
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

2-9-2010

Non-linear dynamic modeling using component
mode synthesis
Jamey Bond

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Bond, Jamey. "Non-linear dynamic modeling using component mode synthesis." (2010). https://digitalrepository.unm.edu/me_etds/
6

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/6?utm_source=digitalrepository.unm.edu%2Fme_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/6?utm_source=digitalrepository.unm.edu%2Fme_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

NON-LINEAR DYNAMIC MODELING
USING COMPONENT MODE SYNTHESIS

BY

JAMEY T. BOND

B.S., Mechanical Engineering, North Carolina State University, 2002
M.S., Mechanical Engineering, North Carolina State University, 2003

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico
Albuquerque, New Mexico

December, 2009

NON-LINEAR DYNAMIC MODELING
USING COMPONENT MODE SYNTHESIS

BY

JAMEY T. BOND

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico
Albuquerque, New Mexico

December, 2009

 iv

NON-LINEAR DYNAMIC MODELING

USING COMPONENT MODE SYNTHESIS

by

Jamey T. Bond

B.S., Mechanical Engineering, North Carolina State University, 2002

M.S., Mechanical Engineering, North Carolina State University, 2003

Ph.D., Engineering, University of New Mexico, 2009

ABSTRACT

 Dynamic simulations provide insight into the operation of complex mechanisms

under dynamic loading conditions. These types of analyses are important to understand

design margins and assure that a product meets its functional requirements during all

operational environments. Rigid body dynamic modeling techniques can be utilized to

simulate mechanisms that experience small loads relative to the strength of the piece

parts with movement that primarily occurs as rigid body motion.

 The main advantage of a rigid body dynamic approach is that the number of

unknowns that must be determined at each time step is dramatically less than the number

of unknowns for a direct finite element approach. Rigid body dynamic codes can

incorporate the capability to model flexible piece parts within a primarily rigid body

Abstract v

model through the use of component mode synthesis (CMS) techniques. CMS is a

method of coupling substructures to represent a large finite element problem as a

collection of smaller ones. The number of degrees of freedom are reduced but the CMS

method also provides design information and capabilities that are not available with a

direct finite element approach. One significant limitation of the CMS implementation is

that only linear or non-linear elastic responses can be modeled, requiring a different

analysis technique for problems with geometric or material non-linearity.

 In this dissertation, a framework is developed to couple non-linear material behavior

with a fixed interface CMS technique. This new approach allows non-linear material

behavior, such as plastic deformation, to be approximated without requiring the transition

to a direct finite element model. The plastic strain is determined from the modal response

using classical plasticity theory and applied to the modal solution by projecting an

effective nodal force vector on the modal coordinates to induce plastic deformation. The

method can be tailored to the frequency range of interest to provide excellent correlation

with a full-fidelity finite element solution. Numerical examples are provided to

investigate the accuracy and convergence characteristics of the new method for specific

problems.

 vi

Contents

List of Figures ..x

List of Tables .. xii

List of Symbols .. xiii

Chapter 1 Introduction ...1

1.1 Motivation..2

1.2 Use of Rigid Body Dynamics in Mechanism Design3

1.3 Overview of Rigid Body Dynamic Codes ...6

1.4 Related Research..9

1.5 Overview of New Non-linear Framework ...10

1.6 Outline of Dissertation...15

Chapter 2 Finite Element Analysis ..16

2.1 Three-Dimensional Elements...17

2.1.1 Rectangular Hexahedron..17

2.1.2 Isoparametric Hexahedron ...23

2.1.3 Improvement of Stiffness Matrix Accuracy ..25

2.2 Selective Substitution...28

2.3 Lagrangian Dynamics ..29

2.4 Static Analysis ...31

2.5 Dynamic Analysis..32

2.5.1 Newmark-Beta Integration Method ...33

2.5.2 Internal Resisting Force Vector ...35

Contents vii

Chapter 3 Component Mode Synthesis ...37

3.1 Modal Analysis Overview ...37

3.1.1 Single Degree of Freedom Systems...39

3.1.2 Multiple Degree of Freedom Systems ...41

3.2 Substructuring Overview ...43

3.2.1 Early Component Mode Synthesis...43

3.2.2 Free Interface CMS..44

3.2.3 Fixed Interface CMS..46

3.3 Orthonormalization..49

3.4 Modal Mass Participation Factor ...50

Chapter 4 Plasticity Theory ..53

4.1 Yield Criteria ...53

4.1.1 Tresca Yield Criteria..54

4.1.2 von Mises Yield Criteria..55

4.2 Prandtl-Reuss Plasticity ...56

4.3 Determination of Strain Contributions...60

Chapter 5 Integration of CMS and Plasticity Theory........................62

5.1 Determination of Non-linear Response ...62

5.1.1 Updated Material Stiffness-Hardening Models ...63

5.1.2 Updated Material Stiffness-Perfectly Plastic Model..................................66

5.1.3 Plastic Stiffness Matrix ..69

5.2 Coupling of Linear and Non-linear Responses..70

5.2.1 Determination of Static Pseudoforce ...70

Contents viii

5.2.2 Determination of Dynamic Pseudoforce..73

5.3 Iteration of Plastic Response..76

5.3.1 Tangential Stiffness Method ..76

5.3.2 Initial Stiffness Method..79

5.3.3 Combination of Tangential and Initial Stiffness Methods.........................81

5.4 Elastic Response Following Plastic ...82

5.5 Convergence Check ...83

Chapter 6 Characteristics of Non-linear Method...............................84

6.1 Accuracy of Non-linear CMS Method...85

6.2 Methods of Improving Accuracy ...86

6.2.1 Constraint and Retained Modes ...86

6.2.2 Residual Flexibility..88

6.2.3 Residual Flexibility in Plastic Solution..94

6.3 Computational Comparison ...95

Chapter 7 Numerical Examples ...100

7.1 Quasi-Static Axial Loading..101

7.1.1 Analytical Solution ..104

7.1.2 ABAQUS Solution ..105

7.1.3 Component Mode Synthesis Solution..108

7.2 Impulse Loading of Simply Supported Beam – Full Load110

7.3 Impulse Loading of Simply Supported Beam – Partial Load115

7.4 Rigid Body Mechanism ...121

Chapter 8 Summary and Conclusions ...125

Contents ix

8.1 Future Work ...127

Appendices...129

References..180

 x

List of Figures

Figure 1-1: Ratchet Driver Mechanism ..4

Figure 1-2: Full Fidelity and Modal Computations ..6

Figure 1-3: Flow Chart for Pre-processing Calculations ..11

Figure 1-4: Subroutines for CMS Calculations ..12

Figure 1-5: Flow Chart for Elastic Time Step ..13

Figure 1-6: Flow Chart for Elastic-Plastic Time Step ..14

Figure 2-1: Rectangular Hexahedron Element ...18

Figure 2-2: Isoparametric Hexahedron (Physical Coordinates)..24

Figure 2-3: Isoparametric Hexahedron (Isoparametric Coordinates)24

Figure 3-1: Mode Shapes of Extension Spring (10 lowest natural frequencies)38

Figure 3-2: Single Degree of Freedom System...40

Figure 3-3: Two Degree of Freedom System ...41

Figure 4-1: Tresca and von Mises Yield Criteria..54

Figure 5-1: Tangential Stiffness Method – Power law hardening77

Figure 5-2: Tangential Stiffness Method – Bi-linear hardening.......................................78

Figure 5-3: Initial Stiffness Method – Power law hardening..80

Figure 5-4: Initial Stiffness Method – Bi-linear hardening ..81

Figure 7-1: Cantilever Beam Geometry..101

Figure 7-2: Elastic-Plastic Stress-Strain Curve...103

Figure 7-3: Load-Unload Scaled Amplitude...103

Figure 7-4: ABAQUS Elastic Deflection (Peak) ..106

Figures xi

Figure 7-5: ABAQUS Elastic Tip Deflection...106

Figure 7-6: ABAQUS Elastic-Plastic Tip Deflection...107

Figure 7-7: Full Fidelity Elastic-Plastic Tip Deflection ...109

Figure 7-8: CMS Elastic-Plastic Tip Deflection...110

Figure 7-9: Simply Supported Beam Geometry ...111

Figure 7-10: Elastic and Plastic Full Fidelity Responses..112

Figure 7-11: Convergence of Elastic Solution – 0.625*Pc...113

Figure 7-12: Non-linear CMS Response...114

Figure 7-13: Simply Supported Beam Geometry ...115

Figure 7-14: Plastic Strain Hardening Models..116

Figure 7-15: Mid-span Deflection - Hardening Models ...117

Figure 7-16: Modal Participation Factors ...118

Figure 7-17: Modal Participation Factors – Final 5% of mass118

Figure 7-18: Accuracy of CMS Elastic Response ..119

Figure 7-19: Accuracy of CMS Plastic Response...120

Figure 7-20: Computational Saving of CMS Method with Increased Mesh Density.....121

Figure 7-21: Rigid Body Mechanism Geometry ..122

Figure 7-22: Mesh of Mechanism Shaft ...123

Figure 7-23: Mechanism Shaft Tip Deflection ...124

 xii

List of Tables

Table 1-1: Rigid Body Dynamics – Joint Options..7

Table 1-2: Rigid Body Dynamics – Contact Options ...8

Table 3-1: Extension Spring Natural Frequencies ..39

Table 6-1: Computational Comparison for Dynamic Elastic Iteration.............................96

Table 6-2: Computational Comparison for Stress Calculation ...97

Table 6-3: Computational Comparison for Dynamic Elastic-Plastic Iteration.................98

Table 7-1: Elastic Material Properties of Cantilever Beam..102

Table 7-2: Plastic Material Properties of Cantilever Beam ..102

 xiii

List of Symbols

Latin Symbols

{a} Incompatible mode displacement vector

A Area

{b} Effective internal force vector

[B] Strain-displacement matrix

[C] Global damping matrix

[D] Material stiffness matrix

E Modulus of elasticity

ET Tangential modulus

[E] Incompatible mode stiffness matrix

{f} Global force vector

F Plasticity yield function

G Shear modulus

[G] Incompatible mode strain-displacement matrix

H Plasticity hardening function

[H] Incompatible mode stiffness matrix

[I] Identity matrix

J2 Second invariant of deviatoric stress tensor

[J] Jacobian matrix

[k]e Elemental stiffness matrix

List of Symbols xiv

[K] Global stiffness matrix

[L] Lagrangian matrix

[m]e Elemental inertia matrix

M0 Limit moment

[M] Global inertia matrix

[N] Orthonormal coordinate transformation matrix

[Ne] Element shape function matrix

pc Static collapse distributed load

{p} Internal resisting force vector

Pi Incompatible mode shape functions

[P] Transformation matrix

[Pf] Force transformation matrix

[Pu] Displacement transformation matrix

{q} Displacement vector in modal coordinates

[Rf] Residual flexibility matrix

{S} Deviatoric stress vector

[T] Kinetic energy matrix

u, v, w Displacement in global coordinate system

[U] Potential energy

{v} Velocity vector

Ve Element volume

x, y, z Position in Cartesian coordinate system

W Work energy

List of Symbols xv

Greek Symbols

α Newmark integration constant

β Newmark integration constant

γ Damping ratio

{Γ} Modal participation factor vector

pε Effective plastic strain

{ε} Strain vector

κ Plasticity material hardening parameter

λ Natural frequency

dλ Plastic multiplier

[Λ] Stiffness matrix in orthonormal coordinates

ν Poisson’s ratio

ξ, η, ζ Position in isoparametric coordinate system

ρ Density

σe Effective stress

{σh} Hydrostatic stress vector

σY Material yield stress

{σ} Stress vector

τ Material shear stress

[φC] Component mode synthesis constraint mode matrix

[φN] Component mode synthesis normal mode matrix

[Φ] Component mode synthesis coordinate transformation matrix

ω Circular natural frequency

 1

Chapter 1

Introduction

 The goal of this research was to develop a framework for modeling non-linear

material behavior using rigid body dynamic solution techniques. Capabilities currently

available within rigid body dynamics codes allow flexible bodies to be incorporated with

the use of component mode synthesis (CMS) techniques, but the response is limited to

elastic behavior. There is no intermediary between a linear elastic response in a rigid

body analysis and a full finite element analysis but there is a great difference in the

required computational time and the design information provided.

 The incorporation of flexible piece parts can improve the accuracy of a primarily

rigid body model if specific piece parts experience large deflections as a result of applied

dynamic loading. Simulating the flexibility with CMS offers additional design

information that is not available with a direct finite element procedure. The natural

frequencies and mode shapes of the flexible elements are provided directly during the

CMS procedure, allowing the designer to improve designs that could potentially

experience resonance or interference with other bodies. Since the modal problem is

solved independently from the dynamic solution, it only needs to be solved once and

restart points are automatically provided.

 The utility of the rigid body dynamic procedure coupled with CMS can be expanded

by incorporating the ability to approximate non-linear behavior for flexible elements that

Chapter 1. Introduction 2

are loaded beyond their elastic limit. This dissertation is devoted to the development of

the non-linear theory and integration with a fixed interface CMS reduction technique.

The theoretical background and information required to incorporate within a traditional

finite element process are provided in the following chapters along with a collection of

numerical examples to demonstrate potential applications and accuracy of the newly

developed method.

1.1 Motivation

 Dynamic modeling can be used to investigate the response of complex mechanisms

during operation or when exposed to environments. This type of modeling is important

to providing insight into the response, allowing the design to be characterized and

improved. For complex systems where the individual piece parts or subassemblies can be

approximated as rigid bodies, the dynamic simulation can be performed using rigid body

dynamic techniques. The interaction between rigid bodies are approximated using linear

or non-linear contact force and joint options.

 In reality, no body is truly rigid. This is only an approximation for cases when the

body is very stiff or the loading is very small, which leads to very small deformations.

Many of today’s rigid body dynamic software packages do include the capability to

simulate the linear elastic response of selected piece parts through the use of a CMS

method. The flexible body is analyzed to determine the natural frequencies and

associated mode shapes, with only the lowest frequencies being retained in the solution of

the equations of motion to reduce computational expense. The number of modes retained

is dependent on the problem of interest and can have a significant impact on the accuracy

of the solution.

Chapter 1. Introduction 3

 The benefit of the CMS method is that the size of the problem can be substantially

smaller than that of a full fidelity finite element problem. Rather than maintaining the

inertia and stiffness terms associated with each degree of freedom, only a reduced set of

modal shapes and frequencies are retained. This reduces the size of the equations of

motion being solved at each time step, which is an important consideration for dynamic

problems. For a static problem, the CMS method would not offer any computational

benefit because the static portion of the equations of motion are only solved once. For a

dynamic problem, the equations of motion may be solved thousands to billions of times

or more depending on the time step used and the simulated time interval.

 The limitation of typical CMS method is that they only apply to linear elastic

behavior. If material or geometric non-linearity occurs in the structure, the response

cannot be accurately predicted. The preferred option for modeling a problem with non-

linearity is through the use of a full fidelity finite element procedure. With the newly

developed framework for incorporating non-linear material behavior with a CMS solution

technique, this gap in capabilities is reduced.

1.2 Use of Rigid Body Dynamics in Mechanism Design

 Computational simulations can offer significant insight into the behavior of complex

mechanisms under normal and abnormal operating conditions. An example of a complex

mechanism is the ratchet-driver shown in Figure 1-1. The ratchet wheel is rigidly

attached to a spur gear and mounted on a shaft with two radial ball bearings. The drive

arm is actuated by a rotary solenoid that opens the arm against the extension of the drive

spring. Once the arm is sufficiently open, the drive pawl drops over the next tooth

because of the torque applied from a torsion spring. As the solenoid is de-energized, the

Chapter 1. Introduction 4

drive arm returns as a result of the force applied by the extended spring and drives the

wheel to the next index position. The dynamic performance of this mechanism can

readily be analyzed using rigid body modeling techniques.

Figure 1-1: Ratchet Driver Mechanism

 Experimental testing can be performed to investigate the dynamic performance of

complex mechanisms but it is typically impractical to experimentally test all possible

loading conditions. Computational simulations can be validated with the limited

experimental data and utilized to supplement performance testing, quantify design

margins, and identify/characterize failure modes. During the earliest phases of the design

process, simplistic analyses can be used to verify the intended function of the mechanism

and help identify serious design flaws. As the design matures, the fidelity of the analyses

should mature, correspondingly.

 The lowest fidelity models used in the early design phase should include many

simplifying assumptions since the overall design is immature and subject to frequent

Chapter 1. Introduction 5

changes. Substantial resources should not be invested in obtaining a high fidelity

simulation if high fidelity results are not yet necessary. For mechanisms that experience

small loads relative to the strength of the components and motion occurs primarily as

rigid body motion during operation, a rigid body solution technique is a good starting

point [1]. Consideration of the appropriate integration scheme and time steps are

required for the specific geometry and loading of the problem in order to obtain an

accurate solution [2]. In the lowest fidelity rigid body dynamic simulation, all

components are assumed to remain rigid with interactions represented as idealized joints

and contact represented as external forces. This type of solution can be very

computationally efficient, which is important for a dynamic response since the

simulations will typically be performed over a relatively long time interval. Simulations

in early design phases should only require minimal time for setup and solution because

the design will likely require several changes.

 As the design matures, the simplifying assumptions need to be critically reviewed to

determine their impact on the accuracy of the solution. Idealized joints between

components may need to be replaced with more representative contact elements. If a

majority of the components experience substantial deformation, a different solution

technique may be required to obtain higher fidelity results, such as a full fidelity finite

element solution. If only a minority of components experience significant deformation,

modal techniques have been developed that can be readily incorporated in a primarily

rigid body model with minimal impact on computational expense [3]. These modal

solutions are an approximation of the full fidelity finite element representation of the

substructure that can be solved with substantial computation savings. The savings is

Chapter 1. Introduction 6

dependent on the particular problem but Figure 1-2 demonstrates the relative number of

operations (see Section 6.3) for a modal solution based on the percent of retained modes.

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

% Kept Modes

%
 F

u
ll

 S
o

lu
ti

o
n

 O
p

er
at

io
n

s Full Solution

Modal Solution

Figure 1-2: Full Fidelity and Modal Computations

 The limitation of the modal techniques is that they are typically limited to linear

elastic behavior. If the loadings exceed the elastic limits of the material, simulation

accuracy will degrade. This dissertation is focused on expanding the useful range of

primarily rigid body solution techniques by incorporating non-linear material effects with

the modal techniques that are currently available.

1.3 Overview of Rigid Body Dynamic Codes

 LMS Virtual.Lab (LMS International, Leuven, Belgium) and MSC.ADAMS (MSC

Software, Santa Ana, CA) are examples of commercial rigid body dynamic software

packages. These codes incorporate many tools that allow models to be created with

varying levels of fidelity. The remainder of this section provides an overview of the

process of setting up a rigid body simulation for a typical commercial code.

Chapter 1. Introduction 7

 Model geometry can either be imported from a computer-aided design (CAD)

package or can be modeled directly using the integrated CAD software. Once geometry

is imported, joints and forces must be set up for each part interface. If parts are

mechanically attached through welding or other fastening methods, rigid constraints can

be generated to constrain each of the six degrees of freedom between the two parts.

There are many other joint options that can approximate various constraint conditions.

Idealized joints can have as few as one degree of freedom for a revolute joint or as many

as three degrees of freedom for a spherical joint. Compound joints have more degrees of

freedom because they are combinations of the simple joints. A representative summary

of available joint options is summarized in Table 1-1. The simple joints are

computationally inexpensive but the complex joints typically require iterations, which

increase the run time of the simulation.

Table 1-1: Rigid Body Dynamics – Joint Options

Joint Type Body 1 Body 2 Translational Rotational
Bracket Axis System Axis System 0 0
Planar Plane Plane 2 1

Spherical Point Point 0 3
Cylindrical Axis Axis System 1 1
Revolute Axis, Plane Axis, Plane 0 1

Screw Axis Axis 1 1
Translational Line, Plane Line, Plane 1 0

Universal Line, Point Line, Point 0 2
Spherical-Spherical Point Point
Revolute-Sprerical Line, Plane Point

Revolute-Cylindrical Line, Point Line
Revolute-Revolute Line, Plane Line, Plane

Revolute-Translational Line, Point Line, Plane
CV Joint Line, Point Line, Point

Point-Curve Point Curve
Point-Surface Point Surface
Slide-Curve Curve Curve
Roll-Curve Curve Curve

Compound
Compound
Compound

Compound
Compound
Compound
Compound

Compound
Compound
Compound

Required Inputs Degrees of Freedom

Chapter 1. Introduction 8

 If parts interact through intermittent contact, there are several modeling options. In

order to provide a stable numeric solution all contact must be assumed to first occur at a

single point. Depending on the geometry of the parts in question, contact can be modeled

with the options summarized in Table 1-2. The descriptions provided in these tables are

derived from the LMS Virtual.Lab help reference.

Table 1-2: Rigid Body Dynamics – Contact Options

Force Element Description

Point to Point
The Point-Point Contact element models contact events between two
bodies represented by spherical "points". When in contact a force of
separation is generated between the two bodies.

Sphere to Extruded Surface

In Sphere-to-Extruded-Surface contact, the first body is designated
the Sphere body, and the second is designated the Extruded body.
The contact force is based on the depth of penetration and the relative
velocity normal to the contact surface.

Sphere to Revolved Surface

Sphere-to-Revolved-Surface contact is the same as Sphere-to-
Extruded-Surface contact, except that the surfaces on the first body,
rather than being extruded, are revolved about the body 1 axis within
a user-defined angular range.

Extruded Surface to Revolved Surface

Extruded-Surface-to-Revolved-Surface contact is similar to Sphere-to-
Extruded Surface or Sphere-to-Revolved Surface, except that it allows
contact between an extruded surface (as in Extruded-Surface-to-
Revolved-Surface) and a revolved surface (as in Sphere-to-Revolved
Surface).

Sphere to Rail
The Sphere-to-Rail contact is similar to the Sphere-to-Extruded
Surface contact, except that it allows variation along the extrusion
direction (Swept instead of Extruded).

CAD Contact

The CAD Contact option allows you to model and simulate contact
between bodies with arbitrary geometry. The bodies for which contact
is to be calculated are selected, and the complete solid geometry
associated with each body participates in contact calculations.

Flexible Contact
The Flexible Contact force element generates action-reaction forces
between a sphere on a rigid body and a deforming surface on a
flexible body.

 Commercial rigid body software codes also have the capability of incorporating

flexible elements. If a piece part within a mechanism is expected to deflect during any of

the environments being simulated, the rigid piece part can be replaced with a flexible

element. This approach offers several advantages over a full finite element model, such

as the direct computation of un-restrained natural frequencies, automatic restart points,

and computational savings. The primary purpose of rigid body codes is to model rigid

Chapter 1. Introduction 9

body dynamics. A model is solved through an iterative solution procedure over the

desired time interval, with a relatively small set of equations of motion. For a full finite

element model, the numerical problem being solved is very large because the full inertia

and stiffness matrices are retained. This means that much greater processing capabilities

are required to analyze a model over a large solution time.

1.4 Related Research

 Methods have been developed to incorporate non-linear behavior in a modal solution

for dynamic simulations. For materials that follow a non-linear elastic material stiffness

curve, the predicted modal solution can be modified with a manifold calculation [4], [5].

The non-linear normal mode (NNM) method effectively maps the linear response to the

non-linear curve. A method to perform non-linear dynamic analyses with modal

superposition is presented with example problems of cable and truss structures in

reference [6]. A non-linear static and dynamic analysis procedure for framed structures is

developed in reference [7]. Coupling of substructuring techniques and mode

superposition are explored for the dynamic analysis of structures with perfectly-plastic

material stiffness assumptions in reference [8]. This method was incorporated in the

ADINA finite element code to reduce the computational time for a certain class of

problems.

 A collection of reduction techniques are investigated in [9] to demonstrate their

effectiveness in non-linear simulations. Techniques of transformation to different basis

vectors, prescribed edge displacements, and reduction in mixed finite element modes are

evaluated with representative example problems. An explicit time integration method is

combined with a non-linear reduction technique in [10]. Transformations of basis vectors

Chapter 1. Introduction 10

are applied using a Rayleigh-Ritz type technique but the vectors are augmented with

vector derivative terms in [10] and [11]. A reduced approach for impulsively loaded

structures is developed and evaluated in [12]. Incorporation of localized non-linear

effects with a modal reduction framework is investigated in [13]. A survey of various

techniques for dynamic substructuring are reviewed and classified in [14].

1.5 Overview of New Non-linear Framework

 This dissertation presents a newly developed technique for incorporation of non-

linear material behavior with a fixed interface CMS technique. The performance of the

technique is investigated with the use of custom Matlab code. All aspects of the finite

element formulation, component sub-structuring, iteration of equations of motion, and

post-processing operations are performed with the Matlab subroutines, which can be

found in the appendices.

 The linear elastic response is first predicted at each time step using the reduced

modal response. The nodal deformations are evaluated for each element to determine the

state of strain and stress. If the effective stress within the element exceeds the predefined

yield criteria, the incremental plastic deformation of the element is calculated. This

plastic deformation is induced in the linear elastic modal solution by the application of a

pseudoforce and an iterative solution technique is used to achieve convergence within the

time step [15], [16].

 All calculations are performed within the Matlab subroutines, including all necessary

pre and post processing. The function that solves the dynamic, three-dimensional

problem and calls all subroutines is Master3D.m. In order to generate the global

Chapter 1. Introduction 11

equations of motion and apply boundary conditions, the subfunctions are called in the

order shown in Figure 1-3.

Figure 1-3: Flow Chart for Pre-processing Calculations

 The global equations of motion are converted to a CMS representation by applying

the reduction techniques of a fixed interface method. This transformation results in

inertia and damping matrices that are not orthonormal, so a subsequent

Chapter 1. Introduction 12

orthonormalization is performed. The inertia and damping matrices are converted to

diagonal matrices and input into the iterative, implicit solver as indicated in Figure 1-4.

Figure 1-4: Subroutines for CMS Calculations

 If a particular time step of the iterative dynamic solution only consists of elastic

deformation, the calculations are performed as indicated in Figure 1-5. Because the

dynamic equations of motion are solved in a modal coordinate system, the modal

displacement vector must be converted to the global coordinate system prior to evaluation

of the elemental stress. The plasticity subroutine calculates the effective stress and

evaluates the yield function to determine whether the yielding has occurred within the

time step. If the deformation is only linear-elastic, the iterative procedure continues until

convergence is achieved.

Chapter 1. Introduction 13

Figure 1-5: Flow Chart for Elastic Time Step

 If the time step does result in incremental plastic deformation, the calculations

indicated in Figure 1-6 are performed. The tangential stiffness matrix is determined and

a plastic pseudoforce vector is calculated to induce the required plastic deformation when

introduced into the elastic solution procedure. A combination of initial and tangential

stiffness methods are employed, with the stiffness matrix only being generated for the

first elastic-plastic iteration.

Chapter 1. Introduction 14

Figure 1-6: Flow Chart for Elastic-Plastic Time Step

 Several additional diagnostic subroutines are utilized to calculated additional

information and perform routine pre- and post-processing operations. The detailed

information about the calculations performed within all subroutines is provided in the

remainder of this dissertation, with the complete collection of Matlab code provided in

the Appendices.

Chapter 1. Introduction 15

1.6 Outline of Dissertation

 The dissertation is organized into a series of chapters to provide a logical progression

of the theory development, implementation, and testing of the non-linear dynamic

solution procedure. The initial chapters are devoted to providing the background

information necessary to formulate the finite element problem and an overview of the

development of modal analysis and sub-structuring techniques. The background

information is followed by the development of the plasticity algorithm and the

incorporation with the fixed interface CMS technique. Finally, the accuracy and

performance of the technique is evaluated through a series of numerical examples and

convergence studies.

 16

Chapter 2

Finite Element Analysis

 The finite element method is a powerful technique for analyzing the response of

complex physical behavior. The finite element procedure basically consists of

segmenting a geometric object into a finite number of discrete elements so that the

complex problem can be approximated numerically. The elements can be of various

sizes and shapes depending on the geometry of the problem being solved. There are also

many diverse options in the formulation of the inertia, damping, and stiffness matrices

that are tailored to specific loading conditions and problem types. This chapter primarily

provides background information of the elements and formulations used in this

dissertation for solving structural problems.

 One-dimensional elements may be used to solve very basic problems involving the

axial extension of a flexible body. Two-dimensional elements may be used to solve

problems that can be approximated as plane stress, plane strain, or axi-symmetric. The

plane stress approximation can be used for problems where the stress across the thickness

is assumed to be zero, such as for thin plates. The plane strain approximation can be used

for problems where the strain along the length is assumed to be zero, such as for very

long cylinders. The axi-symmetric approximation can be used for bodies that have an

axis of symmetry. Further information on one and two-dimensional finite elements can

Chapter 2. Finite Element Analysis 17

be found in references [17], [18], and [19]. The remainder of this dissertation will focus

on three-dimensional elements since it is the most general case.

2.1 Three-Dimensional Elements

 A solid three-dimensional body can be modeled as a combination of a finite number

of three-dimensional elements of a prescribed shape. Common examples of three-

dimensional finite element shapes are rectangular hexahedron, isoparametric hexahedron,

right pentahedron, and tetrahedron. Depending on the geometry being meshed, different

element shapes may be required to reasonably approximate the shape. Tetrahedron

elements are the easiest to implement in an automated meshing scheme due to their

triangular shape but they are typically inaccurate for bending conditions [20]. The

problems investigated with this research all utilize hexahedron elements but the method

could be easily extended to include other element shapes. Two hexahedron elements are

incorporated in the Matlab subroutines to apply to three-dimensional geometries. The

rectangular hexahedron, sometimes referred to as the brick element, has six sides and all

corners are perpendicular. The isoparametric hexahedron element is also incorporated to

mesh more arbitrary shapes. The isoparametric elements are not constrained to have all

corners perpendicular and can be shaped to approximate curved surfaces. The

rectangular hexahedron is actually a special case of the isoparametric formulation with a

slight difference in computational cost.

2.1.1 Rectangular Hexahedron

 The rectangular hexahedron consists of eight nodal points positioned at the corners

of a six-sided solid element. Various finite element codes and literature use differing

Chapter 2. Finite Element Analysis 18

definitions of the nodal arrangement but the form used for this work is identified in

Figure 2-1. Differing formulations will have the nodes numbered in other orientations

but will provide the same results if carried out consistently.

Figure 2-1: Rectangular Hexahedron Element

 Each of the eight nodes of the rectangular element has a total of three degrees of

freedom because each node can displace in the x, y, and z directions. Other formulations

can include rotational degrees of freedom but only the linear displacements are included

in this formulation. Therefore, 24 variables are required to completely describe the state

of the element. The displacement functions are written in the form:

 { }e

e

u

v N u

w

 =

 (2-1)

The terms u, v, and w are the displacements in the x, y, and z direction of the element,

which are defined in terms of the shape function of the element and the nodal

displacements, u. In terms of the individual displacements of the element, the terms can

alternatively be written as:

x

y
z

1
2

3

6

7
5

8

Chapter 2. Finite Element Analysis 19

8

1

e
i i

i

u N u
=

=

8

1

e
i i

i

v N v
=

=

8

1

e
i i

i

w N w
=

=

(2-2)

The terms ui, vi, and wi are the displacements in the x, y, and z direction of the nodes

numbered 1 thru 8. For use in (2-1), the nodal displacements are written as:

 { }

1

1

1

8

8

8

e

u

v

w

u

u

v

w

 =

 (2-3)

The shape functions, Ne, are written in terms of a mapped set of coordinates (ξi, ηi, ζi):

 ()()()1
1 1 1

8
e
i i i iN ξ ξ η η ζ ζ= + + + (2-4)

Expressed in a different form, the shape function can be written as a 3 x 24 matrix for use

in (2-1):

1 8

1 8

1 8

0 0 0 0

0 0 0 0

0 0 0 0

e e

e e e

e e

N N

N N N

N N

 =

 (2-5)

The mapped coordinate system is based on a defined relationship between the Cartesian

coordinate system and the length, width, and height of the element. The dimensions a, b,

and c are defined to be half the length, width, and height of the element, respectively:

Chapter 2. Finite Element Analysis 20

x

a
ξ =

y

b
η =

z

c
ζ =

(2-6)

This relationship maps the locations of the corners of the elements from the Cartesian

coordinates to a more generic dimension that varies from -1 to +1.

