further reduced by orthonormalizing the un-damped portion of 

(3-35) to obtain: 

 { } 0i iK M Nλ    − =      (3-40)

The eigenvalue matrix, N, is typically scaled based on the inertia matrix of the structure, 

allowing the orthonormalized inertia and stiffness matrices to be written: 

 [ ] [ ] [ ]T
I N M N =    (3-41)

 [ ] [ ] [ ]T
N K N Λ =    (3-42)
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The final equations of motion can be written as a set of decoupled equations using index 

notation: 

 2 ˆˆ ˆ ˆ2i i i i i i iq q q fξ λ λ+ + = 
 

(3-43)

Equation (3-43) is based on the assumption of Rayleigh type damping with ξi defined as 

the critical damping parameter [17].  Further information on modal as well as non-

classical damping can be found in [51], [52], [53], and [54]. 

3.4 Modal Mass Participation Factor 

 The modal participation factors can provide an indication of the number of modes 

that should be kept when using a modal reduction technique [55], [56], and [57].  The 

lower frequency modes typically have a larger modal mass, which indicates that those 

frequencies contribute significantly to the dynamic response.  The cumulative mass is 

obtained by summing the current modal participation factor with all lower frequencies to 

indicate the total mass participation of retaining all frequencies up to the selected 

frequency.  A more useful measure is obtained by dividing the cumulative mass by the 

total mass of the structure to obtain a percentage.  This can be examined to determine the 

number of modes that should be retained to include the desired portion of the total mass. 

 The full inertia and stiffness matrices of the substructure must be converted to a 

modal representation to determine the modal participation.  The problem is transformed 

to a modal representation by solving an the un-damped eigenproblem to obtain the 

transformation matrix: 

 { } [ ]{ }u N q=
 (3-44)
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where N is a matrix of the eigenvectors of the original problem arranged by column and q 

is the deformation in the normalized coordinate system.  The transformation matrix, N, 

can be scaled based on the inertia matrix of the substructure to reduce the complication of 

later calculations.  An influence vector, r, is introduced to indicate the displacement of 

the mass that results from a unit displacement in the global coordinate system.  This will 

typically be equal to one for all degrees of freedom that are not constrained.  Using the 

influence vector, the coefficient vector is defined: 

 { } [ ] [ ]{ }T
L N M r=

 
(3-45)

The modal participation factors are then obtained as: 

 i
i

ii

L

M
Γ =

 (3-46)

If the transformation matrix, N, is scaled based on the inertia matrix, the inertia matrix 

can be eliminated from (3-45) and the effective inertia matrix in (3-46) can be eliminated 

as well. 

 The modal participation factors may be summed for all degrees of freedom or in 

each direction of the global coordinate system.  For problems that will primarily 

experience deformation in one direction, it may be more beneficial to sum the modal 

participation factors in that direction to aid in the determination of the number of modes 

that should be kept.  When used in conjunction with a CMS technique, the global inertia 

and stiffness matrices should be replaced with the appropriate portion of the CMS 

representation.  For the fixed interface CMS approach, the modal reduction is only 

occurring on the internal degrees of freedom of the substructure.  Only the partition of the 

global inertia and stiffness matrices corresponding to the internal degrees of freedom 
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need to be evaluated because the remaining degrees of freedom will be retained without 

any reduction. 
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Chapter 4  

Plasticity Theory 

 

 The theory of plasticity and the incorporation within the finite element method has 

dramatically improved the ability to model complex engineering problems.  Plasticity 

broadens the modeling capabilities to simulate the response of systems that experience 

non-linear material deformation as a result of loading beyond the elastic capabilities of 

the material.  Such situations occur due to stress concentrations or during abnormal 

environments that result in the material being loaded beyond its yield strength. 

4.1 Yield Criteria 

 Many yield functions have been developed to predict the response of materials to the 

application of arbitrary loads [58].  The goal of this dissertation is to investigate the 

dynamic response of mechanisms composed of primarily metal piece parts, so the yield 

functions developed for metal materials is most applicable.  The two most common yield 

criteria for metals are the Tresca theory and the von Mises theory.  Figure 4-1 graphically 

demonstrates the difference in the yield surfaces of the Tresca and von Mises theories for 

a two-dimensional case. 
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Figure 4-1:  Tresca and von Mises Yield Criteria 

 The Tresca and von Mises criteria each predict yielding at the same points when the 

stress state is aligned in the principal stress directions or when two principal stresses are 

equivalent.  However, the Tresca criteria will predict yielding before the von Mises 

criteria in all other stress states, meaning that the Tresca criteria is more conservative 

than the von Mises criteria. 

4.1.1 Tresca Yield Criteria 

 The Tresca yield criterion was proposed in 1864 as a method of predicting the onset 

of yielding in metal materials [59].  The Tresca yield criteria predicts that yielding will 

occur if the maximum shear stress in the element is equal to a critical material parameter, 

which can be written: 
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 ( )max max min

1

2
τ σ σ κ= − =

 
(4-1)

The critical material parameter is defined: 

 
2
Yσκ =

 
(4-2)

where σY is the yield strength of the material as determined through a uniaxial tensile test. 

4.1.2 von Mises Yield Criteria 

 The yield criterion commonly attributed to von Mises [61] was actually first 

published by Huber [60].  This theory is based on the assumption that the onset of yield is 

based on the value of the second invariant of the deviatoric stress tensor.  Yielding will 

occur if the second invariant of the deviatoric stress tensor is equal to a critical material 

parameter, which can be written as: 

 2
2J κ′ =

 
(4-3)

where the second invariant of the deviator stress tensor is defined as: 

 { } { }( )2

1

2

T
J S S′ =

 
(4-4)

if the deviator stress tensor is written in vector notation.  The critical material parameter 

is defined as: 

 
3
Yσκ =

 
(4-5)

where σY is the yield strength of the material as determined through a uniaxial tensile test. 
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4.2 Prandtl-Reuss Plasticity 

 The fundamentals of the development of finite elements in plasticity are discussed in 

detail in references [62], [63], [64], [65], [66], and [67].  The first step in the plasticity 

algorithm is to determine whether the yield stress of the material has been exceeded at 

any element within the finite element problem.  Since only the nodal displacements are 

known at each time step, the nodal displacements must first be used to calculate the 

elemental strains.  The elastic strain within the element is: 

 { } [ ]{ }
e e

B uε =
 

(4-6)

where B is the strain matrix of the element and the vector, u, is the nodal displacements 

of the element of interest.  The elemental elastic stress is calculated according to the 

Hooke’s law relationship: 

 { } [ ]{ }
e e

Dσ ε=
 

(4-7)

where D is the elastic material stiffness matrix. 

 In order to use the von Mises yield criteria, the value of the second invariant of the 

deviatoric stress tensor must be determined.  The deviatoric stress is first calculated by 

subtracting the hydrostatic stress vector from the vector of stress components: 

 { } { } { }hS σ σ= −
 

(4-8)

The stress terms are written in a vector form for storage convenience since only six of the 

nine components are unique.  The hydrostatic stress vector is: 
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x y z
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σ σ σ

σ σ σ σ

 + + 
  
  
 + +      =  + + 
  
  
 
 
 
 
 

 (4-9)

The effective stress is calculated according to the relationship: 

 { } { }( )
1

23

2

T

e S Sσ =
 

(4-10)

This effective stress is compared against the yield strength of the material, which is a 

material property, to determine whether yielding has occurred [68].  For an isotropic 

hardening constitutive model, the hardening of the material can be defined according to 

the following relationship with the assumption of bi-linear hardening: 

 0
0

L
p

L

H H
H H ε

ε
−

= +
 (4-11)

H0 is the initial yield stress of the material.  HL and Lε  are the tensile strength and strain 

limit, respectively.  The variables in the second term are the slope of the material 

hardening multiplied by the effective plastic strain already induced in the material. 

 The onset of plastic deformation is determined by evaluating the yield function.  For 

a yield function that is defined according to the second invariant of the stress, the 

relationship will be a function of the stress and any hardening parameters.  For the 

remainder of this dissertation, isotropic hardening will be assumed.  For hardening 

materials, the current yield strength is typically a function of the total plastic work or the 
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total plastic deformation of the element.  For the work hardening hypothesis, the 

incremental plastic work is defined: 

 { } { }T

p pdW dσ ε=
 

(4-12)

For the strain hardening hypothesis, the incremental effective plastic strain is defined: 

 { } { }
1

22

3

T

p p pd d dε ε ε =     
(4-13)

The value of the incremental effective plastic strain is not simply equal to the incremental 

plastic strain to ensure that path dependency is maintained.  The effective plastic strain is 

always increasing and never allowed to decrease, which would be physically impossible. 

 It has been shown that the work hardening hypothesis, rather than the strain 

hardening hypothesis, is most correct in terms of the laws of thermodynamics [69].  

However, when used with isotropic hardening and the von Mises yield criteria, the two 

hypotheses are equivalent.  Therefore, the yield function will be defined: 

 ( ) { }( ) ( ), 0P PF fσ ε σ κ ε= − =
 

(4-14)

The first term is assumed to be only a function of the current stress and the second term is 

assumed to be only a function of the effective plastic strain.  Since the yield function is 

assumed to be a function of the second invariant of the deviatoric stress, the first term of 

(4-14) is: 

 { }( ) { } { }( )2

1

2

T
f J S Sσ ′= =

 
(4-15)

The isotropic hardening function is assumed to be a function of the effective plastic 

strain: 
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 ( ) ( )21

3p pHκ ε ε=
 

(4-16)

where H is defined to be the hardening function of the material.  This function can be 

determined from a uniaxial tensile test and approximated according to the previously 

defined linear hardening model in (4-11) or other models [65]. 

 An incremental approach is used because the stress state of the elements can be 

continuously varying.  The equations of motion are solved incrementally and the state of 

stress in the elements is calculated to determine whether yielding has occurred within the 

time step.  After evaluation of (4-14), a determination is made of whether the element is 

experiencing plastic deformation.  If the yield function is less than zero, then the element 

only experienced elastic deformation during the increment.  If the yield function is 

greater than zero, then the element is experiencing plastic deformation as a result of the 

incremental strain.  Since it is physically impossible for the yield function to be greater 

than zero, the state of stress or strain within the element must be adjusted to equate the 

yield function to zero.  For a perfectly plastic constitutive model, the calculated elastic 

strain must be re-evaluated if the stress exceeds the yield strength of the element. 

 A Newton-Raphson procedure is used to determine the plastic strain within the 

element [65].  Using the Prandtl-Reuss method of plasticity [66], the associated flow rule 

is written: 

 ( )ij p
ij

f
d dε λ

σ
∂=

∂  (4-17)

With the use of the von Mises yield criterion, the derivative of the yield function with 

respect to the stress is: 
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 ij
ij

f
S

σ
∂ =

∂  (4-18)

Upon substitution of (4-18) into (4-17): 

 ( )ij ijp
d d Sε λ=

 (4-19)

This relationship will provide the full plastic deformation tensor but it must be converted 

to an effective plastic strain for use in the hardening function.  Since plastic deformation 

is non-conservative, the effective plastic strain is defined: 

 ( ) ( ) ( )2

3

T

ij ijp p p
d d dε ε ε =     

(4-20)

The incremental effective plastic strain is added to the previous effective plastic strain: 

 ( ) ( ) ( )
p p p

dε ε ε= +
 (4-21)

The Newton-Raphson procedure is used to determine the value of dλ that satisfies the 

relationships.  For a linear hardening rule, the iterative procedure will converge to the 

correct solution in two iterations.  For more complex hardening rules, additional 

iterations will be required. 

4.3 Determination of Strain Contributions 

 During each time step, the calculated nodal deformations are assumed to follow a 

linear elastic relationship because the stiffness matrix has not been updated.  The stress is 

calculated to determine whether the element is experiencing plastic deformation during 

the iteration.  If the stress within the element exceeds the yield stress, then the 

incremental plastic strain within the element is determined.  This incremental plastic 

strain effectively increases the total strain within the element.  Since the element is 
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experiencing more deformation than predicted by the linear elastic relationship, the 

element appears to have a lower stiffness. 

 After the incremental plastic strain tensor is determined, the value of the total 

incremental strain is updated: 

 e pd d dε ε ε= +
 (4-22)

For a hardening material, the incremental elastic strain remains unchanged during the 

Newton-Raphson procedure, but the total incremental strain is increased by the 

incremental plastic strain.  For an elastic-perfectly plastic constitutive model or for 

softening, the incremental elastic strain would also require modification during the 

iterative solution of the increment. 
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Chapter 5  

Integration of CMS and Plasticity Theory 

 

 Traditional CMS techniques only predict the linear elastic response of a structure to a 

time varying or constant forcing function.  In order to approximate non-linear material 

response, the linear elastic response must be coupled with plasticity theory to provide the 

total elastic and inelastic response of the structure.  After determination of the linear 

elastic response, the elemental stress and strain are modified using plasticity theory, and 

then the two solutions are coupled to determine the total response during the incremental 

time step. 

5.1 Determination of Non-linear Response 

 Using plasticity theory, the state of stress for each element must be evaluated to 

determine whether the element is experiencing plastic deformation.  If the yield stress of 

the material has been exceeded within the incremental time step, then the value of plastic 

strain is calculated and added to the elastic strain to provide the total strain within the 

element.  Since the effect of plastic deformation is to increase the total strain within the 

element beyond that predicted by the elastic response, the element effectively appears to 

be less stiff when plastic deformation occurs.  Therefore, a tangential elemental stiffness 

matrix can be determined for the incremental time strep to provide the total (elastic and 

plastic) strain within the element. 
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5.1.1 Updated Material Stiffness-Hardening Models 

 For hardening constitutive models, the yield strength of the material increases with 

increased plastic strain.  Eventually, the material will reach its ultimate tensile strength 

and softening will begin to occur, but for this dissertation only the hardening portion of 

the response is investigated.  For yielding defined in terms of a uniaxial stress strain 

hardening curve, the yield function is defined to be a function of the current stress of the 

element with the yield strength of the material a function of some chosen hardening 

parameter.  The hardening parameter is chosen to be the effective plastic strain; therefore, 

the yield function is written: 

 ( ) ( ) ( ), 0p p
ij ijF fσ ε σ κ ε= − =

 
(5-1)

The derivative of the yield function is termed the consistency condition and are written: 

 ( ), 0p
ij ij

ij

F F
dF d dσ ε σ κ

σ κ
∂ ∂= + =
∂ ∂  (5-2)

Using the Prandtl-Reuss definition for plastic strain the incremental plastic strain is: 
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∂ ∂  (5-3)

The derivative of the yield function with respect to the current stress can be written in 

terms of f because the hardening parameter is only a function of the effective plastic 

strain. 

 Using the relationship for the incremental elastic stress from (4-7), the total 

incremental strain is written: 
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Chapter 5.  Integration of CMS and Plasticity Theory 64 

 

If (5-4) is premultiplied on both sides by ijkl
ij

f
D

σ
∂

∂
, the following is obtained: 

 ijkl kl mn rstu
ij mn rs tu

f f f f
D d d d Dε σ λ

σ σ σ σ
∂ ∂ ∂ ∂= +

∂ ∂ ∂ ∂  (5-5)

The goal is to use (5-5) to define a relationship for the plastic multiplier, dλ, so the first 

term on the right side must be rewritten in terms of the plastic multiplier.  From the 

consistency condition in (5-2), the following relationship is obtained: 

 mn
mn

f F
d dσ κ

σ κ
∂ ∂= −

∂ ∂  (5-6)

The right side of (5-6) can be written in terms of the plastic multiplier by defining a new 

scalar variable: 
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(5-7)

Equation (5-7) can then be rewritten: 
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∂  (5-8)

 Using the newly introduced scalar variable, A, (5-5) can be written as: 

 ijkl kl rstu
ij rs tu

f f f
D d Ad d Dε λ λ
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(5-10)

Solving for the plastic multiplier, dλ: 
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Substituting (5-11) into the total incremental strain relationship, (5-4), results in: 

 1
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d D d dε σ λ
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 (5-12)

In order to be able to solve (5-12) for the incremental stress, premultiply both sides by the 

elasticity tensor, D: 
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Solving for the incremental stress, dσ: 
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(5-15)
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ij ijkl kld D dσ ε=

 

(5-16)

where the elastic-plastic material stiffness tensor can be defined: 
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 The relationship derived for the elastic plastic material stiffness tensor can be 

simplified by including the assumptions of the Prandtl-Reuss plasticity theory.  From 

(4-18), the derivative of the yield function with respect to the current stress is written: 

 { }ij
ij

f
S S

σ
∂ = →

∂

 

(5-18)

where the deviatoric stress components are written in vector notation.  The scalar value of 

A in (5-7) can be simplified using (4-16): 
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(5-19)
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(5-20)

The final simplified version of (5-17) can be written in matrix form as: 

 [ ] [ ] [ ]{ }{ } [ ]
{ } [ ]{ }

T

Tep

D S S D
D D

A S D S
= −

+
 (5-21)

5.1.2 Updated Material Stiffness-Perfectly Plastic Model 

 For perfectly plastic constitutive models the procedure used to determine the elastic 

plastic material matrix must be modified from that used for hardening constitutive 

models.  The yield function of a perfectly plastic constitutive model is defined: 

 ( ) ( ) 0 0ij ijF fσ σ κ= − =
 

(5-22)

where the hardening function is replaced with a constant and F is a function of stress 

only.  The consistency condition, or the derivative of the yield function, can then be 

written: 
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(5-23)

The total strain increment is the same as defined in (5-4): 
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Premultiply both sides of the equation by ijkl
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(5-25)

However, from the consistency condition (5-23), the first term on the right side of the 

equation is equal to zero, so (5-25) can be rewritten: 
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Solving (5-26) for the plastic multiplier, dλ: 
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Equation (5-27) can then be substituted into the decomposed incremental strain 

relationship from (5-24) to produce: 
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In order to solve for the incremental stress, premultiply both sides by the elasticity 

matrix: 
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Solve (5-29) for the incremental stress: 
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where the elastic-plastic stiffness tensor can be defined: 
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Using the same assumptions as for the hardening constitutive models, the elastic plastic 

stiffness tensor can be simplified to: 

 [ ] [ ] [ ]{ }{ } [ ]
{ } [ ]{ }

T

Tep

D S S D
D D

S D S
= −  (5-33)

The final form is written is not written in index notation to indicate that the elasticity 

matrices and deviatoric stress tensor are stored in vector notation. 
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5.1.3 Plastic Stiffness Matrix 

 Using the updated elastic-plastic stiffness matrix derived previously, the plastic 

stiffness matrix can be determined using a procedure similar to the original derivation of 

the stiffness matrix of the structure.  Since not every element within the structure will 

necessarily experience yielding at the same time, the full stiffness problem does not need 

to be recomputed.  Only the elements that are experiencing plastic deformation contribute 

to the creation of the plastic stiffness matrix of the structure with the decomposition 

defined: 

 [ ] [ ] [ ]ep e p
K K K= +

 
(5-34)

This corresponds to the decomposition of the material stiffness matrix for an elastic-

plastic problem as: 

 [ ] [ ] [ ]ep e p
D D D= +

 
(5-35)

From the relationship derived in (5-21), the plastic contribution to the elastic-plastic 

material stiffness matrix is: 
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Tep

D S S D
D D

A S D S
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 (5-36)

where D is defined to be the elastic material stiffness matrix.  For hardening materials, 

the scalar variable A is determined from (5-20).  For perfectly plastic constitutive models, 

the scalar variable A is zero. 

 The plastic stiffness for each element can be derived according to the procedure used 

to generate the elastic stiffness matrix with a slight modification.  The elastic material 

stiffness matrix is replaced with the plastic decomposition of the elastic-plastic material 

stiffness matrix to become: 
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 [ ] [ ] [ ] [ ]element T

p p
k B D B dxdydz=     (5-37)

Or in terms of isoparametric coordinates: 

 [ ] [ ] [ ] [ ]1 1 1

1 1 1

element T

p p
k B D B J d d dξ η ζ

+ + +

− − −
=     (5-38)

The elemental stiffness matrices are assembled into a global plastic stiffness matrix for 

later use in the determination of the global elastic-plastic stiffness matrix. 

5.2 Coupling of Linear and Non-linear Responses 

 In order to combine the linear and non-linear responses, the plastic deformation must 

be induced through a method that can be superimposed on the elastic response.  One 

potential method of inducing the plastic deformation in an equivalent elastic problem is 

by imposing a pseudoforce.  The pseudoforce is a derived force that produces the 

required plastic deformation when superimposed on the elastic problem. 

5.2.1 Determination of Static Pseudoforce 

 The primary input for the creation of the pseudoforce for the static condition is the 

global elastic-plastic stiffness matrix, which is determined by integrating over the 

elements using the elastic-plastic material stiffness matrix.  Everything is ultimately 

derived from the incremental plastic deformation determined by the plasticity algorithm.  

In order to have minimal impact, or computation cost, on the linear elastic solution 

procedure, only the pseudoforce acts on the original linear elastic problem directly.  

Within the Newmark-Beta incremental integration algorithm, the pseudoforce will be 

translated into nodal displacements through multiplication with the inverse of the global 

elastic stiffness matrix.  The inertia and damping matrices also affect the translation from 
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force to displacement but they will be discussed later.  The goal is to determine the 

incremental force, which satisfies the relationship: 

 [ ] { } { }1

e r pK df du
− =  (5-39)

where Ke is the global elastic stiffness matrix, dfr is the unknown increment of the 

pseudoforce, and dup is the increment of nodal deformation produced by the plastic 

deformation of the elements.  Equation (5-39) can be solved for the increment of the 

pseudoforce as: 

 { } [ ]{ }r e pdf K du=  (5-40)

 The incremental nodal deformation caused by plastic deformation of the elements is 

unknown but can be determined by starting with a decomposition of the incremental 

nodal displacement: 

 { } { } { }ep e pdu du du= +  (5-41)

Solving for the incremental plastic deformation yields: 

 { } { } { }p ep edu du du= −  (5-42)

The incremental nodal deformation caused by the elastic deformation of the element is 

already known because it was used to determine the plastic deformation, but the elastic-

plastic nodal deformation is unknown.  This incremental deformation can be determined 

by examining the static portion of the equation of motion for the elastic-plastic 

deformation: 

 { } { }ep ep epK du df  =   (5-43)
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However, the incremental elastic-plastic nodal force is equivalent to the incremental 

elastic nodal force, because plastic deformation does not change the physical external 

loads.  Equation (5-43) can be rewritten as: 

 { } { }ep ep eK du df  =   (5-44)

Since every term except the incremental elastic-plastic nodal deformation is known, the 

relationship can be written: 

 { } { }1

ep ep edu K df
−

 =    (5-45)

 All of the required unknowns have been determined to solve for the incremental 

pseudoforce.  Using (5-42) and (5-45), equation (5-40) becomes: 

 { } [ ] { } { }( )1

r ep e edf K K df du
−

 = −   (5-46)

where the global elastic-plastic stiffness matrix is defined: 

 [ ]ep pK K K   = +     (5-47)

 The incremental pseudoforce can then be introduced into the Newmark-Beta solution 

procedure as a nodal force.  The pseudoforce is not a physical external force acting on the 

nodes but is only used to produce the required nodal deformations predicted by the 

plasticity algorithm.  If the nodal deformations caused by both elastic and plastic 

deformation are determined in the same Newmark-Beta increment, the pseudoforce can 

be added to the external nodal forces through superposition.  At least one additional 

iteration of the time step is required to determine the elastic deformation of the increment 

followed by additional iterations to converge the implicit solution of the equations of 

motion across the time step. 
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5.2.2 Determination of Dynamic Pseudoforce 

 A similar procedure can be used to develop the plastic pseudoforce required for the 

more general dynamic condition.  If plasticity theory predicts that the element has yielded 

during the time step, additional calculations are required to determine the appropriate 

nodal displacements within the substructure.  The first iteration of the time step is always 

assumed to be elastic, but if the effective stress within any element has exceeded the yield 

strength of the material then additional iterations will be required.  Special consideration 

is needed for elements that have just yielded during the current time step because a 

portion of the deformation during that time step will likely be elastic and a portion will be 

plastic.  The ratio of the incremental stress that contributes to plastic deformation within 

the time step is: 

 e Y

e

R
σ σ

σ
−

=
Δ

 (5-48)

where σe is the effective stress defined in (4-10), σY is the material yield stress, and Δσe is 

the incremental effective stress within the current iteration.  A portion of the incremental 

stress causes only elastic deformation, where the components are assumed to be 

proportional to the original incremental components: 

 { } ( ){ }1rd R dσ σ= −  (5-49)

Any remaining portion of stress is contributing to elastic-plastic deformation and must be 

converged to the yield surface of the material model.  For this work, a Newton-Raphson 

technique was employed to determine the appropriate value of the plastic multiplier, dλ, 

to satisfy the yield function in equation (4-14). 

