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OPTIMAL PASSIVE NONLINEAR DAMPER DESIGN METHODOLOGY FOR 

ROAD RACE APPLICATION 

 

by 

 

Ryan W. Robinson 

 

B.S. Mechanical Engineering, University of New Mexico, 2007 

M.S., Mechanical Engineering, University of New Mexico, 2009 

 

ABSTRACT 
 

Methodology to develop a baseline passive nonlinear damper and inerter for road race 

application to maximize vehicle lateral acceleration is developed here using optimization 

techniques.  The method includes use of equations-of-motion for suspension models, 

assembly of equations in a computer model for simulation, identification of the objective 

function which maximizes lateral acceleration based on tire data, optimization of the 

objective function by varying damping and inertance, identification of mode shapes and 

root locus analysis. 

 No closed form solution exists for an optimal linear or nonlinear damper which 

maximizes lateral acceleration. Consequently, numerical analysis is required to solve the 

problem.  Several suspension models ranging from a quarter-suspension to a full-car 

suspension are examined to determine whether the simpler models are reasonable 

substitutes for higher order models.  Fixed parameters required for the Simulink 

simulation, and thus the optimal damper, are from the 2007 UNM FSAE vehicle.  Inertial 

forces from a data acquisition system are used to provide maneuver/handling input to the 
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models.  Tire data is analyzed using optimization to find the optimal vertical loading 

which maximizes lateral tire force.  This optimization shows lateral force is maximized 

when inner and outer tire loads are equal, thus the objective function to be minimized is 

load transfer.  Matlab Optimization Toolbox is then used to optimize the objective 

function by varying the linear/nonlinear damper rates followed by a separate optimization 

of the inerter.  Root locus and mode shape identification are used to understand the 

results of the optimized system. 

 The analysis indicates that a nonlinear damper attenuates lateral load transfer 

better than a linear design.  It was also observed that the simpler models’ optimizations 

do not agree well with the full-car model due to over-simplified inputs and assumptions.  

The optimal inerter further increased lateral acceleration by decreasing load transfer. 
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1 INTRODUCTION 

Shock absorbers by nature are nonlinear transient devices used to increase vehicle 

handling performance.  The force from the damper is a function of the damper shaft 

velocity and when plotted, is known as a force-velocity curve.  The nonlinearity of the 

passive damper should be engineered in such a way that it maximizes performance of a 

road race vehicle in terms of lateral acceleration capabilities.  After extensive literature 

research, methodology necessary to achieve this nonlinear curve for a concept car is 

nowhere to be found.  Milliken [1] explains that damper choice, sizing and tuning have 

been historically determined by reputation, adjustability, packaging requirements, etc.  

Further, “the subject of transient wheel loads is one which has yet to be fully explored.”  

The methodology to build a baseline nonlinear damper curve to maximize lateral-load 

carrying capabilities for a theoretical car is proposed here; from this point a damper can 

be fine tuned on the vehicle during testing.   

 A tradeoff exists between vehicle responsiveness (handling) and driver comfort.  

A soft suspension with a low natural frequency is more compliant and transfers less force 

from the ground to the driver.  However, a soft suspension allows excessive variation in 

the tire contact patch, reducing mechanical grip.  A firm suspension increases 

responsiveness by increasing the natural frequency and maintaining the tire contact patch.  

However, this means that more force from the ground is transferred to the driver which 

results in a less comfortable ride. 
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1.1 Tire Behavior 

Tire lateral force is modeled as a function of vertical load, slip angle and camber for a 

given surface and operating at nominal temperature.  The three specific parameters 

mentioned will be discussed throughout the document.  Different tire brands and models 

have different lateral force capabilities but are still a function of vertical load, slip angle 

and camber.  Due to the fact that tires behave like nonlinear softening springs, 

transferring vertical load from one tire to another results in a net loss of lateral force.  A 

lateral load transfer example is shown in Figure 1.1.  The vehicle has a center-of-gravity 

(CG) which is above ground, thus turning causes lateral acceleration which in turn causes 

the tire load to be transferred from the inside tires to the outside tires. 

 

 
Figure 1.1 – Example of Lateral Load Transfer 

 

Due to the nonlinearity of the tires, it is generally accepted that equally loaded tires create 

the largest lateral acceleration for a vehicle, or when normalized by gravity, g-force or 

simply “g’s.”  The equations which are used to model tire forces are known as Pacejka 
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formulas [1].  For the lateral case, the variables required to find tire force are vertical 

load, slip angle and camber angle.   

The vertical load is simply the vertical reaction force from the ground.  This is 

generally found from a vehicle data acquisition system or a simulation, the latter is used 

here. 

When a rolling tire is influenced with lateral force an apparent path is made with 

an angle relative to the wheel plane as depicted in Figure 1.2.  This angle is referred to as 

the slip angle.  Conversely, the slip angle can be used to determine the lateral force in 

conjunction with the aforementioned camber angle and the vertical load.  The slip angle 

can be measured by specific sensors or back-calculated from a data acquisition system 

which measures vehicle lateral, longitudinal and vertical accelerations as well as vehicle 

yaw and pitch. 

 

 
Figure 1.2 – Tire Slip Angle 
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Camber angle is the angle at which a tire leans relative to the vertical as shown in 

Figure 1.3.  The camber angle depicted is positive as defined by SAE Tire Axis System 

[1].  As the vehicle rolls when entering a corner, the tire with negative camber rolls to a 

vertical orientation which increases the tire contact patch and therefore, increases the tire 

lateral load. 

 

 
Figure 1.3 – Tire Camber Angle Defined 

 

 To show how weight transfer adversely affects lateral force, consider two tires 

with equal vertical loads of 1,350 lbs.  The lateral load carrying capability of these tires 

can be found from Figure 1.4 [1], and using a reasonable approximation that the inner 

and outer slip angles are the same.  The maximum combined lateral force these tires 

would produce is the sum of the two tires lateral force at the slip angle.  From the figure, 

each tire would produce lateral force of 1,462 lbs, or a total of 2,924 lbs.  If 450 lbs of 

load transfer were to be taken into account as though the vehicle were in a steady-state 
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corner, the vertical load on the inner tire would be reduced to 900lbs and the vertical load 

on the outer tire would increase to 1800lbs.  From Figure 1.1, the maximum combined 

lateral force at these loads would be 1,771 lbs from the outer tire, plus 1,012 lbs from the 

inner tire for a total of 2,783 lbs.  Comparing this value to the equally loaded tires case, 

141 lbs of lateral load carrying capability is lost simply due to the nonlinearity of the 

tires. 

 

 
Figure 1.4 – Lateral Tire Force vs. Slip Angle (typical) 

 

1.2 Passive Nonlinear Damper Parameters 

The purpose of this paper is to show that the damper can be engineered to reduce lateral 

load transfer since road racing is comprised mainly of transient cornering maneuvers.  
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The method to find the nonlinear damper force-velocity curve which maximizes lateral 

acceleration is developed here, specifically the low-speed damping (C1), high-speed 

damping (C2) and transition velocity (Vt).   

 The compression (positive velocity) or rebound (negative velocity) components of 

the nonlinear force-velocity curve are generally broken down into two parts, low-speed 

damping (C1) and high-speed damping (C2).  The transition from low-speed to high-speed 

occurs at the transition velocity (Vt); an example of a typical nonlinear damper force-

velocity curve can be seen in Figure 1.5.  The force-velocity curve developed in this 

document will be strictly odd-symmetric about the origin (i.e. C1 applies to the low-speed 

rebound damping, Vt applies to the rebound transition velocity and C2 applies to the high-

speed rebound damping). 

 

 
Figure 1.5 – Nonlinear Damper Force-Velocity Curve 
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It can be shown that the body motions of a vehicle are much slower velocities (or lower 

frequencies) than the road input.  Thus, low-speed damping (C1) is designed for 

controlling body motion while the high-speed damping (C2) is designed for controlling 

road input.  The low-speed segment (C1) generally uses a high damping rate in order to 

make the chassis take a set quickly when entering a corner, thus increasing the 

responsiveness of the vehicle at turn-in; the chassis may not even enter steady-state in a 

typical road race situation.  Conversely, if a low rate is used, the chassis response is slow 

meaning the vehicle responds slowly to the steering input.  The high-speed segment (C2) 

generally uses a low damping rate so that the road input has little effect on the car as a 

whole and allows the tire to maintain its contact patch.  If the damping is too low, the tire 

cannot follow the contour of the road properly as the chassis would maintain attitude and 

the wheel would bounce on the road, limiting the mechanical grip the tire can provide.  

Conversely, if damping is too high, a bumpy surface transfers excessive force to the 

chassis disrupting the chassis attitude, launching the wheel and providing no tire traction 

at all.  Finally, determining the transition velocity where low-speed ends and high-speed 

begins is typically found by examining race car data.  However, the transition velocity 

was determined by optimization in this methodology.   

 

1.3 Inerter Formulation 

Recent developments have introduced a device known as an inerter (also known as a 

mass-damper), which adds additional passive control to a suspension [2].  Just as a 

spring’s force is proportional to its displacement and a damper’s force is proportional to 

velocity, the inerter’s output force is proportional to acceleration.  The proportionality, 
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“b,” is known as the inertance and can be adjusted by changing the internal mechanics of 

the inerter.  The methodology used to optimize the passive nonlinear damper was 

extended to optimize the inerter as well.  Optimization of an inerter and damper together 

is also a new phenomenon. 

 

1.4 Methodology and Design 

This passive damper and inerter design was accomplished by incorporating 

Matlab/Simulink to develop a usable vehicle suspension model and employ control 

system techniques for analysis.  Suspension parameters were obtained from the 

University of New Mexico Formula Society of Automotive Engineers (UNM FSAE) 

team as the methodology developed here will hopefully be used as a tool for future 

designs. 

Key components of the study include: 

• System formulation 

• Objective function identification – Tire load optimization 

• Damper compression curve optimization 

• Inerter optimization 

• Mode shape identification and root locus 

While natural frequency determines the responsiveness of the total vehicle, 

weight transfer is a key component in determining lateral acceleration as mentioned 

previously and demonstrated in section 4.5.1.  Damper rebound can also increase 

performance by lowering the center of gravity, and thus decreasing weight transfer 

further.  Rebound is the region of negative velocities on a force-velocity curve.  
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However, a compression curve was analyzed alone as designing the curve was 

sufficiently difficult.  By analyzing the compression curve alone, the rebound curve is 

forced to have the same slope as the compression curve.  In other words, the force 

velocity-curve constructed here is odd-symmetric. 

 

1.5 Outline 

Section 2 of this document summarizes previous work from various sources showing 

the methodology developed here is original.  Several methods for analyzing damper 

parameters on vehicle behavior has been previously performed, however, none of the 

literature describes the methodology to design a damper for a road race vehicle. 

Section 3 describes the formulation of the methodology to design an optimal passive 

nonlinear damper for a road race vehicle based on vehicle parameters, inertial input and 

road noise.  The methodology also extends to optimizing a linear inerter.  The parameters 

to be optimized are the low-speed damping, high-speed damping and transition velocity 

for the nonlinear damper and inertance for the inerter.  The procedure for this 

methodology is also developed in section 3. 

The analysis of increasingly complex vehicle suspension models is accomplished in 

section 4.  This includes assumptions necessary for these models and  is listed in section 

4.1 which include necessary simplifications or approximations.  The equations of motion 

which define the models are provided in section 4.2 so that a simulation or computer 

model could be constructed as shown in section 4.4.  Empirical data from a vehicle data 

acquisition system was used in the analysis to provide inertial input to the suspension 

models as described in section 4.3.  The data acquisition system collected 
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lateral/longitudinal/vertical vehicle accelerations as a function of time which created a 

true course on which to “drive” the virtual car.  The optimization algorithm used is 

explained in section 4.5.  Finally, mode identification is performed in section 4.6 along 

with a method for creating a root locus plot for each of the models.  These in conjunction 

are used to determine how the optimization has changed the suspension behavior. 

Section 5 contains the optimization of a linear damper for the suspension models as 

well as the creation of the root locus figures.  The results of the nonlinear damper 

optimization for the full-car model are presented separately from the linear damper and 

root locus analysis.  The inerter was optimized separately from the damper and the results 

of the optimization are presented separately. 

 

1.6 Introduction Chapter Recapitulation 

Tire lateral force behaves nonlinearly and will produce maximum lateral force when the 

inner tire of a vehicle has equal vertical loading to the outer tire.  This implies that weight 

transferred from the inner tire to the outer tire should be minimized.  A road race car 

damper should be engineered to minimize the lateral load transfer of a vehicle to 

maximize lateral acceleration.  The nonlinear damper is composed of low-speed and 

high-speed segments which control chassis motions and wheel motions, respectively.   

 The inerter is a passive mechanical device which produces force proportional to 

the relative acceleration applied to it.  The inerter can also be optimized to minimize 

lateral load transfer of a vehicle to increase vehicle lateral acceleration. 
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 The methodology to develop a nonlinear damper is nowhere to be found or not 

available to the public which the background section addresses by examining previous 

work on constructing damper force-velocity curves to increase vehicle performance.



12 

2 BACKGROUND 

2.1 Previous Work 

As discussed previously, a suspension damper should be designed to increase lateral load 

capabilities of a road race vehicle, however the methodology to design an optimal 

nonlinear damper for a full-car either does not exist or is not available to the public.   

A damper design proposed by Lacroix, et al. attempts to minimize tire load 

fluctuations [3].  In the design, a linear damper and quarter suspension is first modeled in 

Matlab/Simulink. Parametric studies are performed on the model including tire spring 

stiffness, unsprung mass, tire stiffness, and damping ratio to reduce the tire load 

fluctuation.  Plots of tire load fluctuation versus exciting frequencies are used to choose 

the “best” parameter studied.  No attempt was made at minimizing the objective function 

here.  Finally, a linear damper, 7 Degrees-of-Freedom (DOF) car was modeled which 

used experimental lateral/longitudinal acceleration data from an FSAE vehicle as input.  

Another parametric study was made by choosing four damping ratios, plotting them as 

load fluctuation versus frequency and then selecting the “best” result again.  Based on the 

results of the parametric damping ratios curves, a nonlinear force-velocity curve was 

created and shown to improve tire load fluctuations. 

Lacroix’s design does not have any evidence to suggest that minimal tire load 

fluctuation maximizes lateral acceleration of the vehicle.  There is also no formal 

optimization which shows the objective function was minimized in the design, only an 

“educated guess” method to create a damper force-velocity curve.  A damping ratio was 

referred to in the 7DOF case, although it was never shown how it was defined.  Section 

5.1.3 of this document shows that the damping ratios being referred to by Lacroix are 
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only applicable to a quarter suspension model as several modes exist for the 7DOF 

model.  It was never shown, but assumed, that the same damping would be used at each 

suspension corner.  Furthermore, no methodology is presented for determining damping 

for a generic car, only for the specific car studied in the paper. 

Fukushima [4] of Nissan’s Vehicle Research Laboratory presents empirical data on 

spring and damper forces for a variety of characteristics, including handling.  As the 

requirements for the various conditions were different, the range of the damper shaft 

velocity and range of piston stroke for each condition were plotted.  It was found that 

piston velocities for a rough road or a large bump were identical.  However, little 

damping is required on the single bump to increase driver comfort, while significant 

damping is required for a rough road to increase lateral load capabilities.  Since the stroke 

lengths for these conditions varied considerably, it was proposed that a stroke-sensitive 

damping feature be used to reduce harshness. 

While Fukushima’s paper is not directly related to racing, it is another example of 

maintaining tire-ground contact in the sense of a bumpy road.  This has little implication 

on racing where a transient corner may be bumpy but also has weight transfer which 

alters the vertical load on the tires.  However, the strategy of isolating different road 

conditions to construct a condition dependent damper is similar to that used here. 

Yet another example of minimizing tire load fluctuations is presented by Sugasawa 

[15] which reports that another group at Nissan performed a linear analysis to determine 

an estimate of an ideal damping ratio for various conditions.  The measure used for road-

holding is the root-mean-square (RMS) average of the wheel motion relative to the road.  

It was decided that this RMS average should be minimized, such that the wheel would 
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follow the road and would thus provide optimal road-holding.  It is shown that if the 

wheel motion matches the road then the force between the wheel and road is theoretically 

the static load. 

The idea of minimizing tire load fluctuations would typically be the job of the high-

speed damping.  Low-speed damping is neglected for controlling chassis attitude to 

maintain the vertical load on the tire.  When a vehicle enters a corner, the vertical load on 

the inner tires must be transferred to the outer tires.  This is also ignored and is 

contradictory to the RMS average idea that static loads are maintained if tire load 

fluctuation is minimized since the vertical loads on the tires would not be the same as 

static if the vehicle is cornering. 

To verify that rough roads do, in fact, require consideration, Rill [6] of Daimler-Benz 

explores the matter.  The analysis used a comprehensive nonlinear vehicle model to 

simulate a steady-state, constant radius skid pad test in which varying surface 

roughnesses were simulated.  Plots of tire lateral load loss with vertical load variation 

(due to road roughness) are developed from tire data which shows that the road surface 

greatly affects steering wheel angle, as the model controller tries to keep the vehicle on 

the circle, and lateral acceleration.  The effect of reducing damping ratio during the skid-

pad event was also studied and shows increased steering and decreased lateral 

acceleration. 

Els, et. al., “evaluate the feasibility of using gradient based approximation methods 

for the optimization of spring and damper characteristics of an off-road vehicle, for both 

ride comfort and handling” [7].  The vehicle in this evaluation uses a semi-active 

suspension modeled in ADAMS.  Here the attempt was to optimize handling based on a 
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simple simulated double lane change by minimizing body roll.  The model used lateral, 

but not longitudinal, damper rate symmetry.   

It was not shown that body roll is principal to maximizing lateral acceleration for 

either off-road or on-road vehicles.  Further, the goal of the analysis is not to provide 

methodology for designing an optimal damper for a generic car, so no quantitative values 

for the optimized damper are presented. 

Penske Technology Group develops optimal damping characteristics for vehicles on 

its test rig to improve their performance [8].  Basic car models are generated using 

software until the simulations reflect the test data.  Software is then used to optimize 

parameters for best track performance.  The use of these tools allows for reduced 

development time and increased offline testing which makes better use of test time on the 

rig and streamlines development. 

This is an example of a company using proprietary methodology to optimize shock 

absorbers using state-of-the-art technology.  However, because this is proprietary, the 

methodology was not made available to the public. 

Smith and Wang propose a preliminary investigation to determine an inerter’s 

benefit on a passive suspension system using various suspension configurations [9].  The 

inerter and linear damper were optimized for RMS body vertical acceleration, RMS 

dynamic tire load and dynamic load carrying while parametrically changing the 

suspension stiffness for each configuration studied.  Performance improvements were 

shown in a quarter-car suspension as well as a full-car in the areas of ride quality, tire 

loads and dynamic load carrying.  The inputs for the models were simple road 

disturbances modeled in the simulation.  This analysis was not directed at road racing and 
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does not provide a method for designing a suspension for a generic car.  The objective of 

the paper was to show that the inerter concept would provide improvements to the three 

vehicle responses studied but not necessarily to lateral load carrying capabilities of the 

vehicle. 

 

2.2 Summary of Previous Work 

The previous work in damper design has largely used the idea that tire load fluctuations 

are the objective function to be minimized which increases vehicle handling performance.  

There was no proof, however, to show that lateral acceleration increases with minimal 

tire load fluctuation.  The methodology presented in this document shows that lateral 

acceleration increases by decreasing lateral load transfer.  The previous work focuses on 

either road input or inertial input and not the combination of the two.  Since the purpose 

of a nonlinear damper is to control both inertial and road input, it was decided that the 

methodology to design the optimal force-velocity curve should use both of these inputs in 

an attempt to simulate a more realistic vehicle driving a road course. 

 The methodology necessary to develop an optimal passive nonlinear damper to 

maximize vehicle lateral acceleration is not developed in any previous work unless it is 

unavailable to the public.  The methodology to maximize lateral acceleration by 

optimizing a nonlinear damper is presented in the next chapter. 
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3 METHODOLOGY 

The previous section has shown that methodology for optimizing a nonlinear damper is 

not available public use.  A method for first optimizing generic system parameters is 

presented here as a means for maximizing or minimizing the output of a plant.  Secondly, 

the vehicle suspension system optimization procedure is presented representing a specific 

system using the same optimization method of the generic system. 

 

3.1 Generic System Optimization 

Given a system with several inputs and/or outputs, an optimization routine takes the 

desired output to be minimized or maximized (the objective function) and adjusts the 

chosen plant parameters accordingly.  Typically only a small number of parameters are 

optimized at one time due to the large complexity on the optimizer.  Figure 3.1 is a 

generic example of how the process progresses. 

 

Plant
In 1

Out 1

Optimizer

Param
In 2

Out 2PlantPlant
In 1

Out 1

Optimizer

Param
In 2

Out 2

 
Figure 3.1 – Generic System with Optimization 

 

It is not implied, however, that all plant outputs improve or become optimal themselves.  

They may in fact worsen to a point where further consideration is required for 
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implementing constraints or using multi-objective criteria to solve the problem.  The 

vertical motion of the optimized 4DOF system in section 5.1.2 would be unacceptable for 

an actual road race car.  This multi-objective problem can be solved by the weighted sum 

method amongst a variety of different algorithms.  Attempting to optimize several 

outputs is a multi-objective problem which is beyond the scope of this study.   

The equations-of-motion (EOMs) of the system are solved independently of the 

optimization and the optimization routine itself iterates on the system by modifying the 

chosen parameters until convergence is achieved.  This iterative process is depicted in 

Figure 3.2. 

 

Evaluation

Comparison

Adjust Params.

Output

Evaluation

Comparison

Adjust Params.

