
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

7-9-2009

Symbolic planning for heterogeneous robots
through composition of their motion description
languages
Wenqi Zhang

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Zhang, Wenqi. "Symbolic planning for heterogeneous robots through composition of their motion description languages." (2009).
https://digitalrepository.unm.edu/me_etds/2

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/2?utm_source=digitalrepository.unm.edu%2Fme_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Symbolic Planning for Heterogeneous Robots
through Composition of their Motion

Description Languages

by

Wenqi Zhang

B.S., Mechanical Engineering,
University of Tongji, 2001

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2009

c©2009, Wenqi Zhang

iii

Dedication

To my parents and sister who always encourage me to pursue the best education, and to

my dearest husband Jun Wei for his continuous support.

iv

Acknowledgments
I would like to thank my advisor, Professor Herbert Tanner, for his support, guidance, in-
spiration and for introducing me to this interesting research.

I would like to thank the dissertation committee: Professor Chaouki T. Abdallah, Pro-
fessor Rafael Fierro, Professor Ron Lumia, Professor John Russell for your advisement
during my studies.

Deep thanks to my friends: Andres Cortez, Zhenhua Chen and Jason Sanchez for their
support.

v

Symbolic Planning for Heterogeneous Robots
through Composition of their Motion

Description Languages

by

Wenqi Zhang

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2009

Symbolic Planning for Heterogeneous Robots
through Composition of their Motion

Description Languages

by

Wenqi Zhang

B.S., Mechanical Engineering,
University of Tongji, 2001

Ph.D, Engineering, University of New Mexico, 2009

Abstract

This dissertation introduces a new formalism to define compositions of interacting het-

erogeneous systems, described by extended motion description languages (MDLes). The

properties of the composition system are analyzed and an automatic process to generate

sequential atom plan is introduced. The novelty of the formalism is in producing a com-

posed system with a behavior that could be a superset of the union of the behaviors of its

generators.

As robotic systems perform increasingly complex tasks, people resort increasingly to

switching or hybrid control algorithms. A need arises for a formalism to compose different

robotic behaviors and meet a final target. The significant work produced to date on various

aspects of robotics arguably has not yet effectively captured the interaction between sys-

tems. Another problem in motion control is automating the process of planning and it has

vii

been recognized that there is a gap between high level planning algorithms and low level

motion control implementation. This dissertation is an attempt to address these problems.

A new composition system is given and the properties are checked. We allow systems

to have additional cooperative transitions and become active only when the systems are

composed with other systems appropriately. We distinguish between events associated

with transitions a push-down automaton representing an MDLe can take autonomously,

and events that cannot initiate transitions. Among the latter, there can be events that when

synchronized with some of another push-down automaton, become active and do initiate

transitions.

We identify MDLes as recursive systems in some basic process algebra (BPA) written

in Greibach Normal Form. By identifying MDLes as a subclass of BPAs, we are able

to borrow the syntax and semantics of the BPAs merge operator (instead of defining a

new MDLe operator), and thus establish closeness and decidability properties for MDLe

compositions.

We introduce an instance of the sliding block puzzle as a multi-robot hybrid system.

We automate the process of planning and dictate how the behaviors are sequentially syn-

thesized into plans that drive the system into a desired state.

The decidability result gives us hope to abstract the system to the point that some of the

available model checkers can be used to construct motion plans. The new notion of system

composition allows us to capture the interaction between systems and we realize that the

whole system can do more than the sum of its parts. The framework can be used on groups

of heterogeneous robotic systems to communicate and allocate tasks among themselves,

and sort through possible solutions to find a plan of action without human intervention or

guidance.

viii

Contents

List of Figures xiii

List of Tables xv

Glossary xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Informal review of related formalism . 2

1.3 Prior Work . 4

1.3.1 Symbolic planning . 4

1.3.2 Hybrid systems . 8

1.3.3 Process Algebras . 9

1.3.4 Decidability . 11

1.4 Problem Statement . 13

1.5 Overview of Approach . 14

ix

Contents

1.6 Contributions . 15

1.7 Organization . 15

2 Technical Background 17

2.1 Automata Theory . 17

2.2 Expressions and Languages . 19

2.3 Formal Languages for Robots . 21

2.4 Basic Process Algebra . 25

2.5 Classical Composition of Systems . 30

3 System Composition 32

3.1 Cooperation opportunities . 32

3.2 Composition of MDLe systems . 36

4 Language Composition and Equivalence 39

4.1 Complexity notions . 39

4.2 From MDLe to BPA in GNF . 40

4.3 Language equivalence in a MDLe . 47

4.4 MDLes are closed under composition 47

4.5 MDLe composition preserves bisimularity 49

5 A Case Study 52

x

Contents

5.1 Sliding Block Puzzles . 53

5.2 A special case . 54

5.2.1 The block automaton . 55

5.2.2 The robot automaton . 57

5.2.3 The Khepera Robot . 58

5.2.4 Shortest Paths . 59

5.2.5 Planning . 60

5.2.6 Example: Detail plan to move block from 1 to 6 65

6 Conclusions and Future Work 68

Appendices 70

A Γ function of blocks 71

B Γ function of robot 76

C H function 82

D Shortest Path 89

E Planning 93

F C code sent to the robot 105

xi

Contents

References 124

xii

List of Figures

1.1 State diagram of automatic door. The two states are open and closed.

Front, rear, both, neither are four different inputs. The automaton repre-

senting the automatic door change states according to inputs. 3

2.1 A two-state finite automaton. The machine starts in start state q1 and

proceeds according to the given input alphabet. For example, given input

string 1011, the machine starts in q1, then proceeds to q2 after reading

1, then to q1 when reading 0, to q2 when reading 1, and stay in q2 when

reading 1. This string is accepted because q2 is an accept state. It is

shown that this machine accept all strings that end in 1. 18

3.1 Relations between η and Γ. η is the set of events that system has power to

do in potential, Γ is the set of events that system knows how to do, Γ ∩ η

represent the events that the system can act by itself. 34

3.2 H is a relation, that associates two events in different automata that could

be synchronized. It can be viewed also as a function taking events from

two single systems are inputs, and giving the composed common events

as outputs. 34

xiii

List of Figures

3.3 The collection of enabling and potential events. set A includes the private

potential events of system 1, set B includes the private potential events

of system 2, and sets I , II , III represent the common events of the

composed system . 35

5.1 The Sliding block puzzle considered here. No.1 through No.16 represent

possible positions for any block. No.17 through No.81 represent possible

positions for the robot. 55

5.2 The Khepera II mobile Robot . 58

5.3 The configuration of block positions. White square represents empty

block position; gray square represents the initial position of the block

we want to move; blue square represents the end position of the block. . 64

5.4 The initial configuration of the robot and blocks. 67

5.5 The final configuration of the robot and blocks. 67

xiv

List of Tables

2.1 The axioms of a BPA. 26

2.2 The operational semantics of BPA. 27

2.3 The BPA axioms, expanded with the introduction of merge (‖) and left

merge (T) operators. 29

2.4 The action relations of BPA, expanded using the composition operators. . 30

xv

Glossary

Q a finite set of states

Φ a finite set of alphabet

δ the transition function

q0 the start state

F the set of accept states

Ω stack alphabet

V a finite set of variables

Ψ terminals

R rules

S start variable

u(x, t) feedback control laws

ξ(y, t) boolean functions

N non-terminal symbols in MDLe

η terminals in MDLe

xvi

Glossary

S start symbol in N ;

R rules to create MDLe strings

Σ the stack alphabet in MDLe

Z0 start symbol in stack

T left merge operator

‖ merge operator

H function to generate common events

MDLe extended Motion Description Language

LTL Linear Temporal Logic

CTL Computation Tree Logic

MA Maneuver Automaton

ACP Algebra of Communicating Processes

BPA Basic Process Algebra

GNF Greibach Normal Form

CFG Context Free Grammar

CCS Calculus of Communicating Systems

CSP Communicating Sequential Processes

TCSP Theoretical Communicating Sequential Processes

DPDA Deterministic Pushdown Automaton

xvii

Chapter 1

Introduction

1.1 Motivation

The significant advances in robot control and motion planning notwithstanding, we still

lack a theory that integrates features of modern control theory with automated reactive

decision-making. This is due in part to the scope and difficulty of the problem, and in

part to the limited expressive power of current models. The complexity issues involved

in discrete planning are well known [111]. It has also been recognized that there is a

gap between such discrete high level planning algorithms, and low level motion control

implementation (see [69] and the references therein). The approach in [69] attempts to

bridge this gap using linear temporal logic (LTL) to describe the task to be performed

in a formalism similar to natural language, and then translate the logic formula into an

automaton that gives rise to a hybrid controller.

A need arises for a methodology to “stitch” together different controlled robotic behav-

iors in a way that a final objective is ultimately met. The need for a “standard” language

for motion control is becoming pressing as future control specifications need to capture

these features for control to be able to meet modern engineering and societal challenges.

1

Chapter 1. Introduction

A standard language for motion control should be able to manage complexity; allow dif-

ferential equation control interrupted by discrete logic; allow one to write reusable and

robust software.

A formal language is a language that is defined by mathematical or machine process-

able formulas. We want to find a language along the lines of [85]

In a definitive calculus there should be as few operators as possible, each

of which embodies some distinct and intuitive idea, and which together give

completely general expressive power.

We attempt to utilize an existing motion control “meta-language” [63, 80] to abstract low

level controllers —implemented in any possible programming language— into elementary

behaviors in a way to facilitate high level planning.

In the rest of this chapter, we give a review of the prior work in related areas.

1.2 Informal review of related formalism

We begin with some concepts in the theory of computation.

Real computers are too complicated to allow us to set up a mathematical theory of

them directly. Instead we use a computational model to represent an idealized computer.

The simplest model is called finite state machine or finite automaton. It can represent

various devices. For example, an automatic door is such a device. The controller has two

states: open and closed. The controller moves between these two states according to input

conditions: 1) when a person is in front of the door (front); 2) when a person is at the

rear of the door (rear); 3) there is no person on both sides (neither); 4) there are persons on

both sides (both). When the controller is in the open state and receives an input “neither,” it

transfers to state closed, otherwise remains in open. According to different situations, we

2

Chapter 1. Introduction

��������������	��

�	�� �	��������
�	��

�������

������ 	���

Figure 1.1: State diagram of automatic door. The two states are open and closed. Front,
rear, both, neither are four different inputs. The automaton representing the automatic
door change states according to inputs.

can draw a state diagram in Figure 1.1. This automaton only needs the memory to record

which states the door is in to work properly. There are other devices can be represented in

finite automata, such as elevators, watches etc, which need limited memories.

A sequence of input conditions forms a string, such as “front, both, rear, both”. The

group of all strings that an automaton can accept is called the Language. In the automatic

door example, if the controller is in state open and what to keep in this state all the time,

then input strings “front, rear, front, both”, “front, rear, both, both”,“rear, front, both,

front, both” are all acceptable strings. The set of all these strings is the language that

the automatic door automaton can accept. A language is called regular if some finite

automaton accepts it.

Grammars are the rules we need to follow to generate a language. In English lan-

guages, grammars are used to make sentences. For example, sentence → noun−phase+

verb−phase is the basic grammar used in English. Similar to human languages, grammars

are also used in computer science to describe languages.

Finite automata have limited memories. Pushdown automata are used when we want

to represent more complex devices. A pushdown automaton has a stack which provides

additional memory compared to a finite automaton. For example, 0n1n represents all the

3

Chapter 1. Introduction

strings that has equal number of zeros and ones, such as “000111”, “0011”. No finite

automata can generate strings of the form 0n1n because there is not enough memory to

remember the number of zeros and ones in the string. But an automaton with a stack

can do this job: Once we read a 0, we push it onto the stack. As long as we see 1,

we pop a 0 off the stack. If the input is finished exactly when the stack is empty, the

automaton accepts the input string, otherwise it rejects it. This simple example shows that

pushdown automata can recognize more languages than finite automata. The language that

a pushdown automaton can recognize is called context-free language.

1.3 Prior Work

In this section, we provide a review on the prior related work in the area of symbolic

motion planning, hybrid systems, process algebras, and decidability.

1.3.1 Symbolic planning

Motion and behavior planning is an essential part in control theory. Planning in robotics

typically concentrates on determining a path from start position to end position in different

environments.

Motion Description Languages were introduced by Roger Brockett [17–19]. The main

idea came from automata theory. Brockett stated that a computer controlled device should

include :

a) An interpretive language capable of describing the tasks to be done.

b) An interpreter/mechanism which accepts such descriptions and exe-

cutes the task.

4

Chapter 1. Introduction

c) Suitable applications programs for facilitating the generation of the de-

scription of specific tasks in terms of the interpretive language.

A Motion Description Language (MDL) is an ideal language which can satisfy the

above requirements. It can be expressiveness and distinguish between low level feedback

rules (part b) and higher level planning (part c). The MDL-device was first introduced

in [17]. Brockett described a general solution to the problem of motion control, which

included these three parts: a motion description language, an interpreter mechanism, and

an applications program. The language is device independent and applicable to a wide

variety of systems. Experimental results show that with a suitable change of coordinate

maps, this mode of programming can be supported and capable of generating a wide vari-

ety of motions. This approach is an effort that tries to elucidate the complexity of robotic

systems, and translate control algorithms into robust and reusable software [78–80].

MDL subsequently evolved to MDLe (extended Motion Description Language). Manikonda,

Krishnaprasad and Hendler [78] encoded and integrated aspects of modern control theory

approaches with the reactive planning systems that rely on sensors and actuators. Com-

paring to Brockett’s earlier definition, Manikonda et al. introduced sensor-driven trigger

functions into MDL atoms. Now the basic building block of the languages (called atom)

is defined as (U, ξ, T), ξ is considered as an interrupt or trigger. Another difference from

Brockett’s model is that input scaling is brought into the picture. A hybrid architecture

planner that can be used in path planner and obstacle avoidance is also introduced.

A MDLe was being used in symbolic feedback control [62], generating symbolic feed-

back control sequences for navigating a sparsely described and uncertain environment. It

was also used to generate software [32] that can control robots and other dynamic systems

using automatically generated, high-level, symbolic control programs. The MODEbox can

extract high-level control programs from observed behaviors and then produce symbolic

control laws that can be executed on mobile robots to mimic the observed behavior. Hristu

et al. described the ”MDLe engine,” a software tool that implemented the MDLe lan-

5

Chapter 1. Introduction

guage in [61, 64]. They designed a basic compiler/software foundation for writing MDLe

code and provided a brief description of the MDLe syntax, implementation architecture,

and functionality. Hristu and Anderson used the motion description language to repre-

sent language-based directions in directed graph [63], reducing the complexity of the map

and making navigation programs robot-independent. Murry and Deno [33] developed a

methodology for description of hierarchical control of robot systems in a manner of inter-

preted language, which was capable of describing a large class of robot systems under a

variety of single level and distributed control schemes.

Other methods for performing symbolic motion and behavior planning have also been

used. The Maneuver Automaton [39, 40, 42] is one of them. Maneuver automata are

finite automata that produce sequences of predetermined maneuvers for unmanned vehi-

cles. The approach can be considered an extension of [81] and [68]. A Maneuver Au-

tomaton (MA) [39] is a tuple M = (Σ, Q, δ, q0, F). Σ is the maneuver alphabet, a finite

collection of maneuvers. A maneuver is defined as a primitive that begins and ends at

steady-state motion conditions. Motion plans are described as the concatenation of a num-

ber of well-defined motion primitives, selected from a finite library. Languages generated

by maneuver automata are regular languages and a maneuver sequence can be derived

from a corresponding regular grammar. Maneuver-based motion planning is a method for

time-invariant dynamical control systems with symmetries, such as mobile robots and au-

tonomous vehicles, under a variety of differential and algebraic constraints on the state and

on the control inputs. Frazzoli, Dahleh and Feron [39] also checked the reachability prop-

erties of this language and give algorithms for the solution of a class problems. Most of

the properties of Maneuver Automata and of the corresponding languages were analyzed

in [39, 42].

Petri nets are another modeling formalism utilized in planning. The formalism was

introduced in 1962 by Carl Adam Petri [99–102], at the age of 13!