 After the first iteration of the equations of motion, any elements experiencing plastic 

deformation require a modification to the vector of the internal resisting forces to produce 
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the appropriate deformation in further iterations.  Based on the elastic prediction and the 

elastic-plastic material stiffness matrix, the modified components of stress within the 

element are given by: 

 { } { } { } { }p r ep ed R D dσ σ σ ε = + +    (5-50)

where σp are the converged components of stress at the previous time step, and dεe is 

incremental elastic strain predicted during the first iteration of the equations of motion at 

the current time step.  These components of stress are used to determine the corrected 

internal resisting force for the next iteration at the current time step.  The internal 

resisting force of an element, in incremental form, is given by: 

 { }( ) [ ] { }k T

e V
dp B d dVσ=   

(5-51)

This integration is repeated for each element within the substructure and assembled into 

the global internal resisting force vector.  This vector as well as the external force vector 

is defined in the global coordinate system but the remainder of the residual forces are 

defined in the reduced modal coordinate system after the first elastic iteration.  The 

portion of the global effective force vector defined in terms of the information from the 

previous converged time step is calculated using a transformation of the constant 

acceleration and velocity vectors: 

 { }( ) [ ][ ]{ } [ ]{ }* * *k

g u ep ub M P q C P q = +     (5-52)

This term is calculated prior to the first elastic-plastic iteration and used for subsequent 

elastic-plastic iterations of the current time step.  The modal displacements from all 

previous iterations at the current time step also produce inertial and damping forces that 

are given by: 
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  (5-53)

The conversion of the incremental deformation of the elastic iteration can be determined 

during the process of calculating the elemental stresses to reduce computational expense.  

The global effective force vector for the current iteration is written: 

 { }( ) { } { }( ) { }( ) { }( )*

1

kkk k

g g gn
b f p b b

+
= − − −   (5-54)

This effective elastic-plastic force can be used in conjunction with an initial stiffness 

method and iterated until convergence is achieved.  Alternatively, the force can be 

converted to a form that follows the techniques of a tangential stiffness method by: 

 { }( ) { }( )1* *k k

ep ep gdf K K b
−

   =      (5-55)

where the effective initial and appropriate elastic-plastic stiffness matrices are employed.  

Combined tangential and initial stiffness methods will reduce the number of operations 

required for future iterations if the curvature of the material hardening curve is large.  The 

effective elastic-plastic force in (5-55) is defined in terms of the global coordinate system 

but is projected on the modal coordinates using: 

 { } [ ] [ ] [ ]{ } { }T T

q ep f epdf N P df P df = Φ =    (5-56)

The effective elastic-plastic force applied in the modal coordinate system can be input 

directly in the elastic CMS solution procedure defined previously for all remaining 

iterations. 

 This process of forming the effective force vector is similar to the mode acceleration 

method because the static contributions to the problem are retained without reduction 

while the inertia and damping contributions are determined from a modal representation.  

The mode acceleration method has been employed as a technique to increase the 
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accuracy of a mode superposition method without increasing the number of retained 

modes [70].  The conversion of the effective force from a global to a reduced modal 

representation will result in force components that are not represented.  A sufficient 

number of modes must be retained in order to adequately represent the force of the plastic 

deformation.  Additional techniques of recovering the un-projected force are also 

discussed in Chapter 6. 

5.3 Iteration of Plastic Response 

 The first iteration of each time step is always assumed to be elastic because it is not 

known whether the elements within the structure are experiencing elastic, plastic, or 

elastic-plastic deformation.  The deformation for the first iteration is determined based on 

the original stiffness matrix and corrected in later iterations.  Upon evaluating the stress 

after the first iteration, plasticity theory will indicate whether any of the elements have 

experienced plastic deformation.  There are two basic approaches for determining the 

deformation in the subsequent iterations, which are the initial and tangential stiffness 

methods.  Both methods are iterative techniques and have their own respective 

advantages and disadvantages. 

5.3.1 Tangential Stiffness Method 

 The tangential stiffness method is based on the assumption that all subsequent 

iterations of a numerical solution are predicted using the slope at the current iteration.  

The function is linearized from one iteration to the next, which requires the time step to 

be sufficiently small.  For a monotonically increasing function of a single variable, the 

solution algorithm will converge according to the steps in Figure 5-1.  On the first 
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iteration, the solution is predicted based on the current slope of the function.  Note that 

the curve is just transitioning from a linear to non-linear during this iteration.  If the 

function had remained linear, the prediction from the first iteration would have been 

correct and not required further iteration.  However, the function is now non-linear and a 

convergence check indicates that the stress is lower than predicted.  On the second 

iteration, the local slope is determined at the actual stress and strain from the first 

iteration.  The result of the second iteration provided a prediction that is much closer to 

the correct solution but the stress is still over-predicted.  The same process is repeated for 

the third iteration, which results in a prediction that is nearly equivalent to the true 

solution. 
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Figure 5-1:  Tangential Stiffness Method – Power law hardening 
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 The number of iteration required to achieve convergence is dependent on the 

curvature of the function and the convergence tolerance.  A tight convergence tolerance 

will produce an accurate result but will typically require more iterations.  A loose 

convergence tolerance will produce a less accurate result but will typically achieve 

convergence in fewer iterations.  For the special case of a bi-linear function, convergence 

will be achieved in the second iteration because the tangential slope will be equal to the 

constant slope of the function as shown in Figure 5-2.  This is the primary reason that the 

assumption of a bi-linear material hardening model is computationally cheaper in an 

elastic-plastic analysis. 
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Figure 5-2:  Tangential Stiffness Method – Bi-linear hardening 

 The primary advantage of the tangential stiffness method is that convergence can be 

achieved with relatively few iterations.  A new slope is calculated with each iteration that 
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improves the accuracy of the prediction for the next iteration.  The prediction is only in 

error by the change in slope that occurs after the current prediction.  However, the 

primary disadvantage of the tangential stiffness method is that the slope must be 

recalculated at each iteration.  For a single variable function, the computational cost is 

insignificant, but this corresponds to recalculating the elemental stiffness matrix for the 

finite element method, which is rather computationally expensive.  Any element that 

experiences yielding requires the calculation of a new elastic-plastic stiffness matrix and 

elemental stiffness matrix for each plastic iteration. 

5.3.2 Initial Stiffness Method 

 The initial stiffness method is based on the assumption that the original stiffness 

matrix is used for all iterations until convergence is achieved.  This method does not 

require that the slope of the function be determined because the original slope is used for 

all predictions.  The iterative procedure is linearized between time steps but without 

requiring any further knowledge of the function. 



Chapter 5.  Integration of CMS and Plasticity Theory 80 

 

36

41

46

51

56

61

0.001 0.0015 0.002 0.0025 0.003

Strain

S
tr

es
s

 

Figure 5-3:  Initial Stiffness Method – Power law hardening 

 For a function of a single variable, the algorithm to achieve convergence is shown in 

Figure 5-3.  After the first iteration, the stress is over-predicted because the slope of the 

curve has decreased after passing the yield point of the material.  The second and 

following iterations continue to over-predict the function because the actual slope of the 

curve is always smaller than the prediction slope.  With enough iterations, the predictions 

will converge on the actual solution within the convergence limits defined. 

 The convergence for a bi-linear hardening model is shown in Figure 5-4.  Since the 

slope of the hardening function immediately changes after the yield point, the initial 

iterations do not converge as quickly as for the power law hardening function.  The 

average slope of the bi-linear hardening function throughout the time step is smaller than 

the power law hardening function and the iterations do not converge as quickly.  
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However, if extended into the softening portion of the curve, the initial stiffness method 

would converge as quickly as the tangential stiffness method. 
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Figure 5-4:  Initial Stiffness Method – Bi-linear hardening 

 The primary advantage of the initial stiffness method is that the elastic-plastic 

stiffness matrix does not need to be recalculated for each plastic iteration.  The original 

stiffness matrix is used throughout all iterations without modification.  The primary 

disadvantage is that more convergence iterations are typically required with the initial 

stiffness method because the successive iterations are predicted without updated 

information about the function. 

5.3.3 Combination of Tangential and Initial Stiffness Methods 

 For this dissertation, a combination of the tangential and initial stiffness methods is 

employed.  When plastic deformation is predicted after the first elastic iteration, the 
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updated elastic-plastic stiffness matrix is calculated.  Only the elements that experienced 

plastic deformation within the time step require a modified elemental stiffness matrix.  

This typically minimizes the computation cost of the formulation because plastic 

deformation is usually a localized effect.  For the second iteration of the equations of 

motion, the elastic-plastic stiffness matrix is used to update the predicted displacement.  

For all subsequent iteration until convergence is achieved, the same elastic-plastic 

stiffness matrix is used without modification.  This usually achieves convergence quickly 

because the largest improvement is achieved with the prediction from the second 

iteration. 

5.4 Elastic Response Following Plastic 

 For structures that are loaded with an impulse function or a function that decreases 

over time, the elastic-plastic time steps will be followed by purely elastic behavior.  Once 

a structure is loaded, the simulation typically occurs for a longer period of time to 

investigate how the structure responds and recovers from the load.  With the elastic-

plastic CMS method outlined, the subsequent elastic time steps can proceed without 

further computational burden in the iterative solution of the equations of motion.  Since 

the problem is solved iteratively, an incremental pseudoforce is added to induce the 

required plastic deformation.  On subsequent iterations, this incremental force remains 

and maintains the permanent set associated with plastic deformation. 

 In a cyclic loading condition, the structure may experience a time period with plastic 

deformation in tension followed by plastic deformation in compression.  This type of 

loading results in the Bauschinger effect and can be numerically modeled using a 

kinematic strain hardening function [64].  For this dissertation, only an isotropic 
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hardening model was incorporated because the primary goal was to model impulse 

loading that decay with time after reaching a peak load. 

5.5 Convergence Check 

 A test of the convergence of the iteration is applied to ensure that the result within 

the time step has converged within the defined tolerance.  This check is used to determine 

whether the equations of motion have adequately converged on the correct solution or 

indicate that more iterations are required prior to completing the time step.  There are 

many options in convergence checks that are based on the change in displacement, 

velocity, acceleration, or force.  The convergence algorithm basically calculates the 

change in some measure from one iteration to the next.  If the checked variable is not 

changing, or not changing more than the defined tolerance, then the incremental solution 

is considered converged.  Alternatively, the residual variables can be used as the check of 

convergence.  If the residuals are less than the defined tolerance, then the solution is 

considered converged.  For this research, the effective residual force was used as the 

convergence check variable for time steps that experience elastic-plastic deformation. 
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Chapter 6  

Characteristics of Non-linear Method 

 

 Finite element analysis is a technique of approximating a complex structure as a 

collection of individual elements.  The accuracy of the approximation is dependent on 

various input variables inherent in the method.  With the proposed non-linear CMS 

method, additional approximations of the full fidelity finite element solution are applied.  

Each assumption in the proposed framework must be clearly understood or the accuracy 

of the solution could be very poor.  Given that the correct assumptions are applied, the 

modal approach will produce a reasonable accuracy with substantial improvements in 

computational efficiency. 

 Adequate assumptions must be applied in the original finite element formulation of 

the problem as well.  In a full fidelity finite element solution, the accuracy can be poor if 

the mesh of the structure is too course.  The typical way of addressing this problem is to 

model the structure with a slightly finer mesh and comparing with the previous results.  If 

a substantial change occurs in the results, then the mesh is probably not optimized.  If 

relatively little change occurs in the results, then the mesh density is probably acceptable.  

Similar additional characteristics are observed with the modal techniques. 
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6.1 Accuracy of Non-linear CMS Method 

 The accuracy of the CMS prediction is determined by several factors.  Starting with 

the original mesh of the structure, an initial inertia and stiffness matrix are generated.  If 

these matrices do not adequately represent the structure, then the CMS techniques will do 

nothing to increase the accuracy of the solution.  If the modal methods are properly 

applied, the results will not be degraded from those obtained with the full fidelity 

solution.  Therefore, in all following example problems, the baseline for accuracy 

comparison is the results obtained from the full fidelity solution with the original inertia 

and stiffness matrices of the structure. 

 The accuracy of the plastic prediction is limited by the assumptions applied in the 

modal reduction.  If too few modes are retained, the accuracy of the elastic response will 

suffer, which will result in an inaccurate prediction of the plastic response.  Techniques, 

such as the modal mass participation factor, should be investigated to aid in the 

determination of the number of modes to retain.  Small convergence studies should also 

be applied in a similar fashion to those used to determine an appropriate mesh density.  

For a modal technique, there is an additional advantage in knowing the natural 

frequencies of the structure.  Inherent in the generation of the transformation matrices, 

the un-restrained natural frequencies of the structure are provided.  With information 

about the forcing frequencies that will be applied to the structure, a reasonable 

approximation is to retain all modes within the forcing frequency and below as a 

minimum.  Since the structure will most likely be attached to other piece parts with the 

model, the additional mass will result in an increase in the natural frequencies of the 

assembly, so the un-restrained modal information can only be used as a rough guide. 
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6.2 Methods of Improving Accuracy 

 The accuracy of the non-linear CMS method is determined by variables that are 

chosen by the person performing the analysis.  Just as with any finite element problem, 

an appropriate mesh must be generated to provide the numerical representation of the 

structure.  If the mesh is too course, the accuracy of the solution may not be adequate.  

The elemental formulation is important in determining the global stiffness matrix of the 

structure that does not introduce zero energy displacement modes. 

 With the non-linear CMS method, the accuracy of the solution is also dependent on 

the number of retained modes.  The numerical efficiency of a modal representation is 

obtained by neglecting a large portion of the higher frequency modes.  The number of 

modes retained will directly effect the accuracy of the solution for specific loading 

frequencies, because the modes that are not retained are not represented in the solution.  

The exception is that some of the flexibility can be recovered with a residual flexibility 

calculation, which can represent the static contribution of the modes that were originally 

neglected. 

6.2.1 Constraint and Retained Modes 

 With the fixed interface CMS technique, all boundary degrees of freedom are 

retained without reduction.  This is typically a disadvantage of the method if the structure 

is divided into too many substructures.  The reduction only occurs on the interior degrees 

of freedom, so no computational benefit is realized by the boundary degrees of freedom.  

From this point of view, the number of boundary degrees of freedom should be 

minimized to critically evaluated divisions in the structure. 
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 The constraint modes of the substructure are calculated through a static condensation 

procedure so the dynamic contribution of the boundary degrees of freedom is not 

retained.  This is typically not an issue because the constraint will either be applied at a 

joint that is truly fixed in the assembly or at the connection to another free body.  At the 

junction of two flexible substructures, negligible information is lost if the constraints are 

applied correctly.  The number of retained interior modes directly corresponds to the 

accuracy of the solution.  If too few modes are retained, the accuracy of the result will 

suffer.  However, for simple structures, only a very few modes of the full fidelity model 

require retention.  The boundary degrees of freedom will already be retained but 

sufficient information is required of the internal degrees of freedom.  The number to be 

retained is somewhat problem specific, which is investigated in the example problems 

that follow. 

 More retained modes are required for an elastic-plastic solution than would typically 

be required to obtain an accurate elastic solution.  Plastic deformation typically occurs as 

a more localized effect that is represented by the higher frequency mode shapes.  As the 

plastic pseudoforce is projected onto the modal coordinates, a significant portion of the 

force can remained un-projected if too few modes are retained.  This force will be lost 

within the increment and cannot be recovered in subsequent iterations.  Retaining all 

modes will produce the most accurate solution but will also be the most computationally 

expensive, so a balance must be sought.  However, prior to the completion of the time 

step, a residual flexibility technique can be applied to help recover the un-projected force 

and improve the accuracy of the time step. 
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6.2.2 Residual Flexibility 

 Modal reduction techniques are used to reduce the number of calculations in the 

equations of motion with minimal impact on the accuracy of the solution.  Any time there 

is a reduction applied, information about the response of the degrees of freedom is being 

neglected.  If the problem is set up adequately and an adequate number of modes are 

retained, then the impact on the accuracy of the solution will be minimal.  However, if 

too few modes are retained, the accuracy will suffer.  This is comparable to reducing the 

mesh density of a finite element representation.  As the mesh becomes more course, the 

number of internal degrees of freedom and flexibility of the structure may not be 

accurately represented, which will adversely affect the accuracy of the solution. 

 Modal reduction techniques are applied by eliminating the largest eigenvalues and 

corresponding eigenvectors of the full eigenproblem for the un-damped equation of 

motion.  In a typical structural problem, the natural frequencies activated as a result of a 

forcing function are the lowest frequency modes.  The highest frequency modes can be 

many orders of magnitude larger and as a result will have a much smaller contribution to 

the dynamic response of the structure.  The cut-off frequency is dependent of the problem 

of interest but the each of the modes below the forcing frequency and some above the 

forcing frequency will need to be retained to accurately represent the response of the 

structure.  Often, it is difficult to the determine how many modes to retain, which can be 

a source of inaccuracy.  Tools such as determining he modal participation factors, Section 

3.4, can provide an indication of the importance of the modes but is independent of the 

forcing function. 
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 Applying forces to approximate the effects of plastic deformation can further 

decrease the accuracy of the solution.  Since the plastic deformation will most likely be a 

localized effect, it will have more contribution from higher frequency modes than 

required for the elastic solution.  When used in conjunction with a modal reduction 

technique, the plastic pseudoforce is projected onto the modal coordinates from the 

global coordinates through the use of a projection matrix.  Since some of the modes are 

neglected in this projection, some of the force will not be projected on the modal 

coordinates.  If no further action is taken, this un-projected force will be lost and cannot 

be recovered. 

 Residual flexibility is a means of retaining some of the un-projected force to improve 

the accuracy of the solution.  The basic premise is to incorporate the static effects of the 

un-projected force in the final solution for the iteration.  Further information on 

experimental validation can be found in [71].  A comparison of residual flexibility and 

CMS techniques can be found in [72].  Information is being lost with any reduction 

technique, but since the inertia and damping effects are typically less important that the 

stiffness, the solution accuracy can be dramatically improved.  Starting with the equations 

of motion of a multi-body system: 

 [ ]{ } [ ]{ } [ ]{ } { }M u C u K u f+ + =   (6-1)

An incremental form of the equations of motion is required for a plastic solution, 

requiring the conversion: 

 [ ]{ } [ ]{ } [ ]{ } { } { }M u C u K u f p+ + ΔΔ = −   (6-2)

The first step in the conversion to a CMS representation is to partition the matrices into 

the internal, boundary, and interacting degrees of freedom.  A transformation matrix, P, is 
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used to transform the vector of displacements into the partitioned form.  The nodal 

displacements and their derivatives are replaced with: 

 [ ][ ]{ } [ ][ ]{ } [ ][ ]{ } { } { }M P u C P u K P u f p+ + ΔΔ = −   (6-3)

Pre-multiplying by the transpose of the transformation matrix produces: 

 [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { } { }( )T T T
P M P u P K P u P f p+ ΔΔ = −  (6-4)

For convenience, this will be written: 

 [ ]{ } [ ]{ } [ ] { } { }( )T

P P P PM u K u P f p+ ΔΔ = −  (6-5)

Applying the CMS representation, the partitioned coordinate set is transformed to a CMS 

representation by applying the appropriate CMS transformation matrix.  This transforms 

the organized global coordinate set to a reduced modal basis that has fewer modes than 

the original number of degrees of freedom for the substructure.  The lower frequency 

modes are retained and the higher frequency modes are neglected.  The application of the 

transformation is included by replacing the ordered coordinate set with the appropriate 

transformation: 

 [ ][ ]{ } [ ][ ]{ } [ ] { } { }( )T

P CMS P CMSM u K u P f pΦ + Φ ΔΔ = −  (6-6)

The equation is pre-multiplied by the CMS transformation matrix to obtain: 

 [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ] { } { }( )T T T T

P CMS P CMSM u K u P f pΦ Φ + Φ Φ ΔΔ = Φ −  (6-7)

The pre- and post-multiply by the transformation matrix effectively transforms the inertia 

and stiffness matrices and those variables can be replaced with a transformed variable: 

 { } { } [ ] [ ] { } { }( )T T

CMS CMSM u K u P f p   + ΔΔ = Φ −     (6-8)

As discussed previously, the modified inertia and stiffness matrices are not diagonal 

because the transformation matrix is not and eigenvector transformation.  It is 
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computationally more efficient in a dynamic simulation to convert the inertia and 

stiffness matrices to an orthonormal form to reduce the coupled equations of motion to an 

uncoupled set.  This is accomplished by solving the eigenproblem and replacing the CMS 

coordinate system with the orthonormal set of coordinates through the appropriate 

transformation: 

 [ ]{ } [ ]{ } [ ] [ ] { } { }( )T T
M N q K N q P f p   + ΔΔ = Φ −     (6-9)

To complete the transformation, both sides of the equation are pre-multiplied by the 

transpose of the transformation matrix to obtain: 

 [ ] [ ]{ } [ ] [ ]{ } [ ] [ ] [ ] { } { }( )T T T T T
N M N q N K N q N P f p   + ΔΔ = Φ −     (6-10)

In the generation of the eigenvector transformation matrix, the terms can be scaled to 

produce an inertia matrix that takes the form of an identity matrix with all terms equal to 

one on the diagonal and zero in all other positions.  This also produces a stiffness matrix 

equal to the square of the natural frequencies located along the diagonal.  The converted 

matrices are written: 

 [ ]{ } [ ]{ } [ ] [ ] [ ] { } { }( )T T T
I q q N P f p+ Λ ΔΔ = Φ −  (6-11)

This equation represents the solution if all degrees of freedom are retained in the CMS 

transformation.  Retaining all eigenvectors will result in the full accuracy of the original 

solution because only transformations have been applied without any reduction to cause 

loss in accuracy.  However, the purpose of the CMS technique is to apply a reduction to 

improve the computational efficiency and all eigenvectors will not be retained in the 

CMS transformation matrix.  The reduced set of equation will then be represented with a 

subscript variable term: 
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 [ ]{ } [ ]{ } [ ] [ ] [ ] { } { }( )T T T

R R R RI q q N P f p+ Λ ΔΔ = Φ −  (6-12)

For convenience, the series of force transformation matrices are replaced with a single 

transformation matrix: 

 [ ]{ } [ ]{ } { } { }( )R R R fI q q P f p + Λ ΔΔ = −   (6-13)

This equation is solved for the incremental displacement in the modal coordinate system: 

 { } [ ] [ ]{ } [ ] { } { }( )1 1

R R R R fq I q P f p
− −  ΔΔ = − Λ + Λ −   (6-14)

In the conversion from the modal representation to global coordinates, the transformation 

is written: 

 { } [ ][ ][ ]{ } [ ]{ }R u Ru P N q P qΔΔ = Φ ΔΔ = ΔΔ  (6-15)

A single transformation matrix has been applied for convenience.  The complete solution 

of the incremental modal coordinates is converted to a global representation: 

 { } [ ][ ] { } { }( ) [ ][ ] { } { }( )1 1

u R f u R R Ru P P f p P q C q
− −   ΔΔ = Λ − − Λ +       (6-16)

Referring back to the original incremental equation of motion, the incremental 

displacement can be found after rearranging: 

 { } [ ] { } { }( ) [ ] [ ]{ } [ ]{ }( )1 1
u K f p K M u C u

− −ΔΔ = − − +   (6-17)

By examining the first term of the full incremental solution and the solution obtained 

from the modal coordinates, it can be seen that the first term represents the static response 

to the applied incremental force.  The solution can be improved by replacing the static 

contribution from the full solution with the modal representation because the full solution 

does not incorporate any reduction: 

 { } [ ] { } { }( ) [ ][ ] { } { }( )1 1

u R R Ru K f p P q C q
− −  ΔΔ = − − Λ +     (6-18)
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This method is defined as the mode acceleration method.  The residual flexibility, or the 

difference in the modal and full solution can be found by additional algebraic 

manipulation.  The modal representation is rewritten: 

 { } { }( ) { } { }( ) [ ]{ }R R f R Rq C q P f p q  + = − − Λ ΔΔ      (6-19)

Pre-multiply both sides by the inverse of the modal stiffness matrix and the combined 

transformation to obtain: 

 [ ][ ] { } { }( ) [ ][ ] { } { }( ) [ ]{ }1

u R R R u R f u RP q C q P P f p P q
−   Λ + = Λ − − ΔΔ      (6-20)

Applying the pre-multiplication produces a form of the inertia and stiffness and damping 

terms that match the inertia and damping term in the mode acceleration method result.  