Output

 
Figure 3.2 – Optimization Iterations 

 

3.2 Vehicle Suspension Optimization Procedure 

The following general steps were taken to build a model of a suspension system and 

optimize its lateral load carrying capabilities: 

1. Four suspension system configurations were analyzed by developing computer 

models for each vehicle suspension from the EOMs.  The systems include heave 

(the vertical motion of the chassis) for a 2DOF quarter-suspension model, heave 
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and roll for a 2DOF roll model, heave, roll and wheel motion for a 4DOF model, 

and heave, pitch, roll and wheel motion for a full 7DOF model. 

2. A block diagram for each system was constructed in Simulink to solve the EOMs.  

The inertial forces used for input were adapted from a vehicle data acquisition 

system which recorded lateral/longitudinal/vertical acceleration as a function of 

time.  All systems include road input at the wheel/tire and inertial forces.  

Additionally, the model contains a block which only allowed the load on the tire 

to be positive (i.e. compression only) as physically, the wheel would simply lift 

off of the ground if force was less than zero. 

3. The system parameters were those of the 2007 UNM FSAE.  Successive UNM 

FSAE vehicles used similar designs. 

4. From the Pacejka formulas, tire data was examined to determine whether 

minimizing lateral load transfer would be a relevant objective function for 

optimizing lateral acceleration.  The lateral acceleration of the vehicle was first 

written as a function of the four tires lateral forces. The function was then 

optimized to determine the load transfer which would maximize lateral 

acceleration.  Attempting to directly optimize lateral acceleration by varying 

damping is not possible due to the fact that the inertial inputs are the same each 

iteration of the optimization.  The pre-recorded vehicle test data used for input 

does not have feedback from the simulation to update the vehicle inertial forces. 

5. Matlab contains an optimization toolbox which was used in the optimization of 

the inerter and, initially, a linear damper.  The number of variables can become 

overwhelming for optimization and must be taken in steps.  By first modeling a 
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linear damper, an educated guess was made for initial damping value in the 

vicinity of the optimal nonlinear damper.  After the nonlinear damper was 

optimized, an inerter was optimized.  The damper was preferentially optimized 

first before the inerter since information is available for an FSAE damper and an 

inerter is not available for FSAE vehicles.   

6. Mode identification was developed to understand the suspension system behavior 

and in understanding the optimized results.  This is further developed in section 

4.6.  Using a root locus plot verifies that the mode identification was done 

correctly as well as gain further understanding of the vehicle behavior and how 

the optimization has arrived at its result. 

Using the above procedure will maximize the lateral acceleration of a vehicle by 

optimizing a nonlinear damper to minimize lateral load transfer.  It will also provide a 

method to understand how the optimization has changed the suspension system to 

accomplish its objective.  Section 4 is the implementation of this procedure. 

 

3.3 Methodology Chapter Recapitulation 

To optimize a nonlinear damper, the EOMs must first be developed to create a computer 

simulation since a closed form solution is not possible.  The vehicle parameters and 

inputs to drive the model should come from the vehicle being modeled.  An objective 

function was examined to show that it maximizes lateral acceleration, in this case lateral 

load transfer was used.  An appropriate optimization routine was chosen to optimize the 

damper.  Mode identification is used in conjunction with root locus to understand the 

results of the optimization.  Section 4 is the implementation of this procedure.
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4 ANALYSIS 

Using the procedure developed in section 3, this section presents the derivation and setup 

of the suspension system, obtainment of the objective function which maximizes vehicle 

lateral acceleration and the identification of mode shapes for the root locus analysis 

which provided information on the relative motion of the optimized suspension model.  

The algorithm used by the optimization is also presented here. 

A closed form solution for an optimal damper is not possible, thus numerical 

analyses must be employed to find an optimal force-velocity curve which maximizes 

lateral acceleration.  Matlab with Simulink and the Optimization Toolbox was used to 

calculate the optimal damper force-velocity curve parameters: low-speed damping (C1), 

high-speed damping (C2) and the transition velocity (Vt). 

The models leading up to the full-car are strictly linear since they are mostly used as 

step-by-step learning as to how the analysis must progress.  Assumptions listed in section 

4.1 are made to simplify the models for simulation.  The various models also show 

whether a simplified version is acceptable for designing an optimal damper.  However, 

before any optimization to maximize lateral acceleration is invoked, an objective function 

must be determined to obtain an optimum.  Using tire data, a preliminary optimization 

was completed to create an objective function for the suspension models.   

In order to construct a computer simulation of the systems, EOMs are required which 

mode the behavior of a system.  The vehicle coordinate system is shown in Figure 4.1.  

The EOMs for the various models are shown in section 4.2.  The identification of mode 

shapes provides the relative motions of the suspension system at each natural frequency 

of the various models and is developed in section 4.6. 
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Figure 4.1 – Vehicle Axis System 

 

4.1 Assumptions 

Major assumptions made in the modeling, design and analysis are:  

1. In order to simplify the Simulink model an assumption was made that the anti-roll 

bar was unattached.  This approximation is acceptable due to the fact that the car 

is initially designed without the anti-roll bar and added mainly to fine-tune race 

car handling for a race.  The anti-roll bar is a device which can change the weight 

transfer at the front or rear of the vehicle.  The model, however, can be easily 

modified to include chassis roll stiffness from the anti-roll bar. 

2. The suspension geometry was not modeled as this would overcomplicate the 

EOMs and problem at hand.  This simplification is conservative as other lateral 
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load improvers, such as camber, can be added to a vehicle suspension design on 

top of the proposed damper optimization to increase the total lateral acceleration 

of the car. 

3. It was assumed that the vehicle would be laterally symmetric in order to simplify 

computational efforts and also due to the fact that this is typically the case.  FSAE 

cars are designed symmetrically as the road course at competition is undisclosed 

until the event occurs. 

4. Several configurations of the spring, damper and inerter can be used at one corner 

of the suspension [9].  The most straightforward design was used for the analysis: 

components in parallel.  This is typical of FSAE vehicle designs. 

5. Aerodynamics are not evaluated in the design as the UNM FSAE program does 

not use an aero-kit and additional parameters would be required to optimize 

performance including but not limited to, pitch and ride height. 

 

4.2 Equations of Motion  

In order to build a model to minimize lateral load transfer, the EOMs for each of the 

suspension models were constructed to allow simulation and damper optimization.  The 

equations can be developed by means of Newton’s or Lagrange’s equations however, the 

details of the formulation have been left out and simply the respective EOMs have been 

presented.  All the models (except 2DOF roll model) examined have a “sprung” and 

“unsprung” mass.  The sprung mass, or chassis, is the mass which sits on top of the 

suspension components.  The unsprung mass lies below the suspension components.  
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Typically, the unsprung mass consists of the tire, wheel, brake system, etc.  The 2DOF 

Roll model uses some assumptions for its construction. 

 The EOMs are represented in mass/damping/stiffness matrix form as shown in 

Eq. 4.1 where M is the mass matrix, C the damping matrix, K the stiffness matrix and x 

is the state-vector which describes the coordinates of each system.  The forces on the 

system are described by f.  These equations are only applicable to the linear models, 

however, the nonlinear damper simply replaces the damping coefficient used in the 

Simulink model to represent the full-car nonlinear damper model. 

 

{ }{ } { }{ } { }{ } { }fxKxCxM =++ &&&  Eq. 4.1 

 

4.2.1 2DOF Quarter Suspension Model 

A quarter-suspension model was initially developed for verification and validation of the 

proposed methodology based on methodology from Mechanical Vibrations [10].  This 

analysis with results is performed in section 4.6.1.  The model used in Figure 4.2 has 

2DOFs including sprung (m1) and unsprung mass (m2), linear spring stiffness (k1), linear 

damper (c) and tire stiffness (k2).  Using Newton’s equations, the EOMs for the two-mass 

suspension model were derived in Mechanical Vibrations and are shown again here [10]. 
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Figure 4.2 – 2DOF Suspension Model 

 

The inerter has not been included as this model is mainly used for validation purposes.  

The equations of motion for the 2DOF model are: 

 









=

2

1

0

0

m

m
M  










−

−
=

cc

cc
C  










+−

−
=

211

11

kkk

kk
K  









=

yk2

0
f  

Eq. 4.2 

 

The state-vector for the 2DOF quarter-suspension model is given in Eq. 4.3. 
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{ }T

21 xx=x  Eq. 4.3 

 

4.2.2 2DOF Roll Model 

Based upon Mathworks Simulink-Stateflow Technical Examples [11], a Simulink model 

was created for studies of a 2DOF roll model.  The model [11] was for vehicle pitch and 

was modified to be used as for vehicle roll.  The model included CG position, body mass, 

mass moment of inertia, front/rear suspension stiffness and front/rear damping.  It was 

later enhanced for the 4DOF and 7DOF models.  Figure 4.3 depicts the half-car 

suspension roll model.  The wheel rate and tire rate were modeled as springs in series and 

then the front springs and rear springs were combined in parallel.  Due to the fact that the 

initial roll model does not have unsprung mass, it was assumed that the total mass of the 

car would be modeled as sprung mass.  The model has uncoupled motion meaning the 

heave motion has no bearing on the roll motion and vice versa. 
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Figure 4.3 – 2DOF Half Car (roll) Suspension Model 

 

The equations of motion for the 2DOF half-car roll model are given in Eq. 4.4. 
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The state-vector for the 2DOF roll model is given in Eq. 4.5. 

 

{ }T
ψZ=x  Eq. 4.5 
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4.2.3 4DOF Half-Car Model 

The EOMs for the sprung and unsprung-mass, half-car suspension roll model were 

derived and are shown in Eq. 4.6.  Figure 4.4 depicts the half-car suspension roll model.  

The FSAE car uses unequal front and rear track widths as shown in Table 4.1.  The roll-

model is defined by having the front and rear wheels inline so an approximation had to be 

made; the average track width was used for the distance between each suspension attach 

point with the CG mid-track.   

The front and rear tire stiffness was modeled as springs in parallel as was the front 

and rear suspension springs; similarly, the dampers and inerters are modeled as being in 

parallel. 

 

 
Figure 4.4 – 4DOF Half-Car Suspension Model 

 

The equations of motion for the 4DOF half-car model are given in Eq. 4.6. 
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The state-vector for the 4DOF model is given in Eq. 4.7. 

 

{ }T

21 ψzzZ=x  Eq. 4.7 

 

4.2.4 7DOF Full-Car Model 

The EOMs for the full-car model include coordinates for the vertical motion of the 

unsprung masses, chassis heave (Z), roll (ψ) and pitch (θ).  The model uses unequal front 

(tf) and rear (tr) trackwidths, accurately representing the UNM FSAE vehicle.  The 

front/rear vehicle weight distribution was also included in the model which requires a 

front (Lf) and rear (Lr) moment arm.  Figure 4.5 depicts the full-car suspension model.   
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Figure 4.5 –  7DOF Full-Car Suspension Model 

 

The equations of motion for the full-car roll model are given in Eq. 4.8.
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The state-vector for the 7DOF model is given in Eq. 4.9. 

  

{ }T
θψZzzzz rfrrlrlf=x  Eq. 4.9 

 

4.3 Design Input 

This section lists the inputs used in the methodology for designing the nonlinear damper 

force-velocity curve.  These include the car specifications as well as the inertial and road 

inputs used in the simulation. 

 

4.3.1 Generic Car Parameters 

Vehicle data from a data acquisition system was used to simulate a virtual car driving on 

a track.  This data includes lateral/longitudinal/vertical chassis acceleration which was 

recorded as a function of time for one lap.  The data is from a larger car which is capable 

of higher lateral and longitudinal acceleration than the FSAE car.  Thus, the data has been 

scaled to represent UNM FSAE vehicle handling characteristics.  This approximately 

models a small car on a big road course.  A layout of the track driven is shown in Figure 

4.6.  The blue vertical line indicates the starting point of the lap and the track was 

traversed in a clockwise direction. 
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Figure 4.6 – Mid-Ohio Race Track 

 

The simulation input requires inertial moments so the acceleration data was multiplied by 

the vehicle weight and CG height.  Figure 4.7 - Figure 4.9 illustrate the scaled data used 

for the input into the various simulations.  The vertical acceleration did not require 

scaling for the simulations. 
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Figure 4.7 – Roll Torque Input 

 

 
Figure 4.8 – Pitch Torque Input 
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Figure 4.9 – Heave Acceleration Input 

 

4.3.2 UNM FSAE Race Car Parameters 

The 2007 UNM FSAE car parameters were used in the design of the linear and nonlinear 

damper and linear inerter.  These parameters include CG position, body mass, unsprung 

mass, front/rear suspension stiffness and front/rear installation ratios which were found 

from the 2007 FSAE Design Specification Sheet (see Appendix C).  The relevant 

parameters are listed in Table 4.1. 
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Table 4.1 – 2007 UNM FSAE Car Parameters 
Parameters Front Rear 

Wheelbase 60 inches 

Track 50 inches 48 inches 

Weight with 150lb Driver 310 lbs 340 lbs 

Unsprung Weight 62 lbs 70 lbs 

Inertia (Ixx) 2.056 x 105 lb-in2 

Inertia (Iyy) 2.460 x 106 lb-in2 

Center of Gravity Height 12 in 

Wheel Rate (chassis to wheel center) 148 lb/in 126 lb/in 

Motion Ratio 0.77 0.53 

Tire Rate 550 lb/in 550 lb/in 

 

The front/rear damping rate is required for the optimization to form an initial 

guess and to provide verification that the magnitude of the optimized damping rates are 

practical.  The low-speed damping was found by fitting a trendline to the initial slope of 

the 2007 UNM FSAE damper force-velocity curve.  The high-speed damping was found 

by fitting a trendline to the final slope of the force-velocity curve, and the transition 

velocity was found at the minimum velocity of the high-speed damping.  This curve was 

generated by a damper dynamometer at the bicycle shock absorber manufacturer Manitou 

and provided to the 2007 UNM FSAE team.  The curve fit is shown in Figure 4.10 below. 
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Figure 4.10 – 2007 UNM FSAE Nonlinear Damper Curve Fit 

 

Tire data is required to lay the foundation for the methodology to create a proper 

optimization goal or objective function.  This data was purchased by UNM FSAE in 2008 

but is still applicable to the 2007 car.  The analysis of this data is performed in section 

4.5. 

 

4.4 Model Construction 

Simulink models were then constructed to solve the EOMs developed in Section 4.2, 

allow for damper optimization and perform other functions as needed including root 

locus analysis.  The block diagrams are included in Appendix B.  Using the average 

damping coefficient of the front and rear dampers as the gain, the root locus was created 
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to determined the behavior of the system and facilitate comprehension of the optimization 

results.  This analysis is performed in section 4.6. 

A drawback to the root locus technique is that the system must be single-in single-

out (SISO).  The 2DOF quarter suspension model is a SISO system and Matlab is capable 

of producing a root locus figure for it [10].  The other systems, however, are multiple-

input multiple-output (MIMO) and require special attention which is addressed in section 

4.6. 

 

4.4.1 2DOF Half-Car Roll Model 

The 2DOF roll model used simple harmonic motion for the lateral load input as it was 

used for a preliminary model.  The sinusoid resembles a slalom that the vehicle would 

undergo in a typical road race.  The 4.33 rad/s spatial frequency of the slalom was based 

on lateral acceleration through the slalom amongst other parameters.  The amplitude of 

the sinusoid was found by using the 1.6 lateral g’s from section 4.5.1 multiplied by the 

weight of the car, 680 lb, multiplied by the 12 in CG height from section 3.  This 

produces a moment of 13,056 lb-in.  Since there was no data on road noise collected, the 

road input was modeled as random noise ranging  ± 0.005 inches. 

 

4.4.2 4DOF Half-Car Model 

The model used the roll torque data seen in Figure 4.7 in the simulation to represent a 

simulated track.  The road input was again modeled as random noise in the range ± 0.005 

inches.    
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4.4.3 7DOF Full-Car Model 

The full-car benefits from not having the simplifications required in the previous models.  

This implies that the full-car model is the benchmark for the other models.  The model 

used roll, pitch and heave input from section 4.3.1 as well the random noise road input 

used in the previous models.  Lateral symmetry was enforced in the full-car model, but 

not longitudinal symmetry. 

 

4.5 Optimization 

The objective function to be minimized which maximizes vehicle lateral acceleration is 

identified here as well as the algorithm used by the optimization.  The ultimate goal of 

the optimization is to find a nonlinear damping curve which best reduces the weight 

transfer at each time step.  The optimization was accomplished numerically using Matlab.  

The algorithm used by the Matlab tool solves nonlinear data-fitting problems.  The 

optimization code is included in Appendix A. 

 

4.5.1 Objective Function Identification 

To verify the postulate that equally loaded tires provide the most lateral force, Goodyear 

tire data was used to find an optimal tire loading which maximized lateral g’s for a four-

tire vehicle based on the Pacejka formula (see Appendix A).  In order to find the lateral 

force from the tire, the Pacejka formulas require vertical load (Fz), slip angle (α) and 

camber angle (γ) for each tire (i.e. Fy = Fy(Fz, α, γ)).  This implies that there are a total of 
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12 variables which need to be established.  From assumption 2, the camber angle can be 

ignored as it requires knowledge of suspension geometry to be determined.  This reduces 

the number of variables from 12 to eight.  A reasonable approximation is that the inner 

and outer slip angles are the same. This reduces the number of variables from eight to six.  

Rather than define the load on each tire, it was more convenient to define the weight 

transfer for the front and rear of the car.  Consider a vehicle making a turn; the weight 

transfer at the front of the car (∆Wf) is the load that is transferred from the front-inner tire 

to the front-outer tire.  If ∆Wf = 0, then no weight is transferred and the load on the tire is 

the static load.  If ∆Wf > 0 the load on the front-inner tire is reduced by ∆Wf and the load 

on the front-outer tire increases by ∆Wf.  The same logic for the front weight transfer 

applies to the rear weight transfer (∆Wr).  This further reduced the number of variables 

from six to four. 

 The Pacejka formulas were then used to optimize the vehicle lateral acceleration.  

The vehicle lateral acceleration is then given as:   
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where, 

Fyfo = front outer tire lateral force 

Fyfi = front inner tire lateral force 

Fyro = rear outer tire lateral force 

Fyri = rear inner tire lateral force 
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W = vehicle weight 

g = acceleration of gravity 

∆Wf = front lateral weight transfer 

∆Wr = rear lateral weight transfer 

αf = front slip angle 

αr = rear slip angle 

 

The result of maximizing ny as a function of the four variables (∆Wf, ∆Wr, αf, αr) is 

shown in Figure 4.11.  The bottom subplot shows the function (ny) at each iteration of the 

optimization as it reaches the maximum value at the final point on the right (~iteration 

210).  The last iteration point on this subplot is the maximum lateral acceleration of the 

vehicle in g’s which the four tires can produce.  The value of the last (and therefore 

optimal) point is displayed as the “Current Function Value” shown in the middle of the 

figure in g’s.  The top subplot shows the optimal variables at the last iteration which 

produce the maximum lateral acceleration.  From left to right the variables are αf, αr, 

∆Wf, and ∆Wr. 
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Figure 4.11 – Optimized Goodyear Tire Lateral Force 

 

By inspection of Figure 4.11, the optimization (see Appendix A) has shown that a 

maximum of 1.6168 g’s can be produced by the car if the front tire slip angles are 8.02°, 

rear tire slip angles are 7.69°, and no weight is transferred from the inside to the outside 

tires at the front and rear of the vehicle.  It should be noted that the 2007 FSAE vehicle 

was capable of producing ~1.5 lateral g’s, so the optimization has shown that the vehicle 

could, in theory, produce more lateral acceleration if lateral weight transfer were reduced.  

The implication is that, in fact, the postulated equally loaded tires produces maximum 

lateral acceleration, and minimizing weight transfer should be the objective function for 

optimizing the nonlinear damper and inerter. 
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4.5.2 Optimization Algorithm 

The Matlab function “lsqnonlin” solves nonlinear, least-squares problems as required for 

the damper optimization for a road race vehicle.  In general, starting at an initial vector 

the routine seeks the vector values for which the sum of squares of the function is 

minimized.  The vector in this case contains the damping curve or inertance.  

Optimization procedure item 5 of section 3.2 discusses the fact the damper was optimized 

separately from the inerter. 

The function “lsqnonlin” uses the trust-region reflective algorithm which, at each 

iteration, involves the approximate solution of a large linear system using the method of 

preconditioned conjugate gradient; a very efficient method which seeks to minimize the 

function by minimizing its gradient by generating a succession of search directions [12].  

This approximate solution is known as the trust-region.  A trial step is computed by 

minimizing inside the trust-region, which is known as the trust-region subproblem.  The 

current point is then updated or the region of trust is then shrunk and the trial step is 

repeated. 

In the standard trust-region method, the quadratic approximations are defined by 

the first two terms of Taylor approximation.  The Matlab solver restricts the trust-region 

subproblem to a two-dimensional subspace where the solution to the subproblem is 

simple.  The next step is finding the two-dimensional subspace using the preconditioned 

conjugate gradient process.  The solver defines the linear space spanned by a vector in the 

direction of the gradient and another vector in the approximate Gauss-Newton direction. 

It should be noted that the routine only finds a local optimum as it only seeks a 

place where the gradient is zero.  This implies that the optimization only finds local 
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minima and requires refinement to obtain a global minimum.  The low-speed damping of 

the FSAE damper was first chosen as the initial damping.  A much larger number was 

then chosen as the initial damping.  The direction these values were changed from their 

initial values by the optimization was indicative of the location of the global maximum 

(as can be seen in the results tables of section 5).  By choosing the next initial damping 

value as the average of the two previous optimized damping values, another indicator of 

the location of the global optimum was predicted.  This process continued until 

convergence was achieved and a global minimum was found. 