A Petri Net [92, 103] is a graphical tool for the description and analysis of concurrent

6

Chapter 1. Introduction

processes in distributed systems. A Petri net is a directed bipartite graph in which includes

space nodes, transition nodes, and directed arcs connecting places with transitions. Arcs

run between places and transitions. The places from which an arc runs to a transition are

called the input places of the transition; the places to which arcs run from a transition are

called the output places of the transition. Petri Nets are a useful tool for describing and

studying information processing systems that are characterized as being concurrent, asyn-

chronous, distributed, parallel, nondeterministic, and/or stochastic [92]. The properties

of Petri Nets that were reviewed in [92] include the reachability problem, liveness, and

boundness properties.

Holt [55–57] applied Petri Nets in his project Information System Theory of Applied

Data Research. Peterson published the first book on Petri Nets [98] in 1981, summarizing

most of the developments and applications on Petri Nets. Later on, Petri Nets were applied

on different systems: distributed-software systems [7, 77]; distributed-database systems

[35,94]; concurrent and parallel programs [43,44]; dataflow computing systems [67,115].

Special modifications and restrictions of petri nets are added on these systems to suit to

particular application.

Graph theory has also played a role in motion planning. Ehrig and Courcelle [36], [25]

introduced the basic definition of Graph grammars. Klavins, Lipsky, and Ghrist [66], [65]

used graph grammars to model and direct concurrent robotic self-assembly and similar

self-organizing processes. They generated an acyclic graph to synthesize a binary grammar

(rules involve at most two parts), and a general graph to synthesize a ternary grammar

(rules involve at most three parts). With this apparatus they were able to model and direct

distributed robotic assembly. They explored and analyzed the reachability and stability

properties of the resulting robotic systems that were described by graph.

7

Chapter 1. Introduction

1.3.2 Hybrid systems

A hybrid system is a dynamic system that exhibits both continuous and discrete dynamic

behavior: a system that is represented by differential equations and discrete logic rules

that interact with each other. Hybrid systems have been used in a lot of applications,

such as automated highway systems [60, 75, 120], air-traffic management systems [72,

76, 119], manufacturing systems [97], chemical process [38], robotics [5, 116], embedded

automotive controllers [10].

Sastry and Lygeros introduced the basic definitions in hybrid systems and give a formal

definition in [74], [73]. Existence of executions is an issue in hybrid systems. Since hybrid

automata allow one to model a very wide variety of physical phenomena, it is possible to

produce unreasonable models or one for which solutions do not exist. Hybrid automata

can also exhibit multiple executions for a single initial state. Given a system represented

in hybrid automaton, a need frequently arises to check if the system satisfied a certain

property, such as controllability or reachability. The idea of hybrid systems has inspired a

lot of work and a great deal of research has been done in these two directions.

Alur, Courcoubetis, and Halbwachs provided decidability and undecidability results

for classes of linear hybrid systems in [2], and they showed that standard program analysis

techniques can be adapted to linear hybrid systems. They also presented approximation

techniques for dealing with systems for which iterative procedures do not converge. Hen-

zinger [49] classified hybrid automata according to what questions about their behavior

can be answered algorithmically. The classification revealed structure on mixed discrete-

continuous state spaces that was previously studied on purely discrete state spaces only.

Asarin, Bournez and Dand [6] suggested a novel methodology for synthesizing switch-

ing controllers for continuous and hybrid systems whose dynamics were defined by linear

differential equations. They proposed an abstract algorithm that solved the problem by

an iterative computation of reachable states. Decarlo and Branicky [31] gave a survey on

8

Chapter 1. Introduction

the major results in the (Lyapunov) stability of finite-dimensional hybrid systems and then

discussed the stronger, more specialized results of switched linear (stable and unstable)

systems. Davoren and Nerode [27] offered a synthetic overview of the use of logics and

formal methods in the analysis of hybrid systems. McClamroch and Kolmanovsky [83]

provided an overview of developments on design of hybrid controllers for continuous-time

control systems that can be described by linear or nonlinear differential state equations.

They introduced hybrid controllers in the form of a switching control architecture and

provided a summary of control approaches that utilize this control architecture.

1.3.3 Process Algebras

Algebraic process theory was developed in the early seventies. One of the main proponents

of studying the semantics of parallel programs in the early seventies was Hans Bekic. In

[11] Bekic addressed the semantics of what he calls “quasi-parallel execution of processes”

Our plan to develop an algebra of processes may be viewed as a high-level ap-

proach: we are interested in how to compose complex processes from simpler

(still arbitrarily complex) ones.

Bekic used global variables in his book [12]. He contributed a number of basic ingre-

dients to the emergence of process algebra, but offered no comprehensive theory.

A central figure in the history of process algebra is Robin Milner. Milner developed his

process theory Calculus of Communicating Systems (CCS) over the years 1973 to 1980,

and published his book [85] in 1980. The earliest publications of parallel composition were

in [86], [87]. Following Bekic’s work [11], Milner [84, 89, 90] introduced flow graphs,

and static laws were stated for operators. In [48, 88], Milner gave the basic definition

of CCS, observational equivalence and strong equivalence. Also, the Hennessy-Milner

logic was introduced, which provided a logical characterization of process equivalence.

9

Chapter 1. Introduction

We find the first introduction of a complete process algebra in the book [85] including

a set of equations and a semantical model. Milner summarized and updated his work,

publishing the book Communication and Concurrency [91]. Divid Park followed Milner’s

idea and introduced the formulation of bisimulation in [96]. Plotkin did more research

on the structural operational semantics and developed a simple and direct method for

specifying the semantics of programming languages in [105] and [106].

Tony Hoare is another important contributor to process algebra. In his paper [53], he

introduced the language Communicating Sequential Processes (CSP). The language has

synchronous communication and is a guarded command language. To solve the problem

of deadlock behavior, Theoretical CSP (TCSP) was introduced in [20]. In that language, a

silent step like τ can be eliminated using two alternative composition operators. Hoare’s

book Communicating Sequential Processes [54] is a good review of CSP.

Under the guidance of Jan Bergstra, Bergstra and Klop started work on process algebra

and published a paper [13], in which the term “process algebra” appeared for the first time.

The word “Process” refers to behavior of a system. A system can be anything from a piece

of software to a human being. The word “Algebra” implies that the approach in dealing

with behavior is algebraic and axiomatic. The formal definition of Basic Process Algebra

[13], [15] includes several parts: atomic actions A = {a, b, c, . . .}; binary operators ∆BPA;

axioms EBPA. Together it is denoted simply as a couple in the form

BPA = (∆BPA, EBPA).

Process algebras offer a framework for the definition of operations on systems such

as parallel composition, alternative composition (choice) and sequential composition (se-

quencing). Moreover, by equational reasoning , we can do verification on systems, that is,

checking if a system satisfies a certain property. In [14], a process algebra was extended to

account for communication thus yielding the theory Algebra of Communicating Processes

(ACP).

10

Chapter 1. Introduction

Some other process theories can be mentioned. Research on temporal logic started

in [107]. A partial order process theory was given in [82]. Following Hoare’s work, Rem

did more research in the direction of trace theory [110]. Hennessy introduced recursive

processes, continuous algebras, communicating processes in his book [47]. De Bakker

and Zucker [29, 30] used tools from metric topology to show how operations upon pro-

cesses can be defined conveniently, and solved the problems encountered in the study of

concurrency.

1.3.4 Decidability

System verification is an important issue in embedded control systems. A system is called

decidable if we can find a computation procedure that can decide whether the system

satisfies the desired properties in a finite number of steps. Decidability is a central issue in

algorithmic analysis for hybrid systems.

In the context of system verification, abstraction refers to an attempt to construct finite,

and computable partitions of the state space of the hybrid system, in such a way so that

in the smaller system all the properties of interest are preserved. The idea is that one can

check the desired property on the abstract system, and carry the conclusions over to the

original (concrete) system.

There are classes of hybrid systems that can be abstracted to finite systems, such as

systems represented in linear temporal logic (LTL) and computation tree logic (CTL) [37].

Bisimulation relations are typically used to construct these abstractions [27], [21], [26]. A

bisimulation is a binary relation between state transition systems. Two systems are bisimu-

lar if they match each other’s moves, behaving in the same way in the sense that one system

simulates the other and vice-versa. Despite success in showing that in some special types

of hybrid systems, namely timed automata [4], multirate automata [3], [93], rectangular

automata [51], [108], O-minimal hybrid systems [70], bisimulation-based abstractions can

11

Chapter 1. Introduction

be decidable, this is not the case for general hybrid systems.

Patrick Cousot and Radhia Cousot introduced an abstract interpretation of programs

in [26]. The abstract interpretation was used to describe computations in another universe

of objects, so that the result of abstract execution gave some informations on the actual

computations. Alur, Courcoubetis, Henzinger and Pei-hsin Ho [3,4] considered hybrid au-

tomata as a generalization of timed automata and presented two semidecision procedures

for verifying safety properties of piecewise-linear hybrid automata. Caines and Yuan-Jun

Wei [21] defined a set of dynamically consistent hybrid partition machines associated with

a continuous system. Based on the properties of these abstracted machines, the defini-

tion and properties of hierarchical-hybrid control systems are presented. Nicolin, Olivero,

Sifakis, and Yovine [93] introduced the forward and backward symbolic simulation, which

can be used in symbolic model-checking. Henzinger, Kopke, Puri, and Varaiya [51] iden-

tified a boundary between decidability and undecidability for the reachability problem of

hybrid automata. They introduced an algorithm based on the construction of a timed au-

tomaton that contained all reachability information about a given initialized rectangular

automaton. The translation guaranteed the termination of symbolic procedures for the

reachability analysis of initialized rectangular automata. Pappas and Sastry introduced the

abstraction map and formalize the notion of abstraction of continuous systems in [95].

Lafferriere, Pappas, and Yovine [70] extended the decidability properties for classes of

linear hybrid systems, which were introduced as hybrid systems with linear vector fields

in each discrete location. Piovesan, Tanner, and Abdallah [118] introduced the notion

of Finite Time Mode Abstraction to relate a hybrid automaton to a timed automaton that

preserved the stability and reachability properties of the former.

Stirling [117] used concurrency theory to show the decidability of bisimulation equiv-

alence for deterministic pushdown automaton (DPDA). DPDA, belong to a subclass of

pushdown automata, which have restrictions on their basic transitions:

if pS
a→ qα and pS

a→ rβ then q = r and α = β.

12

Chapter 1. Introduction

if pS
a→ and a ∈ A then ¬(pS

ε→)

where p, q, r are states, a ∈ A ∪ ε is the automaton’s alphabet and α, β are sequence

of stack symbols. Moreover, it is assumed that the length of α, β is less than 3 and the ε

transitions can only pop the stack. Stirling used the theory developed in [112] and [45] to

prove the decidability of DPDA.

Model checking [23, 28, 50, 71] is the process of determining if a given property holds

true in a particular system. It is widely used in verifying the correctness and stability

of large, complicated pieces of software. Pioneering work in model checking of spec-

ifications expressed in some temporal logic was done by Clarke and Emerson [23] in

1981 and by Queille and Sifakis [109]. Model checking software tools are now available.

HYTECH [50] is a tool for the automated analysis of embedded systems. KRONOS [28]

is a software tool built with the aim of assisting designers of real-time systems to verify

whether their designs meet the specified requirements. AMC [104] is a model checker for

non-linear hybrid systems based on an abstraction/refinement framework.

1.4 Problem Statement

In our work we describe heterogeneous systems by the different MDLes that express their

behavior. This is done to incorporate discrete logic and differential equation-based control

laws.

A definition for the classical notion of system composition for discrete event system

is given in [22]. To analyze the physical interaction between heterogeneous systems, and

verify the properties of cooperative system, we need a formal mathematical framework.

The proposed framework should be able to capture the actions that are completed by the

cooperation of the single systems. It should allow automated motion and task planning

for collections of heterogeneous robotic systems. To allow behavior planning, we want

13

Chapter 1. Introduction

an algorithm that can give us the plan automatically, which means given initial state and

destination, the algorithm should give us the detailed sequence of actions step by step.

1.5 Overview of Approach

We start by assuming the existence of a set of designed behavioral primitives, and we pro-

ceed by developing a framework that dictates how these behaviors are sequentially syn-

thesized into plans that drive the system into a desired state. In that sense, our behavioral

primitive forms an alphabet of actions. A new composition system is given and the prop-

erties are checked. We distinguish between events associated with transitions a push-down

automaton representing an MDLe can take autonomously, and events that cannot initiate

transitions. Among the latter, there can be events that when synchronized with some of

another push-down automaton, become active and do initiate transitions. Then we iden-

tify MDLes as recursive systems in some basic process algebra (BPA) written in Greibach

Normal Form. We propose a simple context-free grammar that generates MDLes and then

we use the machinery available for BPAs to formally define a composition operation for

MDLes at the level of grammars. The main difference of our composition operation is the

appearance in the composed system of events (transitions) not enabled in the generators:

the composed system can behave in ways its generators cannot. By identifying MDLes as

a subclass of BPAs, we are able to borrow the syntax and semantics of the BPAs merge

operator (instead of defining a new MDLe operator), and thus establish closeness and de-

cidability properties for MDLe compositions. We introduce an instance of the sliding block

puzzle as a multi-robot hybrid system, to ensure that our formulation captures the possible

interaction between heterogeneous robot systems.

14

Chapter 1. Introduction

1.6 Contributions

MDLes have been criticized for not capturing interaction between systems. This disser-

tation addresses this issue and introduces a new framework of composed MDLe. We also

prove closeness and decidability properties for MDLe compositions. In the new frame-

work, each primitives represent some distinct and intuitive idea, and together give more

expressive power compared to its components. We utilize an existing motion control lan-

guage to abstract low level controllers into elementary behaviors in a way to facilitate high

level planning. The new formalism can be applied to different areas. For example, we can

compose auditory and visual systems together to decide the accurate position of any ob-

jects; we can compose UAVS, Kheperas and allow them communicate and allocate tasks

among themselves, and sort through possible solutions to find a plan of action without

human intervention or guidance.

Automating the process of planning has traditionally been a problem in the realm of

artificial intelligence. In the sliding block puzzle example, we automate the process of

planning and the atom sequence can be generated automatically according to the initial

and final state.

1.7 Organization

In Chapter 2 we briefly review the mathematical machinery used in this dissertation, in

an effort to facilitate the technical discussion that follows. In Chapter 3 we offer some

details on how to construct a framework for MDLe composition. Chapter 4 presents the

transformation from extended Motion Description Language to Basic Process Algebra

and demonstrates why in the systems we consider, language equivalence is decidable and

what bisimulation properties are preserved in the composition. Chapter 5 presents an

analysis of a sliding block puzzle example using the proposed framework, when the puzzle

15

Chapter 1. Introduction

is viewed as a multi-robot hybrid system. This example show how our framework captures

physical interaction, and why the composed system can have richer behavior compared to

its component subsystems. Chapter 6 summarizes the results.

16

Chapter 2

Technical Background

In this chapter, we briefly introduce mathematical machinery that is necessary to analyze

heterogeneous cooperative systems from a formal language perspective. This chapter is

organized as follows: Section 2.1 introduces the automata theory and gives the definition

of finite automata and pushdown automata; Section 2.2 presents the definition of regular

language and context-free language; extended Motion Description Languages (MDLe) are

introduced in Section 2.3 and it is shown that MDLe is a context-free language; the axioms

and operational semantics of Process Algebra are introduced in Section 2.4; Section 2.5

gives a definition of classical composition of systems.

2.1 Automata Theory

An automaton is a conceptual device that is capable of representing a language according

to well defined rules. It is often used to describe the operation of machines. The discussion

that follows deals with the definitions and properties of these mathematical models of

computation.

17

Chapter 2. Technical Background

��

�
��

�

��

Figure 2.1: A two-state finite automaton. The machine starts in start state q1 and proceeds
according to the given input alphabet. For example, given input string 1011, the machine
starts in q1, then proceeds to q2 after reading 1, then to q1 when reading 0, to q2 when
reading 1, and stay in q2 when reading 1. This string is accepted because q2 is an accept
state. It is shown that this machine accept all strings that end in 1.

Finite automata [113] can coarsely model computers with a limited amount of memory.