This produces an equation that is written entirely in terms of the displacement terms and 

not the velocity or acceleration terms: 

 { } [ ] { } { }( ) [ ][ ] { } { }( ) [ ]{ }1 1

u R f u Ru K f p P P f p P q
− −  ΔΔ = − − Λ − + ΔΔ   (6-21)

The third term is the incremental displacements transformed from the modal coordinates.  

The first and second term are the static contributions to the incremental displacements in 

global coordinates.  The first terms represents the solution obtained by retaining the full 

stiffness matrix, while the second term represents the static contribution through the 

reduced modal stiffness matrix.  The difference in these two terms is the residual static 

incremental displacement that is added to the calculated displacement from the reduced 

equations of motion. 

 As the solutions are obtained at each increment during the integration of the 

equations of motion, the residual flexibility term must be calculated.  It is an additional 

operation that is performed after the reduced solution has converged.  The residual term 

can be simplified to improve computational efficiency by combining the terms prior to 
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the integration of the equations of motion.  Ultimately the residual flexibility can be 

calculated using one matrix vector multiplication by introducing a new variable, Rf: 

 [ ] [ ][ ]1 1

f u R fR K P P
− −   = − Λ     (6-22)

This matrix is calculated once prior to the integration of the equations of motion and is 

used throughout the integration to account for the static contribution from the un-

projected force. 

6.2.3 Residual Flexibility in Plastic Solution 

 If plasticity is incorporated with the CMS representation, the calculation of the 

residual flexibility become more important.  This is due to the application of forces to 

individual nodes that were not significant contributor to the accuracy of the elastic 

solution.  Once plastic deformation begins to occur, the deflection of the substructure 

begins to deviate from the motion predicted as a linear superposition of the lowest few 

frequencies.  The deformation becomes highly localized, which requires the use of the 

higher frequency mode shapes that are typically not significantly activated during a 

linear-elastic solution.  The inertia and damping terms will not retain the full terms and 

subsequently their accuracy is not improved.  This is typically not a significant problem, 

because the inertia and damping are secondary effects to the static. 

 There are options available in deciding when residual flexibility can or should be 

applied.  If applied after the first elastic iteration is completed, the stresses will be more 

accurate.  This leads to an improved prediction of the plastic response.  However, since 

the solution is only being obtained incrementally, the elastic predictions should be quite 

accurate if enough of the low frequency modes are retained.  This is more difficult to 

achieve for the plastic solution because a prohibitively high number of modes will 
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probably need to be retained to obtain the same accuracy that will be achieved with the 

inclusion of the residual flexibility.  The residual flexibility has a relatively large effect 

on the plastic solution but a relatively small effect on the elastic solution.  For this 

dissertation, the residual flexibility is only calculated after the plastic iterations.  This 

helps preserve the computational benefits of the elastic iterations, which should comprise 

the vast majority of the complete set of calculations. 

6.3 Computational Comparison 

 The computational benefits of the non-linear CMS formulation are attributed to the 

reduction applied as part of the CMS technique.  The first reduction is achieved by 

neglecting the higher frequency modes and mode shapes.  Since this information is not 

retained, the size of the equations solved at each time step are reduced from the full finite 

element representation.  With a direct modal representation, it is very difficult to 

determine the specific modes that can be safely eliminated without dramatically affecting 

the accuracy of the solution.  The fixed interface CMS method nearly eliminates this 

problem because the boundary nodes are retained without reduction and the number of 

kept modes must be determined to adequately represent the internal degrees of freedom. 

 The second computational benefit is produced by orthonormalizing the CMS 

representation.  After transformation from the global coordinates to the CMS 

representation, the inertia and stiffness matrices are not diagonal because the 

transformation matrix is composed of the eigenvectors of only a partition of the original 

matrices.  By orthonormalizing, the coupled equations of motion are reduced to an 

uncoupled set of equations that further reduces the computation expense by reducing the 

number of operations. 
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 To quantitatively compare the computational expense of a full fidelity and a CMS 

representation, the number of multiplications were determined for each method.  The 

multiplication operations are typically the most computationally expensive operations to 

perform, compared to addition operations [73].  Table 6-1 provides a comparison of the 

number of multiplications required in a single iteration of the equations of motion.  The 

variable, n, represents the number of degrees of freedom in the unreduced structure.  The 

variable, m, represents the total number of modes in the modal representation (retained as 

well as interface degrees of freedom).  The computational benefits of storing the global 

stiffness and inertia matrices in a banded form in not included in this representation but 

would decrease the computational cost of the full solution.  The ratio of m to n is 

dependent on the specific problem of interest, but generally, a ratio of 1 to 20 is more 

than sufficient. 

Table 6-1:  Computational Comparison for Dynamic Elastic Iteration 

Full Solution CMS Solution
2 * n 2 * m
2 * n 2 * m
2 * n² 2 * m²

- -
n² m²
- -
- -
n m
n m
n² m²

Variable
a*
v*
b*
b

v
p

ΔΔu
Δu
u
a

 

 The largest differences in the solution of the equations of motion for a purely elastic 

iteration are the number of operations required to determine the effective acceleration and 

velocity.  Because the CMS representation is calculated as an uncoupled series of 

equations only one multiplication is required for each row of the inertia and stiffness 
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matrices.  If the inertia and stiffness matrices are fully populated, the number of 

operations is equal to the square of the number of degrees of freedom.  The remaining 

variables are also reduced by the ratio from n to m with the greatest impact provided by 

the squared terms. 

 The computational expense of the plastic portion of the dynamic response and the 

calculation of the stress within each element will be opposite of the elastic response due 

to the applied reduction.  Since the solution is performed in an orthonormal coordinate 

set, the modal deformations must be transformed to a global representation to determine 

the state of stress within the elements.  As indicated previously, this calculation can be 

performed as a single matrix-vector multiplication but still requires more operations than 

the equivalent full solution.  Table 6-2 provides a summary of the number of operations 

required to determine the state of stress, elastic strain, and plastic strain within each 

element.  The stress is calculated at each of the eight integration points for a 2 x 2 x 2 

integration scheme.  This table represents the number of operation required by assuming 

that all elements are experiencing plastic deformation, which is never really the case but 

provides a worst case scenario.  The new variable introduced in this table is e, which is 

the number of elements in the finite element representation.  Most of the number of 

operations are based on the number of elements because stress is determined on an 

elemental basis. 

Table 6-2:  Computational Comparison for Stress Calculation 

Full Solution CMS Solution
96 * e 96 * e + n * m
48 * e 48 * e
48 * e 48 * e
48 * e 48 * e

Variable
Stress

S
e_p

e_bar  
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 The only difference in the number of operations in Table 6-2 is in the calculation of 

the elemental strain.  Because the global displacements are not directly provided with 

each incremental solution, the global displacements must be calculated by using a 

transformation from modal to global coordinates.  This transformation matrix will have 

one row corresponding to each global degree of freedom and one column corresponding 

to each modal degree of freedom. 

 The calculation of the plastic response for a single iteration is also more 

computationally expensive for a CMS representation than for a direct solution.  This 

increase in the number of operation is attributed to the calculation of the pseudoforce and 

the projection of this global force on the orthonormal coordinates.  Table 6-3 provides a 

summary of the number of operations required for each technique. 

Table 6-3:  Computational Comparison for Dynamic Elastic-Plastic Iteration 

Full Solution CMS Solution
Kep 290 * e 290 * e

b - n * m
ddu n³ n³

p n² n² + n * m

Variable

 

 The primary differences in the number of operations is in the generation of the 

effective force and the generation of the pseudoforce.  The projection of the elastic-

plastic force onto the modal coordinates is achieved by a single matrix-vector 

multiplication.  The matrix has one row corresponding to each modal degree of freedom 

and one column corresponding to each global degree of freedom.  However, 

computational savings can be achieved by only projecting the rows of the global vector 

that corresponds to the degrees of freedom that were affected by plastic deformation 

within the iteration. 
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 The calculation of the stress and determination of a single plastic iteration is more 

computationally expensive for the CMS representation than for a direct representation.  

However, the total number of operation is reduced for the elastic iterations that employ 

the modal representation.  The balance will be dependent on the specific problem of 

interest, but if the structure primarily experiences elastic deformation, the non-linear 

CMS method will offer significant computational savings.  This is typically the case for 

structures that experience an impulse loading followed by a long time interval to evaluate 

the response of the structure to the impulse.  This type of problem results in a few elastic 

iterations, followed by relatively few plastic iterations, followed by many elastic 

iterations as the structure responds. 
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Chapter 7  

Numerical Examples 

 

 A collection of numerical examples is provided to demonstrate the performance of 

non-linear response coupled with fixed interface CMS reduction.  Two of the examples 

are based on problems that have analytical solutions to serve as a baseline for judging 

accuracy.  The first example is a cantilever beam subjected to an axial load.  Since this 

problem can be solved analytically, the response is investigated for the quasi-static 

loading condition as well as an impulse-loading situation.  The second analytical problem 

is a simply supported beam loaded with a step pressure load.  An analytical solution 

exists for this problem for the assumption of a perfectly-plastic yield function.  A 

variation of the simply supported beam is presented with a pressure load only applied to 

the center portion of the beam rather than the full length.  The final example is a rigid 

body mechanism that represents an intended use of the non-linear CMS method.  Only 

one component within the mechanism, the shaft, is modeled as a non-linear flexible 

element while the other components remain rigid. 

 The accuracy of the non-linear CMS method is compared against the full fidelity 

solution using the full global inertia, stiffness, and damping matrices.  Each of the two 

result types are calculated using the Matlab code provided in the appendices.  Since the 

accuracy of the CMS method is dependent on the number of retained modes and other 

factors, convergence studies are presented to indicate the values required to obtain the 
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desired accuracy.  Selected full fidelity dynamic solutions from the Matlab code is also 

compared with the dynamic solution from a commercial finite element code, ABAQUS 

(Version 6.8, Dassault Systemes Simulia Corp., Providence, RI).  The model solved with 

the commercial code utilizes the same mesh of the geometric part and a similar elemental 

formulation to allow accuracy comparisons. 

7.1 Quasi-Static Axial Loading 

 The axial stress and deflection of a cantilever beam can be determined analytically 

using the engineering stress and strain assumptions.  The axial load is chosen to ensure 

that the deflections are small for both the elastic and plastic responses.  For simplicity, 

the cantilever beam is chosen with a square cross-section with a 10 to 1 ratio of length to 

width.  The dimensions of the cross-section of the beam are 0.1 in. by 0.1 in., and the 

length of the beam is 1.0 in.  A representation of the beam is shown in Figure 7-1. 

 

Figure 7-1:  Cantilever Beam Geometry 
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 The boundary conditions are applied such that the length and width of the beam are 

allowed to decrease as a result of the Poisson effect from the axial load.  One corner of 

the beam is constrained in all three directions of the Cartesian coordinate system and all 

other nodes on the base of the beam are only constrained in the z-direction, which is the 

longitudinal axis of the beam.  These constraints are comparable to an axi-symmetric 

constraint with the full constraints being applied along the longitudinal axis. 

 The properties of the beam are chosen as the common values for mild steel for 

simplicity.  The elastic properties of the beam are listed in Table 7-1.  The material is 

considered to be isotropic, requiring only two material properties to fully define the 

elastic material properties.  The density is assumed to be 7.485 x 10-4 lbf-s2/in4 based on 

common values for mild steel.  However, the assumed density is divided by 103 to ensure 

that inertia of the material does not contribute significantly to the quasi-static solution. 

Table 7-1:  Elastic Material Properties of Cantilever Beam 

E Young's Modulus 29,000 ksi
ν Poisson's Ratio 0.29  

 The beam is subjected to loading in excess of the yield strength of the material, 

which induces plastic deformation.  For ease of analytical calculation, it is assumed that 

the material follows a bi-linear hardening model for all stress in excess of the initial yield 

strength of the material.  The plastic material properties are listed in Table 7-2.   

Table 7-2:  Plastic Material Properties of Cantilever Beam 

H0 Initial Yield Stress 36 ksi

ET Hardening Modulus 3,600 ksi  

A graphic view of the elastic-plastic stress-strain curve is shown as Figure 7-2. 
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Figure 7-2:  Elastic-Plastic Stress-Strain Curve 

 The goal of this dissertation is to introduce a dynamic solution procedure for non-

linear deformation, but a quasi-static solution is beneficial to provide insight about the 

accuracy of the solution.  For the dynamic solution, the axial load on the structure is 

applied as a time dependent function starting with the unloaded condition, loaded to the 

peak force, then unloaded back to zero.  To prevent discontinuities during the loading and 

unloading, it is assumed that the curves followed a haversine shape.  The full loading and 

unloading curve is shown as Figure 7-3. 
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Figure 7-3:  Load-Unload Scaled Amplitude 
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7.1.1 Analytical Solution 

 In order to determine the elastic-plastic deformation of the beam, the stress must be 

calculated first to determine the response of the material: 

 ( )2

400
40

0.1

P lbf
ksi

A in
σ = = =  (7-1)

Since the material is assumed to follow a hardening constitutive model, the elastic strain 

of the beam can be calculated as a function of the total stress within the structure.  The 

elastic change in length of the beam is calculated: 

 
( )40 1

0.00137931
29,000e

ksi inL
L in

E ksi

σε = = =  (7-2)

Since the stress within the structure has exceeded the yield strength of the material, the 

plastic strain must also be determined.  The material is assumed to follow a linear 

hardening law, so the yield strain is proportional to the stress in excess of the yield stress.  

The plastic change in length of the beam is written: 

 
( )Y

p
T

L
L

E

σ σ
ε

−
=  (7-3)

where ET is the tangential hardening modulus.  For the linear hardening assumption, the 

modulus is defined: 

 0L
T

L

H H
E

ε
−

=  (7-4)

where HL is the limit stress and εL is the effective strain limit.  Substitution of (7-4) into 

(7-3) provides: 

 
( )0

0

L
p

L

H L
L

H H

σ ε
ε

−
=

−
 (7-5)
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Substitution of the appropriate variables provides: 

 
( )( )( )40 36 0.015 1

0.00111111
90 36p

ksi ksi in
L in

ksi ksi
ε

−
= =

−
 (7-6)

Therefore, the total deformation of the structure is the sum of the elastic and plastic 

length changes provided in (7-5) and (7-6): 

 0.00249042e pL L L inε ε ε= + =  (7-7)

7.1.2 ABAQUS Solution 

 The axially loaded structure was modeled using ABAQUS to provide a baseline 

dynamic solution for comparison.  The analytical solution is intended to provide 

verification of the steady-state deformations with the ABAQUS solution providing a 

comparison response during the remainder of the loading and unloading curve.  The same 

material properties and basic geometric variables defined previously were used.  The 

boundary conditions of the structure were also applied consistently.  One node at the base 

of the structure was constrained in each of the three directions of the Cartesian coordinate 

system.  The remaining nodes at the base of the structure were only constrained in the z-

direction, which is aligned with the length of the beam.  Since the problem is set up to 

only contain uniaxial stress, the size of the mesh is not critical.  For simplicity, the beam 

was meshed as ten 0.1in. by 0.1in. by 0.1in. elements. 

 The elastic problem was evaluated first to determine the linear elastic response of the 

beam when subjected to the quasi-static dynamic loading curve.  Only the density and 

two elastic parameters (modulus of elasticity and Poisson’s ratio) were input to fully 

define the material.  A plot of the deformation of the structure in the z-direction as a 

result of the axial load is shown in Figure 7-4.  This plot indicates the peak deflection of 
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the beam as shown at a simulation time of 0.6ms.  The complete history of the 

deformation is examined by plotting the deflection of one of the nodes on the load 

application surface throughout the entire simulation time.  A plot of the deflection history 

is shown as Figure 7-5. 

 

Figure 7-4:  ABAQUS Elastic Deflection (Peak) 
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Figure 7-5:  ABAQUS Elastic Tip Deflection 
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 In order to investigate the elastic-plastic response of the structure, the plastic material 

properties were input with the assumption of linear isotropic hardening.  A plot of the tip 

deflection of the beam in the z-direction is shown as Figure 7-6 for the elastic-plastic 

model.  The response is overlaid with the elastic response for comparison.  During the 

simulation times between 0.3 ms and 0.4 ms, plastic deformation is causing a dramatic 

increase in the rate of deflection.  Once the peak load is achieved, the deflection stabilizes 

at a maximum deflection of 0.002518 in.  Upon unloading, the elastic-plastic response 

follows the general shape of the elastic response but is offset by the plastic deformation 

that remains.  After complete unloading, the plastic deformation of 0.001134 in. is the 

permanent deformation associated with the plastic strain. 
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Figure 7-6:  ABAQUS Elastic-Plastic Tip Deflection 
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7.1.3 Component Mode Synthesis Solution 

 Using the Matlab code available in the appendices, which implements the method 

defined in the previous chapters, the elastic-plastic response of the cantilever beam is 

analyzed.  The Matlab code includes the capability to solve the solution through a variety 

of different methods to aid in the validation of results.  The solution can either be full 

fidelity, full fidelity with modal superposition, or reduced fidelity with CMS reduction. 

 The first option is a full fidelity traditional finite element solution.  The natural 

frequencies and mode shapes are not used in the calculations of the dynamic response.  

Instead, the full mass and stiffness matrices are used in the determination of the dynamic 

response.  This solution is intended to provide direct correlation with the commercial 

finite element programs because there is no reduction in the fidelity of the problem.  A 

plot of the deflection history of the cantilever beam is shown as Figure 7-7.  The two 

traces of the elastic-plastic response are essentially identical and the curves appear 

overlaid.  Investigation of the data reveals that the total plastic deformation predicted by 

the full fidelity Matlab code was 0.001113 in., compared to 0.001134 in. from ABAQUS.  

The result from the full fidelity Matlab code provides better correlation with the 

analytical solution, but the error of either solution is very small. 
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Figure 7-7:  Full Fidelity Elastic-Plastic Tip Deflection 

 The second solution option with the Matlab codes is a full fidelity modal solution.  

This solution is essentially the same fidelity as previously discussed but the mass and 

stiffness matrices are replaced with their equivalent modal reductions.  This allows the 

mass and stiffness matrices to be reduced to diagonal matrices, which dramatically 

reduces the number of calculations during the iterative solution of the equations of 

motion.  The tip deflection is evaluated using this solution technique and the results were 

essentially identical to the results from the full fidelity Matlab solution, so a plot is not 

provided.  The total plastic deformation from the full fidelity modal solution is 0.0011127 

in. 

 With the CMS approach, the problem is further reduced through substructuring and 

modal reduction.  The initial CMS reduction does not result in diagonal inertia and 

stiffness matrices, but the matrices are orthonormalized prior to the iteration of the 

equations of motion, which does result in diagonal matrices.  The tip deflection as a 

function of simulation time from the full fidelity CMS solution is shown as Figure 7-8.  
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The ABAQUS result is also provided for comparison but the two results are essentially 

overlaid.  The total plastic deformation from the full fidelity CMS solution was 0.001124 

in., which is an error of about 1% compared to the analytical solution.  This error will be 

increased by further reduction in the fidelity of the CMS solution as discussed in Section 

6.2. 
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Figure 7-8:  CMS Elastic-Plastic Tip Deflection 

7.2 Impulse Loading of Simply Supported Beam – Full Load 

 A simply supported beam is subjected to a distributed load, applied instantaneously 

as investigated previously in [74], [75], [76].  The geometry of the beam, shown in Figure 

7-9, is rectangular with a height of 2in and width of 1in.  The length of the beam in 30in.  

The elastic modulus is 30,000ksi and the Poisson’s ratio is 0.3.  The material is assumed 

to follow a bi-linear strain hardening model with a hardening modulus equal to 0.25 of 

the elastic modulus after exceeding an initial yield stress of 50ksi. 
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Figure 7-9:  Simply Supported Beam Geometry 

 The mid-span deflection of the beam can be determined analytically by assuming an 

elastic-perfectly plastic material model [77].  The limit moment, M0, is defined as the 

moment at the center of the beam that produces a stress equal to the initial yield stress 

throughout the cross-section: 
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4
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M in lbf

σ
= = −  (7-8)

The static collapse load is defined in terms of the limit moment and the length of the 

beam: 

 ( )
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(7-9)

The static deflection at the center of the beam as a result of the static collapse load is: 

 
45

0.234375
384

cp L
in
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Δ = =  (7-10)

The initial mesh for the example problem is quite course for a bending stress problem.  

The beam was divided into 40 elements with 110 nodes.  An 8-node linear brick element 

was incorporated, see Chapter 2, and is consistent with that used in Salinas structural 

dynamics code [78].  For improved performance with the bending loads, the bubble 

element formulation was used. 



Chapter 7.  Numerical Examples  112 

 

 Using the method outlined, the beam is subjected to a stepped distributed load and 

the dynamic response is simulated over a 5ms interval after the initial load application.  A 

distributed load equal to 0.625 of the critical load was applied, which corresponds to 

previous research [74] and [75].  The elastic and plastic mid-span deflection as a result of 

the applied loads is shown for the full finite element solution in Figure 7-10.  The full 

solution does not include any reduction and serves as the baseline for comparison with 

the later CMS solution.  For reference, the elastic and plastic dynamic solutions are 

provided over the same time interval using ABAQUS.  The incompatible mode brick 

element, C3D8I, was used with the same mesh defined above.  The axes of the plot are 

scaled based on the peak static deflection and the period of the elastic response. 
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Figure 7-10:  Elastic and Plastic Full Fidelity Responses 

 Since the accuracy of the stress calculation is dependent on the accuracy of the 

elastic response, a convergence study was conducted on the elastic response using the 

fixed interface CMS method.  As the number of kept modes is increased, the accuracy of 
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the solution for the mid-span deflection is improved as shown in Figure 7-11.  This 

relationship corresponds to the improved accuracy typically obtained through mesh 

refinement by increasing the number of elements.  The relationship is not a smooth curve 

due to the orthogonality of the mode shapes.  For the simply supported example, only 

mode shapes that correspond to the direction of deflection due to the applied load will be 

activated.  Mode shapes in the other two directions do not significantly improve the 

accuracy of the response. 
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Figure 7-11:  Convergence of Elastic Solution – 0.625*Pc 

 As shown in Figure 7-12, the elastic CMS response with 100 kept modes is overlaid 

with the full solution but the plastic response is under-predicted by the CMS method with 

100 kept modes.  This discrepancy is due to the approximations in the generation and 

application of the pseudoforce for the static case, which induces the plastic deformation.  