To assess the weight transfer with a scalar value, a vector was formed by 

subtracting the sum of forces at the right tires (Fyr(ti)) by the force at the left tires (Fyl(ti)) 

for each time step.  The norm of this vector was then taken which was referred to as the 

weight transfer norm (||∆W||) and was evaluated at the end of each optimization iteration 

to assess the reduction in weight being transferred laterally.  This is similar to RMS 

although the value was not normalized by a time period.  The equation for the weight 

transfer norm is shown in Eq. 4.11. 
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4.5.3 Suspension Model Considerations 

The quarter suspension model cannot be optimized since weight transfer is not a 

parameter in the model.  The model is constructed mainly as a means of validation for 

root locus creation in section 4.6. 
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The full-car model benefits from not having the simplifications necessary in the 

previous models.  The necessary assumptions made, however, are listed in section 4.1.  

The various model complexities (DOFs) were also beneficial to decide whether simpler 

models are reasonable approximations or whether higher-order models need to be 

constructed to simulate a vehicle properly. 

 

4.6 Identification of System Mode Shapes & Root Locus 

Identifying the mode shapes means the primary components of motions of the system can 

be viewed in relation to each other.  Occurring at the natural frequencies of the system, 

the mode shapes provide insight as to how the optimization routine has changed the 

system behavior to minimize the objective function. 

The natural frequencies of a system are the square of the eigenvalues, and the 

mode shapes are the associated eigenvectors.  This implies the natural frequencies in the 

root locus plot have associated mode shapes.  The mode shapes are found by neglecting 

damping and computing the eigenvalues and eigenvectors of the mass and stiffness 

matrices from the EOMs.  The natural frequencies can then be found by taking the square 

root of the eigenvalues.  It should be noted that mode shapes and root locus figures are 

only applicable to the linear systems; therefore no root locus figures are created for the 

full-car nonlinear damper model.  An example of identifying mode shapes is shown in 

section 4.6.1. 

Palm [10] presents a method for constructing a root locus for the 2DOF quarter 

suspension-model.  The method arranges the transfer function into the standard form for 

creating the root locus and solves for the damping rate as the gain.  This method would be 
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very beneficial for all the models; however, no closed form solution for the other models 

can be created due to higher-order system complexities.  In order to create a root locus, 

the average of the damping rates from each damper was parametrically varied in the 

model followed by eigenvalues extraction at each iteration.  The eigenvalues were then 

plotted on the s-plane to create the root locus figure.  It was decided that the best way to 

plot the eigenvalues was by varying the damping (gain) from zero to the optimized value.  

This means that the final pole of the root locus corresponds to the optimal damping rate 

and was marked with a red dot to signify it is the last value.  The first pole was marked 

with a green dot for further assistance.  With exception to the quarter-suspension model, 

the root locus figures for the models are presented in section 5. 

 

4.6.1 2DOF Quarter Suspension Model 

4.6.1.1 Mode Shape Identification Example 

As previously mentioned, the mode shapes are the eigenvectors of the system with 

associated eigenvalues.  Finding the eigenvectors by neglecting damping more readily 

identifies the branch of the root locus figure with the associated natural frequency.  

Assuming no forcing is present, the system of differential equations from Eq. 4.1 is then 

simplified to Eq. 4.12. 

 

[ ]{ } [ ]{ } 0xKxM =+&&  Eq. 4.12 

 

The homogeneous solution to the undamped system is simple harmonic motion which is 

represented by Eq. 4.13. 
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{ } { } )sin( tnωux =  Eq. 4.13 

 

Substituting Eq. 4.13 into Eq. 4.12 and simplifying yields Eq. 4.14, where u is the 

eigenvector with the associated eigenvalue ωn
2
. 

 

[ ]{ } [ ]{ } 2

nωuMuK =  Eq. 4.14 

 

Substituting the values m1 = 250kg, m2 = 40kg, k1 = 15,000 N/m, k2=150,000 N/m into 

Eq. 4.2 yields: 
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Eq. 4.15 

 

The eigenvalues (ωi
2
) and eigenvectors (ui) can then be found by use of the Matlab 

function “eig” or by some other means of calculating them so that they satisfy Eq. 4.14.  

The state vector is { }T

21 xx=x  where x1 is the motion of the sprung mass and x2 is the 

motion of the unsprung mass.  The mode shapes and natural frequencies are given in 

Table 4.2.  The first mode (i=1) shows that at the natural frequency of 7.38 rad/s, the 

primary motion is that of the sprung mass since 1.0>>0.0921.  Conversely, the second 

mode shows primarily unsprung motion. 
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Table 4.2 –  2DOF Quarter-Suspension Natural Frequencies and Mode Shapes 

i ωi
2
 ωi ui Primary Motion 

1 54.5 7.3805 {1.0, 0.0921}
T
 Sprung Mass 

2 4130.5 64.2692 {0.01471, -1.0}
T
 Unsprung Mass 

 

4.6.1.2 Root Locus Benchmark 

To verify that the proposed method of extracting eigenvalues to create a root 

locus was valid, the Palm example was used as a benchmark [10].  The transfer function 

for sprung mass to road input is given in Eq. 4.16. 

 

2

121

2

21

2

1

121

)())((

)(

)(

)(

kCskkCssmkCssm

kCsk

sY

sX

+−+++++

+
=  Eq. 4.16 

 

Factoring out c, rearranging into root locus form and substituting the values m1 = 250kg, 

m2 = 40kg, k1 = 15,000 N/m, k2=150,000 N/m the denominator becomes Eq. 4.17. 

 

0)29.0150(1025.24185 33524 =+++×++ sssKss  Eq. 4.17 

 

Finally, the root locus for the quarter-suspension model shown in Figure 4.12 was created 

using Matlab functions with the damping coefficient as the gain.  In addition, data cursors 

were placed at the poles on the imaginary axis, representing the system without damping, 

for the purpose of determining the natural frequency.  The natural frequencies of these 

poles correspond to those in Table 4.2 and therefore correspond to the associated 
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eigenvectors (mode shapes).  The primary motions of the root locus branches have been 

labeled to indicate the mode shapes. 

 

 
Figure 4.12 – 2DOF Quarter Suspension Benchmark Root Locus 

 

The branches of the root locus begin at the poles of the undamped system and end at the 

zeros where the gain (damping coefficient) goes to infinity.  Figure 4.12 shows that the 

motion of the system becomes oscillatory if the damping rate is high.  This is to be 

expected as Milliken [1] describes, “if damping is too high, dampers tend to control the 

suspension motion and overpower the spring rates,” and the system essentially behaves as 

a 1DOF since the suspension is nearly rigid with the only deflection coming from the tire.  
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4.6.1.3 Root Locus from Eigenvalue Extraction Example 

The proposed method to create a root locus plot by iteratively varying the damping and 

finding the eigenvalues produces Figure 4.13, superimposed on the Matlab root locus 

plot.  Small increments were used to vary the damping rate of the 2DOF quarter-

suspension model and subsequently find the eigenvalues of the simulated system using 

Matlab functions at each step.  The eigenvalue at each iteration was plotted as a dot on 

the s-plane which shows up as a black line on Figure 4.13 since the plotted points 

overlap.  The iterative method and benchmark root locus show good agreement.  It should 

be noted that an infinite damping rate (gain) is required to populate the branch that breaks 

away from the real axis with the iterative method as the gain heads toward infinity 

quickly.  The black dots of the manual plotting method show that only a finite gain can be 

used to create the manual root locus figure due to computing limitations; however, 

infinite damping is not realistic for design purposes. 
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Figure 4.13 – Iterative Plotting Technique and Benchmark 2DOF Quarter Suspension 

Root Locus  

 

4.6.2 2DOF Half-Car Roll Model 

The mass and stiffness matrices of the 2DOF Roll model are in section 4.2.2.  The state 

vector is { }T
ψZ=x  where Z is chassis heave and ψ is chassis roll depicted in Figure 

4.3.  The mode shapes and natural frequencies are given in Table 4.3.  The first mode 

shows chassis roll with no heave, conversely, the second mode shows heave without roll 

which is defined as uncoupled motion.  This implies that the roll motion has no effect on 

the heave motion as expected from section 4.2.2. 
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Table 4.3 –  2DOF Roll Suspension Natural Frequencies and Mode Shapes 

i ωi ui Primary Motion 

1 0.8088 {0 -1}
T
 Roll 

2 3.2554 {-1 0}
T
 Heave 

 

4.6.3 4DOF Half-Car Model 

The mass and stiffness matrices of the 4DOF suspension model are given in Eq. 4.6.  The 

state vector is { }T

21 ψzzZ=x  where Z is chassis heave, ψ is chassis roll, z1 is the 

left wheel motion and z2 is the right wheel motion depicted in Figure 4.4.  The mode 

shapes and natural frequencies are given in Table 4.4.  The first mode and third modes 

are mainly wheels moving in opposite directions (out-of-phase) with some body roll.  The 

second mode is primarily heave with mild wheel motion.  The fourth mode consists of 

wheels moving together synchronously (in-phase) with almost no chassis heave.  

 

Table 4.4 –  4DOF Suspension Natural Frqequencies and Mode Shapes 

i ωi ui Primary Motion 

1 1.0051 {0.0000, 1.0000, -1.0000, -0.1220}
T
 Counter-Wheel 

2 4.4472 {-1.0000, -0.3521, -0.3521, 0.0000}
T
 Heave 

3 19.4990 {0.0000, 1.0000, -1.0000, 0.0002}
T
 Counter-Wheel 

4 19.7599 {0.0848, -1.0000, -1.0000, 0.0000}
T
 Synchronous-Wheel 
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4.6.4 7DOF Full-Car Model 

The mass and stiffness matrices of the 7DOF suspension model are given in Eq. 4.8.  The 

state vector is { }T
θψZzzzz rfrrlrlf=x  where Z is chassis heave, ψ is chassis 

roll, θ is chassis pitch, zlf is the left-front wheel motion, zlr is the left-rear wheel motion, 

zrr is the right-rear wheel motion and zrf is the right-front wheel motion depicted in Figure 

4.5.  The mode shapes and natural frequencies are given in Table 4.5.  The first mode 

primarily shows the front wheels out-of-phase with the rear wheels, chassis heave and 

pitch.  The second mode shows the left-side wheels out-of-phase with the right-side 

wheels as well as chassis roll.  The third mode shows primarily chassis heave and modes 

four through seven show primarily wheel motion occurring at much higher frequencies 

due to the tire stiffness being much higher than the suspension stiffness. 
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Table 4.5 –  7DOF Suspension Natural Frqequencies and Mode Shapes 

i ωi ui Primary Motion 

1 0.3892 {0.9981, -1.0000, -1.0000, 0.9981, -0.8139, -0.0000, -0.1769}
T
 

Front Wheels 

opposite Rear 

Wheels, Heave, 

Pitch 

2 1.1091 {-1.0000, -0.7662, 0.7662, 1.0000, -0.0000, -0.1883, 0.0000}
T
 

Left Wheels 

opposite Right 

Wheels 

3 4.9396 {0.2196, 0.1761, 0.1761, 0.2196, 1.0000, 0.0000, 0.0000}
T
 Heave 

4 24.6694 {-0.0014, 1.0000, -1.0000, 0.0014, 0.0000, 0.0000, 0.0000}
T
 

Left-Rear 

opposite Right-

Rear 

5 24.7129 {-0.0293, 1.0000, 1.0000, -0.0293, -0.0218, 0.0000, 0.0000}
T
 

Left Rear 

synchronous w/ 

Right Rear 

6 26.9172 {-1.0000, -0.0011, 0.0011, 1.0000, 0.0000, 0.0000, 0.0000}
T
 

Left-Front 

opposite Right-

Front 

7 26.9862 {1.0000, 0.0216, 0.0216, 1.0000, -0.0253, 0.0000, 0.0000}
T
 

Left Front 

synchronous w/ 

Right Front 
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4.7 Analysis Chapter Recapitulation 

Section 4 has implemented the methodology procedure to which will maximize the lateral 

acceleration of a vehicle by optimizing a nonlinear damper to minimize lateral load 

transfer.  By using some assumptions in creating the EOMs for each of the various 

vehicle suspension models, a simulation was, in turn, created to optimize the nonlinear 

damper and inerter.  It was also determined that minimizing lateral load transfer would 

maximize lateral acceleration, thus lateral load transfer is the objective function of the 

optimization.  A method to understand how the optimization has changed the suspension 

system to accomplish its objective was also presented by identifying the mode shapes of 

each model.  The mode shapes have associated natural frequencies which correspond to 

branches on the root locus figures which are presented in section 5 along with the results 

of the optimization. 

The root locus figures use the linear damping rate as the gain and were created by 

varying the linear damping coefficient and extracting the eigenvalues of the model at 

each iteration.  The eigenvalues were then plotted on the s-plane to create the root locus 

figure.  It was decided that the best way to plot the eigenvalues was by varying the 

damping (gain) from zero to the optimized value.  This means that the final pole of the 

root locus corresponds to the optimal damping rate and was marked with a red dot to 

signify it is the last value.  The first pole was marked with a green dot for further 

assistance.  The EOMs and root locus figures are only applicable to the linear systems, 

however, and are not created for the nonlinear damper. 

 The results of the analysis of each suspension model are presented in section 5.
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5 RESULTS 

The methodology procedure to maximize lateral acceleration by minimizing lateral load 

transfer and identify the optimized suspension system modes was constructed in section 

4.  The results of the procedure for each suspension model are presented here.    

The optimization of the linear damper was first used on simpler models 

culminating with the full-car model.  The root locus figures were created by varying the 

linear damping coefficient and extracting the eigenvalues of the model at each iteration.  

These eigenvalues were then plotted on the s-plane using a green dot to represent the 

starting point with no damping and a red dot to indicate the optimized damping 

coefficient.   

The nonlinear damper was then optimized on the full-car model.  No root locus 

figure was created for the nonlinear model since root locus is only applicable to linear 

models.  Finally the inerter was optimized on the full-car separately, using the optimized 

nonlinear damper in the model. 

 

5.1 Linear Damper Optimization 

This section presents the results of the optimization of the linear dampers as well as the 

creation of the root locus figures for each of the models. 

 

5.1.1 2DOF Half-Car Roll Model 

Initially, a sinusoid with low input frequency was used to drive the half-car roll model. 

The optimization routine made little change to the damping coefficient to minimize the 

lateral load transfer or weight transfer norm (||∆W||).  After examining the natural 
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frequencies of the model it was decided to use an input frequency of 1 rad/s as it is closer 

to the roll mode natural frequency of the system.  The optimization was then able to 

change the damping coefficient further.  It was found that the optimization required the 

system to have sufficient excitation by having a forcing frequency near a natural 

frequency to make a substantial change in the initial damping.  The results in Figure 5.1 

used the 4.33 rad/s spatial frequency found from the FSAE rules for a slalom and an 

amplitude equivalent to 1.6 g’s from the optimized tire data of Figure 4.11.  Figure 5.1 

shows the tire load on the left and right tires in the top subplot.  The optimization had the 

objective of minimizing the difference between these two curves.  As expected, the 

chassis heave subplot shows no motion since the model was driven with a roll moment 

and the modes are uncoupled as seen in Table 4.2.   

The optimal linear damping rate for the half-car model was found to be 21.6 lb-

s/in.  This value is much lower than the initial 164 lb-s/in from the FSAE damper so it is 

likely that the model is over-simplified using the total vehicle mass as the sprung mass.  

The combination of high mass and low stiffness creates a chassis roll natural frequency 

lower than that seen in the more complex models so less damping is required to achieve a 

high or moderate damping ratio. 
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Figure 5.1 – 2DOF Roll Optimized Results 

 

By inspection of Figure 5.2, the heave mode (branch at 3.2554 rad/s) is more 

sensitive to changes in the damping coefficient than the roll mode (branch at 0.80877 

rad/s).  This is to be expected as the vehicle model does not have a damper specifically 

for roll, but for the heave motion.  The roll mode shows a very low damping ratio while 

the heave mode has a significantly higher damping ratio.  There is no significance to the 

high damping ratio on the heave mode since there is no heave input or output. 
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Figure 5.2 – 2DOF Roll Root Locus 

 

5.1.2 4DOF Half-Car Roll Model 

The half-car model simulation used roll input taken from the data acquisition system 

scaled to represent the FSAE vehicle parameters and uniform random noise to represent 

road input.  The results of the optimization at each iteration (n) are shown in Table 5.1.  

The table includes the initial damping value (C0), the optimized damping value (Copt) and 

the weight transfer norm (||∆W||) after optimization.  After several iterations of varying 

the initial value, the damping coefficient converged to 330 lb-s/ft.  The optimal linear 

damping coefficient of the 4DOF half-car is more reasonable than that of the 2DOF roll 

model since it is closer to the low-speed damping of the 2007 FSAE vehicle. 
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Table 5.1 – 4DOF Initial Damping and Optimization Results 
n C0 (lbf-s/in) Copt (lbf-s/in) ||∆W|| (lbf) 

1 164 174 103980 

2 300 310 99329 

3 600 584 103890 

4 500 468 100310 

5 400 330 99253 

6 320 330 99253 

 

Figure 5.3 shows the vertical load on the left and right tires in the top subplot; the 

difference of which is the objective function for the optimization.  The middle subplot 

shows the chassis heave motion has a decaying sinusoid indicating the heave mode is 

likely underdamped.  The bottom subplot shows the wheel motion in inches.  This 

subplot was expected to have ±1 inch of wheel travel since the suspension was designed 

by UNM FSAE to do so.  The wheel motion in Figure 5.3 shows that a range of roughly 

±1 inch of travel occurred in the simulation, further validating the results of the 

simulation.   
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Figure 5.4 shows the root locus after optimization.  No information is readily 

available from this figure until the data cursors were placed on the branches of the root 

locus.  Figure 5.5 shows the data cursors placed on the branches at the imaginary axis of 

the root locus simply for the purpose of identifying the associated mode shapes from 

Table 4.4. 

 

 
Figure 5.4 – 4DOF Root Locus 
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Figure 5.5 – 4DOF Root Locus / Mode Correspondance 

 

The data cursors in Figure 5.6 show the pole, damping ratio, percent overshoot and 

natural frequency based on the selected eigenvalues.  Figure 5.6 shows the upper-half 

plane of the root locus from Figure 5.4 with data cursors on the optimal gain.  Inspection 

of Figure 5.6 verifies that the heave mode is, in fact, underdamped corresponding to the 

chassis heave oscillations seen in Figure 5.3.  By further inspection of Figure 5.6, the 

optimization has given a relatively high natural frequency to the first (counter-wheel) and 

second (heave) modes and low natural frequency to the third (counter-wheel) and fourth 

modes (synchronous wheel).  The third (counter-wheel) and fourth (synchronous-wheel) 

modes are critically damped, while the first (counter-wheel) and second (heave) modes 

have very little damping.  The root locus has shown that the wheel motions are 

preferentially treated by the optimization since load transfer occurs at the wheels. 
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Figure 5.6 – 4DOF Root Locus with Optimal Damping Data Cursors 

 

5.1.3 7DOF Full-Car Model 

The full-car model used the scaled lateral, longitudinal and vertical accelerations from the 

data acquisition system to drive the simulation.  Road noise was again modeled as 

uniform random noise with a 0.005 in amplitude.  The optimization for the full-car linear 

damper to minimize weight transfer was conducted first to provide a closer estimate of 

the nonlinear force-velocity curve needed.  This reduces the number of iterations required 

in the nonlinear case as the initial guess is closer to the optimal value. 

In a similar fashion to the method used in the 4DOF optimization, an iterative 

approach to the initial linear damping value was used to converge on the global 

minimum.  However, because front and rear damper values are allowed to be 

independent, the front and rear installation ratios from section 4.3.2 were used to create a 
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front/rear distribution for the initial damping.  The installation ratio (or velocity ratio) is 

the mechanical advantage from the suspension geometry that relates the velocity of the 

wheel to the velocity of the damper.  The installation ratio creates an effective, or 

“installed,” damper rate that is observed vertically at the wheel center.  The installation 

ratio for the front of the car is larger than that in the rear so a front/rear distribution was 

created.  Using this distribution places the relative values nearer their optimal positions 

and requires fewer iterations to find the optimum.  The installed damping rate was found 

by use of Eq. 5.1.   

 

2IRCC
w

⋅=  Eq. 5.1 

 

A better approach to create a front/rear distribution for the dampers would have been to 

use the roll rate distribution of the vehicle.  The roll rate distribution is determined by the 

suspension designer and used to place a front/rear distribution of the installed spring rates 

on a car.  The same method applied to the dampers would have been more logical but was 

over-looked at the time.  

The optimization routine was then used to minimize the total lateral load transfer.  

The results of the optimization at each iteration (n) are shown in Table 5.2.  The table 

includes the initial front damping (Cf0), the initial rear damping (Cr0), the initial installed 

front damping rate (Cwf0), initial installed rear damping rate (Cwr0) and optimized weight 

transfer norm (||∆W||).  The optimized damping values were Cf = 426 lb-s/in and Cr = 239 

lb-s/in shown in Table 5.2. 
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Table 5.2 – Full-Car Linear Damper Optimization Results 
 Initial Values Optimized Values 

n 

Cf0 (lbf-

s/in) 

Cr0 (lbf-

s/in) 

Cwf0 (lbf-

s/in) 

Cwr0 (lbf-

s/in) 

Cwf Opt (lbf-

s/in) 

Cwr Opt (lbf-

s/in) 
||∆W|| (lbf) 

1 164 164 97 48 452 261 90328 

2 1000 1000 593 292 430 284 90377 

3 500 500 296 146 302 154 91520 

4 750 750 445 219 426 229 90299 

5 825 825 489 241 412 243 90297 

6 720 820 427 239 426 239 90294 

 

It should be noted that the front installed spring rate is higher than the rear installed 

spring rate and the vehicle weight is distributed toward the rear (i.e. the weight is higher 

in the rear than the front).  Considering the combination of these two, a higher damping 

rate is expected in the front than in the rear.  This was the result at which the optimization 

arrived and explains the large disparity between the front and rear optimized damping 

values. 