 The inertia matrix of the rectangular hexahedron is determined through integration

of:

 [] Te e

e V
m N N dVρ = (2-7)

where V is the volume of the element and ρ is the density of the material. In terms of the

physical coordinates of the element:

 [] Te e

e
m N N dxdydzρ = (2-8)

Or, in terms of the mapped coordinates of the element (ξi, ηi, ζi):

 [] 1 1 1

1 1 1

Te e

e
m N N abcd d dρ ξ η ζ

+ + +

− − −
 = (2-9)

The integration over the volume is performed using Gaussian-Legendre integration [21].

Alternatively, the integral can be solved directly for the rectangular hexahedron element.

 The element stiffness matrix is generated by first determining the strain-

displacement matrix of the element. The strain-displacement matrix is defined in terms

of the Cartesian coordinate system:

Chapter 2. Finite Element Analysis 21

 []

81

81

81

8 81 1

8 81 1

8 81 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0 0

ee

ee

ee

e ee e

e ee e

e ee e

NN

x x

NN

y y

NN

z z
B

N NN N

y x y x

N NN N

z x z x

N NN N

z y z y

 ∂∂
 ∂ ∂
 ∂∂
 ∂ ∂
 ∂∂

∂ ∂ = ∂ ∂∂ ∂

∂ ∂ ∂ ∂
 ∂ ∂∂ ∂

∂ ∂ ∂ ∂
 ∂ ∂∂ ∂

∂ ∂ ∂ ∂

 (2-10)

The strain-displacement matrix for a single element is of size 6 x 24 for the rectangular

hexahedron formulation. The stiffness matrix can be calculated directly using the strain-

displacement matrix in the Cartesian coordinate system, but for subsequent calculations it

in be more convenient to define the strain-displacement matrix in terms of a mapped

coordinate system for ease of integration. This relationship will require the use of chain

rule differentiation and utilizes the following relationships derived from differentiation of

(2-6):

1

x a

ξ∂ =
∂

1

y b

η∂ =
∂

1

z c

ζ∂ =
∂

(2-11)

Application of the chain rule to differentiation of the terms of (2-10) with use of (2-4),

results in the following relationships, where i varies from 1 to 8:

Chapter 2. Finite Element Analysis 22

()()1
1 1

8

e e e
i i i i

i i

N N N

x x a a

ξξ η η ζ ζ
ξ ξ

∂ ∂ ∂∂= = = + +
∂ ∂ ∂ ∂

()()1
1 1

8

e e e
i i i i

i i

N N N

y y b b

ηη ξ ξ ζ ζ
η η

∂ ∂ ∂∂= = = + +
∂ ∂ ∂ ∂

()()1
1 1

8

e e e
i i i i

i i

N N N

z z c c

ζζ ξ ξ η η
ζ ζ

∂ ∂ ∂∂= = = + +
∂ ∂ ∂ ∂

(2-12)

 The stress within the element is defined as a function of the strain within the element

and the material elasticity matrix according to the Hooke’s law relationship:

 { } []{ }Dσ ε= (2-13)

Note that the variable, D, is defined as the elasticity matrix, which is sometimes

represented with the variable C. The variable, C, will be reserved to define the damping

matrix for the dynamic equations of motion. For an isotropic elastic constitutive model,

the elasticity matrix is defined as:

[] ()()

0 0 0

0 0 0

0 0 0

0 0 0 0 01 1 2

0 0 0 0 0

0 0 0 0 0

f

f

fE
D

g

g

g

υ υ
υ υ
υ υ

υ υ

= + −

()1f υ= +

()1
1 2

2
g υ= −

(2-14)

where E is the modulus of elasticity and ν is the Poisson’s ratio of the material. Analysis

indicates that the best position to evaluate the stress of the three-dimensional element is at

the center [22].

Chapter 2. Finite Element Analysis 23

 The element stiffness matrix is defined in terms of the strain-displacement matrix

and the material stiffness matrix, integrated over the volume of the element:

 [] [] [][]T

e
k B D B dxdydz= (2-15)

Or more generally in terms of the mapped coordinate system:

 [] [] [][]1 1 1

1 1 1

T

e
k abc B D B d d dξ η ζ

+ + +

− − −
= (2-16)

Following the procedure used to find the element inertia matrix, the integration is

performed using Gauss-Legendre integration. For the quadratic variation defined in

(2-4), the exact solution can be obtained by using a 2 x 2 x 2 integration scheme.

2.1.2 Isoparametric Hexahedron

 The isoparametric hexahedron element is a more general variation of the rectangular

hexahedron. The primary difference is that the sides of the element do not have to be

perpendicular, which results in improved approximation of three-dimensional bodies that

have curved surfaces. The rectangular hexahedron formulation is a special case of the

isoparametric formulation and does not need to be retained directly. Information on

isoparametric hybrid hexahedral elements and assumed stress elements can be found in

references [23] and [24]. The general shape of the isoparametric hexahedron is shown in

Figure 2-2.

Chapter 2. Finite Element Analysis 24

Figure 2-2: Isoparametric Hexahedron (Physical Coordinates)

The nodes of the isoparametric hexahedron are mapped from physical coordinates into

isoparametric coordinates in order to improve the ability to integrate over the element.

The mapping results in an element that is equivalent to a rectangular hexahedron as

shown in Figure 2-3.

Figure 2-3: Isoparametric Hexahedron (Isoparametric Coordinates)

 It is slightly more difficult to map the general Cartesian coordinates into the mapped

coordinates for the isoparametric element because the lengths of the sides of the elements

are not equal. The introduction of the Jacobian matrix is required to correctly map the

volume of the element from the Cartesian coordinates to the mapped coordinates:

ξ

η

ζ

1

3

6
7

5

8

2

1 2

3
6

5

8
7

x

y
z

Chapter 2. Finite Element Analysis 25

x y z

x y z
dxdydz d d d J d d d

x y z

ξ ξ ξ

ξ η ζ ξ η ζ
η η η

ζ ζ ζ

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂= =
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 (2-17)

The inertia matrix is defined using (2-8) and (2-17):

 [] 1 1 1

1 1 1

Te e

e
m N N J d d dρ ξ η ζ

+ + +

− − −
 = (2-18)

The element stiffness matrix can be defined using (2-15) and (2-17):

 [] [] [][]1 1 1

1 1 1

T

e
k B D B J d d dξ η ζ

+ + +

− − −
=

(2-19)

After generation of the elemental stiffness matrix, it can be assembled into the global

stiffness matrix to correspond with the appropriate degrees of freedom.

 The elemental inertia and stiffness matrices are integrated using Gaussian integration

for the three-dimensional isoparametric element. The inertia matrix, in (2-18), can be

evaluated using a 3 x 3 x 3 integration scheme. This integration requires evaluation at 27

points, but the computational effort can be reduced by employing a fourteen point

integration scheme that has be shown to provide similar accuracy [25].

2.1.3 Improvement of Stiffness Matrix Accuracy

 The use of the inertia matrices defined for the rectangular and isoparametric

elements will produce accurate results for the mass properties of the full system, but the

elemental stiffness matrix requires further attention. Analytical analysis of the eight node

rectangular elements indicates that the simple element is susceptible to locking, which

will produce spurious modes in certain loading situations [26]. The spurious modes

occur because the element can deform in specific orientations that will indicate zero

Chapter 2. Finite Element Analysis 26

strain energy. Since it is physically impossibly for an element to deform without

producing some strain energy, the accuracy of the solution is affected if these loading

situations occur.

 A possible method for improving the stiffness formulation for the eight node

elements is to introduce incompatible modes [27], [28], [29], and [30]. The shape

functions of the incompatible modes are defined:

2

2

2

1

1

1

P

ξ
η
ζ

 −
 = −
 −

 (2-20)

These functions are often termed bubble functions because their quadratic shape enables

the deformation of the element to approximate a curved shape, resembling a bubble. The

incompatible modes are introduced into the original displacement formulation, (2-2):

8 3

1 1

e
i i i i

i i

u u N a P
= =

= + (2-21)

where the variables ai are the displacements of the bubble degrees of freedom. In terms

of matrices and vectors, the relationship is written:

 { } { } { } []T Teu u N a P = + (2-22)

Since the values of the vector, a, are unknown, they must be determined in order to solve

for the elemental displacements. The element strain formulation is then defined:

 { } []{ } []{ }B u G aε = + (2-23)

where G is the bubble strain function and is defined:

Chapter 2. Finite Element Analysis 27

 []

0 0

0 0

0 0

2
0

0

0

i

i

i

i
i i

i i

i i

P

x
P

y

P

z
G

P P

y x

P P

z x
P P

z y

∂
 ∂

∂
 ∂

∂
 ∂
 = −
∂ ∂
 ∂ ∂

∂ ∂
 ∂ ∂
 ∂ ∂
 ∂ ∂

 (2-24)

for an isoparametric hexahedron element. The subscript i denotes that the matrix is of

rank 6 x 9, with i varying from 1 to 3. The partial derivatives in (2-24) are obtained

from:

 []

31 231 2

13 31 2 1 2

31 231 2

PP PPP P

x x x
P PP P P P

J
y y y

PP PPP P

z z z

ξ ξ ξ

η η η

ζ ζ ζ

−

∂∂ ∂ ∂∂ ∂
 ∂ ∂ ∂∂ ∂ ∂
 ∂ ∂∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂
 ∂∂ ∂∂∂ ∂
 ∂ ∂ ∂∂ ∂ ∂

 (2-25)

where J is the Jacobian matrix.

 The unknown vector, a, is derived by first considering a static situation. The full

solution is substructured into two systems, one for the original element stiffness

formulation and one for the bubble formulation:

[] [][] [] [][]
[] [][] [] [][]

{ }
{ }

{ }
{ }0

T T

T T

B D B dV B D G dV u f

aG D B dV G D G dV

 =

 (2-26)

The integrals are defined as matrices for ease of derivation as:

Chapter 2. Finite Element Analysis 28

[] []
[] []

{ }
{ }

{ }
{ }0

T u fK E

aE H

 =

 (2-27)

Since the second row of equations is equal to zero, the vector, a, is determined through

static condensation:

 { } [] []{ }1
a H E u

−= − (2-28)

which can then be substituted into the first row of equation (2-27) to produce:

 []{ } [] [] []{ } { }1T
K u E H E u f

−− = (2-29)

Both terms on the left side of the equation are functions of the elemental displacements,

u, and it is apparent that the bubble element terms effectively reduce the stiffness of the

element. The modified stiffness matrix is defined:

 [] [] [] []1ˆ T
K K E H E

− = − (2-30)

This modified stiffness replaces the original stiffness matrix in the equations of motion

and eliminates the dilatational shear locking of the original hexahedron formulation.

2.2 Selective Substitution

 The introduction of the incompatible modes eliminates the shear locking associated

with the deviatoric strains but a further modification is required to eliminate the

dilatational shear locking. One such technique is to employ selective reduced integration

or selective substitution of the shear terms of the strain-displacement matrix [26]. For a

three-dimensional element, the xy strain-displacement terms, Bxy, are replaced with the

Jacobian weighted average over the four Gaussian integration points of a particular face

of the element:

Chapter 2. Finite Element Analysis 29

4

1

4

1

xy
g gi

gxy
gi

g
g

J B

B
J

=

=

=

 (2-31)

where Jg is the determinant of the Jacobian at the particular Gaussian integration point.

The three-dimensional element will have six faces, requiring the weighted average to be

computed six times per element.

2.3 Lagrangian Dynamics

 The benefit of Lagrangian dynamics is that the problem is not based on physical

coordinate systems. The scalar quantities of energy and work can be substituted for the

vector quantities of force, torque, and momentum. The derivation of the Lagrangian

equation is based on Newton’s Laws and the d’Alembert principle [17]. The general

form of Lagrange’s equation is defined:

 [] [] []L T U= − (2-32)

Where T is the kinetic energy and U is the strain energy of the system (or potential

energy in the general case). This equation is expressed in a rate form as:

 { }d T D U
f

dt u u u

 ∂ ∂ ∂ + + = ∂ ∂ ∂
 (2-33)

Where u is a generalized displacement and f is a generalized force associated with the

displacement.

 The total strain energy, dissipation function, and kinetic energy of the of the structure

are:

 [] { } []{ }1

2

T
T u K u= (2-34)

Chapter 2. Finite Element Analysis 30

 [] { } []{ }1

2

T

cD q C q= (2-35)

 [] { } []{ }1

2

T
U u K u= (2-36)

The derivatives of the total strain energy, dissipation function, and kinetic energy are:

 []{ }d T
M u

dt u

 ∂ = ∂
 (2-37)

 []{ }cD
C u

u

∂ = ∂

 (2-38)

 []{ }U
K u

u

∂ = ∂
 (2-39)

Lagrange’s equation is then written as the familiar equations of motion for a dynamic

system:

 []{ } []{ } []{ } { }M u C u K u f+ + = (2-40)

This is the general equations of motion for a multi-body system, where each row of the

equations corresponds to a single degree of freedom within the system. For the case

when there is only one degree of freedom, (2-40) reduces to the equation of motion for a

point:

 mx cx kx f+ + = (2-41)

Since the finite element method is based on the assumption that a structure is divided into

a finite number of individual elements, the multi-body equations of motion are used

throughout the remainder of this work.

Chapter 2. Finite Element Analysis 31

2.4 Static Analysis

 The easiest form of finite element analysis is a static solution. This type of

simulation might be used to determine the deflection of a flexible member under a static

loading condition. The solution is not dependent on time and all material properties are

considered constant. The goal of a static analysis is to determine the solution to

equations of the form:

 []{ } { }K u f= (2-42)

where K is the stiffness matrix, u is a vector of nodal displacements, and f is a vector of

nodal forces. The stiffness matrix is symmetric and of the same rank as the number of

nodal displacements. The size of the nodal displacement vector is equal to the number of

degrees of freedom of the system. For a two-dimensional analysis, each node is able to

displace in two directions so the size of the displacement vector is equal to two times the

number of nodes. For a three-dimensional analysis, each node has three degrees of

freedom and the size of the displacement vector is equal to three times the number of

nodes.

 For a typical finite element problem, the variables of force are known and the

variables of stiffness are determined based on the geometry of the body and the material

properties. The variable of interest is the deflection caused by the application of the

forces. The solution is then defined by:

 { } [] { }1
u K f

−= (2-43)

In very large finite element problems, the stiffness matrix is rarely inverted directly

because of the computation cost, but is rather converted through an LU decomposition or

Chapter 2. Finite Element Analysis 32

similar approach. Further information about solutions of large systems of equations can

be found in references [31], [32], and [33].

2.5 Dynamic Analysis

 A typical dynamic analysis is performed when the response of a system must be

determined over some time interval. Since the motion of the system is dependent on

time, the effects of inertia and damping must be included. A dynamic solution involves

determining the solution to the system of equations:

 []{ } []{ } []{ } (){ }M u C u K u f t+ + = (2-44)

The difference between the static and dynamic solutions is the introduction of the mass

and damping matrices in (2-44). As defined previously, the variable C is used to indicate

the damping matrix of the structure while the variable D is reserved to define the material

properties matrix. In the theory of elasticity, the variable C is typically used to indicate

the material stiffness matrix but is instead defined as D in this dissertation. The force

variable is indicated as a function of time because it is allowable, indeed probable, for the

force to vary over the time interval of interest.

 Due to the complexity and interdependency of the dynamic equation of motion, the

equation cannot be solved directly. Instead, a solution must be obtained using an iterative

approach. The two basic types of iterative solution procedures are explicit and implicit.

With an explicit solution procedure, the determination of the current iteration is

completely based on information obtained during the previous iteration. Of the two

methods, the explicit procedure is simpler but it is also highly dependent on the size of

Chapter 2. Finite Element Analysis 33

the time step between iterations. If the time step is too large, the integration will be

unstable and inaccurate results will result.

 Implicit integration procedures can be unconditionally stable for larger time steps but

are typically more computationally expensive. With an implicit solution procedure, the

determination of the current iteration is based on information from the current iteration as

well as information from the previous iteration. This class of solution procedures is

sometimes identified as predictor-corrector methods. It is acceptable to use combinations

of implicit and explicit integration for many of the mixed integration methods. For the

remainder of this dissertation, the Newmark-Beta method was used to determine the

iterative solution to the dynamic equations of motion.

2.5.1 Newmark-Beta Integration Method

 The Newmark-Beta method is actually a family of solutions based on the assumption

that the acceleration varies linearly across the time step. The original formulation of the

method can be found in reference [34]. Many variations have been developed to improve

the efficiency of the algorithm, such as the method defined in reference [35]. The

development of a domain decomposition method can be found in [36]. The algorithm is

used in dynamic systems to determine the displacement, velocity, and acceleration of

each point at every time step across the time interval of interest. The values based on the

information from the previous converged time step will remain constant and are used to

determine the following parameters:

 { } { } { }* 1 1
1

2n n
u u u

tβ β
 = − − − Δ

 (2-45)

Chapter 2. Finite Element Analysis 34

 { } { } { }* 1 1
2n n

u u t u
γ γ
β β

 = − + Δ −

(2-46)

 { } []{ } []{ }* * *b M u C u= +

(2-47)

where the subscript, n, indicates the result at the previous iteration.

 The stiffness matrix for the linear-elastic response will not change throughout the

dynamic simulation and can be computed and inverted prior to the first time step:

 [] [] []
1

1*
2

1
K M C K

tt

γ
ββ

−
− = + + ΔΔ

(2-48)

The effective internal force is required for each iteration with the previous iteration

identified as k-1:

 { }() { } { }() { }1 1 *
1

k k

nb f p b
− −

+= − − (2-49)

where p is the internal resisting force vector. The incremental elastic displacement is

calculated as:

 { }() { }()1 1*k k
u K b

− − ΔΔ = (2-50)

The total change in displacement for the iteration and the predicted displacement are

defined for the first iteration:

 { }() { }()k k
u uΔ = ΔΔ (2-51)

 { }() { } { }()k k

nu u u= + ΔΔ (2-52)

 Once the solution has converged, the final values of displacement, velocity, and

acceleration are written:

 { } { }()
1

k

n
u u

+
= (2-53)

Chapter 2. Finite Element Analysis 35

 { } { } { }()*

1

k

n
u u u

t

γ
β+

= + Δ
Δ

 (2-54)

 { } { } { }()*
21

1 k

n
u u u

t β+
= + Δ

Δ

(2-55)

The values of the variables γ and β determine the assumptions for the variation of

acceleration and velocity during the time interval. According to reference [18], the

Newmark-Beta can be made unconditionally stable by choosing values for γ and β that

conform to the requirements:

1
2γ ≥

()2
1

2
4

γ
β

+
≥

(2-56)

For the case when β=¼ and γ=½, the result will be a constant acceleration across the time

interval equal to the average of the predicted and corrected acceleration. These

parameters of γ and β are used throughout the remainder of this dissertation.

2.5.2 Internal Resisting Force Vector

 The internal resisting force vector is defined as the internal force within the structure

as a result of the external loadings. This variable is used to define the force induced on

the structure after the previous iteration and input into (2-49) for the current iteration.

For a linear-elastic problem, the incremental form of the equations of motion are defined:

 []{ }() []{ }() []{ }() { }
1 1 1 1

k k k

n n n n
M u C u K u f

+ + + +
+ + =

 (2-57)

Using (2-52), the stiffness term can be re-written as:

 []{ }() []{ }() []{ }() { }
1 1 1

k k k

n n n
M u C u K u f

+ + +
+ + ΔΔ =

 (2-58)

Chapter 2. Finite Element Analysis 36

Since the displacement at the previous iteration is known, that term can be moved to the

right side of the equation. If the structure will only experience non-linear deformation,

the stiffness matrix will remain unchanged and the equation does not require any further

modification. However, if the structure will experience non-linear deformation, the

internal force term is alternatively defined in terms of the current state of stress within the

element:

 { } [] [][]{ } [] { }T T

el el elV V
p B D B u dV B dVσ= =

(2-59)

where the subscript, el, is used to denote the terms for a single element. This relationship

is expressed in the incremental form by only integrating over the incremental change in

force. Once the force terms have been computed for each element, they are assembled

into the global internal resisting force vector. The process is similar to that used to

assemble the global inertia and stiffness matrices of the structure.

 37

Chapter 3

Component Mode Synthesis

 Due to the ever increasing complexity of problems being solved and the limitations

of computer hardware, methods were developed during the early days of numerical

computation to improve the efficiency of numerical simulations. Many techniques were

investigated to reduce the computational effort required to solve large static and dynamic

problems with minimal computational effort. Modal analysis techniques were developed

to decouple the large set of ordinary differential equations and minimize the effort

required to solve an iteration of the equations of motions [37], [38]. Substructuring

methods were developed to approximate full structures as a collection of discrete

substructures, allowing the simulation to be performed in parts. These advances proved

especially beneficial in the simulation of dynamic systems, which require the solution of

the equations of motion over large time intervals with many individual time steps.

3.1 Modal Analysis Overview

 Every flexible structure has some inherent natural frequencies and mode shapes. The

modal frequencies of a structure are the eigenvalues, and the mode shapes are the

eigenvectors. This information is very important in the design of mechanisms to

understand how a piece part or assembly of piece parts will respond under a time

dependent forcing function. If the substructures are excited at their natural frequencies,

Chapter 3. Component Mode Synthesis 38

large deformations and damage can result. Mechanisms must be designed to operate

within frequency spectra that will not result in damage or failure due to excitation of the

natural frequency of any piece parts.

 The natural frequency of an un-damped substructure is based on the distribution of

mass and the stiffness of the part. In general, increasing the mass or reducing the

stiffness of a structure will result in lower natural frequencies. Decreasing the mass or

increasing the stiffness will result in higher natural frequencies. The lowest natural

frequencies of a structure occur with minimal deformation energy and usually result in

the most simple mode shapes, while the higher frequency mode shapes are typically very

complex. Figure 3-1 shows an example of the mode shapes of the drive spring from the

ratchet driver mechanism shown in Figure 1-1.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Figure 3-1: Mode Shapes of Extension Spring (10 lowest natural frequencies)

Chapter 3. Component Mode Synthesis 39

Note that the mode shapes are in the three orthogonal axes of the Cartesian coordinate

system. The first and second natural frequencies produce essentially the same mode

shape, just along a different axis. The longitudinal mode shapes are not dependent on the

radial orientation and occur at higher frequencies due to the increased stiffness in the

longitudinal direction. A list of the natural frequencies associated with the mode shapes

in Figure 3-1 is shown in Table 3-1.

Table 3-1: Extension Spring Natural Frequencies

Mode Frequency (Hz)
1 284
2 285
3 1122
4 1123
5 1250
6 1324
7 2379
8 2384
9 2489
10 2634

 The process for determining the mode shapes and frequencies for a finite element

structure is based on the solution of the un-damped equations of motion. The simplest

way to derive the solution procedure is to start with the process for a single degree of

freedom system.

3.1.1 Single Degree of Freedom Systems

 A single degree of freedom system consists of a single degree of freedom with one

lumped mass, damper, and linear stiffness. An example of a single degree of freedom is

shown in Figure 3-2.

Chapter 3. Component Mode Synthesis 40

Figure 3-2: Single Degree of Freedom System

The homogenous equation of motion for the single degree of freedom system is:

 0mu cu ku+ + =

(3-1)

This homogenous equation can be solved by assuming a solution of the form:

 tu eλ=

(3-2)

The first and second derivatives of displacement with respect to time are:

 tu eλλ=

(3-3)

 2 tu eλλ= (3-4)

These results are plugged into the original homogeneous equation of motion:

 02 =++ ttt keecem λλλ λλ (3-5)

Since there is an exponential in each of the terms, the exponential can be divided out.

Also, divide by m:

 02 =++
m

k

m

cλλ (3-6)

There are two solutions to (3-6) that can be determined by solving the quadratic equation.

The discriminant of the quadratic equation should not be negative to provide two real

roots:

Chapter 3. Component Mode Synthesis 41

m

k

m

c

m

c 4
2

2

1 −+−=λ

m

k

m

c

m

c 4
2

2

2 −−−=λ

(3-7)

Therefore, the general solution of the homogeneous equation of motion is:

 1 2
1 2

t tu C e C eλ λ= + (3-8)

For a single degree of freedom with a time dependent forcing function, the equation of

motion is:

 ()mu cu ku f t+ + = (3-9)

The homogeneous solution remains unchanged, but the particular solution will depend on

the shape of the forcing function. For example, if the forcing function is sinusoidal, then

the particular solution will include a sinusoidal term.

3.1.2 Multiple Degree of Freedom Systems

 A multiple degree of freedom consists of two or more degrees of freedom with more

than one lumped mass, damper, and linear stiffness. An example of a two degree of

freedom system is shown in Figure 3-3.

Figure 3-3: Two Degree of Freedom System

Chapter 3. Component Mode Synthesis 42

 The solution of a multiple degree of freedom system follows the same basic

approach as the solution for a single degree of freedom system. The homogeneous

equation of motion is given by:

 []{ } []{ } []{ } 0M u C u K u+ + = (3-10)

where M is the inertia matrix of the system, C is the damping matrix of the system, and K

is the stiffness matrix of the system. For the example two degree of freedom system in

Figure 3-3, the inertia damping, and stiffness matrices are:

 [] 1

2

0

0

m
M

m

=

 (3-11)

 [] 1 2 2

2 2

c c c
C

c c

+ −
= − (3-12)

 [] 1 2 2

2 2

k k k
K

k k

+ −
= − (3-13)

The equation of motion for a system that includes forcing functions is given by:

 []{ } []{ } []{ } (){ }M u C u K u f t+ + = (3-14)

For a finite element problem, these matrices will become very large because the rank of

each matrix will be equal to the number of degrees of freedom. For a large structure, the

matrices will become so large that substantial computing resources will be required to

solve the equations of motion. Computational resources proved to be especially

problematic for the earliest systems when computing resources were very limited. Much

research was conducted to develop methods of decoupling the full problem, allowing a

large system could be divided into a collection of discrete subsystems.

Chapter 3. Component Mode Synthesis 43

3.2 Substructuring Overview

 Component substructuring is the technique of dividing a very large finite element

problem into a combination of smaller problems. The initial motivation for the creation

of such techniques was due to the limited computational resources during the early days

of finite element analysis. The key to the substructuring methods is that the number of

degrees of freedom are reduced for the individual substructures, which reduces the

computational effort required to solve the equations of motion for the overall structure.

3.2.1 Early Component Mode Synthesis

 One of the first methods of coupling of substructures was developed and published in

1965 [39] and [40]. Hurty proposed dividing the structure into rigid body modes (R),

constraint modes (C), and natural modes (N). The mass matrix is partitioned as:

 []
RR RC RN

CR CC CN

NR NC NN

M M M

M M M M

M M M

 =

 (3-15)

The stiffness matrix was partitioned as:

 []
RR RC RN

CR CC CN

NR NC NN

K K K

K K K K

K K K

 =

 (3-16)

Since the first row and first column are rigid body modes, their stiffness matrices are

zero. The CN matrix is also zero because the constraints are fixed for normal modes.

The simplified stiffness matrix then becomes:

Chapter 3. Component Mode Synthesis 44

 []
0 0 0

0 0

0 0

CC

NN

K K

K

 =

 (3-17)

The reduced matrices are then input into the dynamic equations of motion. The

elimination of some of the terms reduces the size of the equations of motion and

decreases the computational effort required to iteratively solve a dynamic problem. This

formulation was incorporated in a finite element program to perform structural dynamic

analysis [41].

3.2.2 Free Interface CMS

 Free interface methods were developed with the fundamental assumption that the

boundary degrees of freedom are free. The natural frequencies of the unrestrained

structure are retained directly. The eigenvalues of the structure are determined from the

un-damped equations of motion as:

 [] [](){ }2 0i iK Mω ϕ− = (3-18)

where the subscript i indicates that the eigenvalue and eigenvector are determined for

each degree of freedom. However, not every eigenvector needs to be retained to obtain

an accurate solution because most natural frequencies all well above the force frequencies

in real world problems. The individual eigenvectors are assembled into columns in the

transformation matrix, φN, and neglecting the higher frequency eigenvalues results in a

matrix that has fewer columns than rows. Zero frequency modes will be present for a

free interface method because the structure will have rigid body modes that must be

eliminated. The retained eigenvectors form a transformation matrix that transforms the

modal coordinates to the global coordinates:

Chapter 3. Component Mode Synthesis 45

 { } []{ }Nu qϕ= (3-19)

 Substituting the transformation matrix into the un-damped equation of motion

provides:

 [][]{ } [][]{ } { }N NM q K q fϕ ϕ+ = (3-20)

Premultiply by the transpose of the transformation matrix to obtain:

 [] []{ } [] [][]{ } [] { }T T T

N N N NM q K q fϕ ϕ ϕ ϕ+ = (3-21)

The transformed inertia, stiffness, and force matrices are defined for convenience:

[] [][]T

N NM Mϕ ϕ =

[] [][]T

N NK Kϕ ϕ =

{ } [] { }T

Nf fϕ=

(3-22)

Since the transformation matrix results in orthonormalized coordinates, the effective

inertia and stiffness matrix will be diagonal. If the effective matrices are normalized

based on the inertia, the equation of motion can be further simplified to:

 { } []{ } { }q q f+ Λ = (3-23)

where the matrix, Λ, contains the eigenvalues of the un-damped problem along the

diagonal.

 The difficulty of the free interface method is in the constraints between the

individual substructures. The boundary degrees of freedom for any interacting

substructures must be equal. Therefore, the boundary degrees of freedom between two

substructures is written:

 { } { }I I II II
B Bq qϕ ϕ = (3-24)

Chapter 3. Component Mode Synthesis 46

where the subscript indicates the boundary displacements and the superscripts indicate

substructure I and II. Through linear algebra, the boundary degrees of freedom of one of

the structures is calculated in terms of the modal displacements of the other structure and

represented with a second transformation matrix:

 { } []{ }q T r= (3-25)

where r is the reduces set of modal coordinates. The equations of motion of the complete

structure are written:

 [] [][]{ } [] [][]{ } [] [] { }T T T T

NT M T r T K T q T fϕ+ = (3-26)

 The free interface method is particularly useful for problems that will utilize

experimental modal information of specific substructures. The coupling of experimental

and computational methods for free interface methods have been investigated in

reference [42]. Information of the experimental determination of modal results can be

found in reference [43]. The convergence of the free interface CMS method is typically

weak, meaning that many modes must be retained to obtain a reasonably accurate

solution. Other free interface formulations have been developed to improve the results

[44], [45], and [46]. A comparison of free interface methods is incorporated in

commercial finite element programs is discussed in [47].

3.2.3 Fixed Interface CMS

 A method of coupling structures for dynamic analysis was developed and published

in 1968 [48]. The coupling of the substructures in this method is fixed. The mass and

stiffness matrices are partitioned based on boundary (b) and interior (i) degrees of

freedom and the un-damped equations of motion are written:

Chapter 3. Component Mode Synthesis 47

0ii ib i ii ib i

bbi bb b bi bb b

M M u K K u

fM M u K K u

+ =

 (3-27)

The upper line of the substructured equation is equal to zero, allowing that portion of the

problem to be simplified by applying a reduction technique. Since the equations are

homogeneous, the modal solution of the internal portion of the solution can be

determined from:

 { } { } 0ii i ii iM u K u + = (3-28)

The eigenproblem is written:

 (){ }2 0ii ii
i iK Mω ϕ + = (3-29)

where the subscript i indicates that the eigenvalues and eigenvectors are determined for

each degree of freedom. The eigenvectors are organized into columns and stored in the

matrix, φN. For real world problems, it is not necessary to retain all of the original natural

frequencies of the structure because only the first few modes of the structure are

activated. This results in an eigenvalue matrix that has fewer column than rows because

the higher frequency modes are neglected. Determination of the number of modes that

should be kept is dependent on the problem of interest and the expected excitation

frequencies [49].

 To complete the transformation matrix, the displacement of the internal nodes must

be related to the displacement of the boundary nodes of the structure. In the fixed

interface CMS approach, this is accomplished using the Guyan reduction technique [50].