The iterative equations of motion are solved in orthonormal coordinates but must be 

converted to global coordinates for determination of the elemental stress and prediction 
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of the plastic deformation.  The pseudoforce is generated in global coordinates and must 

be converted to orthonormal coordinates for use in the solution to the equations of 

motion.  The accuracy of the solution can be improved by incorporating dynamic as well 

as static stiffness effects as investigated in the next example problem. 
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Figure 7-12:  Non-linear CMS Response 

 The elastic portion of the dynamic solution using CMS techniques is less 

computationally expensive than the full solution due to the reduction in the size of the 

dynamic problem solved at each time step.  For this particular example, the elastic CMS 

solution was solved in approximately 75% of the time required to solve the full elastic 

solution.  The plastic portion of the solution is more computationally expensive for the 

CMS approach compared to the full solution but only occurs during a small interval 

during the simulation.  The primary benefit of the proposed approach is the ability to 

integrate with a rigid body dynamic technique, which offers substantial computational 

savings over a full finite element approach. 
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7.3 Impulse Loading of Simply Supported Beam – Partial Load 

 A variation of the simply supported beam with a stepped pressure load is analyzed 

with the pressure loading only applied to the center of the beam rather than the complete 

length.  The distributed load is applied to the center portion of the beam to reduce the 

number of boundary degrees of freedom in the CMS representation.  The geometric 

dimensions and loading of the beam is shown in Figure 7-13. 

 

Figure 7-13:  Simply Supported Beam Geometry 

 The elastic modulus is 30,000ksi, the Poisson’s ratio is 0.3, and the distributed load 

is 850psi.  The material is assumed to be isotropic and follow three types of strain 

hardening models, with an initial yield stress of 50ksi for each.  The first model is an 

elastic-perfectly plastic model that results in completely plastic deformation after 

reaching the yield point.  The second is a bi-linear model with a hardening modulus of 

0.25 after reaching the initial yield stress.  The third is a power law hardening curve, 

which is the most complex but most representative of actual uniaxial stress test results for 

metals.  The three hardening models are shown in Figure 7-14. 
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Figure 7-14:  Plastic Strain Hardening Models 

 The beam is initially meshed using 40 elements with 110 nodes.  There are 10 

elements along the length, 1 across the width, and 4 along the height.  An 8-node linear 

brick element is incorporated but for improved performance with the bending loads, the 

incompatible modes formulation was used, as defined in Chapter 2.  Figure 7-15 shows 

the mid-span deflection of the beam as a result of the applied loading with the three 

material hardening models.  The perfectly-plastic model has no plastic hardening and 

results in the largest peak deflection.  The power law model exhibits more hardening than 

the bi-linear model for the initial elastic-plastic deformation and results in the smallest 

peak deflection. 
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Figure 7-15:  Mid-span Deflection - Hardening Models 

 The cumulative modal participation factor, from Section 3.4, is investigated to 

provide a visual indication of the represented mass of the beam as the number of retained 

modes is increased.  Figure 7-16 shows the modal participation factors for each of the 

three Cartesian coordinates as well as the average of all three directions.  The plot 

indicates that the modal mass converges to within 95% of the total mass with retention of 

approximately 25% of the interior modes. 
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Figure 7-16:  Modal Participation Factors 

A zoomed plot of the same data for the final 5% of the modal mass is shown in Figure 

7-17. 
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Figure 7-17:  Modal Participation Factors – Final 5% of mass 
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 Since the accuracy of the stress calculation is dependent on the accuracy of the 

elastic response, a convergence study was conducted on the elastic response using the 

fixed interface CMS method.  As the number of kept modes is increased, the accuracy of 

the solution for the mid-span deflection is improved as shown in Figure 7-18.  The figure 

indicates that only a small portion of the modes, less than 4%, are required to accurately 

represent the elastic deformation of the beam with an error of less than 0.1%.  The 

accuracy is improving with the increase in retained modes but the improvement is 

insignificant given the plot scale shown.  The relationship is not a smooth curve because 

of the orthogonality of the mode shapes.  For the simply supported example, only mode 

shapes that correspond to the direction of deflection from the applied load will be 

activated.  Mode shapes in the other two directions do not significantly improve the 

accuracy of the response. 
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Figure 7-18:  Accuracy of CMS Elastic Response 
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 The convergence of the plastic CMS solution for the bi-linear hardening model is 

shown in Figure 7-19.  The accuracy of the CMS solution roughly corresponds with the 

shape of the mass participation plot for the remaining 5% of modal mass but the overall 

solution is quite good, with less than 2% error, even with the retention of only a few 

modes.  Since the plastic deformation is localized to elements at the mid-span of the 

beam, the plastic deflection is influenced by the high frequency mode shapes.  The figure 

also shows the relative improvement obtained by incorporating the residual flexibility, 

which is similar in shape to the elastic convergence plot, Figure 7-18, because 

convergence of the plastic solution is directly dependent on the accuracy of the elastic 

solution.  Use of the residual flexibility is computationally expensive but is offset by the 

ability to retain fewer modes. 
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Figure 7-19:  Accuracy of CMS Plastic Response 

 The accuracy of the full fidelity solution is dependent on the finite element mesh and 

conventional convergence studies are required to determine the appropriate mesh density.  
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The CMS techniques provide an approximation of the full fidelity response and can only 

be as accurate as the full fidelity results with the particular mesh.  As the mesh density is 

increased, the number of retained interior modes does not need to increase if the lowest 

natural frequencies do not change significantly.  Figure 7-20 shows that the 

computational savings for the non-linear CMS method increase as the mesh density 

increases, with the assumption of a fixed number of retained interior CMS modes.  

However, the number of degrees of freedom should be minimized to reduce the total 

computational time. 
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Figure 7-20:  Computational Saving of CMS Method with Increased Mesh Density 

7.4 Rigid Body Mechanism 

 An example problem of a primarily rigid body mechanism is presented to 

demonstrate the application to a component with a general geometric shape.  A ratchet-

driver mechanism provides intermittent rotary motion with the geometry shown in Figure 
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7-21.  The drive arm is actuated by torque provided by a rotary solenoid acting on the 

arm that causes rotation from the rest position to a fully open position.  During this 

transition, the drive pawl drops over the current tooth as a result of the torque provided 

by a torsion spring between the drive pawl and drive arm.  Once the solenoid is de-

energized, the drive arm returns under the torque provided by the extended drive arm 

spring to advance the ratchet wheel to the next index position.  The relatively large 

ratchet wheel is assembled onto a shaft that is cantilevered at the base.  Only the shaft is 

modeled as a flexible element with all other bodies remaining rigid. 

 

Figure 7-21:  Rigid Body Mechanism Geometry 

 The entire assembly is subjected to a large impulse acceleration of 3500g with a 

haversine pulse shape and a duration of 0.5 ms.  The shaft material is assumed to be a 

precipitation hardened steel with an initial yield strength of 90 ksi, Poisson’s ratio of 0.3, 

and Young’s modulus of 30,000 ksi.  For simplicity, only a bi-linear material model is 
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investigated with a hardening modulus of 25% of the elastic modulus.  Other hardening 

models could be readily incorporated using the same solution techniques.  Due to the 

circular geometry of the shaft, isoparametric elements are used to approximate the circles 

as a collection of 8 linear segments, shown in Figure 7-22.  In order for the mesh to be 

consistent throughout the volume, the circular pattern continues thru to the base of the 

shaft with the rectangle built up from the circle.  A total of 156 isoparametric hexahedron 

elements with 236 nodes comprise the finite element representation.  The global inertia 

and stiffness matrices are determined using the formulation in Chapter 2, with 8 nodes 

per element. 

 

Figure 7-22:  Mesh of Mechanism Shaft 

 To approximate the influence of the mass of the pattern wheel assembly on the shaft, 

an effective force is applied to the circumferential nodes aligned with the two radial 

bearings.  The assembly is subjected to an impulse acceleration and the response is 

simulated over a 2 ms time interval.  The elements at the base of the circular portion of 

the shaft experience plastic deformation and contribute to increased deformation at the 

tip.  The tip deflection is shown in Figure 7-23 for the full solution as well as the CMS 
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solution with retention of 5% of the modes.  The elastic solutions are essentially overlaid 

but the CMS plastic solution deviates slightly from the full fidelity plastic solution with 

only 5% retained modes.  The peak plastic deformation is under-predicted by the CMS 

solution because a portion of the plastic force is not projected on the modal coordinates.  

The dynamic problem is simulated with 32% less computational effort than the full 

fidelity solution but the peak displacement at 1.7ms is under-predicted by 4%.  The 

accuracy of the modal solution can be improved by increasing the number of retained 

modes or incorporating residual flexibility, described in Section 6.2.2. 
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Figure 7-23:  Mechanism Shaft Tip Deflection 

As shown in Figure 7-23, the accuracy of the CMS plastic solution with 5% retained 

modes is essentially overlaid with the full solution response when residual flexibility is 

incorporated, but with 19% reduction in computational effort.  The response with 100% 

of the retained modes is equivalent to the full fidelity solution and does not result in a 

loss in accuracy. 
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Chapter 8  

Summary and Conclusions 

 

 Modeling and simulation are becoming an increasingly important aspect of the 

design process for a wide range of products.  Budget and schedule goals are driving 

products to be developed and fielded with less time for design and development and with 

higher expectations for quality and reliability.  These design pressures are especially high 

for complex mechanisms used in aerospace and automotive applications.  Since it is not 

feasible, or impossible, to experimentally test every possible normal and abnormal 

operational requirement of a complex mechanism, modeling and simulation can help fill 

the gap. 

 Mechanisms that are composed of many components that receive relatively low 

loading relative to the strength of the part and are primarily expected to move as a rigid 

part or assembly can be modeled using rigid body dynamic techniques.  Such techniques 

can greatly decrease the computational time required to solve a dynamic problem when 

compared to a full fidelity simulation because the size of the equations of motion solved 

at each increment are dramatically reduced.  This computational efficiency can be 

preserved and the accuracy of the simulation can be improved by selectively modeling 

highly stressed components with a modal representation.  Such an enhancement can be 

very effective if the vast majority of the parts can still be approximated as rigid bodies.  

The fixed interface CMS method has emerged as a very popular technique for 
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incorporating flexibility within a primarily rigid body simulation.  Since all of the 

boundary degrees of freedom are retained without any reduction, the fixed interface CMS 

method can easily be incorporated within a simulation without substantial setup required.  

The CMS representation is determined independent of the rigid body simulation and only 

solved once, with only the modal information being required for the dynamic simulation. 

 The limitation of the application of CMS methods to primarily rigid body 

simulations is that the response is limited to a linear-elastic assumption.  An enhanced 

framework for solving of non-linear dynamic problems utilizing fixed interface CMS has 

been proposed and investigated in this dissertation.  This enhancement can extend the 

utility of currently available techniques to include the ability to adequately simulate the 

non-linear responses associated with plastic deformation of components.  The stress 

within each element is determined from the CMS representation and evaluated against a 

user defined yield criteria, such as von Mises.  If the effective stress within any element 

has exceeded the yield strength of the material, the plastic deformation is determined 

using classical plasticity theory. 

 An equivalent force is calculated to provide the predicted amount of plastic 

deformation and introduced into the reduced CMS representation of the equations of 

motion.  The pseudoforce allows the plastic deformation to be induced purely by a force 

without requiring modification to the original CMS representation.  This allows the 

remainder of the dynamic solution to continue just as it would for any elastic response.  

Since the equations of solved incrementally, the pseudoforce is never completely 

unloaded and remains to represent the plastic set that has been induced by the applied 
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loading.  The strains remain irreversible by maintaining a measure of the effective plastic 

strain within each element. 

 The proposed framework can be integrated within a primarily rigid body dynamic 

code as an external subroutine that returns a force based on an input modal displacement.  

If the step remains elastic, the additional algorithms are not required and the only impact 

on the number of computations is the stress calculation.  If this calculation is limited to 

specific highly-stressed regions of the component, the computation expense can be 

further reduced.  The procedure required to induce the plastic deformation can be more 

computationally expensive than a direct method due to the required transformations 

between modal and global coordinate systems.  The benefits and disadvantages of the 

proposed method are somewhat dependent on the specific problem of interest but 

significant benefits can be realized for primarily rigid body dynamic applications. 

8.1 Future Work 

 The computational framework developed in this dissertation was investigated using 

custom Matlab code found within the Appendices.  The intent was to demonstrate the 

utility and charactistics of the method on a small scale using a high-level code.  Many of 

the calculations performed within the Matlab code should ideally be generated by a 

commercial rigid body dynamic code, with these non-linear calculations performed 

within a supplemental set of subroutines.  For the programming in this dissertation, little 

emphasis was placed on improving the efficiency and minimizing memory storage 

requirements since the primary goal was to develop an educational understanding.  

Computational expense can be reduced by improving the efficiency of the code and 

transitioning to a general purpose programming language. 
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 The numerical examples provided in Chapter 7 were not validated against 

experimental results.  The accuracy of the non-linear CMS solutions were based on the 

full-fidelity finite element results, with selected comparisons to results from a 

commercial finite element package or analytical solutions.  More complete measures of 

accuracy can be obtained through a rigorous validation with experimental data.  All 

numerical and experimental analyses require assumptions that must be critically 

evaluated during any verification or validation activities. 

 The primary motivation for the development of the non-linear CMS framework was 

to computationally simulate the dynamic performance of complex mechanisms under a 

wide variety of loading conditions.  The choice of element formulations, yield functions, 

and constitutive models reflects this influence and is not indicitave of the limitations of 

the method.  Capabilities could easily be extended to include a wide variety of more 

complex elemental formulations, damping models, yield functions, etc.  Only a limited 

set of options were investigated with the application of traditional, rate-independent, 

plasticity formulations but the method can be extended to more complex models. 

 The goal of this dissertation was to present the theoretical formulation of a newly 

developed framework for dynamic simulation and present numerical examples to 

demonstrate potential applications to indicate the accuracy with a given set of 

assumptions.  Using the same theoretical formulation, the method can easily be expanded 

to include a much wider range of capabilities.  When applied to other applications, the 

assumptions must be clearly understood with a thorough investigation of the convergence 

properties of the results obtained. 
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Appendix A  

Matlab Code for Finite Element Setup 

 

 This appendix contains the Matlab code associated with the generation of the global 

mass, damping, and stiffness matrices of the structure.  The main function, Master3D.m, 

calls all subroutines and performs some of the ancillary calculations prior to the 

integration of the equations of motion.  The input data is read from other subroutines as 

well as Excel files that contain the nodal and elemental data for a substructure. 

 

function Master3D 
clear;clc; 
 
% Input Parameters 
mesh=1; 
[meshfile,numn,nume,E,Nu,rho,BndN0,BndNF,BndN,FP,F,Pbc,Fbc,gtype,... 
    numbndM]=InputParameters(mesh); 
  
% Other Input Parameters 
stype=1;   % Solver type - 1=MatlabEig, 2=Lanczos 
rtype=2;   % Reduction type - 1=none, 2=CraigBampton 
DirMod=0;  % Only used if rtype=1, 0- Direct Solution, 1- Modal Solution 
if rtype==1  
    Nmodes=3*numn; 
elseif rtype==2 
    %Nmodes=252;%108;%big; 
    Nmodes=big; 
end 
zeta=0;  % Modal Damping Parameter 
  
% Read Mesh Data From Excel Files 
[nodes,elements] = ReadMeshData(meshfile,numn,nume); 
  
% Generate D Matrix - Isotropic Elasticity 
[D]=ElasticityIsotropic(E,Nu);  %Override Later 
  
% Generate Mass and Stiffness Matrix 
[M,K,Pstrain,Pstress,detJstore,Bstore,G_hatstore,Kelstore] = ... 
    IsoHexMKBubble(nodes,elements,D,rho,gtype); 
F0=F; 
  
% Sanity Check-Calculate Mass of Structure 
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cmass=0; 
if cmass==1 
    mass=0; 
    for i=1:3*numn 
        for j=1:3*numn 
            mass=mass+abs(M(i,j)); 
        end 
    end 
    mass=mass/3; 
end 
  
% Generate Lumped Mass Matrix (Diagonal) 
lmass=1;   % Inertia Matrix - 0=Consistent, 1=Lumped 
if lmass==1 
    mass=0; 
    for i=1:3*numn 
        for j=1:3*numn 
            mass=mass+abs(M(i,j)); 
        end 
    end 
    mass=mass/3; 
    Ml(1:3*numn,1:3*numn)=0; 
    sumdiag=0; 
    for i=1:3*numn 
        sumdiag=sumdiag+M(i,i); 
    end 
    mscale=3*mass/sumdiag; 
    for i=1:3*numn 
        Ml(i,i)=M(i,i)*mscale; 
    end 
    M=Ml; 
end 
  
% Sanity Check-Calculate Mass of Structure 
cmass=0; 
if cmass==1 
    mass=0; 
    for i=1:3*numn 
        for j=1:3*numn 
            mass=mass+abs(M(i,j)); 
        end 
    end 
    mass=mass/3; 
end 
  
% Sanity Check-Calculate Normal Modes of Structure 
cmodes=0; 
if cmodes == 1 
    [modes,omega] = MatlabEig(M,K,3*numn); 
    omega(:,1:3) 
    MPlot=[12]; 
    xlswrite('M-K_Matrices',modes,'modes') 
    ModePlots(modes,nodes,elements,MPlot); 
    return 
end 
  
% Apply Appropriate Boundary Conditions to Substructure 
[IntN,K,PTstrain,PTstress,Pbc,Fbc,Tdisp]=BoundaryConditions(BndN,BndN0,..

. 
    elements,mesh,numn,nume,Pbc,Fbc,K,Pstrain,Pstress); 
  
% Sanity Check-Calculate Normal Modes of Structure 
cmodes=0; 
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if cmodes == 1 
    [modes,omega] = MatlabEig(M,K,size(M,2)); 
    omega 
    return 
end 
  
% Use Damping 
usedamp=0; 
if usedamp == 1 
    [Nc,lambdac] = MatlabEig(M0,K0,Nmodes); 
    lambdac=abs(lambdac); 
    for i=1:Nmodes; 
        C0(i,i)=2*zeta*(2*pi*lambdac(i)); 
    end 
    invNc=sparse(inv(Nc)); 
    C0=invNc'*C0*invNc; 
else 
    C0(1:3*numn,1:3*numn)=0; 
end 
  
% Apply Reduction Method 
M0=M; 
K0=K; 
if rtype == 1 
    PHI=eye(Nmodes); 
    Pf=1;  % Placeholder for Newmark 
    Pu=1;  % Placeholder for Newmark 
    RF=1;  % Placeholder for Newmark 
    if DirMod==0   % Full Fidelity Solution 
        %C=C0; 
        C=zeros(3*numn);   % To turn off damping, debugging 
        %M=zeros(3*numn);   % To turn off inertia, debugging 
        N=eye(3*numn); 
    elseif DirMod==1   % Full Modal Solution 
        % Normalize Modal Matrix 
        [N,lambda] = MatlabEig(M,K,Nmodes); 
        Nscale=N'*M*N; 
        for i=1:Nmodes 
            for j=1:Nmodes 
                N(i,j)=N(i,j)/sqrt(Nscale(j,j)); 
            end 
        end 
        for i=1:Nmodes; 
            C(i,i)=2*zeta*(2*pi*lambda(i)); 
        end 
        M=eye(Nmodes); 
        clear K 
        for i=1:Nmodes; 
            K(i,i)=(lambda(i)*2*pi)^2; 
        end 
        if mesh >= 8 
            FN(1:Nmodes,1)=N'*F(1:3*numn,1); 
        end 
        PTstrain=PTstrain*N; 
        PTstress=PTstress*N; 
    end  
elseif rtype == 2   % CMS Solution 
    numbnd=size(BndN,2); 
    Tmodes=Nmodes+3*numbnd; 
     
    [Mbar,Kbar,Mn,Kn,PHI] = ... 
        CraigBampton(M,K,Nmodes,Tmodes,stype,BndN,IntN); 
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    % Determine Effective Modal Mass 
    checkmeff=0; 
    if checkmeff==1 
        numM0=size(M,1); 
        [Gamma,Gamma3,meff,meff3]=... 
            EffectiveModalMass(numM0,numbnd,Mn,Kn,mass); 
        return 
    end 
     
    % Reorder the Force Vector to Match Inertia and Damping Matrices 
    [Fo(1:3*numn,1),P]=Order2(F(1:3*numn,1),IntN,BndNF,BndN0); 
    Fq=PHI'*Fo; 
     
    % Orthonormalize the Inertia and Damping Matrices 
    [N,lambda,FqO,numrgd]=... 
        Orthonormalize(Mbar,Kbar,Fq,Nmodes,Tmodes,numbndM); 
     
    % Generate Conversion Matrices 
    Pf=N'*PHI'*P; 
    Pu=P'*PHI*N; 
    size(N') 
    Y=eye(Tmodes-numrgd); 
     
    % Populate C Matrix for Modal Damping 
    moddamp=0;   % 0 = No Modal Damping, 1 = Use Modal Damping 
    C(1:Nmodes-numrgd,1:Nmodes-numrgd)=0; 
    if moddamp==1 
        for i=1:Nmodes-numrgd; 
            C(i,i)=2*zeta*(2*pi*lambda(i)); 
        end 
    end 
     
    M=eye(Tmodes-numrgd);  % After Orthonormalization, Inertia is 

Itentity 
    clear K   % Clear Prior to Storing Eigenvalues 
    K(1:Tmodes-numrgd,1:Tmodes-numrgd)=0; 
    for i=1:Tmodes-numrgd; 
        K(i,i)=(lambda(i)*2*pi)^2; 
    end 
    K=sparse(K); 
     
    % Residual Flexibility Calculation 
    useRF=0; 
    if useRF == 1 
        RF=sparse(K0\eye(3*numn)-Pu*(K\Pf)); 
    else 
        RF=1; 
    end 
end 
  
%% Generate Force Vector for Axial Load 
if mesh==3 
    mesh=1; 
end 
if mesh==2 
    T0=0; 
    TF=0.001; 
    Tstep=1E-6; 
    numS=round((TF-T0)/Tstep); 
    % Create Force Vector 
    t=0; 
    d=.0004; 
    Fu(1:3*numn,1)=F(1:3*numn,1); 
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    for i=2:numS 
        t=t+Tstep; 
        if t < d 
            Fu(1:3*numn,i)=Fu(1:3*numn,1)*(1/2*(1-cos(pi()*t/d))); 
        elseif t < (TF-d) 
            Fu(1:3*numn,i)=Fu(1:3*numn,1); 
        else 
            Fu(1:3*numn,i)=Fu(1:3*numn,1)*(1/2*(1-cos(pi()*(TF-t)/d))); 
        end 
    end 
    Fu(1:3*numn,1)=0;  % Set force at first time step equal to 0 
     
    if rtype == 1 
        if DirMod == 0 
            F=Fu; 
        elseif DirMod == 1 
            for i=2:numS 
                FN(1:Nmodes,i)=N'*Fu(1:Nmodes,i); 
            end 
            F=FN; 
        end 
    end 
    if rtype == 2 
        t=0; 
        for i=2:numS 
            t=t+Tstep; 
             
            if t < d 
                FqO(1:Nmodes,i)=FqO(1:Nmodes,1)*(1/2*(1-cos(pi()*t/d))); 
            elseif t < (TF-d) 
                FqO(1:Nmodes,i)=FqO(1:Nmodes,1); 
            else 
                FqO(1:Nmodes,i)=FqO(1:Nmodes,1)*(1/2*(1-cos(pi()*(TF-

t)/d))); 
            end 
        end 
        F=FqO; 
    end 
elseif mesh==1%9  % Use for Liu Beam 
    T0=0; 
    TF=0.005; 
    Tstep=1E-6; 
    numS=round((TF-T0)/Tstep); 
    Fu=F0; 
    F(1:3*numn,1:numS)=0; 
    for i=1:numS 
        F(1:3*numn,i)=Fu(1:3*numn,1); 
    end 
    Fu=F; 
    if rtype == 1 
        if DirMod == 1 
            FNN(1:Nmodes,1:numS)=0; 
            for i=2:numS 
                FNN(1:Nmodes,i)=FN(1:3*numn,1); 
            end 
            F=FNN; 
        end 
    elseif rtype == 2 
        FqO(1:size(N,2),2:numS)=0; 
        for i=2:numS 
            FqO(:,i)=FqO(:,1); 
        end 
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        F=sparse(FqO); 
        Fu=sparse(Fu); 
    end 
elseif mesh==11 
    T0=0; 
    TF=0.002; 
    Tstep=1E-6; 
    numS=round((TF-T0)/Tstep); 
    % Create Force Vector 
    t=0; 
    d=.001; 
    Fu(1:3*numn,1:numS)=0; 
    Fu(1:3*numn,1)=F(1:3*numn,1); 
    for i=2:numS 
        t=t+Tstep; 
        if t < d 
            Fu(1:3*numn,i)=Fu(1:3*numn,1)*(1/2*(1-cos(2*pi()*t/d))); 
        else 
            Fu(1:3*numn,i)=0; 
        end 
    end 
    Fu(1:3*numn,1)=0;  % Set force at first time step equal to 0 
    Fu=sparse(Fu); 
     
    if rtype == 1 
        if DirMod == 0 
            F=sparse(Fu); 
        elseif DirMod == 1 
            FN(1:Nmodes,1:numS)=0; 
            for i=2:numS 
                FN(1:Nmodes,i)=N'*Fu(1:Nmodes,i); 
            end 
            F=FN; 
        end 
    end 
    if rtype == 2 
        FqO(1:size(N,2),2:numS)=0; 
        for i=1:numS 
            FqO(:,i)=Pf*Fu(:,i); 
        end 
        F=sparse(FqO); 
    end 
end 
  