 Figure 5.7 shows the results of the chassis response to the scaled lateral, 

longitudinal and vertical acceleration using the optimized linear damper.  The vertical 

motion of the chassis is not as easily identified as underdamped, critically damped or 

overdamped by the oscillations as in the 4DOF since the full-car used vertical 

accelerations to force the motion.  However, the maximum amplitude of the vertical 

motion appears to be fairly small so the heave mode of the full-car is probably closer to 

critically damped than the 4DOF half-car.  The roll and pitch motions do no convey any 
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information on what the damping ratio might be since they are also forced by acceleration 

input.
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Figure 5.8 shows the root locus after optimization.  No information is readily available 

from this figure until data cursors were placed on the branches of the root locus.  Figure 

5.9 shows the data cursors placed on the branches at the imaginary axis simply for the 

purpose of identifying the associated mode shapes from Table 4.5.  The mode shapes are 

labeled by number in Figure 5.9 and are listed again here: 

 

1: Front wheels out of phase with rear wheels, heave, pitch 

2: Left wheels out of phase with right wheels, roll 

3: Heave 

4: Left rear wheels out of phase with right rear wheels 

5: Left rear wheels in phase with right rear wheels 

6: Left front wheels out of phase with right front wheels 

7: Left front wheels in phase with right front wheels 
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Figure 5.8 – 7DOF Linear Damper Root Locus 

 

 
Figure 5.9 – 7DOF Root Locus / Mode Correspondance 
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The data cursors in Figure 5.10 and Figure 5.11 show the pole, damping ratio, 

percent overshoot and natural frequency based on the selected eigenvalues.  Figure 5.10 

and Figure 5.11 show the upper-half plane of the root locus from Figure 5.8 with data 

cursors on the optimal gain.   

 

 
Figure 5.10 – 7DOF Root Locus with Optimal Damping Data Cursors 
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Figure 5.11 – 7DOF Root Locus with Optimal Damping Data Cursors 

 

By inspection of Figure 5.10 and Figure 5.11, the optimization has given a relatively high 

natural frequency to the second mode (left wheels opposite right wheels) and third mode 

(heave) and a relatively low natural frequency to the first mode (front wheels opposite 

rear wheels, heave).  Further investigation shows the fourth mode (left-rear wheel 

opposite right-rear wheel) and fifth mode (left-rear wheel in-phase with right-rear wheel) 

are the eigenvalues close to the origin and thus have low natural frequencies.  The sixth 

mode (left-front wheel opposite right-front wheel) and seventh mode (left-front wheel 

synchronous with right-front wheel) have relatively high natural frequencies as well.  The 

last four modes are critically damped, while the first three have very little damping.  The 

root locus has shown that the wheel motions are preferentially treated by the optimization 

since load transfer occurs at the wheels where the objective function was placed.  The 
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road race car suspension should be designed around controlling wheel motions since the 

tires are crucial to maximizing lateral acceleration.   

The nonlinear damper should further reduce lateral load transfer; however, the root locus 

is not a usable tool for analyzing the optimization results since the root locus technique is 

only applicable to linear models.  Section 5.2 presents the results of the nonlinear damper 

for the full-car model. 

 

5.2 Nonlinear Damper Optimization 

This section presents the results of the optimization of the nonlinear dampers.  The 

nonlinear damper has three parameters associated with the force-velocity curve to be 

optimized as opposed to the single coefficient for the linear case.  These nonlinear 

parameters are the low-speed damping (C1), high-speed damping (C2) and transition 

velocity (Vt) which can be seen in Figure 5.12.  As mentioned previously, the root locus 

technique cannot be applied to nonlinear models. 
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Figure 5.12 – Nonlinear Damper Force-Velocity Curve 

 

Due to the number of variables significantly increasing for the nonlinear damper, 

two different approaches were explored.  The first approach was to optimize the three 

variables associated with the nonlinear damper which resulted in a total of six variables 

being optimized; three for the front dampers and three for the rear dampers.  The second 

approach was to choose a constant transition velocity reducing the number of variables to 

four.   

 

5.2.1 Six Variable Nonlinear Damper Optimization 

The initial values of the low-speed damping for the front (C1f0) and rear (C1r0) suspension 

were chosen as the optimized linear values; Cf Opt = 412 lbf-s/in and Cr Opt = 243 lbf-s/in.  

At each iteration (n), the optimization changed the damping values in a direction from 

their initial value.  The initial value in the next iteration was then slightly modified in the 

direction of the previous optimized value as they should be near the optima already.  The 
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initial values for the high-speed damping for the front (C2f0) and rear (C2r0) were chosen 

as the same respective values for low-speed damping.  This implies the initial force-

velocity curve was linear.  The initial transition velocity (Vt0) was chosen from the UNM 

FSAE vehicle parameters.  The optimized parameters are the front low-speed damping 

(C1fOpt), front high-speed damping (C2fOpt), front transition velocity (VtfOpt), rear low-

speed damping (C1rOpt), rear high-speed damping (C2rOpt) and rear transition velocity 

(VtrOpt).  Table 5.3 shows the results of each iteration of optimizing the six-variable 

nonlinear damper.   

 

Table 5.3 – Full-Car Six Variable Nonlinear Damper Optimization Results 
 Initial Values Optimized Values 

n 

C1f0 

(lbf-

s/in) 

C2f0 

(lbf-

s/in) 

C1r0 

(lbf-

s/in) 

C2r0 

(lbf-

s/in) 

Vt0 

(in/s) 

||∆W|| 

(lbf) 

C1fOpt 

(lbf-

s/in) 

C2fOpt 

(lbf-

s/in) 

VtfOpt 

(in/s) 

C1rOpt 

(lbf-

s/in) 

C2rOpt 

(lbf-

s/in) 

VtrOpt 

(in/s) 

1 301 301 154 154 0.25 91372 307 302 0.25 161 158 0.25 

2 412 412 243 243 0.25 90256 417 408 0.25 248 237 0.25 

3 426 426 229 229 0.25 90257 430 422 0.25 236 224 0.25 

4 430 430 284 284 0.25 90340 433 426 0.25 284 275 0.25 

5 416 100 248 100 0.75 89856 416 100 0.62 248 100 0.67 

6 416 150 248 150 0.75 90022 416 150 0.61 248 150 0.68 

7 416 75 248 75 0.75 89745 416 75 0.62 248 75 0.67 

 

 The weight transfer norm of the optimal nonlinear damper shows improvement 

over the optimal linear damper.  This is to be expected as nonlinearity generally improves 

system behavior.  The high-speed damping was insensitive to the optimization for all 

iterations.  C2f0 and C2r0 should have been further decreased at iteration eight as 
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convergence had yet to be achieved.  The transition velocity was also insensitive to 

optimization until it was later changed to a larger value.   

The optimization results seemed to be sensitive to the initial low-speed and high-

speed damping of the force-velocity curve.  Along with the high number of variables, the 

first few iterations did not accurately represent the nonlinear damper of the UNM FSAE 

vehicle since the initial force-velocity curve was linear resulting in poor optimization 

performance.  The noise in the input data also creates many local minima which the 

optimization finds.  Experimenting with the initial conditions seemed to be the only way 

to decrease the weight transfer norm, defeating the purpose of using optimization. 

 

5.2.2 Four Variable Nonlinear Damper Optimization 

The four variable nonlinear damper used a constant transition velocity to reduce the 

number of variables for the optimization.  Several values for the front (Vtf) and rear (Vtr) 

transition velocity were examined in order to determine that which would minimize load 

transfer, including the 0.25 in/s transition velocity from the UNM FSAE damper data 

shown in Figure 4.10.  In the last iteration, the value was changed to the optimized value 

from the six variable optimization case.  The optimal nonlinear damper for the front 

suspension had a low-speed damping rate of 417 lb-s/in and a high-speed damping rate of 

4 lb-s/in.  The rear suspension had an optimal low-speed damping rate of 256 lb-s/in and 

high-speed damping rate of 8 lb-s/in. 
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Table 5.4 – Full-Car Four Variable Nonlinear Damper Optimization Results 
 Initial Values Optimized Values 

n 

C1f0 

(lbf-

s/in) 

C2f0 

(lbf-

s/in) 

C1r0 

(lbf-

s/in) 

C2r0 

(lbf-

s/in) 

Vtf 

(in/s) 

Vtr 

(in/s) 

||∆W|| 

(lbf) 

C1fOpt 

(lbf-

s/in) 

C2fOpt 

(lbf-

s/in) 

C1rOpt 

(lbf-

s/in) 

C2rOpt 

(lbf-

s/in) 

1 412 412 243 243 0.75 0.75 90289 417 409 247 236 

2 412 412 243 243 0.5 0.5 90276 416 409 249 236 

3 412 412 243 243 0.25 0.25 90256 417 408 248 237 

4 412 412 243 243 0.125 0.125 90267 418 408 248 238 

5 412 412 243 243 0.0625 0.0625 90281 418 409 248 238 

6 416 400 248 200 0.25 0.25 90123 421 396 255 196 

7 416 375 248 175 0.25 0.25 90050 421 372 256 174 

8 416 20 248 20 0.25 0.25 97835 421 25 253 25 

9 416 100 248 100 0.25 0.25 90618 421 105 253 105 

10 416 100 248 100 0.75 0.75 89987 402 92 248 94 

11 416 75 248 75 0.62 0.67 89712 416 69 250 68 

12 416 50 248 50 0.62 0.67 89568 416 44 252 43 

13 416 25 248 25 0.62 0.67 89408 416 19 254 20 

14 416 10 248 10 0.62 0.67 89294 417 4 256 8 

 

The result of the four-variable damper optimization was an improvement over the 

six-variable optimization.  The optimization routine seemed to find several local minima 

due to the input noise as it took several iterations to find a global minimum.  The four-

variable nonlinear damper case further reduced the weight transfer from the six-variable 

case. 
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Figure 5.13 shows the chassis heave, pitch and roll of the vehicle with the optimal 

nonlinear damper.  No conclusions can be drawn from this figure since all the motions 

are forced. 

 

 
Figure 5.13 – 7DOF Chassis Response with Optimal Nonlinear Damping 

 

Figure 5.14 shows the wheel motions with the optimal nonlinear damper.  The 

wheels have relatively low amplitude implying that they are controlled well by the 

suspension.  A spike in all wheel motions is evident at approximately 55 seconds, 

corresponding to a spike in the chassis heave motion in Figure 5.13.   

Figure 5.15 shows the load on the left tires and right tires in the top subplot.  

Frequently the force of the right and left tires drops to zero indicating the wheels are 

lifting off the ground.  The front inner wheel of the 2007 UNM FSAE vehicle would also 
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lift in hard turns, indicating that the simulation is a reasonable representation of the actual 

vehicle.  The bottom subplot displays the difference in the force of the left and right tires 

which is the total lateral load transfer or objective function.  The maximum lateral load 

transfer also occurs at approximately 55 seconds corresponding to the spikes in the wheel 

and chassis heave motions. 

 

 
Figure 5.14 – 7DOF Wheel Motions with Optimal Nonlinear Damping 
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Figure 5.15 – 7DOF Objective Function with Nonlinear Damping 

 

5.3 Inerter Optimization 

As mentioned in assumption 5, the inerter was optimized separately from the damper.  

This is mainly due to the large number of variables that would over-complicate the 

process, although it is also true that an inerter is not available to UNM FSAE and is not 

currently used in their vehicle design.  The root locus was not able to be created in this 

case since the nonlinear damper was employed.  Table 5.5 contains the results of the 

inerter optimization.  The initial front inertance (bf0) and rear inertance (br0) were chosen 

at random for the first iteration as no information is available for a FSAE vehicle inerter.  

The optimal front inertance (bfOpt) was 1.4 slugs and optimal rear inertance (brOpt) was 6.5 

slugs. 
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Table 5.5 – Full-Car Inerter Optimization Results 
bf0 br0 ||∆W|| bfOpt brOpt 

2.5 2.5 89049 6.2 2.8 

10 10 89039 10 7.5 

50 50 92297 45 56 

25 25 89167 26 18 

18 13 88956 3.6 33 

4.5 20 88996 1.5 21 

4.5 26 88991 1.4 6.5 

 

The inerter further decreased the weight transfer norm from the nonlinear damper 

case but not to the degree that the nonlinear damper decreased the weight transfer norm 

from the linear damper case.  The inerter optimization was unable to converge to a global 

optimum as the damper optimizations had.  However, the weight transfer norm changed 

very little in the last iteration.  Figure 5.16 shows the chassis roll, pitch and heave motion 

of the vehicle with the optimal inerters.  Figure 5.17 shows the wheel motions with the 

optimal inerters.  The same spike in wheel motions noticed in the nonlinear damper case 

is noticed in the wheel motion at approximately 55 seconds corresponding to the spike in 

chassis heave at the same time.  Figure 5.18 shows the load on the left tires and right tires 

in the top subplot and the total lateral load transfer or objective function.  The maximum 

lateral load transfer is again seen at approximately 55 seconds. 
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Figure 5.16 – 7DOF Chassis Response with Optimal Inerter and Nonlinear Damping 
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Figure 5.17 – 7DOF Wheel Motions with Optimal Inerter and Nonlinear Damping 
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Figure 5.18 – 7DOF Objective Function with Optimal Inerter and Nonlinear Damping 

 

The reason for the convergence problem is apparent in observance of the left-front 

suspension relative velocity and acceleration in Figure 5.19.  Part of the problem with the 

optimization of the inerter is a spike in the input data which is exacerbated through the 

suspension.  This spike is not as prominent in the suspension velocity as shown in Figure 

5.19, but was still noticeable in the simulation results of the nonlinear damper.  This is 

probably the cause of the convergence problems for the inerter optimization. 
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Figure 5.19 – 7DOF Left Front Suspension Relative Velocity/Acceleration 

 

 

5.4 Results Chapter Recapitulation 

The results of the optimizations of the linear and nonlinear dampers converged for each 

model with exception to the six-variable design.  The optimization of the inerter did not 

converge, likely due to a spike in the input data.  Convergence for the full-car linear and 

nonlinear damper took several more iterations than the simpler models.   

 The root locus has shown that the optimization preferentially treats the wheel 

modes since the 4DOF and 7DOF linear models had critically damped wheel modes and 

the objective function for the models was placed on lateral load transfer at the tires.   
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6 CONCLUSIONS 

The goal of the damper design methodology was to find an optimal nonlinear damper for 

a conceptual car.  The method required the obtainment of an objective function which 

would maximize the lateral acceleration of a road race vehicle, the input from a road race 

vehicle to excite the modes of the vehicle and the optimization of the nonlinear damper 

and inerter to minimize the objective function.  Understanding the results of the 

optimization was accomplished through inspection of the root locus plots. 

The damper design methodology arrived at an optimal solution for each case, 

minimizing lateral load transfer.  The 4DOF and 7DOF system root loci have shown in 

general, the chassis heave mode frequency has increased along with a lateral, opposite 

wheel motion.  The chassis roll mode frequency was relatively low compared to the other 

modes as was the damping after the optimization; however, it seems that more emphasis 

was placed on a higher frequency than a higher damping ratio.  The wheel motion modes 

decreased in natural frequency from their initial position on the imaginary axis and 

became critically damped.  This indicates that the wheels are more sensitive to lateral 

load transfer than body roll. 

The simpler 2DOF Roll and 4DOF models do not seem to have good agreement 

with the full-car model as far as the result of the optimal damper because the mode 

shapes for these models differ.  The 2DOF used a sinusoidal input which eventually led 

the vehicle to steady-state by inspection of Figure 5.1.  This is due to the fact that the 

4.33 rad/s frequency was not close enough to the roll frequency to excite it.  Comparing 

Table 4.3 to Table 4.4 it is possible the assumption to make the entire vehicle mass the 
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sprung mass may have also decreased the natural frequency of the system to an 

unrealistic value, thus reducing the amount of damping required.   

The heave motion that seems to have been excited in the 4DOF model would be 

unacceptable in race application.  However, heave does not affect lateral load transfer so 

the optimization did not have reason to control it.  The settling time is also very long due 

to the underdamped heave mode.  The heave resonance seems to be drowned out by noise 

in the 7DOF model due to the input of vertical acceleration. 

 The results tables from each of the cases show that weight transfer is fairly 

insensitive to small changes in the damping rate or inertance.  This means the actual 

shock absorber or inerter constructed does not have to exactly match the optimized force-

velocity curve to maintain overall performance; this also demonstrates the robustness of 

the results of the methodology.  

 Although the optimal inertance seemed relatively small, its effect was quite 

profound in terms of weight transfer.  By comparing Table 5.4 and Table 5.5 the simple 

linear inerter performed about 25% as well as the nonlinear damper in decreasing load 

transfer.  The increased mass of the inerter may become a factor in determining its true 

performance benefits as it had to be neglected for this analysis due to a lack of available 

information.  Packaging considerations may also eliminate the device from conception 

from a designer’s perspective. 

It was necessary to use several iterations to arrive at the global minimum weight 

transfer.  Future optimization methodology should include a method to choose or vary the 

initial damping.  Due to the fairly random nature of the input signals, local minima are 

abundant which terminates the optimization routine often.  Future models may also 
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benefit from using data smoothing techniques on the inertial input which would have 

reduced the acceleration spike seen in Figure 5.19.  Simultaneously optimizing spring 

stiffness would also be beneficial to designers.  However, a constraint would have to be 

placed on FSAE designs as the rules require ± 1 inch of wheel travel. 
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Appendix A: Optimization Code 

The optimization code and root locus plotting code is contained in this appendix 

 

% function [x,fval,exitflag,output] = optimizer(x0) 

% This is an auto generated M-file to do optimization with the 

Optimization Toolbox. 

% Optimization Toolbox is required to run this M-file. 

  

% optimizer([2;2;109;156]) 

x0=[2;2;109;156]; 

  

% Start with the default options 

options = optimset; 

% Modify options setting 

options = optimset(options,'Display' ,'off'); 

options = optimset(options,'PlotFcns' ,{  @optimplotx @createfigure }); 

options = optimset(options,'LargeScale' ,'off'); 

[x,fval,exitflag,output] = ... 

fminsearch(@Suspension_Solver_mod,x0,options); 

 

function stop = createfigure(x,optimValues,state) 

% OPTIMPLOTFVAL Plot value of the objective function at each iteration. 

% 

%   STOP = OPTIMPLOTFVAL(X,OPTIMVALUES,STATE) plots OPTIMVALUES.fval.  

If 

%   the function value is not scalar, a bar plot of the elements at the 
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%   current iteration is displayed.  If the OPTIMVALUES.fval field does 

not 

%   exist, the OPTIMVALUES.residual field is used. 

% 

%   Example: 

%   Create an options structure that will use OPTIMPLOTFVAL as the plot 

%   function 

%     options = optimset('PlotFcns',@optimplotfval); 

% 

%   Pass the options into an optimization problem to view the plot 

%     fminbnd(@sin,3,10,options) 

  

%   Copyright 2006 The MathWorks, Inc. 

%   $Revision: 1.1.6.2 $  $Date: 2006/06/20 20:10:00 $ 

  

stop = false; 

switch state 

    case 'iter' 

        if isfield(optimValues,'fval') 

            if isscalar(optimValues.fval) 

                plotscalar(optimValues.iteration,optimValues.fval); 

            else 

                plotvector(optimValues.iteration,optimValues.fval); 

            end 

        else 

            plotvector(optimValues.iteration,optimValues.residual); 

        end 

end 
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function plotscalar(iteration,fval) 

% PLOTSCALAR initializes or updates a line plot of the function value 

% at each iteration. 