Neglecting the acceleration in (3-27), the equation is written:

0ii ib i

bbi bb b

K K u

fK K u

=

 (3-30)

Chapter 3. Component Mode Synthesis 48

Upon solving the top portion of the subdivided equation, the following relationship is

obtained:

 { } { } 0ii i ib bK u K u + = (3-31)

Equation (3-31) can be solved for the displacement of the internal nodes in terms of the

displacement of the boundary nodes to provide:

 { } { } []{ }1i ii ib b b
Cu K K u uϕ

−
 = − = (3-32)

where φC is defined to be the constraint modes of the substructure. The complete

transformation matrix is then written as:

 []
0

i
N C

b bb

q qu

I u uu

ϕ ϕ
= = Φ

 (3-33)

The transformation matrix is substituted into the original equation of motion by

substituting for the global displacements:

 [][]{ } [][]{ } [][]{ } { }M q C q K q fΦ + Φ + Φ = (3-34)

Premultiply both sides of (3-34) by the transpose of the transformation matrix to obtain:

 { } { } { } { }M q C q K q f + + = (3-35)

where the following relations have been defined:

 [] [][]T
M M = Φ Φ (3-36)

 [] [][]T
C C = Φ Φ (3-37)

 [] [][]T
K K = Φ Φ (3-38)

 { } [] { }T
f f= Φ

(3-39)

Chapter 3. Component Mode Synthesis 49

The transformation to the effective inertia and damping matrices reduces the size of the

original equations of motion because all of the modes for the internal degrees of freedom

were not retained. With the fixed interface CMS method, the convergence is generally

good because all of the boundary degrees of freedom are retained without any reduction.

One major disadvantage of this method compared to the free interface CMS method is

that the size of the reduced problem is larger as a result of the boundary degrees of

freedom. If the structure is split into many different substructures, the number of

boundary degrees of freedom are increased and must all be retained. Another

disadvantage of the original fixed interface CMS method is that the effective inertia and

stiffness matrices are not orthonormal but this can be corrected in a subsequent operation.

3.3 Orthonormalization

 It is important to note that the equations of motion defined in (3-35) are not a

function of orthonormalized coordinates because Φ is a transformation matrix rather than

just the eigenvalue matrix of the original equations of motion. The complexity of the

dynamic problem can be further reduced by orthonormalizing the un-damped portion of

(3-35) to obtain:

 { } 0i iK M Nλ − = (3-40)

The eigenvalue matrix, N, is typically scaled based on the inertia matrix of the structure,

allowing the orthonormalized inertia and stiffness matrices to be written:

 [] [] []T
I N M N = (3-41)

 [] [] []T
N K N Λ = (3-42)

Chapter 3. Component Mode Synthesis 50

The final equations of motion can be written as a set of decoupled equations using index

notation:

 2 ˆˆ ˆ ˆ2i i i i i i iq q q fξ λ λ+ + =

(3-43)

Equation (3-43) is based on the assumption of Rayleigh type damping with ξi defined as

the critical damping parameter [17]. Further information on modal as well as non-

classical damping can be found in [51], [52], [53], and [54].

3.4 Modal Mass Participation Factor

 The modal participation factors can provide an indication of the number of modes

that should be kept when using a modal reduction technique [55], [56], and [57]. The

lower frequency modes typically have a larger modal mass, which indicates that those

frequencies contribute significantly to the dynamic response. The cumulative mass is

obtained by summing the current modal participation factor with all lower frequencies to

indicate the total mass participation of retaining all frequencies up to the selected

frequency. A more useful measure is obtained by dividing the cumulative mass by the

total mass of the structure to obtain a percentage. This can be examined to determine the

number of modes that should be retained to include the desired portion of the total mass.

 The full inertia and stiffness matrices of the substructure must be converted to a

modal representation to determine the modal participation. The problem is transformed

to a modal representation by solving an the un-damped eigenproblem to obtain the

transformation matrix:

 { } []{ }u N q=
 (3-44)

Chapter 3. Component Mode Synthesis 51

where N is a matrix of the eigenvectors of the original problem arranged by column and q

is the deformation in the normalized coordinate system. The transformation matrix, N,

can be scaled based on the inertia matrix of the substructure to reduce the complication of

later calculations. An influence vector, r, is introduced to indicate the displacement of

the mass that results from a unit displacement in the global coordinate system. This will

typically be equal to one for all degrees of freedom that are not constrained. Using the

influence vector, the coefficient vector is defined:

 { } [] []{ }T
L N M r=

(3-45)

The modal participation factors are then obtained as:

 i
i

ii

L

M
Γ =

 (3-46)

If the transformation matrix, N, is scaled based on the inertia matrix, the inertia matrix

can be eliminated from (3-45) and the effective inertia matrix in (3-46) can be eliminated

as well.

 The modal participation factors may be summed for all degrees of freedom or in

each direction of the global coordinate system. For problems that will primarily

experience deformation in one direction, it may be more beneficial to sum the modal

participation factors in that direction to aid in the determination of the number of modes

that should be kept. When used in conjunction with a CMS technique, the global inertia

and stiffness matrices should be replaced with the appropriate portion of the CMS

representation. For the fixed interface CMS approach, the modal reduction is only

occurring on the internal degrees of freedom of the substructure. Only the partition of the

global inertia and stiffness matrices corresponding to the internal degrees of freedom

Chapter 3. Component Mode Synthesis 52

need to be evaluated because the remaining degrees of freedom will be retained without

any reduction.

 53

Chapter 4

Plasticity Theory

 The theory of plasticity and the incorporation within the finite element method has

dramatically improved the ability to model complex engineering problems. Plasticity

broadens the modeling capabilities to simulate the response of systems that experience

non-linear material deformation as a result of loading beyond the elastic capabilities of

the material. Such situations occur due to stress concentrations or during abnormal

environments that result in the material being loaded beyond its yield strength.

4.1 Yield Criteria

 Many yield functions have been developed to predict the response of materials to the

application of arbitrary loads [58]. The goal of this dissertation is to investigate the

dynamic response of mechanisms composed of primarily metal piece parts, so the yield

functions developed for metal materials is most applicable. The two most common yield

criteria for metals are the Tresca theory and the von Mises theory. Figure 4-1 graphically

demonstrates the difference in the yield surfaces of the Tresca and von Mises theories for

a two-dimensional case.

Chapter 4. Plasticity Theory 54

First Principal Stress (σ1)

S
e

c
o

n
d

 P
ri

n
c

ip
a

l S
tr

e
s

s
 (
σ

2
)

Von Mises Criteria Tresca Criteria

Figure 4-1: Tresca and von Mises Yield Criteria

 The Tresca and von Mises criteria each predict yielding at the same points when the

stress state is aligned in the principal stress directions or when two principal stresses are

equivalent. However, the Tresca criteria will predict yielding before the von Mises

criteria in all other stress states, meaning that the Tresca criteria is more conservative

than the von Mises criteria.

4.1.1 Tresca Yield Criteria

 The Tresca yield criterion was proposed in 1864 as a method of predicting the onset

of yielding in metal materials [59]. The Tresca yield criteria predicts that yielding will

occur if the maximum shear stress in the element is equal to a critical material parameter,

which can be written:

Chapter 4. Plasticity Theory 55

 ()max max min

1

2
τ σ σ κ= − =

(4-1)

The critical material parameter is defined:

2
Yσκ =

(4-2)

where σY is the yield strength of the material as determined through a uniaxial tensile test.

4.1.2 von Mises Yield Criteria

 The yield criterion commonly attributed to von Mises [61] was actually first

published by Huber [60]. This theory is based on the assumption that the onset of yield is

based on the value of the second invariant of the deviatoric stress tensor. Yielding will

occur if the second invariant of the deviatoric stress tensor is equal to a critical material

parameter, which can be written as:

 2
2J κ′ =

(4-3)

where the second invariant of the deviator stress tensor is defined as:

 { } { }()2

1

2

T
J S S′ =

(4-4)

if the deviator stress tensor is written in vector notation. The critical material parameter

is defined as:

3
Yσκ =

(4-5)

where σY is the yield strength of the material as determined through a uniaxial tensile test.

Chapter 4. Plasticity Theory 56

4.2 Prandtl-Reuss Plasticity

 The fundamentals of the development of finite elements in plasticity are discussed in

detail in references [62], [63], [64], [65], [66], and [67]. The first step in the plasticity

algorithm is to determine whether the yield stress of the material has been exceeded at

any element within the finite element problem. Since only the nodal displacements are

known at each time step, the nodal displacements must first be used to calculate the

elemental strains. The elastic strain within the element is:

 { } []{ }
e e

B uε =

(4-6)

where B is the strain matrix of the element and the vector, u, is the nodal displacements

of the element of interest. The elemental elastic stress is calculated according to the

Hooke’s law relationship:

 { } []{ }
e e

Dσ ε=

(4-7)

where D is the elastic material stiffness matrix.

 In order to use the von Mises yield criteria, the value of the second invariant of the

deviatoric stress tensor must be determined. The deviatoric stress is first calculated by

subtracting the hydrostatic stress vector from the vector of stress components:

 { } { } { }hS σ σ= −

(4-8)

The stress terms are written in a vector form for storage convenience since only six of the

nine components are unique. The hydrostatic stress vector is:

Chapter 4. Plasticity Theory 57

 { }

3

3

3

0

0

0

x y z

x y z

h x y z

σ σ σ

σ σ σ

σ σ σ σ

 + +

 + + = + +

 (4-9)

The effective stress is calculated according to the relationship:

 { } { }()
1

23

2

T

e S Sσ =

(4-10)

This effective stress is compared against the yield strength of the material, which is a

material property, to determine whether yielding has occurred [68]. For an isotropic

hardening constitutive model, the hardening of the material can be defined according to

the following relationship with the assumption of bi-linear hardening:

 0
0

L
p

L

H H
H H ε

ε
−

= +
 (4-11)

H0 is the initial yield stress of the material. HL and Lε are the tensile strength and strain

limit, respectively. The variables in the second term are the slope of the material

hardening multiplied by the effective plastic strain already induced in the material.

 The onset of plastic deformation is determined by evaluating the yield function. For

a yield function that is defined according to the second invariant of the stress, the

relationship will be a function of the stress and any hardening parameters. For the

remainder of this dissertation, isotropic hardening will be assumed. For hardening

materials, the current yield strength is typically a function of the total plastic work or the

Chapter 4. Plasticity Theory 58

total plastic deformation of the element. For the work hardening hypothesis, the

incremental plastic work is defined:

 { } { }T

p pdW dσ ε=

(4-12)

For the strain hardening hypothesis, the incremental effective plastic strain is defined:

 { } { }
1

22

3

T

p p pd d dε ε ε =
(4-13)

The value of the incremental effective plastic strain is not simply equal to the incremental

plastic strain to ensure that path dependency is maintained. The effective plastic strain is

always increasing and never allowed to decrease, which would be physically impossible.

 It has been shown that the work hardening hypothesis, rather than the strain

hardening hypothesis, is most correct in terms of the laws of thermodynamics [69].

However, when used with isotropic hardening and the von Mises yield criteria, the two

hypotheses are equivalent. Therefore, the yield function will be defined:

 () { }() (), 0P PF fσ ε σ κ ε= − =

(4-14)

The first term is assumed to be only a function of the current stress and the second term is

assumed to be only a function of the effective plastic strain. Since the yield function is

assumed to be a function of the second invariant of the deviatoric stress, the first term of

(4-14) is:

 { }() { } { }()2

1

2

T
f J S Sσ ′= =

(4-15)

The isotropic hardening function is assumed to be a function of the effective plastic

strain:

Chapter 4. Plasticity Theory 59

 () ()21

3p pHκ ε ε=

(4-16)

where H is defined to be the hardening function of the material. This function can be

determined from a uniaxial tensile test and approximated according to the previously

defined linear hardening model in (4-11) or other models [65].

 An incremental approach is used because the stress state of the elements can be

continuously varying. The equations of motion are solved incrementally and the state of

stress in the elements is calculated to determine whether yielding has occurred within the

time step. After evaluation of (4-14), a determination is made of whether the element is

experiencing plastic deformation. If the yield function is less than zero, then the element

only experienced elastic deformation during the increment. If the yield function is

greater than zero, then the element is experiencing plastic deformation as a result of the

incremental strain. Since it is physically impossible for the yield function to be greater

than zero, the state of stress or strain within the element must be adjusted to equate the

yield function to zero. For a perfectly plastic constitutive model, the calculated elastic

strain must be re-evaluated if the stress exceeds the yield strength of the element.

 A Newton-Raphson procedure is used to determine the plastic strain within the

element [65]. Using the Prandtl-Reuss method of plasticity [66], the associated flow rule

is written:

 ()ij p
ij

f
d dε λ

σ
∂=

∂ (4-17)

With the use of the von Mises yield criterion, the derivative of the yield function with

respect to the stress is:

Chapter 4. Plasticity Theory 60

 ij
ij

f
S

σ
∂ =

∂ (4-18)

Upon substitution of (4-18) into (4-17):

 ()ij ijp
d d Sε λ=

 (4-19)

This relationship will provide the full plastic deformation tensor but it must be converted

to an effective plastic strain for use in the hardening function. Since plastic deformation

is non-conservative, the effective plastic strain is defined:

 () () ()2

3

T

ij ijp p p
d d dε ε ε =

(4-20)

The incremental effective plastic strain is added to the previous effective plastic strain:

 () () ()
p p p

dε ε ε= +
 (4-21)

The Newton-Raphson procedure is used to determine the value of dλ that satisfies the

relationships. For a linear hardening rule, the iterative procedure will converge to the

correct solution in two iterations. For more complex hardening rules, additional

iterations will be required.

4.3 Determination of Strain Contributions

 During each time step, the calculated nodal deformations are assumed to follow a

linear elastic relationship because the stiffness matrix has not been updated. The stress is

calculated to determine whether the element is experiencing plastic deformation during

the iteration. If the stress within the element exceeds the yield stress, then the

incremental plastic strain within the element is determined. This incremental plastic

strain effectively increases the total strain within the element. Since the element is

Chapter 4. Plasticity Theory 61

experiencing more deformation than predicted by the linear elastic relationship, the

element appears to have a lower stiffness.

 After the incremental plastic strain tensor is determined, the value of the total

incremental strain is updated:

 e pd d dε ε ε= +
 (4-22)

For a hardening material, the incremental elastic strain remains unchanged during the

Newton-Raphson procedure, but the total incremental strain is increased by the

incremental plastic strain. For an elastic-perfectly plastic constitutive model or for

softening, the incremental elastic strain would also require modification during the

iterative solution of the increment.

 62

Chapter 5

Integration of CMS and Plasticity Theory

 Traditional CMS techniques only predict the linear elastic response of a structure to a

time varying or constant forcing function. In order to approximate non-linear material

response, the linear elastic response must be coupled with plasticity theory to provide the

total elastic and inelastic response of the structure. After determination of the linear

elastic response, the elemental stress and strain are modified using plasticity theory, and

then the two solutions are coupled to determine the total response during the incremental

time step.

5.1 Determination of Non-linear Response

 Using plasticity theory, the state of stress for each element must be evaluated to

determine whether the element is experiencing plastic deformation. If the yield stress of

the material has been exceeded within the incremental time step, then the value of plastic

strain is calculated and added to the elastic strain to provide the total strain within the

element. Since the effect of plastic deformation is to increase the total strain within the

element beyond that predicted by the elastic response, the element effectively appears to

be less stiff when plastic deformation occurs. Therefore, a tangential elemental stiffness

matrix can be determined for the incremental time strep to provide the total (elastic and

plastic) strain within the element.

Chapter 5. Integration of CMS and Plasticity Theory 63

5.1.1 Updated Material Stiffness-Hardening Models

 For hardening constitutive models, the yield strength of the material increases with

increased plastic strain. Eventually, the material will reach its ultimate tensile strength

and softening will begin to occur, but for this dissertation only the hardening portion of

the response is investigated. For yielding defined in terms of a uniaxial stress strain

hardening curve, the yield function is defined to be a function of the current stress of the

element with the yield strength of the material a function of some chosen hardening

parameter. The hardening parameter is chosen to be the effective plastic strain; therefore,

the yield function is written:

 () () (), 0p p
ij ijF fσ ε σ κ ε= − =

(5-1)

The derivative of the yield function is termed the consistency condition and are written:

 (), 0p
ij ij

ij

F F
dF d dσ ε σ κ

σ κ
∂ ∂= + =
∂ ∂ (5-2)

Using the Prandtl-Reuss definition for plastic strain the incremental plastic strain is:

p

kl
kl kl

F f
d d dε λ λ

σ σ
∂ ∂= =

∂ ∂ (5-3)

The derivative of the yield function with respect to the current stress can be written in

terms of f because the hardening parameter is only a function of the effective plastic

strain.

 Using the relationship for the incremental elastic stress from (4-7), the total

incremental strain is written:

1

kl ijkl ij
kl

f
d D d dε σ λ

σ
− ∂= +

∂ (5-4)

Chapter 5. Integration of CMS and Plasticity Theory 64

If (5-4) is premultiplied on both sides by ijkl
ij

f
D

σ
∂

∂
, the following is obtained:

 ijkl kl mn rstu
ij mn rs tu

f f f f
D d d d Dε σ λ

σ σ σ σ
∂ ∂ ∂ ∂= +

∂ ∂ ∂ ∂ (5-5)

The goal is to use (5-5) to define a relationship for the plastic multiplier, dλ, so the first

term on the right side must be rewritten in terms of the plastic multiplier. From the

consistency condition in (5-2), the following relationship is obtained:

 mn
mn

f F
d dσ κ

σ κ
∂ ∂= −

∂ ∂ (5-6)

The right side of (5-6) can be written in terms of the plastic multiplier by defining a new

scalar variable:

1 F

A d
d

κ
λ κ

∂= −
∂

(5-7)

Equation (5-7) can then be rewritten:

 mn
mn

f
d Adσ λ

σ
∂ =

∂ (5-8)

 Using the newly introduced scalar variable, A, (5-5) can be written as:

 ijkl kl rstu
ij rs tu

f f f
D d Ad d Dε λ λ

σ σ σ
∂ ∂ ∂= +

∂ ∂ ∂ (5-9)

 ijkl kl rstu
ij rs tu

f f f
D d d A Dε λ

σ σ σ
 ∂ ∂ ∂= + ∂ ∂ ∂

(5-10)

Solving for the plastic multiplier, dλ:

ijkl kl

ij

rstu
rs tu

f
D d

d
f f

A D

ε
σ

λ

σ σ

∂
∂

=
∂ ∂+

∂ ∂

 (5-11)

Chapter 5. Integration of CMS and Plasticity Theory 65

Substituting (5-11) into the total incremental strain relationship, (5-4), results in:

 1
kl ijkl ij

kl

f
d D d dε σ λ

σ
− ∂= + ∂

 (5-12)

In order to be able to solve (5-12) for the incremental stress, premultiply both sides by the

elasticity tensor, D:

ijmn pqvw

mn pq

ijkl kl ij vw

rstu
rs tu

f f
D D

D d d d
f f

A D

σ σ
ε σ ε

σ σ

 ∂ ∂
 ∂ ∂ = +

∂ ∂+
∂ ∂

 (5-13)

Solving for the incremental stress, dσ:

ijmn pqvw

mn pq

ij ijkl kl vw

rsyu
rs tu

f f
D D

d D d d
f f

A D

σ σ
σ ε ε

σ σ

 ∂ ∂
 ∂ ∂ = −

∂ ∂+
∂ ∂

(5-14)

ijmn pqkl
mn pq

ij ijkl kl

rstu
rs tu

f f
D D

d D d
f f

A D

σ σ
σ ε

σ σ

 ∂ ∂
 ∂ ∂ = − ∂ ∂ +

∂ ∂

(5-15)

 ep
ij ijkl kld D dσ ε=

(5-16)

where the elastic-plastic material stiffness tensor can be defined:

ijmn pqkl

mn pqep
ijkl ijkl

rstu
rs tu

f f
D D

D D
f f

A D

σ σ

σ σ

 ∂ ∂
 ∂ ∂ = −

∂ ∂+
∂ ∂

 (5-17)

Chapter 5. Integration of CMS and Plasticity Theory 66

 The relationship derived for the elastic plastic material stiffness tensor can be

simplified by including the assumptions of the Prandtl-Reuss plasticity theory. From

(4-18), the derivative of the yield function with respect to the current stress is written:

 { }ij
ij

f
S S

σ
∂ = →

∂

(5-18)

where the deviatoric stress components are written in vector notation. The scalar value of

A in (5-7) can be simplified using (4-16):

 ()21 1

3
p p

p
A H d

d
ε ε

λ ε
∂ = − ∂

(5-19)

1 2

3
p

p p

dH
A H d

d d
ε

λ ε ε
∂ = − ∂

(5-20)

The final simplified version of (5-17) can be written in matrix form as:

 [] [] []{ }{ } []
{ } []{ }

T

Tep

D S S D
D D

A S D S
= −

+
 (5-21)

5.1.2 Updated Material Stiffness-Perfectly Plastic Model

 For perfectly plastic constitutive models the procedure used to determine the elastic

plastic material matrix must be modified from that used for hardening constitutive

models. The yield function of a perfectly plastic constitutive model is defined:

 () () 0 0ij ijF fσ σ κ= − =

(5-22)

where the hardening function is replaced with a constant and F is a function of stress

only. The consistency condition, or the derivative of the yield function, can then be

written:

Chapter 5. Integration of CMS and Plasticity Theory 67

 0ij
ij

f
dF dσ

σ
∂= =

∂
(5-23)

The total strain increment is the same as defined in (5-4):

1

kl ijkl ij
kl

f
d D d dε σ λ

σ
− ∂= +

∂
(5-24)

Premultiply both sides of the equation by ijkl
ij

f
D

σ
∂

∂

 ijkl kl pq rstu
ij pq rs tu

f f f f
D d d d Dε σ λ

σ σ σ σ
∂ ∂ ∂ ∂= +

∂ ∂ ∂ ∂
(5-25)

However, from the consistency condition (5-23), the first term on the right side of the

equation is equal to zero, so (5-25) can be rewritten:

 ijkl kl rstu
ij rs tu

f f f
D d d Dε λ

σ σ σ
∂ ∂ ∂=

∂ ∂ ∂
(5-26)

Solving (5-26) for the plastic multiplier, dλ:

ijkl
ij

kl

rstu
rs tu

f
D

d d
f f

D

σ
λ ε

σ σ

∂
 ∂ =

∂ ∂
 ∂ ∂

 (5-27)

Equation (5-27) can then be substituted into the decomposed incremental strain

relationship from (5-24) to produce:

 1
mnpq

mn
kl ijkl ij pq

kl
rstu

rs tu

f
D

f
d D d d

f f
D

σε σ ε
σ

σ σ

−

∂
 ∂∂ = + ∂ ∂∂
 ∂ ∂

 (5-28)

In order to solve for the incremental stress, premultiply both sides by the elasticity

matrix:

Chapter 5. Integration of CMS and Plasticity Theory 68

ijmn pqvw
mn pq

ijkl kl ij vw

rstu
rs tu

f f
D D

D d d d
f f

D

σ σ
ε σ ε

σ σ

 ∂ ∂
 ∂ ∂ = + ∂ ∂

∂ ∂

 (5-29)

Solve (5-29) for the incremental stress:

ijmn pqvw
mn pq

ij ijkl kl vw

rstu
rs tu

f f
D D

d D d d
f f

D

σ σ
σ ε ε

σ σ

 ∂ ∂
 ∂ ∂ = − ∂ ∂

∂ ∂

 (5-30)

ijmn pqvw
mn pq

ij ijkl vw

rstu
rs tu

f f
D D

d D d
f f

D

σ σ
σ ε

σ σ

 ∂ ∂
 ∂ ∂ = − ∂ ∂

∂ ∂

 (5-31)

where the elastic-plastic stiffness tensor can be defined:

ijmn pqkl

mn pqep
ijkl ijkl

rstu
rs tu

f f
D D

D D
f f

D

σ σ

σ σ

∂ ∂
∂ ∂

= −
∂ ∂

∂ ∂

 (5-32)

Using the same assumptions as for the hardening constitutive models, the elastic plastic

stiffness tensor can be simplified to:

 [] [] []{ }{ } []
{ } []{ }

T

Tep

D S S D
D D

S D S
= − (5-33)

The final form is written is not written in index notation to indicate that the elasticity

matrices and deviatoric stress tensor are stored in vector notation.

Chapter 5. Integration of CMS and Plasticity Theory 69

5.1.3 Plastic Stiffness Matrix

 Using the updated elastic-plastic stiffness matrix derived previously, the plastic

stiffness matrix can be determined using a procedure similar to the original derivation of

the stiffness matrix of the structure. Since not every element within the structure will

necessarily experience yielding at the same time, the full stiffness problem does not need

to be recomputed. Only the elements that are experiencing plastic deformation contribute

to the creation of the plastic stiffness matrix of the structure with the decomposition

defined:

 [] [] []ep e p
K K K= +

(5-34)

This corresponds to the decomposition of the material stiffness matrix for an elastic-

plastic problem as:

 [] [] []ep e p
D D D= +

(5-35)

From the relationship derived in (5-21), the plastic contribution to the elastic-plastic

material stiffness matrix is:

 [] [] []{ }{ } []
{ } []{ }

T

Tep

D S S D
D D

A S D S
= −

+
 (5-36)

where D is defined to be the elastic material stiffness matrix. For hardening materials,

the scalar variable A is determined from (5-20). For perfectly plastic constitutive models,

the scalar variable A is zero.

 The plastic stiffness for each element can be derived according to the procedure used

to generate the elastic stiffness matrix with a slight modification. The elastic material

stiffness matrix is replaced with the plastic decomposition of the elastic-plastic material

stiffness matrix to become:

Chapter 5. Integration of CMS and Plasticity Theory 70

 [] [] [] []element T

p p
k B D B dxdydz= (5-37)

Or in terms of isoparametric coordinates:

 [] [] [] []1 1 1

1 1 1

element T

p p
k B D B J d d dξ η ζ

+ + +

− − −
= (5-38)

The elemental stiffness matrices are assembled into a global plastic stiffness matrix for

later use in the determination of the global elastic-plastic stiffness matrix.

5.2 Coupling of Linear and Non-linear Responses

 In order to combine the linear and non-linear responses, the plastic deformation must

be induced through a method that can be superimposed on the elastic response. One

potential method of inducing the plastic deformation in an equivalent elastic problem is

by imposing a pseudoforce. The pseudoforce is a derived force that produces the

required plastic deformation when superimposed on the elastic problem.

5.2.1 Determination of Static Pseudoforce

 The primary input for the creation of the pseudoforce for the static condition is the

global elastic-plastic stiffness matrix, which is determined by integrating over the

elements using the elastic-plastic material stiffness matrix. Everything is ultimately

derived from the incremental plastic deformation determined by the plasticity algorithm.

In order to have minimal impact, or computation cost, on the linear elastic solution

procedure, only the pseudoforce acts on the original linear elastic problem directly.

Within the Newmark-Beta incremental integration algorithm, the pseudoforce will be

translated into nodal displacements through multiplication with the inverse of the global

elastic stiffness matrix. The inertia and damping matrices also affect the translation from

Chapter 5. Integration of CMS and Plasticity Theory 71

force to displacement but they will be discussed later. The goal is to determine the

incremental force, which satisfies the relationship:

 [] { } { }1

e r pK df du
− = (5-39)

where Ke is the global elastic stiffness matrix, dfr is the unknown increment of the

pseudoforce, and dup is the increment of nodal deformation produced by the plastic

deformation of the elements. Equation (5-39) can be solved for the increment of the

pseudoforce as:

 { } []{ }r e pdf K du= (5-40)

 The incremental nodal deformation caused by plastic deformation of the elements is

unknown but can be determined by starting with a decomposition of the incremental

nodal displacement:

 { } { } { }ep e pdu du du= + (5-41)

Solving for the incremental plastic deformation yields:

 { } { } { }p ep edu du du= − (5-42)

The incremental nodal deformation caused by the elastic deformation of the element is

already known because it was used to determine the plastic deformation, but the elastic-

plastic nodal deformation is unknown. This incremental deformation can be determined

by examining the static portion of the equation of motion for the elastic-plastic

deformation:

 { } { }ep ep epK du df = (5-43)

Chapter 5. Integration of CMS and Plasticity Theory 72

However, the incremental elastic-plastic nodal force is equivalent to the incremental

elastic nodal force, because plastic deformation does not change the physical external

loads. Equation (5-43) can be rewritten as:

 { } { }ep ep eK du df = (5-44)

Since every term except the incremental elastic-plastic nodal deformation is known, the

relationship can be written:

 { } { }1

ep ep edu K df
−

 = (5-45)

 All of the required unknowns have been determined to solve for the incremental

pseudoforce. Using (5-42) and (5-45), equation (5-40) becomes:

 { } [] { } { }()1

r ep e edf K K df du
−

 = − (5-46)

where the global elastic-plastic stiffness matrix is defined:

 []ep pK K K = + (5-47)

 The incremental pseudoforce can then be introduced into the Newmark-Beta solution

procedure as a nodal force. The pseudoforce is not a physical external force acting on the

nodes but is only used to produce the required nodal deformations predicted by the

plasticity algorithm. If the nodal deformations caused by both elastic and plastic

deformation are determined in the same Newmark-Beta increment, the pseudoforce can

be added to the external nodal forces through superposition. At least one additional

iteration of the time step is required to determine the elastic deformation of the increment

followed by additional iterations to converge the implicit solution of the equations of

motion across the time step.

Chapter 5. Integration of CMS and Plasticity Theory 73

5.2.2 Determination of Dynamic Pseudoforce

 A similar procedure can be used to develop the plastic pseudoforce required for the

more general dynamic condition. If plasticity theory predicts that the element has yielded

during the time step, additional calculations are required to determine the appropriate

nodal displacements within the substructure. The first iteration of the time step is always

assumed to be elastic, but if the effective stress within any element has exceeded the yield

strength of the material then additional iterations will be required. Special consideration

is needed for elements that have just yielded during the current time step because a

portion of the deformation during that time step will likely be elastic and a portion will be

plastic. The ratio of the incremental stress that contributes to plastic deformation within

the time step is:

 e Y

e

R
σ σ

σ
−

=
Δ

 (5-48)

where σe is the effective stress defined in (4-10), σY is the material yield stress, and Δσe is

the incremental effective stress within the current iteration. A portion of the incremental

stress causes only elastic deformation, where the components are assumed to be

proportional to the original incremental components:

 { } (){ }1rd R dσ σ= − (5-49)

Any remaining portion of stress is contributing to elastic-plastic deformation and must be

converged to the yield surface of the material model. For this work, a Newton-Raphson

technique was employed to determine the appropriate value of the plastic multiplier, dλ,

to satisfy the yield function in equation (4-14).

 After the first iteration of the equations of motion, any elements experiencing plastic

deformation require a modification to the vector of the internal resisting forces to produce

Chapter 5. Integration of CMS and Plasticity Theory 74

the appropriate deformation in further iterations. Based on the elastic prediction and the

elastic-plastic material stiffness matrix, the modified components of stress within the

element are given by:

 { } { } { } { }p r ep ed R D dσ σ σ ε = + + (5-50)

where σp are the converged components of stress at the previous time step, and dεe is

incremental elastic strain predicted during the first iteration of the equations of motion at

the current time step. These components of stress are used to determine the corrected

internal resisting force for the next iteration at the current time step. The internal

resisting force of an element, in incremental form, is given by:

 { }() [] { }k T

e V
dp B d dVσ=

(5-51)

This integration is repeated for each element within the substructure and assembled into

the global internal resisting force vector. This vector as well as the external force vector

is defined in the global coordinate system but the remainder of the residual forces are

defined in the reduced modal coordinate system after the first elastic iteration. The

portion of the global effective force vector defined in terms of the information from the

previous converged time step is calculated using a transformation of the constant

acceleration and velocity vectors:

 { }() [][]{ } []{ }* * *k

g u ep ub M P q C P q = + (5-52)

This term is calculated prior to the first elastic-plastic iteration and used for subsequent

elastic-plastic iterations of the current time step. The modal displacements from all

previous iterations at the current time step also produce inertial and damping forces that

are given by:

Chapter 5. Integration of CMS and Plasticity Theory 75

 { }() [] []{ }()1

2

1k k

g ep ub M C P q
tt

γ
ββ

−
 = + Δ ΔΔ

 (5-53)

The conversion of the incremental deformation of the elastic iteration can be determined

during the process of calculating the elemental stresses to reduce computational expense.

The global effective force vector for the current iteration is written:

 { }() { } { }() { }() { }()*

1

kkk k

g g gn
b f p b b

+
= − − − (5-54)

This effective elastic-plastic force can be used in conjunction with an initial stiffness

method and iterated until convergence is achieved. Alternatively, the force can be

converted to a form that follows the techniques of a tangential stiffness method by:

 { }() { }()1* *k k

ep ep gdf K K b
−

 = (5-55)

where the effective initial and appropriate elastic-plastic stiffness matrices are employed.