% Calculation of Static Solution 
static=0; 
if static==1 
    u=K\Fu(1:3*numn,600); 
    DefPlots(nodes,u) 
    return 
end 
 
[X] = NewmarkIso(M,M0,C,C0,K,K0,Fu,F,T0,TF,Tstep,nodes,elements,D,N,... 
    rtype,DirMod,Pbc,Fbc,mesh,Pf,Pu,RF,PTstrain,PTstress,detJstore,... 
    Bstore,G_hatstore,Kelstore,Tdisp); 
 
u=X; 
  
if mesh == 1 
    eplot=8; 
    udef=u(3*(eplot-1)+3,1:numS); 
elseif mesh == 2 
    eplot=1; 
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    udef=u(3*(eplot-1)+3,1:numS); 
elseif mesh == 9 
    eplot=105; 
    udef=u(3*(eplot-1)+3,1:numS); 
elseif mesh == 11 
    eplot=14; 
    udef=u(3*(eplot-1)+2,1:numS); 
end 
  
plotincr=20; 
countm=0; 
for i=1:numS 
    if i>=numS/plotincr*countm 
        countm=countm+1; 
        udefp(1,countm)=udef(1,i); 
    end 
end 
  
% Determine Maximum Deflection 
maxd=udef(1,1); 
maxs=1; 
for i=1:numS 
    maxn=udef(1,i); 
    if maxn < maxd 
        maxd=maxn; 
        maxs=i; 
    end 
end 
maxd 
 
end   % End Function 
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function [IntN,K,PTstrain,PTstress,Pbc,Fbc,Tdisp]=... 
    BoundaryConditions(BndN,BndN0,elements,mesh,numn,nume,Pbc,Fbc,K,... 
    Pstrain,Pstress) 
  
% Create Vector of Interface Nodes 
numbnd=size(BndN,2); 
BndNS=sort(BndN); 
IntN(1:(numn-numbnd))=0; 
c=0; 
for i=1:BndNS(1)-1 
    c=c+1; 
    IntN(c)=i; 
end 
for i=1:numbnd-1 
    for j=BndNS(i)+1:BndNS(i+1)-1 
        c=c+1; 
        IntN(c)=j; 
    end 
end 
for i=BndNS(numbnd)+1:numn 
    c=c+1; 
    IntN(c)=i; 
end 
  
runFbc=0; 
if runFbc==1; 
    % Generate Force BC Matrix 
    Fbc(1:3*numn,1:3*numn)=0; 
    for i=1:3*numn 
        Fbc(i,i)=1; 
    end 
    if mesh==1 
        for i=[4,7,9,11] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0]; 
        end 
        for i=[1,8] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1]; 
        end 
        for i=[8] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1]; 
        end 
        Fbc=sparse(Fbc); 
        %save('LiuBeamCrude1Fbc.mat','Fbc') 
    elseif mesh==2 
        for i=[21,22,43,44] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0]; 
        end 
        for i=[21,22] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1]; 
        end 
        for i=[21] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1]; 
        end 
        Fbc=sparse(Fbc); 
        %save('RectBeam2Fbc.mat','Fbc') 
    elseif mesh==3 
        for i=[4,7,9,11] 
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            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0]; 
        end 
        for i=[9,11] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1]; 
        end 
        for i=[9,11] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1]; 
        end 
        Fbc=sparse(Fbc); 
        save('LiuBeamCrude3Fbc.mat','Fbc') 
    elseif mesh==9 
        for i=[45,55,100,110] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0]; 
        end 
        for i=[50,105] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1]; 
        end 
        for i=[105] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1]; 
        end 
        Fbc=sparse(Fbc); 
        %save('LiuBeamCrude2Fbc.mat','Fbc') 
    elseif mesh==11 
        for i=[19,20,22,24,90,91,92,93,154] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0]; 
        end 
        for i=[90,154] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1]; 
        end 
        for i=[154] 
            m=3*(i-1); 
            Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1]; 
        end 
        Fbc=sparse(Fbc); 
        %save('PWMesh1Fbc.mat','Fbc') 
    end 
end 
  
% Generate Boundary Condition Matrix 
runPbc=0; 
if runPbc == 1 
    % Apply Boundary Conditions 
    Pbc(1:3*numn,1:3*numn)=1; 
    PbcScale=10^6; 
    if mesh==1 
        % Constrain boundary nodes in the z direction 
        for i=[4,7,9,11] 
            m=3*(i-1); 
            for j=[4,7,9,11] 
                n=3*(j-1); 
                for k=3:3    % Only constrain z direction 
                    for l=3:3    % Only constrain z direction 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
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            end 
        end 
        % Constrain boundary nodes in the x direction 
        for i=[1,8] 
            m=3*(i-1); 
            for j=[1,8] 
                n=3*(j-1); 
                for k=1:1 
                    for l=1:1 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        % Constrain boundary nodes in the y direction 
        for i=[8] 
            m=3*(i-1); 
            for j=[8] 
                n=3*(j-1); 
                for k=2:2 
                    for l=2:2 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        %save('LiuBeamCrude1Pbc.mat','Pbc') 
    elseif mesh==2 
        % Constrain boundary nodes in the z direction 
        for i=[21,22,43,44] 
            m=3*(i-1); 
            for j=[21,22,43,44] 
                n=3*(j-1); 
                for k=3:3    % Only constrain z direction 
                    for l=3:3    % Only constrain z direction 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        % Constrain boundary nodes in the x direction 
        for i=[21,22] 
            m=3*(i-1); 
            for j=[21,22] 
                n=3*(j-1); 
                for k=1:1 
                    for l=1:1 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        % Constrain boundary nodes in the y direction 
        for i=[21] 
            m=3*(i-1); 
            for j=[21] 
                n=3*(j-1); 
                for k=2:2 
                    for l=2:2 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
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        end 
        %save('RectBeam2Pbc.mat','Pbc') 
    elseif mesh==3 
        % Constrain boundary nodes in the z direction 
        for i=[4,7,9,11] 
            m=3*(i-1); 
            for j=[4,7,9,11] 
                n=3*(j-1); 
                for k=3:3    % Only constrain z direction 
                    for l=3:3    % Only constrain z direction 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        % Constrain boundary nodes in the x direction 
        for i=[9,11] 
            m=3*(i-1); 
            for j=[9,11] 
                n=3*(j-1); 
                for k=1:1 
                    for l=1:1 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        % Constrain boundary nodes in the y direction 
        for i=[9,11] 
            m=3*(i-1); 
            for j=[9,11] 
                n=3*(j-1); 
                for k=2:2 
                    for l=2:2 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        save('LiuBeamCrude3Pbc.mat','Pbc') 
    elseif mesh==9 
        % Constrain boundary nodes in the z direction 
        for i=[45,55,100,110] 
            m=3*(i-1); 
            for j=[45,55,100,110] 
                n=3*(j-1); 
                for k=3:3    % Only constrain z direction 
                    for l=3:3    % Only constrain z direction 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        % Constrain boundary nodes in the x direction 
        for i=[50,105] 
            m=3*(i-1); 
            for j=[50,105] 
                n=3*(j-1); 
                for k=1:1 
                    for l=1:1 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
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            end 
        end 
        % Constrain boundary nodes in the y direction 
        for i=[105] 
            m=3*(i-1); 
            for j=[105] 
                n=3*(j-1); 
                for k=2:2 
                    for l=2:2 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        %save('LiuBeamCrude2Pbc.mat','Pbc') 
    elseif mesh==11 
        % Constrain boundary nodes in the z direction 
        for i=[19,20,22,24,90,91,92,93,154] 
            m=3*(i-1); 
            for j=[19,20,22,24,90,91,92,93,154] 
                n=3*(j-1); 
                for k=3:3    % Only constrain z direction 
                    for l=3:3    % Only constrain z direction 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        % Constrain boundary nodes in the x direction 
        for i=[90,154] 
            m=3*(i-1); 
            for j=[90,154] 
                n=3*(j-1); 
                for k=1:1 
                    for l=1:1 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        % Constrain boundary nodes in the y direction 
        for i=[154] 
            m=3*(i-1); 
            for j=[154] 
                n=3*(j-1); 
                for k=2:2 
                    for l=2:2 
                        Pbc(m+k,n+l)=PbcScale; 
                    end 
                end 
            end 
        end 
        %save('PWMesh1Pbc.mat','Pbc') 
    end   % End Mesh Conditional 
end  % End runPbc Loop 
  
for i=1:3*numn 
    for j=1:3*numn 
        K(i,j)=K(i,j)*Pbc(i,j); 
    end 
end 
  
% Generate Displacement Transformation Matrix 
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Tdisp(1:24*nume,1:3*numn)=0; 
for e=1:nume 
    for j=1:8 
        % Transformation from Global to Organized by Element 
        node=elements(e,j); 
        m=24*(e-1)+3*(j-1); 
        n=3*(node-1); 
        Tdisp(m+1:m+3,n+1:n+3)=[ 1 0 0 ; 0 1 0 ; 0 0 1 ]; 
    end 
end 
PTstrain=sparse(Pstrain*Tdisp); 
PTstress=sparse(Pstress*Tdisp); 
  
end   % End Subfunction 
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function [meshfile,numn,nume,E,Nu,rho,BndN0,BndNF,BndN,FP,F,Pbc,Fbc,... 
    gtype,numbndM]= InputParameters(mesh) 
  
  
if mesh == 1 
    meshfile = 'LiuBeamCrude1.xls'; 
    gtype=4; 
    numn = 110; 
    nume = 40; 
    E = 30E6; 
    Nu = 0.3; 
    rho(1:nume) = 0.000733; 
    BndN0=[1,4,7,8,9,11]; 
    BndNF=[2,3,5,6,10,12,16:19,30:33,48:51,59:62]; 
    BndN=[BndNF BndN0]; 
    Pbc=0; 
    Fbc=0; 
    load LiuBeamCrude1Pbc.mat 
    load LiuBeamCrude1Fbc.mat 
    numbndM=7; 
    Pc=444.444444; 
    FP=-.625*Pc*3/4; 
    F(1:3*numn,1)=0; 
    for i=1:size(BndNF,2) 
        j=BndNF(1,i); 
        F(3*(j-1)+3,1)=2*FP; 
    end 
    for i=[3,6,10,12]  % End Points 
        F(3*(i-1)+3,1)=FP; 
    end 
elseif mesh == 2 
    meshfile = 'RectBeamMesh2.xls'; 
    gtype=1; 
    numn = 44; 
    nume = 10; 
    E = 29E6; 
    Nu = 0.29; 
    rho(1:nume) = 0.0000007485; 
    BndN0=[21,22,43,44]; 
    BndNF=[1,2,23,24]; 
    BndN=[BndNF BndN0]; 
    numbndM=7; 
    load RectBeam2Pbc.mat 
    load RectBeam2Fbc.mat 
    FP=400/4; 
    F(1:3*numn,1)=0; 
    for i=1:size(BndNF,2) 
        j=BndNF(1,i); 
        F(3*(j-1)+3,1)=FP; 
    end 
    MPlot=[10,11,12]; 
elseif mesh == 3 
    meshfile = 'LiuBeamCrude1.xls'; 
    gtype=4; 
    numn = 110; 
    nume = 40; 
    E = 30E6; 
    Nu = 0.3; 
    rho(1:nume) = 0.000733; 
    BndN0=[4,7,9,11]; 
    BndNF=[2,5,16,33,51,59]; 
    BndN=[BndNF BndN0]; 
    load LiuBeamCrude3Pbc.mat 
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    load LiuBeamCrude3Fbc.mat 
    numbndM=7; 
    FP=-850*3/4;  % For Center 
    F(1:3*numn,1)=0; 
    for i=1:size(BndNF,2) 
        j=BndNF(1,i); 
        F(3*(j-1)+3,1)=2*FP; 
    end 
    for i=[16,33,51,59]  % End Points 
        F(3*(i-1)+3,1)=FP; 
    end 
     
elseif mesh == 9 
    meshfile = 'LiuBeamCrude2.xls'; 
    gtype=2; 
    numn = 110; 
    nume = 40; 
    E = 30E6; 
    Nu = 0.3; 
    rho(1:nume) = 0.000733; 
    BndN0=[45,50,55,100,105,110]; 
    BndNF=[1:11,56:66]; % Original 
    BndN=[BndNF BndN0]; 
    load LiuBeamCrude2Pbc.mat 
    load LiuBeamCrude2Fbc.mat 
    numbndM=7; 
    Pc=444.444444; 
    FP=-.625*Pc*3/4; % Original 
    F(1:3*numn,1)=0; 
    for i=1:size(BndNF,2) 
        j=BndNF(1,i); 
        F(3*(j-1)+3,1)=2*FP; 
    end 
    for i=[1,11,56,66]  % Original and Every Other 
        F(3*(i-1)+3,1)=FP; 
    end 
elseif mesh == 10 
    meshfile = 'LiuBeamCrude3.xls'; 
    gtype=2; 
    numn = 132; 
    nume = 50; 
    E = 30E6; 
    Nu = 0.3; 
    rho = 0.000733; 
    BndN0=[25,26,35,36]; 
    BndNF=[29:34,109:124]; 
    BndN=[BndNF BndN0]; 
    Pbc=0; 
    load LiuBeamCrude3Pbc.mat 
    Pc=444.444444; 
    FP=-.625*Pc*3/4; 
    F(1:3*numn,1)=0; 
    for i=1:size(BndNF,2) 
        j=BndNF(1,i); 
        F(3*(j-1)+3,1)=2*FP; 
    end 
    for i=[1,11,56,66] 
        F(3*(i-1)+3,1)=FP; 
    end 
elseif mesh == 11 
    meshfile = 'PWMesh1.xls'; 
    gtype=3; 
    numn = 236; 
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    nume = 156; 
    E = 30E6; 
    Nu = 0.3; 
    rho(1:72) = 0.000733; 
    rho(73:96) = 0.026; 
    rho(97:156) = 0.000733; 
    BndN0=[19,20,22,24,90,91,92,93,154]; 
    BndNF=[14]; 
    BndN=[BndNF BndN0]; 
    numbndM=7; 
    load PWMesh1Pbc.mat 
    load PWMesh1Fbc.mat 
    FP=2000*.25*pi*.1^2/16; 
    F(1:3*numn,1)=0; 
    for i=[14] 
        F(3*(i-1)+2,1)=16*FP; 
    end 
end 
 
Fsum=0; 
for i=1:3*numn 
    Fsum=Fsum+F(i,1); 
end 
  
end   % End Subfunction 
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function [M,K,Pstrain,Pstress,detJstore,Bstore,G_hatstore,Kelstore] = ... 
    IsoHexMKBubble(nodes,elements,D,rho,gtype) 
  
% Options 
imode=2;   % 0 for None, 1 for Centroid, 2 for Average Correction,  
           % 3 for Simo, 4 for Nastran 
sri=0;   % Selectively Reduced Integration:  0 for Off, 1 for On 
  
numn=size(nodes,1); 
nume=size(elements,1); 
  
% Initialize Matrices 
M(1:3*numn,1:3*numn)=0; 
K(1:3*numn,1:3*numn)=0; 
e(1:8)=0; 
xyz(1:8,1:3)=0; 
dNdC(1:3,1:8)=0; 
dNdC0(1:3,1:8)=0; 
dPdC(1:3,1:8)=0; 
N(1:3,1:24)=0; 
B(1:6,1:24)=0; 
B0(1:6,1:24)=0; 
G(1:6,1:9)=0; 
G_hat(1:6,1:9)=0; 
detJstore(1:8*nume,1)=0; 
Bstore(1:8*nume,1:6,1:24)=0; 
G_hatstore(1:8*nume,1:6,1:9)=0; 
Kelstore(1:nume,1:24,1:24)=0; 
Pstrain(1:48*nume,1:24*nume)=0; 
Jsum(1:6)=0; 
Bsum(1:6,1:24)=0; 
Bsri(1:8,1:6,1:24)=0; 
detJsri(1:8)=0; 
Gsri(1:8,1:6,1:9)=0; 
D=sparse(D); 
  
if gtype == 1 
    psi= [+1 +1 +1 +1 -1 -1 -1 -1]; 
    eta= [-1 +1 +1 -1 -1 +1 +1 -1]; 
    zeta=[+1 +1 -1 -1 +1 +1 -1 -1]; 
    Csri=[ 1 2 5 6  ;   % xy positive 
           2 3 6 7  ;   % xz positive 
           1 2 3 4  ;   % yz positive 
           3 4 7 8  ;   % xy negative 
           1 4 5 8  ;   % xz negative 
           5 6 7 8 ];   % yz negative 
elseif gtype == 2 
    psi= [-1 +1 +1 -1 -1 +1 +1 -1]; 
    eta= [-1 -1 -1 -1 +1 +1 +1 +1]; 
    zeta=[+1 +1 -1 -1 +1 +1 -1 -1]; 
    Csri=[ 1 2 5 6  ;   % xy positive 
           5 6 7 8  ;   % xz positive 
           2 3 6 7  ;   % yz positive 
           3 4 7 8  ;   % xy negative 
           1 2 3 4  ;   % xz negative 
           1 4 5 8 ];   % yz negative 
elseif gtype == 3 
    psi= [-1 +1 +1 -1 -1 +1 +1 -1]; 
    eta= [-1 -1 +1 +1 -1 -1 +1 +1]; 
    zeta=[-1 -1 -1 -1 +1 +1 +1 +1]; 
    Csri=[ 5 6 7 8  ;   % xy positive 
           3 4 7 8  ;   % xz positive 
           2 3 6 7  ;   % yz positive 
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           1 2 3 4  ;   % xy negative 
           1 2 5 6  ;   % xz negative 
           1 4 5 8 ];   % yz negative 
elseif gtype == 4 
    psi= [-1 -1 +1 +1 -1 -1 +1 +1]; 
    eta= [-1 -1 -1 -1 +1 +1 +1 +1]; 
    zeta=[-1 +1 +1 -1 -1 +1 +1 -1]; 
    Csri=[ 2 3 6 7  ;   % xy positive 
           5 6 7 8  ;   % xz positive 
           3 4 7 8  ;   % yz positive 
           1 4 5 8  ;   % xy negative 
           1 2 3 4  ;   % xz negative 
           1 2 5 6 ];   % yz negative 
end 
  
% Gauss Points for a 2x2x2 Array 
gauss=8; 
if gtype == 1 
    psiG= [+1 +1 +1 +1 -1 -1 -1 -1]/3^.5; 
    etaG= [-1 +1 +1 -1 -1 +1 +1 -1]/3^.5; 
    zetaG=[+1 +1 -1 -1 +1 +1 -1 -1]/3^.5; 
    wG(1:8)=1; 
elseif gtype == 2 
    psiG= [-1 +1 +1 -1 -1 +1 +1 -1]/3^.5; 
    etaG= [-1 -1 -1 -1 +1 +1 +1 +1]/3^.5; 
    zetaG=[+1 +1 -1 -1 +1 +1 -1 -1]/3^.5; 
    wG(1:8)=1; 
elseif gtype == 3 
    psiG= [-1 +1 +1 -1 -1 +1 +1 -1]/3^.5; 
    etaG= [-1 -1 +1 +1 -1 -1 +1 +1]/3^.5; 
    zetaG=[-1 -1 -1 -1 +1 +1 +1 +1]/3^.5; 
    wG(1:8)=1; 
elseif gtype == 4 
    psiG= [-1 -1 +1 +1 -1 -1 +1 +1]/3^.5; 
    etaG= [-1 -1 -1 -1 +1 +1 +1 +1]/3^.5; 
    zetaG=[-1 +1 +1 -1 -1 +1 +1 -1]/3^.5; 
    wG(1:8)=1; 
end 
  
% Gauss Points for a 3x3x3 Array 
gauss3=27; 
bG=sqrt(0.6); 
psiG3 = [ -bG -bG -bG -bG -bG -bG -bG -bG -bG  0   0   ... 
     0   0   0   0   0   0   0  +bG +bG +bG +bG +bG +bG +bG +bG +bG ]; 
etaG3 = [ -bG -bG -bG  0   0   0  +bG +bG +bG -bG -bG  ... 
    -bG  0   0   0  +bG +bG +bG -bG -bG -bG  0   0   0  +bG +bG +bG ]; 
zetaG3= [ -bG  0  +bG -bG  0  +bG -bG  0  +bG -bG  0   ... 
    +bG -bG  0  +bG -bG  0  +bG -bG  0  +bG -bG  0  +bG -bG  0  +bG ]; 
wpsiG3 = [ 5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8 5 5 5 5 5 5 5 5 5 ]/9; 
wetaG3 = [ 5 5 5 8 8 8 5 5 5 5 5 5 8 8 8 5 5 5 5 5 5 8 8 8 5 5 5 ]/9; 
wzetaG3= [ 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 ]/9; 
wG3(1:27)=0; 
for i=1:27 
    wG3(i)=wpsiG3(i)*wetaG3(i)*wzetaG3(i); 
end 
  
% Calculate Mass and Stiffness Matrices 
for i=1:nume 
    for j=1:8 
        e(1,j)=elements(i,j); 
        for k=1:3 
            xyz(j,k)=nodes(e(1,j),k); 
        end 
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    end 
     
    Mel(1:24,1:24)=0; 
    Kel0(1:24,1:24)=0; 
    if imode==4 
        H_G(1:6,1:6)=0; 
        E_G(1:6,1:24)=0; 
    else 
        H_G(1:9,1:9)=0; 
        E_G(1:9,1:24)=0; 
    end 
    Gvol(1:6,1:9)=0; 
    Vol=0; 
     
    % Generate Mass Matrix 
    for j=1:gauss3 
        for k=1:8 
            % Generate dNdC Matrix 
            dNdC(1:3,k) = 1/8* ... 
                [  psi(k)*(1+eta(k)*etaG3(j))*(1+zeta(k)*zetaG3(j))  ;... 
                   eta(k)*(1+psi(k)*psiG3(j))*(1+zeta(k)*zetaG3(j))  ;... 
                   zeta(k)*(1+psi(k)*psiG3(j))*(1+eta(k)*etaG3(j))  ]; 
        end 
        J=dNdC*xyz; 
        detJ=det(J); 
         
        for k=1:8 
            % Generate N Matrix 
            Nterm=(1+psi(k)*psiG3(j))*(1+eta(k)*etaG3(j))* ... 
                  (1+zeta(k)*zetaG3(j)); 
            N(1:3,3*(k-1)+1:3*(k-1)+3)=1/8*... 
                [ Nterm    0      0    ;... 
                    0    Nterm    0    ;... 
                    0      0    Nterm ]; 
        end 
         
        % Generate M Matrix 
        Mel=Mel+rho(i)*wG3(j)*detJ*(N)'*N; 
    end  % End Gauss Loop 
     