  

if iteration == 0 

    plotfval = plot(iteration,fval,'kd','MarkerFaceColor',[1 0 1]); 

    title(['Current Function Value: 

',num2str(1/fval)],'interp','none'); 

    xlabel('Iteration','interp','none'); 

    set(plotfval,'Tag','optimplotfval'); 

    ylabel('Function value','interp','none') 

else 

    plotfval = findobj(get(gca,'Children'),'Tag','optimplotfval'); 

    newX = [get(plotfval,'Xdata') iteration]; 

    newY = [get(plotfval,'Ydata') 1/fval]; 

    set(plotfval,'Xdata',newX, 'Ydata',newY); 

    set(get(gca,'Title'),'String',['Current Function Value: 

',num2str(1/fval)]); 

end 

  

function plotvector(iteration,fval) 

% PLOTVECTOR creates or updates a bar plot of the function values or 

% residuals at the current iteration. 

if iteration == 0 

    xlabelText = ['Number of function values: ',num2str(length(fval))]; 

    % display up to the first 100 values 

    if numel(fval) > 100 
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        xlabelText = {xlabelText,'Showing only the first 100 values'}; 

        fval = fval(1:100); 

    end 

    plotfval = bar(fval); 

    title('Current Function Values','interp','none'); 

    set(plotfval,'edgecolor','none') 

    set(gca,'xlim',[0,1 + length(fval)]) 

    xlabel(xlabelText,'interp','none') 

    set(plotfval,'Tag','optimplotfval'); 

    ylabel('Function value','interp','none') 

else 

    plotfval = findobj(get(gca,'Children'),'Tag','optimplotfval'); 

    % display up to the first 100 values 

    if numel(fval) > 100 

        fval = fval(1:100); 

    end 

    set(plotfval,'Ydata',fval); 

end 

 

function LatG=Suspension_Solver_mod(VAR) 

% Solves for front and rear slip angles (alphaf and alphar) 

% clear all 

% clc 

% Global variable declarations 

  

global ny R W h L tf tr Xf Xr Kphif Kphir zrr zrf H N 

global DWf DWr Wf Wr FyfoN FyfiN FyroN FyriN LatG 
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alphaf=VAR(1); 

alphar=VAR(2); 

DWf=VAR(3); 

DWr=VAR(4); 

  

% ny = 1.59        % estimated g' 

Kphif =.61;     % ratio of front roll rate to total roll rate 

Kphi = 1;       % roll gradient (deg/g) 

  

g  = 32.17;    

R  = 25;        % Turn radius, ft 

W  = 500+180;   % Total vehicle weight, lb 

h  = 12/12;     % CG height, ft 

L  = 60/12;     % Wheelbase, ft 

tf = 50/12;     % Front track, ft 

tr = 48/12;     % Rear track, ft 

Xf = .48;       % Front static weight distribution, per cent 

Xr = 1-Xf;      % Rear static weight distribution, per cent 

zrr =1.6/12;   % Rear roll center, ft 

zrf= 1.7/12;  % Front roll center, ft 

  

Df = 1;         % Allowable front travel from ride height, in 

Dr = 1;         % Allowable rear travel from ride height, in 

  

Kphir =1-Kphif;         

H = h-(Xf*(zrr-zrf)+zrr);  

  

tiref(alphaf); 
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tirer(alphar); 

  

LatG=((FyfoN+FyfiN+FyroN+FyriN)/(W*N))^-1; 

% DWf=156.93/2; 

% DWr=109.08/2; 

  

% UnderSteer or OverSteer 

  

% deltaack = (L/R)*180/pi 

% delta = deltaack + alphaf - alphar 

% US =  deltaack - delta  

 

function efront = tiref(xf)  

  

global ny W tf Xf Xr Kphif zrf H %R Kphir zrr tr h L  

global DWf N FyfoN FyfiN %DWr Wf Wr  

  

gammafo = 0;        % Camber - front outside, deg 

gammafi = 0;        % Camber - front inside, deg 

  

Wf= Xf*W/2;     % Static weight on each front tire, lb 

Wr= Xr*W/2;     % Static weight on each rear tire, lb 

  

% DWf= (ny*W/tf)*(H*Kphif+Xr*zrf);  % Weight transfer  

  

Zfo = Wf+DWf;                       % Load on front outside, lb 

Zfi = Wf-DWf;                       % Load on front inside, lb 
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KN= .00444822162;                   % LB-KN conversion factor 

  

ZfoKN= -KN*Zfo; 

ZfiKN= -KN*Zfi; 

  

  

  

% %Goodyear 20.0x8.0-13 15psi Pacjeka Formula '94 coefficients 

% ktfNM =239086.7; 

%  a0    =   1.5000000e+000; 

%  a1    =   4.4255739e+001; 

%  a2    =   1.5149295e+003; 

%  a3    =  -3.8868435e+003; 

%  a4    =  -1.5215217e+001; 

%  a5    =   6.6089451e-002; 

%  a6    =  -1.0564438e-002; 

%  a7    =   2.9197666e-001; 

%  a8    =  -3.7541013e-002; 

%  a9    =   8.5183467e-002; 

%  a10   =  -3.1927707e-002; 

%  a11   =  -4.7678765e+001; 

%  a12   =  -1.4027698e+002; 

%  a13   =   8.8456962e-001; 

%  a14   =  -2.0369299e+001; 

%  a15   =  -3.8214868e-003; 

%  a16   =  -0.2874285e-001; 

%  a17   =   2.0000000e-001; 



96 

  

% Goodyear 20.0x6.5-13 15psi  Pacjeka Formual '94 coefficients 

ktfNM =202968.5;  % Front tire stiffness, N/m 

a0    =   1.5000000e+000; 

a1    =   4.4255739e+001; 

a2    =   1.5098362e+003; 

a3    =  -3.7230395e+003; 

a4    =  -1.5215217e+001; 

a5    =   6.6089451e-002; 

a6    =  -1.0564438e-002; 

a7    =   2.9197666e-001; 

a8    =  -3.7541013e-002; 

a9    =   8.5183467e-002; 

a10   =  -3.1927707e-002; 

a11   =  -4.7678765e+001; 

a12   =  -1.4027698e+002; 

a13   =   8.8456962e-001; 

a14   =  -2.0369299e+001; 

a15   =  -3.8214868e-003; 

a16   =  -0.2874285e-001; 

a17   =   2.0000000e-001; 

  

C=a0; 

  

Dfo = (a1*ZfoKN+a2)*(1-a15*gammafo^2)*ZfoKN; 

Dfi = (a1*ZfiKN+a2)*(1-a15*gammafi^2)*ZfiKN; 

  

BCDfo = (2*a3*sin(atan(ZfoKN/a4)))*(1-a5*abs(gammafo)); 
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BCDfi = (2*a3*sin(atan(ZfiKN/a4)))*(1-a5*abs(gammafi)); 

  

Bfo = BCDfo/(C*Dfo); 

Bfi = BCDfi/(C*Dfi); 

  

Shfo = a8*ZfoKN+a9*a10*gammafo; 

Shfi = a8*ZfiKN+a9*a10*gammafi; 

  

Svfo = a11*ZfoKN+a12+(a13.*ZfoKN^2+a14*ZfoKN)*gammafo; 

Svfi = a11*ZfiKN+a12+(a13.*ZfiKN^2+a14*ZfiKN)*gammafi; 

  

N = 4.44822162; 

  

if Zfi<=0 

FyfiN=0; 

else 

FyfiN = -(Dfi*sin(C*atan(Bfi*(xf+Shfi)-

(a6*ZfiKN+a7)*(a16*gammafi+a17*sign(xf+Shfi))*(Bfi*(xf+Shfi)-

atan(Bfi*(xf+Shfi)))))+ Svfi); 

end 

  

FyfoN = -(Dfo*sin(C*atan(Bfo*(xf+Shfo)-

(a6*ZfoKN+a7)*(a16*gammafo+a17*sign(xf+Shfo))*(Bfo*(xf+Shfo)-

atan(Bfo*(xf+Shfo)))))+ Svfo); 
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% efront = (FyfoN +FyfiN)/N -2*ny*Wf;  % error in front loads, alphaf 

which 

% makes error zero is found in solver 

 

function erear = tirer(xr)  

  

global ny  W tr Xf Xr Kphir zrr H 

global DWr FyroN FyriN  

  

gammaro = 0;        % Camber - rear outside tire, deg 

gammari = 0;        % Camber - rear inside tire, deg 

  

Wr= Xr*W/2;        % Static weight on each rear tire, lb 

  

% DWr= (ny*W/tr)*(H*Kphir+Xf*zrr);    % weight transfer, lb 

  

Zro = Wr+DWr;       % Load on rear outside tire, lb 

Zri = Wr-DWr;       % Load on rear insode tire, lb 

  

KN= .00444822162;   %converts loads from pounds to KiloNewtons 

  

ZroKN= -KN*Zro; 

ZriKN= -KN*Zri; 
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% Goodyear 20.0x8.0-13 15psi  Pacjeka Formual '94 coefficients 

ktrNM =239086.7;  % Rear tire stiffness, N/m 

 a0    =   1.5000000e+000; 

 a1    =   4.4255739e+001; 

 a2    =   1.5149295e+003; 

 a3    =  -3.8868435e+003; 

 a4    =  -1.5215217e+001; 

 a5    =   6.6089451e-002; 

 a6    =  -1.0564438e-002; 

 a7    =   2.9197666e-001; 

 a8    =  -3.7541013e-002; 

 a9    =   8.5183467e-002; 

 a10   =  -3.1927707e-002; 

 a11   =  -4.7678765e+001; 

 a12   =  -1.4027698e+002; 

 a13   =   8.8456962e-001; 

 a14   =  -2.0369299e+001; 

 a15   =  -3.8214868e-003; 

 a16   =  -0.2874285e-001; 

 a17   =   2.0000000e-001; 

  

C=a0; 

  

Dro = (a1*ZroKN+a2)*(1-a15*gammaro^2)*ZroKN; 

Dri = (a1*ZriKN+a2)*(1-a15*gammari^2)*ZriKN; 

  

BCDro = (2*a3*sin(atan(ZroKN/a4)))*(1-a5*abs(gammaro)); 

BCDri = (2*a3*sin(atan(ZriKN/a4)))*(1-a5*abs(gammari)); 
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Bro = BCDro/(C*Dro); 

Bri = BCDri/(C*Dri); 

  

Shro = a8*ZroKN+a9*a10*gammaro; 

Shri = a8*ZriKN+a9*a10*gammari; 

  

Svro = a11*ZroKN+a12+(a13*ZroKN^2+a14*ZroKN)*gammaro; 

Svri = a11*ZriKN+a12+(a13*ZriKN^2+a14*ZriKN)*gammari; 

  

N = 4.44822162;       % Used to convert FY in N to Fy in lb 

  

FyroN = -(Dro*sin(C*atan(Bro*(xr+Shro)-

(a6*ZroKN+a7)*(a16*gammaro+a17*sign(xr+Shro))*(Bro*(xr+Shro)-

atan(Bro*(xr+Shro)))))+ Svro); 

FyriN = -(Dri*sin(C*atan(Bri*(xr+Shri)-

(a6*ZriKN+a7)*(a16*gammari+a17*sign(xr+Shri))*(Bri*(xr+Shri)-

atan(Bri*(xr+Shri)))))+ Svri); 

  

% erear  = (FyroN +FyriN)/N -2*ny*Wr; % Error in rear loads, alphar 

which 

% makes error zero is found in solver 

 

%2DOF Root Locus Analysis  

close all 

clear 

clc 
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m1=250;       % body mass in kg 

m2=40;         % unsprung mass in kg 

k1=15000;      % front suspension stiffness in N/m 

k2=150000;  %tire stiffness 

b=0; 

% c=0; 

  

  

%%%%%%%%%%Root Locus Analysis%%%%%%%%%%% 

%The form of the root locus is the denominator of the T.F.=0.  

%Furthermore, D(s)+K*N(s)=0 

%Poles of Denominator 

% p0=4*k*L^2/(4*b*L^2+Iyy);%0; 

% p1=0; 

% p2=1; 

% p3=0; 

% p4=0; 

% %Zeros of Numerator 

% z0=0; 

% z1=1; 

% z2=0; 

% z3=0; 

% z4=0; 

%  

% sys2=tf([z4,z3,z2,z1,z0],[p4,p3,p2,p1,p0]) 

% rlocus(sys2); 
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%   axis equal 

%   sgrid 

% % K= 

% % c=K*(4*b*L^2+Iyy)/(4*L^2) 

% %%%%%%%%%%%%%%%%Full TF System%%%%%%%%%%%%%%%%% 

% s=tf('s'); 

% num=1; 

% den=s^2*(4*b*L^2+Iyy)+s*(4*c*L^2)+(4*k*L^2); 

% sys=num/den 

% damp(sys) 

  

%%%%%%%%%%%%%%%Simulink Model Verification%%%%%%%%%%%%%%%%%%%% 

n=5; 

fin=500; 

for c=0:n:fin 

     

    [A,B,C,D]=linmod('Palm2DOF_RLocus'); 

%     [num, den]=linmod('Palm2DOF_RLocus'); 

%     sys1=ss(A,B,C,D); 

    [num,den]=ss2tf(A,B,C,D,1);   %choose "1" for the 1st input 

    sys1=tf([num],[den]); 

    [wn,zeta,p]=damp(sys1); 

  

    i=c/n+1 

    re(i,:)=real(p); im(i,:)=imag(p); 

  

end 
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plot(re,im,'ks','MarkerSize',8,'MarkerFaceColor','k') 

axis equal 

sgrid 

  

%%%%%%%%%%%%%%%%%Palm2DOF CORRRECT root locus%%%%%%%%%%%%%%%%%%% 

sys2=tf([1,0,517.24,0],[1,0,4185,0,2.25e5]); 

hold on 

rlocus(sys2) 

 

 

function [b br c1 c2]=TwoDOFoptimization 

  

%initialize plant variables in model 

TwoDOFinerter 

%ms=250,mu=35,kt=150 

% ms=20; 

% mu=10; 

% ks=15; 

% kt=15; 

% b0=0.5; 

% br0=.15; 

% c1_0=1; 

% c2_0=1; 

ms=20; 

mu=4; 

ks=15; 

kt=15; 

b0=3; 
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br0=.1; 

c1_0=15; 

c2_0=15; 

  

bc0=[b0 br0 c1_0 c2_0]; 

  

  

options = optimset('LargeScale','off','Display','iter',... 

      'TolX',0.001,'TolFun',0.001); 

coef = lsqnonlin(@tracklsq, bc0, [], [], options); 

b=coef(1); br=coef(2); c1=coef(3); c2=coef(4); 

  

    function F = tracklsq(coef) 

        % Track the output of optsim to a signal of 1 

       b=coef(1);  

       br=coef(2); 

       c1=coef(3);  

       c2=coef(4); 

  

        % Compute function value 

        simopt=simset('SrcWorkspace','current');  % Initialize sim 

options 

        [t,x,y] = sim('TwoDOFInerter',10,simopt); 

        F = y-1; 

  

    end 

end 
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 % plot(t,y) 

 

function [cl,cr]=suspn_2dofroll_optim 

  

global Ll Lr Mb Ixx k kl kr bl br cl0 cr0 g 

  

%load model 

suspn_2dof_roll_inerter 

  

%initialize plant variables in model 

% L=24.5; 

% Ll = L;             % left hub displacement from body CG (in) 

% Lr = L;             % right hub displacement from body CG (in) 

% Mb = 680/32.17;     % body mass +180lb driver in slugs (lbf/grav) 

% Ixx = 205559.63;    % body moment of inertia about roll-axis in 

lb*in^2 

% k=(1/(148+112)+550)/2;          % equivalent spring [k_front=148, 

k_rear=112] 

% kl = k;             % left suspension stiffness in lb/in 

% kr = k;             % rear suspension stiffness in lb/in 

% b=0;                % inertance 

% br=b; 

% bl=b; 

% cl0 = 15;           % initial left suspension damping in lb/(in/s) 

% cr0 = 15;           % initial right suspension damping in lb/(in/s) 

c0=[cl0 cr0];       % create initial condition vector 

  

% set tolerance on damping to 10 lb/(in/s), tolerance on weight... 
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% transfer to 1/4lb 

options = optimset('Display','iter','TolX',0.25,'TolFun',.25); 

coef = lsqnonlin(@track,c0,0,[],options); 

cl=coef(1); cr=coef(1); 

  

    function F = track(coef) 

                cl=coef(1);  

                cr=coef(1); 

         

        % Compute function value 

        simopt=simset('SrcWorkspace','current','MaxStep',.01);  % 

Initialize sim options 

        [t,x,y] = sim('suspn_2dof_roll_inerter',20,simopt); 

        F = y(:,1)-y(:,2); 

  

    end 

end 

 

%% 2DOF(Roll) Root Locus Analysis  

close all 

clear 

clc 

  

global Ll Lr Mb Ixx k kl kr bl br cl0 cr0 g 

  

g=-32.17;             %gravity (ft/s^2) 

L=24.5; 
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Ll = L;             % left hub displacement from body CG (in) 

Lr = L;             % right hub displacement from body CG (in) 

Mb = 680/32.17;     % body mass +180lb driver in slugs (lbf/grav) 

Ixx = 205559.63;    % body moment of inertia about roll-axis in lb*in^2 

k=(1/(148+550)+112)/2;          % equivalent spring [k_front=148, 

k_rear=112] 

kl = k;             % left suspension stiffness in lb/in 

kr = k;             % rear suspension stiffness in lb/in 

b=0;                % inertance 

br=b; 

bl=b; 

cl0=15; 

cr0=15; 

  

%% Optimization 

[cl,cr]=suspn_2dofroll_optim 

  

%% %%%%%%%%Root Locus Analysis%%%%%%%%%%% 

%The form of the root locus is the denominator of the T.F.=0.  

%Furthermore, D(s)+K*N(s)=0 

%Poles of Denominator 

% p0=4*k*L^2/(4*b*L^2+Iyy);%0; 

% p1=0; 

% p2=1; 

% p3=0; 

% p4=0; 

% %Zeros of Numerator 

% z0=0; 
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% z1=1; 

% z2=0; 

% z3=0; 

% z4=0; 

%  

% sys2=tf([z4,z3,z2,z1,z0],[p4,p3,p2,p1,p0]) 

% rlocus(sys2); 

%   axis equal 

%   sgrid 

% % K= 

% % c=K*(4*b*L^2+Iyy)/(4*L^2) 

% %%%%%%%%%%%%%%%%Full TF System%%%%%%%%%%%%%%%%% 

% s=tf('s'); 

% num=1; 

% den=s^2*(4*b*L^2+Iyy)+s*(4*c*L^2)+(4*k*L^2); 

% sys=num/den 

% damp(sys) 

  

%% Signals 

    sim('suspn_2dof_roll_postopt_analysis',20);    %Create logsout 

structure file 

    norm(logsout.Flt.Data-logsout.Frt.Data) 

    time = logsout.Frt.Time; 

    figure 

    subplot(3,1,1),  

    plot(time,logsout.Flt.Data,time,logsout.Frt.Data); 

    ylabel('$$Force$$ (lbf)','Interpreter','LaTex'); 

    %text(2.2,0.002,'d\theta/dt') 
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    title('2-DOF Suspension Model Simulation Results') 

    legend('F_L_t','F_R_t','Orientation','horizontal',... 

        'Location','Best') 

     

    subplot(3,1,2),  

    plot(time,logsout.Z.Data); 

    ylabel('$$Chassis Heave$$ (in)','Interpreter','LaTex'); 

    ylim([-3.5 -2.5]); 

    %text(2.2, 0.03, 'dz/dt') 

  

    subplot(3,1,3),  

    plot(time,logsout.Theta.Data); 

    ylabel('$$Chasasis Roll$$ (rad)','Interpreter','LaTex'); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

%% %%%%%%%%%%%%%%%%Eigenvectors and Eigenvalues 

(modes)%%%%%%%%%%%%%%%%%%%% 

% c=0; 

% cr=c; 

% cl=c;     

  

M=[-Mb-4*b, 0; 0, -4*b*L^2-Ixx];  %Mass matrix (see 2DOF(Roll)_1.nb) 

K=[-4*k, 0; 0, -4*k*L^2];      %Stiffness matrix (see 2DOF(Roll)_1.nb) 

  

[vector,value]=eig(K,M)   %"vector" columns are eigenvectors 

display('Nat. Freq.') 

sqrt(value) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%     

%% %%%%%%%%%%%%%Build Root Locus w/ damping coef. as 

gain%%%%%%%%%%%%%%%%%% 

n=.1;       % step size 

fin=(cr+cl)/2;    % final damping value 

i=0;        % initialize index 

  

% create root locus 

for c=0:n:fin 

    cl=c;       % give suspension symmetry 

    cr=c; 

  

    [A,B,C,D]=linmod('TwoDofRoll_RLocus');      % find LTI model 

    sys1=ss(A,B,C,D);           % change LTI model to state space 

    [wn,zeta,p]=damp(sys1);     % find eigenvalues 

  

    i=i+1       % increment index 

    dampcoef(i,:)=c;        % collect "c's" used 

    re(i,:)=real(p); im(i,:)=imag(p);       % find Re(pole), Im(pole) 

%     natfreq(i,:)=wn;          % collect natural frequency value 

%     damprat(i,:)=zeta;        % collect damping ratio value     

  

%%variable step size 

%      if i>1 

%         if (sqrt((re(i)-re(i-1))^2+(im(i)-im(i-1))^2)>.2) 

%         n=2; 
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%         cnt=cnt+1 

%         end 

%     end 

end 

  

%%Create root locus figure 

fig=figure; 

dcm_obj=datacursormode(fig); 

set(dcm_obj,'UpdateFcn',@myupdatefcn)   %customized datatip function 

plot(re,im,'.b',re(1,:),im(1,:),'.g',re(i,:),im(i,:),'.r') 

axis([2*min(min(im)) 0 min(min(im)) max(max(im))]) 

axis square 

%axis([-14 0 .47 .52]) 

% axis equal 

% axis tight 

sgrid 

  

%%Use custom datatip 

% xlimits=xlim; 

% ylimits=ylim; 

% display('Press any button to continue') 

% while waitforbuttonpress==0 

%     info_struct=getCursorInfo(dcm_obj); 

%     ind=info_struct.DataIndex; 

%     refreshdata 

%     text(0.9*xlimits(1),0.8*ylimits(2),['Damping Coefficient: ', 

num2str(dampcoef(ind))],... 

%         'BackgroundColor',[1 1 .93],'EdgeColor',[.8 .8 .8]) 
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% end 

 

function output_txt = myfunction(obj,event_obj) 

% Display the position of the data cursor 

% obj          Currently not used (empty) 

% event_obj    Handle to event object 

% output_txt   Data cursor text string (string or cell array of 

strings). 

  

pos = get(event_obj,'Position'); 

% get(event_obj,'Target'); 

% dampcoef(1) 

% dcm_obj=datacursormode(fig); 

% info_struct=getCursorInfo(dcm_obj); 

% ind = info_struct.DataIndex; 

ang=atan(pos(2)/pos(1)); 

zeta=cos(ang); 

freq=norm([pos(1) pos(2)]); 

pole=pos(1)+j*pos(2); 

os=100*exp(-pi*zeta/(sqrt(1-(zeta)^2))); 

output_txt = {['Pole: ',num2str(pole)],... 

    ['Damping: ',num2str(zeta)],... 

    ['Overshoot: ',num2str(os)],... 