Combined tangential and initial stiffness methods will reduce the number of operations

required for future iterations if the curvature of the material hardening curve is large. The

effective elastic-plastic force in (5-55) is defined in terms of the global coordinate system

but is projected on the modal coordinates using:

 { } [] [] []{ } { }T T

q ep f epdf N P df P df = Φ = (5-56)

The effective elastic-plastic force applied in the modal coordinate system can be input

directly in the elastic CMS solution procedure defined previously for all remaining

iterations.

 This process of forming the effective force vector is similar to the mode acceleration

method because the static contributions to the problem are retained without reduction

while the inertia and damping contributions are determined from a modal representation.

The mode acceleration method has been employed as a technique to increase the

Chapter 5. Integration of CMS and Plasticity Theory 76

accuracy of a mode superposition method without increasing the number of retained

modes [70]. The conversion of the effective force from a global to a reduced modal

representation will result in force components that are not represented. A sufficient

number of modes must be retained in order to adequately represent the force of the plastic

deformation. Additional techniques of recovering the un-projected force are also

discussed in Chapter 6.

5.3 Iteration of Plastic Response

 The first iteration of each time step is always assumed to be elastic because it is not

known whether the elements within the structure are experiencing elastic, plastic, or

elastic-plastic deformation. The deformation for the first iteration is determined based on

the original stiffness matrix and corrected in later iterations. Upon evaluating the stress

after the first iteration, plasticity theory will indicate whether any of the elements have

experienced plastic deformation. There are two basic approaches for determining the

deformation in the subsequent iterations, which are the initial and tangential stiffness

methods. Both methods are iterative techniques and have their own respective

advantages and disadvantages.

5.3.1 Tangential Stiffness Method

 The tangential stiffness method is based on the assumption that all subsequent

iterations of a numerical solution are predicted using the slope at the current iteration.

The function is linearized from one iteration to the next, which requires the time step to

be sufficiently small. For a monotonically increasing function of a single variable, the

solution algorithm will converge according to the steps in Figure 5-1. On the first

Chapter 5. Integration of CMS and Plasticity Theory 77

iteration, the solution is predicted based on the current slope of the function. Note that

the curve is just transitioning from a linear to non-linear during this iteration. If the

function had remained linear, the prediction from the first iteration would have been

correct and not required further iteration. However, the function is now non-linear and a

convergence check indicates that the stress is lower than predicted. On the second

iteration, the local slope is determined at the actual stress and strain from the first

iteration. The result of the second iteration provided a prediction that is much closer to

the correct solution but the stress is still over-predicted. The same process is repeated for

the third iteration, which results in a prediction that is nearly equivalent to the true

solution.

36

41

46

51

56

61

0.001 0.0015 0.002 0.0025 0.003

Strain

S
tr

es
s

Figure 5-1: Tangential Stiffness Method – Power law hardening

Chapter 5. Integration of CMS and Plasticity Theory 78

 The number of iteration required to achieve convergence is dependent on the

curvature of the function and the convergence tolerance. A tight convergence tolerance

will produce an accurate result but will typically require more iterations. A loose

convergence tolerance will produce a less accurate result but will typically achieve

convergence in fewer iterations. For the special case of a bi-linear function, convergence

will be achieved in the second iteration because the tangential slope will be equal to the

constant slope of the function as shown in Figure 5-2. This is the primary reason that the

assumption of a bi-linear material hardening model is computationally cheaper in an

elastic-plastic analysis.

36

41

46

51

56

61

0.001 0.0015 0.002 0.0025 0.003

Strain

S
tr

es
s

Figure 5-2: Tangential Stiffness Method – Bi-linear hardening

 The primary advantage of the tangential stiffness method is that convergence can be

achieved with relatively few iterations. A new slope is calculated with each iteration that

Chapter 5. Integration of CMS and Plasticity Theory 79

improves the accuracy of the prediction for the next iteration. The prediction is only in

error by the change in slope that occurs after the current prediction. However, the

primary disadvantage of the tangential stiffness method is that the slope must be

recalculated at each iteration. For a single variable function, the computational cost is

insignificant, but this corresponds to recalculating the elemental stiffness matrix for the

finite element method, which is rather computationally expensive. Any element that

experiences yielding requires the calculation of a new elastic-plastic stiffness matrix and

elemental stiffness matrix for each plastic iteration.

5.3.2 Initial Stiffness Method

 The initial stiffness method is based on the assumption that the original stiffness

matrix is used for all iterations until convergence is achieved. This method does not

require that the slope of the function be determined because the original slope is used for

all predictions. The iterative procedure is linearized between time steps but without

requiring any further knowledge of the function.

Chapter 5. Integration of CMS and Plasticity Theory 80

36

41

46

51

56

61

0.001 0.0015 0.002 0.0025 0.003

Strain

S
tr

es
s

Figure 5-3: Initial Stiffness Method – Power law hardening

 For a function of a single variable, the algorithm to achieve convergence is shown in

Figure 5-3. After the first iteration, the stress is over-predicted because the slope of the

curve has decreased after passing the yield point of the material. The second and

following iterations continue to over-predict the function because the actual slope of the

curve is always smaller than the prediction slope. With enough iterations, the predictions

will converge on the actual solution within the convergence limits defined.

 The convergence for a bi-linear hardening model is shown in Figure 5-4. Since the

slope of the hardening function immediately changes after the yield point, the initial

iterations do not converge as quickly as for the power law hardening function. The

average slope of the bi-linear hardening function throughout the time step is smaller than

the power law hardening function and the iterations do not converge as quickly.

Chapter 5. Integration of CMS and Plasticity Theory 81

However, if extended into the softening portion of the curve, the initial stiffness method

would converge as quickly as the tangential stiffness method.

36

41

46

51

56

61

0.001 0.0015 0.002 0.0025 0.003

Strain

S
tr

es
s

Figure 5-4: Initial Stiffness Method – Bi-linear hardening

 The primary advantage of the initial stiffness method is that the elastic-plastic

stiffness matrix does not need to be recalculated for each plastic iteration. The original

stiffness matrix is used throughout all iterations without modification. The primary

disadvantage is that more convergence iterations are typically required with the initial

stiffness method because the successive iterations are predicted without updated

information about the function.

5.3.3 Combination of Tangential and Initial Stiffness Methods

 For this dissertation, a combination of the tangential and initial stiffness methods is

employed. When plastic deformation is predicted after the first elastic iteration, the

Chapter 5. Integration of CMS and Plasticity Theory 82

updated elastic-plastic stiffness matrix is calculated. Only the elements that experienced

plastic deformation within the time step require a modified elemental stiffness matrix.

This typically minimizes the computation cost of the formulation because plastic

deformation is usually a localized effect. For the second iteration of the equations of

motion, the elastic-plastic stiffness matrix is used to update the predicted displacement.

For all subsequent iteration until convergence is achieved, the same elastic-plastic

stiffness matrix is used without modification. This usually achieves convergence quickly

because the largest improvement is achieved with the prediction from the second

iteration.

5.4 Elastic Response Following Plastic

 For structures that are loaded with an impulse function or a function that decreases

over time, the elastic-plastic time steps will be followed by purely elastic behavior. Once

a structure is loaded, the simulation typically occurs for a longer period of time to

investigate how the structure responds and recovers from the load. With the elastic-

plastic CMS method outlined, the subsequent elastic time steps can proceed without

further computational burden in the iterative solution of the equations of motion. Since

the problem is solved iteratively, an incremental pseudoforce is added to induce the

required plastic deformation. On subsequent iterations, this incremental force remains

and maintains the permanent set associated with plastic deformation.

 In a cyclic loading condition, the structure may experience a time period with plastic

deformation in tension followed by plastic deformation in compression. This type of

loading results in the Bauschinger effect and can be numerically modeled using a

kinematic strain hardening function [64]. For this dissertation, only an isotropic

Chapter 5. Integration of CMS and Plasticity Theory 83

hardening model was incorporated because the primary goal was to model impulse

loading that decay with time after reaching a peak load.

5.5 Convergence Check

 A test of the convergence of the iteration is applied to ensure that the result within

the time step has converged within the defined tolerance. This check is used to determine

whether the equations of motion have adequately converged on the correct solution or

indicate that more iterations are required prior to completing the time step. There are

many options in convergence checks that are based on the change in displacement,

velocity, acceleration, or force. The convergence algorithm basically calculates the

change in some measure from one iteration to the next. If the checked variable is not

changing, or not changing more than the defined tolerance, then the incremental solution

is considered converged. Alternatively, the residual variables can be used as the check of

convergence. If the residuals are less than the defined tolerance, then the solution is

considered converged. For this research, the effective residual force was used as the

convergence check variable for time steps that experience elastic-plastic deformation.

 84

Chapter 6

Characteristics of Non-linear Method

 Finite element analysis is a technique of approximating a complex structure as a

collection of individual elements. The accuracy of the approximation is dependent on

various input variables inherent in the method. With the proposed non-linear CMS

method, additional approximations of the full fidelity finite element solution are applied.

Each assumption in the proposed framework must be clearly understood or the accuracy

of the solution could be very poor. Given that the correct assumptions are applied, the

modal approach will produce a reasonable accuracy with substantial improvements in

computational efficiency.

 Adequate assumptions must be applied in the original finite element formulation of

the problem as well. In a full fidelity finite element solution, the accuracy can be poor if

the mesh of the structure is too course. The typical way of addressing this problem is to

model the structure with a slightly finer mesh and comparing with the previous results. If

a substantial change occurs in the results, then the mesh is probably not optimized. If

relatively little change occurs in the results, then the mesh density is probably acceptable.

Similar additional characteristics are observed with the modal techniques.

Chapter 6. Characteristics of Non-linear Method 85

6.1 Accuracy of Non-linear CMS Method

 The accuracy of the CMS prediction is determined by several factors. Starting with

the original mesh of the structure, an initial inertia and stiffness matrix are generated. If

these matrices do not adequately represent the structure, then the CMS techniques will do

nothing to increase the accuracy of the solution. If the modal methods are properly

applied, the results will not be degraded from those obtained with the full fidelity

solution. Therefore, in all following example problems, the baseline for accuracy

comparison is the results obtained from the full fidelity solution with the original inertia

and stiffness matrices of the structure.

 The accuracy of the plastic prediction is limited by the assumptions applied in the

modal reduction. If too few modes are retained, the accuracy of the elastic response will

suffer, which will result in an inaccurate prediction of the plastic response. Techniques,

such as the modal mass participation factor, should be investigated to aid in the

determination of the number of modes to retain. Small convergence studies should also

be applied in a similar fashion to those used to determine an appropriate mesh density.

For a modal technique, there is an additional advantage in knowing the natural

frequencies of the structure. Inherent in the generation of the transformation matrices,

the un-restrained natural frequencies of the structure are provided. With information

about the forcing frequencies that will be applied to the structure, a reasonable

approximation is to retain all modes within the forcing frequency and below as a

minimum. Since the structure will most likely be attached to other piece parts with the

model, the additional mass will result in an increase in the natural frequencies of the

assembly, so the un-restrained modal information can only be used as a rough guide.

Chapter 6. Characteristics of Non-linear Method 86

6.2 Methods of Improving Accuracy

 The accuracy of the non-linear CMS method is determined by variables that are

chosen by the person performing the analysis. Just as with any finite element problem,

an appropriate mesh must be generated to provide the numerical representation of the

structure. If the mesh is too course, the accuracy of the solution may not be adequate.

The elemental formulation is important in determining the global stiffness matrix of the

structure that does not introduce zero energy displacement modes.

 With the non-linear CMS method, the accuracy of the solution is also dependent on

the number of retained modes. The numerical efficiency of a modal representation is

obtained by neglecting a large portion of the higher frequency modes. The number of

modes retained will directly effect the accuracy of the solution for specific loading

frequencies, because the modes that are not retained are not represented in the solution.

The exception is that some of the flexibility can be recovered with a residual flexibility

calculation, which can represent the static contribution of the modes that were originally

neglected.

6.2.1 Constraint and Retained Modes

 With the fixed interface CMS technique, all boundary degrees of freedom are

retained without reduction. This is typically a disadvantage of the method if the structure

is divided into too many substructures. The reduction only occurs on the interior degrees

of freedom, so no computational benefit is realized by the boundary degrees of freedom.

From this point of view, the number of boundary degrees of freedom should be

minimized to critically evaluated divisions in the structure.

Chapter 6. Characteristics of Non-linear Method 87

 The constraint modes of the substructure are calculated through a static condensation

procedure so the dynamic contribution of the boundary degrees of freedom is not

retained. This is typically not an issue because the constraint will either be applied at a

joint that is truly fixed in the assembly or at the connection to another free body. At the

junction of two flexible substructures, negligible information is lost if the constraints are

applied correctly. The number of retained interior modes directly corresponds to the

accuracy of the solution. If too few modes are retained, the accuracy of the result will

suffer. However, for simple structures, only a very few modes of the full fidelity model

require retention. The boundary degrees of freedom will already be retained but

sufficient information is required of the internal degrees of freedom. The number to be

retained is somewhat problem specific, which is investigated in the example problems

that follow.

 More retained modes are required for an elastic-plastic solution than would typically

be required to obtain an accurate elastic solution. Plastic deformation typically occurs as

a more localized effect that is represented by the higher frequency mode shapes. As the

plastic pseudoforce is projected onto the modal coordinates, a significant portion of the

force can remained un-projected if too few modes are retained. This force will be lost

within the increment and cannot be recovered in subsequent iterations. Retaining all

modes will produce the most accurate solution but will also be the most computationally

expensive, so a balance must be sought. However, prior to the completion of the time

step, a residual flexibility technique can be applied to help recover the un-projected force

and improve the accuracy of the time step.

Chapter 6. Characteristics of Non-linear Method 88

6.2.2 Residual Flexibility

 Modal reduction techniques are used to reduce the number of calculations in the

equations of motion with minimal impact on the accuracy of the solution. Any time there

is a reduction applied, information about the response of the degrees of freedom is being

neglected. If the problem is set up adequately and an adequate number of modes are

retained, then the impact on the accuracy of the solution will be minimal. However, if

too few modes are retained, the accuracy will suffer. This is comparable to reducing the

mesh density of a finite element representation. As the mesh becomes more course, the

number of internal degrees of freedom and flexibility of the structure may not be

accurately represented, which will adversely affect the accuracy of the solution.

 Modal reduction techniques are applied by eliminating the largest eigenvalues and

corresponding eigenvectors of the full eigenproblem for the un-damped equation of

motion. In a typical structural problem, the natural frequencies activated as a result of a

forcing function are the lowest frequency modes. The highest frequency modes can be

many orders of magnitude larger and as a result will have a much smaller contribution to

the dynamic response of the structure. The cut-off frequency is dependent of the problem

of interest but the each of the modes below the forcing frequency and some above the

forcing frequency will need to be retained to accurately represent the response of the

structure. Often, it is difficult to the determine how many modes to retain, which can be

a source of inaccuracy. Tools such as determining he modal participation factors, Section

3.4, can provide an indication of the importance of the modes but is independent of the

forcing function.

Chapter 6. Characteristics of Non-linear Method 89

 Applying forces to approximate the effects of plastic deformation can further

decrease the accuracy of the solution. Since the plastic deformation will most likely be a

localized effect, it will have more contribution from higher frequency modes than

required for the elastic solution. When used in conjunction with a modal reduction

technique, the plastic pseudoforce is projected onto the modal coordinates from the

global coordinates through the use of a projection matrix. Since some of the modes are

neglected in this projection, some of the force will not be projected on the modal

coordinates. If no further action is taken, this un-projected force will be lost and cannot

be recovered.

 Residual flexibility is a means of retaining some of the un-projected force to improve

the accuracy of the solution. The basic premise is to incorporate the static effects of the

un-projected force in the final solution for the iteration. Further information on

experimental validation can be found in [71]. A comparison of residual flexibility and

CMS techniques can be found in [72]. Information is being lost with any reduction

technique, but since the inertia and damping effects are typically less important that the

stiffness, the solution accuracy can be dramatically improved. Starting with the equations

of motion of a multi-body system:

 []{ } []{ } []{ } { }M u C u K u f+ + = (6-1)

An incremental form of the equations of motion is required for a plastic solution,

requiring the conversion:

 []{ } []{ } []{ } { } { }M u C u K u f p+ + ΔΔ = − (6-2)

The first step in the conversion to a CMS representation is to partition the matrices into

the internal, boundary, and interacting degrees of freedom. A transformation matrix, P, is

Chapter 6. Characteristics of Non-linear Method 90

used to transform the vector of displacements into the partitioned form. The nodal

displacements and their derivatives are replaced with:

 [][]{ } [][]{ } [][]{ } { } { }M P u C P u K P u f p+ + ΔΔ = − (6-3)

Pre-multiplying by the transpose of the transformation matrix produces:

 [] [][]{ } [] [][]{ } [] { } { }()T T T
P M P u P K P u P f p+ ΔΔ = − (6-4)

For convenience, this will be written:

 []{ } []{ } [] { } { }()T

P P P PM u K u P f p+ ΔΔ = − (6-5)

Applying the CMS representation, the partitioned coordinate set is transformed to a CMS

representation by applying the appropriate CMS transformation matrix. This transforms

the organized global coordinate set to a reduced modal basis that has fewer modes than

the original number of degrees of freedom for the substructure. The lower frequency

modes are retained and the higher frequency modes are neglected. The application of the

transformation is included by replacing the ordered coordinate set with the appropriate

transformation:

 [][]{ } [][]{ } [] { } { }()T

P CMS P CMSM u K u P f pΦ + Φ ΔΔ = − (6-6)

The equation is pre-multiplied by the CMS transformation matrix to obtain:

 [] [][]{ } [] [][]{ } [] [] { } { }()T T T T

P CMS P CMSM u K u P f pΦ Φ + Φ Φ ΔΔ = Φ − (6-7)

The pre- and post-multiply by the transformation matrix effectively transforms the inertia

and stiffness matrices and those variables can be replaced with a transformed variable:

 { } { } [] [] { } { }()T T

CMS CMSM u K u P f p + ΔΔ = Φ − (6-8)

As discussed previously, the modified inertia and stiffness matrices are not diagonal

because the transformation matrix is not and eigenvector transformation. It is

Chapter 6. Characteristics of Non-linear Method 91

computationally more efficient in a dynamic simulation to convert the inertia and

stiffness matrices to an orthonormal form to reduce the coupled equations of motion to an

uncoupled set. This is accomplished by solving the eigenproblem and replacing the CMS

coordinate system with the orthonormal set of coordinates through the appropriate

transformation:

 []{ } []{ } [] [] { } { }()T T
M N q K N q P f p + ΔΔ = Φ − (6-9)

To complete the transformation, both sides of the equation are pre-multiplied by the

transpose of the transformation matrix to obtain:

 [] []{ } [] []{ } [] [] [] { } { }()T T T T T
N M N q N K N q N P f p + ΔΔ = Φ − (6-10)

In the generation of the eigenvector transformation matrix, the terms can be scaled to

produce an inertia matrix that takes the form of an identity matrix with all terms equal to

one on the diagonal and zero in all other positions. This also produces a stiffness matrix

equal to the square of the natural frequencies located along the diagonal. The converted

matrices are written:

 []{ } []{ } [] [] [] { } { }()T T T
I q q N P f p+ Λ ΔΔ = Φ − (6-11)

This equation represents the solution if all degrees of freedom are retained in the CMS

transformation. Retaining all eigenvectors will result in the full accuracy of the original

solution because only transformations have been applied without any reduction to cause

loss in accuracy. However, the purpose of the CMS technique is to apply a reduction to

improve the computational efficiency and all eigenvectors will not be retained in the

CMS transformation matrix. The reduced set of equation will then be represented with a

subscript variable term:

Chapter 6. Characteristics of Non-linear Method 92

 []{ } []{ } [] [] [] { } { }()T T T

R R R RI q q N P f p+ Λ ΔΔ = Φ − (6-12)

For convenience, the series of force transformation matrices are replaced with a single

transformation matrix:

 []{ } []{ } { } { }()R R R fI q q P f p + Λ ΔΔ = − (6-13)

This equation is solved for the incremental displacement in the modal coordinate system:

 { } [] []{ } [] { } { }()1 1

R R R R fq I q P f p
− − ΔΔ = − Λ + Λ − (6-14)

In the conversion from the modal representation to global coordinates, the transformation

is written:

 { } [][][]{ } []{ }R u Ru P N q P qΔΔ = Φ ΔΔ = ΔΔ (6-15)

A single transformation matrix has been applied for convenience. The complete solution

of the incremental modal coordinates is converted to a global representation:

 { } [][] { } { }() [][] { } { }()1 1

u R f u R R Ru P P f p P q C q
− − ΔΔ = Λ − − Λ + (6-16)

Referring back to the original incremental equation of motion, the incremental

displacement can be found after rearranging:

 { } [] { } { }() [] []{ } []{ }()1 1
u K f p K M u C u

− −ΔΔ = − − + (6-17)

By examining the first term of the full incremental solution and the solution obtained

from the modal coordinates, it can be seen that the first term represents the static response

to the applied incremental force. The solution can be improved by replacing the static

contribution from the full solution with the modal representation because the full solution

does not incorporate any reduction:

 { } [] { } { }() [][] { } { }()1 1

u R R Ru K f p P q C q
− − ΔΔ = − − Λ + (6-18)

Chapter 6. Characteristics of Non-linear Method 93

This method is defined as the mode acceleration method. The residual flexibility, or the

difference in the modal and full solution can be found by additional algebraic

manipulation. The modal representation is rewritten:

 { } { }() { } { }() []{ }R R f R Rq C q P f p q + = − − Λ ΔΔ (6-19)

Pre-multiply both sides by the inverse of the modal stiffness matrix and the combined

transformation to obtain:

 [][] { } { }() [][] { } { }() []{ }1

u R R R u R f u RP q C q P P f p P q
− Λ + = Λ − − ΔΔ (6-20)

Applying the pre-multiplication produces a form of the inertia and stiffness and damping

terms that match the inertia and damping term in the mode acceleration method result.

This produces an equation that is written entirely in terms of the displacement terms and

not the velocity or acceleration terms:

 { } [] { } { }() [][] { } { }() []{ }1 1

u R f u Ru K f p P P f p P q
− − ΔΔ = − − Λ − + ΔΔ (6-21)

The third term is the incremental displacements transformed from the modal coordinates.

The first and second term are the static contributions to the incremental displacements in

global coordinates. The first terms represents the solution obtained by retaining the full

stiffness matrix, while the second term represents the static contribution through the

reduced modal stiffness matrix. The difference in these two terms is the residual static

incremental displacement that is added to the calculated displacement from the reduced

equations of motion.

 As the solutions are obtained at each increment during the integration of the

equations of motion, the residual flexibility term must be calculated. It is an additional

operation that is performed after the reduced solution has converged. The residual term

can be simplified to improve computational efficiency by combining the terms prior to

Chapter 6. Characteristics of Non-linear Method 94

the integration of the equations of motion. Ultimately the residual flexibility can be

calculated using one matrix vector multiplication by introducing a new variable, Rf:

 [] [][]1 1

f u R fR K P P
− − = − Λ (6-22)

This matrix is calculated once prior to the integration of the equations of motion and is

used throughout the integration to account for the static contribution from the un-

projected force.

6.2.3 Residual Flexibility in Plastic Solution

 If plasticity is incorporated with the CMS representation, the calculation of the

residual flexibility become more important. This is due to the application of forces to

individual nodes that were not significant contributor to the accuracy of the elastic

solution. Once plastic deformation begins to occur, the deflection of the substructure

begins to deviate from the motion predicted as a linear superposition of the lowest few

frequencies. The deformation becomes highly localized, which requires the use of the

higher frequency mode shapes that are typically not significantly activated during a

linear-elastic solution. The inertia and damping terms will not retain the full terms and

subsequently their accuracy is not improved. This is typically not a significant problem,

because the inertia and damping are secondary effects to the static.

 There are options available in deciding when residual flexibility can or should be

applied. If applied after the first elastic iteration is completed, the stresses will be more

accurate. This leads to an improved prediction of the plastic response. However, since

the solution is only being obtained incrementally, the elastic predictions should be quite

accurate if enough of the low frequency modes are retained. This is more difficult to

achieve for the plastic solution because a prohibitively high number of modes will

Chapter 6. Characteristics of Non-linear Method 95

probably need to be retained to obtain the same accuracy that will be achieved with the

inclusion of the residual flexibility. The residual flexibility has a relatively large effect

on the plastic solution but a relatively small effect on the elastic solution. For this

dissertation, the residual flexibility is only calculated after the plastic iterations. This

helps preserve the computational benefits of the elastic iterations, which should comprise

the vast majority of the complete set of calculations.

6.3 Computational Comparison

 The computational benefits of the non-linear CMS formulation are attributed to the

reduction applied as part of the CMS technique. The first reduction is achieved by

neglecting the higher frequency modes and mode shapes. Since this information is not

retained, the size of the equations solved at each time step are reduced from the full finite

element representation. With a direct modal representation, it is very difficult to

determine the specific modes that can be safely eliminated without dramatically affecting

the accuracy of the solution. The fixed interface CMS method nearly eliminates this

problem because the boundary nodes are retained without reduction and the number of

kept modes must be determined to adequately represent the internal degrees of freedom.

 The second computational benefit is produced by orthonormalizing the CMS

representation. After transformation from the global coordinates to the CMS

representation, the inertia and stiffness matrices are not diagonal because the

transformation matrix is composed of the eigenvectors of only a partition of the original

matrices. By orthonormalizing, the coupled equations of motion are reduced to an

uncoupled set of equations that further reduces the computation expense by reducing the

number of operations.

Chapter 6. Characteristics of Non-linear Method 96

 To quantitatively compare the computational expense of a full fidelity and a CMS

representation, the number of multiplications were determined for each method. The

multiplication operations are typically the most computationally expensive operations to

perform, compared to addition operations [73]. Table 6-1 provides a comparison of the

number of multiplications required in a single iteration of the equations of motion. The

variable, n, represents the number of degrees of freedom in the unreduced structure. The

variable, m, represents the total number of modes in the modal representation (retained as

well as interface degrees of freedom). The computational benefits of storing the global

stiffness and inertia matrices in a banded form in not included in this representation but

would decrease the computational cost of the full solution. The ratio of m to n is

dependent on the specific problem of interest, but generally, a ratio of 1 to 20 is more

than sufficient.

Table 6-1: Computational Comparison for Dynamic Elastic Iteration

Full Solution CMS Solution
2 * n 2 * m
2 * n 2 * m
2 * n² 2 * m²

- -
n² m²
- -
- -
n m
n m
n² m²

Variable
a*
v*
b*
b

v
p

ΔΔu
Δu
u
a

 The largest differences in the solution of the equations of motion for a purely elastic

iteration are the number of operations required to determine the effective acceleration and

velocity. Because the CMS representation is calculated as an uncoupled series of

equations only one multiplication is required for each row of the inertia and stiffness

Chapter 6. Characteristics of Non-linear Method 97

matrices. If the inertia and stiffness matrices are fully populated, the number of

operations is equal to the square of the number of degrees of freedom. The remaining

variables are also reduced by the ratio from n to m with the greatest impact provided by

the squared terms.

 The computational expense of the plastic portion of the dynamic response and the

calculation of the stress within each element will be opposite of the elastic response due

to the applied reduction. Since the solution is performed in an orthonormal coordinate

set, the modal deformations must be transformed to a global representation to determine

the state of stress within the elements. As indicated previously, this calculation can be

performed as a single matrix-vector multiplication but still requires more operations than

the equivalent full solution. Table 6-2 provides a summary of the number of operations

required to determine the state of stress, elastic strain, and plastic strain within each

element. The stress is calculated at each of the eight integration points for a 2 x 2 x 2

integration scheme. This table represents the number of operation required by assuming

that all elements are experiencing plastic deformation, which is never really the case but

provides a worst case scenario. The new variable introduced in this table is e, which is

the number of elements in the finite element representation. Most of the number of

operations are based on the number of elements because stress is determined on an

elemental basis.

Table 6-2: Computational Comparison for Stress Calculation

Full Solution CMS Solution
96 * e 96 * e + n * m
48 * e 48 * e
48 * e 48 * e
48 * e 48 * e

Variable
Stress

S
e_p

e_bar

Chapter 6. Characteristics of Non-linear Method 98

 The only difference in the number of operations in Table 6-2 is in the calculation of

the elemental strain. Because the global displacements are not directly provided with

each incremental solution, the global displacements must be calculated by using a

transformation from modal to global coordinates. This transformation matrix will have

one row corresponding to each global degree of freedom and one column corresponding

to each modal degree of freedom.

 The calculation of the plastic response for a single iteration is also more

computationally expensive for a CMS representation than for a direct solution. This

increase in the number of operation is attributed to the calculation of the pseudoforce and

the projection of this global force on the orthonormal coordinates. Table 6-3 provides a

summary of the number of operations required for each technique.

Table 6-3: Computational Comparison for Dynamic Elastic-Plastic Iteration

Full Solution CMS Solution
Kep 290 * e 290 * e

b - n * m
ddu n³ n³

p n² n² + n * m

Variable

 The primary differences in the number of operations is in the generation of the

effective force and the generation of the pseudoforce. The projection of the elastic-

plastic force onto the modal coordinates is achieved by a single matrix-vector

multiplication. The matrix has one row corresponding to each modal degree of freedom

and one column corresponding to each global degree of freedom. However,

computational savings can be achieved by only projecting the rows of the global vector

that corresponds to the degrees of freedom that were affected by plastic deformation

within the iteration.

Chapter 6. Characteristics of Non-linear Method 99

 The calculation of the stress and determination of a single plastic iteration is more

computationally expensive for the CMS representation than for a direct representation.

However, the total number of operation is reduced for the elastic iterations that employ

the modal representation. The balance will be dependent on the specific problem of

interest, but if the structure primarily experiences elastic deformation, the non-linear

CMS method will offer significant computational savings. This is typically the case for

structures that experience an impulse loading followed by a long time interval to evaluate

the response of the structure to the impulse. This type of problem results in a few elastic

iterations, followed by relatively few plastic iterations, followed by many elastic

iterations as the structure responds.

 100

Chapter 7

Numerical Examples

 A collection of numerical examples is provided to demonstrate the performance of

non-linear response coupled with fixed interface CMS reduction. Two of the examples

are based on problems that have analytical solutions to serve as a baseline for judging

accuracy. The first example is a cantilever beam subjected to an axial load. Since this

problem can be solved analytically, the response is investigated for the quasi-static

loading condition as well as an impulse-loading situation. The second analytical problem

is a simply supported beam loaded with a step pressure load. An analytical solution

exists for this problem for the assumption of a perfectly-plastic yield function. A

variation of the simply supported beam is presented with a pressure load only applied to

the center portion of the beam rather than the full length. The final example is a rigid

body mechanism that represents an intended use of the non-linear CMS method. Only

one component within the mechanism, the shaft, is modeled as a non-linear flexible

element while the other components remain rigid.

 The accuracy of the non-linear CMS method is compared against the full fidelity

solution using the full global inertia, stiffness, and damping matrices. Each of the two

result types are calculated using the Matlab code provided in the appendices. Since the

accuracy of the CMS method is dependent on the number of retained modes and other

factors, convergence studies are presented to indicate the values required to obtain the

Chapter 7. Numerical Examples 101

desired accuracy. Selected full fidelity dynamic solutions from the Matlab code is also

compared with the dynamic solution from a commercial finite element code, ABAQUS

(Version 6.8, Dassault Systemes Simulia Corp., Providence, RI). The model solved with

the commercial code utilizes the same mesh of the geometric part and a similar elemental

formulation to allow accuracy comparisons.

7.1 Quasi-Static Axial Loading

 The axial stress and deflection of a cantilever beam can be determined analytically

using the engineering stress and strain assumptions. The axial load is chosen to ensure

that the deflections are small for both the elastic and plastic responses. For simplicity,

the cantilever beam is chosen with a square cross-section with a 10 to 1 ratio of length to

width. The dimensions of the cross-section of the beam are 0.1 in. by 0.1 in., and the

length of the beam is 1.0 in. A representation of the beam is shown in Figure 7-1.

Figure 7-1: Cantilever Beam Geometry

Chapter 7. Numerical Examples 102

 The boundary conditions are applied such that the length and width of the beam are

allowed to decrease as a result of the Poisson effect from the axial load. One corner of

the beam is constrained in all three directions of the Cartesian coordinate system and all

other nodes on the base of the beam are only constrained in the z-direction, which is the

longitudinal axis of the beam. These constraints are comparable to an axi-symmetric

constraint with the full constraints being applied along the longitudinal axis.