A finite automaton has several parts. It has a set of states and rules for going from one

state to another; it has an input alphabet that indicates the allowed input symbols; it has

a start state and a set of accept states, the states at which the machine can proceed and

successfully end. Figure 2.1 is an example of a finite automata which has two states [113].

Definition 1 ([113]). A finite automaton is a 5-tuple (Q, Φ, δ, q0, F), where

1. Q is a finite set of states,

2. Φ is a finite set of symbols called the alphabet,

3. δ : Q× Φ → Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

Pushdown automata are similar to finite automata, but have an extra component called

the stack. The stack provides additional memory and allows a pushdown automaton to ac-

18

Chapter 2. Technical Background

cept strings that do not belong to a regular language. The formal definition of a pushdown

automaton is similar to that of a finite automaton, except for the stack.

Definition 2 ([113]). A pushdown automaton is a 6-tuple (Q, Φ, Ω, δ, q0, F).

1. Q is a finite set of states,

2. Φ is a finite set called the input alphabet,

3. Ω is the stack alphabet,

4. δ : Q× Φ → Q is the transition function,

5. q0 ∈ Q is the start state, and

6. F ⊆ Q is the set of accept states.

As we can see, automata are good computation models to represent simple discrete

devices. There are also other models to describe the same behavior and this is the topic of

the next section.

2.2 Expressions and Languages

Describing a finite automaton by state diagram like that at Figure 2.1 is not possible in

some cases when the diagram is too big to draw or if the description depends on some

unspecified parameter. In these cases, we use a formal description to specify the machine,

which is called a regular expression. The regular expression is an algebraic description that

can define exactly the same languages finite automata can describe. A regular expression

consists of constants/variables and operators. These operators are: union, concatenation,

and star. They are used in regular expressions in the following rules [59] :

19

Chapter 2. Technical Background

• If E and F are regular expressions, then E + F is a regular expression denoting the

union of L(E) and L(F). That is, L(E + F) = L(E) + L(F).

• If E and F are regular expressions, then EF is a regular expression denoting the

concatenation of L(E) and L(F). That is, L(EF) = L(E)L(F).

• If E is a regular expression, then E∗ is also a regular expression. That is, L(E∗) =

(L(E))∗.

• If E is a regular expression, then (E), a parenthesized E, is also a regular expression,

denoting the same language as E. Formally; L((E)) = L(E).

A regular language is usually described by a regular expression and can be accepted

by a deterministic finite state machine (a finite automaton).

Definition 3 ([113]). A language is called a regular language if some finite automaton

recognizes it.

Furthermore, it is known that:

Lemma 1 ([59]). Every language defined by one of the finite automata is also defined by

a regular expression. Every language defined by a regular expression is defined by one of

the finite automata.

A grammar is a precise description of a formal language, which is a set of strings over

some alphabet. A formal grammar consists of a set of variables, a set of terminals, a set of

rules for transforming strings and start variable.

Context-free grammars are more powerful than regular grammars in the sense that

context-free grammars have a rule of the form X → α, where X is a nonterminal and α is

a nonempty string of terminals and nonterminals. The languages generated by context-free

grammars are called the context-free languages. They include all the regular languages.

20

Chapter 2. Technical Background

Definition 4 ([113]). A context-free grammar is a 4-tuple (V, Ψ, R, S), where

1. V is a finite set of variables,

2. Ψ is a finite set, disjoint from V, of symbols called terminals,

3. R is a finite set of rules, with each rule being a variable and a string of variables

and terminals, and

4. S ∈ V is the start variable.

Consider the grammar G = ({S}, {0, 1}, R, S). The variable is S, terminals are 0, 1

and start variable is S. The set of rules, R, is

S → 0S1|ε (2.1)

This grammar can generate the language 0n1n for n ≥ 0. It is known that:

Lemma 2 ([59]). If a language is context free, then some pushdown automaton recognizes

it. If a pushdown automaton recognizes some language, then the language is context free.

In the first two sections of this chapter, the basic computation models are introduced.

Now we need a suitable model for robot programming of motion control and this is done

in the next section. We review the definition of such a formal language for robots and

some special forms of this language.

2.3 Formal Languages for Robots

One of the important practical challenges in motion control is the implementation of theo-

retical tools into software that will allow the system to interact effectively with the physical

world. The work on Motion Description Language (MDL) [17–19] has been an effort to

21

Chapter 2. Technical Background

formalize a general purpose robot programming (meta) language that allows one to cap-

ture both logic and differential equations. Extended MDL (MDLe) is “a device-independent

programming language for hybrid motion control, which allows one to compose complex,

interrupt-driven control laws from a set of simple primitives, and a number of syntactic

rules” [63, 80].

Every MDLe string consists of a control part, an interrupt part, and the special symbols

“)”, “(”, and “,”. Consider a robotic system, generically described in the form of the

following dynamics

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (2.2a)

y = h(x), y ∈ Rp, (2.2b)

where x is the state of the system, u the control input, and y the measurable output. Let U

be a finite set of feedback control laws for (2.2a),

u(x, t) : Rn × R → Rm,

and B a finite set of boolean functions ξ of the output variable y and time t ≤ T ∈ R+

ξ(y, t) : Rp × R → {0, 1}.

The basic element of MDLe is an atom, denoted (u, ξ), where u is a control law selected

from U , and ξ is the interrupt selected from set B.

To evaluate or run an atom (u, ξ), means to apply the input u to (2.2a) until the interrupt

function ξ evaluates to one (ξ = 1). An MDLe plan is composed of a sequence of atoms.

For example, evaluating the plan a = ((u1, ξ1), (u2, ξ2)) means that the system state x,

flows along ẋ = f(x, u1) until ξ1 = 1 , and then along ẋ = f(x, u2) until ξ2 = 1. Plans

can also be composed to generate higher order strings, as follows

b = ((u3, ξ3), a, (u4, ξ4)).

22

Chapter 2. Technical Background

In [64] it is shown using the pumping lemma that MDLe is not a regular language,

and it is suggested is context-free. Context-free languages are generated by context-free

grammars. We define a context-free grammar G = (N, η,R, S) so that it generates a

motion description language MDLe = {(u, ξ) : u ∈ U, ξ ∈ B}, in the following way [64]:

• N is the finite set of non-terminal symbols E, where E is a valid variable;

• η = {ui, ξi, (,), , } is the finite set of terminals, which are the atoms of MDLe,

• S is the start symbol in N ;

• R is the rules by which we create MDLe strings:

S → E (2.3a)

E → EE (2.3b)

E → (ui, ξi) (2.3c)

E → (E, ξi) (2.3d)

E → ∅ (2.3e)

Rule 2.3d is called “encapsulation” [64], which is essentially a while-structure, and gives

MDLe its context-free character. It is known that a context-free grammar (CFG) can always

be expressed in a special convenient form:

Definition 5 ([113]). A context-free grammar is in Chomsky normal form if every rule is

of the form

A → BC

A → a,

where a is any terminal and A, B, and C are any variables, with the exception that B and

C may not be the start variable, S. In addition, we permit the rule S → ∅.

23

Chapter 2. Technical Background

Another form of representation, sometimes considered a variation of the Chomsky

normal form, is the Greibach normal form:

Definition 6 ([59]). A context-free grammar in which every production rule is of the form

A → aα, where A is a variable, a is a terminal, and α is a possibly empty string of

variables, is said to be in Greibach normal form (GNF). If, moreover, the length of α (in

symbols) does not exceed 2, we say that the context-free grammar is in restricted Greibach

normal form.

It is known that [59] every context-free grammar can be transformed into an equivalent

grammar in Greibach normal form.

Pushdown automata and context-free grammars are equivalent in power [113]. Both

are capable of describing the class of context-free languages. Following the description

in [113], we can convert MDLe grammar into a pushdown automaton, which allow us to

conveniently switch between presentations.

Definition 7. P = (N, η, Σ, Γ, δ, S, Z0) where

• N is the set of states, defined the same as variables in G;

• η = {ui, ξi, (,), , } is the set of enabled events, associated with transitions in P ;

• Σ = N ∪ η is the stack alphabet;

• Γ : E → Γ(E) is the active event relation;

• δ : E×η → E is the transition function, δ(x, η) = y means that there is a transition

labeled by event η from state x to y;

• S ∈ N is the start state, defined the same as the start state in G;

• Z0 is the start symbol in stack;

24

Chapter 2. Technical Background

Motion Description Languages are introduced in this section. An MDLe is a robot pro-

gramming language that can capture both logic and interrupt-driven controll laws. It has

been proved to be a context-free language and there is an equivalent pushdown automaton

presentation. In next section, we introduce another computation model: Basic Process

Algebra. The reason to introduce this model is that we want to borrow the syntax and

semantics of the BPA merge operator and establish the properties for MDLe compositions.

2.4 Basic Process Algebra

A “process” is essentially the behavior of a dynamical system. The word “algebra” indi-

cates that we take an algebraic/axiomatic approach when reasoning about behaviors.

A basic process algebra (BPA) [9] is a mathematical structure consisted of set of con-

stants, A = {a, b, c, . . .}, called atomic actions, a set ∆BPA of two binary operators on

these constants, the alternative composition + and the sequential composition ·, and a set

of axioms EBPA that determines the properties of the operations on the atomic actions.

When the set of atomic actions, A, is assumed known, a basic process algebra is denoted

simply as a couple in the form

BPA = (∆BPA, EBPA).

The set ∆BPA is sometimes called “signature,” while set EBPA is called “equation” set

(hence the symbols). The theory associated with a BPA is considered to be parameterized

by the set A, which is specified according to the particular application.

The symbol · denotes sequential composition, and is typically omitted. We usually

write xy instead of x · y. We assume that · binds stronger than +, thus (xy) + z = xy + z

(brackets omitted). However, note that the brackets cannot be omitted in x(y + z).

The set EBPA consists of five axioms (or equations), appearing in Table 2.1. By com-

25

Chapter 2. Technical Background

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5

Table 2.1: The axioms of a BPA.

posing atomic actions according to Table 2.1, we produce more complex processes. Any

such process, is an element of some algebra satisfying the axioms of BPA. All the processes

that are produced in this way make up the set P . The axioms of Table 2.1 determine when

two processes can be considered equal.

The axiom system of Table 2.1 is the core of a variety of more extensive process

axiomatizations:

• x · y is the process that first executes x, and upon completion of x, process y starts.

• x + y is the process that either executes x, or executes y (but not both).

A BPA does not enable us to prove that a(cd + bd) = acd + abd.

Note that this definition of a process algebra is purely “algebraic.” Just as in the case

of finite state machines, processes are identified by the set of action sequences they admit.

Thus, in the above, a process is to be understood as the system that produces a given

set of action sequences of the form abaacdda Other authors [52] prefer to include a

set Atom of atomic processes or atoms. The set Proc of processes contains all terms in

the free algebra over Atom generated by sequential composition and disjunction. Then a

process algebra is defined by a finite set Π of productions of the form

X
a→ P, (2.4)

where X ∈ Atom, a ∈ A, and P ∈ Proc. The semantics of the above production is

as follows: atomic process X performs action a and evolves into process P . The action

26

Chapter 2. Technical Background

relations are presented in Table 2.2. In the Table, when we write x
a→ y, where x and y

are processes, and a an atomic action, we mean that process x evolves into process y after

the atomic action a is executed.

a
a→
√

R1
a

a→ x′ ⇒ x + y
a→ x′ and y + x

a→ x′ R2
x

a→
√
⇒ x + y

a→
√

and y + x
a→
√

R3
x

a→ x′ ⇒ xy
a→ x′y R4

x
a→
√
⇒ xy

a→ y R5

Table 2.2: The operational semantics of BPA.

It is said that a relation is true if and only if it can be derived from this table. The

symbol
√

stands for successful termination. Thus, writing x
a→
√

we mean that process

x can terminate by executing action a.

Note the distinction between the relation operator (→) and sequential composition (·):

the fact that x
a→ y does not imply that y = x · a, since a is an action executed as x runs,

not after it is completed. The only thing that can be inferred about action a is that it is an

action that process x can execute.

Now we restrict our attention to a special type of basic process algebras, with slightly

finer semantics. The additional properties of this type of systems enable us to define

composition more comfortably, and prove the decidability of language equivalence for the

systems produced by means of composition.

Definition 8 ([8]). A recursive equation over a basic process algebra is an equation of the

form X = s(x), where X is a variable that can take values in P and s(x) is a term over

the basic process algebra containing X , but no other variable.

A set of recursive equations give rise to a specification:

Definition 9 ([8]). A recursive specification E over a basic process algebra is a set of

recursion equations over the basic process algebra.

27

Chapter 2. Technical Background

By this, we mean that we have a set of variables V = {x0, · · · , xn}, and an equation

of the form X = sx(V) with x ∈ V , where sx is a term over the basic process algebra

containing variables from the set V . The set V contains one distinguished variable called

the root variable, usually the first variable in the textual presentation x0.

A variable in V is called guarded in a given term, if it is proceeded by an atomic action:

Definition 10 ([8]). Let s be a term over a basic process algebra, containing a variable

X .

• An occurrence of X in s is said to be guarded, if s has a subterm of the form a · t,

where a is an atomic action, and t a term containing this occurrence of X; otherwise

this occurrence of X in s is said to be unguarded.

• A term s is completely guarded if all occurrences of all variables in s are guarded.

A recursive specification E is completely guarded if all right hand sides of all equa-

tions of E are completely guarded terms.

For example, in the expression

s1 = a ·X ·X + Y · b + a · (b + X)

every occurrence of X is guarded, but Y occurs unguarded. Therefore, s1 is not completely

guarded. However, the equation

s2 = c(a ·X + Y · b · Y)

is guarded — in this case Y is guarded by c.

Definition 11 ([8]). If a system E of recursion equations is guarded and without brackets,

then each recursion equation is of the form

Xi =
∑

j

aj · αj,

28

Chapter 2. Technical Background

where αj is a possibly empty product (sequential composition) of atoms and variables.

Now if, in addition, αj is exclusively a product of variables, E is said to be in Greibach

normal form (GNF), analogous to the same definition for context-free grammars. If each

αj in E has length not exceeding 2, E is in restricted Greibach normal form.

The process x‖y is the process that executes process x and y in parallel. Notice that

we do not assert that the first action has terminated when the second one starts. This can

depend on the implementation of a process. The left merge operator, T, describes two

processes that occur in parallel, in a way similar to ‖, but with the restriction that the first

step must come from the process on the left of the expression. With the new operators, the

BPA axioms are expanded as follows:

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5
x‖y = xTy + yTx M1
aTx = ax M2
axTy = a(x‖y) M3
(x + y)Tz = xTz + yTz M4

Table 2.3: The BPA axioms, expanded with the introduction of merge (‖) and left merge
(T) operators.

With the new binary operators, the action relations are enriched as shown in Table 2.4.

In this section we review the syntax and semantics of the BPA. The definition of recur-

sive, guarded equations are given. The merge operator is introduced, which is a prepara-

tion for property checking of a composed system. The definition of parallel composition is

given in next section, which inspires our work on a new framework for MDLe composition

in Chapter 3.

29

Chapter 2. Technical Background

a
a→
√

R1
a

a→ x′ ⇒ x + y
a→ x′ and y + x

a→ x′ R2
x

a→
√
⇒ x + y

a→
√

and y + x
a→
√

R3
x

a→ x′ ⇒ xy
a→ x′y R4

x
a→
√
⇒ xy

a→ y R5
x

a→ x′ ⇒ x‖y a→ x′‖y and y‖x a→ y‖x′ R6
x

a→
√
⇒ x‖y a→ y and y‖x a→ y R7

x
a→ x′ ⇒ xTy

a→ x′‖y R8
x

a→
√
⇒ xTy

a→ y R9

Table 2.4: The action relations of BPA, expanded using the composition operators.

2.5 Classical Composition of Systems

We understand cooperative heterogeneous systems as systems that contain different kinds

of hardware and software sub-systems. These sub-systems can be represented by different

kind of automata; they can also run on different platforms. Ideally the sub-systems will

cooperate (compose) to solve problems. Heterogeneous systems are hard to analyze for a

variety of reasons [34]:

They employ different languages and hardware/software platforms; synchro-

nization, concurrency, and failures present difficult programming challenges;

and source code may not be available, and some components in the distributed

system may have different capabilities than other components.