    % Generate Stiffness Correction Terms 
    if imode==0   % For None 
        % Placeholder 
    elseif imode==1   % For Centroid 
        % Placeholder 
    elseif imode==2   % For Average Correction 
        for j=1:gauss 
            dPdC(1:3,1:3) = [ -2*psi(j)     0          0      ;... 
                                  0     -2*eta(j)      0      ;... 
                                  0         0     -2*zeta(j) ]; 
             
            for k=1:8 
                % Generate dNdC Matrix 
                dNdC(1:3,k) = 1/8* ... 
                  [  psi(k)*(1+eta(k)*etaG(j))*(1+zeta(k)*zetaG(j))  ;... 
                     eta(k)*(1+psi(k)*psiG(j))*(1+zeta(k)*zetaG(j))  ;... 
                     zeta(k)*(1+psi(k)*psiG(j))*(1+eta(k)*etaG(j))  ]; 
            end 
            J=dNdC*xyz; 
            dPdxyz=J\dPdC; 
             
            for k=1:3 
                G(1:6,3*(k-1)+1:3*(k-1)+3) = ... 
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                    [ dPdxyz(1,k)       0            0       ;... 
                           0       dPdxyz(2,k)       0       ;... 
                           0            0       dPdxyz(3,k)  ;... 
                      dPdxyz(2,k)  dPdxyz(1,k)       0       ;... 
                      dPdxyz(3,k)       0       dPdxyz(1,k)  ;... 
                           0       dPdxyz(3,k)  dPdxyz(2,k) ]; 
            end 
             
            detJ2=det(J); 
            Gvol=Gvol+wG(j)*detJ2*G; 
            Vol=Vol+wG(j)*detJ2; 
        end 
        Gvol=Gvol/Vol; 
    elseif imode==3;   % For Simo 
        % Placeholder 
    end   % End imode conditional 
     
    % Generate Stiffness Matrix 
    for j=1:gauss 
        index=8*(i-1)+j; 
        dPdC(1:3,1:3) = [ -2*psi(j)     0          0      ;... 
                              0     -2*eta(j)      0      ;... 
                              0         0     -2*zeta(j) ]; 
         
        for k=1:8 
            % Generate dNdC Matrix 
            dNdC(1:3,k) = 1/8* ... 
                [  psi(k)*(1+eta(k)*etaG(j))*(1+zeta(k)*zetaG(j))  ;... 
                   eta(k)*(1+psi(k)*psiG(j))*(1+zeta(k)*zetaG(j))  ;... 
                   zeta(k)*(1+psi(k)*psiG(j))*(1+eta(k)*etaG(j))  ]; 
            dNdC0(1:3,k) = 1/8* ... 
                [  psi(k)   ;... 
                   eta(k)   ;... 
                   zeta(k) ]; 
        end 
        J=dNdC*xyz; 
        detJ=det(J); 
        detJstore(index,1)=detJ; 
        dNdxyz=J\dNdC; 
        if imode==0   % For None 
            J0=dNdC0*xyz; 
            dPdxyz=J0\dPdC; 
        elseif imode==1   % For Centroid 
            J0=dNdC0*xyz; 
            dPdxyz=J0\dPdC; 
        elseif imode==2   % For Average Correction 
            dPdxyz=J\dPdC; 
        elseif imode==3   % For Simo 
            J0=dNdC0*xyz; 
            detJ0=det(J0); 
            dPdxyz=J0\dPdC; 
        elseif imode==4   % For Nastran 
            J0=dNdC0*xyz; 
            detJ0=det(J0); 
            dPdxyz=-1/2*J0\dPdC; 
        end 
         
        % Calculate the Strain Displacement Matrix at the Centroid 
        if j==1 
            dNdxyz0=J\dNdC0; 
            for k=1:8 
                % Generate B0 Matrix 
                B0(1:6,3*(k-1)+1:3*(k-1)+3) = ... 
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                    [ dNdxyz0(1,k)        0             0       ; ... 
                            0       dNdxyz0(2,k)        0       ; ... 
                            0             0       dNdxyz0(3,k)  ; ... 
                      dNdxyz0(2,k)  dNdxyz0(1,k)        0       ; ... 
                      dNdxyz0(3,k)        0       dNdxyz0(1,k)  ; ... 
                            0       dNdxyz0(3,k)  dNdxyz0(2,k) ]; 
            end 
        end 
         
        for k=1:8 
            % Generate B Matrix 
            B(1:6,3*(k-1)+1:3*(k-1)+3) = ... 
                [ dNdxyz(1,k)       0            0       ; ... 
                       0       dNdxyz(2,k)       0       ; ... 
                       0            0       dNdxyz(3,k)  ; ... 
                  dNdxyz(2,k)  dNdxyz(1,k)       0       ; ... 
                  dNdxyz(3,k)       0       dNdxyz(1,k)  ; ... 
                       0       dNdxyz(3,k)  dNdxyz(2,k) ]; 
        end 
        Bstore(index,1:6,1:24)=B; 
         
        for k=1:3 
            G(1:6,3*(k-1)+1:3*(k-1)+3) = ... 
                [ dPdxyz(1,k)       0            0       ;... 
                       0       dPdxyz(2,k)       0       ;... 
                       0            0       dPdxyz(3,k)  ;... 
                  dPdxyz(2,k)  dPdxyz(1,k)       0       ;... 
                  dPdxyz(3,k)       0       dPdxyz(1,k)  ;... 
                       0       dPdxyz(3,k)  dPdxyz(2,k) ]; 
        end 
         
        % Additional Incompatible Modes (Simo) 
        if imode==0 
            % Placeholder 
        elseif imode==1 
            G_hat=G; 
            G_hatstore(index,1:6,1:9)=G_hat; 
        elseif imode==2 
            G_hat=G-Gvol; 
            G_hatstore(index,1:6,1:9)=G_hat; 
        elseif imode==3 
            Et(1:6,1:6) = ... 
                [psi(j)   0       0      0      0      0      ;... 
                   0    eta(j)    0      0      0      0      ;... 
                   0      0    zeta(j)   0      0      0      ;... 
                   0      0       0    psi(j) eta(j)   0      ;... 
                   0      0       0    psi(j)   0    zeta(j)  ;... 
                   0      0       0      0    eta(j) zeta(j) ]; 
            Et(1:6,7:9) = ... 
               [  psi(j)*eta(j)   psi(j)*zeta(j)         0           ;... 
                 -psi(j)*eta(j)         0          eta(j)*zeta(j)    ;... 
                        0        -psi(j)*zeta(j)  -eta(j)*zeta(j)    ;... 
                psi(j)^2-eta(j)^2       0                0           ;... 
                        0       psi(j)^2-zeta(j)^2       0           ;... 
                        0               0        eta(j)^2-zeta(j)^2 ]; 
             
            F0(1:6,1:3) = ... 
                [    J0(1,1)^2    J0(2,1)*J0(1,2) J0(3,1)*J0(1,3)  ;... 
                  J0(1,2)*J0(2,1)    J0(2,2)^2    J0(3,2)*J0(2,3)  ;... 
                  J0(1,3)*J0(3,1) J0(2,3)*J0(3,2)    J0(3,3)^2     ;... 
                  J0(1,1)*J0(2,1) J0(1,2)*J0(2,2)        0         ;... 
                  J0(1,1)*J0(3,1)        0        J0(1,3)*J0(3,3)  ;... 
                         0        J0(2,2)*J0(3,2) J0(2,3)*J0(3,3) ]; 
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            F0(1:6,4:4) = ... 
                [       2*J0(1,1)*J0(1,2)         ;... 
                        2*J0(2,1)*J0(2,2)         ;... 
                                0                 ;... 
                 J0(1,1)*J0(2,2)+J0(1,2)*J0(2,1)  ;... 
                                0                 ;... 
                                0                ]; 
            F0(1:6,5:5) = ... 
                [       2*J0(1,1)*J0(1,3)         ;... 
                                0                 ;... 
                        2*J0(3,1)*J0(3,3)         ;... 
                                0                 ;... 
                 J0(1,1)*J0(3,3)+J0(1,3)*J0(3,1)  ;... 
                                0                ]; 
            F0(1:6,6:6) = ... 
                [               0                 ;... 
                        2*J0(2,2)*J0(2,3)         ;... 
                        2*J0(3,2)*J0(3,3)         ;... 
                                0                 ;... 
                                0                 ;... 
                 J0(2,2)*J0(3,3)+J0(2,3)*J0(3,2) ]; 
                             
            G_hat=detJ0/detJ*inv(F0)'*Et; 
            G_hatstore(index,1:6,1:9)=G_hat; 
        elseif imode==4   % For Nastran 
            clear G_hat 
            G_hat(1:6,1:6)=0; 
            G_hat(1:6,1:3)= 1/detJ0* ... 
                [ psi(j)  0      0     ;... 
                    0   eta(j)   0     ;... 
                    0     0   zeta(j)  ;... 
                    0     0      0     ;... 
                    0     0      0     ;... 
                    0     0      0    ]; 
            G_hat(1:6,4:6)= 1/detJ0* ... 
                [ psi(j)*eta(j)       0        psi(j)*zeta(j)  ;... 
                  psi(j)*eta(j) eta(j)*zeta(j)       0         ;... 
                       0       eta(j)*zeta(j) psi(j)*zeta(j)   ;... 
                       0             0              0          ;... 
                       0             0              0          ;... 
                       0             0              0         ]; 
            G_hatstore(index,1:6,1:6)=G_hat; 
        end 
         
        H_G=H_G+wG(j)*detJ*G_hat'*D*G_hat; 
        E_G=E_G+wG(j)*detJ*G_hat'*D*B; 
         
        % Generate K Matrix 
        Kel0=Kel0+wG(j)*detJ*(B)'*D*B; 
         
        % Store SRI Variables 
        if sri==1 
            Bsri(j,1:6,1:24)=B; 
            detJsri(j)=detJ; 
            if imode==4 
                Gsri(j,1:6,1:6)=G_hat; 
            else 
                Gsri(j,1:6,1:9)=G_hat; 
            end 
        end 
         
    end  % End Gauss Loop 
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    if sri==0   % No Selective Reduced Integration 
        % Placeholder 
    elseif sri==1   % Selective Reduced Integration 
        Jsum(1:6)=0; 
        Bsum(1:6,1:24)=0; 
        for j=1:3 
            for k=1:4 
                m=Csri(j,k); 
                n=Csri(j+3,k); 
                Jsum(j)=Jsum(j)+detJsri(m); 
                Jsum(j+3)=Jsum(j+3)+detJsri(n); 
                Btemp(1,1:24)=Bsri(m,j+3,1:24); 
                Btemp(2,1:24)=Bsri(n,j+3,1:24); 
                Bsum(j,1:24)=Bsum(j,1:24)+detJsri(m)*Btemp(1,1:24); 
                Bsum(j+3,1:24)=Bsum(j+3,1:24)+detJsri(n)*Btemp(2,1:24); 
            end 
            for k=1:4 
                m=Csri(j,k); 
                n=Csri(j+3,k); 
                Bsri(m,j+3,1:24)=Bsum(j,1:24)/Jsum(j); 
                Bsri(n,j+3,1:24)=Bsum(j+3,1:24)/Jsum(j+3); 
            end 
        end 
        % Reform K Element Matrix 
        if imode==4 
            E_G(1:6,1:24)=0; 
        else 
            E_G(1:9,1:24)=0; 
        end 
        Kel0(1:24,1:24)=0; 
        for j=1:8 
            index=8*(i-1)+j; 
            B(1:6,1:24)=Bsri(j,1:6,1:24); 
            Bstore(index,1:6,1:24)=B; 
            if imode==4 
                G_hat(1:6,1:6)=Gsri(j,1:6,1:6); 
            else 
                G_hat(1:6,1:9)=Gsri(j,1:6,1:9); 
            end 
            detJ=detJsri(j); 
            E_G=E_G+wG(j)*detJ*G_hat'*D*B; 
            Kel0=Kel0+wG(j)*detJ*(B)'*D*B; 
        end 
    end   % End sri Loop 
     
    if imode==0 
        a(1:9,1:24)=0; 
        Kel=Kel0; 
    else 
        a=-H_G\E_G; 
        Kel=Kel0+E_G'*a; 
    end 
    Kelstore(i,1:24,1:24)=Kel(1:24,1:24); 
     
    n=24*(i-1); 
    for j=1:gauss 
        index=8*(i-1)+j; 
        B(1:6,1:24)=Bstore(index,1:6,1:24); 
        if imode==4 
            G_hat(1:6,1:6)=G_hatstore(index,1:6,1:6); 
        else 
            G_hat(1:6,1:9)=G_hatstore(index,1:6,1:9); 
        end 
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        m=6*(index-1); 
        B_bar=sparse(B+G_hat*a); 
        Pstrain(m+1:m+6,n+1:n+24)=B_bar; 
        Pstress(m+1:m+6,n+1:n+24)=D*B_bar; 
    end 
     
    % Fill in M and K Matrices 
    for j=1:8 
        for k=1:8 
            for m=1:3 
                for n=1:3 
                    M(3*(e(j)-1)+m,3*(e(k)-1)+n)=M(3*(e(j)-1)+m, ... 
                        3*(e(k)-1)+n)+Mel(3*(j-1)+m,3*(k-1)+n); 
                    K(3*(e(j)-1)+m,3*(e(k)-1)+n)=K(3*(e(j)-1)+m, ... 
                        3*(e(k)-1)+n)+Kel(3*(j-1)+m,3*(k-1)+n); 
                end 
            end 
        end 
    end 
end 
  
% Generate Stress Transformation Matrix 
Pstrain=sparse(Pstrain); 
Pstress=sparse(Pstress); 
  
end   % End Subfunction 
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Appendix B  

Matlab Code for Non-linear CMS 

 

 This appendix contains the Matlab codes used to solve the dynamic equations of 

motion, include the plastic response.  Individual subroutines are used to determine the 

transformation matrices for conversion to CMS and orthonormal coordinate systems.  

Most of the remaining subroutines are called from within the NewmarkIso.m subroutine, 

including the determination of the state of stress in each element and the calculation of 

the plastic deformation, if necessary. 

 

function [Mbar,Kbar,Mn,Kn,PHI] = ... 
    CraigBampton(M,K,Nmodes,Tmodes,stype,BndN,IntN) 
  
numbnd=size(BndN,2); 
numn=size(M,1)/3; 
  
% Generate M and K Submatrices 
for i=1:numbnd 
    LB=3*(i-1)+1; 
    LT=3*(BndN(i)-1)+1; 
    for j=1:numbnd 
        LBB=3*(j-1)+1; 
        LTT=3*(BndN(j)-1)+1; 
        Mbb(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2); 
        Kbb(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2); 
    end 
    for j=1:numn-numbnd 
        LBB=3*(j-1)+1; 
        LTT=3*(IntN(j)-1)+1; 
        Mbi(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2); 
        Kbi(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2); 
    end 
end 
for i=1:numn-numbnd 
    LB=3*(i-1)+1; 
    LT=3*(IntN(i)-1)+1; 
    for j=1:numbnd 
        LBB=3*(j-1)+1; 
        LTT=3*(BndN(j)-1)+1; 



Appendix B.  Matlab Code for Non-linear CMS 155 

 

        Mib(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2); 
        Kib(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2); 
    end 
    for j=1:numn-numbnd; 
        LBB=3*(j-1)+1; 
        LTT=3*(IntN(j)-1)+1; 
        Mii(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2); 
        Kii(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2); 
    end 
end 
  
% Assemble New Subdivided M and K Matrices 
Mn = [ Mii  Mib ; 
       Mbi  Mbb ]; 
Kn = [ Kii  Kib ; 
       Kbi  Kbb ]; 
  
% Solve for Internal Normal Modes and Frequencies 
if stype==1 
    [phinbar,omegan]=MatlabEig(Mii,Kii,Nmodes); 
    %save('LiuBeamCrude','phinbar','omegan'); 
elseif stype==2 
    tol=.0001; 
    choice=3; 
    [phinbar,omegan]=Lanczos(Mii,Kii,choice,Nmodes,tol); 
end 
  
% Solve for Constraint Modes 
phicbar=-Kii\Kib; 
  
%Generate Tranformation Matrix PHI 
PHI = [        phinbar               phicbar       ; 
        zeros(3*numbnd,Nmodes)     eye(3*numbnd)   ]; 
Kbar=PHI'*Kn*PHI; 
Mbar=PHI'*Mn*PHI; 
  
end  % End Subfunctions 
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function [dpe]=InternalResistingForceIso(nodes,elements,dstressVr,... 
    updatep,detJstore,Bstore) 
  
numn=size(nodes,1); 
nume=size(elements,1); 
  
% Initialize Matrices 
e(1:8)=0; 
dpe(1:3*numn,1)=0; 
  
gauss=8; 
if gauss == 8 
    wG(1:8)=1; 
end 
  
index=0; 
for i=1:nume 
    for j=1:8 
        e(j)=elements(i,j); 
    end 
     
    dpel(1:24,1)=0; 
    for j=1:8 
        index=index+1; 
        if updatep(index)==1 
            B(1:6,1:24)=Bstore(index,1:6,1:24); 
            dpel=dpel+wG(j)*detJstore(index)*B'*dstressVr(1:6,index); 
        end 
    end 
     
    % Fill in dp Vector 
    for j=1:8 
        for k=1:3 
            m=3*(e(j)-1)+k; 
            n=3*(j-1)+k; 
            dpe(m,1)=dpe(m,1)+dpel(n,1); 
        end 
    end 
     
end  % End nume Loop 
  
end   % End Subfunction 
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function [u2] = NewmarkIso(M,M0,C,C0,K,K0,Fu,F,T0,TF,Tstep,nodes,... 
    elements,D,N,rtype,DirMod,Pbc,Fbc,mesh,Pf,Pu,RF,PTstrain,PTstress,... 
    detJstore,Bstore,G_hatstore,Kelstore,Tdisp) 
  
Nmodes=size(M,2); 
numn=size(M0,2)/3; 
nume=size(elements,1); 
numeG=8*nume; 
numM0=3*numn; 
Nstep=(TF-T0)/Tstep; 
imax=3; 
u2(1:numM0,1:Nstep)=0; 
ddu2(1:numM0,1:2)=0; 
u(1:Nmodes,1:2)=0; 
ud(1:Nmodes,1:2)=0; 
udd(1:Nmodes,1:2)=0; 
ui(1:Nmodes,1:imax)=0; 
udi(1:Nmodes,1:imax)=0; 
uddi(1:Nmodes,1:imax)=0; 
pe(1:Nmodes,1)=0; 
dpe(1:Nmodes,1)=0; 
peg(1:numM0,1)=0; 
be(1:Nmodes,1:imax)=0; 
ddui(1:Nmodes,1:imax)=0; 
dui(1:Nmodes,1:imax)=0; 
ddu2(1:numM0,1:imax)=0; 
Deps(1:numeG,1:6,1:6)=0; 
Beps(1:numeG,1:6,1:24)=0; 
for i=1:numeG 
    Deps(i,1:6,1:6)=D; 
end 
if size(RF,2)==1 
    useRF=0; 
else 
    useRF=1; 
end 
  
alpha=0; 
Beta=1/4*(1-alpha)^2; 
gamma=1/2-alpha; 
term=0; 
  
M=sparse(M); 
M0=sparse(M0); 
C(1:Nmodes,1:Nmodes)=0; 
C=sparse(C); 
C0(1:numM0,1:numM0)=0; 
K=sparse(K); 
K0=sparse(K0); 
F=sparse(F); 
  
M0Pu=sparse(M0*Pu); 
Kstar=sparse(M/(Tstep^2*Beta)+gamma*C/(Tstep*Beta)+K); 
invKstar=sparse(Kstar\eye(Nmodes)); 
Kstar0=sparse(M0/(Tstep^2*Beta)+gamma*C0/(Tstep*Beta)+K0); 
Kstar0Part=sparse(M0/(Tstep^2*Beta)+gamma*C0/(Tstep*Beta)); 
NT=N'; 
  
strainV(1:6,1:8*nume)=0; 
stressV(1:6,1:8*nume)=0; 
S(1:6,1:8*nume)=0; 
e_p(1:6,1:8*nume)=0; 
e_bar(1:8*nume)=0; 
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sigma_bar(1:8*nume)=0; 
ptest(1:8*nume)=0; 
pteste(1:nume)=0; 
ptesti(1:8*nume)=0; 
tcount=1; 
time=Tstep; 
pcount=0; 
psum=0; 
pj=0; 
pjj=0; 
  
for j=2:Nstep 
    %disp(j) 
    if j>=1350 
        %term=20000; 
    end 
    tcount=tcount+1; 
    time=time+Tstep; 
    if tcount == 100 
        disp(time) 
        tcount=0; 
        if mesh==1 
            disp(u2(24,j-1)) 
        elseif mesh==9 
            disp(u2(315,j-1)) 
        elseif mesh==11 
            disp(u2(41,j-1)) 
        end 
    end 
     
    u(1:Nmodes,1)=u(1:Nmodes,2); 
    ud(1:Nmodes,1)=ud(1:Nmodes,2); 
    udd(1:Nmodes,1)=udd(1:Nmodes,2); 
     
    ui(1:Nmodes,1)=u(1:Nmodes,1); 
    astare(1:Nmodes,1)=-1/(Tstep*Beta)*ud(1:Nmodes,1)-... 
        (1/(2*Beta)-1)*udd(1:Nmodes,1); 
    vstare(1:Nmodes,1)=(1-gamma/Beta)*ud(1:Nmodes,1)+... 
        (1-gamma/(2*Beta))*Tstep*udd(1:Nmodes,1); 
    bstare(1:Nmodes,1)=M*astare(1:Nmodes,1)+C*vstare(1:Nmodes,1); 
    dui(1:Nmodes,1)=0; 
    du2(1:numM0,1)=0; 
    for i=2:2  % Iterate Elastic Equations of Motion 
        be(1:Nmodes,i)=F(1:Nmodes,j)-pe(1:Nmodes,1)-bstare(1:Nmodes,1)-

... 
            (M/(Tstep^2*Beta)+C*gamma/(Tstep*Beta))*dui(1:Nmodes,i-1); 
        ddui(1:Nmodes,i)=invKstar*be(1:Nmodes,i); 
        dui(1:Nmodes,i)=dui(1:Nmodes,i-1)+ddui(1:Nmodes,i); 
        ui(1:Nmodes,i)=ui(1:Nmodes,i-1)+ddui(1:Nmodes,i); 
        [ddu2(1:numM0,1)]=DispConversionMG(ddui(1:Nmodes,i),Nmodes,... 
            numM0,rtype,DirMod,N,Pu); 
        if useRF==1 
            ddu2(1:numM0,1)=ddu2(1:numM0,1)+RF*(Fu(1:numM0,j)-... 
                peg(1:numM0,1)); 
        end 
        du2(1:numM0,1)=du2(1:numM0,1)+ddu2(1:numM0,1); 
         
        stressV_p=stressV; 
        strainV_p=strainV; 
        psum=0; 
        pteste(1:nume)=0; 
        [dstressV,dstrainV]=StrainStressIso(ddu2(1:numM0,1),nume,D,... 
            Deps,psum,ptesti,pteste,PTstrain,PTstress,Beps,Tdisp); 
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        e_p_p=e_p; 
        e_bar_p=e_bar; 
        sigma_bar_p=sigma_bar; 
     