 The properties of the beam are chosen as the common values for mild steel for

simplicity. The elastic properties of the beam are listed in Table 7-1. The material is

considered to be isotropic, requiring only two material properties to fully define the

elastic material properties. The density is assumed to be 7.485 x 10-4 lbf-s2/in4 based on

common values for mild steel. However, the assumed density is divided by 103 to ensure

that inertia of the material does not contribute significantly to the quasi-static solution.

Table 7-1: Elastic Material Properties of Cantilever Beam

E Young's Modulus 29,000 ksi
ν Poisson's Ratio 0.29

 The beam is subjected to loading in excess of the yield strength of the material,

which induces plastic deformation. For ease of analytical calculation, it is assumed that

the material follows a bi-linear hardening model for all stress in excess of the initial yield

strength of the material. The plastic material properties are listed in Table 7-2.

Table 7-2: Plastic Material Properties of Cantilever Beam

H0 Initial Yield Stress 36 ksi

ET Hardening Modulus 3,600 ksi

A graphic view of the elastic-plastic stress-strain curve is shown as Figure 7-2.

Chapter 7. Numerical Examples 103

0

15

30

45

60

0.000 0.002 0.004 0.006 0.008

Engineering Strain (in/in)

E
n

g
in

ee
ri

n
g
 S

tr
es

s
(k

si
)

Figure 7-2: Elastic-Plastic Stress-Strain Curve

 The goal of this dissertation is to introduce a dynamic solution procedure for non-

linear deformation, but a quasi-static solution is beneficial to provide insight about the

accuracy of the solution. For the dynamic solution, the axial load on the structure is

applied as a time dependent function starting with the unloaded condition, loaded to the

peak force, then unloaded back to zero. To prevent discontinuities during the loading and

unloading, it is assumed that the curves followed a haversine shape. The full loading and

unloading curve is shown as Figure 7-3.

0.0

0.2

0.4

0.6

0.8

1.0

0 0.0002 0.0004 0.0006 0.0008 0.001

Simulation Time (s)

S
ca

le
d

 A
m

p
li

tu
d

e

Figure 7-3: Load-Unload Scaled Amplitude

Chapter 7. Numerical Examples 104

7.1.1 Analytical Solution

 In order to determine the elastic-plastic deformation of the beam, the stress must be

calculated first to determine the response of the material:

 ()2

400
40

0.1

P lbf
ksi

A in
σ = = = (7-1)

Since the material is assumed to follow a hardening constitutive model, the elastic strain

of the beam can be calculated as a function of the total stress within the structure. The

elastic change in length of the beam is calculated:

()40 1

0.00137931
29,000e

ksi inL
L in

E ksi

σε = = = (7-2)

Since the stress within the structure has exceeded the yield strength of the material, the

plastic strain must also be determined. The material is assumed to follow a linear

hardening law, so the yield strain is proportional to the stress in excess of the yield stress.

The plastic change in length of the beam is written:

()Y

p
T

L
L

E

σ σ
ε

−
= (7-3)

where ET is the tangential hardening modulus. For the linear hardening assumption, the

modulus is defined:

 0L
T

L

H H
E

ε
−

= (7-4)

where HL is the limit stress and εL is the effective strain limit. Substitution of (7-4) into

(7-3) provides:

()0

0

L
p

L

H L
L

H H

σ ε
ε

−
=

−
 (7-5)

Chapter 7. Numerical Examples 105

Substitution of the appropriate variables provides:

()()()40 36 0.015 1

0.00111111
90 36p

ksi ksi in
L in

ksi ksi
ε

−
= =

−
 (7-6)

Therefore, the total deformation of the structure is the sum of the elastic and plastic

length changes provided in (7-5) and (7-6):

 0.00249042e pL L L inε ε ε= + = (7-7)

7.1.2 ABAQUS Solution

 The axially loaded structure was modeled using ABAQUS to provide a baseline

dynamic solution for comparison. The analytical solution is intended to provide

verification of the steady-state deformations with the ABAQUS solution providing a

comparison response during the remainder of the loading and unloading curve. The same

material properties and basic geometric variables defined previously were used. The

boundary conditions of the structure were also applied consistently. One node at the base

of the structure was constrained in each of the three directions of the Cartesian coordinate

system. The remaining nodes at the base of the structure were only constrained in the z-

direction, which is aligned with the length of the beam. Since the problem is set up to

only contain uniaxial stress, the size of the mesh is not critical. For simplicity, the beam

was meshed as ten 0.1in. by 0.1in. by 0.1in. elements.

 The elastic problem was evaluated first to determine the linear elastic response of the

beam when subjected to the quasi-static dynamic loading curve. Only the density and

two elastic parameters (modulus of elasticity and Poisson’s ratio) were input to fully

define the material. A plot of the deformation of the structure in the z-direction as a

result of the axial load is shown in Figure 7-4. This plot indicates the peak deflection of

Chapter 7. Numerical Examples 106

the beam as shown at a simulation time of 0.6ms. The complete history of the

deformation is examined by plotting the deflection of one of the nodes on the load

application surface throughout the entire simulation time. A plot of the deflection history

is shown as Figure 7-5.

Figure 7-4: ABAQUS Elastic Deflection (Peak)

0.0000

0.0004

0.0008

0.0012

0.0016

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Simulation Time (s)

T
ip

 D
e

fl
e

c
ti

o
n

 (
in

)

Figure 7-5: ABAQUS Elastic Tip Deflection

Chapter 7. Numerical Examples 107

 In order to investigate the elastic-plastic response of the structure, the plastic material

properties were input with the assumption of linear isotropic hardening. A plot of the tip

deflection of the beam in the z-direction is shown as Figure 7-6 for the elastic-plastic

model. The response is overlaid with the elastic response for comparison. During the

simulation times between 0.3 ms and 0.4 ms, plastic deformation is causing a dramatic

increase in the rate of deflection. Once the peak load is achieved, the deflection stabilizes

at a maximum deflection of 0.002518 in. Upon unloading, the elastic-plastic response

follows the general shape of the elastic response but is offset by the plastic deformation

that remains. After complete unloading, the plastic deformation of 0.001134 in. is the

permanent deformation associated with the plastic strain.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Simulation Time (s)

T
ip

 D
e

fl
e

c
ti

o
n

 (
in

)

Plastic Elastic

Figure 7-6: ABAQUS Elastic-Plastic Tip Deflection

Chapter 7. Numerical Examples 108

7.1.3 Component Mode Synthesis Solution

 Using the Matlab code available in the appendices, which implements the method

defined in the previous chapters, the elastic-plastic response of the cantilever beam is

analyzed. The Matlab code includes the capability to solve the solution through a variety

of different methods to aid in the validation of results. The solution can either be full

fidelity, full fidelity with modal superposition, or reduced fidelity with CMS reduction.

 The first option is a full fidelity traditional finite element solution. The natural

frequencies and mode shapes are not used in the calculations of the dynamic response.

Instead, the full mass and stiffness matrices are used in the determination of the dynamic

response. This solution is intended to provide direct correlation with the commercial

finite element programs because there is no reduction in the fidelity of the problem. A

plot of the deflection history of the cantilever beam is shown as Figure 7-7. The two

traces of the elastic-plastic response are essentially identical and the curves appear

overlaid. Investigation of the data reveals that the total plastic deformation predicted by

the full fidelity Matlab code was 0.001113 in., compared to 0.001134 in. from ABAQUS.

The result from the full fidelity Matlab code provides better correlation with the

analytical solution, but the error of either solution is very small.

Chapter 7. Numerical Examples 109

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Time (s)

T
ip

 D
is

p
la

ce
m

en
t

(i
n

)

Elastic Plastic ABAQUS Plastic

Figure 7-7: Full Fidelity Elastic-Plastic Tip Deflection

 The second solution option with the Matlab codes is a full fidelity modal solution.

This solution is essentially the same fidelity as previously discussed but the mass and

stiffness matrices are replaced with their equivalent modal reductions. This allows the

mass and stiffness matrices to be reduced to diagonal matrices, which dramatically

reduces the number of calculations during the iterative solution of the equations of

motion. The tip deflection is evaluated using this solution technique and the results were

essentially identical to the results from the full fidelity Matlab solution, so a plot is not

provided. The total plastic deformation from the full fidelity modal solution is 0.0011127

in.

 With the CMS approach, the problem is further reduced through substructuring and

modal reduction. The initial CMS reduction does not result in diagonal inertia and

stiffness matrices, but the matrices are orthonormalized prior to the iteration of the

equations of motion, which does result in diagonal matrices. The tip deflection as a

function of simulation time from the full fidelity CMS solution is shown as Figure 7-8.

Chapter 7. Numerical Examples 110

The ABAQUS result is also provided for comparison but the two results are essentially

overlaid. The total plastic deformation from the full fidelity CMS solution was 0.001124

in., which is an error of about 1% compared to the analytical solution. This error will be

increased by further reduction in the fidelity of the CMS solution as discussed in Section

6.2.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Time (s)

T
ip

 D
is

p
la

ce
m

en
t

(i
n

)

Elastic CMS Plastic ABAQUS Plastic

Figure 7-8: CMS Elastic-Plastic Tip Deflection

7.2 Impulse Loading of Simply Supported Beam – Full Load

 A simply supported beam is subjected to a distributed load, applied instantaneously

as investigated previously in [74], [75], [76]. The geometry of the beam, shown in Figure

7-9, is rectangular with a height of 2in and width of 1in. The length of the beam in 30in.

The elastic modulus is 30,000ksi and the Poisson’s ratio is 0.3. The material is assumed

to follow a bi-linear strain hardening model with a hardening modulus equal to 0.25 of

the elastic modulus after exceeding an initial yield stress of 50ksi.

Chapter 7. Numerical Examples 111

Figure 7-9: Simply Supported Beam Geometry

 The mid-span deflection of the beam can be determined analytically by assuming an

elastic-perfectly plastic material model [77]. The limit moment, M0, is defined as the

moment at the center of the beam that produces a stress equal to the initial yield stress

throughout the cross-section:

2

0
0 50,000

4

bh
M in lbf

σ
= = − (7-8)

The static collapse load is defined in terms of the limit moment and the length of the

beam:

 ()
0
2

2
444.444

2

c

M lbfp inL
= =

(7-9)

The static deflection at the center of the beam as a result of the static collapse load is:

45

0.234375
384

cp L
in

EI
Δ = = (7-10)

The initial mesh for the example problem is quite course for a bending stress problem.

The beam was divided into 40 elements with 110 nodes. An 8-node linear brick element

was incorporated, see Chapter 2, and is consistent with that used in Salinas structural

dynamics code [78]. For improved performance with the bending loads, the bubble

element formulation was used.

Chapter 7. Numerical Examples 112

 Using the method outlined, the beam is subjected to a stepped distributed load and

the dynamic response is simulated over a 5ms interval after the initial load application. A

distributed load equal to 0.625 of the critical load was applied, which corresponds to

previous research [74] and [75]. The elastic and plastic mid-span deflection as a result of

the applied loads is shown for the full finite element solution in Figure 7-10. The full

solution does not include any reduction and serves as the baseline for comparison with

the later CMS solution. For reference, the elastic and plastic dynamic solutions are

provided over the same time interval using ABAQUS. The incompatible mode brick

element, C3D8I, was used with the same mesh defined above. The axes of the plot are

scaled based on the peak static deflection and the period of the elastic response.

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

Time Ratio (t/T)

M
id

-S
p

a
n

 D
e

fl
e

c
ti

o
n

 R
a

ti
o

 (
δ

/Δ
)

ElasticFull PlasticFull Elastic-ABAQUS Plastic-ABAQUS

Figure 7-10: Elastic and Plastic Full Fidelity Responses

 Since the accuracy of the stress calculation is dependent on the accuracy of the

elastic response, a convergence study was conducted on the elastic response using the

fixed interface CMS method. As the number of kept modes is increased, the accuracy of

Chapter 7. Numerical Examples 113

the solution for the mid-span deflection is improved as shown in Figure 7-11. This

relationship corresponds to the improved accuracy typically obtained through mesh

refinement by increasing the number of elements. The relationship is not a smooth curve

due to the orthogonality of the mode shapes. For the simply supported example, only

mode shapes that correspond to the direction of deflection due to the applied load will be

activated. Mode shapes in the other two directions do not significantly improve the

accuracy of the response.

1.238

1.239

1.240

1.241

1.242

1.243

1.244

1.245

0 20 40 60 80 100

Kept Modes

M
id

-S
p

an
 D

ef
le

ct
io

n
 R

at
io

 (
δ

/Δ
)

Peak Deflection with
Full Fidelity Solution

Figure 7-11: Convergence of Elastic Solution – 0.625*Pc

 As shown in Figure 7-12, the elastic CMS response with 100 kept modes is overlaid

with the full solution but the plastic response is under-predicted by the CMS method with

100 kept modes. This discrepancy is due to the approximations in the generation and

application of the pseudoforce for the static case, which induces the plastic deformation.

The iterative equations of motion are solved in orthonormal coordinates but must be

converted to global coordinates for determination of the elemental stress and prediction

Chapter 7. Numerical Examples 114

of the plastic deformation. The pseudoforce is generated in global coordinates and must

be converted to orthonormal coordinates for use in the solution to the equations of

motion. The accuracy of the solution can be improved by incorporating dynamic as well

as static stiffness effects as investigated in the next example problem.

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

Time Ratio (t/T)

M
id

-S
p

a
n

 D
e

fl
e

c
ti

o
n

 R
a

ti
o

 (
δ

/Δ
)

ElasticFull PlasticFull

Elastic-CMS-100 Kept Modes Plastic-CMS-100 Kept Modes

Figure 7-12: Non-linear CMS Response

 The elastic portion of the dynamic solution using CMS techniques is less

computationally expensive than the full solution due to the reduction in the size of the

dynamic problem solved at each time step. For this particular example, the elastic CMS

solution was solved in approximately 75% of the time required to solve the full elastic

solution. The plastic portion of the solution is more computationally expensive for the

CMS approach compared to the full solution but only occurs during a small interval

during the simulation. The primary benefit of the proposed approach is the ability to

integrate with a rigid body dynamic technique, which offers substantial computational

savings over a full finite element approach.

Chapter 7. Numerical Examples 115

7.3 Impulse Loading of Simply Supported Beam – Partial Load

 A variation of the simply supported beam with a stepped pressure load is analyzed

with the pressure loading only applied to the center of the beam rather than the complete

length. The distributed load is applied to the center portion of the beam to reduce the

number of boundary degrees of freedom in the CMS representation. The geometric

dimensions and loading of the beam is shown in Figure 7-13.

Figure 7-13: Simply Supported Beam Geometry

 The elastic modulus is 30,000ksi, the Poisson’s ratio is 0.3, and the distributed load

is 850psi. The material is assumed to be isotropic and follow three types of strain

hardening models, with an initial yield stress of 50ksi for each. The first model is an

elastic-perfectly plastic model that results in completely plastic deformation after

reaching the yield point. The second is a bi-linear model with a hardening modulus of

0.25 after reaching the initial yield stress. The third is a power law hardening curve,

which is the most complex but most representative of actual uniaxial stress test results for

metals. The three hardening models are shown in Figure 7-14.

Chapter 7. Numerical Examples 116

0

20

40

60

80

0 0.001 0.002 0.003 0.004 0.005

Strain (in/in)

S
tr

es
s

 (
k

s
i)

Bi-Linear Perfectly Plastic Power Law

Figure 7-14: Plastic Strain Hardening Models

 The beam is initially meshed using 40 elements with 110 nodes. There are 10

elements along the length, 1 across the width, and 4 along the height. An 8-node linear

brick element is incorporated but for improved performance with the bending loads, the

incompatible modes formulation was used, as defined in Chapter 2. Figure 7-15 shows

the mid-span deflection of the beam as a result of the applied loading with the three

material hardening models. The perfectly-plastic model has no plastic hardening and

results in the largest peak deflection. The power law model exhibits more hardening than

the bi-linear model for the initial elastic-plastic deformation and results in the smallest

peak deflection.

Chapter 7. Numerical Examples 117

-0.4

-0.3

-0.2

-0.1

0.0

0.000 0.001 0.002 0.003 0.004 0.005

Simulation Time (s)

M
id

-S
p

a
n

 D
ef

le
c

ti
o

n
 (

in
)

Elastic Plastic-Bilinear Plastic-PowerLaw Plastic-PerfectlyPlastic

Figure 7-15: Mid-span Deflection - Hardening Models

 The cumulative modal participation factor, from Section 3.4, is investigated to

provide a visual indication of the represented mass of the beam as the number of retained

modes is increased. Figure 7-16 shows the modal participation factors for each of the

three Cartesian coordinates as well as the average of all three directions. The plot

indicates that the modal mass converges to within 95% of the total mass with retention of

approximately 25% of the interior modes.

Chapter 7. Numerical Examples 118

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Percentage of Modes Kept

P
er

c
e

n
ta

g
e

 o
f

M
o

d
a

l M
a

s
s

Average x-direction y-direction z-direction

Figure 7-16: Modal Participation Factors

A zoomed plot of the same data for the final 5% of the modal mass is shown in Figure

7-17.

95%

96%

97%

98%

99%

100%

0% 25% 50% 75% 100%

Percentage of Modes Kept

P
e

rc
e

n
ta

g
e

 o
f

M
o

d
a

l M
a

s
s

Average x-direction y-direction z-direction

Figure 7-17: Modal Participation Factors – Final 5% of mass

Chapter 7. Numerical Examples 119

 Since the accuracy of the stress calculation is dependent on the accuracy of the

elastic response, a convergence study was conducted on the elastic response using the

fixed interface CMS method. As the number of kept modes is increased, the accuracy of

the solution for the mid-span deflection is improved as shown in Figure 7-18. The figure

indicates that only a small portion of the modes, less than 4%, are required to accurately

represent the elastic deformation of the beam with an error of less than 0.1%. The

accuracy is improving with the increase in retained modes but the improvement is

insignificant given the plot scale shown. The relationship is not a smooth curve because

of the orthogonality of the mode shapes. For the simply supported example, only mode

shapes that correspond to the direction of deflection from the applied load will be

activated. Mode shapes in the other two directions do not significantly improve the

accuracy of the response.

-0.278

-0.277

-0.276

0% 20% 40% 60% 80% 100%

Percentage of Modes Kept

M
id

-S
p

a
n

 D
ef

le
c

ti
o

n

Peak Deflection with
Full Fidelity Solution

Figure 7-18: Accuracy of CMS Elastic Response

Chapter 7. Numerical Examples 120

 The convergence of the plastic CMS solution for the bi-linear hardening model is

shown in Figure 7-19. The accuracy of the CMS solution roughly corresponds with the

shape of the mass participation plot for the remaining 5% of modal mass but the overall

solution is quite good, with less than 2% error, even with the retention of only a few

modes. Since the plastic deformation is localized to elements at the mid-span of the

beam, the plastic deflection is influenced by the high frequency mode shapes. The figure

also shows the relative improvement obtained by incorporating the residual flexibility,

which is similar in shape to the elastic convergence plot, Figure 7-18, because

convergence of the plastic solution is directly dependent on the accuracy of the elastic

solution. Use of the residual flexibility is computationally expensive but is offset by the

ability to retain fewer modes.

-3.0%

-2.0%

-1.0%

0.0%

1.0%

0% 20% 40% 60% 80% 100%

Percent of Kept Modes

P
er

ce
n

t
E

rr
o

r
o

f
P

ea
k

D
ef

le
ct

io
n

With Residual Flexibility Without Residual Flexibility

Figure 7-19: Accuracy of CMS Plastic Response

 The accuracy of the full fidelity solution is dependent on the finite element mesh and

conventional convergence studies are required to determine the appropriate mesh density.

Chapter 7. Numerical Examples 121

The CMS techniques provide an approximation of the full fidelity response and can only

be as accurate as the full fidelity results with the particular mesh. As the mesh density is

increased, the number of retained interior modes does not need to increase if the lowest

natural frequencies do not change significantly. Figure 7-20 shows that the

computational savings for the non-linear CMS method increase as the mesh density

increases, with the assumption of a fixed number of retained interior CMS modes.

However, the number of degrees of freedom should be minimized to reduce the total

computational time.

20%

25%

30%

35%

40%

100 1000 10000

Number of Degrees of Freedom

P
e

rc
e

n
t

R
e

d
u

c
ti

o
n

 in
 O

p
e

ra
ti

o
n

s

Figure 7-20: Computational Saving of CMS Method with Increased Mesh Density

7.4 Rigid Body Mechanism

 An example problem of a primarily rigid body mechanism is presented to

demonstrate the application to a component with a general geometric shape. A ratchet-

driver mechanism provides intermittent rotary motion with the geometry shown in Figure

Chapter 7. Numerical Examples 122

7-21. The drive arm is actuated by torque provided by a rotary solenoid acting on the

arm that causes rotation from the rest position to a fully open position. During this

transition, the drive pawl drops over the current tooth as a result of the torque provided

by a torsion spring between the drive pawl and drive arm. Once the solenoid is de-

energized, the drive arm returns under the torque provided by the extended drive arm

spring to advance the ratchet wheel to the next index position. The relatively large

ratchet wheel is assembled onto a shaft that is cantilevered at the base. Only the shaft is

modeled as a flexible element with all other bodies remaining rigid.

Figure 7-21: Rigid Body Mechanism Geometry

 The entire assembly is subjected to a large impulse acceleration of 3500g with a

haversine pulse shape and a duration of 0.5 ms. The shaft material is assumed to be a

precipitation hardened steel with an initial yield strength of 90 ksi, Poisson’s ratio of 0.3,

and Young’s modulus of 30,000 ksi. For simplicity, only a bi-linear material model is

Chapter 7. Numerical Examples 123

investigated with a hardening modulus of 25% of the elastic modulus. Other hardening

models could be readily incorporated using the same solution techniques. Due to the

circular geometry of the shaft, isoparametric elements are used to approximate the circles

as a collection of 8 linear segments, shown in Figure 7-22. In order for the mesh to be

consistent throughout the volume, the circular pattern continues thru to the base of the

shaft with the rectangle built up from the circle. A total of 156 isoparametric hexahedron

elements with 236 nodes comprise the finite element representation. The global inertia

and stiffness matrices are determined using the formulation in Chapter 2, with 8 nodes

per element.

Figure 7-22: Mesh of Mechanism Shaft

 To approximate the influence of the mass of the pattern wheel assembly on the shaft,

an effective force is applied to the circumferential nodes aligned with the two radial

bearings. The assembly is subjected to an impulse acceleration and the response is

simulated over a 2 ms time interval. The elements at the base of the circular portion of

the shaft experience plastic deformation and contribute to increased deformation at the

tip. The tip deflection is shown in Figure 7-23 for the full solution as well as the CMS

Chapter 7. Numerical Examples 124

solution with retention of 5% of the modes. The elastic solutions are essentially overlaid

but the CMS plastic solution deviates slightly from the full fidelity plastic solution with

only 5% retained modes. The peak plastic deformation is under-predicted by the CMS

solution because a portion of the plastic force is not projected on the modal coordinates.

The dynamic problem is simulated with 32% less computational effort than the full

fidelity solution but the peak displacement at 1.7ms is under-predicted by 4%. The

accuracy of the modal solution can be improved by increasing the number of retained

modes or incorporating residual flexibility, described in Section 6.2.2.

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 0.0005 0.001 0.0015 0.002

Simulation Time (s)

T
ip

 D
is

p
la

ce
m

en
t

(i
n

)

Elastic-Full Fidelity Elastic-5% CMS

Plastic-Full Fidelity Plastic-5% CMS

Plastic-5% CMS-Residual Flexibility

Figure 7-23: Mechanism Shaft Tip Deflection

As shown in Figure 7-23, the accuracy of the CMS plastic solution with 5% retained

modes is essentially overlaid with the full solution response when residual flexibility is

incorporated, but with 19% reduction in computational effort. The response with 100%

of the retained modes is equivalent to the full fidelity solution and does not result in a

loss in accuracy.

 125

Chapter 8

Summary and Conclusions

 Modeling and simulation are becoming an increasingly important aspect of the

design process for a wide range of products. Budget and schedule goals are driving

products to be developed and fielded with less time for design and development and with

higher expectations for quality and reliability. These design pressures are especially high

for complex mechanisms used in aerospace and automotive applications. Since it is not

feasible, or impossible, to experimentally test every possible normal and abnormal

operational requirement of a complex mechanism, modeling and simulation can help fill

the gap.

 Mechanisms that are composed of many components that receive relatively low

loading relative to the strength of the part and are primarily expected to move as a rigid

part or assembly can be modeled using rigid body dynamic techniques. Such techniques

can greatly decrease the computational time required to solve a dynamic problem when

compared to a full fidelity simulation because the size of the equations of motion solved

at each increment are dramatically reduced. This computational efficiency can be

preserved and the accuracy of the simulation can be improved by selectively modeling

highly stressed components with a modal representation. Such an enhancement can be

very effective if the vast majority of the parts can still be approximated as rigid bodies.

The fixed interface CMS method has emerged as a very popular technique for

Chapter 8. Summary and Conclusions 126

incorporating flexibility within a primarily rigid body simulation. Since all of the

boundary degrees of freedom are retained without any reduction, the fixed interface CMS

method can easily be incorporated within a simulation without substantial setup required.

The CMS representation is determined independent of the rigid body simulation and only

solved once, with only the modal information being required for the dynamic simulation.

 The limitation of the application of CMS methods to primarily rigid body

simulations is that the response is limited to a linear-elastic assumption. An enhanced

framework for solving of non-linear dynamic problems utilizing fixed interface CMS has

been proposed and investigated in this dissertation. This enhancement can extend the

utility of currently available techniques to include the ability to adequately simulate the

non-linear responses associated with plastic deformation of components. The stress

within each element is determined from the CMS representation and evaluated against a

user defined yield criteria, such as von Mises. If the effective stress within any element

has exceeded the yield strength of the material, the plastic deformation is determined

using classical plasticity theory.

 An equivalent force is calculated to provide the predicted amount of plastic

deformation and introduced into the reduced CMS representation of the equations of

motion. The pseudoforce allows the plastic deformation to be induced purely by a force

without requiring modification to the original CMS representation. This allows the

remainder of the dynamic solution to continue just as it would for any elastic response.

Since the equations of solved incrementally, the pseudoforce is never completely

unloaded and remains to represent the plastic set that has been induced by the applied

Chapter 8. Summary and Conclusions 127

loading. The strains remain irreversible by maintaining a measure of the effective plastic

strain within each element.

 The proposed framework can be integrated within a primarily rigid body dynamic

code as an external subroutine that returns a force based on an input modal displacement.

If the step remains elastic, the additional algorithms are not required and the only impact

on the number of computations is the stress calculation. If this calculation is limited to

specific highly-stressed regions of the component, the computation expense can be

further reduced. The procedure required to induce the plastic deformation can be more

computationally expensive than a direct method due to the required transformations

between modal and global coordinate systems. The benefits and disadvantages of the

proposed method are somewhat dependent on the specific problem of interest but

significant benefits can be realized for primarily rigid body dynamic applications.

8.1 Future Work

 The computational framework developed in this dissertation was investigated using

custom Matlab code found within the Appendices. The intent was to demonstrate the

utility and charactistics of the method on a small scale using a high-level code. Many of

the calculations performed within the Matlab code should ideally be generated by a

commercial rigid body dynamic code, with these non-linear calculations performed

within a supplemental set of subroutines. For the programming in this dissertation, little

emphasis was placed on improving the efficiency and minimizing memory storage

requirements since the primary goal was to develop an educational understanding.

Computational expense can be reduced by improving the efficiency of the code and

transitioning to a general purpose programming language.

Chapter 8. Summary and Conclusions 128

 The numerical examples provided in Chapter 7 were not validated against

experimental results. The accuracy of the non-linear CMS solutions were based on the

full-fidelity finite element results, with selected comparisons to results from a

commercial finite element package or analytical solutions. More complete measures of

accuracy can be obtained through a rigorous validation with experimental data. All

numerical and experimental analyses require assumptions that must be critically

evaluated during any verification or validation activities.

 The primary motivation for the development of the non-linear CMS framework was

to computationally simulate the dynamic performance of complex mechanisms under a

wide variety of loading conditions. The choice of element formulations, yield functions,

and constitutive models reflects this influence and is not indicitave of the limitations of

the method. Capabilities could easily be extended to include a wide variety of more

complex elemental formulations, damping models, yield functions, etc. Only a limited

set of options were investigated with the application of traditional, rate-independent,

plasticity formulations but the method can be extended to more complex models.

 The goal of this dissertation was to present the theoretical formulation of a newly

developed framework for dynamic simulation and present numerical examples to

demonstrate potential applications to indicate the accuracy with a given set of

assumptions. Using the same theoretical formulation, the method can easily be expanded

to include a much wider range of capabilities. When applied to other applications, the

assumptions must be clearly understood with a thorough investigation of the convergence

properties of the results obtained.

 129

Appendices

Appendix A Matlab Code for Finite Element Setup ...130

Appendix B Matlab Code for Non-linear CMS ..154

Appendix C Supplemental Matlab Code...171

 130

Appendix A

Matlab Code for Finite Element Setup

 This appendix contains the Matlab code associated with the generation of the global

mass, damping, and stiffness matrices of the structure. The main function, Master3D.m,

calls all subroutines and performs some of the ancillary calculations prior to the

integration of the equations of motion. The input data is read from other subroutines as

well as Excel files that contain the nodal and elemental data for a substructure.

function Master3D
clear;clc;

% Input Parameters
mesh=1;
[meshfile,numn,nume,E,Nu,rho,BndN0,BndNF,BndN,FP,F,Pbc,Fbc,gtype,...
 numbndM]=InputParameters(mesh);

% Other Input Parameters
stype=1; % Solver type - 1=MatlabEig, 2=Lanczos
rtype=2; % Reduction type - 1=none, 2=CraigBampton
DirMod=0; % Only used if rtype=1, 0- Direct Solution, 1- Modal Solution
if rtype==1
 Nmodes=3*numn;
elseif rtype==2
 %Nmodes=252;%108;%big;
 Nmodes=big;
end
zeta=0; % Modal Damping Parameter

% Read Mesh Data From Excel Files
[nodes,elements] = ReadMeshData(meshfile,numn,nume);

% Generate D Matrix - Isotropic Elasticity
[D]=ElasticityIsotropic(E,Nu); %Override Later

% Generate Mass and Stiffness Matrix
[M,K,Pstrain,Pstress,detJstore,Bstore,G_hatstore,Kelstore] = ...
 IsoHexMKBubble(nodes,elements,D,rho,gtype);
F0=F;

% Sanity Check-Calculate Mass of Structure

Appendix A. Matlab Code for Finite Element Setup 131

cmass=0;
if cmass==1
 mass=0;
 for i=1:3*numn
 for j=1:3*numn
 mass=mass+abs(M(i,j));
 end
 end
 mass=mass/3;
end

% Generate Lumped Mass Matrix (Diagonal)
lmass=1; % Inertia Matrix - 0=Consistent, 1=Lumped
if lmass==1
 mass=0;
 for i=1:3*numn
 for j=1:3*numn
 mass=mass+abs(M(i,j));
 end
 end
 mass=mass/3;
 Ml(1:3*numn,1:3*numn)=0;
 sumdiag=0;
 for i=1:3*numn
 sumdiag=sumdiag+M(i,i);
 end
 mscale=3*mass/sumdiag;
 for i=1:3*numn
 Ml(i,i)=M(i,i)*mscale;
 end
 M=Ml;
end

% Sanity Check-Calculate Mass of Structure
cmass=0;
if cmass==1
 mass=0;
 for i=1:3*numn
 for j=1:3*numn
 mass=mass+abs(M(i,j));
 end
 end
 mass=mass/3;
end

% Sanity Check-Calculate Normal Modes of Structure
cmodes=0;
if cmodes == 1
 [modes,omega] = MatlabEig(M,K,3*numn);
 omega(:,1:3)
 MPlot=[12];
 xlswrite('M-K_Matrices',modes,'modes')
 ModePlots(modes,nodes,elements,MPlot);
 return
end

% Apply Appropriate Boundary Conditions to Substructure
[IntN,K,PTstrain,PTstress,Pbc,Fbc,Tdisp]=BoundaryConditions(BndN,BndN0,..