When we say systems can be composed, we mean that some events in one automaton

can be synchronized with some of another automaton, become active and initiate transi-

tions, while other, not necessarily synchronized, events cause transitions in one system

independently of the other. Synchronization implies a common interrupt function, a way

for composed systems to know that they need to execute a certain action simultaneously.

It is not necessary that the events from different automata start and terminate at the same

time. If needed, two events can overlap in time and have different duration.

30

Chapter 2. Technical Background

Parallel composition is often called synchronous composition, and this operation mod-

els one form of joint behavior of a set of systems that operate concurrently. According

to [22], the parallel composition of G1 and G2 is defined as:

Definition 12. G1‖G2 = (V1 × V2, E1 ∪ E2, R, Γ(1‖2), (S1 × S2)), where

1. V1 and V2 are the variable sets of single systems;

2. E1 and E2 are the terminal sets of single systems;

3. the rule set is

R((v1, v2), e) :=

(R1(v1, e), R2(v2, e)) if e ∈ Γ1(v1) ∩ Γ2(v2)

(R1(v1, e), v2) if e ∈ Γ1(v1) \ E2

(v1, R2(v2, e)) if e ∈ Γ2(v2) \ E1

undefined, otherwise

4. Γ1‖2(v1, v2)= [Γ1(v1) ∩ Γ2(v2)] ∪ [Γ1(v1) \ E2] ∪ [Γ2(v2) \ E1], which is the active

events set for composed system;

5. S1 and S2 are the start variables of single systems.

In this chapter, we reviewed the definition and basic properties of finite automata, push-

down automata, regular language, context-free languages, MDLes, basic process algebra,

and the composition of systems. In the classical composition, two systems can only co-

operate on common events. These events can generate transitions in their own systems

irrespectively of what happens in the other, the systems resulting from the composition is

more restricted than any of the components, because, in addition, these common events

need to be synchronized. The composition we envision is a system with a richer behavior,

which can exhibit behaviors that none of its component can. Modifying the definition to

allow this is the main objective of the next chapter.

31

Chapter 3

System Composition

In this chapter, we set up a new framework for system composition. We separate the

events of the single system into potential events and enabling events. Enabling events can

be events that provide the information required to make a transition, but not the ability.

Potential events can be events that provide the capability to take a transition, but not the

required information. The events on which the automata can act must offer both the ability

and the knowledge required to take a transition; they must be both potential and enabling.

Toward this end we introduce a relation which groups all possible common events of the

composed system, and a new definition of composed MDLe is given in both grammar

and automaton formats. Using this framework, behaviors of the single systems can be

sequentially synthesized into plans that drive the system into a desired state.

3.1 Cooperation opportunities

In the classical composition of Definition 12, a common event, that is, an event in E1∩E2

can only be executed if the two automata both execute it simultaneously. Private events

are not subject to such a constraint and can be executed whenever possible. In this kind

32

Chapter 3. System Composition

of interconnection, a component can execute its private events without the participation

of the other component, and a common event can only happen if both components can

execute it. However, it could be the case that some inactive events in one automaton might

be activated as a result of the physical interaction with the system represented by the other

automaton. For example, a single auditory system can determine the direction to a sound

producing object; a single visual system can provide the accurate position of the object

only if there is line of sight. But if we compose these two systems, we can decide on the

position of any object, no matter there is an occlusion or not, and regardless of its direction.

The auditory system can provide the direction information to the visual system; and the

visual system can establish line of sight to decide the accurate position. This is the same

as how human beings decide the position of an object using ears (auditory systems) and

eyes (visual systems).

To exploit this opportunity, we separate the events of each automaton into potential

events and enabling events, shown in Figure 3.1. Potential and enabling events comple-

ment each other. Enabling events may provide to the other component system the opportu-

nity to make a transition, but not the ability. They can trigger a new transition, as if giving

it “the green light”. Potential events represent capability on the part of the system which

they are associated with, in order to take a transition, but not the opportunity. The events

on which the automata can act must offer both the “ability” and the “opportunity” to take

a transition; they must be both potential and enabling.

Toward this end, we introduce a way to group the potential events and enabling events

of different automata, and reveal when transitions need to be synchronized. Given two

automata P1 and P2, we define a relationH (Figure 3.2) on the set (η1∪η2) as the collection

of events on which P1 and P2 should be synchronized.

The set H contains all common events, and is defined so that it includes three different

components: HI ∪HII ∪HIII

33

Chapter 3. System Composition

η

Γ

Figure 3.1: Relations between η and Γ. η is the set of events that system has power to do
in potential, Γ is the set of events that system knows how to do, Γ ∩ η represent the events
that the system can act by itself.

1. HI , (Γ2 ∪ η1) \ (Γ2 ∪ η2) \ (Γ1 ∪ η1), (part I in Figure 3.3), which is the common

events that system 1 can activate with “help” from system 2;

2. HII , (Γ1∪η2)\ (Γ2∪η2)\ (Γ1∪η1), (part II in Figure 3.3), which is the common

events that system 2 can activate with “help” from system 1;

Figure 3.2: H is a relation, that associates two events in different automata that could be
synchronized. It can be viewed also as a function taking events from two single systems
are inputs, and giving the composed common events as outputs.

34

Chapter 3. System Composition

1η

2Γ
2η

A

A

B

III

II

I
B

1Γ

Figure 3.3: The collection of enabling and potential events. set A includes the private
potential events of system 1, set B includes the private potential events of system 2, and
sets I , II , III represent the common events of the composed system

3. HIII , (Γ1 ∪ η2)∩ (Γ2 ∪ η1), (part III in Figure 3.3), common events that both sys-

tems can activate, but they need to synchronize for taking the associated transition.

The union of HI , HII , and HIII form the set of common events for the composed sys-

tem. Part (1) and part (2) are the new events generated by the composed system, which

are not included in the component systems. Thus the events in H can generate synchro-

nized transitions in the composed system. What remains to be seen is how the definition

of composition can now be extended, and how the new synchronized transitions can be

defined.

This section redefined the common events of a composed system by introducing the

relationH. In the remaining, we useH to denote the set of all equivalence class on (η1∪η2)

35

Chapter 3. System Composition

defined by the relation. Now we are ready to give a formal definition of composition of

MDLe systems, which can capture the interaction between systems. This is introduced in

next section.

3.2 Composition of MDLe systems

We state our new notion of composition in terms of grammars. These grammars determine

how individual systems can take transitions. We focus our discussion on grammars that

generate MDLe languages, which have been shown to be context-free. Our definition of

composition is stated as follows.

Definition 13. Consider two MDLes, expressed as context-free grammars G1 = (N1, η1, R, S01)

and G2 = (N2, η2, R, S02), both with rule sets R of the form (2.3). Let S1 and S2 be

their corresponding representations as a system of guarded recursive equations, in re-

stricted Greibach normal form over a BPA. The composition of G1 and G2 is defined as

the context-free grammar G = (N, η,R, S0), where

• N = N1 ×N2 is the set of variables;

• η = η(1‖2) = η1 ∪ η2 is the set of terminals;

• S0 = S01 × S02 is the start state of the composed system;

• The rule set is

R(N × η) :=

(R(x, y), R(z, y)) for x ∈ N1, z ∈ N2 and y ∈ η, if y ∈ H,

(R(x, y), z) for x ∈ N1, z ∈ N2 and y ∈ η, if y ∈ A,

(x, R(z, y)) for x ∈ N1, z ∈ N2 and y ∈ η, if y ∈ B

undefined, otherwise.

36

Chapter 3. System Composition

The transitions of the composed system still respect the grammar rules (2.3), however,

the composition restricts the domain of R. The push-down automaton representing the

composed system can be defined as follows:

Definition 14. P1‖P2 = (N, η(1‖2), Σ, Γ(1‖2), δ, S0, Z0), and

• N = N1 ×N2 is the set of states;

• η = η(1‖2) = η1 ∪ η2 is the set of enabled events;

• Σ = (N1 ×N2) ∪ η(1‖2) is the stack;

• Γ(1‖2) = Γ1 ∪ Γ2 is the active event relation;

• The transition function is

δ(N × η) :=

(R(x, y), R(z, y)) for x ∈ N1, z ∈ N2 and y ∈ η, if y ∈ H,

(R(x, y), z) for x ∈ N1, z ∈ N2 and y ∈ η, if y ∈ A,

(x, R(z, y)) for x ∈ N1, z ∈ N2 and y ∈ η, if y ∈ B

undefined, otherwise.

• S0 = (S01 × S02) is the start state;

• Z0 = (Z01 × Z02) is the start symbol in stack;

Compared to the classical definition of composition, the new definition uses the same

grammar rules, but now the common event set of composed system is enriched by the new

components of setH. Now common events include the events that can not generate transi-

tions in their own automata when the latter operate individually, but can initiate transitions

when the corresponding automaton is composed with another appropriate automaton.

37

Chapter 3. System Composition

In Chapter 3 we offer some details on how to construct a framework for MDLe com-

position and compare it to the classical composition. By using this new definition, the

composed system can do something that the single system can not do. After giving the

definition, we want to check the properties of the composed system. Chapter 4 presents

the transformation from extended Motion Description Language to Basic Process Algebra

and states that composition of MDLes is decidable up to bisimulation.

38

Chapter 4

Language Composition and Equivalence

In this chapter, we present the transformation from extended Motion Description Lan-

guage to Basic Process Algebra and demonstrate why in the systems we consider, language

equivalence is decidable and what bisimulation properties are preserved in the composi-

tion.

This chapter is organized as follows: Section 4.1 introduces the concept of decidability

and explains why it is important; Section 4.2 lists the steps to convert from MDLe to BPA

in GNF; the proof of language equivalence in a MDLe is given in Section 4.3; we prove the

closeness and decidability properties separately in Section 4.4 and 4.5 and conclude that

the compositions of MDLes are decidable up to bisimulation equivalence.

4.1 Complexity notions

Formal analysis of hybrid systems includes verification: checking if a hybrid system satis-

fies a desired specification, such as avoiding an unsafe region of the state space or moving

to a designed state. Given a hybrid system, HΣ and desired properties P, if in a finite

39

Chapter 4. Language Composition and Equivalence

number of steps there is a computational procedure that can decide whether H satisfies P

for H ∈ HΣ and any P ∈ P, we say that the verification problem is decidable.

Purely discrete systems modeled by finite-state machines are generally decidable, since

in the worst case verification can be performed by exhaustively searching the whole state

space although the computation cost increases exponentially with the size of the space.

However, in the case of hybrid systems, decidability is a central issue in algorithmic anal-

ysis, because of the hybrid (continuous and discrete) state space being uncountable.

In the rest of this chapter, we prove the decidability property of the composed MDLes.

4.2 From MDLe to BPA in GNF

The decidability results for language equivalence on basic process algebras in Greibach

normal form carry over to MDLes. Here, we show how MDLes can be written as this

special class of basic processes.

Lemma 3. MDLe is a context-free grammar that can be written in Greibach normal form.

Proof. We rewrite (2.3) in Chomsky normal form, an intermediate stage before we arriv-

ing at the Greibach normal form. Rewriting (2.3) in Chomsky normal form involves a

sequence of steps, in which a transformation rule is applied to the set of rules written on

the left to result in the rule set depicted on the right. Let us first combine rules (2.3) into

a single one, using the disjunction operator |, for compactness. Then we give the resulting

set of rules after each transformation.

E → EE

E → (ui, ξi)

E → (E, ξi)

E → ∅

E → EE|(ui, ξi)|(E, ξi)|∅.

40

Chapter 4. Language Composition and Equivalence

This process consists of five steps:

Step 1: Define a new start symbol S0 to replace S.

S → E

E → EE|(ui, ξi)|(E, ξi)|∅

S0 → S

S → E

E → EE|(ui, ξi)|(E, ξi)|∅

Step 2: Remove ∅ from the rules that involve variable E.

S0 → S

S → E

E → EE|(ui, ξi)|(E, ξi)|∅

S0 → S

S → E|EE|(ui, ξi)|(E, ξi)

E → EE|(ui, ξi)|(E, ξi)

Step 3: Eliminate the original start variable S.

S0 → S

S → E

E → EE|(ui, ξi)|(E, ξi)

S0 → E|EE|(ui, ξi)|(E, ξi)

E → EE|(ui, ξi)|(E, ξi)

Step 4: Eliminate the unit rules.

S0 → E|EE|(ui, ξi)|(E, ξi)

E → EE|(ui, ξi)|(E, ξi)

S0 → EE|(ui, ξi)|(E, ξi)

E → EE|(ui, ξi)|(E, ξi)

Step 5: Convert the remaining rules into the proper form by adding variables and rules.

S0 → EE|(ui, ξi)|(E, ξi)

E → EE|(ui, ξi)|(E, ξi)

S0 → EE|Lui, ξiR|LE, ξiR

E → EE|Lui, ξiR|LE, ξiR

L → (

R →)

41

Chapter 4. Language Composition and Equivalence

S0 → EE|Lui, B|A, B

E → EE|Lui, B|A, B

L → (

R →)

A → LE

B → ξiR

S0 → EE|D, B|A, B

E → EE|D, B|A, B

L → (

R →)

A → LE

B → ξiR

D → Lui

S0 → EE|DF |AF

E → EE|DF |AF

L → (

R →)

A → LE

B → ξiR

D → Lui

F →, B

S0 → EE

E → EE|DF |AF

L → (

R →)

A → LE

B → ξiR

D → LK

F →, B

H →,

J → ξi

K → ui

(4.1)

Then we translate (4.1) into Greibach normal form, by first eliminating left-recursion.

This process consists of three steps:

42

Chapter 4. Language Composition and Equivalence

Step 1: Add a new rule T → E|ET to eliminate left-recursion E → EE.

S0 → EE|DF |AF

E → EE|DF |AF

L → (

R →)

A → LE

B → ξiR

D → LK

F →, B

H →,

J → ξi

K → ui

S0 → EE|DF |AF |DFT |AFT

E → DF |AF |DFT |AFT

L → (

R →)

A → LE

B → ξiR

D → LK

F →, B

H →,

J → ξi

K → ui

T → E|ET

Step 2: The next step is to make all the other rules start with a terminal.

S0 → EE|DF |AF |DFT |AFT

E → DF |AF |DFT |AFT

L → (

R →)

A → LE

B → ξiR

D → LK

F →, B

H →,

J → ξi

K → ui

T → E|ET

S0 → (KFT |(EFT |(KF |(EF

E → (KF |(EF |(KFT |(EFT

L → (

R →)

A → (E

B → ξiR

D → (K

F →, B

H →,

J → ξi

K → ui

T → (KF |(EF |(KFT |(EFT

43

Chapter 4. Language Composition and Equivalence

Step 3: The final step is to convert all the rules in restricted GNF by adding rules.

S0 → (KFT |(EFT |(KF |(EF

E → (KF |(EF |(KFT |(EFT

L → (

R →)

A → (E

B → ξiR

D → (K

F →, B

H →,

J → ξi

K → ui

T → (KF |(EF |(KFT |(EFT

M → KF

N → EF

S0 → (MT |(NT |(KF |(EF

E → (M |(N |(MT |(NT

L → (

R →)

A → (E

B → ξiR

D → (K

F →, B

H →,

J → ξi

K → ui

T → (M |(N |(MT |(NT

44

Chapter 4. Language Composition and Equivalence

M → uiF

N → (MF |(NF

S0 → (MT |(NT |(KF |(EF

E → (M |(N |(MT |(NT

L → (

R →)

A → (E

B → ξiR

D → (K

F →, B

H →,

J → ξi

K → ui

T → (M |(N |(MT |(NT

(4.2)

The next Lemma states that an MDLe can be translated into a BPA in Greibach normal

form [8].

Lemma 4. The terms of an MDLe are a finite trace set of a normed process p, recursively

defined by means of a guarded system of recursion equations in restricted Greibach normal

form over a BPA.

Proof. Lemma 3 allows us to express an MDLe as a CFG in Greibach normal form, which

in addition satisfies the conditions of Notation 4.5 of [8]. We apply Notation 4.5 in con-

junction with Proposition 5.2 of [8] to write the CFG of (4.2) as a BPA as follows.

• If S is the system represented as a CFG in Greibach normal form, let S ′ denote the

system represented in BPA by replacing | by +, and → by = .