        [e_p,Deps,ptest,e_bar,sigma_bar,peg,sumupdatep,dstressV,... 
            stressV,R]=VMPlasticityIso(dstressV,stressV_p,e_p_p,D,... 
            nodes,elements,e_bar_p,sigma_bar_p,dstrainV,ptesti,mesh,... 
            detJstore,Bstore,2,Deps,Fbc); 
        [pe]=ForceConversionGM(peg,Nmodes,numM0,rtype,DirMod,NT,Pf); 
        strainV=strainV_p+dstrainV; 
    end 
     
    psum=0; 
    for index=1:8*nume 
        psum=psum+ptest(index); 
    end 
     
    %psum=0;   % To Turn Off Plastic Deformation, Debugging 
    if psum == 0 
        u2(1:numM0,j)=u2(1:numM0,j-1)+du2(1:numM0,1); 
         
        u(1:Nmodes,2)=ui(1:Nmodes,i); 
        udd(1:Nmodes,2)=astare(1:Nmodes,1)+... 
            1/(Tstep^2*Beta)*dui(1:Nmodes,i); 
        ud(1:Nmodes,2)=vstare(1:Nmodes,1)+... 
            gamma/(Tstep*Beta)*dui(1:Nmodes,i); 
    else 
        pcount=pcount+1; 
        if pcount==1 
            %term=20000;  % Used for debugging 
        end 
        du2(1:numM0,1)=ddu2(1:numM0,1); 
        stressV_i=stressV; 
        dstressV_i(1:6,1:numeG)=0; 
        dstrainV_i(1:6,1:numeG)=0; 
        ptest_p=ptest; 
         
        for i=3:imax 
            [Kep,Beps,pteste]=PseudoforceIso(numn,nume,elements,D,... 
                Deps,Beps,ptest_p,Pbc,detJstore,Bstore,G_hatstore,... 
                Kelstore); 
             
            bstarg(1:numM0,1)=M0Pu*astare(1:Nmodes,1); 
            ddui(1:Nmodes,i)=invKstar*Pf*Kstar0*((Kstar0Part+Kep)\... 
                (Fu(1:numM0,j)-peg(1:numM0,1)-... 
                Kstar0Part*Pu*dui(1:Nmodes,i-1)-bstarg(1:numM0,1))); 
            dui(1:Nmodes,i)=dui(1:Nmodes,i-1)+ddui(1:Nmodes,i); 
            ui(1:Nmodes,i)=ui(1:Nmodes,i-1)+ddui(1:Nmodes,i); 
            

[ddu2(1:numM0,i)]=DispConversionMG(ddui(1:Nmodes,i),Nmodes,... 
                numM0,rtype,DirMod,N,Pu); 
            du2(1:numM0,1)=du2(1:numM0,1)+ddu2(1:numM0,i); 
             
            

[dstressV,dstrainV]=StrainStressIso(ddu2(1:numM0,i),nume,D,... 
                Deps,psum,ptest_p,pteste,PTstrain,PTstress,Beps,Tdisp); 
            dstressV_i=dstressV_i+dstressV; 
            dstrainV_i=dstrainV_i+dstrainV; 
             
            [e_p,Depsee,ptestee,e_bar,sigma_bar,peg,sumupdatepee,... 
                dstressV,stressV,R]=VMPlasticityIso(dstressV_i,... 
                stressV_i,e_p_p,D,nodes,elements,e_bar_p,sigma_bar_p,... 
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                dstrainV_i,ptest_p,mesh,detJstore,Bstore,i,Deps,Fbc); 
            [pe]=ForceConversionGM(peg,Nmodes,numM0,rtype,DirMod,NT,Pf); 
            strainV=strainV_p+dstrainV; 
             
        end   % i iteration loop 
                 
        u2(1:numM0,j)=u2(1:numM0,j-1)+du2(1:numM0,1); 
         
        u(1:Nmodes,2)=ui(1:Nmodes,i); 
        udd(1:Nmodes,2)=astare(1:Nmodes,1)+... 
            1/(Tstep^2*Beta)*dui(1:Nmodes,i); 
        ud(1:Nmodes,2)=vstare(1:Nmodes,1)+... 
            gamma/(Tstep*Beta)*dui(1:Nmodes,i); 
         
    end   % psum loop 
     
    % Fill in Displacement Matrix if Terminated 
    if term >= 10000 
        for k=j+1:Nstep 
            u2(:,k)=u2(:,j); 
        end 
        break 
    end 
end   % Nstep Loop 
  
end   % End Subfunction 
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function [N,lambda,FqO,numrgd]=Orthonormalize(Mbar,Kbar,Fq,Nmodes,... 
    Tmodes,numbndM) 
  
% Orthonormalize Craig Bampton Modes 
[Ni,lambdai] = MatlabEig(Mbar,Kbar,Tmodes); 
  
% Locate Rigid Body Modes 
for i=1:Tmodes 
    if lambdai(i,1) > 1 
        numrgd=i-1; 
        break 
    end 
end 
  
% Move Boundary Condition Modes 
N=Ni; 
lambda=lambdai; 
 
clear Ni lambdai 
  
% Normalize N Modal Matrix 
Nscale=N'*Mbar*N; 
for i=1:(Tmodes-numrgd) 
    NN=sqrt(Nscale(i,i)); 
    for j=1:Tmodes 
        N(j,i)=N(j,i)/NN; 
    end 
end 
  
FqO=N'*Fq; 
  
end   % End Subfunction 
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function [Kep,Beps,pteste]=PseudoforceIso(numn,nume,elements,D,Deps,... 
    Beps,ptest,Pbc,detJstore,Bstore,G_hatstore,Kelstore) 
  
imode=2;   % 0 for None, 1 for Centroid, 2 for Average Correction,  
           % 3 for Simo, 4 for Nastran 
  
% Initialize Matrices 
Kep(1:3*numn,1:3*numn)=0; 
e(1:8)=0; 
Dep(1:6,1:6)=0; 
pteste(1:nume)=0; 
  
gauss=8; 
if gauss == 8 
    wG(1:8)=1; 
end 
  
% Calculate Mass and Stiffness Matrices 
for i=1:nume 
    Kelsum=0; 
    for j=1:8 
        e(j)=elements(i,j); 
        index=8*(i-1)+j; 
        if ptest(index) == 1 
            Kelsum=Kelsum+1; 
            pteste(i)=1; 
        end 
    end 
     
    if Kelsum == 0 
        Kel(1:24,1:24)=Kelstore(i,1:24,1:24); 
    else 
        % Generate Stiffness Matrix 
        KelP(1:24,1:24)=0; 
        if imode==4 
            H_G(1:6,1:6)=0; 
            E_G(1:6,1:24)=0; 
        else 
            H_G(1:9,1:9)=0; 
            E_G(1:9,1:24)=0; 
        end 
         
        for j=1:gauss 
            index=8*(i-1)+j; 
            if ptest(index) == 1 
                % Reform Dep Matrix for Element 
                Dep(1:6,1:6)=Deps(index,1:6,1:6); 
            else 
                Dep=D; 
            end 
             
            detJ(1,1)=detJstore(index,1); 
             
            if imode==4 
                G_hat(1:6,1:6)=G_hatstore(index,1:6,1:6); 
            else 
                G_hat(1:6,1:9)=G_hatstore(index,1:6,1:9); 
            end 
            B(1:6,1:24)=Bstore(index,1:6,1:24); 
             
            H_G=H_G+wG(j)*detJ*G_hat'*Dep*G_hat; 
            E_G=E_G+wG(j)*detJ*G_hat'*Dep*B; 
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            % Generate K Matrix 
            KelP=KelP+wG(j)*detJ*(B)'*Dep*B; 
        end 
         
        if imode==0 
            Kel=KelP; 
        else 
            a=-H_G\E_G; 
            Kel=KelP+E_G'*a; 
        end 
         
        for j=1:gauss 
            index=8*(i-1)+j; 
            B(1:6,1:24)=Bstore(index,1:6,1:24); 
            if imode==4 
                G_hat(1:6,1:6)=G_hatstore(index,1:6,1:6); 
            else 
                G_hat(1:6,1:9)=G_hatstore(index,1:6,1:9); 
            end 
            if imode==0 
                Beps(index,1:6,1:24)=B; 
            else 
                Beps(index,1:6,1:24)=B+G_hat*a; 
            end 
        end 
    end   % End Kelsum Conditional 
     
    % Fill in K Matrix 
    for j=1:8 
        for k=1:8 
            for m=1:3 
                for n=1:3 
                    Kep(3*(e(j)-1)+m,3*(e(k)-1)+n)=Kep(3*(e(j)-1)+m,... 
                        3*(e(k)-1)+n)+Kel(3*(j-1)+m,3*(k-1)+n); 
                end 
            end 
        end 
    end 
end 
  
for i=1:3*numn 
    for j=1:3*numn 
        Kep(i,j)=Kep(i,j)*Pbc(i,j); 
    end 
end 
Kep=sparse(Kep); 
  
end   % End Subfunction 
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function [dstressV,dstrainV]=StrainStressIso(du,nume,D,Deps,psum,... 
    ptest,pteste,PTstrain,PTstress,Beps,Tdisp) 
  
dstrainV(1:6,1:8*nume)=0; 
dstressV(1:6,1:8*nume)=0; 
  
% Generate Global Strain Vector 
dstrainVG=PTstrain*du; 
dstressVG=PTstress*du; 
  
if psum~=0 
    dus=Tdisp*du; 
end 
  
% Generate Strain and Stress Vectors 
for e=1:nume 
    if pteste(e)==0 
        for j=1:8 
            index=8*(e-1)+j; 
            m=6*(index-1); 
            dstrainV(1:6,index)=dstrainVG(m+1:m+6,1); 
            dstressV(1:6,index)=dstressVG(m+1:m+6,1); 
        end 
    else 
        for j=1:8 
            index=8*(e-1)+j; 
            m=24*(e-1); 
             
            B(1:6,1:24)=Beps(index,1:6,1:24); 
            dstrainV(1:6,index)=B*dus(m+1:m+24,1); 
            if ptest(index)==0 
                dstressV(1:6,index)=D*dstrainV(1:6,index); 
            else 
                Dep(1:6,1:6)=Deps(index,1:6,1:6); 
                dstressV(1:6,index)=Dep*dstrainV(1:6,index); 
            end 
        end 
    end 
end 
  
end   % End Subfunction 
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function [e_p,Deps,ptest,e_bar,sigma_bar,pe,sumupdatep,dstressV,... 
    stressV,R]=VMPlasticityIso(dstressV,stressV_p,e_p_p,D,nodes,... 
    elements,e_bar_p,sigma_bar_p,dstrainV,ptest,mesh,detJstore,Bstore,... 
    iteration,Deps,Fbc) 
  
nume=size(elements,1); 
numeG=8*nume; 
if mesh==1 
    H_0=50000; 
    H_L=125000; 
    e_L_bar=.01166667; 
    m=335410; 
    n=0.5; 
    del_lam_1=.000001; 
elseif mesh==2 
    H_0=360000; 
    H_L=900000; 
    e_L_bar=.015; 
    m=100000; 
    n=0.5; 
    del_lam_1=.000001; 
elseif mesh==9 
    H_0=50000; 
    H_L=125000; 
    e_L_bar=.010; 
    m=335410; 
    n=0.5; 
    del_lam_1=.000001; 
elseif mesh==11 
    H_0=900000; 
    H_L=1650000; 
    e_L_bar=.013; 
    del_lam_1=.000001; 
end 
E_T=(H_L-H_0)/e_L_bar; 
F_error=.0001; 
c_max=50; 
sigma_bar(1:numeG)=0; 
del_sigma_bar(1:numeG)=0; 
R(1:numeG)=1; 
HR(1:numeG)=0; 
H(1:numeG)=0; 
F(1:numeG)=0; 
F_p(1:numeG)=0; 
F_c(1:numeG)=0; 
dstressVr(1:6,1:numeG)=0; 
stressV(1:6,1:numeG)=0; 
  
Constit_type=1; 
  
if Constit_type==1 
    %del_lam_1=.00000000001; 
elseif Constit_type==2 
    del_lam_1=.00000001; 
elseif Constit_type==3 
    del_lam_1=.00000001; 
end 
  
A(1:numeG)=0; 
P(1:numeG)=0; 
S(1:6,1:numeG)=0; 
del_lam_p(1:numeG)=0; 
del_lam_c(1:numeG)=0; 
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e_p(1:6,1:numeG)=0; 
del_e_p(1:6,1:numeG)=0; 
e_bar(1:numeG)=e_bar_p(1:numeG); 
del_e_bar(1:numeG)=0; 
del_e_e(1:6,1:numeG)=0; 
skip(1:numeG)=0; 
updatep(1:numeG)=0; 
  
for e=1:nume 
for gauss=1:8 
    index=8*(e-1)+gauss; 
     
    stressV(1:6,index)=stressV_p(1:6,index)+dstressV(1:6,index); 
     
    if Constit_type == 1 
        HR(index)=H_0+E_T*e_bar_p(index); 
    elseif Constit_type == 2 
        HR(index)=H_0; 
    elseif Constit_type == 3 
        HR(index)=H_0+m*(e_bar(index))^n; 
    end 
    P(index)=-1/3*(stressV(1,index)+stressV(2,index)+stressV(3,index)); 
    for i=1:3 
        j=i+3; 
        S(i,index)=stressV(i,index)+P(index); 
        S(j,index)=sqrt(2)*stressV(j,index); 
    end 
    sigma_bar(index)=sqrt(3/2)*sqrt(S(1:6,index)'*S(1:6,index)); 
    del_sigma_bar(index)=sigma_bar(index)-sigma_bar_p(index); 
     
    if ptest(index)==1   % Did Yield in Previous Step 
        if sigma_bar(index)>sigma_bar_p(index)   % Still Plastic 
            R(index)=1; 
            skip(index)=0; 
            updatep(index)=0; 
        else   % Unloading Elastic 
            e_p(1:6,index)=e_p_p(1:6,index); 
            e_bar(index)=e_bar_p(index); 
            ptest(index)=0; 
            R(index)=0; 
            skip(index)=1; 
            updatep(index)=0; 
        end 
    elseif ptest(index)==0  % Did Not Yield in Previous Step 
        if sigma_bar(index)<HR(index)   % Still Elastic 
            e_p(1:6,index)=e_p_p(1:6,index); 
            e_bar(index)=e_bar_p(index); 
            R(index)=0; 
            skip(index)=1; 
            updatep(index)=0; 
        else   % First Plastic Deformation 
            ptest(index)=1; 
            skip(index)=0; 
            R(index)=(sigma_bar(index)-HR(index))/del_sigma_bar(index); 
            dstressVr(1:6,index)=(1-R(index))*dstressV(1:6,index); 
            updatep(index)=1; 
        end 
    end 
     
    if skip(index)==1 
        c=1; 
    elseif skip(index)==0 
    for c=1:c_max 
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        % Calculate F 
        if Constit_type == 1   % Linear Hardening 
            H(index)=H_0+E_T*e_bar(index); 
            F(index)=sigma_bar(index)-H(index); 
        elseif Constit_type == 2   % Perfectly Plastic 
            F(index)=sigma_bar(index)-H_0; 
        elseif Constit_type == 3   % Power Law 
            H(index)=H_0+m*(e_bar(index))^n; 
            F(index)=sigma_bar(index)-H(index); 
        end 
         
        if ((F(index) <= F_error) && (c==1)) 
            e_p(1:6,index)=e_p_p(1:6,index); 
            e_bar(index)=e_bar_p(index); 
            break 
        end 
        if (abs(F(index)) <= F_error) 
            break 
        end 
         
        algor=2; 
        if algor==1   % Newton-Raphson 
            if c==1  
                F_c(index)=F(index); 
                del_lam_c(index)=del_lam_1; 
            else 
                F_p(index)=F_c(index); 
                F_c(index)=F(index); 
                del_lam_p(index)=del_lam_c(index); 
                del_lam_c(index)=del_lam_p(index)+... 
                    (F_c(index)/(F_p(index)-   

F_c(index)))*del_lam_p(index); 
            end 
        elseif algor==2   % Bi-section Method    
            if c==1 
                F_a=F(index); 
                lam_a=0; 
                del_lam_c(index)=del_lam_1; 
            elseif c==2 
                lam_b=del_lam_c(index); 
                F_b=F(index); 
                del_lam_c(index)=lam_a+(lam_b-lam_a)/2; 
                if F_b>0 
                    index 
                    F_b 
                end 
            else 
                F_p=F(index); 
                if F_a*F_p>0 
                    lam_a=del_lam_c(index); 
                    F_a=F_p; 
                    del_lam_c(index)=lam_a+(lam_b-lam_a)/2; 
                else 
                    lam_b=del_lam_c(index); 
                    F_b=F_p; 
                    del_lam_c(index)=lam_a+(lam_b-lam_a)/2; 
                end 
            end 
        end 
         
        del_e_p(1:6,index)=del_lam_c(index)*S(1:6,index); 
         
        if Constit_type == 1 
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            del_e_bar(index)=sqrt(2/3)*sqrt(del_e_p(1:6,index)'*... 
                del_e_p(1:6,index)); 
            e_bar(index)=e_bar_p(index)+del_e_bar(index); 
        elseif Constit_type == 2 
            % Update Stress Vector 
            del_e_p(4:6,index)=del_e_p(4:6,index)*sqrt(2); 
            del_e_e(1:6,index)=dstrainV(1:6,index)-del_e_p(1:6,index); 
            stressV(1:6,index)=stressV_p(1:6,index)+D*del_e_e(1:6,index); 
            %stressV(1:6,index) 
            P(index)=-1/3*(stressV(1,index)+stressV(2,index)+... 
                stressV(3,index)); 
            for i=1:3 
                j=i+3; 
                S(i,index)=stressV(i,index)+P(index); 
                S(j,index)=sqrt(2)*stressV(j,index); 
                %S(j,index)=stressV(j,index); 
            end 
            sigma_bar(index)=sqrt(3/2)*sqrt(S(1:6,index)'*S(1:6,index)); 
        elseif Constit_type == 3 
            del_e_bar(index)=sqrt(2/3)*sqrt(del_e_p(1:6,index)'*... 
                del_e_p(1:6,index)); 
            e_bar(index)=e_bar_p(index)+del_e_bar(index); 
        end 
         
    end   % End c Loop 
    end   % Skip Loop 
     
    if c==1 
        % Placeholder 
    else 
        if c==c_max 
            disp(['Did Not Converge:  ',num2str(index),'  ',... 
                num2str(F(index))]) 
        end 
        if Constit_type == 1 
            del_e_p(4:6,index)=del_e_p(4:6,index)*sqrt(2); 
            e_p(1:6,index)=e_p_p(1:6,index)+del_e_p(1:6,index); 
            a(1:3,1)=S(1:3,index); 
            a(4:6,1)=S(4:6,index)*sqrt(2); 
            dstressVA(1:3,1)=R(index)*dstressV(1:3,index); 
            dstressVA(4:6,1)=R(index)*dstressV(4:6,index)*sqrt(2); 
            A(index)=a(1:6,1)'*dstressVA(1:6,1)/del_lam_c(index); 
        elseif Constit_type == 2 
            a(1:3,1)=S(1:3,index); 
            a(4:6,1)=S(4:6,index)*sqrt(2); 
            e_p(1:6,e)=e_p_p(1:6,e)+del_e_p(1:6,1); 
            del_e_p(4:6,index)=del_e_p(4:6,index)/sqrt(2); 
            del_e_bar(index)=sqrt(2/3)*sqrt(del_e_p(1:6,index)'*... 
                del_e_p(1:6,index)); 
            e_bar(index)=e_bar_p(index)+del_e_bar(index); 
            del_e_p(4:6,index)=del_e_p(4:6,index)*sqrt(2); 
            A(index)=0; 
            dstressVr(1:6,index)=0; 
        elseif Constit_type == 3 
            a(1:3,1)=S(1:3,index); 
            a(4:6,1)=S(4:6,index)*sqrt(2); 
            del_e_p(4:6,index)=del_e_p(4:6,index)*sqrt(2); 
            e_p(1:6,index)=e_p_p(1:6,index)+del_e_p(1:6,index); 
            E_T=(H(index)-HR(index))/del_e_bar(index); 
            A(index)=1/del_lam_c(index)*(2/3*H(index)*E_T)*... 
                del_e_bar(index); 
        end 
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        if iteration == 2 
            Dep=D-(D*a)*((a'*D)/(A(index)+(a'*D*a))); 
            Deps(index,1:6,1:6)=Dep; 
        else 
            Dep(1:6,1:6)=Deps(index,1:6,1:6); 
        end 
        if iteration == 2 
            dstressV(1:6,index)=(1-R(index))*dstressV(1:6,index)+... 
                R(index)*Dep*dstrainV(1:6,index); 
            stressV(1:6,index)=stressV_p(1:6,index)+dstressV(1:6,index); 
            sigma_bar(index)=sigma_bar_p(index); 
            e_p(1:6,index)=e_p_p(1:6,index); 
            e_bar(index)=e_bar_p(index); 
        else 
            % Placeholder 
        end 
    end 
end   % End Gauss Loop 
end   % End Element Loop 
  
sumupdatep=0; 
for index=1:numeG 
    sumupdatep=sumupdatep+updatep(index); 
end 
  
updatep(1:numeG)=1; 
[pe]=InternalResistingForceIso(nodes,elements,stressV,updatep,... 
    detJstore,Bstore); 
pe=Fbc*pe; 
  
end   % End Subfunction 
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function [dpr]=ForceConversionGM(dp,Nmodes,numM0,rtype,DirMod,NT,Pf) 
  
if rtype == 1 
    if DirMod ==0 
        dpr(1:Nmodes,1)=dp(1:numM0,1); 
    elseif DirMod == 1 
        dpr(1:Nmodes,1)=NT*dp(1:numM0,1); 
    end 
elseif rtype == 2 
    dpr(1:Nmodes,1)=Pf*dp(1:numM0,1); 
end 
  
end   % End Subfunction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
function [ddu]=DispConversionMG(ddum,Nmodes,numM0,rtype,DirMod,N,Pu) 
  
if rtype == 1 
    if DirMod ==0 
        ddu(1:numM0,1)=ddum(1:Nmodes,1); 
    elseif DirMod == 1 
        ddu(1:numM0,1)=N*ddum(1:Nmodes,1); 
    end 
elseif rtype == 2 
    ddu(1:numM0,1)=Pu*ddum(1:Nmodes,1); 
end 
  
end   % End Subfunction 
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Appendix C  

Supplemental Matlab Code 

 

 This appendix contains the supplemental Matlab code for various calculations.  The 

supplemental codes are used for calculation of the effective modal mass parameters, 

creating plots, solving an eigen-problem, and ordering matrices.  Some of the subroutines 

in this section are used indirectly in the solution of the equations of motion and are called 

by other subroutines. 