.
 elements,mesh,numn,nume,Pbc,Fbc,K,Pstrain,Pstress);

% Sanity Check-Calculate Normal Modes of Structure
cmodes=0;

Appendix A. Matlab Code for Finite Element Setup 132

if cmodes == 1
 [modes,omega] = MatlabEig(M,K,size(M,2));
 omega
 return
end

% Use Damping
usedamp=0;
if usedamp == 1
 [Nc,lambdac] = MatlabEig(M0,K0,Nmodes);
 lambdac=abs(lambdac);
 for i=1:Nmodes;
 C0(i,i)=2*zeta*(2*pi*lambdac(i));
 end
 invNc=sparse(inv(Nc));
 C0=invNc'*C0*invNc;
else
 C0(1:3*numn,1:3*numn)=0;
end

% Apply Reduction Method
M0=M;
K0=K;
if rtype == 1
 PHI=eye(Nmodes);
 Pf=1; % Placeholder for Newmark
 Pu=1; % Placeholder for Newmark
 RF=1; % Placeholder for Newmark
 if DirMod==0 % Full Fidelity Solution
 %C=C0;
 C=zeros(3*numn); % To turn off damping, debugging
 %M=zeros(3*numn); % To turn off inertia, debugging
 N=eye(3*numn);
 elseif DirMod==1 % Full Modal Solution
 % Normalize Modal Matrix
 [N,lambda] = MatlabEig(M,K,Nmodes);
 Nscale=N'*M*N;
 for i=1:Nmodes
 for j=1:Nmodes
 N(i,j)=N(i,j)/sqrt(Nscale(j,j));
 end
 end
 for i=1:Nmodes;
 C(i,i)=2*zeta*(2*pi*lambda(i));
 end
 M=eye(Nmodes);
 clear K
 for i=1:Nmodes;
 K(i,i)=(lambda(i)*2*pi)^2;
 end
 if mesh >= 8
 FN(1:Nmodes,1)=N'*F(1:3*numn,1);
 end
 PTstrain=PTstrain*N;
 PTstress=PTstress*N;
 end
elseif rtype == 2 % CMS Solution
 numbnd=size(BndN,2);
 Tmodes=Nmodes+3*numbnd;

 [Mbar,Kbar,Mn,Kn,PHI] = ...
 CraigBampton(M,K,Nmodes,Tmodes,stype,BndN,IntN);

Appendix A. Matlab Code for Finite Element Setup 133

 % Determine Effective Modal Mass
 checkmeff=0;
 if checkmeff==1
 numM0=size(M,1);
 [Gamma,Gamma3,meff,meff3]=...
 EffectiveModalMass(numM0,numbnd,Mn,Kn,mass);
 return
 end

 % Reorder the Force Vector to Match Inertia and Damping Matrices
 [Fo(1:3*numn,1),P]=Order2(F(1:3*numn,1),IntN,BndNF,BndN0);
 Fq=PHI'*Fo;

 % Orthonormalize the Inertia and Damping Matrices
 [N,lambda,FqO,numrgd]=...
 Orthonormalize(Mbar,Kbar,Fq,Nmodes,Tmodes,numbndM);

 % Generate Conversion Matrices
 Pf=N'*PHI'*P;
 Pu=P'*PHI*N;
 size(N')
 Y=eye(Tmodes-numrgd);

 % Populate C Matrix for Modal Damping
 moddamp=0; % 0 = No Modal Damping, 1 = Use Modal Damping
 C(1:Nmodes-numrgd,1:Nmodes-numrgd)=0;
 if moddamp==1
 for i=1:Nmodes-numrgd;
 C(i,i)=2*zeta*(2*pi*lambda(i));
 end
 end

 M=eye(Tmodes-numrgd); % After Orthonormalization, Inertia is

Itentity
 clear K % Clear Prior to Storing Eigenvalues
 K(1:Tmodes-numrgd,1:Tmodes-numrgd)=0;
 for i=1:Tmodes-numrgd;
 K(i,i)=(lambda(i)*2*pi)^2;
 end
 K=sparse(K);

 % Residual Flexibility Calculation
 useRF=0;
 if useRF == 1
 RF=sparse(K0\eye(3*numn)-Pu*(K\Pf));
 else
 RF=1;
 end
end

%% Generate Force Vector for Axial Load
if mesh==3
 mesh=1;
end
if mesh==2
 T0=0;
 TF=0.001;
 Tstep=1E-6;
 numS=round((TF-T0)/Tstep);
 % Create Force Vector
 t=0;
 d=.0004;
 Fu(1:3*numn,1)=F(1:3*numn,1);

Appendix A. Matlab Code for Finite Element Setup 134

 for i=2:numS
 t=t+Tstep;
 if t < d
 Fu(1:3*numn,i)=Fu(1:3*numn,1)*(1/2*(1-cos(pi()*t/d)));
 elseif t < (TF-d)
 Fu(1:3*numn,i)=Fu(1:3*numn,1);
 else
 Fu(1:3*numn,i)=Fu(1:3*numn,1)*(1/2*(1-cos(pi()*(TF-t)/d)));
 end
 end
 Fu(1:3*numn,1)=0; % Set force at first time step equal to 0

 if rtype == 1
 if DirMod == 0
 F=Fu;
 elseif DirMod == 1
 for i=2:numS
 FN(1:Nmodes,i)=N'*Fu(1:Nmodes,i);
 end
 F=FN;
 end
 end
 if rtype == 2
 t=0;
 for i=2:numS
 t=t+Tstep;

 if t < d
 FqO(1:Nmodes,i)=FqO(1:Nmodes,1)*(1/2*(1-cos(pi()*t/d)));
 elseif t < (TF-d)
 FqO(1:Nmodes,i)=FqO(1:Nmodes,1);
 else
 FqO(1:Nmodes,i)=FqO(1:Nmodes,1)*(1/2*(1-cos(pi()*(TF-

t)/d)));
 end
 end
 F=FqO;
 end
elseif mesh==1%9 % Use for Liu Beam
 T0=0;
 TF=0.005;
 Tstep=1E-6;
 numS=round((TF-T0)/Tstep);
 Fu=F0;
 F(1:3*numn,1:numS)=0;
 for i=1:numS
 F(1:3*numn,i)=Fu(1:3*numn,1);
 end
 Fu=F;
 if rtype == 1
 if DirMod == 1
 FNN(1:Nmodes,1:numS)=0;
 for i=2:numS
 FNN(1:Nmodes,i)=FN(1:3*numn,1);
 end
 F=FNN;
 end
 elseif rtype == 2
 FqO(1:size(N,2),2:numS)=0;
 for i=2:numS
 FqO(:,i)=FqO(:,1);
 end

Appendix A. Matlab Code for Finite Element Setup 135

 F=sparse(FqO);
 Fu=sparse(Fu);
 end
elseif mesh==11
 T0=0;
 TF=0.002;
 Tstep=1E-6;
 numS=round((TF-T0)/Tstep);
 % Create Force Vector
 t=0;
 d=.001;
 Fu(1:3*numn,1:numS)=0;
 Fu(1:3*numn,1)=F(1:3*numn,1);
 for i=2:numS
 t=t+Tstep;
 if t < d
 Fu(1:3*numn,i)=Fu(1:3*numn,1)*(1/2*(1-cos(2*pi()*t/d)));
 else
 Fu(1:3*numn,i)=0;
 end
 end
 Fu(1:3*numn,1)=0; % Set force at first time step equal to 0
 Fu=sparse(Fu);

 if rtype == 1
 if DirMod == 0
 F=sparse(Fu);
 elseif DirMod == 1
 FN(1:Nmodes,1:numS)=0;
 for i=2:numS
 FN(1:Nmodes,i)=N'*Fu(1:Nmodes,i);
 end
 F=FN;
 end
 end
 if rtype == 2
 FqO(1:size(N,2),2:numS)=0;
 for i=1:numS
 FqO(:,i)=Pf*Fu(:,i);
 end
 F=sparse(FqO);
 end
end

% Calculation of Static Solution
static=0;
if static==1
 u=K\Fu(1:3*numn,600);
 DefPlots(nodes,u)
 return
end

[X] = NewmarkIso(M,M0,C,C0,K,K0,Fu,F,T0,TF,Tstep,nodes,elements,D,N,...
 rtype,DirMod,Pbc,Fbc,mesh,Pf,Pu,RF,PTstrain,PTstress,detJstore,...
 Bstore,G_hatstore,Kelstore,Tdisp);

u=X;

if mesh == 1
 eplot=8;
 udef=u(3*(eplot-1)+3,1:numS);
elseif mesh == 2
 eplot=1;

Appendix A. Matlab Code for Finite Element Setup 136

 udef=u(3*(eplot-1)+3,1:numS);
elseif mesh == 9
 eplot=105;
 udef=u(3*(eplot-1)+3,1:numS);
elseif mesh == 11
 eplot=14;
 udef=u(3*(eplot-1)+2,1:numS);
end

plotincr=20;
countm=0;
for i=1:numS
 if i>=numS/plotincr*countm
 countm=countm+1;
 udefp(1,countm)=udef(1,i);
 end
end

% Determine Maximum Deflection
maxd=udef(1,1);
maxs=1;
for i=1:numS
 maxn=udef(1,i);
 if maxn < maxd
 maxd=maxn;
 maxs=i;
 end
end
maxd

end % End Function

Appendix A. Matlab Code for Finite Element Setup 137

function [IntN,K,PTstrain,PTstress,Pbc,Fbc,Tdisp]=...
 BoundaryConditions(BndN,BndN0,elements,mesh,numn,nume,Pbc,Fbc,K,...
 Pstrain,Pstress)

% Create Vector of Interface Nodes
numbnd=size(BndN,2);
BndNS=sort(BndN);
IntN(1:(numn-numbnd))=0;
c=0;
for i=1:BndNS(1)-1
 c=c+1;
 IntN(c)=i;
end
for i=1:numbnd-1
 for j=BndNS(i)+1:BndNS(i+1)-1
 c=c+1;
 IntN(c)=j;
 end
end
for i=BndNS(numbnd)+1:numn
 c=c+1;
 IntN(c)=i;
end

runFbc=0;
if runFbc==1;
 % Generate Force BC Matrix
 Fbc(1:3*numn,1:3*numn)=0;
 for i=1:3*numn
 Fbc(i,i)=1;
 end
 if mesh==1
 for i=[4,7,9,11]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0];
 end
 for i=[1,8]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1];
 end
 for i=[8]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1];
 end
 Fbc=sparse(Fbc);
 %save('LiuBeamCrude1Fbc.mat','Fbc')
 elseif mesh==2
 for i=[21,22,43,44]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0];
 end
 for i=[21,22]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1];
 end
 for i=[21]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1];
 end
 Fbc=sparse(Fbc);
 %save('RectBeam2Fbc.mat','Fbc')
 elseif mesh==3
 for i=[4,7,9,11]

Appendix A. Matlab Code for Finite Element Setup 138

 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0];
 end
 for i=[9,11]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1];
 end
 for i=[9,11]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1];
 end
 Fbc=sparse(Fbc);
 save('LiuBeamCrude3Fbc.mat','Fbc')
 elseif mesh==9
 for i=[45,55,100,110]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0];
 end
 for i=[50,105]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1];
 end
 for i=[105]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1];
 end
 Fbc=sparse(Fbc);
 %save('LiuBeamCrude2Fbc.mat','Fbc')
 elseif mesh==11
 for i=[19,20,22,24,90,91,92,93,154]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 1 0; 0 0 0];
 end
 for i=[90,154]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[0 0 0; 0 1 0; 0 0 1];
 end
 for i=[154]
 m=3*(i-1);
 Fbc(m+1:m+3,m+1:m+3)=[1 0 0; 0 0 0; 0 0 1];
 end
 Fbc=sparse(Fbc);
 %save('PWMesh1Fbc.mat','Fbc')
 end
end

% Generate Boundary Condition Matrix
runPbc=0;
if runPbc == 1
 % Apply Boundary Conditions
 Pbc(1:3*numn,1:3*numn)=1;
 PbcScale=10^6;
 if mesh==1
 % Constrain boundary nodes in the z direction
 for i=[4,7,9,11]
 m=3*(i-1);
 for j=[4,7,9,11]
 n=3*(j-1);
 for k=3:3 % Only constrain z direction
 for l=3:3 % Only constrain z direction
 Pbc(m+k,n+l)=PbcScale;
 end
 end

Appendix A. Matlab Code for Finite Element Setup 139

 end
 end
 % Constrain boundary nodes in the x direction
 for i=[1,8]
 m=3*(i-1);
 for j=[1,8]
 n=3*(j-1);
 for k=1:1
 for l=1:1
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 % Constrain boundary nodes in the y direction
 for i=[8]
 m=3*(i-1);
 for j=[8]
 n=3*(j-1);
 for k=2:2
 for l=2:2
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 %save('LiuBeamCrude1Pbc.mat','Pbc')
 elseif mesh==2
 % Constrain boundary nodes in the z direction
 for i=[21,22,43,44]
 m=3*(i-1);
 for j=[21,22,43,44]
 n=3*(j-1);
 for k=3:3 % Only constrain z direction
 for l=3:3 % Only constrain z direction
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 % Constrain boundary nodes in the x direction
 for i=[21,22]
 m=3*(i-1);
 for j=[21,22]
 n=3*(j-1);
 for k=1:1
 for l=1:1
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 % Constrain boundary nodes in the y direction
 for i=[21]
 m=3*(i-1);
 for j=[21]
 n=3*(j-1);
 for k=2:2
 for l=2:2
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end

Appendix A. Matlab Code for Finite Element Setup 140

 end
 %save('RectBeam2Pbc.mat','Pbc')
 elseif mesh==3
 % Constrain boundary nodes in the z direction
 for i=[4,7,9,11]
 m=3*(i-1);
 for j=[4,7,9,11]
 n=3*(j-1);
 for k=3:3 % Only constrain z direction
 for l=3:3 % Only constrain z direction
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 % Constrain boundary nodes in the x direction
 for i=[9,11]
 m=3*(i-1);
 for j=[9,11]
 n=3*(j-1);
 for k=1:1
 for l=1:1
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 % Constrain boundary nodes in the y direction
 for i=[9,11]
 m=3*(i-1);
 for j=[9,11]
 n=3*(j-1);
 for k=2:2
 for l=2:2
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 save('LiuBeamCrude3Pbc.mat','Pbc')
 elseif mesh==9
 % Constrain boundary nodes in the z direction
 for i=[45,55,100,110]
 m=3*(i-1);
 for j=[45,55,100,110]
 n=3*(j-1);
 for k=3:3 % Only constrain z direction
 for l=3:3 % Only constrain z direction
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 % Constrain boundary nodes in the x direction
 for i=[50,105]
 m=3*(i-1);
 for j=[50,105]
 n=3*(j-1);
 for k=1:1
 for l=1:1
 Pbc(m+k,n+l)=PbcScale;
 end
 end

Appendix A. Matlab Code for Finite Element Setup 141

 end
 end
 % Constrain boundary nodes in the y direction
 for i=[105]
 m=3*(i-1);
 for j=[105]
 n=3*(j-1);
 for k=2:2
 for l=2:2
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 %save('LiuBeamCrude2Pbc.mat','Pbc')
 elseif mesh==11
 % Constrain boundary nodes in the z direction
 for i=[19,20,22,24,90,91,92,93,154]
 m=3*(i-1);
 for j=[19,20,22,24,90,91,92,93,154]
 n=3*(j-1);
 for k=3:3 % Only constrain z direction
 for l=3:3 % Only constrain z direction
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 % Constrain boundary nodes in the x direction
 for i=[90,154]
 m=3*(i-1);
 for j=[90,154]
 n=3*(j-1);
 for k=1:1
 for l=1:1
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 % Constrain boundary nodes in the y direction
 for i=[154]
 m=3*(i-1);
 for j=[154]
 n=3*(j-1);
 for k=2:2
 for l=2:2
 Pbc(m+k,n+l)=PbcScale;
 end
 end
 end
 end
 %save('PWMesh1Pbc.mat','Pbc')
 end % End Mesh Conditional
end % End runPbc Loop

for i=1:3*numn
 for j=1:3*numn
 K(i,j)=K(i,j)*Pbc(i,j);
 end
end

% Generate Displacement Transformation Matrix

Appendix A. Matlab Code for Finite Element Setup 142

Tdisp(1:24*nume,1:3*numn)=0;
for e=1:nume
 for j=1:8
 % Transformation from Global to Organized by Element
 node=elements(e,j);
 m=24*(e-1)+3*(j-1);
 n=3*(node-1);
 Tdisp(m+1:m+3,n+1:n+3)=[1 0 0 ; 0 1 0 ; 0 0 1];
 end
end
PTstrain=sparse(Pstrain*Tdisp);
PTstress=sparse(Pstress*Tdisp);

end % End Subfunction

Appendix A. Matlab Code for Finite Element Setup 143

function [meshfile,numn,nume,E,Nu,rho,BndN0,BndNF,BndN,FP,F,Pbc,Fbc,...
 gtype,numbndM]= InputParameters(mesh)

if mesh == 1
 meshfile = 'LiuBeamCrude1.xls';
 gtype=4;
 numn = 110;
 nume = 40;
 E = 30E6;
 Nu = 0.3;
 rho(1:nume) = 0.000733;
 BndN0=[1,4,7,8,9,11];
 BndNF=[2,3,5,6,10,12,16:19,30:33,48:51,59:62];
 BndN=[BndNF BndN0];
 Pbc=0;
 Fbc=0;
 load LiuBeamCrude1Pbc.mat
 load LiuBeamCrude1Fbc.mat
 numbndM=7;
 Pc=444.444444;
 FP=-.625*Pc*3/4;
 F(1:3*numn,1)=0;
 for i=1:size(BndNF,2)
 j=BndNF(1,i);
 F(3*(j-1)+3,1)=2*FP;
 end
 for i=[3,6,10,12] % End Points
 F(3*(i-1)+3,1)=FP;
 end
elseif mesh == 2
 meshfile = 'RectBeamMesh2.xls';
 gtype=1;
 numn = 44;
 nume = 10;
 E = 29E6;
 Nu = 0.29;
 rho(1:nume) = 0.0000007485;
 BndN0=[21,22,43,44];
 BndNF=[1,2,23,24];
 BndN=[BndNF BndN0];
 numbndM=7;
 load RectBeam2Pbc.mat
 load RectBeam2Fbc.mat
 FP=400/4;
 F(1:3*numn,1)=0;
 for i=1:size(BndNF,2)
 j=BndNF(1,i);
 F(3*(j-1)+3,1)=FP;
 end
 MPlot=[10,11,12];
elseif mesh == 3
 meshfile = 'LiuBeamCrude1.xls';
 gtype=4;
 numn = 110;
 nume = 40;
 E = 30E6;
 Nu = 0.3;
 rho(1:nume) = 0.000733;
 BndN0=[4,7,9,11];
 BndNF=[2,5,16,33,51,59];
 BndN=[BndNF BndN0];
 load LiuBeamCrude3Pbc.mat

Appendix A. Matlab Code for Finite Element Setup 144

 load LiuBeamCrude3Fbc.mat
 numbndM=7;
 FP=-850*3/4; % For Center
 F(1:3*numn,1)=0;
 for i=1:size(BndNF,2)
 j=BndNF(1,i);
 F(3*(j-1)+3,1)=2*FP;
 end
 for i=[16,33,51,59] % End Points
 F(3*(i-1)+3,1)=FP;
 end

elseif mesh == 9
 meshfile = 'LiuBeamCrude2.xls';
 gtype=2;
 numn = 110;
 nume = 40;
 E = 30E6;
 Nu = 0.3;
 rho(1:nume) = 0.000733;
 BndN0=[45,50,55,100,105,110];
 BndNF=[1:11,56:66]; % Original
 BndN=[BndNF BndN0];
 load LiuBeamCrude2Pbc.mat
 load LiuBeamCrude2Fbc.mat
 numbndM=7;
 Pc=444.444444;
 FP=-.625*Pc*3/4; % Original
 F(1:3*numn,1)=0;
 for i=1:size(BndNF,2)
 j=BndNF(1,i);
 F(3*(j-1)+3,1)=2*FP;
 end
 for i=[1,11,56,66] % Original and Every Other
 F(3*(i-1)+3,1)=FP;
 end
elseif mesh == 10
 meshfile = 'LiuBeamCrude3.xls';
 gtype=2;
 numn = 132;
 nume = 50;
 E = 30E6;
 Nu = 0.3;
 rho = 0.000733;
 BndN0=[25,26,35,36];
 BndNF=[29:34,109:124];
 BndN=[BndNF BndN0];
 Pbc=0;
 load LiuBeamCrude3Pbc.mat
 Pc=444.444444;
 FP=-.625*Pc*3/4;
 F(1:3*numn,1)=0;
 for i=1:size(BndNF,2)
 j=BndNF(1,i);
 F(3*(j-1)+3,1)=2*FP;
 end
 for i=[1,11,56,66]
 F(3*(i-1)+3,1)=FP;
 end
elseif mesh == 11
 meshfile = 'PWMesh1.xls';
 gtype=3;
 numn = 236;

Appendix A. Matlab Code for Finite Element Setup 145

 nume = 156;
 E = 30E6;
 Nu = 0.3;
 rho(1:72) = 0.000733;
 rho(73:96) = 0.026;
 rho(97:156) = 0.000733;
 BndN0=[19,20,22,24,90,91,92,93,154];
 BndNF=[14];
 BndN=[BndNF BndN0];
 numbndM=7;
 load PWMesh1Pbc.mat
 load PWMesh1Fbc.mat
 FP=2000*.25*pi*.1^2/16;
 F(1:3*numn,1)=0;
 for i=[14]
 F(3*(i-1)+2,1)=16*FP;
 end
end

Fsum=0;
for i=1:3*numn
 Fsum=Fsum+F(i,1);
end

end % End Subfunction

Appendix A. Matlab Code for Finite Element Setup 146

function [M,K,Pstrain,Pstress,detJstore,Bstore,G_hatstore,Kelstore] = ...
 IsoHexMKBubble(nodes,elements,D,rho,gtype)

% Options
imode=2; % 0 for None, 1 for Centroid, 2 for Average Correction,
 % 3 for Simo, 4 for Nastran
sri=0; % Selectively Reduced Integration: 0 for Off, 1 for On

numn=size(nodes,1);
nume=size(elements,1);

% Initialize Matrices
M(1:3*numn,1:3*numn)=0;
K(1:3*numn,1:3*numn)=0;
e(1:8)=0;
xyz(1:8,1:3)=0;
dNdC(1:3,1:8)=0;
dNdC0(1:3,1:8)=0;
dPdC(1:3,1:8)=0;
N(1:3,1:24)=0;
B(1:6,1:24)=0;
B0(1:6,1:24)=0;
G(1:6,1:9)=0;
G_hat(1:6,1:9)=0;
detJstore(1:8*nume,1)=0;
Bstore(1:8*nume,1:6,1:24)=0;
G_hatstore(1:8*nume,1:6,1:9)=0;
Kelstore(1:nume,1:24,1:24)=0;
Pstrain(1:48*nume,1:24*nume)=0;
Jsum(1:6)=0;
Bsum(1:6,1:24)=0;
Bsri(1:8,1:6,1:24)=0;
detJsri(1:8)=0;
Gsri(1:8,1:6,1:9)=0;
D=sparse(D);

if gtype == 1
 psi= [+1 +1 +1 +1 -1 -1 -1 -1];
 eta= [-1 +1 +1 -1 -1 +1 +1 -1];
 zeta=[+1 +1 -1 -1 +1 +1 -1 -1];
 Csri=[1 2 5 6 ; % xy positive
 2 3 6 7 ; % xz positive
 1 2 3 4 ; % yz positive
 3 4 7 8 ; % xy negative
 1 4 5 8 ; % xz negative
 5 6 7 8]; % yz negative
elseif gtype == 2
 psi= [-1 +1 +1 -1 -1 +1 +1 -1];
 eta= [-1 -1 -1 -1 +1 +1 +1 +1];
 zeta=[+1 +1 -1 -1 +1 +1 -1 -1];
 Csri=[1 2 5 6 ; % xy positive
 5 6 7 8 ; % xz positive
 2 3 6 7 ; % yz positive
 3 4 7 8 ; % xy negative
 1 2 3 4 ; % xz negative
 1 4 5 8]; % yz negative
elseif gtype == 3
 psi= [-1 +1 +1 -1 -1 +1 +1 -1];
 eta= [-1 -1 +1 +1 -1 -1 +1 +1];
 zeta=[-1 -1 -1 -1 +1 +1 +1 +1];
 Csri=[5 6 7 8 ; % xy positive
 3 4 7 8 ; % xz positive
 2 3 6 7 ; % yz positive

Appendix A. Matlab Code for Finite Element Setup 147

 1 2 3 4 ; % xy negative
 1 2 5 6 ; % xz negative
 1 4 5 8]; % yz negative
elseif gtype == 4
 psi= [-1 -1 +1 +1 -1 -1 +1 +1];
 eta= [-1 -1 -1 -1 +1 +1 +1 +1];
 zeta=[-1 +1 +1 -1 -1 +1 +1 -1];
 Csri=[2 3 6 7 ; % xy positive
 5 6 7 8 ; % xz positive
 3 4 7 8 ; % yz positive
 1 4 5 8 ; % xy negative
 1 2 3 4 ; % xz negative
 1 2 5 6]; % yz negative
end

% Gauss Points for a 2x2x2 Array
gauss=8;
if gtype == 1
 psiG= [+1 +1 +1 +1 -1 -1 -1 -1]/3^.5;
 etaG= [-1 +1 +1 -1 -1 +1 +1 -1]/3^.5;
 zetaG=[+1 +1 -1 -1 +1 +1 -1 -1]/3^.5;
 wG(1:8)=1;
elseif gtype == 2
 psiG= [-1 +1 +1 -1 -1 +1 +1 -1]/3^.5;
 etaG= [-1 -1 -1 -1 +1 +1 +1 +1]/3^.5;
 zetaG=[+1 +1 -1 -1 +1 +1 -1 -1]/3^.5;
 wG(1:8)=1;
elseif gtype == 3
 psiG= [-1 +1 +1 -1 -1 +1 +1 -1]/3^.5;
 etaG= [-1 -1 +1 +1 -1 -1 +1 +1]/3^.5;
 zetaG=[-1 -1 -1 -1 +1 +1 +1 +1]/3^.5;
 wG(1:8)=1;
elseif gtype == 4
 psiG= [-1 -1 +1 +1 -1 -1 +1 +1]/3^.5;
 etaG= [-1 -1 -1 -1 +1 +1 +1 +1]/3^.5;
 zetaG=[-1 +1 +1 -1 -1 +1 +1 -1]/3^.5;
 wG(1:8)=1;
end

% Gauss Points for a 3x3x3 Array
gauss3=27;
bG=sqrt(0.6);
psiG3 = [-bG -bG -bG -bG -bG -bG -bG -bG -bG 0 0 ...
 0 0 0 0 0 0 0 +bG +bG +bG +bG +bG +bG +bG +bG +bG];
etaG3 = [-bG -bG -bG 0 0 0 +bG +bG +bG -bG -bG ...
 -bG 0 0 0 +bG +bG +bG -bG -bG -bG 0 0 0 +bG +bG +bG];
zetaG3= [-bG 0 +bG -bG 0 +bG -bG 0 +bG -bG 0 ...
 +bG -bG 0 +bG -bG 0 +bG -bG 0 +bG -bG 0 +bG -bG 0 +bG];
wpsiG3 = [5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8 5 5 5 5 5 5 5 5 5]/9;
wetaG3 = [5 5 5 8 8 8 5 5 5 5 5 5 8 8 8 5 5 5 5 5 5 8 8 8 5 5 5]/9;
wzetaG3= [5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5]/9;
wG3(1:27)=0;
for i=1:27
 wG3(i)=wpsiG3(i)*wetaG3(i)*wzetaG3(i);
end

% Calculate Mass and Stiffness Matrices
for i=1:nume
 for j=1:8
 e(1,j)=elements(i,j);
 for k=1:3
 xyz(j,k)=nodes(e(1,j),k);
 end

Appendix A. Matlab Code for Finite Element Setup 148

 end

 Mel(1:24,1:24)=0;
 Kel0(1:24,1:24)=0;
 if imode==4
 H_G(1:6,1:6)=0;
 E_G(1:6,1:24)=0;
 else
 H_G(1:9,1:9)=0;
 E_G(1:9,1:24)=0;
 end
 Gvol(1:6,1:9)=0;
 Vol=0;

 % Generate Mass Matrix
 for j=1:gauss3
 for k=1:8
 % Generate dNdC Matrix
 dNdC(1:3,k) = 1/8* ...
 [psi(k)*(1+eta(k)*etaG3(j))*(1+zeta(k)*zetaG3(j)) ;...
 eta(k)*(1+psi(k)*psiG3(j))*(1+zeta(k)*zetaG3(j)) ;...
 zeta(k)*(1+psi(k)*psiG3(j))*(1+eta(k)*etaG3(j))];
 end
 J=dNdC*xyz;
 detJ=det(J);

 for k=1:8
 % Generate N Matrix
 Nterm=(1+psi(k)*psiG3(j))*(1+eta(k)*etaG3(j))* ...
 (1+zeta(k)*zetaG3(j));
 N(1:3,3*(k-1)+1:3*(k-1)+3)=1/8*...
 [Nterm 0 0 ;...
 0 Nterm 0 ;...
 0 0 Nterm];
 end

 % Generate M Matrix
 Mel=Mel+rho(i)*wG3(j)*detJ*(N)'*N;
 end % End Gauss Loop

 % Generate Stiffness Correction Terms
 if imode==0 % For None
 % Placeholder
 elseif imode==1 % For Centroid
 % Placeholder
 elseif imode==2 % For Average Correction
 for j=1:gauss
 dPdC(1:3,1:3) = [-2*psi(j) 0 0 ;...
 0 -2*eta(j) 0 ;...
 0 0 -2*zeta(j)];

 for k=1:8
 % Generate dNdC Matrix
 dNdC(1:3,k) = 1/8* ...
 [psi(k)*(1+eta(k)*etaG(j))*(1+zeta(k)*zetaG(j)) ;...
 eta(k)*(1+psi(k)*psiG(j))*(1+zeta(k)*zetaG(j)) ;...
 zeta(k)*(1+psi(k)*psiG(j))*(1+eta(k)*etaG(j))];
 end
 J=dNdC*xyz;
 dPdxyz=J\dPdC;

 for k=1:3
 G(1:6,3*(k-1)+1:3*(k-1)+3) = ...

Appendix A. Matlab Code for Finite Element Setup 149

 [dPdxyz(1,k) 0 0 ;...
 0 dPdxyz(2,k) 0 ;...
 0 0 dPdxyz(3,k) ;...
 dPdxyz(2,k) dPdxyz(1,k) 0 ;...
 dPdxyz(3,k) 0 dPdxyz(1,k) ;...
 0 dPdxyz(3,k) dPdxyz(2,k)];
 end

 detJ2=det(J);
 Gvol=Gvol+wG(j)*detJ2*G;
 Vol=Vol+wG(j)*detJ2;
 end
 Gvol=Gvol/Vol;
 elseif imode==3; % For Simo
 % Placeholder
 end % End imode conditional

 % Generate Stiffness Matrix
 for j=1:gauss
 index=8*(i-1)+j;
 dPdC(1:3,1:3) = [-2*psi(j) 0 0 ;...
 0 -2*eta(j) 0 ;...
 0 0 -2*zeta(j)];

 for k=1:8
 % Generate dNdC Matrix
 dNdC(1:3,k) = 1/8* ...
 [psi(k)*(1+eta(k)*etaG(j))*(1+zeta(k)*zetaG(j)) ;...
 eta(k)*(1+psi(k)*psiG(j))*(1+zeta(k)*zetaG(j)) ;...
 zeta(k)*(1+psi(k)*psiG(j))*(1+eta(k)*etaG(j))];
 dNdC0(1:3,k) = 1/8* ...
 [psi(k) ;...
 eta(k) ;...
 zeta(k)];
 end
 J=dNdC*xyz;
 detJ=det(J);
 detJstore(index,1)=detJ;
 dNdxyz=J\dNdC;
 if imode==0 % For None
 J0=dNdC0*xyz;
 dPdxyz=J0\dPdC;
 elseif imode==1 % For Centroid
 J0=dNdC0*xyz;
 dPdxyz=J0\dPdC;
 elseif imode==2 % For Average Correction
 dPdxyz=J\dPdC;
 elseif imode==3 % For Simo
 J0=dNdC0*xyz;
 detJ0=det(J0);
 dPdxyz=J0\dPdC;
 elseif imode==4 % For Nastran
 J0=dNdC0*xyz;
 detJ0=det(J0);
 dPdxyz=-1/2*J0\dPdC;
 end

 % Calculate the Strain Displacement Matrix at the Centroid
 if j==1
 dNdxyz0=J\dNdC0;
 for k=1:8
 % Generate B0 Matrix
 B0(1:6,3*(k-1)+1:3*(k-1)+3) = ...