    ['Frequency (rad/s): ',num2str(freq)]}; 

  

% If there is a Z-coordinate in the position, display it as well 

if length(pos) > 2 

    output_txt{end+1} = ['Z: ',num2str(pos(3),4)]; 
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end 

 

clear 

close all 

clc 

  

%%Initial Conditions & Parameters 

L=24.5; 

Ll = L;             % left hub displacement from body CG (in) 

Lr = L;             % right hub displacement from body CG (in) 

m_u=(31+35)/(2*32.17);    % front/rear corner average unsprung mass 

(lbf/grav) 

Mb = 680/32.17-4*m_u;     % body mass +180lb driver in slugs (lbf/grav) 

m1=m_u;              % car is symmetric 

m2=m_u; 

Ixx = 205559.63;    % body moment of inertia about roll-axis in lb*in^2 

k=(148+112)/2;      % equivalent wheelrate [k_front=148, k_rear=112] 

kl = k;             % left suspension wheelrate in lb/in 

kr = k;             % rear suspension wheelrate in lb/in 

kt= 519/2;            % tire stiffness (lb/in) 

b=0;                % inertance 

br=b; 

bl=b; 

IR_f=0.77; 

IR_r=0.54; 

g=-32.17; 

y0=g*(Mb/2+2*m_u)/(2*kt);    %initial unsprung mass height; 

Z0=g*Mb/(2*kr+2*kl)+y0;      %initial sprung mass height; 
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c0=320;              % FSAE stock damping 

cr0=c0;        % effective damping 

cl0=c0; 

  

%% Optimization 

cl=halfcar_symdamper_optim(g,Ll,Lr,Mb,Ixx,m_u,kl,kr,kt,bl,br,cr0) 

% 

[cl,cr]=halfcar_damper_optim(g,Ll,Lr,Mb,Ixx,m_u,kl,kr,kt,bl,br,cl0,cr0)      

% optimized suspension damping in N(m/s) 

cr=cl; 

% br=bl; 

  

%% Bode etc. 

% halfcar_bode_analysis 

% [A,B,C,D]=linmodv5('halfcar_bode_analysis'); 

% sys=ss(A,B,C,D); 

% bode(sys) 

% damp(sys)   %output Eigenvalues/Damping/Natural Frequency 

%sldebug halfcar_bode_analysis %>>states 

  

%% Signals 

    sim('halfcar_post_opt_analysis',79.785);    %Create logsout 

structure file 

    norm(logsout.Flt.Data-logsout.Frt.Data) 

    time = logsout.Frt.Time; 

    figure 

    subplot(3,1,1),  

    plot(time,logsout.Flt.Data,time,logsout.Frt.Data); 
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    ylabel('$$Force$$ (lbf)','Interpreter','LaTex'); 

    %text(2.2,0.002,'d\theta/dt') 

    title('4-DOF Suspension Model Simulation Results') 

    legend('F_L_t','F_R_t','Orientation','horizontal',... 

        'Location','NorthWest') 

     

    subplot(3,1,2),  

    plot(time,logsout.Z.Data); 

    ylabel('$$Chassis Heave$$ (in)','Interpreter','LaTex'); 

    %text(2.2, 0.03, 'dz/dt') 

  

    subplot(3,1,3),  

    plot(time,logsout.('Left Suspension').y.Data); 

    ylabel('$$Wheel Motion$$ (in)','Interpreter','LaTex'); 

     

%% Mode Shapes 

%%%coordinate order: (Z,z1,z2,Theta) 

M=[-2*bl-2*br-Mb, 2*bl, 2*br, 2*bl*Ll-2*br*Lr  %Mass matrix (see 

4DOF.nb) 

    2*bl, -2*bl-2*m1, 0, -2*bl*Ll 

    2*br, 0, -2*br-2*m2, 2*br*Lr 

    2*bl*Ll-2*br*Lr, -2*bl*Ll, 2*br*Lr, -2*bl*Ll^2-2*br*Lr^2-Ixx];  

  

K=[-2*kl-2*kr, 2*kl, 2*kr, 2*kl*Ll-2*kr*Lr  %Stiffness matrix (see 

4DOF.nb) 

    2*kl, -2*kl-2*kt, 0, -2*kl*Ll 

    2*kr, 0, -2*kr-2*kt, 2*kr*Lr 

    2*kl*Ll-2*kr*Lr, -2*kl*Ll, 2*kr*Lr, -2*kl*Ll^2-2*kr*Lr^2];       
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[eigenvectors,eigenvalues]=eig(K,M);   %"vector" columns are 

eigenvectors 

eigenvectors 

display('Nat. Freq.') 

sqrt(eigenvalues) 

  

%% Build Root Locus w/ damping coef. as gain%%%%%%%%%%%%%%%%%% 

fin=(cl+cr)/2;    % final damping value 

n=fin/100;       % step size 

i=0;        % initialize index 

  

% create root locus 

for c=0:n:fin 

    cl=c;       % give suspension symmetry 

    cr=c; 

  

    [A,B,C,D]=linmod('halfcar_bode_analysis');      % find LTI model 

    sys1=ss(A,B,C,D);           % change LTI model to state space 

    [wn,zeta,p]=damp(sys1);     % find eigenvalues 

  

    i=i+1       % increment index 

    dampcoef(i,:)=c;        % collect "c's" used 

    re(i,:)=real(p); im(i,:)=imag(p);       % find Re(pole), Im(pole) 

%     natfreq(i,:)=wn;          % collect natural frequency value 

%     damprat(i,:)=zeta;        % collect damping ratio value     
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%%variable step size 

%      if i>1 

%         if (sqrt((re(i)-re(i-1))^2+(im(i)-im(i-1))^2)>.2) 

%         n=2; 

%         cnt=cnt+1 

%         end 

%     end 

end 

  

%% Create root locus figure 

fig=figure; 

dcm_obj=datacursormode(fig); 

set(dcm_obj,'UpdateFcn',@myupdatefcn)   %customized datatip function 

plot(re,im,'.b',re(1,:),im(1,:),'.g',re(i,:),im(i,:),'.r') 

axis([2*min(min(im)) 0 min(min(im)) max(max(im))]) 

axis square 

% axis equal 

% axis tight 

sgrid 

  

%%Use custom datatip 

% xlimits=xlim; 

% ylimits=ylim; 

% display('Press any button to continue') 

% while waitforbuttonpress==0 

%     info_struct=getCursorInfo(dcm_obj); 

%     ind=info_struct.DataIndex; 

%     refreshdata 
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%     text(-45,20,['Damping Coefficient: ', num2str(dampcoef(ind))],... 

%         'BackgroundColor',[1 1 .93],'EdgeColor',[.8 .8 .8]) 

% end 

 

function 

cl=halfcar_symdamper_optim(g,Ll,Lr,Mb,Ixx,m_u,kl,kr,kt,bl,br,c0) 

  

%load model 

halfcar 

  

%initialize plant variables in model 

% cl0 = 2500;     % front suspension damping in N/(m/s) 

% cr = 18759;   % rear suspension damping in N/(m/s) 

y0=g*(Mb/4+m_u)/(kt);      %initial unsprung mass height; 

Z0=g*Mb/(2*kr+2*kl)+y0;    %initial sprung mass height; 

% c0=[cl0 cr0]; 

  

    

options = optimset('Display','iter','TolX',.25,'TolFun',.05);% 

coef = lsqnonlin(@track,c0,0,[],options); 

cl=coef(1); cr=coef(1); 

  

    function F = track(coef) 

                cl=coef(1);  

                cr=coef(1); 

         

        % Compute function value 
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        simopt=simset('SrcWorkspace','current');   % Initialize sim 

options 

        [t,x,y] = sim('halfcar',79.785,simopt);   % runtime = 79.7852s 

        F = y(:,1)-y(:,2); 

  

    end 

end 

 

function 

[cl,cr]=halfcar_damper_optim(g,Ll,Lr,Mb,Ixx,m_u,kl,kr,kt,bl,br,cl0,cr0) 

  

%load model 

halfcar 

  

%initialize plant variables in model 

% cl0 = 2500;     % front suspension damping in N/(m/s) 

% cr = 18759;   % rear suspension damping in N/(m/s) 

y0=g*(Mb/4+m_u)/(kt);      %initial unsprung mass height; 

Z0=g*Mb/(2*kr+2*kl)+y0;    %initial sprung mass height; 

c0=[cl0 cr0]; 

  

    

options = optimset('Display','iter');%,'TolX',.25,'TolFun',.05 

coef = lsqnonlin(@track,c0,0,[],options); 

cl=coef(1); cr=coef(2); 

  

    function F = track(coef) 
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                cl=coef(1);  

                cr=coef(2); 

         

        % Compute function value 

        simopt=simset('SrcWorkspace','current');   % Initialize sim 

options 

        [t,x,y] = sim('halfcar',79.785,simopt);   % runtime = 79.7852s 

        F = y(:,1)-y(:,2); 

  

    end 

end 

 

function output_txt = myfunction(obj,event_obj) 

% Display the position of the data cursor 

% obj          Currently not used (empty) 

% event_obj    Handle to event object 

% output_txt   Data cursor text string (string or cell array of 

strings). 

  

pos = get(event_obj,'Position'); 

% get(event_obj,'Target'); 

% dampcoef(1) 

% dcm_obj=datacursormode(fig); 

% info_struct=getCursorInfo(dcm_obj); 

% ind = info_struct.DataIndex; 

ang=atan(pos(2)/pos(1)); 

zeta=cos(ang); 

freq=norm([pos(1) pos(2)]); 
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pole=pos(1)+j*pos(2); 

os=100*exp(-pi*zeta/(sqrt(1-(zeta)^2))); 

output_txt = {['Pole: ',num2str(pole)],... 

    ['Damping: ',num2str(zeta)],... 

    ['Overshoot: ',num2str(os)],... 

    ['Frequency (rad/s): ',num2str(freq)]}; 

  

% If there is a Z-coordinate in the position, display it as well 

if length(pos) > 2 

    output_txt{end+1} = ['Z: ',num2str(pos(3),4)]; 

end 

 

clear 

close all 

clc 

  

global g tf tr Lf Lr mf mr Mb Ixx Iyy kf kr kt 

%%%%%%%%%%%%%%%%%%%%Initial Conditions & 

Parameters%%%%%%%%%%%%%%%%%%%%%%% 

g=-32.17; 

tf=50;              % front trackwidth 

tr=48;              % rear trackwidth 

fdist=0.48;         % front weight distribution 

L=60;               % wheelbse 

Lf=(1-fdist)*L;         % left hub displacement from body CG (in) 

Lr=fdist*L;             % right hub displacement from body CG (in) 

mf=31/(-g);    % front/rear corner average unsprung mass (lbf/grav) 

mr=35/(-g); 
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Mb=680/(-g)-2*mf-2*mr;     % body mass +180lb driver in slugs 

(lbf/grav) 

Ixx=205559.63;      % body moment of inertia about roll-axis in lb*in^2 

Iyy=2459865.33;     % body moment of inertia about pitch-axis in 

lb*in^2 

kf=148;             % front suspension wheelrate in lb/in 

kr=112;             % rear suspension wheelrate in lb/in 

kt=550;             % tire stiffness (lb/in) 

IR_f=0.77;          % front installation ratio 

IR_r=0.54;          % rear installation ratio 

bf=0;               % front inertance 

br=0;               % rear inertance 

%c0=500;             % FSAE stock damping 

cf0=412;       % effective front damping 

cr0=243;      % effective rear damping 

[yf0,yr0,Z0,Theta0,Psi0]=EOMs;%(g,Mb,mf,mr,tf,tr,Lf,Lr,kf,kr,kt);  % 

I.C.'s 

  

%% optimization  

% [cf,cr]=fullcar_symdamper_optim(bf,br,cf0,cr0) 

cf=426; 

cr=239; 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Bode 

etc.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% halfcar_bode_analysis 

% [A,B,C,D]=linmodv5('fullcar_bode_analysis'); 

% sys=ss(A,B,C,D); 
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% bode(sys) 

% damp(sys)   %output Eigenvalues/Damping/Natural Frequency 

% sldebug halfcar_bode_analysis %>>states 

  

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Signals%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

    sim('fullcar_postopt_analysis',79.785);    %Create logsout 

structure file 

    display('Norm of weight transfer vectors') 

    norm(logsout.Fleft.Data-logsout.Fright.Data) 

    time = logsout.Fleft.Time; 

     

    figure('Name','Chassis','NumberTitle','off') 

    subplot(3,1,1),  

    plot(time,logsout.Heave.Z.Data); 

    ylabel('$$Vertical Motion$$ (in)','Interpreter','LaTex'); 

    %text(2.2, 0.03, 'dz/dt') 

    subplot(3,1,2), 

    plot(time,logsout.Pitch.Psi.Data); 

    ylabel('$$Chassis Pitch$$ (rad)','Interpreter','LaTex'); 

    subplot(3,1,3), 

    plot(time,logsout.Roll.Theta.Data); 

    ylabel('$$Chassis Roll$$ (rad)','Interpreter','LaTex');   

     

    figure('Name','Wheels','NumberTitle','off') 

    subplot(4,1,1),  

    plot(time,logsout.('Left Front Suspension').zlf.Data); 
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    ylabel('Z_l_f (in)'); 

    subplot(4,1,2),  

    plot(time,logsout.('Right Front Suspension').zrf.Data); 

    ylabel('Z_r_f (in)');     

    subplot(4,1,3),  

    plot(time,logsout.('Left Rear Suspension').zlr.Data); 

    ylabel('Z_l_r (in)');      

    subplot(4,1,4),  

    plot(time,logsout.('Right Rear Suspension').zrr.Data); 

    ylabel('Z_r_r (in)');  

     

    figure('Name','Objective Function','NumberTitle','off') 

    subplot(2,1,1),  

    plot(time,logsout.Fleft.Data,time,logsout.Fright.Data); 

    ylabel('$$Lateral Loads$$ (lbf)','Interpreter','LaTex'); 

    %text(2.2,0.002,'d\theta/dt') 

    

legend('\SigmaF_{Front}','\SigmaF_{Rear}','Orientation','Horizontal',..

. 

        'Location','NorthEast') 

%     title('7-DOF Suspension Model Simulation Results') 

    subplot(2,1,2) 

    plot(time,logsout.Fleft.Data-logsout.Fright.Data); 

    ylabel('$$Weight Transfer$$ (lbf)','Interpreter','LaTex'); 

    

  

  

%% Mode Shapes 
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%%%coordinate order: (zlf,zlr,zrr,zrf,Z,Theta,Psi) 

% M=[-bf-mf, 0, 0, 0, bf, bf*tf/2, -bf*Lf;  %Mass matrix (see 7DOF.nb) 

%    0, -br-mr, 0, 0, br, br*tr/2, br*Lr; 

%    0, 0, -br-mr, 0, br, -br*tr/2, br*Lr; 

%    0, 0, 0, -bf-mf, bf, -bf*tf/2, -bf*Lf; 

%    bf, br, br, bf, -bf-br-bf-br-Mb, -bf*tf/2-

br*tr/2+bf*tf/2+br*tr/2,... 

%       bf*Lf+bf*Lf-br*Lr-br*Lr; 

%   bf*tf/2, br*tr/2, -br*L*tr/2, -bf*tf/2, -bf*tf/2-

br*tr+bf*tf/2+br*tr/2,... 

%       -Ixx-bf*(tf/2)^2-br*(tr/2)^2-bf*(tf/2)^2-br*(tr/2)^2,... 

%       bf*Lf*tf/2-br*tr/2*Lr-bf*Lf*tf/2+br*Lr*tr/2; 

%   -bf*Lf, br*Lr, br*Lr, -bf*Lf, bf*Lf+bf*Lf-br*Lr-br*Lr,... 

%       bf*Lf*tf/2-br*tr/2*Lr-bf*Lf*tf/2+br*Lr*tr/2,... 

%       -Iyy-bf*Lf^2-bf*Lf^2-br*Lr^2-br*Lr^2]; 

%  

%  K=[-kf-kt, 0, 0, 0, kf, kf*tf/2, -kf*Lf;   %Stiffness matrix (see 

7DOF.nb) 

%    0, -kr-kt, 0, 0, kr, kr*tr/2, kr*Lr; 

%    0, 0, -kr-kt, 0, kr, -kr*tr/2, kr*Lr; 

%    0, 0, 0, -kf-kt, kf, -kf*tf/2, -kf*Lf; 

%    kf, kr, kr, kf, -kf-kr-kf-kr, -kf*tf/2-kr*tr/2+kf*tf/2+kr*tr/2,... 

%       kf*Lf+kf*Lf-kr*Lr-kr*Lr; 

%    kf*tf/2, kr*tr/2, -kr*tr/2, -kf*tf/2, -kf*tf/2-kr*tr/2+kf*tf/2+... 

%       kr*tr/2, -kf*(tf/2)^2-kr*(tr/2)^2-kf*(tf/2)^2-kr*(tr/2)^2,... 

%       kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2; 

%    -kf*Lf, kr*Lr, kr*Lr, -kf*Lf, kf*Lf+kf*Lf-kr*Lr-kr*Lr,... 

%       kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2,... 

%       -kf*Lf^2-kf*Lf^2-kr*Lr^2-kr*Lr^2]; 
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%  

% [eigenvectors,eigenvalues]=eig(K,M);   %"vector" columns are 

eigenvectors 

% %%%coordinate order: (zlf,zlr,zrr,zrf,Z,Theta,Psi) 

% eigenvectors 

% display('Nat. Freq.') 

% sqrt(eigenvalues) 

  

%% %%%%%%%%%%%%%Build Root Locus w/ damping coef. as 

gain%%%%%%%%%%%%%%%%%% 

fin=(cf+cr)/2;    % final damping value 

n=fin/100;       % step size 

i=0;        % initialize index 

  

% create root locus 

for c=0:n:fin 

     cf=c;       % give suspension symmetry 

     cr=c; 

  

    [A,B,C,D]=linmod('fullcar_bode_analysis');      % find LTI model 

    sys1=ss(A,B,C,D);           % change LTI model to state space 

    [wn,zeta,p]=damp(sys1);     % find eigenvalues 

  

    i=i+1;       % increment index 

%    dampcoef(i,:)=c;        % collect "c's" used 

    re(i,:)=real(p); im(i,:)=imag(p);       % find Re(pole), Im(pole) 

%     natfreq(i,:)=wn;          % collect natural frequency value 

%     damprat(i,:)=zeta;        % collect damping ratio value     
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%%variable step size 

%      if i>1 

%         if (sqrt((re(i)-re(i-1))^2+(im(i)-im(i-1))^2)>.2) 

%         n=2; 

%         cnt=cnt+1 

%         end 

%     end 

end 

  

%% Create root locus figure 

fig=figure; 

dcm_obj=datacursormode(fig); 

set(dcm_obj,'UpdateFcn',@myupdatefcn)   %customized datatip function 

plot(re,im,'.b',re(1,:),im(1,:),'.g',re(i,:),im(i,:),'.r') 

axis([2*min(min(im)) 0 min(min(im)) max(max(im))]) 

axis square 

% axis equal 

% axis tight 

sgrid 

  

%%Use custom datatip 

% xlimits=xlim; 

% ylimits=ylim; 

% display('Press any button to continue') 

% while waitforbuttonpress==0 

%     info_struct=getCursorInfo(dcm_obj); 

%     ind=info_struct.DataIndex; 



128 

%     refreshdata 

%     text(-45,20,['Damping Coefficient: ', num2str(dampcoef(ind))],... 

%         'BackgroundColor',[1 1 .93],'EdgeColor',[.8 .8 .8]) 

% end 

 

function [cf,cr]=fullcar_symdamper_optim(bf0,br0,cf0,cr0) 

% function 

% [c1f,c2f,vtf,c1r,c2r,vtr]=fullcar_symdamper_optim(bf0,br0,cf0,cr0) 

  

global g tf tr Lf Lr mf mr Mb Ixx Iyy kf kr kt 

  

%load model 

fullcar 

  

%initialize plant variables in model 

bf=bf0; 

br=br0; 

[yf0,yr0,Z0,Theta0,Psi0]=EOMs;%(g,Mb,mf,mr,tf,tr,Lf,Lr,kf,kr,kt);  % 

I.C.'s 

c0=[cf0 cr0]; 

  

    

options = optimset('Display','iter','TolX',.25,'TolFun',.05);% 

coef = lsqnonlin(@track,c0,0,[],options); 

cf=coef(1); cr=coef(2); 

  

    function F = track(coef) 
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                cf=coef(1);  

                cr=coef(2); 

         

        % Compute function value 

        simopt=simset('SrcWorkspace','current');   % Initialize sim 

options 

        [t,x,y] = sim('fullcar',79.785,simopt);   % runtime = 79.7852s 

        F = y(:,1)-y(:,2); 

    end 

end 

 

function 

[ylf0,ylr0,Z0,Theta0,Psi0]=EOMs%(g,Mb,mf,mr,tf,tr,Lf,Lr,kf,kr,kt) 

  

global g Mb mf mr tf tr Lf Lr kf kr kt 

  

% g=-32.17; 

% tf=50;              % front trackwidth 

% tr=48;              % rear trackwidth 

% fdist=0.48;         % front weight distribution 

% L=60;               % wheelbse 

% Lf=(1-fdist)*L;         % left hub displacement from body CG (in) 

% Lr=fdist*L;             % right hub displacement from body CG (in) 

% mf=31/(-g);    % front/rear corner average unsprung mass (lbf/grav) 

% mr=35/(-g); 

% Mb=680/(-g)-2*mf-2*mr;     % body mass +180lb driver in slugs 

(lbf/grav) 

% kf=148;             % front suspension wheelrate in lb/in 
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% kr=112;             % rear suspension wheelrate in lb/in 

% kt=550;             % tire stiffness (lb/in) 

  

 K=[-kf-kt, 0, 0, 0, kf, kf*tf/2, -kf*Lf; 

   0, -kr-kt, 0, 0, kr, kr*tr/2, kr*Lr; 

   0, 0, -kr-kt, 0, kr, -kr*tr/2, kr*Lr; 

   0, 0, 0, -kf-kt, kf, -kf*tf/2, -kf*Lf; 

   kf, kr, kr, kf, -kf-kr-kf-kr, -kf*tf/2-kr*tr/2+kf*tf/2+kr*tr/2,... 

      kf*Lf+kf*Lf-kr*Lr-kr*Lr; 

   kf*tf/2, kr*tr/2, -kr*tr/2, -kf*tf/2, -kf*tf/2-kr*tr/2+kf*tf/2+... 

      kr*tr/2, -kf*(tf/2)^2-kr*(tr/2)^2-kf*(tf/2)^2-kr*(tr/2)^2,... 

      kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2; 

   -kf*Lf, kr*Lr, kr*Lr, -kf*Lf, kf*Lf+kf*Lf-kr*Lr-kr*Lr,... 

      kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2,... 