 

function [Gamma,Gamma3,meff,meff3]=... 
    EffectiveModalMass(numM0,numbnd,Mn,Kn,mass) 
 
numii=numM0-3*numbnd; 
Mii=Mn(1:numii,1:numii); 
Kii=Kn(1:numii,1:numii); 
[Ni,lambdai] = MatlabEig(Mii,Kii,numii); 
  
% Locate Rigid Body Modes 
numrgd=0; 
for i=1:numii 
    if lambdai(i,1) > 1 
        numrgd=i-1; 
        break 
    end 
end 
nterms=numii-numrgd; 
  
% Move Boundary Condition Modes 
N=Ni; 
lambda=lambdai; 
  
% Scale Transformation Matrix 
Nscale=N'*Mii*N; 
for i=1:nterms 
    NN=sqrt(Nscale(i,i)); 
    for j=1:nterms 
        N(j,i)=N(j,i)/NN; 
    end 
end 
Mbar=eye(nterms); 
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% Define Influence Vector 
r3(1:nterms,1:3)=0; 
for i=1:nterms/3 
    n=3*(i-1); 
    r3(n+1:n+3,1:3)=eye(3); 
end 
r(1:nterms,1)=1; 
  
% Determine Coefficient Vector 
L=N'*Mii*r; 
L3=N'*Mii*r3; 
  
% Determine Modal Participation Factor Matrix 
Gamma(1:nterms,1)=0; 
Gamma3(1:nterms,1:3)=0; 
for i=1:nterms 
    Gamma(i,1)=L(i,1)/Mbar(i,i); 
    for j=1:3 
       Gamma3(i,j)=L3(i,j)/Mbar(i,i); 
    end 
end 
  
% Determine Effective Modal Mass 
meff(1:nterms,1:4)=0; 
meff3(1:nterms,1:6)=0; 
for i=1:nterms 
    meff(i,1)=i; 
    meff(i,2)=(L(i,1))^2/Mbar(i,i); 
    for j=1:3 
        meff3(i,j)=(L3(i,j))^2/Mbar(i,i); 
    end 
end 
  
% Sum Modal Mass 
summeff=0; 
summeff3(1,1:3)=0; 
for i=1:nterms 
    summeff=summeff+meff(i,2); 
    meff(i,3)=summeff; 
    for j=1:3 
        summeff3(1,j)=summeff3(1,j)+meff3(i,j); 
        meff3(i,j+3)=summeff3(1,j); 
    end 
end 
for i=1:nterms 
    meff(i,4)=(3*mass-summeff+meff(i,3))/(3*mass); 
    for j=1:3 
        meff3(i,j+6)=(mass-summeff3(1,j)+meff3(i,j+3))/mass; 
    end 
end 
summeff 
summeff3 
meff(:,4) 
meff3(:,7:9) 
end   % End Subfunction 
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function [D]=ElasticityIsotropic(E,Nu) 
  
f=1-Nu; 
g=(1-2*Nu)/2; 
  
[D]=E/((1+Nu)*(1-2*Nu))*... 
    [  f   Nu   Nu    0    0    0  ;... 
      Nu    f   Nu    0    0    0  ;... 
      Nu   Nu    f    0    0    0  ;... 
       0    0    0    g    0    0  ;... 
       0    0    0    0    g    0  ;... 
       0    0    0    0    0    g  ]; 
  
end   % End Subroutine 
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function [modes,omega] = MatlabEig(M,K,Nmodes) 
  
[mod,val]=eig(K,M); 
  
val=abs(val); 
numval=size(M,1); 
  
% Pre-allocate Variables 
omegar(1:numval,1)=0; 
omegam(1:numval,1:2)=0; 
omega(1:Nmodes,1:3)=0; 
modess(1:numval,1:numval)=0; 
  
for i=1:numval 
    omegar(i,1)=sqrt(val(i,i))/(2*pi); 
end 
  
for i=1:numval 
    omegam(i,1:2)=[i omegar(i,1)]; 
end 
omegams=sortrows(omegam,2); 
for i=1:numval 
    omega(i,1:3)=[omegams(i,2) omegams(i,1) i]; 
end 
  
for i=1:numval 
    modess(1:numval,i)=mod(1:numval,omega(i,2)); 
end 
  
% Truncate Solution to Nmodes 
useupper=0; 
if useupper==0 
    modes=modess(1:numval,1:Nmodes); 
    omega=omega(1:Nmodes,1:3); 
else 
    if Nmodes>20 
        upperM=Nmodes-20; 
        lowerM=Nmodes-upperM; 
    else 
        upperM=0; 
        lowerM=Nmodes; 
    end 
    if upperM>30 
        upperM=30; 
        lowerM=Nmodes-upperM; 
    end 
    modes(1:numval,1:lowerM)=modess(1:numval,1:lowerM); 
    modes(1:numval,lowerM+1:lowerM+upperM)=... 
        modess(1:numval,numval-upperM+1:numval); 
    omega(1:lowerM,1:3)=omega(1:lowerM,1:3); 
    omega(lowerM+1:lowerM+upperM,1:3)=omega(numval-upperM+1:numval,1:3); 
end 
  
end   % End Subfunction 
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function ModePlots(modes,nodes,elements,MPlot) 
 
numn=size(modes,1)/3; 
nume=size(elements,1); 
nump=size(MPlot,2); 
  
for i=1:nump 
    rrv=MPlot(i); 
    figure(MPlot(i)) 
    scale=0.01; 
    for i=1:numn 
        G(i,1)=modes(3*(i-1)+1,rrv); 
        H(i,1)=scale*G(i,1)+nodes(i,1); 
        G(i,2)=modes(3*(i-1)+2,rrv); 
        H(i,2)=scale*G(i,2)+nodes(i,2); 
        G(i,3)=modes(3*(i-1)+3,rrv); 
        H(i,3)=scale*G(i,2)+nodes(i,3); 
    end 
    plot3(H(1:numn,1),H(1:numn,2),H(1:numn,3),'b+',nodes(1:numn,1),... 
    nodes(1:numn,2),nodes(1:numn,3),'r+'); 
end 
 
end   % End Subfunction 
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function [fr,P]=Order2(f,IntN,BndNF,BndN0) 
  
[numN,numS]=size(f); 
numint=size(IntN,2); 
numbndF=size(BndNF,2); 
numbnd0=size(BndN0,2); 
  
% Initialize ur Matrix 
fr(1:3*(numint+numbndF+numbnd0),1:numS)=0; 
P(1:3*(numint+numbndF+numbnd0),1:3*(numint+numbndF+numbnd0))=0; 
  
% Populate with Displacements of Interior Nodes 
for i=1:numint 
    nr=3*(IntN(i)-1)+1; 
    nu=3*(i-1)+1; 
    fr(nu:nu+2,1:numS)=f(nr:nr+2,1:numS); 
    P(nu:nu+2,nr:nr+2)=[1 0 0; 0 1 0; 0 0 1]; 
end 
  
% Populate with Displacements of Force Boundary Nodes 
for i=1:numbndF 
    nr=3*(BndNF(i)-1)+1; 
    j=numint+i; 
    nu=3*(j-1)+1; 
    fr(nu:nu+2,1:numS)=f(nr:nr+2,1:numS); 
    P(nu:nu+2,nr:nr+2)=[1 0 0; 0 1 0; 0 0 1]; 
end 
  
% Populate with Displacements of Boundary Nodes 
for i=1:numbnd0 
    nr=3*(BndN0(i)-1)+1; 
    j=numint+numbndF+i; 
    nu=3*(j-1)+1; 
    fr(nu:nu+2,1:numS)=f(nr:nr+2,1:numS); 
    P(nu:nu+2,nr:nr+2)=[1 0 0; 0 1 0; 0 0 1]; 
end 
  
end   % End Subfunction 
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function [nodes,elements] = ReadMeshData(meshfile,numn,nume) 
  
rangen=['B4:D',num2str(numn+3)]; 
rangee=['B4:I',num2str(nume+3)]; 
  
[nodes]=xlsread(meshfile,'Nodes',rangen); 
[elements]=xlsread(meshfile,'Elements',rangee); 
  
end   % End Subfunction 
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function [M,K,IntN]=ReduceMK(M,K,BndN0) 
  
numn=size(M,1)/3; 
numbnd=size(BndN0,2); 
  
% Create Vector of Interface Nodes 
IntN(1:(numn-numbnd))=0; 
c=0; 
for i=1:BndN0(1)-1 
    c=c+1; 
    IntN(c)=i; 
end 
for i=1:numbnd-1 
    for j=BndN0(i)+1:BndN0(i+1)-1 
        c=c+1; 
        IntN(c)=j; 
    end 
end 
for i=BndN0(numbnd)+1:numn 
    c=c+1; 
    IntN(c)=i; 
end 
  
for i=1:numn-numbnd 
    LB=3*(i-1)+1; 
    LT=3*(IntN(i)-1)+1; 
    for j=1:numn-numbnd; 
        LBB=3*(j-1)+1; 
        LTT=3*(IntN(j)-1)+1; 
        Mii(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2); 
        Kii(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2); 
    end 
end 
  
Mii=M(1:3*40,1:3*40); 
Kii=K(1:3*40,1:3*40); 
  
M=Mii; 
K=Kii; 
  
end   % End Subfunction 
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function [u]=Reorder(u,IntN,BndNF,BndN0) 
  
[numN,numS]=size(u); 
numint=size(IntN,2); 
numbndF=size(BndNF,2); 
numbnd0=size(BndN0,2); 
  
% Initialize ur Matrix 
ur(1:3*(numint+numbndF+numbnd0),1:numS)=0; 
  
% Populate with Displacements of Interior Nodes 
for i=1:numint 
    nr=3*(IntN(i)-1)+1; 
    nu=3*(i-1)+1; 
    ur(nr:nr+2,1:numS)=u(nu:nu+2,1:numS); 
end 
  
% Populate with Displacements of Force Boundary Nodes 
for i=1:numbndF 
    nr=3*(BndNF(i)-1)+1; 
    j=numint+i; 
    nu=3*(j-1)+1; 
    ur(nr:nr+2,1:numS)=u(nu:nu+2,1:numS); 
end 
  
% Populate with Displacements of Boundary Nodes 
for i=1:numbnd0 
    nr=3*(BndN0(i)-1)+1; 
    j=numint+numbndF+i; 
    nu=3*(j-1)+1; 
    ur(nr:nr+2,1:numS)=u(nu:nu+2,1:numS); 
end 
  
u=ur; 
  
end   % End Subfunction 
 



  180 

 

References 

[1] Hahn, H., Rigid Body Dynamics of Mechanisms, Berlin:  Springer-Verelag, 2002. 

[2] Anitescu, M., Potra, F., and Stewart, D., ‘Time-stepping for Three-dimensional 
Rigid Body Dynamics’, Computer Methods in Applied Mechanics and 
Engineering, Vol. 177, No. 3, pp. 183-197, 1999. 

[3] Herting, D., MSC/NASTRAN Advanced Dynamic Analysis User’s Guide, 
Version 70, Los Angeles, California:  MacNeal/Schwendler Corporation, 1997. 

[4] Vakakis, A., ‘Non-linear Normal Modes (NNMs) and their Applications in 
Vibration Theory:  An Overview’, Mechanical Systems and Signal Processing, 
Vol. 11, No. 1, pp. 3-22, 1997. 

[5] Wang, F. and Bajaj, A., ‘Nonlinear Normal Modes in Multi-mode Models of an 
Inertially Coupled Elastic Structure’, Nonlinear Dynamics, Vol. 47, No. 1, pp. 25-
47, 2007. 

[6] Morris, N., ‘The Use of Modal Superposition in Nonlinear Dynamics’, Computers 
& Structures, Vol. 7, No. 1, pp. 65-72, 1977. 

[7] Remseth, S., ‘Nonlinear Static and Dynamic Analysis of Framed Structures’, 
Computers & Structures, Vol. 10, No. 6, pp. 879-897, 1979. 

[8] Bathe, K. and Gracewski, S., ‘On Nonlinear Dynamic Analysis Using 
Substructuring and Mode Superposition’, Computers & Structures, Vol. 13, No. 
6, pp. 699-707, 1981. 

[9] Noor, A., ‘Recent Advances in Reduction Methods for Nonlinear Problems’, 
Computers & Structures, Vol. 13, No. 1, pp. 31-44, 1981. 

[10] Idelsohn, S. and Cardona, A., ‘Reduction Methods and Explicit Time Integration 
Technique in Structural Dynamics’, Advances in Engineering Software, Vol. 6, 
No. 1, pp. 36-44, 1984. 

[11] Idelsohn, S. and Cardona, A., ‘A Load-dependent Basis for Reduced Nonlinear 
Structural Dynamics’, Computers & Structures, Vol. 20, No. 1, pp. 203-210, 
1985. 

[12] Chang, C. and Engblom, J., ‘Nonlinear Dynamical Response of Impulsively 
Loaded Structures:  A Reduced Basis Approach’, American Institute of 
Aeronautics and Aeronautics Journal, Vol. 29, No. 4, pp. 613-618, 1991 



References  181 

 

[13] Qu, Z., ‘Model Reduction for Dynamical Systems with Local Nonlinearities’, 
American Institute of Aeronautics and Aeronautics Journal, Vol. 40, No. 2, pp. 
327-333, 2002 

[14] de Klerk, D., Rixen, D., and Voormeeren, S., ‘General Framework for Dynamic 
Substructuring:  History, Review, and Classification of Techniques’, American 
Institute of Aeronautics and Aeronautics Journal, Vol. 46, No. 5, pp. 1169-1181, 
2008. 

[15] Bond, J. and Khraishi, T., ‘Non-linear Dynamic Modelling using Component 
Mode Synthesis’, International Journal of Theoretical and Applied Multiscale 
Mechanics, Vol. 1, No. 2, pp. 150-163, 2009. 

[16] Bond, J. and Khraishi, T., ‘Transient Non-linear Simulation with Component 
Mode Synthesis’, International Journal of Mechanics and Materials in Design, In 
Press, 2009. 

[17] Petyt, M., Introduction to Finite Element Vibration Analysis, Cambridge:  
Cambridge University Press, 1990. 

[18] Bathe, K. and Wilson, E., Numerical Methods in Finite Element Analysis, 
Englewood Cliffs, New Jersey:  Prentice-Hall, 1976. 

[19] Hughes, T., The Finite Element Method, Englewood Cliffs, New Jersey:  Prentice-
Hall, 1987. 

[20] Carr, J., ‘The Effect of Shear Flexibility and Rotatory Inertia on the Natural 
Frequencies of Uniform Beams’, Aeronautical Quarterly, Vol. 21, pp. 79-91, 
1970. 

[21] Kopal, Z., Numerical Analysis, London:  Chapman and Hall, 1961. 

[22] Barlow, J., ‘Optimal Stress Locations in Finite Element Models’, International 
Journal for Numerical Methods in Engineering, Vol. 10, No. 2, pp. 243-251, 
1976. 

[23] Cheung, Y. and Wanji, C., ‘Isoparametric Hybrid Hexahedral Elements for Three 
Dimensional Stress Analysis’, International Journal for Numerical Methods in 
Engineering, Vol. 26, No. 3, pp. 677-693, 1988. 

[24] Pian, T. and Sumihara, K., ‘Rational Approach for Assumed Stress Finite 
Elements’, International Journal for Numerical Methods in Engineering, Vol. 20, 
No. 9, pp. 1685-1695, 1984. 

[25] Irons, B., ‘Quadrature Rules for Brick Based Finite Elements’, International 
Journal for Numerical Methods in Engineering, Vol. 3, No. 2, pp. 293-294, 1971. 



References  182 

 

[26] MacNeal, R., Finite Elements:  Their Design and Performance, New York, New 
York:  Marcel Dekker, 1994. 

[27] Ibrahimbegovic, A. and Wilson, E., ‘A Modified Method of Incompatible 
Modes’, Communications in Applied Numerical Methods, Vol. 7, No. 3, pp. 187-
194, 1991. 

[28] Taylor, R., Beresford, P., and Wilson, E., ‘A Non-Conforming Element for Stress 
Analysis’, International Journal for Numerical Methods in Engineering, Vol. 10, 
No. 6, pp. 1211-1219, 1976. 

[29] Simo, J. and Rifai, M., ‘A Class of Mixed Assumed Strain Methods and the 
Method of Incompatible Modes’, International Journal for Numerical Methods in 
Engineering, Vol. 29, No. 8, pp. 1595-1638, 1990. 

[30] Simo, J. and Armero, F., ‘Geometrically Non-linear Enhanced Strain Mixed 
Methods and the Method of Incompatible Modes’, International Journal for 
Numerical Methods in Engineering, Vol. 33, No. 7, pp. 1413-1449, 1992. 

[31] Constantinides, A. and Mostoufi, N., Numerical Methods for Chemical Engineers 
with MATLAB Applications, Upper Saddle River, New Jersey:  Prentice-Hall, 
1999. 

[32] Gerald, C. and Wheatley, P., Applied Numerical Analysis, Third Edition, Reading, 
Massachusetts:  Addison-Wesley, 1984. 

[33] Haggerty, G., Elementary Numerical Analysis with Programming, Boston, 
Massachusetts:  Allyn and Bacon, 1972. 

[34] Newmark, N., ‘A Method of Computation for Structural Dynamics’, Journal of 
Engineering Mechanics, ASCE, Vol. 85, pp. 67-94, 1959. 

[35] Jacob, B. and Ebecken, N., ‘An Optimized Implementation of the 
Newmark/Newton-Raphson Algorithm for the Time Integration of Non-linear 
Problems’, Communications in Numerical Methods in Engineering, Vol. 10, No. 
12, pp. 983-992, 1994. 

[36] Rodrigues, M., Correa, F., and Jacob, B., ‘Implicit Domain Decomposition 
Methods for Coupled Analysis of Offshore Platforms’, Communications in 
Numerical Methods in Engineering, Vol. 23, No. 6, pp. 599-621, 2007. 

[37] Craig, R. Jr., ‘Coupling of Substructures for Dynamic Analyses:  An Overview’, 
AIAA Dynamic Specialists Conference, Atlanta, AIAA Paper No. 2000-1573, 
2000. 

[38] Hurty, W., Collins, J., and Hart, G., ‘Dynamic Analysis of Large Structures by 
Modal Synthesis Techniques’, Computers & Structures, Vol. 1, No. 4, pp. 535-
563, 1971. 



References  183 

 

[39] Hurty, W., ‘Dynamic Analysis of Structural Systems Using Component Modes’, 
American Institute of Aeronautics and Aeronautics Journal, Vol. 3, No. 4, pp. 
678-685, 1965. 

[40] Hurty, W., ‘Dynamic Analysis of Structural Systems by Component Mode 
Synthesis’, NASA Jet Propulsion Laboratory, Technical Report No. 32-530, 1964. 

[41] Bamford, R., ‘A Modal Combination Program for Dynamic Analysis of 
Structures’, NASA Jet Propulsion Laboratory, Technical Report No. 33-290, 
1966. 

[42] Cromer, J., Lalanne, M., Bonnecase, D., and Gaudriot, L., ‘A Building Block 
Approach to the Dynamic Behavior of Complex Structures using Experimental 
and Analytical Modal Modeling Techniques’, Shock and Vibration Bulletin, Vol. 
48, pp. 77-91, 1978. 

[43] Ewins, D., Modal Testing:  Theory and Practice, Letchworth:  Research Studies 
Press, 1984. 

[44] MacNeal, R., ‘A Hybrid Method of Component Mode Synthesis’, Computers & 
Structures, Vol. 1, No. 4, pp. 581-601, 1971. 

[45] Rubin, S., ‘Improved Component-mode Representation for Structural Dynamic 
Analysis’, American Institute of Aeronautics and Aeronautics Journal, Vol. 13, 
No. 8, pp. 995-1006, 1975. 

[46] Rixen, D., ‘A Dual Craig-Bampton Method for Dynamic Substructuring’, Journal 
of Computational and applied Mathematics, Vol. 168, No. 1, pp. 383-391, 2004. 

[47] Martinez, D. and Gregory, D., ‘A Comparison of Free Component Mode 
Synthesis Techniques using MSC/NASTRAN’, Sandia National Laboratories, 
SAND83-0025, 1984. 

[48] Craig, R. Jr. and Bampton, M., ‘Coupling of Substructures for Dynamic 
Analysis’, American Institute of Aeronautics and Aeronautics Journal, Vol. 6, 
No. 7, pp. 1313-1319, 1968. 

[49] Benfield, W. and Hruda, R., ‘Vibration Analysis of Structures by Component 
Mode Substitution’, American Institute of Aeronautics and Aeronautics Journal, 
Vol. 9, No. 7, pp. 1255-1261, 1971. 

[50] Guyan, R., ‘Reduction of Stiffness and Mass Matrices’, American Institute of 
Aeronautics and Aeronautics Journal, Vol. 3, No. 2, p. 380, 1965. 

[51] Wilson, E., ‘Evaluation of Orthogonal Damping Matrices’, International Journal 
for Numerical Methods in Engineering, Vol. 4, No. 1, pp. 5-10, 1972. 



References  184 

 

[52] Chu, C. and Milman, M., ‘Eigenvalue Error Analysis of Viscously Damped 
Structures Using a Ritz Reduction Method’, American Institute of Aeronautics 
and Aeronautics Journal, Vol. 30, No. 12, pp. 2935-2944, 1992. 

[53] Craig, R. Jr. and Ni, Z., ‘Component Mode Synthesis for Modal Order Reduction 
of Nonclassically Damped Systems’, AIAA Journal of Guidance, Control, and 
Dynamics, Vol. 12, No. 4, pp. 577-584, 1989. 

[54] Liu, M. and Zheng, G., ‘Improved Component-Mode Synthesis for Nonclassically 
Damped Systems’, American Institute of Aeronautics and Aeronautics Journal, 
Vol. 46, No. 5, pp. 1160-1168, 2008. 

[55] Thompson, W., Theory of Vibration with Applications, Englewood Cliffs, New 
Jersey:  Prentice-Hall, 1972. 

[56] Clough, R. and Penzien, J., Dynamics of Structures, New York, New York:  
McGraw-Hill, 1975. 

[57] Craig, R. Jr., Structural Dynamics:  An Introduction to Computer Methods, New 
York, New York:  John Wiley & Sons, 1981. 

[58] Simo, J. and Hughes, T., Computational Inelasticity, New York, New York:  
Springer, 1998. 

[59] Tresca, H., ‘Sur l’écoulement des Corps Solides Soumis á de Fortes Pressions’, 
Comptes Rendus de l’Académie des Sciences, Vol. 59, p. 754, 1864. 

[60] Huber, M., Mechanik Czasopismo Techniczne, Lemberg, Austria, Vol. 22, p. 181, 
1904. 

[61] von Mises, R., ‘Mechanik der Festen Körper im Plastisch Deformablen Zustand’, 
Nachr. Ges. Wiss. Göttingen, Vol. 1, pp. 582-592, 1913. 

[62] Zienkiewicz, O., The Finite Element Method, New York, New York:  McGraw-
Hill, 1977. 

[63] Gallagher, R., Finite Element Analysis:  Fundamentals, Englewood Cliffs, New 
Jersey:  Prentice-Hall, 1975. 

[64] Owen, D. and Hinton, E., Finite Elements in Plasticity:  Theory and Practice, 
Swansea:  Pineridge Press Limited, 1980. 

[65] Khan, A. and Huang, S., Continuum Theory of Plasticity, New York, New York:  
John Wiley & Sons, 1995. 

[66] Hill, R., The Mathematical Theory of Plasticity, Oxford:  Oxford University 
Press, 1950. 



References  185 

 

[67] Wu, R. and Witmer, E., ‘Finite-Element Analysis of Large Elastic-Plastic 
Deformations of Simple Structures’, American Institute of Aeronautics and 
Aeronautics Journal, Vol. 9, No. 9, pp. 1719-1724, 1971. 

[68] White, F. and Drucker, D., ‘Effective Stress and Effective Strain in Relation to 
Stress Theories of Plasticity’, Journal of Applied Physics, Vol. 21, No. 10, pp. 
1013-1021, 1950. 

[69] Bland, D., ‘The Associated Flow Rule of Plasticity’, Journal of the Mechanics 
and Physics of Solids, Vol. 6, No. 1, pp. 71-78, 1957. 

[70] Cornwell, R., Craig, R. Jr., and Johnson, C., ‘On the Application of the Mode-
acceleration Method to Structural Engineering Problems’, Earthquake 
Engineering and Structural Dynamics, Vol. 11, No. 5, pp. 679-688, 1983. 

[71] Tinker, M., ‘Hybrid Residual Flexibility/Mass-additive Method for Structural 
Dynamic Testing’, NASA Marshall Space Flight Center, TM-2003-212343, 2003. 

[72] Kammer, D. and Baker, M., ‘A Comparison of the Craig-Bampton and Residual 
Flexibility Methods for Component Substructure Representation’, Structural 
Dynamics Research Corporation, 85-0817, 1985. 

[73] Fausett, L., Numerical Methods:  Algorithms and Applications, Upper Saddle 
River, New Jersey:  Prentice Hall, 2003. 

[74] Liu, S. and Lin, T., ‘Elastic-plastic Dynamic Analysis of Axisymmetric Solid’, 
Earthquake Engineering and Structural Dynamics, Vol. 7, No. 2, pp. 147-159, 
1979. 

[75] Nagarajan, S. and Popov, E., ‘Elastic-plastic Dynamic Analysis of Axisymmetric 
Solid’, Computers and Structures, Vol. 4, No. 6, pp. 1117-1134, 1974. 

[76] Baron, M., Bleich, H., and Weidlinger, P., ‘Dynamic Elastic-Plastic Analysis of 
Structures’, Journal of the Engineering Mechanics Division, Proceedings of the 
American Society of Civil Engineers, EM 1, pp. 23-42, 1961. 

[77] Jones, N., Structural Impact, Cambridge:  Cambridge University Press, 1997. 

[78] Bhardwaj, M. and Walsh, T., ‘Salinas:  Theory Manual’, Sandia National 
Laboratories, SAND2004-4438W, 2004. 