Appendix A. Matlab Code for Finite Element Setup 150

 [dNdxyz0(1,k) 0 0 ; ...
 0 dNdxyz0(2,k) 0 ; ...
 0 0 dNdxyz0(3,k) ; ...
 dNdxyz0(2,k) dNdxyz0(1,k) 0 ; ...
 dNdxyz0(3,k) 0 dNdxyz0(1,k) ; ...
 0 dNdxyz0(3,k) dNdxyz0(2,k)];
 end
 end

 for k=1:8
 % Generate B Matrix
 B(1:6,3*(k-1)+1:3*(k-1)+3) = ...
 [dNdxyz(1,k) 0 0 ; ...
 0 dNdxyz(2,k) 0 ; ...
 0 0 dNdxyz(3,k) ; ...
 dNdxyz(2,k) dNdxyz(1,k) 0 ; ...
 dNdxyz(3,k) 0 dNdxyz(1,k) ; ...
 0 dNdxyz(3,k) dNdxyz(2,k)];
 end
 Bstore(index,1:6,1:24)=B;

 for k=1:3
 G(1:6,3*(k-1)+1:3*(k-1)+3) = ...
 [dPdxyz(1,k) 0 0 ;...
 0 dPdxyz(2,k) 0 ;...
 0 0 dPdxyz(3,k) ;...
 dPdxyz(2,k) dPdxyz(1,k) 0 ;...
 dPdxyz(3,k) 0 dPdxyz(1,k) ;...
 0 dPdxyz(3,k) dPdxyz(2,k)];
 end

 % Additional Incompatible Modes (Simo)
 if imode==0
 % Placeholder
 elseif imode==1
 G_hat=G;
 G_hatstore(index,1:6,1:9)=G_hat;
 elseif imode==2
 G_hat=G-Gvol;
 G_hatstore(index,1:6,1:9)=G_hat;
 elseif imode==3
 Et(1:6,1:6) = ...
 [psi(j) 0 0 0 0 0 ;...
 0 eta(j) 0 0 0 0 ;...
 0 0 zeta(j) 0 0 0 ;...
 0 0 0 psi(j) eta(j) 0 ;...
 0 0 0 psi(j) 0 zeta(j) ;...
 0 0 0 0 eta(j) zeta(j)];
 Et(1:6,7:9) = ...
 [psi(j)*eta(j) psi(j)*zeta(j) 0 ;...
 -psi(j)*eta(j) 0 eta(j)*zeta(j) ;...
 0 -psi(j)*zeta(j) -eta(j)*zeta(j) ;...
 psi(j)^2-eta(j)^2 0 0 ;...
 0 psi(j)^2-zeta(j)^2 0 ;...
 0 0 eta(j)^2-zeta(j)^2];

 F0(1:6,1:3) = ...
 [J0(1,1)^2 J0(2,1)*J0(1,2) J0(3,1)*J0(1,3) ;...
 J0(1,2)*J0(2,1) J0(2,2)^2 J0(3,2)*J0(2,3) ;...
 J0(1,3)*J0(3,1) J0(2,3)*J0(3,2) J0(3,3)^2 ;...
 J0(1,1)*J0(2,1) J0(1,2)*J0(2,2) 0 ;...
 J0(1,1)*J0(3,1) 0 J0(1,3)*J0(3,3) ;...
 0 J0(2,2)*J0(3,2) J0(2,3)*J0(3,3)];

Appendix A. Matlab Code for Finite Element Setup 151

 F0(1:6,4:4) = ...
 [2*J0(1,1)*J0(1,2) ;...
 2*J0(2,1)*J0(2,2) ;...
 0 ;...
 J0(1,1)*J0(2,2)+J0(1,2)*J0(2,1) ;...
 0 ;...
 0];
 F0(1:6,5:5) = ...
 [2*J0(1,1)*J0(1,3) ;...
 0 ;...
 2*J0(3,1)*J0(3,3) ;...
 0 ;...
 J0(1,1)*J0(3,3)+J0(1,3)*J0(3,1) ;...
 0];
 F0(1:6,6:6) = ...
 [0 ;...
 2*J0(2,2)*J0(2,3) ;...
 2*J0(3,2)*J0(3,3) ;...
 0 ;...
 0 ;...
 J0(2,2)*J0(3,3)+J0(2,3)*J0(3,2)];

 G_hat=detJ0/detJ*inv(F0)'*Et;
 G_hatstore(index,1:6,1:9)=G_hat;
 elseif imode==4 % For Nastran
 clear G_hat
 G_hat(1:6,1:6)=0;
 G_hat(1:6,1:3)= 1/detJ0* ...
 [psi(j) 0 0 ;...
 0 eta(j) 0 ;...
 0 0 zeta(j) ;...
 0 0 0 ;...
 0 0 0 ;...
 0 0 0];
 G_hat(1:6,4:6)= 1/detJ0* ...
 [psi(j)*eta(j) 0 psi(j)*zeta(j) ;...
 psi(j)*eta(j) eta(j)*zeta(j) 0 ;...
 0 eta(j)*zeta(j) psi(j)*zeta(j) ;...
 0 0 0 ;...
 0 0 0 ;...
 0 0 0];
 G_hatstore(index,1:6,1:6)=G_hat;
 end

 H_G=H_G+wG(j)*detJ*G_hat'*D*G_hat;
 E_G=E_G+wG(j)*detJ*G_hat'*D*B;

 % Generate K Matrix
 Kel0=Kel0+wG(j)*detJ*(B)'*D*B;

 % Store SRI Variables
 if sri==1
 Bsri(j,1:6,1:24)=B;
 detJsri(j)=detJ;
 if imode==4
 Gsri(j,1:6,1:6)=G_hat;
 else
 Gsri(j,1:6,1:9)=G_hat;
 end
 end

 end % End Gauss Loop

Appendix A. Matlab Code for Finite Element Setup 152

 if sri==0 % No Selective Reduced Integration
 % Placeholder
 elseif sri==1 % Selective Reduced Integration
 Jsum(1:6)=0;
 Bsum(1:6,1:24)=0;
 for j=1:3
 for k=1:4
 m=Csri(j,k);
 n=Csri(j+3,k);
 Jsum(j)=Jsum(j)+detJsri(m);
 Jsum(j+3)=Jsum(j+3)+detJsri(n);
 Btemp(1,1:24)=Bsri(m,j+3,1:24);
 Btemp(2,1:24)=Bsri(n,j+3,1:24);
 Bsum(j,1:24)=Bsum(j,1:24)+detJsri(m)*Btemp(1,1:24);
 Bsum(j+3,1:24)=Bsum(j+3,1:24)+detJsri(n)*Btemp(2,1:24);
 end
 for k=1:4
 m=Csri(j,k);
 n=Csri(j+3,k);
 Bsri(m,j+3,1:24)=Bsum(j,1:24)/Jsum(j);
 Bsri(n,j+3,1:24)=Bsum(j+3,1:24)/Jsum(j+3);
 end
 end
 % Reform K Element Matrix
 if imode==4
 E_G(1:6,1:24)=0;
 else
 E_G(1:9,1:24)=0;
 end
 Kel0(1:24,1:24)=0;
 for j=1:8
 index=8*(i-1)+j;
 B(1:6,1:24)=Bsri(j,1:6,1:24);
 Bstore(index,1:6,1:24)=B;
 if imode==4
 G_hat(1:6,1:6)=Gsri(j,1:6,1:6);
 else
 G_hat(1:6,1:9)=Gsri(j,1:6,1:9);
 end
 detJ=detJsri(j);
 E_G=E_G+wG(j)*detJ*G_hat'*D*B;
 Kel0=Kel0+wG(j)*detJ*(B)'*D*B;
 end
 end % End sri Loop

 if imode==0
 a(1:9,1:24)=0;
 Kel=Kel0;
 else
 a=-H_G\E_G;
 Kel=Kel0+E_G'*a;
 end
 Kelstore(i,1:24,1:24)=Kel(1:24,1:24);

 n=24*(i-1);
 for j=1:gauss
 index=8*(i-1)+j;
 B(1:6,1:24)=Bstore(index,1:6,1:24);
 if imode==4
 G_hat(1:6,1:6)=G_hatstore(index,1:6,1:6);
 else
 G_hat(1:6,1:9)=G_hatstore(index,1:6,1:9);
 end

Appendix A. Matlab Code for Finite Element Setup 153

 m=6*(index-1);
 B_bar=sparse(B+G_hat*a);
 Pstrain(m+1:m+6,n+1:n+24)=B_bar;
 Pstress(m+1:m+6,n+1:n+24)=D*B_bar;
 end

 % Fill in M and K Matrices
 for j=1:8
 for k=1:8
 for m=1:3
 for n=1:3
 M(3*(e(j)-1)+m,3*(e(k)-1)+n)=M(3*(e(j)-1)+m, ...
 3*(e(k)-1)+n)+Mel(3*(j-1)+m,3*(k-1)+n);
 K(3*(e(j)-1)+m,3*(e(k)-1)+n)=K(3*(e(j)-1)+m, ...
 3*(e(k)-1)+n)+Kel(3*(j-1)+m,3*(k-1)+n);
 end
 end
 end
 end
end

% Generate Stress Transformation Matrix
Pstrain=sparse(Pstrain);
Pstress=sparse(Pstress);

end % End Subfunction

 154

Appendix B

Matlab Code for Non-linear CMS

 This appendix contains the Matlab codes used to solve the dynamic equations of

motion, include the plastic response. Individual subroutines are used to determine the

transformation matrices for conversion to CMS and orthonormal coordinate systems.

Most of the remaining subroutines are called from within the NewmarkIso.m subroutine,

including the determination of the state of stress in each element and the calculation of

the plastic deformation, if necessary.

function [Mbar,Kbar,Mn,Kn,PHI] = ...
 CraigBampton(M,K,Nmodes,Tmodes,stype,BndN,IntN)

numbnd=size(BndN,2);
numn=size(M,1)/3;

% Generate M and K Submatrices
for i=1:numbnd
 LB=3*(i-1)+1;
 LT=3*(BndN(i)-1)+1;
 for j=1:numbnd
 LBB=3*(j-1)+1;
 LTT=3*(BndN(j)-1)+1;
 Mbb(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2);
 Kbb(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2);
 end
 for j=1:numn-numbnd
 LBB=3*(j-1)+1;
 LTT=3*(IntN(j)-1)+1;
 Mbi(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2);
 Kbi(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2);
 end
end
for i=1:numn-numbnd
 LB=3*(i-1)+1;
 LT=3*(IntN(i)-1)+1;
 for j=1:numbnd
 LBB=3*(j-1)+1;
 LTT=3*(BndN(j)-1)+1;

Appendix B. Matlab Code for Non-linear CMS 155

 Mib(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2);
 Kib(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2);
 end
 for j=1:numn-numbnd;
 LBB=3*(j-1)+1;
 LTT=3*(IntN(j)-1)+1;
 Mii(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2);
 Kii(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2);
 end
end

% Assemble New Subdivided M and K Matrices
Mn = [Mii Mib ;
 Mbi Mbb];
Kn = [Kii Kib ;
 Kbi Kbb];

% Solve for Internal Normal Modes and Frequencies
if stype==1
 [phinbar,omegan]=MatlabEig(Mii,Kii,Nmodes);
 %save('LiuBeamCrude','phinbar','omegan');
elseif stype==2
 tol=.0001;
 choice=3;
 [phinbar,omegan]=Lanczos(Mii,Kii,choice,Nmodes,tol);
end

% Solve for Constraint Modes
phicbar=-Kii\Kib;

%Generate Tranformation Matrix PHI
PHI = [phinbar phicbar ;
 zeros(3*numbnd,Nmodes) eye(3*numbnd)];
Kbar=PHI'*Kn*PHI;
Mbar=PHI'*Mn*PHI;

end % End Subfunctions

Appendix B. Matlab Code for Non-linear CMS 156

function [dpe]=InternalResistingForceIso(nodes,elements,dstressVr,...
 updatep,detJstore,Bstore)

numn=size(nodes,1);
nume=size(elements,1);

% Initialize Matrices
e(1:8)=0;
dpe(1:3*numn,1)=0;

gauss=8;
if gauss == 8
 wG(1:8)=1;
end

index=0;
for i=1:nume
 for j=1:8
 e(j)=elements(i,j);
 end

 dpel(1:24,1)=0;
 for j=1:8
 index=index+1;
 if updatep(index)==1
 B(1:6,1:24)=Bstore(index,1:6,1:24);
 dpel=dpel+wG(j)*detJstore(index)*B'*dstressVr(1:6,index);
 end
 end

 % Fill in dp Vector
 for j=1:8
 for k=1:3
 m=3*(e(j)-1)+k;
 n=3*(j-1)+k;
 dpe(m,1)=dpe(m,1)+dpel(n,1);
 end
 end

end % End nume Loop

end % End Subfunction

Appendix B. Matlab Code for Non-linear CMS 157

function [u2] = NewmarkIso(M,M0,C,C0,K,K0,Fu,F,T0,TF,Tstep,nodes,...
 elements,D,N,rtype,DirMod,Pbc,Fbc,mesh,Pf,Pu,RF,PTstrain,PTstress,...
 detJstore,Bstore,G_hatstore,Kelstore,Tdisp)

Nmodes=size(M,2);
numn=size(M0,2)/3;
nume=size(elements,1);
numeG=8*nume;
numM0=3*numn;
Nstep=(TF-T0)/Tstep;
imax=3;
u2(1:numM0,1:Nstep)=0;
ddu2(1:numM0,1:2)=0;
u(1:Nmodes,1:2)=0;
ud(1:Nmodes,1:2)=0;
udd(1:Nmodes,1:2)=0;
ui(1:Nmodes,1:imax)=0;
udi(1:Nmodes,1:imax)=0;
uddi(1:Nmodes,1:imax)=0;
pe(1:Nmodes,1)=0;
dpe(1:Nmodes,1)=0;
peg(1:numM0,1)=0;
be(1:Nmodes,1:imax)=0;
ddui(1:Nmodes,1:imax)=0;
dui(1:Nmodes,1:imax)=0;
ddu2(1:numM0,1:imax)=0;
Deps(1:numeG,1:6,1:6)=0;
Beps(1:numeG,1:6,1:24)=0;
for i=1:numeG
 Deps(i,1:6,1:6)=D;
end
if size(RF,2)==1
 useRF=0;
else
 useRF=1;
end

alpha=0;
Beta=1/4*(1-alpha)^2;
gamma=1/2-alpha;
term=0;

M=sparse(M);
M0=sparse(M0);
C(1:Nmodes,1:Nmodes)=0;
C=sparse(C);
C0(1:numM0,1:numM0)=0;
K=sparse(K);
K0=sparse(K0);
F=sparse(F);

M0Pu=sparse(M0*Pu);
Kstar=sparse(M/(Tstep^2*Beta)+gamma*C/(Tstep*Beta)+K);
invKstar=sparse(Kstar\eye(Nmodes));
Kstar0=sparse(M0/(Tstep^2*Beta)+gamma*C0/(Tstep*Beta)+K0);
Kstar0Part=sparse(M0/(Tstep^2*Beta)+gamma*C0/(Tstep*Beta));
NT=N';

strainV(1:6,1:8*nume)=0;
stressV(1:6,1:8*nume)=0;
S(1:6,1:8*nume)=0;
e_p(1:6,1:8*nume)=0;
e_bar(1:8*nume)=0;

Appendix B. Matlab Code for Non-linear CMS 158

sigma_bar(1:8*nume)=0;
ptest(1:8*nume)=0;
pteste(1:nume)=0;
ptesti(1:8*nume)=0;
tcount=1;
time=Tstep;
pcount=0;
psum=0;
pj=0;
pjj=0;

for j=2:Nstep
 %disp(j)
 if j>=1350
 %term=20000;
 end
 tcount=tcount+1;
 time=time+Tstep;
 if tcount == 100
 disp(time)
 tcount=0;
 if mesh==1
 disp(u2(24,j-1))
 elseif mesh==9
 disp(u2(315,j-1))
 elseif mesh==11
 disp(u2(41,j-1))
 end
 end

 u(1:Nmodes,1)=u(1:Nmodes,2);
 ud(1:Nmodes,1)=ud(1:Nmodes,2);
 udd(1:Nmodes,1)=udd(1:Nmodes,2);

 ui(1:Nmodes,1)=u(1:Nmodes,1);
 astare(1:Nmodes,1)=-1/(Tstep*Beta)*ud(1:Nmodes,1)-...
 (1/(2*Beta)-1)*udd(1:Nmodes,1);
 vstare(1:Nmodes,1)=(1-gamma/Beta)*ud(1:Nmodes,1)+...
 (1-gamma/(2*Beta))*Tstep*udd(1:Nmodes,1);
 bstare(1:Nmodes,1)=M*astare(1:Nmodes,1)+C*vstare(1:Nmodes,1);
 dui(1:Nmodes,1)=0;
 du2(1:numM0,1)=0;
 for i=2:2 % Iterate Elastic Equations of Motion
 be(1:Nmodes,i)=F(1:Nmodes,j)-pe(1:Nmodes,1)-bstare(1:Nmodes,1)-

...
 (M/(Tstep^2*Beta)+C*gamma/(Tstep*Beta))*dui(1:Nmodes,i-1);
 ddui(1:Nmodes,i)=invKstar*be(1:Nmodes,i);
 dui(1:Nmodes,i)=dui(1:Nmodes,i-1)+ddui(1:Nmodes,i);
 ui(1:Nmodes,i)=ui(1:Nmodes,i-1)+ddui(1:Nmodes,i);
 [ddu2(1:numM0,1)]=DispConversionMG(ddui(1:Nmodes,i),Nmodes,...
 numM0,rtype,DirMod,N,Pu);
 if useRF==1
 ddu2(1:numM0,1)=ddu2(1:numM0,1)+RF*(Fu(1:numM0,j)-...
 peg(1:numM0,1));
 end
 du2(1:numM0,1)=du2(1:numM0,1)+ddu2(1:numM0,1);

 stressV_p=stressV;
 strainV_p=strainV;
 psum=0;
 pteste(1:nume)=0;
 [dstressV,dstrainV]=StrainStressIso(ddu2(1:numM0,1),nume,D,...
 Deps,psum,ptesti,pteste,PTstrain,PTstress,Beps,Tdisp);

Appendix B. Matlab Code for Non-linear CMS 159

 e_p_p=e_p;
 e_bar_p=e_bar;
 sigma_bar_p=sigma_bar;

 [e_p,Deps,ptest,e_bar,sigma_bar,peg,sumupdatep,dstressV,...
 stressV,R]=VMPlasticityIso(dstressV,stressV_p,e_p_p,D,...
 nodes,elements,e_bar_p,sigma_bar_p,dstrainV,ptesti,mesh,...
 detJstore,Bstore,2,Deps,Fbc);
 [pe]=ForceConversionGM(peg,Nmodes,numM0,rtype,DirMod,NT,Pf);
 strainV=strainV_p+dstrainV;
 end

 psum=0;
 for index=1:8*nume
 psum=psum+ptest(index);
 end

 %psum=0; % To Turn Off Plastic Deformation, Debugging
 if psum == 0
 u2(1:numM0,j)=u2(1:numM0,j-1)+du2(1:numM0,1);

 u(1:Nmodes,2)=ui(1:Nmodes,i);
 udd(1:Nmodes,2)=astare(1:Nmodes,1)+...
 1/(Tstep^2*Beta)*dui(1:Nmodes,i);
 ud(1:Nmodes,2)=vstare(1:Nmodes,1)+...
 gamma/(Tstep*Beta)*dui(1:Nmodes,i);
 else
 pcount=pcount+1;
 if pcount==1
 %term=20000; % Used for debugging
 end
 du2(1:numM0,1)=ddu2(1:numM0,1);
 stressV_i=stressV;
 dstressV_i(1:6,1:numeG)=0;
 dstrainV_i(1:6,1:numeG)=0;
 ptest_p=ptest;

 for i=3:imax
 [Kep,Beps,pteste]=PseudoforceIso(numn,nume,elements,D,...
 Deps,Beps,ptest_p,Pbc,detJstore,Bstore,G_hatstore,...
 Kelstore);

 bstarg(1:numM0,1)=M0Pu*astare(1:Nmodes,1);
 ddui(1:Nmodes,i)=invKstar*Pf*Kstar0*((Kstar0Part+Kep)\...
 (Fu(1:numM0,j)-peg(1:numM0,1)-...
 Kstar0Part*Pu*dui(1:Nmodes,i-1)-bstarg(1:numM0,1)));
 dui(1:Nmodes,i)=dui(1:Nmodes,i-1)+ddui(1:Nmodes,i);
 ui(1:Nmodes,i)=ui(1:Nmodes,i-1)+ddui(1:Nmodes,i);

[ddu2(1:numM0,i)]=DispConversionMG(ddui(1:Nmodes,i),Nmodes,...
 numM0,rtype,DirMod,N,Pu);
 du2(1:numM0,1)=du2(1:numM0,1)+ddu2(1:numM0,i);

[dstressV,dstrainV]=StrainStressIso(ddu2(1:numM0,i),nume,D,...
 Deps,psum,ptest_p,pteste,PTstrain,PTstress,Beps,Tdisp);
 dstressV_i=dstressV_i+dstressV;
 dstrainV_i=dstrainV_i+dstrainV;

 [e_p,Depsee,ptestee,e_bar,sigma_bar,peg,sumupdatepee,...
 dstressV,stressV,R]=VMPlasticityIso(dstressV_i,...
 stressV_i,e_p_p,D,nodes,elements,e_bar_p,sigma_bar_p,...

Appendix B. Matlab Code for Non-linear CMS 160

 dstrainV_i,ptest_p,mesh,detJstore,Bstore,i,Deps,Fbc);
 [pe]=ForceConversionGM(peg,Nmodes,numM0,rtype,DirMod,NT,Pf);
 strainV=strainV_p+dstrainV;

 end % i iteration loop

 u2(1:numM0,j)=u2(1:numM0,j-1)+du2(1:numM0,1);

 u(1:Nmodes,2)=ui(1:Nmodes,i);
 udd(1:Nmodes,2)=astare(1:Nmodes,1)+...
 1/(Tstep^2*Beta)*dui(1:Nmodes,i);
 ud(1:Nmodes,2)=vstare(1:Nmodes,1)+...
 gamma/(Tstep*Beta)*dui(1:Nmodes,i);

 end % psum loop

 % Fill in Displacement Matrix if Terminated
 if term >= 10000
 for k=j+1:Nstep
 u2(:,k)=u2(:,j);
 end
 break
 end
end % Nstep Loop

end % End Subfunction

Appendix B. Matlab Code for Non-linear CMS 161

function [N,lambda,FqO,numrgd]=Orthonormalize(Mbar,Kbar,Fq,Nmodes,...
 Tmodes,numbndM)

% Orthonormalize Craig Bampton Modes
[Ni,lambdai] = MatlabEig(Mbar,Kbar,Tmodes);

% Locate Rigid Body Modes
for i=1:Tmodes
 if lambdai(i,1) > 1
 numrgd=i-1;
 break
 end
end

% Move Boundary Condition Modes
N=Ni;
lambda=lambdai;

clear Ni lambdai

% Normalize N Modal Matrix
Nscale=N'*Mbar*N;
for i=1:(Tmodes-numrgd)
 NN=sqrt(Nscale(i,i));
 for j=1:Tmodes
 N(j,i)=N(j,i)/NN;
 end
end

FqO=N'*Fq;

end % End Subfunction

Appendix B. Matlab Code for Non-linear CMS 162

function [Kep,Beps,pteste]=PseudoforceIso(numn,nume,elements,D,Deps,...
 Beps,ptest,Pbc,detJstore,Bstore,G_hatstore,Kelstore)

imode=2; % 0 for None, 1 for Centroid, 2 for Average Correction,
 % 3 for Simo, 4 for Nastran

% Initialize Matrices
Kep(1:3*numn,1:3*numn)=0;
e(1:8)=0;
Dep(1:6,1:6)=0;
pteste(1:nume)=0;

gauss=8;
if gauss == 8
 wG(1:8)=1;
end

% Calculate Mass and Stiffness Matrices
for i=1:nume
 Kelsum=0;
 for j=1:8
 e(j)=elements(i,j);
 index=8*(i-1)+j;
 if ptest(index) == 1
 Kelsum=Kelsum+1;
 pteste(i)=1;
 end
 end

 if Kelsum == 0
 Kel(1:24,1:24)=Kelstore(i,1:24,1:24);
 else
 % Generate Stiffness Matrix
 KelP(1:24,1:24)=0;
 if imode==4
 H_G(1:6,1:6)=0;
 E_G(1:6,1:24)=0;
 else
 H_G(1:9,1:9)=0;
 E_G(1:9,1:24)=0;
 end

 for j=1:gauss
 index=8*(i-1)+j;
 if ptest(index) == 1
 % Reform Dep Matrix for Element
 Dep(1:6,1:6)=Deps(index,1:6,1:6);
 else
 Dep=D;
 end

 detJ(1,1)=detJstore(index,1);

 if imode==4
 G_hat(1:6,1:6)=G_hatstore(index,1:6,1:6);
 else
 G_hat(1:6,1:9)=G_hatstore(index,1:6,1:9);
 end
 B(1:6,1:24)=Bstore(index,1:6,1:24);

 H_G=H_G+wG(j)*detJ*G_hat'*Dep*G_hat;
 E_G=E_G+wG(j)*detJ*G_hat'*Dep*B;

Appendix B. Matlab Code for Non-linear CMS 163

 % Generate K Matrix
 KelP=KelP+wG(j)*detJ*(B)'*Dep*B;
 end

 if imode==0
 Kel=KelP;
 else
 a=-H_G\E_G;
 Kel=KelP+E_G'*a;
 end

 for j=1:gauss
 index=8*(i-1)+j;
 B(1:6,1:24)=Bstore(index,1:6,1:24);
 if imode==4
 G_hat(1:6,1:6)=G_hatstore(index,1:6,1:6);
 else
 G_hat(1:6,1:9)=G_hatstore(index,1:6,1:9);
 end
 if imode==0
 Beps(index,1:6,1:24)=B;
 else
 Beps(index,1:6,1:24)=B+G_hat*a;
 end
 end
 end % End Kelsum Conditional

 % Fill in K Matrix
 for j=1:8
 for k=1:8
 for m=1:3
 for n=1:3
 Kep(3*(e(j)-1)+m,3*(e(k)-1)+n)=Kep(3*(e(j)-1)+m,...
 3*(e(k)-1)+n)+Kel(3*(j-1)+m,3*(k-1)+n);
 end
 end
 end
 end
end

for i=1:3*numn
 for j=1:3*numn
 Kep(i,j)=Kep(i,j)*Pbc(i,j);
 end
end
Kep=sparse(Kep);

end % End Subfunction

Appendix B. Matlab Code for Non-linear CMS 164

function [dstressV,dstrainV]=StrainStressIso(du,nume,D,Deps,psum,...
 ptest,pteste,PTstrain,PTstress,Beps,Tdisp)

dstrainV(1:6,1:8*nume)=0;
dstressV(1:6,1:8*nume)=0;

% Generate Global Strain Vector
dstrainVG=PTstrain*du;
dstressVG=PTstress*du;

if psum~=0
 dus=Tdisp*du;
end

% Generate Strain and Stress Vectors
for e=1:nume
 if pteste(e)==0
 for j=1:8
 index=8*(e-1)+j;
 m=6*(index-1);
 dstrainV(1:6,index)=dstrainVG(m+1:m+6,1);
 dstressV(1:6,index)=dstressVG(m+1:m+6,1);
 end
 else
 for j=1:8
 index=8*(e-1)+j;
 m=24*(e-1);

 B(1:6,1:24)=Beps(index,1:6,1:24);
 dstrainV(1:6,index)=B*dus(m+1:m+24,1);
 if ptest(index)==0
 dstressV(1:6,index)=D*dstrainV(1:6,index);
 else
 Dep(1:6,1:6)=Deps(index,1:6,1:6);
 dstressV(1:6,index)=Dep*dstrainV(1:6,index);
 end
 end
 end
end

end % End Subfunction

Appendix B. Matlab Code for Non-linear CMS 165

function [e_p,Deps,ptest,e_bar,sigma_bar,pe,sumupdatep,dstressV,...
 stressV,R]=VMPlasticityIso(dstressV,stressV_p,e_p_p,D,nodes,...
 elements,e_bar_p,sigma_bar_p,dstrainV,ptest,mesh,detJstore,Bstore,...
 iteration,Deps,Fbc)

nume=size(elements,1);
numeG=8*nume;
if mesh==1
 H_0=50000;
 H_L=125000;
 e_L_bar=.01166667;
 m=335410;
 n=0.5;
 del_lam_1=.000001;
elseif mesh==2
 H_0=360000;
 H_L=900000;
 e_L_bar=.015;
 m=100000;
 n=0.5;
 del_lam_1=.000001;
elseif mesh==9
 H_0=50000;
 H_L=125000;
 e_L_bar=.010;
 m=335410;
 n=0.5;
 del_lam_1=.000001;
elseif mesh==11
 H_0=900000;
 H_L=1650000;
 e_L_bar=.013;
 del_lam_1=.000001;
end
E_T=(H_L-H_0)/e_L_bar;
F_error=.0001;
c_max=50;
sigma_bar(1:numeG)=0;
del_sigma_bar(1:numeG)=0;
R(1:numeG)=1;
HR(1:numeG)=0;
H(1:numeG)=0;
F(1:numeG)=0;
F_p(1:numeG)=0;
F_c(1:numeG)=0;
dstressVr(1:6,1:numeG)=0;
stressV(1:6,1:numeG)=0;

Constit_type=1;

if Constit_type==1
 %del_lam_1=.00000000001;
elseif Constit_type==2
 del_lam_1=.00000001;
elseif Constit_type==3
 del_lam_1=.00000001;
end

A(1:numeG)=0;
P(1:numeG)=0;
S(1:6,1:numeG)=0;
del_lam_p(1:numeG)=0;
del_lam_c(1:numeG)=0;

Appendix B. Matlab Code for Non-linear CMS 166

e_p(1:6,1:numeG)=0;
del_e_p(1:6,1:numeG)=0;
e_bar(1:numeG)=e_bar_p(1:numeG);
del_e_bar(1:numeG)=0;
del_e_e(1:6,1:numeG)=0;
skip(1:numeG)=0;
updatep(1:numeG)=0;

for e=1:nume
for gauss=1:8
 index=8*(e-1)+gauss;

 stressV(1:6,index)=stressV_p(1:6,index)+dstressV(1:6,index);

 if Constit_type == 1
 HR(index)=H_0+E_T*e_bar_p(index);
 elseif Constit_type == 2
 HR(index)=H_0;
 elseif Constit_type == 3
 HR(index)=H_0+m*(e_bar(index))^n;
 end
 P(index)=-1/3*(stressV(1,index)+stressV(2,index)+stressV(3,index));
 for i=1:3
 j=i+3;
 S(i,index)=stressV(i,index)+P(index);
 S(j,index)=sqrt(2)*stressV(j,index);
 end
 sigma_bar(index)=sqrt(3/2)*sqrt(S(1:6,index)'*S(1:6,index));
 del_sigma_bar(index)=sigma_bar(index)-sigma_bar_p(index);

 if ptest(index)==1 % Did Yield in Previous Step
 if sigma_bar(index)>sigma_bar_p(index) % Still Plastic
 R(index)=1;
 skip(index)=0;
 updatep(index)=0;
 else % Unloading Elastic
 e_p(1:6,index)=e_p_p(1:6,index);
 e_bar(index)=e_bar_p(index);
 ptest(index)=0;
 R(index)=0;
 skip(index)=1;
 updatep(index)=0;
 end
 elseif ptest(index)==0 % Did Not Yield in Previous Step
 if sigma_bar(index)<HR(index) % Still Elastic
 e_p(1:6,index)=e_p_p(1:6,index);
 e_bar(index)=e_bar_p(index);
 R(index)=0;
 skip(index)=1;
 updatep(index)=0;
 else % First Plastic Deformation
 ptest(index)=1;
 skip(index)=0;
 R(index)=(sigma_bar(index)-HR(index))/del_sigma_bar(index);
 dstressVr(1:6,index)=(1-R(index))*dstressV(1:6,index);
 updatep(index)=1;
 end
 end

 if skip(index)==1
 c=1;
 elseif skip(index)==0
 for c=1:c_max

Appendix B. Matlab Code for Non-linear CMS 167

 % Calculate F
 if Constit_type == 1 % Linear Hardening
 H(index)=H_0+E_T*e_bar(index);
 F(index)=sigma_bar(index)-H(index);
 elseif Constit_type == 2 % Perfectly Plastic
 F(index)=sigma_bar(index)-H_0;
 elseif Constit_type == 3 % Power Law
 H(index)=H_0+m*(e_bar(index))^n;
 F(index)=sigma_bar(index)-H(index);
 end

 if ((F(index) <= F_error) && (c==1))
 e_p(1:6,index)=e_p_p(1:6,index);
 e_bar(index)=e_bar_p(index);
 break
 end
 if (abs(F(index)) <= F_error)
 break
 end

 algor=2;
 if algor==1 % Newton-Raphson
 if c==1
 F_c(index)=F(index);
 del_lam_c(index)=del_lam_1;
 else
 F_p(index)=F_c(index);
 F_c(index)=F(index);
 del_lam_p(index)=del_lam_c(index);
 del_lam_c(index)=del_lam_p(index)+...
 (F_c(index)/(F_p(index)-