45

Chapter 4. Language Composition and Equivalence

• Let S ′ be in restricted Greibach normal form over the BPA, with unique solution p.

Then ftr(p) (the set of finite traces of p) is just the context-free language generated

by S.

Applying the change of notation suggested,

M → uiF

N → (MF |(NF

S0 → (MT |(NT |(KF |(EF

E → (M |(N |(MT |(NT

L → (

R →)

A → (E

B → ξiR

D → (K

F →, B

H →,

J → ξi

K → ui

T → (M |(N |(MT |(NT

M = uiF

N = (MF + (NF

S0 = (MT + (NT + (KF + (EF

E = (M + (N + (MT + (NT

L = (

R =)

A = (E

B = ξiR

D = (K

F =, B

H =,

J = ξi

K = ui

T = (M + (N + (MT + (NT

(4.3)

and thus we have a BPA in restricted Greibach normal form. Note that according to Defi-

nition 11, each variable string in the right hand side of (4.3) has length of at most two. By

applying Proposition 5.2 of [8], to remove the parts of the system that do not contribute to

the generation of the finite traces, we conclude that the BPA of (4.3) generates the strings

of the original MDLe.

46

Chapter 4. Language Composition and Equivalence

4.3 Language equivalence in a MDLe

Systems of guarded recursive equations enjoy nice properties, in the sense that verifying

the bisimulation equivalence is decidable [8].

Theorem 1 ([8]). Let E1, E2 be normed systems of guarded recursion equations (over

basic process algebras) in restricted Greibach normal form. Then the bisimulation relation

≈, that is whether E1 ≈ E1, is decidable.

Theorem 1 allows us to conclude that

Corollary 1. If motion description languages are written in the form of a system of

guarded recursive equations in Greibach normal form over a basic process algebra, the

bisimulation relation is decidable.

Proof. Using Lemma 3, each MDLe is written as a context-free language in Greibach

Normal Form. Lemma 4 translates this representation into a system of guarded recursive

equations in restricted Greibach normal form over BPA. By Theorem 1 of [8], language

equivalence for systems in (guarded) restricted Greibach normal form such as the MDLes

translated using Lemma 4, is decidable up to bisimularity.

4.4 MDLes are closed under composition

A natural question that arises next, is whether the composition operator preserves bisim-

ularity: do we lose this property when we expand the basic process algebra system by in-

cluding the operators ‖ and T to arrive at the system the semantics of which are described

in Tables 2.3 and 2.4?

To answer this question, first let us check the property of composition operator ‖. The

next result establishes that operator T is closed.

47

Chapter 4. Language Composition and Equivalence

Lemma 5. An MDLe written as a system of guarded recursive equations in restricted

Greibach normal form is closed under the left merge T operator.

Proof. Assume that G is written as a system of guarded recursive equations in restricted

Greibach form, according to (4.2). We prove the claim by taking all merge combinations

of variables in this representation, and showing that the result is a system of equations that

are also guarded in restricted Greibach normal form. According to Table 2.3,

UTB = (ν + νB)TB
M4,M2

= νB + (νB)TB

M3
= νB + ν(B‖B)

A3,M1
= νB + ν(BTB)

UTS0 = (ν + νB)TS0
M4,M2

= νS0 + (νB)TS0

M3
= νS0 + ν(B‖S0)

M1
= νS0 + ν(BTS0 + S0TB)

BTS0 = (ν + νBB + νB)TS0

M4,M2
= νS0 + (νB)TS0 + (νBB)TS0

M3,A5
= νS0 + ν(BTS0 + S0TB) + ν(BB)TS0

M3
= νS0 + ν(BTS0 + S0TB) + ν(BBTS0 + S0TBB).

Note that reversing the order of variables in the above merge operations yields the same

type of expressions encountered above:

BTU = (νB + νBB + ν)TU

= νU + ν(BBTU + UTBB) + ν(BTU + UTB)

S0TU = (νU + νBU + ν)TU

= νU + ν(UTU) + ν(BUTU + UTBU)

S0TB = (νU + νBU + ν)TB

= νB + ν(UTB + BTU) + ν(BUTB + BTBU).

All expressions above are guarded recursive equations in restricted Greibach normal form.

48

Chapter 4. Language Composition and Equivalence

Since the left-merge operation T is closed, it follows from M1 in Table 2.3 that ‖ is

closed too.

4.5 MDLe composition preserves bisimularity

The following Proposition gives an affirmative answer to the question of decidability of

language equivalence for MDLes that are a result of composition of two MDLes.

Proposition 1. The composition operator ‖ preserves bisimularity. That is, if P ≈ Q, then

P‖R ≈ Q‖R.

Proof. Consider a relation R over the set of processes, such that P‖R and Q‖R belong to

R whenever P ≈ Q. We show that R is a bisimulation.

Case 1. Process P (or Q) executes action a. If P ≈ Q, then (P‖R,Q‖R) ∈ R. Assume

that P
a→ P ′. Then by action relation R6 in Table 2.4, we have

P
a→ P ′ ⇒ P‖R a→ P ′‖R.

Since P ≈ Q, there exists Q′ such that Q
a→ Q′, and P ′ ≈ Q′. By definition of the

relation R, (P ′‖R,Q′‖R) ∈ R. Similarly, it can be shown that if Q
a→ Q′, then

there exists a P ′, with P ′ ≈ Q′ and (P ′‖R,Q′‖R) ∈ R.

Case 2. Process R executes action a. Recall that bisimulation is a reflexive relation,

that is R ≈ R. With this observation, this case reduces to the previous one, and

(P‖R,P‖R) ∈ R.

Case 3. Process P terminates after executing action a. This means that P a→
√

. Relation

R7 of Table 2.4 implies that

P
a→
√
⇒ P‖R a→ R.

49

Chapter 4. Language Composition and Equivalence

Since P ≈ Q, we need to have Q
a→
√

. Thus, by R7 of Table 2.4,

Q‖R a→ R.

Note that R ≈ R by definition and thus the processes derived with the a-transition

belong to relation R. The case where Q terminates after executing a is identical.

Case 4. Process R terminates after executing a. In other words, R
a→
√

. Then, by R7

of Table 2.4,

R
a→
√
⇒ P‖R a→ P.

Similarly, we have

R
a→
√
⇒ Q‖R a→ Q.

Given that P ≈ Q, the processes derived from P‖R and Q‖R when R executes a,

belong to R.

Case 5. Processes P and R are synchronously execute action a. In this case, we resort to

axiom M1 of Table 2.3, and treat the transitions of P and R separately according to

cases 1 and 2 above. The case where Q executes a synchronously with R is identical.

Case 6. Processes P and R terminate synchronously by executing action a. Axiom

M1 of Table 2.3 allows us to treat the synchronous transition to termination as an

asynchronous one. In this case, we proceed according to cases 3 and 4 discussed

above.

In conclusion, for all combinations of possible transitions for P‖R and Q‖R, we have that

P‖R ≈ Q‖R if P ≈ Q.

From Proposition 1 follows our main result on compositions of motion description

languages:

50

Chapter 4. Language Composition and Equivalence

Corollary 2. The compositions of MDLes are decidable up to bisimulation equivalence.

Proof. The operation ′‖′ is closed (Lemma 5) and also preserves bisimularity (Lemma 1),

which means the composition of MDLes can also be written as a system of guarded re-

cursive equations in restricted Greibach normal form over a basic process algebra. By

Theorem 1, it follows that this composition is decidable.

In this Chapter, we identify MDLes as recursive systems in some basic process algebra

written in Greibach Normal Form. We use the machinery available for BPAs to formally

define a composition operation for MDLes at the level of grammars. We indicate that ap-

propriately defined MDLe grammars can be composed, and language equivalence (whether

two such grammars generate the same finite traces), is decidable up to bisimulation. So

far, we introduced a new framework of MDLe composition and checked the decidability

property of the composed system in Chapters 3 and 4. We want to design an experiment

to illustrate our method, showing how to compose two MDLes and generate a new MDLe

which behaves in ways its generators can not. A sliding block puzzle example is intro-

duced in Chapter 5, which serves as a case study.

51

Chapter 5

A Case Study

We introduce a sliding block puzzle example using the proposed framework, where the

robot-puzzle system is viewed as a multi-agent system. The robot and block systems are

written in MDLe automata introduced in Chapter 2. We consider blocks as single systems,

represented in MDLe, although these single systems can only stay in the original position

by themselves if they do not cooperate with other systems.

We envision the blocks as being agents and we imagine that a robot can move between

them as another agent, and push them into different locations. In such a multi-agent sys-

tem, none of the component subsystems (blocks and robot) can change the configuration

of the puzzle. There has to be some physical interaction (robot pushing a block) for the

configuration to change, and this interaction needs to be encoded in the set of possible

events in the system. The classical systems composition cannot capture this interaction

and is therefore unable to express the fact that the agents in this system can cooperate.

Using the definition of composition as given in Chapter 3, however, we are able to

capture the possibility of blocks being pushed to new positions by the robot, and give a

mathematical description of the composed multi-agent system in which this interaction is

explicitly modeled. Once this is achieved, classical AI planning tools (search algorithms)

52

Chapter 5. A Case Study

can be applied to design plans for the robot to solve the puzzle. What enables the puzzle

“system” to solve itself, instead of a human designer to code a particular solution, is the

automaton description facilitated by the new definition. To use the new framework, we

need to know the map beforehand, which means we need to know the events of the single

system. The program can be used not only for one case, but also for any pair of the start

position and end position on this robot-puzzle system. The plan is generated automatically

and the calculation is done by a deterministic machine in polynomial time.

This chapter includes two parts: Section 5.1 is a brief review of sliding block puzzles;

Section 5.2 is the details of the special 15 block puzzle experiment.

5.1 Sliding Block Puzzles

Sliding block puzzles are essentially two-dimensional in nature. There is a number of

blocks arranged in rows and columns so that there is typically one empty location and

all other positions are occupied. Blocks can only slide along rows or columns to arrive a

certain end-configuration. The 15 block puzzle was invented by Noyes Chapman [114] in

1880s. Fifteen blocks, numbered 1 to 15, were placed in a four by four frame and the 16th

position was empty. The goal was to place all the blocks in a correct order and leave the

empty square in the lower right position.

Solving a sliding block puzzle requires finding the sequence of moves and identifying

the paths opened up by each move. Blocks can not be lifted off the board and can only

make a move when the empty space is nearby. Martin Gardiner said in his paper [41] :

These puzzles are very much in want of a theory. Short of trial and error, no

one knows how to determine if a given state is obtainable from another given

state, and if it is obtainable, no one knows how to find the minimum chain of

moves for achieving the desired state.

53

Chapter 5. A Case Study

This very special nature of sliding puzzle problems make them intriguing. We feel that

if our methodology can provide a solution to such a problem (not necessarily optimal) the

capability we offer would push the state of the art not only in cooperative robotics, but also

in planning and artificial intelligence in general.

It has been shown that sliding-block puzzles are PSPACE-complete [46, 58]. However,

under certain simplifying assumptions and for cases of such puzzles like the one we con-

sider here (Fig. 5.1), a polynomial algorithm can be constructed to move a single block

from any initial position to any final position [46].

5.2 A special case

We introduce an instance of the sliding block puzzle as a multi-robot hybrid system. We

use this example as a reality check, to ensure that our formulation captures the possible

interaction between heterogeneous robot systems. The sliding puzzle considered here has

fifteen blocks and one empty place. Between these blocks, we imagine narrow corridors

which allow a small robot to move. The robot and all the blocks are thought to be au-

tonomous agents, each with its own MDLe. The robot can move a block to the empty

space, but blocks can not move by themselves.

In the simple instance of the sliding block puzzle depicted in Figure 5.1, the goal is for

the robot (initially at position 30) to move the block at position 1 to location 6. A block

can do nothing by itself; any transitions within the block’s MDLe may only be activated

after composition with the robot agent, which can push a block to a different location.

However, these potential transitions in the block’s configuration need to be encoded in the

blocks enabled event set η.

54

Chapter 5. A Case Study

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

Figure 5.1: The Sliding block puzzle considered here. No.1 through No.16 represent
possible positions for any block. No.17 through No.81 represent possible positions for the
robot.

5.2.1 The block automaton

For a block to be able to make a transition, the destination location must be unoccupied;

thus block agents need to keep track of whether nearby locations are occupied. We there-

fore model the state of the block as a triplet, consisting of the state of motion, its position,

and the availability of an empty location in the immediate neighborhood. The block au-

tomaton is Block = (Nb, ηb, Vb ∪ ηb, Γb, δb, S0b, Z0b), where

1. Nb = (Nb1, Nb2, Nb3) is a state in this automaton, where

• Nb1 ∈ {u1, u2, u3, u4, u5} and the latter is a set of possible actions, defined as

follows:

55

Chapter 5. A Case Study

– u1 : be pushed east,

– u2 : be pushed west,

– u3 : be pushed north,

– u4 : be pushed south,

– u5 : stay at location;

• Nb2 ∈ {P1,P16}, and the latter is the set of possible positions for the block;

• Nb3 ∈ {b1, b2, b3, b4, b5}, and the latter is the set of all possible configurations

of whether they are empty or not. The existence and location of a nearby empty

location is specified as follows:

– b1 : east,

– b2 : west,

– b3 : north,

– b4 : south,

– b5 : no empty space available;

2. ηb = {νb|νb = ((ui, Pj, bk), ξ)}, with i and k in {1, ..., 5}, and j in {1, ..., 16},

which includes all the events associated with transitions in the automaton, and ξ is

the interrupt function;

3. Γb : Nb → 2ηb is the active event relation (initially mapping to ∅);

4. δb : Nb × ηb → Nb is the transition function, also mapping to ∅ since the range of

Γb is empty, suggesting that the block automaton can make no transitions on its own

(except for the case of u5).

Symbols S0b and Z0b correspond to the initial state and stack symbol, respectively.

56

Chapter 5. A Case Study

5.2.2 The robot automaton

For the robot, an atom consists of the state of motion and its position. The robot can move

along the rows and columns of the grid, and push against a block in order to move it. The

automaton for the robot is a tuple Robot = (Nr, ηr, Nr ∪ ηr, Γr, δr, S0r, Z0r), where

1. Nr = (Nr1, Nr2) is the states of this automaton, and

• Nr1 ∈= {w1, w2, w3, w4, w5, w6, w7, w8, w9} with the latter being the set of all

controllers that the robot can use. These are defined as follows:

– w1 : push east,

– w2 : push west,

– w3 : push north,

– w4 : push south,

– w5 : stay at location,

– w6 : move east,

– w7 : move west,

– w8 : move north,

– w9 : move south,

• Nr2 ∈ P17,P81 with the latter being the set of all possible positions that

robot can be at.

2. ηr = {νr|νr = ((wi, Pj), ξr)}, with i is in {1, ..., 9}, j in {17, ..., 81}, which includes

all the events associated with transitions in the automaton, and ξr is the interrupt

function;

3. Γr : Nr → 2ηr is the active event relation determining which events are active at

each robot state;

4. δr : Nr × ηr → Nr is the transition function.

57

Chapter 5. A Case Study

Figure 5.2: The Khepera II mobile Robot

Similarly, Symbols S0r and Z0r correspond to the initial state and stack symbol, respec-

tively.

5.2.3 The Khepera Robot

In the experimental implementation of our planning methodology, we use the Khepera II

mobile robot to move the blocks. The Khepera II [1] is a miniature mobile robot with

functionality similar to larger robots used in research and education. It allows the testing

of algorithms developed in simulation for trajectory planning, obstacle avoidance, etc.

The Khepera can be used on a wide range of experiments. It supports different pro-

gramming environments, such as SysQuake, LabVIEW, MATLAB, and 3D WEBOTS

Khepera simulator. The robot can communicate with a host computer over a wired or

wireless serial port. The communication protocol implemented on Khepera is described

in more detail in its user manual [1].

Khepera robots are high-performance and very small, requiring very little area for use.

They can be used on an ordinary desktop. Their compact size, along with numerous exten-

sions make them an appealing research tool. The battery on a robot that has been in use for

some time can last about 15 minutes when it is fully charged. If wireless communication

is used, the time is much shorter than 15 minutes. The life of the battery decreases with the

58

Chapter 5. A Case Study

use of the robot. Controlling the robot remotely is feasible but not always reliable since it

has been observed that even if communication is perfect, sometimes the robot fails to re-

spond. Thus, the most reliable way of executing experiments with Khepera is to download

the complete code on its microprocessor and have it run locally.