      -kf*Lf^2-kf*Lf^2-kr*Lr^2-kr*Lr^2]; 

  

b=[mf*g; mr*g; mr*g; mf*g; Mb*g;0;0]; 

%%%coordinate order: (zlf,zlr,zrr,zrf,Z,Theta,Psi) 

ans=(inv(K)*b); 

ylf0=ans(1,1); 

ylr0=ans(2,1); 

yrr=ans(3,1); 

yrf=ans(4,1); 

Z0=ans(5,1); 

Theta0=ans(6,1); 

Psi0=ans(7,1); 

 

function output_txt = myfunction(obj,event_obj) 
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% Display the position of the data cursor 

% obj          Currently not used (empty) 

% event_obj    Handle to event object 

% output_txt   Data cursor text string (string or cell array of 

strings). 

  

pos = get(event_obj,'Position'); 

% get(event_obj,'Target'); 

% dampcoef(1) 

% dcm_obj=datacursormode(fig); 

% info_struct=getCursorInfo(dcm_obj); 

% ind = info_struct.DataIndex; 

ang=atan(pos(2)/pos(1)); 

zeta=cos(ang); 

freq=norm([pos(1) pos(2)]); 

pole=pos(1)+j*pos(2); 

os=100*exp(-pi*zeta/(sqrt(1-(zeta)^2))); 

output_txt = {['Pole: ',num2str(pole)],... 

    ['Damping: ',num2str(zeta)],... 

    ['Overshoot: ',num2str(os)],... 

    ['Frequency (rad/s): ',num2str(freq)]}; 

  

% If there is a Z-coordinate in the position, display it as well 

if length(pos) > 2 

    output_txt{end+1} = ['Z: ',num2str(pos(3),4)]; 

end 
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clear 

close all 

clc 

  

global g tf tr Lf Lr mf mr Mb Ixx Iyy kf kr kt 

  

%%%%%%%%%%%%%%%%%%%%Initial Conditions & 

Parameters%%%%%%%%%%%%%%%%%%%%%%% 

g=-32.17; 

tf=50;              % front trackwidth 

tr=48;              % rear trackwidth 

fdist=0.48;         % front weight distribution 

L=60;               % wheelbse 

Lf=(1-fdist)*L;     % left hub displacement from body CG (in) 

Lr=fdist*L;         % right hub displacement from body CG (in) 

mf=31/(-g);         % front/rear corner average unsprung mass 

(lbf/grav) 

mr=35/(-g); 

Mb=680/(-g)-2*mf-2*mr;     % body mass +180lb driver in slugs 

(lbf/grav) 

Ixx=205559.63;      % body moment of inertia about roll-axis in lb*in^2 

Iyy=2459865.33;     % body moment of inertia about pitch-axis in 

lb*in^2 

kf=148;             % front suspension wheelrate in lb/in 

kr=112;             % rear suspension wheelrate in lb/in 

kt=550;             % tire stiffness (lb/in) 

IR_f=0.77;          % front installation ratio 

IR_r=0.54;          % rear installation ratio 



133 

  

% optimization I.C.'s 

bf0=0;               % front inertance 

br0=0;               % rear inertance 

% c0=164;        % FSAE stock damping 

c1f0=416;%c0*IR_f^2;     % effective front damping (low speed) 

c2f0=75;          % effective front damping (high speed) 

vtf0=0.75; 

c1r0=248;%c0*IR_r^2;     % effective rear damping (low speed) 

c2r0=75;          % effective rear damping (low speed) 

vtr0=0.75; 

[yf0,yr0,Z0,Theta0,Psi0]=EOMs;%(g,Mb,mf,mr,tf,tr,Lf,Lr,kf,kr,kt);  % 

I.C.'s 

  

%% optimization  

[c1f,c2f,vtf,c1r,c2r,vtr,bf,br]=fullcar_nonlindamper_optim(c1f0,c2f0,vt

f0,c1r0,c2r0,vtr0,bf0,br0) 

% cr=cl; 

% br=bl; 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Bode 

etc.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% halfcar_bode_analysis 

% [A,B,C,D]=linmodv5('fullcar_bode_analysis'); 

% sys=ss(A,B,C,D); 

% bode(sys) 

% damp(sys)   %output Eigenvalues/Damping/Natural Frequency 

% sldebug halfcar_bode_analysis %>>states 
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%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Signals%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

    sim('nonlinfullcar_postopt_analysis',79.785);    %Create logsout 

structure file 

    display('Norm of weight transfer vectors') 

    norm(logsout.Fleft.Data-logsout.Fright.Data) 

    time = logsout.Fleft.Time; 

     

    figure('Name','Chassis','NumberTitle','off') 

    subplot(3,1,1),  

    plot(time,logsout.Heave.Z.Data); 

    ylabel('$$Vertical Motion$$ (in)','Interpreter','LaTex'); 

    %text(2.2, 0.03, 'dz/dt') 

    subplot(3,1,2), 

    plot(time,logsout.Pitch.Psi.Data); 

    ylabel('$$Chassis Pitch$$ (rad)','Interpreter','LaTex'); 

    subplot(3,1,3), 

    plot(time,logsout.Roll.Theta.Data); 

    ylabel('$$Chassis Roll$$ (rad)','Interpreter','LaTex');   

     

    figure('Name','Wheels','NumberTitle','off') 

    subplot(4,1,1),  

    plot(time,logsout.('Left Front Suspension').zlf.Data); 

    ylabel('Z_l_f (in)'); 

    subplot(4,1,2),  

    plot(time,logsout.('Right Front Suspension').zrf.Data); 
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    ylabel('Z_r_f (in)');     

    subplot(4,1,3),  

    plot(time,logsout.('Left Rear Suspension').zlr.Data); 

    ylabel('Z_l_r (in)');      

    subplot(4,1,4),  

    plot(time,logsout.('Right Rear Suspension').zrr.Data); 

    ylabel('Z_r_r (in)');  

     

    figure('Name','Objective Function','NumberTitle','off') 

    subplot(2,1,1),  

    plot(time,logsout.Fleft.Data,time,logsout.Fright.Data); 

    ylabel('$$Force$$ (lbf)','Interpreter','LaTex'); 

    %text(2.2,0.002,'d\theta/dt') 

    

legend('\SigmaF_{Front}','\SigmaF_{Rear}','Orientation','Horizontal',..

. 

        'Location','NorthEast') 

    subplot(2,1,2) 

    plot(time,logsout.Fleft.Data-logsout.Fright.Data); 

    ylabel('$$Force$$ (lbf)','Interpreter','LaTex'); 

    title('7-DOF Suspension Model Simulation Results') 

  

  

%% Mode Shapes 

%%%coordinate order: (zlf,zlr,zrr,zrf,Z,Theta,Psi) 

% M=[-bf-mf, 0, 0, 0, bf, bf*tf/2, -bf*Lf;  %Mass matrix (see 7DOF.nb) 

%    0, -br-mr, 0, 0, br, br*tr/2, br*Lr; 

%    0, 0, -br-mr, 0, br, -br*tr/2, br*Lr; 
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%    0, 0, 0, -bf-mf, bf, -bf*tf/2, -bf*Lf; 

%    bf, br, br, bf, -bf-br-bf-br-Mb, -bf*tf/2-

br*tr/2+bf*tf/2+br*tr/2,... 

%       bf*Lf+bf*Lf-br*Lr-br*Lr; 

%   bf*tf/2, br*tr/2, -br*L*tr/2, -bf*tf/2, -bf*tf/2-

br*tr+bf*tf/2+br*tr/2,... 

%       -Ixx-bf*(tf/2)^2-br*(tr/2)^2-bf*(tf/2)^2-br*(tr/2)^2,... 

%       bf*Lf*tf/2-br*tr/2*Lr-bf*Lf*tf/2+br*Lr*tr/2; 

%   -bf*Lf, br*Lr, br*Lr, -bf*Lf, bf*Lf+bf*Lf-br*Lr-br*Lr,... 

%       bf*Lf*tf/2-br*tr/2*Lr-bf*Lf*tf/2+br*Lr*tr/2,... 

%       -Iyy-bf*Lf^2-bf*Lf^2-br*Lr^2-br*Lr^2]; 

%  

%  K=[-kf-kt, 0, 0, 0, kf, kf*tf/2, -kf*Lf;   %Stiffness matrix (see 

7DOF.nb) 

%    0, -kr-kt, 0, 0, kr, kr*tr/2, kr*Lr; 

%    0, 0, -kr-kt, 0, kr, -kr*tr/2, kr*Lr; 

%    0, 0, 0, -kf-kt, kf, -kf*tf/2, -kf*Lf; 

%    kf, kr, kr, kf, -kf-kr-kf-kr, -kf*tf/2-kr*tr/2+kf*tf/2+kr*tr/2,... 

%       kf*Lf+kf*Lf-kr*Lr-kr*Lr; 

%    kf*tf/2, kr*tr/2, -kr*tr/2, -kf*tf/2, -kf*tf/2-kr*tr/2+kf*tf/2+... 

%       kr*tr/2, -kf*(tf/2)^2-kr*(tr/2)^2-kf*(tf/2)^2-kr*(tr/2)^2,... 

%       kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2; 

%    -kf*Lf, kr*Lr, kr*Lr, -kf*Lf, kf*Lf+kf*Lf-kr*Lr-kr*Lr,... 

%       kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2,... 

%       -kf*Lf^2-kf*Lf^2-kr*Lr^2-kr*Lr^2]; 

%  

% [eigenvectors,eigenvalues]=eig(K,M);   %"vector" columns are 

eigenvectors 

% %%%coordinate order: (zlf,zlr,zrr,zrf,Z,Theta,Psi) 
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% eigenvectors 

% display('Nat. Freq.') 

% sqrt(eigenvalues) 

  

%% %%%%%%%%%%%%%Build Root Locus w/ damping coef. as 

gain%%%%%%%%%%%%%%%%%% 

% fin=(cf+cr)/2;    % final damping value 

% n=fin/100;       % step size 

% i=0;        % initialize index 

%  

% % create root locus 

% for c=0:n:fin 

%      cf=c;       % give suspension symmetry 

%      cr=c; 

%  

%     [A,B,C,D]=linmod('fullcar_bode_analysis');      % find LTI model 

%     sys1=ss(A,B,C,D);           % change LTI model to state space 

%     [wn,zeta,p]=damp(sys1);     % find eigenvalues 

%  

%     i=i+1;       % increment index 

% %    dampcoef(i,:)=c;        % collect "c's" used 

%     re(i,:)=real(p); im(i,:)=imag(p);       % find Re(pole), Im(pole) 

% %     natfreq(i,:)=wn;          % collect natural frequency value 

% %     damprat(i,:)=zeta;        % collect damping ratio value     

%  

% %%variable step size 

% %      if i>1 

% %         if (sqrt((re(i)-re(i-1))^2+(im(i)-im(i-1))^2)>.2) 
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% %         n=2; 

% %         cnt=cnt+1 

% %         end 

% %     end 

% end 

%  

%% Create root locus figure 

% fig=figure; 

% dcm_obj=datacursormode(fig); 

% set(dcm_obj,'UpdateFcn',@myupdatefcn)   %customized datatip function 

% plot(re,im,'.b',re(1,:),im(1,:),'.g',re(i,:),im(i,:),'.r') 

% axis([2*min(min(im)) 0 min(min(im)) max(max(im))]) 

% axis square 

% % axis equal 

% % axis tight 

% sgrid 

  

%%Use custom datatip 

% xlimits=xlim; 

% ylimits=ylim; 

% display('Press any button to continue') 

% while waitforbuttonpress==0 

%     info_struct=getCursorInfo(dcm_obj); 

%     ind=info_struct.DataIndex; 

%     refreshdata 

%     text(-45,20,['Damping Coefficient: ', num2str(dampcoef(ind))],... 

%         'BackgroundColor',[1 1 .93],'EdgeColor',[.8 .8 .8]) 

% end 
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function 

[c1f,c2f,vtf,c1r,c2r,vtr,bf,br]=fullcar_nonlindamper_optim(c1f0,c2f0,vt

f0,c1r0,c2r0,vtr0,bf0,br0) 

  

global g tf tr Lf Lr mf mr Mb Ixx Iyy kf kr kt 

  

%load model 

nonlinfullcar 

  

%initialize plant variables in model 

bf=bf0; 

br=br0; 

[yf0,yr0,Z0,Theta0,Psi0]=EOMs;  % I.C.'s 

c0=[c1f0,c2f0,vtf0,c1r0,c2r0,vtr0];%,c1r0,c2r0,vtr0]; 

  

    

options = optimset('Display','iter','TolX',.25,'TolFun',.05);% 

coef = lsqnonlin(@track,c0,0,[],options); 

c1f=coef(1); c2f=coef(2); vtf=coef(3); 

c1r=coef(4); c2r=coef(5); vtr=coef(6); 

% bf=coef(); br=coef() 

  

    function F = track(coef) 

                c1f=coef(1); c2f=coef(2); vtf=coef(3); 

                c1r=coef(4); c2r=coef(5); vtr=coef(6); 

%                 bf=coef(); br=coef() 

        % Compute function value 
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        simopt=simset('SrcWorkspace','current');   % Initialize sim 

options 

        [t,x,y] = sim('nonlinfullcar',79.785,simopt);   % runtime = 

79.7852s 

        F = y(:,1)-y(:,2); 

    end 

end 

 

clear 

close all 

clc 

  

global g tf tr Lf Lr mf mr Mb Ixx Iyy kf kr kt vtf vtr 

  

%%%%%%%%%%%%%%%%%%%%Initial Conditions & 

Parameters%%%%%%%%%%%%%%%%%%%%%%% 

g=-32.17; 

tf=50;              % front trackwidth 

tr=48;              % rear trackwidth 

fdist=0.48;         % front weight distribution 

L=60;               % wheelbse 

Lf=(1-fdist)*L;     % left hub displacement from body CG (in) 

Lr=fdist*L;         % right hub displacement from body CG (in) 

mf=31/(-g);         % front/rear corner average unsprung mass 

(lbf/grav) 

mr=35/(-g); 

Mb=680/(-g)-2*mf-2*mr;     % body mass +180lb driver in slugs 

(lbf/grav) 
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Ixx=205559.63;      % body moment of inertia about roll-axis in lb*in^2 

Iyy=2459865.33;     % body moment of inertia about pitch-axis in 

lb*in^2 

kf=148;             % front suspension wheelrate in lb/in 

kr=112;             % rear suspension wheelrate in lb/in 

kt=550;             % tire stiffness (lb/in) 

IR_f=0.77;          % front installation ratio 

IR_r=0.54;          % rear installation ratio 

vtf=0.62; 

vtr=0.67; 

  

% optimization I.C.'s 

bf=0;               % front inertance 

br=0;               % rear inertance 

c1f=417;%c0*IR_f^2;     % effective front damping (low speed) 

c2f=4;          % effective front damping (high speed) 

c1r=248;%c0*IR_r^2;     % effective rear damping (low speed) 

c2r=256;          % effective rear damping (low speed) 

[yf0,yr0,Z0,Theta0,Psi0]=EOMs;%(g,Mb,mf,mr,tf,tr,Lf,Lr,kf,kr,kt);  % 

I.C.'s 

  

%% optimization  

% 

[c1f,c2f,c1r,c2r,bf,br]=fullcar_nonlindamper_optim(c1f0,c2f0,c1r0,c2r0,

bf0,br0) 

% cr=cl; 

% br=bl; 
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%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Bode 

etc.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% halfcar_bode_analysis 

% [A,B,C,D]=linmodv5('fullcar_bode_analysis'); 

% sys=ss(A,B,C,D); 

% bode(sys) 

% damp(sys)   %output Eigenvalues/Damping/Natural Frequency 

% sldebug halfcar_bode_analysis %>>states 

  

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Signals%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

    sim('nonlinfullcar_postopt_analysis',79.785);    %Create logsout 

structure file 

    display('Norm of weight transfer vectors') 

    norm(logsout.Fleft.Data-logsout.Fright.Data) 

    time = logsout.Fleft.Time; 

     

    figure('Name','Chassis','NumberTitle','off') 

      subplot(3,1,1),  

          plot(time,logsout.Heave.Z.Data); 

          ylabel('$$Vertical Motion$$ (in)','Interpreter','LaTex'); 

          %text(2.2, 0.03, 'dz/dt') 

      subplot(3,1,2), 

          plot(time,logsout.Pitch.Psi.Data); 

          ylabel('$$Chassis Pitch$$ (rad)','Interpreter','LaTex'); 

      subplot(3,1,3), 

          plot(time,logsout.Roll.Theta.Data); 
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          ylabel('$$Chassis Roll$$ (rad)','Interpreter','LaTex');   

     

    figure('Name','Wheels','NumberTitle','off') 

      subplot(4,1,1),  

          plot(time,logsout.('Left Front Suspension').zlf.Data); 

          ylabel('Z_l_f (in)'); 

      subplot(4,1,2),  

          plot(time,logsout.('Right Front Suspension').zrf.Data); 

          ylabel('Z_r_f (in)');     

      subplot(4,1,3),  

          plot(time,logsout.('Left Rear Suspension').zlr.Data); 

          ylabel('Z_l_r (in)');      

      subplot(4,1,4),  

          plot(time,logsout.('Right Rear Suspension').zrr.Data); 

          ylabel('Z_r_r (in)');  

     

%     figure('Name','Velocities','NumberTitle','off') 

%         subplot(4,1,1),  

%             plot(time,logsout.('Left Front 

Suspension').LFShaftVelocity.Data,... 

%                 time,logsout.('Left Front Suspension').zlfdot.Data); 

%             legend('Shaft Velocity','Wheel Velocity') 

%             ylabel('Left Front'); 

%         subplot(4,1,2),  

%             plot(time,logsout.('Right Front 

Suspension').RFShaftVelocity.Data,... 

%                 time,logsout.('Right Front Suspension').zrfdot.Data); 

%             ylabel('Right Front');     
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%         subplot(4,1,3),  

%             plot(time,logsout.('Left Rear 

Suspension').LRShaftVelocity.Data,... 

%                 time,logsout.('Left Rear Suspension').zlrdot.Data); 

%             ylabel('Left Rear');      

%         subplot(4,1,4),  

%             plot(time,logsout.('Right Rear 

Suspension').RRShaftVelocity.Data,... 

%                 time,logsout.('Right Rear Suspension').zrrdot.Data); 

%             ylabel('Right Rear');  

     

    figure('Name','Objective Function','NumberTitle','off') 

      subplot(2,1,1),  

          plot(time,logsout.Fleft.Data,time,logsout.Fright.Data); 

          ylabel('$$Force$$ (lbf)','Interpreter','LaTex'); 

          %text(2.2,0.002,'d\theta/dt') 

          

legend('\SigmaF_{Front}','\SigmaF_{Rear}','Orientation','Horizontal',..

. 

        'Location','NorthEast') 

      subplot(2,1,2) 

          plot(time,logsout.Fleft.Data-logsout.Fright.Data); 

          ylabel('$$Force$$ (lbf)','Interpreter','LaTex'); 

          title('7-DOF Suspension Model Simulation Results') 

  

  

%% Mode Shapes 

%%coordinate order: (zlf,zlr,zrr,zrf,Z,Theta,Psi) 
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M=[-bf-mf, 0, 0, 0, bf, bf*tf/2, -bf*Lf;  %Mass matrix (see 7DOF.nb) 

   0, -br-mr, 0, 0, br, br*tr/2, br*Lr; 

   0, 0, -br-mr, 0, br, -br*tr/2, br*Lr; 

   0, 0, 0, -bf-mf, bf, -bf*tf/2, -bf*Lf; 

   bf, br, br, bf, -bf-br-bf-br-Mb, -bf*tf/2-

br*tr/2+bf*tf/2+br*tr/2,... 

      bf*Lf+bf*Lf-br*Lr-br*Lr; 

  bf*tf/2, br*tr/2, -br*L*tr/2, -bf*tf/2, -bf*tf/2-

br*tr+bf*tf/2+br*tr/2,... 

      -Ixx-bf*(tf/2)^2-br*(tr/2)^2-bf*(tf/2)^2-br*(tr/2)^2,... 

      bf*Lf*tf/2-br*tr/2*Lr-bf*Lf*tf/2+br*Lr*tr/2; 

  -bf*Lf, br*Lr, br*Lr, -bf*Lf, bf*Lf+bf*Lf-br*Lr-br*Lr,... 

      bf*Lf*tf/2-br*tr/2*Lr-bf*Lf*tf/2+br*Lr*tr/2,... 

      -Iyy-bf*Lf^2-bf*Lf^2-br*Lr^2-br*Lr^2]; 

  

 K=[-kf-kt, 0, 0, 0, kf, kf*tf/2, -kf*Lf;   %Stiffness matrix (see 

7DOF.nb) 

   0, -kr-kt, 0, 0, kr, kr*tr/2, kr*Lr; 

   0, 0, -kr-kt, 0, kr, -kr*tr/2, kr*Lr; 

   0, 0, 0, -kf-kt, kf, -kf*tf/2, -kf*Lf; 

   kf, kr, kr, kf, -kf-kr-kf-kr, -kf*tf/2-kr*tr/2+kf*tf/2+kr*tr/2,... 

      kf*Lf+kf*Lf-kr*Lr-kr*Lr; 

   kf*tf/2, kr*tr/2, -kr*tr/2, -kf*tf/2, -kf*tf/2-kr*tr/2+kf*tf/2+... 

      kr*tr/2, -kf*(tf/2)^2-kr*(tr/2)^2-kf*(tf/2)^2-kr*(tr/2)^2,... 

      kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2; 

   -kf*Lf, kr*Lr, kr*Lr, -kf*Lf, kf*Lf+kf*Lf-kr*Lr-kr*Lr,... 

      kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2,... 