F_c(index)))*del_lam_p(index);
 end
 elseif algor==2 % Bi-section Method
 if c==1
 F_a=F(index);
 lam_a=0;
 del_lam_c(index)=del_lam_1;
 elseif c==2
 lam_b=del_lam_c(index);
 F_b=F(index);
 del_lam_c(index)=lam_a+(lam_b-lam_a)/2;
 if F_b>0
 index
 F_b
 end
 else
 F_p=F(index);
 if F_a*F_p>0
 lam_a=del_lam_c(index);
 F_a=F_p;
 del_lam_c(index)=lam_a+(lam_b-lam_a)/2;
 else
 lam_b=del_lam_c(index);
 F_b=F_p;
 del_lam_c(index)=lam_a+(lam_b-lam_a)/2;
 end
 end
 end

 del_e_p(1:6,index)=del_lam_c(index)*S(1:6,index);

 if Constit_type == 1

Appendix B. Matlab Code for Non-linear CMS 168

 del_e_bar(index)=sqrt(2/3)*sqrt(del_e_p(1:6,index)'*...
 del_e_p(1:6,index));
 e_bar(index)=e_bar_p(index)+del_e_bar(index);
 elseif Constit_type == 2
 % Update Stress Vector
 del_e_p(4:6,index)=del_e_p(4:6,index)*sqrt(2);
 del_e_e(1:6,index)=dstrainV(1:6,index)-del_e_p(1:6,index);
 stressV(1:6,index)=stressV_p(1:6,index)+D*del_e_e(1:6,index);
 %stressV(1:6,index)
 P(index)=-1/3*(stressV(1,index)+stressV(2,index)+...
 stressV(3,index));
 for i=1:3
 j=i+3;
 S(i,index)=stressV(i,index)+P(index);
 S(j,index)=sqrt(2)*stressV(j,index);
 %S(j,index)=stressV(j,index);
 end
 sigma_bar(index)=sqrt(3/2)*sqrt(S(1:6,index)'*S(1:6,index));
 elseif Constit_type == 3
 del_e_bar(index)=sqrt(2/3)*sqrt(del_e_p(1:6,index)'*...
 del_e_p(1:6,index));
 e_bar(index)=e_bar_p(index)+del_e_bar(index);
 end

 end % End c Loop
 end % Skip Loop

 if c==1
 % Placeholder
 else
 if c==c_max
 disp(['Did Not Converge: ',num2str(index),' ',...
 num2str(F(index))])
 end
 if Constit_type == 1
 del_e_p(4:6,index)=del_e_p(4:6,index)*sqrt(2);
 e_p(1:6,index)=e_p_p(1:6,index)+del_e_p(1:6,index);
 a(1:3,1)=S(1:3,index);
 a(4:6,1)=S(4:6,index)*sqrt(2);
 dstressVA(1:3,1)=R(index)*dstressV(1:3,index);
 dstressVA(4:6,1)=R(index)*dstressV(4:6,index)*sqrt(2);
 A(index)=a(1:6,1)'*dstressVA(1:6,1)/del_lam_c(index);
 elseif Constit_type == 2
 a(1:3,1)=S(1:3,index);
 a(4:6,1)=S(4:6,index)*sqrt(2);
 e_p(1:6,e)=e_p_p(1:6,e)+del_e_p(1:6,1);
 del_e_p(4:6,index)=del_e_p(4:6,index)/sqrt(2);
 del_e_bar(index)=sqrt(2/3)*sqrt(del_e_p(1:6,index)'*...
 del_e_p(1:6,index));
 e_bar(index)=e_bar_p(index)+del_e_bar(index);
 del_e_p(4:6,index)=del_e_p(4:6,index)*sqrt(2);
 A(index)=0;
 dstressVr(1:6,index)=0;
 elseif Constit_type == 3
 a(1:3,1)=S(1:3,index);
 a(4:6,1)=S(4:6,index)*sqrt(2);
 del_e_p(4:6,index)=del_e_p(4:6,index)*sqrt(2);
 e_p(1:6,index)=e_p_p(1:6,index)+del_e_p(1:6,index);
 E_T=(H(index)-HR(index))/del_e_bar(index);
 A(index)=1/del_lam_c(index)*(2/3*H(index)*E_T)*...
 del_e_bar(index);
 end

Appendix B. Matlab Code for Non-linear CMS 169

 if iteration == 2
 Dep=D-(D*a)*((a'*D)/(A(index)+(a'*D*a)));
 Deps(index,1:6,1:6)=Dep;
 else
 Dep(1:6,1:6)=Deps(index,1:6,1:6);
 end
 if iteration == 2
 dstressV(1:6,index)=(1-R(index))*dstressV(1:6,index)+...
 R(index)*Dep*dstrainV(1:6,index);
 stressV(1:6,index)=stressV_p(1:6,index)+dstressV(1:6,index);
 sigma_bar(index)=sigma_bar_p(index);
 e_p(1:6,index)=e_p_p(1:6,index);
 e_bar(index)=e_bar_p(index);
 else
 % Placeholder
 end
 end
end % End Gauss Loop
end % End Element Loop

sumupdatep=0;
for index=1:numeG
 sumupdatep=sumupdatep+updatep(index);
end

updatep(1:numeG)=1;
[pe]=InternalResistingForceIso(nodes,elements,stressV,updatep,...
 detJstore,Bstore);
pe=Fbc*pe;

end % End Subfunction

Appendix B. Matlab Code for Non-linear CMS 170

function [dpr]=ForceConversionGM(dp,Nmodes,numM0,rtype,DirMod,NT,Pf)

if rtype == 1
 if DirMod ==0
 dpr(1:Nmodes,1)=dp(1:numM0,1);
 elseif DirMod == 1
 dpr(1:Nmodes,1)=NT*dp(1:numM0,1);
 end
elseif rtype == 2
 dpr(1:Nmodes,1)=Pf*dp(1:numM0,1);
end

end % End Subfunction

function [ddu]=DispConversionMG(ddum,Nmodes,numM0,rtype,DirMod,N,Pu)

if rtype == 1
 if DirMod ==0
 ddu(1:numM0,1)=ddum(1:Nmodes,1);
 elseif DirMod == 1
 ddu(1:numM0,1)=N*ddum(1:Nmodes,1);
 end
elseif rtype == 2
 ddu(1:numM0,1)=Pu*ddum(1:Nmodes,1);
end

end % End Subfunction

 171

Appendix C

Supplemental Matlab Code

 This appendix contains the supplemental Matlab code for various calculations. The

supplemental codes are used for calculation of the effective modal mass parameters,

creating plots, solving an eigen-problem, and ordering matrices. Some of the subroutines

in this section are used indirectly in the solution of the equations of motion and are called

by other subroutines.

function [Gamma,Gamma3,meff,meff3]=...
 EffectiveModalMass(numM0,numbnd,Mn,Kn,mass)

numii=numM0-3*numbnd;
Mii=Mn(1:numii,1:numii);
Kii=Kn(1:numii,1:numii);
[Ni,lambdai] = MatlabEig(Mii,Kii,numii);

% Locate Rigid Body Modes
numrgd=0;
for i=1:numii
 if lambdai(i,1) > 1
 numrgd=i-1;
 break
 end
end
nterms=numii-numrgd;

% Move Boundary Condition Modes
N=Ni;
lambda=lambdai;

% Scale Transformation Matrix
Nscale=N'*Mii*N;
for i=1:nterms
 NN=sqrt(Nscale(i,i));
 for j=1:nterms
 N(j,i)=N(j,i)/NN;
 end
end
Mbar=eye(nterms);

Appendix C. Supplemental Matlab Code 172

% Define Influence Vector
r3(1:nterms,1:3)=0;
for i=1:nterms/3
 n=3*(i-1);
 r3(n+1:n+3,1:3)=eye(3);
end
r(1:nterms,1)=1;

% Determine Coefficient Vector
L=N'*Mii*r;
L3=N'*Mii*r3;

% Determine Modal Participation Factor Matrix
Gamma(1:nterms,1)=0;
Gamma3(1:nterms,1:3)=0;
for i=1:nterms
 Gamma(i,1)=L(i,1)/Mbar(i,i);
 for j=1:3
 Gamma3(i,j)=L3(i,j)/Mbar(i,i);
 end
end

% Determine Effective Modal Mass
meff(1:nterms,1:4)=0;
meff3(1:nterms,1:6)=0;
for i=1:nterms
 meff(i,1)=i;
 meff(i,2)=(L(i,1))^2/Mbar(i,i);
 for j=1:3
 meff3(i,j)=(L3(i,j))^2/Mbar(i,i);
 end
end

% Sum Modal Mass
summeff=0;
summeff3(1,1:3)=0;
for i=1:nterms
 summeff=summeff+meff(i,2);
 meff(i,3)=summeff;
 for j=1:3
 summeff3(1,j)=summeff3(1,j)+meff3(i,j);
 meff3(i,j+3)=summeff3(1,j);
 end
end
for i=1:nterms
 meff(i,4)=(3*mass-summeff+meff(i,3))/(3*mass);
 for j=1:3
 meff3(i,j+6)=(mass-summeff3(1,j)+meff3(i,j+3))/mass;
 end
end
summeff
summeff3
meff(:,4)
meff3(:,7:9)
end % End Subfunction

Appendix C. Supplemental Matlab Code 173

function [D]=ElasticityIsotropic(E,Nu)

f=1-Nu;
g=(1-2*Nu)/2;

[D]=E/((1+Nu)*(1-2*Nu))*...
 [f Nu Nu 0 0 0 ;...
 Nu f Nu 0 0 0 ;...
 Nu Nu f 0 0 0 ;...
 0 0 0 g 0 0 ;...
 0 0 0 0 g 0 ;...
 0 0 0 0 0 g];

end % End Subroutine

Appendix C. Supplemental Matlab Code 174

function [modes,omega] = MatlabEig(M,K,Nmodes)

[mod,val]=eig(K,M);

val=abs(val);
numval=size(M,1);

% Pre-allocate Variables
omegar(1:numval,1)=0;
omegam(1:numval,1:2)=0;
omega(1:Nmodes,1:3)=0;
modess(1:numval,1:numval)=0;

for i=1:numval
 omegar(i,1)=sqrt(val(i,i))/(2*pi);
end

for i=1:numval
 omegam(i,1:2)=[i omegar(i,1)];
end
omegams=sortrows(omegam,2);
for i=1:numval
 omega(i,1:3)=[omegams(i,2) omegams(i,1) i];
end

for i=1:numval
 modess(1:numval,i)=mod(1:numval,omega(i,2));
end

% Truncate Solution to Nmodes
useupper=0;
if useupper==0
 modes=modess(1:numval,1:Nmodes);
 omega=omega(1:Nmodes,1:3);
else
 if Nmodes>20
 upperM=Nmodes-20;
 lowerM=Nmodes-upperM;
 else
 upperM=0;
 lowerM=Nmodes;
 end
 if upperM>30
 upperM=30;
 lowerM=Nmodes-upperM;
 end
 modes(1:numval,1:lowerM)=modess(1:numval,1:lowerM);
 modes(1:numval,lowerM+1:lowerM+upperM)=...
 modess(1:numval,numval-upperM+1:numval);
 omega(1:lowerM,1:3)=omega(1:lowerM,1:3);
 omega(lowerM+1:lowerM+upperM,1:3)=omega(numval-upperM+1:numval,1:3);
end

end % End Subfunction

Appendix C. Supplemental Matlab Code 175

function ModePlots(modes,nodes,elements,MPlot)

numn=size(modes,1)/3;
nume=size(elements,1);
nump=size(MPlot,2);

for i=1:nump
 rrv=MPlot(i);
 figure(MPlot(i))
 scale=0.01;
 for i=1:numn
 G(i,1)=modes(3*(i-1)+1,rrv);
 H(i,1)=scale*G(i,1)+nodes(i,1);
 G(i,2)=modes(3*(i-1)+2,rrv);
 H(i,2)=scale*G(i,2)+nodes(i,2);
 G(i,3)=modes(3*(i-1)+3,rrv);
 H(i,3)=scale*G(i,2)+nodes(i,3);
 end
 plot3(H(1:numn,1),H(1:numn,2),H(1:numn,3),'b+',nodes(1:numn,1),...
 nodes(1:numn,2),nodes(1:numn,3),'r+');
end

end % End Subfunction

Appendix C. Supplemental Matlab Code 176

function [fr,P]=Order2(f,IntN,BndNF,BndN0)

[numN,numS]=size(f);
numint=size(IntN,2);
numbndF=size(BndNF,2);
numbnd0=size(BndN0,2);

% Initialize ur Matrix
fr(1:3*(numint+numbndF+numbnd0),1:numS)=0;
P(1:3*(numint+numbndF+numbnd0),1:3*(numint+numbndF+numbnd0))=0;

% Populate with Displacements of Interior Nodes
for i=1:numint
 nr=3*(IntN(i)-1)+1;
 nu=3*(i-1)+1;
 fr(nu:nu+2,1:numS)=f(nr:nr+2,1:numS);
 P(nu:nu+2,nr:nr+2)=[1 0 0; 0 1 0; 0 0 1];
end

% Populate with Displacements of Force Boundary Nodes
for i=1:numbndF
 nr=3*(BndNF(i)-1)+1;
 j=numint+i;
 nu=3*(j-1)+1;
 fr(nu:nu+2,1:numS)=f(nr:nr+2,1:numS);
 P(nu:nu+2,nr:nr+2)=[1 0 0; 0 1 0; 0 0 1];
end

% Populate with Displacements of Boundary Nodes
for i=1:numbnd0
 nr=3*(BndN0(i)-1)+1;
 j=numint+numbndF+i;
 nu=3*(j-1)+1;
 fr(nu:nu+2,1:numS)=f(nr:nr+2,1:numS);
 P(nu:nu+2,nr:nr+2)=[1 0 0; 0 1 0; 0 0 1];
end

end % End Subfunction

Appendix C. Supplemental Matlab Code 177

function [nodes,elements] = ReadMeshData(meshfile,numn,nume)

rangen=['B4:D',num2str(numn+3)];
rangee=['B4:I',num2str(nume+3)];

[nodes]=xlsread(meshfile,'Nodes',rangen);
[elements]=xlsread(meshfile,'Elements',rangee);

end % End Subfunction

Appendix C. Supplemental Matlab Code 178

function [M,K,IntN]=ReduceMK(M,K,BndN0)

numn=size(M,1)/3;
numbnd=size(BndN0,2);

% Create Vector of Interface Nodes
IntN(1:(numn-numbnd))=0;
c=0;
for i=1:BndN0(1)-1
 c=c+1;
 IntN(c)=i;
end
for i=1:numbnd-1
 for j=BndN0(i)+1:BndN0(i+1)-1
 c=c+1;
 IntN(c)=j;
 end
end
for i=BndN0(numbnd)+1:numn
 c=c+1;
 IntN(c)=i;
end

for i=1:numn-numbnd
 LB=3*(i-1)+1;
 LT=3*(IntN(i)-1)+1;
 for j=1:numn-numbnd;
 LBB=3*(j-1)+1;
 LTT=3*(IntN(j)-1)+1;
 Mii(LB:LB+2,LBB:LBB+2)=M(LT:LT+2,LTT:LTT+2);
 Kii(LB:LB+2,LBB:LBB+2)=K(LT:LT+2,LTT:LTT+2);
 end
end

Mii=M(1:3*40,1:3*40);
Kii=K(1:3*40,1:3*40);

M=Mii;
K=Kii;

end % End Subfunction

Appendix C. Supplemental Matlab Code 179

function [u]=Reorder(u,IntN,BndNF,BndN0)

[numN,numS]=size(u);
numint=size(IntN,2);
numbndF=size(BndNF,2);
numbnd0=size(BndN0,2);

% Initialize ur Matrix
ur(1:3*(numint+numbndF+numbnd0),1:numS)=0;

% Populate with Displacements of Interior Nodes
for i=1:numint
 nr=3*(IntN(i)-1)+1;
 nu=3*(i-1)+1;
 ur(nr:nr+2,1:numS)=u(nu:nu+2,1:numS);
end

% Populate with Displacements of Force Boundary Nodes
for i=1:numbndF
 nr=3*(BndNF(i)-1)+1;
 j=numint+i;
 nu=3*(j-1)+1;
 ur(nr:nr+2,1:numS)=u(nu:nu+2,1:numS);
end

% Populate with Displacements of Boundary Nodes
for i=1:numbnd0
 nr=3*(BndN0(i)-1)+1;
 j=numint+numbndF+i;
 nu=3*(j-1)+1;
 ur(nr:nr+2,1:numS)=u(nu:nu+2,1:numS);
end

u=ur;

end % End Subfunction

 180

References

[1] Hahn, H., Rigid Body Dynamics of Mechanisms, Berlin: Springer-Verelag, 2002.

[2] Anitescu, M., Potra, F., and Stewart, D., ‘Time-stepping for Three-dimensional
Rigid Body Dynamics’, Computer Methods in Applied Mechanics and
Engineering, Vol. 177, No. 3, pp. 183-197, 1999.

[3] Herting, D., MSC/NASTRAN Advanced Dynamic Analysis User’s Guide,
Version 70, Los Angeles, California: MacNeal/Schwendler Corporation, 1997.

[4] Vakakis, A., ‘Non-linear Normal Modes (NNMs) and their Applications in
Vibration Theory: An Overview’, Mechanical Systems and Signal Processing,
Vol. 11, No. 1, pp. 3-22, 1997.

[5] Wang, F. and Bajaj, A., ‘Nonlinear Normal Modes in Multi-mode Models of an
Inertially Coupled Elastic Structure’, Nonlinear Dynamics, Vol. 47, No. 1, pp. 25-
47, 2007.

[6] Morris, N., ‘The Use of Modal Superposition in Nonlinear Dynamics’, Computers
& Structures, Vol. 7, No. 1, pp. 65-72, 1977.

[7] Remseth, S., ‘Nonlinear Static and Dynamic Analysis of Framed Structures’,
Computers & Structures, Vol. 10, No. 6, pp. 879-897, 1979.

[8] Bathe, K. and Gracewski, S., ‘On Nonlinear Dynamic Analysis Using
Substructuring and Mode Superposition’, Computers & Structures, Vol. 13, No.
6, pp. 699-707, 1981.

[9] Noor, A., ‘Recent Advances in Reduction Methods for Nonlinear Problems’,
Computers & Structures, Vol. 13, No. 1, pp. 31-44, 1981.

[10] Idelsohn, S. and Cardona, A., ‘Reduction Methods and Explicit Time Integration
Technique in Structural Dynamics’, Advances in Engineering Software, Vol. 6,
No. 1, pp. 36-44, 1984.

[11] Idelsohn, S. and Cardona, A., ‘A Load-dependent Basis for Reduced Nonlinear
Structural Dynamics’, Computers & Structures, Vol. 20, No. 1, pp. 203-210,
1985.

[12] Chang, C. and Engblom, J., ‘Nonlinear Dynamical Response of Impulsively
Loaded Structures: A Reduced Basis Approach’, American Institute of
Aeronautics and Aeronautics Journal, Vol. 29, No. 4, pp. 613-618, 1991

References 181

[13] Qu, Z., ‘Model Reduction for Dynamical Systems with Local Nonlinearities’,
American Institute of Aeronautics and Aeronautics Journal, Vol. 40, No. 2, pp.
327-333, 2002

[14] de Klerk, D., Rixen, D., and Voormeeren, S., ‘General Framework for Dynamic
Substructuring: History, Review, and Classification of Techniques’, American
Institute of Aeronautics and Aeronautics Journal, Vol. 46, No. 5, pp. 1169-1181,
2008.

[15] Bond, J. and Khraishi, T., ‘Non-linear Dynamic Modelling using Component
Mode Synthesis’, International Journal of Theoretical and Applied Multiscale
Mechanics, Vol. 1, No. 2, pp. 150-163, 2009.

[16] Bond, J. and Khraishi, T., ‘Transient Non-linear Simulation with Component
Mode Synthesis’, International Journal of Mechanics and Materials in Design, In
Press, 2009.

[17] Petyt, M., Introduction to Finite Element Vibration Analysis, Cambridge:
Cambridge University Press, 1990.

[18] Bathe, K. and Wilson, E., Numerical Methods in Finite Element Analysis,
Englewood Cliffs, New Jersey: Prentice-Hall, 1976.

[19] Hughes, T., The Finite Element Method, Englewood Cliffs, New Jersey: Prentice-
Hall, 1987.

[20] Carr, J., ‘The Effect of Shear Flexibility and Rotatory Inertia on the Natural
Frequencies of Uniform Beams’, Aeronautical Quarterly, Vol. 21, pp. 79-91,
1970.

[21] Kopal, Z., Numerical Analysis, London: Chapman and Hall, 1961.

[22] Barlow, J., ‘Optimal Stress Locations in Finite Element Models’, International
Journal for Numerical Methods in Engineering, Vol. 10, No. 2, pp. 243-251,
1976.

[23] Cheung, Y. and Wanji, C., ‘Isoparametric Hybrid Hexahedral Elements for Three
Dimensional Stress Analysis’, International Journal for Numerical Methods in
Engineering, Vol. 26, No. 3, pp. 677-693, 1988.

[24] Pian, T. and Sumihara, K., ‘Rational Approach for Assumed Stress Finite
Elements’, International Journal for Numerical Methods in Engineering, Vol. 20,
No. 9, pp. 1685-1695, 1984.

[25] Irons, B., ‘Quadrature Rules for Brick Based Finite Elements’, International
Journal for Numerical Methods in Engineering, Vol. 3, No. 2, pp. 293-294, 1971.

References 182

[26] MacNeal, R., Finite Elements: Their Design and Performance, New York, New
York: Marcel Dekker, 1994.

[27] Ibrahimbegovic, A. and Wilson, E., ‘A Modified Method of Incompatible
Modes’, Communications in Applied Numerical Methods, Vol. 7, No. 3, pp. 187-
194, 1991.

[28] Taylor, R., Beresford, P., and Wilson, E., ‘A Non-Conforming Element for Stress
Analysis’, International Journal for Numerical Methods in Engineering, Vol. 10,
No. 6, pp. 1211-1219, 1976.

[29] Simo, J. and Rifai, M., ‘A Class of Mixed Assumed Strain Methods and the
Method of Incompatible Modes’, International Journal for Numerical Methods in
Engineering, Vol. 29, No. 8, pp. 1595-1638, 1990.

[30] Simo, J. and Armero, F., ‘Geometrically Non-linear Enhanced Strain Mixed
Methods and the Method of Incompatible Modes’, International Journal for
Numerical Methods in Engineering, Vol. 33, No. 7, pp. 1413-1449, 1992.

[31] Constantinides, A. and Mostoufi, N., Numerical Methods for Chemical Engineers
with MATLAB Applications, Upper Saddle River, New Jersey: Prentice-Hall,
1999.

[32] Gerald, C. and Wheatley, P., Applied Numerical Analysis, Third Edition, Reading,
Massachusetts: Addison-Wesley, 1984.

[33] Haggerty, G., Elementary Numerical Analysis with Programming, Boston,
Massachusetts: Allyn and Bacon, 1972.

[34] Newmark, N., ‘A Method of Computation for Structural Dynamics’, Journal of
Engineering Mechanics, ASCE, Vol. 85, pp. 67-94, 1959.

[35] Jacob, B. and Ebecken, N., ‘An Optimized Implementation of the
Newmark/Newton-Raphson Algorithm for the Time Integration of Non-linear
Problems’, Communications in Numerical Methods in Engineering, Vol. 10, No.
12, pp. 983-992, 1994.

[36] Rodrigues, M., Correa, F., and Jacob, B., ‘Implicit Domain Decomposition
Methods for Coupled Analysis of Offshore Platforms’, Communications in
Numerical Methods in Engineering, Vol. 23, No. 6, pp. 599-621, 2007.

[37] Craig, R. Jr., ‘Coupling of Substructures for Dynamic Analyses: An Overview’,
AIAA Dynamic Specialists Conference, Atlanta, AIAA Paper No. 2000-1573,
2000.

[38] Hurty, W., Collins, J., and Hart, G., ‘Dynamic Analysis of Large Structures by
Modal Synthesis Techniques’, Computers & Structures, Vol. 1, No. 4, pp. 535-
563, 1971.

References 183

[39] Hurty, W., ‘Dynamic Analysis of Structural Systems Using Component Modes’,
American Institute of Aeronautics and Aeronautics Journal, Vol. 3, No. 4, pp.
678-685, 1965.

[40] Hurty, W., ‘Dynamic Analysis of Structural Systems by Component Mode
Synthesis’, NASA Jet Propulsion Laboratory, Technical Report No. 32-530, 1964.

[41] Bamford, R., ‘A Modal Combination Program for Dynamic Analysis of
Structures’, NASA Jet Propulsion Laboratory, Technical Report No. 33-290,
1966.

[42] Cromer, J., Lalanne, M., Bonnecase, D., and Gaudriot, L., ‘A Building Block
Approach to the Dynamic Behavior of Complex Structures using Experimental
and Analytical Modal Modeling Techniques’, Shock and Vibration Bulletin, Vol.
48, pp. 77-91, 1978.

[43] Ewins, D., Modal Testing: Theory and Practice, Letchworth: Research Studies
Press, 1984.

[44] MacNeal, R., ‘A Hybrid Method of Component Mode Synthesis’, Computers &
Structures, Vol. 1, No. 4, pp. 581-601, 1971.

[45] Rubin, S., ‘Improved Component-mode Representation for Structural Dynamic
Analysis’, American Institute of Aeronautics and Aeronautics Journal, Vol. 13,
No. 8, pp. 995-1006, 1975.

[46] Rixen, D., ‘A Dual Craig-Bampton Method for Dynamic Substructuring’, Journal
of Computational and applied Mathematics, Vol. 168, No. 1, pp. 383-391, 2004.

[47] Martinez, D. and Gregory, D., ‘A Comparison of Free Component Mode
Synthesis Techniques using MSC/NASTRAN’, Sandia National Laboratories,
SAND83-0025, 1984.

[48] Craig, R. Jr. and Bampton, M., ‘Coupling of Substructures for Dynamic
Analysis’, American Institute of Aeronautics and Aeronautics Journal, Vol. 6,
No. 7, pp. 1313-1319, 1968.

[49] Benfield, W. and Hruda, R., ‘Vibration Analysis of Structures by Component
Mode Substitution’, American Institute of Aeronautics and Aeronautics Journal,
Vol. 9, No. 7, pp. 1255-1261, 1971.

[50] Guyan, R., ‘Reduction of Stiffness and Mass Matrices’, American Institute of
Aeronautics and Aeronautics Journal, Vol. 3, No. 2, p. 380, 1965.

[51] Wilson, E., ‘Evaluation of Orthogonal Damping Matrices’, International Journal
for Numerical Methods in Engineering, Vol. 4, No. 1, pp. 5-10, 1972.

References 184

[52] Chu, C. and Milman, M., ‘Eigenvalue Error Analysis of Viscously Damped
Structures Using a Ritz Reduction Method’, American Institute of Aeronautics
and Aeronautics Journal, Vol. 30, No. 12, pp. 2935-2944, 1992.

[53] Craig, R. Jr. and Ni, Z., ‘Component Mode Synthesis for Modal Order Reduction
of Nonclassically Damped Systems’, AIAA Journal of Guidance, Control, and
Dynamics, Vol. 12, No. 4, pp. 577-584, 1989.

[54] Liu, M. and Zheng, G., ‘Improved Component-Mode Synthesis for Nonclassically
Damped Systems’, American Institute of Aeronautics and Aeronautics Journal,
Vol. 46, No. 5, pp. 1160-1168, 2008.

[55] Thompson, W., Theory of Vibration with Applications, Englewood Cliffs, New
Jersey: Prentice-Hall, 1972.

[56] Clough, R. and Penzien, J., Dynamics of Structures, New York, New York:
McGraw-Hill, 1975.

[57] Craig, R. Jr., Structural Dynamics: An Introduction to Computer Methods, New
York, New York: John Wiley & Sons, 1981.

[58] Simo, J. and Hughes, T., Computational Inelasticity, New York, New York:
Springer, 1998.

[59] Tresca, H., ‘Sur l’écoulement des Corps Solides Soumis á de Fortes Pressions’,
Comptes Rendus de l’Académie des Sciences, Vol. 59, p. 754, 1864.

[60] Huber, M., Mechanik Czasopismo Techniczne, Lemberg, Austria, Vol. 22, p. 181,
1904.

[61] von Mises, R., ‘Mechanik der Festen Körper im Plastisch Deformablen Zustand’,
Nachr. Ges. Wiss. Göttingen, Vol. 1, pp. 582-592, 1913.

[62] Zienkiewicz, O., The Finite Element Method, New York, New York: McGraw-
Hill, 1977.

[63] Gallagher, R., Finite Element Analysis: Fundamentals, Englewood Cliffs, New
Jersey: Prentice-Hall, 1975.

[64] Owen, D. and Hinton, E., Finite Elements in Plasticity: Theory and Practice,
Swansea: Pineridge Press Limited, 1980.

[65] Khan, A. and Huang, S., Continuum Theory of Plasticity, New York, New York:
John Wiley & Sons, 1995.

[66] Hill, R., The Mathematical Theory of Plasticity, Oxford: Oxford University
Press, 1950.

References 185

[67] Wu, R. and Witmer, E., ‘Finite-Element Analysis of Large Elastic-Plastic
Deformations of Simple Structures’, American Institute of Aeronautics and
Aeronautics Journal, Vol. 9, No. 9, pp. 1719-1724, 1971.

[68] White, F. and Drucker, D., ‘Effective Stress and Effective Strain in Relation to
Stress Theories of Plasticity’, Journal of Applied Physics, Vol. 21, No. 10, pp.
1013-1021, 1950.

[69] Bland, D., ‘The Associated Flow Rule of Plasticity’, Journal of the Mechanics
and Physics of Solids, Vol. 6, No. 1, pp. 71-78, 1957.

[70] Cornwell, R., Craig, R. Jr., and Johnson, C., ‘On the Application of the Mode-
acceleration Method to Structural Engineering Problems’, Earthquake
Engineering and Structural Dynamics, Vol. 11, No. 5, pp. 679-688, 1983.

[71] Tinker, M., ‘Hybrid Residual Flexibility/Mass-additive Method for Structural
Dynamic Testing’, NASA Marshall Space Flight Center, TM-2003-212343, 2003.

[72] Kammer, D. and Baker, M., ‘A Comparison of the Craig-Bampton and Residual
Flexibility Methods for Component Substructure Representation’, Structural
Dynamics Research Corporation, 85-0817, 1985.

[73] Fausett, L., Numerical Methods: Algorithms and Applications, Upper Saddle
River, New Jersey: Prentice Hall, 2003.

[74] Liu, S. and Lin, T., ‘Elastic-plastic Dynamic Analysis of Axisymmetric Solid’,
Earthquake Engineering and Structural Dynamics, Vol. 7, No. 2, pp. 147-159,
1979.

[75] Nagarajan, S. and Popov, E., ‘Elastic-plastic Dynamic Analysis of Axisymmetric
Solid’, Computers and Structures, Vol. 4, No. 6, pp. 1117-1134, 1974.

[76] Baron, M., Bleich, H., and Weidlinger, P., ‘Dynamic Elastic-Plastic Analysis of
Structures’, Journal of the Engineering Mechanics Division, Proceedings of the
American Society of Civil Engineers, EM 1, pp. 23-42, 1961.

[77] Jones, N., Structural Impact, Cambridge: Cambridge University Press, 1997.

[78] Bhardwaj, M. and Walsh, T., ‘Salinas: Theory Manual’, Sandia National
Laboratories, SAND2004-4438W, 2004.