5.2.4 Shortest Paths

The goal of this experiment is to automatically derive a plan for the composed system of

blocks and robot, so that the block moves from one initial position to a destination. There

are many ways to do so. We can use a maneuver at more than 1000 steps or with less than

10 steps. We want to find an efficient way to solve this problem.

At first we tried to use abstraction bases on bisimulation relations. The idea is to

abstract the 15 piece puzzle to a smaller one, a 9-block puzzle or 4-block puzzle, which

is easier to check and implement. But we find that every block in this puzzle has its

own properties and transfer between blocks’ location appear unique. So none of them

can be grouped together. An automated approach [16] to finding bisimular relations in

the composed 15 block puzzle system does not yield any results. Our inability to find a

bisimulation equivalence relation using the standard algorithm does not necessarily mean

that the system can not be abstracted. There might be special sequences of transitions

producing maneuvers which can be associated with each other, but these sequences can be

invisible to the algorithm.

To plan maneuvers in the 15 piece puzzle system we use the Floyd Warshall algorithm

[24]. The Floyd Warshall algorithm is an application of Dynamic Programming. It’s a

graph analysis algorithm which can find the shortest paths in a weighted, directed graph.

The algorithm is able to compare all possible paths through the graph between each pair

of vertices and find the shortest one. It is done by first computing an estimate shortest

path between two vertices, then incrementally improving this estimate until it is known

59

Chapter 5. A Case Study

to be optimal. Dijkstra’s algorithm is another choice to solve the shortest-paths problem

but it can only calculate a single-source at one time. In contrast, with the Floyd Warshall

algorithm a single run gives shortest-paths between all pairs of vertices. The Pseudo code

of Floyd Warshall algorithm is the following:

for k: = 0 to n 1

for each (i,j) in (0..n- 1)

path[i][j] = min(path[i][j], path[i][k]+path[k][j])

The complexity of the algorithm is Θ(n3) and can be executed by a deterministic ma-

chine in polynomial time.

The implementation of this algorithm in the 15 puzzle problem is introduced in Section

5.2.5.

5.2.5 Planning

In Section 5.2.1 and Section 5.2.2, two single systems are introduced to model a block

and a robot respectively. None of them can complete the task separately and the classical

composition of systems does not offer a combined system with the capability to do so

either. We need the set H introduced in Chapter 3 to define the common events of the

composed system and synchronize these two systems to complete the task. We also want

to generate an automatic process that can create plans: given the start position and end

position of the robot and block, the automatic process can generate the sequence of MDLe

atoms which the robot can execute to move the block to the desired location. This process

includes several parts:

60

Chapter 5. A Case Study

Step 1: The first step in the planning process is to calculate the shortest path that the block

can follow to move between the two places. As introduced in Section 5.2.4, given

start position and end position, we use Floyd Warshall algorithm to calculate the

shortest path for block movement. We consider the 16 blocks as 16 nodes. The

weight of the edge between 2 nodes is 1 if one of them can be moved to another

position directly and vice versa. The weight is defined 100 if we can not complete

the movement in 1 step, and 0 if the 2 nodes are the same. For example, node 6

can only be moved to node 2,5,7,10. So the weight between edges 6−−2, 6−−5,

6−−7, 6−−10 is 1, the weight of other edges (6−−1, 6−−3, 6−−4, 6−−8,

6 − −9, 6 − −11, 6 − −12, 6 − −13, 6 − −14, 6 − −15, 6 − −16) is 100 and the

weight of edge 6 − −6 is 0. According to this definition, the weight matrix can be

defined as follows:

D=[0 1 100 100 1 100 100 100 100 100 100 100 100 100 100 100;

1 0 1 100 100 1 100 100 100 100 100 100 100 100 100 100;

100 1 0 1 100 100 1 100 100 100 100 100 100 100 100 100;

100 100 1 0 100 100 100 1 100 100 100 100 100 100 100 100;

1 100 100 100 0 1 100 100 1 100 100 100 100 100 100 100;

100 1 100 100 1 0 1 100 100 1 100 100 100 100 100 100;

100 100 1 100 100 1 0 1 100 100 1 100 100 100 100 100;

100 100 100 1 100 100 1 0 100 100 100 1 100 100 100 100;

100 100 100 100 1 100 100 100 0 1 100 100 1 100 100 100;

100 100 100 100 100 1 100 100 1 0 1 100 100 1 100 100;

100 100 100 100 100 100 1 100 100 1 0 1 100 100 1 100;

100 100 100 100 100 100 100 1 100 100 1 0 100 100 100 1 ;

100 100 100 100 100 100 100 100 1 100 100 100 0 1 100 100;

100 100 100 100 100 100 100 100 100 1 100 100 1 0 1 100;

100 100 100 100 100 100 100 100 100 100 1 100 100 1 0 1 ;

100 100 100 100 100 100 100 100 100 100 100 1 100 100 1 0]

Using the weight matrix, the shortest path between any two nodes can be calculated.
The outcome is:

A=[0 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12;

2 0 2 3 1 2 3 4 5 6 7 8 9 10 11 12;

61

Chapter 5. A Case Study

2 3 0 3 1 2 3 4 5 6 7 8 9 10 11 12;

2 3 4 0 1 2 3 4 5 6 7 8 9 10 11 12;

5 1 2 3 0 5 6 7 5 6 7 8 9 10 11 12;

2 6 2 3 6 0 6 7 5 6 7 8 9 10 11 12;

2 3 7 3 6 7 0 7 5 6 7 8 9 10 11 12;

2 3 4 8 6 7 8 0 5 6 7 8 9 10 11 12;

5 1 2 3 9 5 6 7 0 9 10 11 9 10 11 12;

2 6 2 3 6 10 6 7 10 0 10 11 9 10 11 12;

2 3 7 3 6 7 11 7 10 11 0 11 9 10 11 12;

2 3 4 8 6 7 8 12 10 11 12 0 9 10 11 12;

5 1 2 3 9 5 6 7 13 9 10 11 0 13 14 15;

2 6 2 3 6 10 6 7 10 14 10 11 14 0 14 15;

2 3 7 3 6 7 11 7 10 11 15 11 14 15 0 15;

2 3 4 8 6 7 8 12 10 11 12 16 14 15 16 0]

The path can be read from the outcome matrix. For example, if we want a path from

node 1 to node 14, first we read A(1, 14), which is 10; next read A(1, 10), which is

6; then read A(1, 2), which is 1. So the whole plan is 1 → 2 → 6 → 10 → 14. This

procedure is programed automatically and we only need to give start position and

end position to have the whole plan.

Step 2: Include the empty block position into the plan. The empty block position is not

considered in the Floyd Warshall algorithm. However in this problem, before a block

moves from one node to the next node, this receiving node must be unoccupied. For

example, when we want to move block A from node 1 to node 2, node 2 must be

unoccupied. This is equal to move the “empty block” to node 2 and then move

block A from node 1 to 2. Then the whole plan for block movement is: E(start →

2) −→ (1 → 2) −→ E(1 → 6) −→ (2 → 6) −→ E(2 → 10) −→ (6 → 10) −→

E(6 → 14) −→ E(10 → 14), where E() represents the path for “empty block”

movement. To derive the maneuver, we employ abstraction, because for the motion

of the “empty block”, we can find equivalence class of the states. It is not a formal

abstraction using bisimulation because the states in the equivalence class do not have

the same transitions. The motivation for considering them as equivalence class is in

every such set, the blocks follow the same movement to the destination. We abstract

62

Chapter 5. A Case Study

all the possible “empty block” and target block positions into 16 groups. Figure 5.3

shows 12 groups. There are 4 other groups need to be considered separately for

the special position the blocks occupy. These four groups are (underlined number

represent empty block, overlined number represent the block we want to move):

• Group 13: node [13 14 15] and [14 15 16]. They have the same format as group

1 but follow different movement rules.

• Group 14: node [13 14 15] and [14 15 16]. They have the same format as group

2 but follow different movement rules.

• Group 15: node [4 8 12] and [8 12 16]. They have the same format as group

11 but follow different movement rules.

• Group 15: node [4 8 12] and [8 12 16]. They have the same format as group

12 but follow different movement rules.

Blocks that have the same format fall into the same group. For example, [6 7 8] and

[10 11 12] can be put together to group 2. In [6 7 8], the “empty block” is in node 8

and we need to move block from node 7 to node 6. In [10 11 12], the “empty block”

is in node 12 and we need to move block from node 11 to node 10. In both cases, we

want to move block from node i to i-1 (always consider the block we are trying to

move is in node i). The elementary block motions in this group are: i + 5 → i + 1,

i + 4 → i + 5, i + 3 → i + 4, i − 1 → i + 3, i → i − 1. (i + 5 → i + 1) means

move block on node i + 5 to node i + 1 and similar to the others.

Given every group a different sequence of elementary block motions, the movement

of “empty block” (E()) is calculated. Together with the shortest path calculated in

Step 1, now we have a complete path for the block.

Step 3: For each elementary block motion, there should be a plan for the robot in order

to implement it. When calculating the robot path, only the common events in set H

are considered, which means the corresponding robot position is decided according

63

Chapter 5. A Case Study

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Group 7 Group 8 Group 9

Group 10 Group 11 Group 12

Figure 5.3: The configuration of block positions. White square represents empty block
position; gray square represents the initial position of the block we want to move; blue
square represents the end position of the block.

to the block path. For example, if the block path include node 3, we only consider

node 28, 29, 24 in the robot path; this is because only [1 3 1;1 28], [2 3 2;2 29] and

[3 3 3;2 24] are included in setH. SetH limits the cases we need to consider. There

is no “equivalence class” in these cases we can find and we do this transfer case by

case.

Step 4: Generate atoms. In this step we transfer the sequence of position number to atom

plan. Similarly to step 2, we also abstract all the movements of robots into 13 groups.

In every group, the movement follows the same rule. For example, 30 → 53 and

64

Chapter 5. A Case Study

28 → 51 can be grouped together cause the robot follows the same routine to the

next position, which can be encodes as an atom sequence: [8 1 0 1 6 4 5 1 1]. The

atom number is decided by the distance the Khepera II is supposed to move. We have

9 atoms for this problem, which are (units correspond to encoder counts): Atom0:

moving 1032 units; Atom1: turn left; Atom2: moving 4228 units; Atom3: turn

right; Atom4: pushing 2044 units; Atom5: moving -2044 units; Atom6: moving

100 units; Atom7: moving 2144 units; Atom8: moving 3176 units.

Step 5: Download plan to robot. After the atom plan is generated, it should be sent to the

robot and the robot can follow the command to act. We program the atom plan into

the language that Khepera II can read and download it to the robot.

Once the start and end position is given, the program can generate the plan sequentially

according to step 1–5. After the atom plan is generated automatically, it is downloaded to

the robot. The robot follows the command and pushes the block all the way to the target

position.

The steps of generating atom plans are listed above. In next section, we show a detail

atom plan of moving block from node 1 to node 6.

5.2.6 Example: Detail plan to move block from 1 to 6

To move a block from position 1 to position 6, starting from the configuration shown in

Figure 5.1, the shortest path for the block is:

FF = 1 2 6

The elementary block motion is:

65

Chapter 5. A Case Study

Q =

3 2 1 5 6 2

↓ ↓ ↓ ↓ ↓ ↓

4 3 2 1 5 6

The path for the robot is:

G = 30 28 27 26 50 42 23

The atom plan send to the robot is:

Plan =

0 1 2 1 0 1 6 4 5

1 0 1 7 1 0 1 6 4

5 1 0 1 7 1 0 1 6

4 5 1 8 3 0 3 6 4

5 1 1 3 8 3 0 3 6

4 5 3 8 1 0 1 6 4

5

The physical outcome of this plan is shown in Figures 5.4 and 5.5

By allowing systems to have additional cooperative transitions, they can perform some

new actions when composed with appropriate others.

In this chapter, we introduce an instance of the sliding block puzzle as a multi-robot

hybrid system, ensure that our formulation captures the possible interaction between het-

erogeneous robot systems. We automatically generate the atom plan and the robot can

push the block to the designed destination automatically according to the plan.

66

Chapter 5. A Case Study

Figure 5.4: The initial configuration of the robot and blocks.

Figure 5.5: The final configuration of the robot and blocks.

67

Chapter 6

Conclusions and Future Work

In this chapter we conclude our results presented in this dissertation and present possible

future work of these results.

We start by assuming the existence of a set of designed behavioral primitives, and we

proceed by developing a framework that dictates how these behaviors are sequentially syn-

thesized into plans that drive the system into a desired state. In that sense, our behavioral

primitive forms an alphabet of actions.

A new composition system is given and the properties are checked. We distinguish

between events associated with transitions a push-down automaton representing an MDLe

can take autonomously, and events that cannot initiate transitions. Among the latter, there

can be events that when synchronized with some of another push-down automaton, be-

come active and do initiate transitions. Then we identify MDLes as recursive systems in

some basic process algebra (BPA) written in Greibach Normal Form. We propose a simple

context-free grammar that generates MDLes and then we use the machinery available for

BPAs to formally define a composition operation for MDLes at the level of grammars. The

main difference of our composition operation is the appearance in the composed system

of events (transitions) not enabled in the generators: the composed system can behave in

68

Chapter 6. Conclusions and Future Work

ways its generators cannot.

By identifying MDLes as a subclass of BPAs, we are able to borrow the syntax and

semantics of the BPAs merge operator (instead of defining a new MDLe operator), and thus

establish closeness and decidability properties for MDLe compositions.

A sliding block puzzle as a multi-robot hybrid system is given to ensure that our for-

mulation captures the possible interaction between heterogeneous robot systems. This

example shows how our framework captures physical interaction, and why the composed

system can have richer behavior compared to its component subsystems. We automate the

process of planning in this example and the atom sequence can be generated automatically

according to the initial and final state.

The decidability properties of composed MDLes give us hope that the composed big

system can be abstracted to a point that available model checkers [50,71,121] can be used

to construct motion plans. Research along this direction will expand the applications on

model checkers, such as UPPAAL and HYTECH.

We utilize an existing motion control language to abstract low level controllers into

elementary behaviors in a way to facilitate high level planning. The application of the new

formalism can be extended to different areas. For example, we can compose auditory and

visual systems together to decide the accurate position of any objects; we can compose

UAVS, Kheperas and allow them communicate and allocate tasks among themselves, and

sort through possible solutions to find a plan of action without human intervention or

guidance.