      -kf*Lf^2-kf*Lf^2-kr*Lr^2-kr*Lr^2]; 
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[eigenvectors,eigenvalues]=eig(K,M);   %"vector" columns are 

eigenvectors 

%%%coordinate order: (zlf,zlr,zrr,zrf,Z,Theta,Psi) 

eigenvectors 

display('Nat. Freq.') 

sqrt(eigenvalues) 

  

%% %%%%%%%%%%%%%Build Root Locus w/ damping coef. as 

gain%%%%%%%%%%%%%%%%%% 

fin=(c1f+c1r)/2;    % final damping value 

n=fin/100;       % step size 

i=0;        % initialize index 

  

% create root locus 

for c=0:n:fin 

     c1f=c;       % give suspension symmetry 

     c1r=c; 

  

    [A,B,C,D]=linmod('nonlinfullcar_bode_analysis');      % find LTI 

model 

    sys1=ss(A,B,C,D);           % change LTI model to state space 

    [wn,zeta,p]=damp(sys1);     % find eigenvalues 

  

    i=i+1;       % increment index 

    dampcoef(i,:)=c;        % collect "c's" used 

    re(i,:)=real(p); im(i,:)=imag(p);       % find Re(pole), Im(pole) 

    natfreq(i,:)=wn;          % collect natural frequency value 
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    damprat(i,:)=zeta;        % collect damping ratio value     

  

%variable step size 

%      if i>1 

%         if (sqrt((re(i)-re(i-1))^2+(im(i)-im(i-1))^2)>.2) 

%         n=2; 

%         cnt=cnt+1 

%         end 

%     end 

end 

%  

%% Create root locus figure 

fig=figure; 

% dcm_obj=datacursormode(fig); 

% set(dcm_obj,'UpdateFcn',@myupdatefcn)   %customized datatip function 

plot(re,im,'.b',re(1,:),im(1,:),'.g',re(i,:),im(i,:),'.r') 

axis([2*min(min(im)) 0 min(min(im)) max(max(im))]) 

axis square 

% axis equal 

% axis tight 

sgrid 

  

% %Use custom datatip 

% xlimits=xlim; 

% ylimits=ylim; 

% display('Press any button to continue') 

% while waitforbuttonpress==0 

%     info_struct=getCursorInfo(dcm_obj); 
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%     ind=info_struct.DataIndex; 

%     refreshdata 

%     text(-45,20,['Damping Coefficient: ', num2str(dampcoef(ind))],... 

%         'BackgroundColor',[1 1 .93],'EdgeColor',[.8 .8 .8]) 

% end 

 

function 

[c1f,c2f,c1r,c2r,bf,br]=fullcar_nonlindamper_optim(c1f0,c2f0,c1r0,c2r0,

bf0,br0) 

  

global g tf tr Lf Lr mf mr Mb Ixx Iyy kf kr kt vtf vtr 

  

%load model 

nonlinfullcar 

  

%initialize plant variables in model 

bf=bf0; 

br=br0; 

[yf0,yr0,Z0,Theta0,Psi0]=EOMs;  % I.C.'s 

c0=[c1f0,c2f0,c1r0,c2r0]; 

    

options = 

optimset('Display','iter','TolX',.25,'TolFun',.05,'GradObj','on');% 

coef = lsqnonlin(@track,c0,0,[],options); 

c1f=coef(1); c2f=coef(2); 

c1r=coef(3); c2r=coef(4); 

% bf=coef(); br=coef() 
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    function F = track(coef) 

                c1f=coef(1); c2f=coef(2); 

                c1r=coef(3); c2r=coef(4); 

%                 bf=coef(); br=coef() 

        % Compute function value 

        simopt=simset('SrcWorkspace','current');   % Initialize sim 

options 

        [t,x,y] = sim('nonlinfullcar',79.785,simopt);   % runtime = 

79.7852s 

        F = y(:,1)-y(:,2); 

    end 

end 

 

clear 

close all 

clc 

  

global g tf tr Lf Lr mf mr Mb Ixx Iyy kf kr kt vtf vtr c1f c2f c1r c2r 

  

%%%%%%%%%%%%%%%%%%%%Initial Conditions & 

Parameters%%%%%%%%%%%%%%%%%%%%%%% 

g=-32.17; 

tf=50;              % front trackwidth 

tr=48;              % rear trackwidth 

fdist=0.48;         % front weight distribution 

L=60;               % wheelbse 

Lf=(1-fdist)*L;     % left hub displacement from body CG (in) 
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Lr=fdist*L;         % right hub displacement from body CG (in) 

mf=31/(-g);         % front/rear corner average unsprung mass 

(lbf/grav) 

mr=35/(-g); 

Mb=680/(-g)-2*mf-2*mr;     % body mass +180lb driver in slugs 

(lbf/grav) 

Ixx=205559.63;      % body moment of inertia about roll-axis in lb*in^2 

Iyy=2459865.33;     % body moment of inertia about pitch-axis in 

lb*in^2 

kf=148;             % front suspension wheelrate in lb/in 

kr=112;             % rear suspension wheelrate in lb/in 

kt=550;             % tire stiffness (lb/in) 

IR_f=0.77;          % front installation ratio 

IR_r=0.54;          % rear installation ratio 

  

% optimization I.C.'s 

bf0=2.5;               % front inertance 

br0=2.5;               % rear inertance 

c1f=417.2874;        % effective front damping (low speed) 

c2f=3.9375;          % effective front damping (high speed) 

vtf=0.62; 

c1r=255.5894;        % effective rear damping (low speed) 

c2r=8.0028;          % effective rear damping (low speed) 

vtr=0.67; 

[yf0,yr0,Z0,Theta0,Psi0]=EOMs;%(g,Mb,mf,mr,tf,tr,Lf,Lr,kf,kr,kt);  % 

I.C.'s 

  

%% optimization  
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[bf,br]=fullcar_inerter_optim(bf0,br0) 

% cr=cl; 

% br=bl; 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Bode 

etc.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% halfcar_bode_analysis 

% [A,B,C,D]=linmodv5('fullcar_bode_analysis'); 

% sys=ss(A,B,C,D); 

% bode(sys) 

% damp(sys)   %output Eigenvalues/Damping/Natural Frequency 

% sldebug halfcar_bode_analysis %>>states 

  

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Signals%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

    sim('nonlinfullcar_postopt_analysis',79.785);    %Create logsout 

structure file 

    display('Norm of weight transfer vectors') 

    norm(logsout.Fleft.Data-logsout.Fright.Data) 

    time = logsout.Fleft.Time; 

     

%     figure('Name','Chassis','NumberTitle','off') 

%       subplot(3,1,1),  

%           plot(time,logsout.Heave.Z.Data); 

%           ylabel('$$Vertical Motion$$ (in)','Interpreter','LaTex'); 

%           %text(2.2, 0.03, 'dz/dt') 

%       subplot(3,1,2), 
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%           plot(time,logsout.Pitch.Psi.Data); 

%           ylabel('$$Chassis Pitch$$ (rad)','Interpreter','LaTex'); 

%       subplot(3,1,3), 

%           plot(time,logsout.Roll.Theta.Data); 

%           ylabel('$$Chassis Roll$$ (rad)','Interpreter','LaTex');   

     

%     figure('Name','Wheels','NumberTitle','off') 

%       subplot(4,1,1),  

%           plot(time,logsout.('Left Front Suspension').zlf.Data); 

%           ylabel('Z_l_f (in)'); 

%       subplot(4,1,2),  

%           plot(time,logsout.('Right Front Suspension').zrf.Data); 

%           ylabel('Z_r_f (in)');     

%       subplot(4,1,3),  

%           plot(time,logsout.('Left Rear Suspension').zlr.Data); 

%           ylabel('Z_l_r (in)');      

%       subplot(4,1,4),  

%           plot(time,logsout.('Right Rear Suspension').zrr.Data); 

%           ylabel('Z_r_r (in)');  

     

    figure('Name','Velocities','NumberTitle','off') 

        subplot(4,1,1),  

            plot(time,logsout.('Left Front 

Suspension').LFShaftVelocity.Data,... 

                time,logsout.('Left Front Suspension').zlfdot.Data); 

            legend('Shaft Velocity','Wheel Velocity') 

            ylabel('Left Front'); 

        subplot(4,1,2),  
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            plot(time,logsout.('Right Front 

Suspension').RFShaftVelocity.Data,... 

                time,logsout.('Right Front Suspension').zrfdot.Data); 

            ylabel('Right Front');     

        subplot(4,1,3),  

            plot(time,logsout.('Left Rear 

Suspension').LRShaftVelocity.Data,... 

                time,logsout.('Left Rear Suspension').zlrdot.Data); 

            ylabel('Left Rear');      

        subplot(4,1,4),  

            plot(time,logsout.('Right Rear 

Suspension').RRShaftVelocity.Data,... 

                time,logsout.('Right Rear Suspension').zrrdot.Data); 

            ylabel('Right Rear');  

     

%     figure('Name','Objective Function','NumberTitle','off') 

%       subplot(2,1,1),  

%           plot(time,logsout.Fleft.Data,time,logsout.Fright.Data); 

%           ylabel('$$Force$$ (lbf)','Interpreter','LaTex'); 

%           %text(2.2,0.002,'d\theta/dt') 

%           

legend('\SigmaF_{Front}','\SigmaF_{Rear}','Orientation','Horizontal',..

. 

%         'Location','NorthEast') 

%       subplot(2,1,2) 

%           plot(time,logsout.Fleft.Data-logsout.Fright.Data); 

%           ylabel('$$Force$$ (lbf)','Interpreter','LaTex'); 

%           title('7-DOF Suspension Model Simulation Results') 
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%% Mode Shapes 

%%coordinate order: (zlf,zlr,zrr,zrf,Z,Theta,Psi) 

% M=[-bf-mf, 0, 0, 0, bf, bf*tf/2, -bf*Lf;  %Mass matrix (see 7DOF.nb) 

%    0, -br-mr, 0, 0, br, br*tr/2, br*Lr; 

%    0, 0, -br-mr, 0, br, -br*tr/2, br*Lr; 

%    0, 0, 0, -bf-mf, bf, -bf*tf/2, -bf*Lf; 

%    bf, br, br, bf, -bf-br-bf-br-Mb, -bf*tf/2-

br*tr/2+bf*tf/2+br*tr/2,... 

%       bf*Lf+bf*Lf-br*Lr-br*Lr; 

%   bf*tf/2, br*tr/2, -br*L*tr/2, -bf*tf/2, -bf*tf/2-

br*tr+bf*tf/2+br*tr/2,... 

%       -Ixx-bf*(tf/2)^2-br*(tr/2)^2-bf*(tf/2)^2-br*(tr/2)^2,... 

%       bf*Lf*tf/2-br*tr/2*Lr-bf*Lf*tf/2+br*Lr*tr/2; 

%   -bf*Lf, br*Lr, br*Lr, -bf*Lf, bf*Lf+bf*Lf-br*Lr-br*Lr,... 

%       bf*Lf*tf/2-br*tr/2*Lr-bf*Lf*tf/2+br*Lr*tr/2,... 

%       -Iyy-bf*Lf^2-bf*Lf^2-br*Lr^2-br*Lr^2]; 

%  

%  K=[-kf-kt, 0, 0, 0, kf, kf*tf/2, -kf*Lf;   %Stiffness matrix (see 

7DOF.nb) 

%    0, -kr-kt, 0, 0, kr, kr*tr/2, kr*Lr; 

%    0, 0, -kr-kt, 0, kr, -kr*tr/2, kr*Lr; 

%    0, 0, 0, -kf-kt, kf, -kf*tf/2, -kf*Lf; 

%    kf, kr, kr, kf, -kf-kr-kf-kr, -kf*tf/2-kr*tr/2+kf*tf/2+kr*tr/2,... 

%       kf*Lf+kf*Lf-kr*Lr-kr*Lr; 

%    kf*tf/2, kr*tr/2, -kr*tr/2, -kf*tf/2, -kf*tf/2-kr*tr/2+kf*tf/2+... 

%       kr*tr/2, -kf*(tf/2)^2-kr*(tr/2)^2-kf*(tf/2)^2-kr*(tr/2)^2,... 
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%       kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2; 

%    -kf*Lf, kr*Lr, kr*Lr, -kf*Lf, kf*Lf+kf*Lf-kr*Lr-kr*Lr,... 

%       kf*Lf*tf/2-kr*tr/2*Lr-kf*Lf*tf/2+kr*Lr*tr/2,... 

%       -kf*Lf^2-kf*Lf^2-kr*Lr^2-kr*Lr^2]; 

%  

% [eigenvectors,eigenvalues]=eig(K,M);   %"vector" columns are 

eigenvectors 

% %%%coordinate order: (zlf,zlr,zrr,zrf,Z,Theta,Psi) 

% eigenvectors 

% display('Nat. Freq.') 

% sqrt(eigenvalues) 

  

%% %%%%%%%%%%%%%Build Root Locus w/ damping coef. as 

gain%%%%%%%%%%%%%%%%%% 

% fin=(c1f+c1r)/2;    % final damping value 

% n=fin/100;       % step size 

% i=0;        % initialize index 

%  

% % create root locus 

% for c=0:n:fin 

%      c1f=c;       % give suspension symmetry 

%      c1r=c; 

%  

%     [A,B,C,D]=linmod('nonlinfullcar_bode_analysis');      % find LTI 

model 

%     sys1=ss(A,B,C,D);           % change LTI model to state space 

%     [wn,zeta,p]=damp(sys1);     % find eigenvalues 

%  
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%     i=i+1;       % increment index 

%     dampcoef(i,:)=c;        % collect "c's" used 

%     re(i,:)=real(p); im(i,:)=imag(p);       % find Re(pole), Im(pole) 

%     natfreq(i,:)=wn;          % collect natural frequency value 

%     damprat(i,:)=zeta;        % collect damping ratio value     

%  

% %variable step size 

% %      if i>1 

% %         if (sqrt((re(i)-re(i-1))^2+(im(i)-im(i-1))^2)>.2) 

% %         n=2; 

% %         cnt=cnt+1 

% %         end 

% %     end 

% end 

  

%% Create root locus figure 

% fig=figure; 

% % dcm_obj=datacursormode(fig); 

% % set(dcm_obj,'UpdateFcn',@myupdatefcn)   %customized datatip 

function 

% plot(re,im,'.b',re(1,:),im(1,:),'.g',re(i,:),im(i,:),'.r') 

% axis([2*min(min(im)) 0 min(min(im)) max(max(im))]) 

% axis square 

% % axis equal 

% % axis tight 

% sgrid 

%  

% % %Use custom datatip 
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% % xlimits=xlim; 

% % ylimits=ylim; 

% % display('Press any button to continue') 

% % while waitforbuttonpress==0 

% %     info_struct=getCursorInfo(dcm_obj); 

% %     ind=info_struct.DataIndex; 

% %     refreshdata 

% %     text(-45,20,['Damping Coefficient: ', 

num2str(dampcoef(ind))],... 

% %         'BackgroundColor',[1 1 .93],'EdgeColor',[.8 .8 .8]) 

% % end 

 

function [bf,br]=fullcar_inerter_optim(bf0,br0) 

  

global g tf tr Lf Lr mf mr Mb Ixx Iyy kf kr kt vtf vtr c1f c2f c1r c2r 

  

%load model 

nonlinfullcar 

  

%initialize plant variables in model 

[yf0,yr0,Z0,Theta0,Psi0]=EOMs;  % I.C.'s 

b0=[bf0,br0]; 

    

options = 

optimset('Display','iter','TolX',.25,'TolFun',.05,'GradObj','on');% 

coef = lsqnonlin(@track,b0,0,[],options); 

bf=coef(1); br=coef(2); 
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    function F = track(coef) 

         

                bf=coef(1); br=coef(2); 

                 

        % Compute function value 

        simopt=simset('SrcWorkspace','current');   % Initialize sim 

options 

        [t,x,y] = sim('nonlinfullcar',79.785,simopt);   % runtime = 

79.7852s 

        F = y(:,1)-y(:,2); 

    end 

end 
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Appendix B: Simulink Block Diagrams 

This appendix contains the block diagrams used in the Simulink models for each 

suspension system. 
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Figure B.1 – 2DOF Quarter-Suspension Model 
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Figure B.2 – 2DOF Roll Model 
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Two DOF Spring /Damper /Inerter Model
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Figure B.3 – 2DOF Roll Suspension Subsystem 
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Figure B.4 – 2DOF Roll Model for Root Locus Analysis 
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Figure B.5 – 4DOF Model 
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Figure B.6 – 4DOF Suspension Subsystem 
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Figure B.7 – 4DOF Model for Root Locus Analysis 

 

Seven DOF Vehicle Model
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Figure B.8 – 7DOF Model 
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Seven DOF Spring /Damper /Inerter Model
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Figure B.9 – 7DOF Suspension Subsystem with Linear Damper 
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Figure B.10 – 7DOF Suspension Subsystem with Nonlinear Damper 
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Seven DOF Body Pitch
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Figure B.11 – 7DOF Chassis Pitch Subsystem 
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Figure B.12 – 7DOF Chassis Roll Subsystem 
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Figure B.13 – 7DOF Chassis Heave Subsystem 
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Seven DOF Vehicle Model
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Figure B.14 – 7DOF Model for Root Locus Analysis 
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Appendix C: 2007 UNM FSAE Design Specification Sheet 

This appendix contains the parameters used in the suspension models and optimization. 

 

Table C.1 – 2007 FSAE Spec Sheet 

FSAE Design Spec SheetFSAE Design Spec SheetFSAE Design Spec SheetFSAE Design Spec Sheet    2007200720072007    

Competitors please replace the sample specification values in the table below with those appropriate for your vehicle and submit this to Competitors please replace the sample specification values in the table below with those appropriate for your vehicle and submit this to Competitors please replace the sample specification values in the table below with those appropriate for your vehicle and submit this to Competitors please replace the sample specification values in the table below with those appropriate for your vehicle and submit this to 

with your design report.  This information will be reviewed by twith your design report.  This information will be reviewed by twith your design report.  This information will be reviewed by twith your design report.  This information will be reviewed by the design judges and may be referred to during the design event.  he design judges and may be referred to during the design event.  he design judges and may be referred to during the design event.  he design judges and may be referred to during the design event.      

--------Please do not modify format of this sheet. Common formatting will help keep the judges happy!Please do not modify format of this sheet. Common formatting will help keep the judges happy!Please do not modify format of this sheet. Common formatting will help keep the judges happy!Please do not modify format of this sheet. Common formatting will help keep the judges happy!    

--------The sample values are fictional and should be used as a baseline for your designs.The sample values are fictional and should be used as a baseline for your designs.The sample values are fictional and should be used as a baseline for your designs.The sample values are fictional and should be used as a baseline for your designs.    

Car NCar NCar NCar No.o.o.o.    71 

SchoolSchoolSchoolSchool    University of New Mexico 

   

DimensionsDimensionsDimensionsDimensions    FrontFrontFrontFront    RearRearRearRear    

Overall Length, Width, Height 107.5 inches, 57.0 inches, 45.0 inches 

Wheelbase 60 inches 

Track 50 inches 48 inches 

Weight with 150lb driver  310 lbs 340 lbs 

   

Suspension ParametersSuspension ParametersSuspension ParametersSuspension Parameters    FrFrFrFrontontontont    RearRearRearRear    

Suspension Type Short-Long A-Arm.  Push rod actuated 

semi-horizontally oriented spring and 

damper 

Sort-Long A-Arm.  Push rod actuated semi-vertically oriented 

spring and damper 

Tire Size and Compound Type 20.5x7.0-13 R25A Hoosier  20x7.5-13 R25A Hoosier 

Wheels 6 inch wide, 2 pc Al Rim, 1 inch neg. 

offset 

6 inch wide, 2 pc Al Rim, 1 inch neg. offset 

Design ride height (chassis to ground) 3.5 inches 3.3 inches 

Center of Gravity Design Height 12 inches above ground 

Suspension design travel 1.1 inches jounce/ 1.1 inch rebound 1.4 inches jounce/ 1.4 inch rebound 

Wheel rate (chassis to wheel center) 148 lb/in 126 lb/in 

Roll rate (chassis to wheel center) 0.8 degrees per g 

Sprung mass natural frequency 2.94 Hz 2.6 Hz 

Jounce Damping Designed to exploit tire traction Designed to exploit tire traction 
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Rebound Damping Designed to exploit tire traction Designed to exploit tire traction 

Motion ratio / type 0.77 / progressive 0.53  / progressive rate 

Camber coefficient in bump (deg / in) 1.5 deg / in 1.7 deg / in 

Camber coefficient in roll (deg / deg) .34 deg / deg .30 deg /deg 

Static Toe and adjustment method 0.25 to 0.5 inch toe out via adj steering 

links 

0 inch toe in via adj toe links 

Static camber and adjustment method '-0.5 deg via rod end adjustment 0 deg 

Front Caster and adjustment method 8.2 degrees adjustable   

Front Kingpin Axis 7.6 degrees adjustable   

Kingpin offset and trail .9 inches offset  .5 inches trail   

Static Akermann and adjustment method 60% adjustable   

Anti dive / Anti Squat 0% adjustable 0% adjustable 

Roll center position static 1.8 inches above ground 1.6 inches above ground 

Roll center position at 1g lateral acc .4 inches above ground, 5.7 inches 

toward unladen side 

0.2 inches above ground, 11.7 inches toward laden side 

Steer location, Gear ratio, Steer Arm Length Front steer inplane with lower A-arm, 3.33" c-factor, 3.72" steer arm 
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