69

Appendices

A Γ function of block

B Γ function of robot

C H function

D Shortest Path

E Plan

F C code sent to the robot

70

Appendix A

Γ function of blocks

Given a state of the block, this function lists all the events that can be activated from this

state. If there is no such events, the output is [0 0 0].

function [a]=gamma(u,p,b)

if ((p==6)|(p==7)|(p==10)|(p==11))

if u==5

u=b;p=p;b=b;

elseif ((u==1)&(b==1))

u=5;p=p+1;b=2;

elseif ((u==2)&(b==2))

u=5;p=p-1;b=1;

elseif ((u==3)&(b==3))

u=5;p=p+4;b=4;

elseif ((u==4)&(b==4))

u=5;p=p-4;b=3;

else

u=0;p=0;b=0;

71

Appendix A. Γ function of blocks

end

elseif (p==1)

if (u==5)&((b==1)|(b==3))

u=b;p=p;b=b;

elseif ((u==1)&(b==1))

u=5;p=2;b=2;

elseif ((u==3)&(b==3))

u=5;p=5;b=4;

else

u=0;p=0;b=0;

end

elseif (p==4)

if (u==5)&((b==2)|(b==3))

u=b;p=p;b=b;

elseif ((u==2)&(b==2))

u=5;p=3;b=1;

elseif ((u==3)&(b==3))

u=5;p=4;b=4;

else

u=0;p=0;b=0;

end

elseif (p==13)

if (u==5)&((b==1)|(b==4))

u=b;p=p;b=b;

elseif ((u==1)&(b==1))

u=5;p=14;b=2;

elseif ((u==4)&(b==4))

u=5;p=9;b=3;

else

u=0;p=0;b=0;

72

Appendix A. Γ function of blocks

end

elseif (p==16)

if (u==5)&((b==2)|(b==4))

u=b;p=p;b=b;

elseif ((u==2)&(b==2))

u=5;p=15;b=1;

elseif ((u==3)&(b==3))

u=5;p=12;b=3;

else

u=0;p=0;b=0;

end

elseif ((p==2)|(p==3))

if (u==5)&((b==1)|(b==2)|(b==3))

u=b;p=p;b=b;

elseif ((u==1)&(b==1))

u=5;p=p+1;b=2;

elseif ((u==2)&(b==2))

u=5;p=p-1;b=1;

elseif ((u==3)&(b==3))

u=5;p=p+4;b=4;

else

u=0;p=0;b=0;

end

elseif ((p==14)|(p==15))

if (u==5)&((b==1)|(b==2)|(b==4))

u=b;p=p;b=b;

elseif ((u==1)&(b==1))

u=5;p=p+1;b=2;

elseif ((u==2)&(b==2))

u=5;p=p-1;b=1;

73

Appendix A. Γ function of blocks

elseif ((u==4)&(b==4))

u=5;p=p-4;b=3;

else

u=0;p=0;b=0;

end

elseif ((p==5)|(p==9))

if (u==5)&((b==1)|(b==3)|(b==4))

u=b;p=p;b=b;

elseif ((u==1)&(b==1))

u=5;p=p+1;b=2;

elseif ((u==3)&(b==3))

u=5;p=p+4;b=4;

elseif ((u==4)&(b==4))

u=5;p=p-4;b=3;

else

u=0;p=0;b=0;

end

elseif ((p==8)|(p==12))

if (u==5)&((b==2)|(b==3)|(b==4))

u=b;p=p;b=b;

elseif ((u==2)&(b==2))

u=5;p=p-1;b=1;

elseif ((u==3)&(b==3))

u=5;p=p+4;b=4;

elseif ((u==4)&(b==4))

u=5;p=p-4;b=3;

else

u=0;p=0;b=0;

end

else

74

Appendix A. Γ function of blocks

u=0;p=0;b=0;

end

a=[u,p,b];

75

Appendix B

Γ function of robot

Given a state of the robot, this function lists all the events that can be activated from this

state. If there is no event that can be activated from this state, the output is [0 0;0 0].

function [c]=gammarobot(uu,pp)

%in south 2 corridor,can push north,move east,west

if ((pp>=22)&(pp<=25))|((pp>=36)&(pp<=39))

if uu==5

uu=3;pp=pp;uu1=6;pp1=pp-4;uu2=7;pp2=pp-5;

c=[[uu,pp];[uu1,pp1];[uu2,pp2]];

elseif uu==3

uu=5;pp=pp+14;c=[uu,pp;0,0];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in north 2 corridor,can push south,move east,west

elseif ((pp>=64)&(pp<=67))|((pp>=78)&(pp<=81))

if uu==5

uu=4;pp=pp;uu1=6;pp1=pp-4;uu2=7;pp2=pp-5;

76

Appendix B. Γ function of robot

c=[uu,pp;uu1,pp1;uu2,pp2];

elseif uu==4

uu=5;pp=pp-14;c=[uu,pp;0,0];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in middle corridor,can push south,north, move east,west

elseif ((pp>=50)&(pp<=53))

if uu==5

uu=3;pp=pp;uu1=4;pp1=pp;uu2=6;pp2=pp-4;uu3=7;pp3=pp-5;

c=[uu,pp;uu1,pp1;uu2,pp2;uu3,pp3];

elseif uu==4

uu=5;pp=pp-14;c=[uu,pp;0,0];

elseif uu==3

uu=5;pp=pp+14;c=[uu,pp;0,0];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in west 2 corridor,can push east,move north,south

elseif (pp==26)|(pp==40)|(pp==54)|(pp==68)|

(pp==27)|(pp==41)|(pp==55)|(pp==69)

if uu==5

uu=1;pp=pp;uu1=8;pp1=pp+5;uu2=9;pp2=pp-9;

c=[uu,pp;uu1,pp1;uu2,pp2];

elseif uu==1

uu=5;pp=pp+1;c=[uu,pp;0,0];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in east 2 corridor,can push west,move north,south

77

Appendix B. Γ function of robot

elseif (pp==29)|(pp==43)|(pp==57)|(pp==71)|

(pp==30)|(pp==44)|(pp==58)|(pp==72)

if uu==5

uu=2;pp=pp;uu1=8;pp1=pp+5;uu2=9;pp2=pp-9;

c=[uu,pp;uu1,pp1;uu2,pp2];

elseif uu==2

uu=5;pp=pp-1;c=[uu,pp;0,0];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in middle corridor,can push east,west, move south,north,

elseif (pp==28)|(pp==42)|(pp==56)|(pp==70)

if uu==5

uu=1;pp=pp;uu1=2;pp1=pp;uu2=8;pp2=pp+5;uu3=9;pp3=pp-9;

c=[uu,pp;uu1,pp1;uu2,pp2;uu3,pp3];

elseif uu==1

uu=5;pp=pp+1;c=[uu,pp;0,0];

elseif uu==3

uu=5;pp=pp-1;c=[uu,pp;0,0];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in southwest corner,can move east,north

elseif (pp==17)

if uu==5

uu=6;pp=pp;uu1=8;pp1=pp;

c=[uu,pp;uu1,pp1];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

78

Appendix B. Γ function of robot

%in southeast corner,can move west,north

elseif (pp==21)

if uu==5

uu=7;pp=pp;uu1=8;pp1=pp;

c=[uu,pp;uu1,pp1];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in northwest corner,can move east,south

elseif (pp==73)

if uu==5

uu=6;pp=pp;uu1=9;pp1=pp;

c=[uu,pp;uu1,pp1];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in northeast corner,can move west,south

elseif (pp==77)

if uu==5

uu=7;pp=pp;uu1=9;pp1=pp;

c=[uu,pp;uu1,pp1];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in south side corridor,can move east,west,north

elseif (pp==18)|(pp==19)|(pp==20)

if uu==5

uu=6;pp=pp;uu1=7;pp1=pp;uu2=8;pp2=pp;

c=[uu,pp;uu1,pp1;uu2,pp2];

else

79

Appendix B. Γ function of robot

uu=0;pp=0;c=[uu,pp;0,0];

end

%in west side corridor,can move east,south,north

elseif (pp==31)|(pp==45)|(pp==59)

if uu==5

uu=6;pp=pp;uu1=8;pp1=pp;uu2=9;pp2=pp;

c=[uu,pp;uu1,pp1;uu2,pp2];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in north side corridor,can move east,west,south

elseif (pp==74)|(pp==75)|(pp==76)

if uu==5

uu=6;pp=pp;uu1=7;pp1=pp;uu2=9;pp2=pp;

c=[uu,pp;uu1,pp1;uu2,pp2];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in south side corridor,can move east,west,north

elseif (pp==35)|(pp==49)|(pp==63)

if uu==5

uu=7;pp=pp;uu1=8;pp1=pp;uu2=9;pp2=pp;

c=[uu,pp;uu1,pp1;uu2,pp2];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

%in middle corridor,can move in 4 direction

elseif (pp==32)|(pp==33)|(pp==34)|(pp==46)|(pp==47)|

(pp==48)|(pp==60)|(pp==61)|(pp==62)

if uu==5

80

Appendix B. Γ function of robot

uu=6;pp=pp;uu1=7;pp1=pp;uu2=8;pp2=pp;uu3=9;pp3=pp;

c=[uu,pp;uu1,pp1;uu2,pp2;uu3,pp3];

else

uu=0;pp=0;c=[uu,pp;0,0];

end

else

uu=0;pp=0;

c=[uu,pp;0,0];

end

81

Appendix C

H function

This function can generate the synchronized common events for the composed system.

The input is two events, one from block system, one from robot system. If these two

events can be synchronized, the output is the common event of the composed system; if

not, the output is 0.

function [h]=hfunction(a,c)

if a(2)==1

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==26)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==22)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==2

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==27)

h=[u,p,b;uu,pp];

82

Appendix C. H function

elseif (a(1)==2)&(a(3)==2)&(c(2,1)==2)&(c(2,2)==28)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==23)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==3

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==28)

h=[u,p,b;uu,pp];

elseif (a(1)==2)&(a(3)==2)&(c(1,1)==2)&(c(1,2)==29)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==24)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==4

if (a(1)==2)&(a(3)==2)&(c(1,1)==2)&(c(1,2)==30)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==39)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==5

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==40)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==36)

h=[u,p,b;uu,pp];

83

Appendix C. H function

elseif (a(1)==4)&(a(3)==4)&(c(2,1)==4)&(c(2,2)==50)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==6

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==41)

h=[u,p,b;uu,pp];

elseif (a(1)==2)&(a(3)==2)&(c(2,1)==2)&(c(2,2)==42)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==37)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(2,1)==4)&(c(2,2)==51)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==7

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==42)

h=[u,p,b;uu,pp];

elseif (a(1)==2)&(a(3)==2)&(c(1,1)==2)&(c(1,2)==53)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==38)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(2,1)==4)&(c(2,2)==52)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==8

84

Appendix C. H function

if (a(1)==2)&(a(3)==2)&(c(1,1)==2)&(c(1,2)==44)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==39)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(2,1)==4)&(c(2,2)==53)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==9

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==54)

h=[u,p,b;uu,pp]1;

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==50)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(1,1)==4)&(c(1,2)==64)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==10

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==55)

h=[u,p,b;uu,pp];

elseif (a(1)==2)&(a(3)==2)&(c(2,1)==2)&(c(2,2)==56)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==51)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(1,1)==4)&(c(1,2)==65)

h=[u,p,b;uu,pp];

else

h=0;

85

Appendix C. H function

end

elseif a(2)==11

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==56)

h=[u,p,b;uu,pp];

elseif (a(1)==2)&(a(3)==2)&(c(1,1)==2)&(c(1,2)==57)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==52)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(1,1)==4)&(c(1,2)==66)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==12

if (a(1)==2)&(a(3)==2)&(c(1,1)==2)&(c(1,2)==58)

h=[u,p,b;uu,pp];

elseif (a(1)==3)&(a(3)==3)&(c(1,1)==3)&(c(1,2)==53)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(1,1)==4)&(c(1,2)==67)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==13

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==68)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(1,1)==4)&(c(1,2)==78)

h=[u,p,b;uu,pp];

else

h=0;

86

Appendix C. H function

end

elseif a(2)==14

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==69)

h=[u,p,b;uu,pp];

elseif (a(1)==2)&(a(3)==2)&(c(2,1)==2)&(c(2,2)==70)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(1,1)==4)&(c(1,2)==79)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==15

if (a(1)==1)&(a(3)==1)&(c(1,1)==1)&(c(1,2)==70)

h=[u,p,b;uu,pp];

elseif (a(1)==2)&(a(3)==2)&(c(1,1)==2)&(c(1,2)==71)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(1,1)==4)&(c(1,2)==80)

h=[u,p,b;uu,pp];

else

h=0;

end

elseif a(2)==16

if (a(1)==2)&(a(3)==2)&(c(1,1)==2)&(c(1,2)==72)

h=[u,p,b;uu,pp];

elseif (a(1)==4)&(a(3)==4)&(c(1,1)==4)&(c(1,2)==81)

h=[u,p,b;uu,pp];

else

h=0;

end

else

87

Appendix C. H function

h=0;

end

88

Appendix D

Shortest Path

This is the Floyd Warshall algorithm that can calculate the shortest path for the block.

n=16

D= [0 1 100 100 1 100 100 100

100 100 100 100 100 100 100 100;

1 0 1 100 100 1 100 100

100 100 100 100 100 100 100 100;

100 1 0 1 100 100 1 100

100 100 100 100 100 100 100 100;

100 100 1 0 100 100 100 1

100 100 100 100 100 100 100 100;

1 100 100 100 0 1 100 100

1 100 100 100 100 100 100 100;

100 1 100 100 1 0 1 100

100 1 100 100 100 100 100 100;

100 100 1 100 100 1 0 1

100 100 1 100 100 100 100 100;

89

Appendix D. Shortest Path

100 100 100 1 100 100 1 0

100 100 100 1 100 100 100 100;

100 100 100 100 1 100 100 100

0 1 100 100 1 100 100 100;

100 100 100 100 100 1 100 100

1 0 1 100 100 1 100 100;

100 100 100 100 100 100 1 100

100 1 0 1 100 100 1 100;

100 100 100 100 100 100 100 1

100 100 1 0 100 100 100 1 ;

100 100 100 100 100 100 100 100

1 100 100 100 0 1 100 100;

100 100 100 100 100 100 100 100

100 1 100 100 1 0 1 100;

100 100 100 100 100 100 100 100

100 100 100 1 100 1 0 1 ;

100 100 100 100 100 100 100 100

100 100 100 1 100 100 1 0]

Pi= [0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 ;

2 0 2 0 0 2 0 0

0 0 0 0 0 0 0 0 ;

0 3 0 3 0 0 3 0

0 0 0 0 0 0 0 0 ;

0 0 4 0 0 0 0 4

0 0 0 0 0 0 0 0 ;

5 0 0 0 0 5 0 0

5 0 0 0 0 0 0 0 ;

0 6 0 0 6 0 6 0

0 6 0 0 0 0 0 0 ;

90

Appendix D. Shortest Path

0 0 7 0 0 7 0 7

0 0 7 0 0 0 0 0 ;

0 0 0 8 0 0 8 0

0 0 0 8 0 0 0 0 ;

0 0 0 0 9 0 0 0

0 9 0 0 9 0 0 0 ;

0 0 0 0 0 10 0 0

10 0 10 0 0 10 0 0 ;

0 0 0 0 0 0 11 0

0 11 0 11 0 0 11 0 ;

0 0 0 0 0 0 0 12

0 0 12 0 0 0 0 12 ;

0 0 0 0 0 0 0 0

13 0 0 0 0 13 0 0 ;

0 0 0 0 0 0 0 0

0 14 0 0 14 0 14 0 ;

0 0 0 0 0 0 0 0

0 0 15 0 0 15 0 15 ;

0 0 0 0 0 0 0 0

0 0 0 16 0 0 16 0]

for k=1:n

for i=1:n

for j=1:n

if D(i,j)<= (D(i,k)+D(k,j))

Pi(i,j)=Pi(i,j);

else Pi(i,j)=Pi(k,j);

end

D(i,j)=min(D(i,j),D(i,k)+D(k,j));

% for p=1:16

% A(p)=D;B(p)=Pi

91

Appendix D. Shortest Path

% end

end

end

D

Pi

end

92

Appendix E

Planning

The path for the robot is calculated and the atom plan is generated.

close all

clc

A =[

0 1 2 3 1 2 3 4

5 6 7 8 9 10 11 12;

2 0 2 3 1 2 3 4

5 6 7 8 9 10 11 12;

2 3 0 3 1 2 3 4

5 6 7 8 9 10 11 12;

2 3 4 0 1 2 3 4

5 6 7 8 9 10 11 12;

5 1 2 3 0 5 6 7

5 6 7 8 9 10 11 12;

93

Appendix E. Planning

2 6 2 3 6 0 6 7

5 6 7 8 9 10 11 12;

2 3 7 3 6 7 0 7

5 6 7 8 9 10 11 12;

2 3 4 8 6 7 8 0

5 6 7 8 9 10 11 12;

5 1 2 3 9 5 6 7

0 9 10 11 9 10 11 12;

2 6 2 3 6 10 6 7

10 0 10 11 9 10 11 12;

2 3 7 3 6 7 11 7

10 11 0 11 9 10 11 12;

2 3 4 8 6 7 8 12

10 11 12 0 9 10 11 12;

5 1 2 3 9 5 6 7

13 9 10 11 0 13 14 15;

2 6 2 3 6 10 6 7

10 14 10 11 14 0 14 15;

2 3 7 3 6 7 11 7

10 11 15 11 14 15 0 15;

2 3 4 8 6 7 8 12

10 11 12 16 14 15 16 0];

s = input(’start position: ’);

e = input(’end position: ’);

C = [];

i=1;

C(1) = A(s,e);

while (C(i) ˜= 0)

94

Appendix E. Planning

C(i+1)= A(s,C(i));

i = i+1;

end

C;

d = length(C);

F =[];

F(1) = 0;

F(2) = C(d-1);

for i = 3:d

F(i) = C(d+1-i);

end

F(d+1) = e;

for i=1:d

FF(i)=F(i+1);

end

fprintf(’Shortest path from start to end position’)

FF

%move empty block next to the start position

s1 = 4;

e1 = F(2);

D = [];

i=1;

D(1) = A(s1,e1);

while (D(i) ˜= 0)

D(i+1)= A(s1,D(i));

i = i+1;

end

D;

d1 = length(D);

95

Appendix E. Planning

if d1 == 2

F(1) = 4;

Q = [];

else

F1 =[];

F1(1) = D(d1-1);

for i = 2:d1-1

F1(i) = D(d1-i);

end

F1;

for i = 1:d1-2

F11(i) = F1(i+1);

end

for i = 1:d1-2

F12(i) = F1(i);

end

Q = vertcat(F11,F12);

F(1) = F1(d1-1);

end

F;

for i=2:d

if (F(i-1) == F(i+1))

Q1 = [F(i);F(i+1)];

Q = horzcat(Q,Q1);

elseif ((F(i-1) == 13) && (F(i) == 14)&&(F(i+1) == 15))

|| ((F(i-1) == 14) && (F(i) == 15)&&(F(i+1) == 16))

B = [F(i)-5 F(i)-4 F(i)-3 F(i)+1 F(i);

F(i)-1 F(i)-5 F(i)-4 F(i)-3 F(i)+1];

Q = horzcat(Q,B);

96

Appendix E. Planning

elseif ((F(i-1) == 15) && (F(i) == 14)&&(F(i+1) == 13))

|| ((F(i-1) == 16) && (F(i) == 15)&&(F(i+1) == 14))

B = [F(i)-3 F(i)-4 F(i)-5 F(i)-1 F(i);

F(i)+1 F(i)-3 F(i)-4 F(i)-5 F(i)-1];

Q = horzcat(Q,B);

elseif ((F(i-1) == 4) && (F(i) == 8)&&(F(i+1) == 12))

|| ((F(i-1) == 8) && (F(i) == 12)&&(F(i+1) == 16))

B = [F(i)-5 F(i)-1 F(i)+3 F(i)+4 F(i);

F(i)-4 F(i)-5 F(i)-1 F(i)+3 F(i)+4];

Q = horzcat(Q,B);

elseif ((F(i-1) == 12) && (F(i) == 8)&&(F(i+1) == 4))

|| ((F(i-1) == 16) && (F(i) == 12)&&(F(i+1) == 8))

B = [F(i)+3 F(i)-1 F(i)-5 F(i)-4 F(i);

F(i)+4 F(i)+3 F(i)-1 F(i)-5 F(i)-4];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)-1)&&(F(i+1) == F(i)+1))

B = [F(i)+3 F(i)+4 F(i)+5 F(i)+1 F(i);

F(i)-1 F(i)+3 F(i)+4 F(i)+5 F(i)+1];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)+1)&&(F(i+1) == F(i)-1))

B = [F(i)+5 F(i)+4 F(i)+3 F(i)-1 F(i);

F(i)+1 F(i)+5 F(i)+4 F(i)+3 F(i)-1];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)-1)&&(F(i+1) == F(i)+4))

B = [F(i)+3 F(i)+4 F(i); F(i)-1 F(i)+3 F(i)+4];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)+4)&&(F(i+1) == F(i)-1))

B = [F(i)+3 F(i)-1 F(i); F(i)+4 F(i)+3 F(i)-1];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)-4)&&(F(i+1) == F(i)+1))

97

Appendix E. Planning

B = [F(i)-3 F(i)+1 F(i); F(i)-4 F(i)-3 F(i)+1];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)+1)&&(F(i+1) == F(i)-4))

B = [F(i)-3 F(i)-4 F(i); F(i)+1 F(i)-3 F(i)-4];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)-1)&&(F(i+1) == F(i)-4))

B = [F(i)-5 F(i)-4 F(i); F(i)-1 F(i)-5 F(i)-4];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)-4)&&(F(i+1) == F(i)-1))

B = [F(i)-5 F(i)-1 F(i); F(i)-4 F(i)-5 F(i)-1];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)+4)&&(F(i+1) == F(i)+1))

B = [F(i)+5 F(i)+1 F(i); F(i)+4 F(i)+5 F(i)+1];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)+1)&&(F(i+1) == F(i)+4))

B = [F(i)+5 F(i)+4 F(i); F(i)+1 F(i)+5 F(i)+4];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)+4)&&(F(i+1) == F(i)-4))

B = [F(i)+5 F(i)+1 F(i)-3 F(i)-4 F(i);

F(i)+4 F(i)+5 F(i)+1 F(i)-3 F(i)-4];

Q = horzcat(Q,B);

elseif ((F(i-1) == F(i)-4)&&(F(i+1) == F(i)+4))

B = [F(i)-3 F(i)+1 F(i)+5 F(i)+4 F(i);

F(i)-4 F(i)-3 F(i)+1 F(i)+5 F(i)+4];

Q = horzcat(Q,B);

else

fprintf(’ERROR’)

end

end

fprintf(’Detailed movement of the block’)

98

Appendix E. Planning

Q

G =[];

G(1) = 30;

%H = [];

%j=1;

j = length(Q);

for i = 1:j

if ((Q(1,i) == 3)&&(Q(2,i) == 4))

G(i+1) = 28;

elseif ((Q(1,i) == 2)&&(Q(2,i) == 3))

G(i+1) = 27;

elseif ((Q(1,i) == 1)&&(Q(2,i) == 2))

G(i+1) = 26;

elseif ((Q(1,i) == 7)&&(Q(2,i) == 8))

G(i+1) = 42;

elseif ((Q(1,i) == 6)&&(Q(2,i) == 7))

G(i+1) = 41;

elseif ((Q(1,i) == 5)&&(Q(2,i) == 6))

G(i+1) = 40;

elseif ((Q(1,i) == 11)&&(Q(2,i) == 12))

G(i+1) = 56;

elseif ((Q(1,i) == 10)&&(Q(2,i) == 11))

G(i+1) = 55;

elseif ((Q(1,i) == 9)&&(Q(2,i) == 10))

G(i+1) = 54;

elseif ((Q(1,i) == 15)&&(Q(2,i) == 16))

G(i+1) = 70;

99

Appendix E. Planning

elseif ((Q(1,i) == 14)&&(Q(2,i) == 15))

G(i+1) = 69;

elseif ((Q(1,i) == 13)&&(Q(2,i) == 14))

G(i+1) = 68;

elseif ((Q(1,i) == 4)&&(Q(2,i) == 3))

G(i+1) = 30;

elseif ((Q(1,i) == 3)&&(Q(2,i) == 2))

G(i+1) = 29;

elseif ((Q(1,i) == 2)&&(Q(2,i) == 1))

G(i+1) = 28;

elseif ((Q(1,i) == 8)&&(Q(2,i) == 7))

G(i+1) = 44;

elseif ((Q(1,i) == 7)&&(Q(2,i) == 6))

G(i+1) = 43;

elseif ((Q(1,i) == 6)&&(Q(2,i) == 5))

G(i+1) = 42;

elseif ((Q(1,i) == 12)&&(Q(2,i) == 11))

G(i+1) = 58;

elseif ((Q(1,i) == 11)&&(Q(2,i) == 10))

G(i+1) = 57;

elseif ((Q(1,i) == 10)&&(Q(2,i) == 9))

G(i+1) = 56;

elseif ((Q(1,i) == 16)&&(Q(2,i) == 15))

G(i+1) = 72;

elseif ((Q(1,i) == 15)&&(Q(2,i) == 14))

G(i+1) = 71;

elseif ((Q(1,i) == 14)&&(Q(2,i) == 13))

G(i+1) = 70;

elseif ((Q(1,i) == 5)&&(Q(2,i) == 1))

G(i+1) = 50;

100

Appendix E. Planning

elseif ((Q(1,i) == 9)&&(Q(2,i) == 5))

G(i+1) = 64;

elseif ((Q(1,i) == 13)&&(Q(2,i) == 9))

G(i+1) = 78;

elseif ((Q(1,i) == 6)&&(Q(2,i) == 2))

G(i+1) = 51;

elseif ((Q(1,i) == 10)&&(Q(2,i) == 6))

G(i+1) = 65;

elseif ((Q(1,i) == 14)&&(Q(2,i) == 10))

G(i+1) = 79;

elseif ((Q(1,i) == 7)&&(Q(2,i) == 3))

G(i+1) = 52;

elseif ((Q(1,i) == 11)&&(Q(2,i) == 7))

G(i+1) = 66;

elseif ((Q(1,i) == 15)&&(Q(2,i) == 11))

G(i+1) = 80;

elseif ((Q(1,i) == 8)&&(Q(2,i) == 4))

G(i+1) = 53;

elseif ((Q(1,i) == 12)&&(Q(2,i) == 8))

G(i+1) = 67;

elseif ((Q(1,i) == 16)&&(Q(2,i) == 12))

G(i+1) = 81;

elseif ((Q(1,i) == 1)&&(Q(2,i) == 5))

G(i+1) = 22;

elseif ((Q(1,i) == 5)&&(Q(2,i) == 9))

G(i+1) = 36;

elseif ((Q(1,i) == 9)&&(Q(2,i) == 13))

G(i+1) = 50;

elseif ((Q(1,i) == 2)&&(Q(2,i) == 6))

G(i+1) = 23;

101

Appendix E. Planning

elseif ((Q(1,i) == 6)&&(Q(2,i) == 10))

G(i+1) = 37;

elseif ((Q(1,i) == 10)&&(Q(2,i) == 14))

G(i+1) = 51;

elseif ((Q(1,i) == 3)&&(Q(2,i) == 7))

G(i+1) = 24;

elseif ((Q(1,i) == 7)&&(Q(2,i) == 11))

G(i+1) = 38;

elseif ((Q(1,i) == 11)&&(Q(2,i) == 15))

G(i+1) = 52;

elseif ((Q(1,i) == 4)&&(Q(2,i) == 8))

G(i+1) = 25;

elseif ((Q(1,i) == 8)&&(Q(2,i) == 12))

G(i+1) = 39;

elseif ((Q(1,i) == 12)&& (Q(2,i) == 16))

G(i+1) = 53;

else

fprintf(’ERROR’)

end

%H(1) = B(G(1),G(2));

%while (H(j) ˜= 0)

% H(j+1)= B(B(j),B(j+1));

% j = i+1;

%end

% j=length(H);

end

fprintf(’Path for the robot’)

G

%from robot position to atom

Plan = [];

102

Appendix E. Planning

k=length(G);

for i=1:k-1

if G(i+1) == (G(i)-2)

H = [0 1 2 1 0 1 6 4 5 1];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)+23)

H = [8 1 0 1 6 4 5 1 1];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)+24)

H = [8 3 0 3 6 4 5 1 1];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)-1)

H = [0 1 7 1 0 1 6 4 5 1];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)+1)

H = [8 1 0 1 6 4 5 1 1];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)-19)

H = [8 1 0 1 6 4 5];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)-18)

H = [8 3 0 1 6 4 5];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)-14)

H = [1 0 1 7 1 0 1 6 4 5];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)+14)

H = [1 0 3 7 3 0 3 6 4 5 1 1];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)-8)

103

Appendix E. Planning

H = [3 8 3 0 3 6 4 5 3];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)+6)

H = [3 8 1 0 1 6 4 5 3];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)-11)

H = [1 8 1 0 1 6 4 5 1];

Plan = horzcat(Plan,H);

elseif G(i+1) == (G(i)+3)

H = [1 8 3 0 3 6 4 5 1];

Plan = horzcat(Plan,H);

else

fprintf(’ERROR’)

end

end

fprintf(’Plan send to the robot’)

Plan

104

Appendix F

C code sent to the robot

Atom plan generated for Khepera II robot. This code can be sent to the robot to guide the

action of the robot.

/***********************************

*

* This Process should Allow for

* moving and pushing the block

*

*

*

*

*

*

*

* June 2008

* wenqi zhang

*

*

105

Appendix F. C code sent to the robot

*

***********************************/

#include <sys/kos.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#define size 52

/***********************************

*

* Process 0

* moving 1032 units forward

***********************************/

int atom0()

{

int p1, p2, f=99;

uint32 mn1=0,mn2=1,maxSpeed=5,maxAccel=25;

int KP=3000,KI=20,KD=4000;

mot_stop();

mot_config_profil_1m(mn1,maxSpeed,maxAccel);

mot_config_profil_1m(mn2,maxSpeed,maxAccel);

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

106

Appendix F. C code sent to the robot

mot_put_sensors_2m(0,0);

mot_new_position_2m(1032,1032);

p1=mot_get_position(0);

p2=mot_get_position(1);

//while(p1 != 1032 || p2 != 1032){

while ((p1 < 1029) || (p1 > 1035)

|| (p2 < 1029) || (p2 > 1035)){

p1=mot_get_position(0);

p2=mot_get_position(1);

// printf("p1_%d -- p2_%d\r\n",p1,p2);

// printf("%d\r\n",f);

}

mot_stop();

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_put_sensors_2m(0,0);

tim_suspend_task(500);

f=100;

printf("%d\r\n",f);

}

/***********************************

*

* Process 1

* turn left *

***********************************/

107

Appendix F. C code sent to the robot

int atom1()

{

int p1,p2, f=99;

uint32 mn1=0,mn2=1,maxSpeed=5,maxAccel=25;

int KP=3000,KI=20,KD=4000;

mot_stop();

mot_config_profil_1m(mn1,maxSpeed,maxAccel);

mot_config_profil_1m(mn2,maxSpeed,maxAccel);

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_put_sensors_2m(0,0);

mot_new_position_2m(520,-520);

p1=mot_get_position(0);

p2=mot_get_position(1);

// while(p1 !=-520 || p2 !=520){

while ((p1 < -523) || (p1 > -517)

|| (p2 < 517) || (p2 > 523)){

p1=mot_get_position(0);

p2=mot_get_position(1);

// printf("p1_%d -- p2_%d\r\n",p1,p2);

// printf("%d\r\n",f);

}

mot_stop();

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

108

Appendix F. C code sent to the robot

mot_put_sensors_2m(0,0);

tim_suspend_task(500);

f=100;

printf("%d\r\n",f);

}

/***********************************

*

* Process 2

* moving 4228 units forward

*

***********************************/

int atom2()

{

int p1,p2, f=99;

uint32 mn1=0,mn2=1,maxSpeed=5,maxAccel=25;

int KP=3000,KI=20,KD=4000;

mot_config_profil_1m(mn1,maxSpeed,maxAccel);

mot_config_profil_1m(mn2,maxSpeed,maxAccel);

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_new_position_2m(4228,4228);

p1=mot_get_position(0);

p2=mot_get_position(1);

// while(p1 !=4228 || p2 !=4228){

while((p1 < 4225) || (p1 >4231)

109

Appendix F. C code sent to the robot

|| (p2 < 4225) || (p2 > 4231))

{

p1=mot_get_position(0);

p2=mot_get_position(1);

// printf("p1_%d -- p2_%d\r\n",p1,p2);

// printf("%d\r\n",f);

}

mot_stop();

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_put_sensors_2m(0,0);

tim_suspend_task(500);

f=100;

printf("%d\r\n",f);

}

/***********************************

*

* Process 3

*turn right *

***********************************/

int atom3()

{

int p1,p2, f=99;

uint32 mn1=0,mn2=1,maxSpeed=5,maxAccel=25;

int KP=3000,KI=20,KD=4000;

mot_config_profil_1m(mn1,maxSpeed,maxAccel);

mot_config_profil_1m(mn2,maxSpeed,maxAccel);

110

Appendix F. C code sent to the robot

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_new_position_2m(-520,520);

p1=mot_get_position(0);

p2=mot_get_position(1);

//while(p1 !=520|| p2 !=-520){

while((p1 < 517) || (p2 > 523)

|| (p2 <-523) || (p2 > -517))

{

p1=mot_get_position(0);

p2=mot_get_position(1);

// printf("p1_%d -- p2_%d\r\n",p1,p2);

// printf("%d\r\n",f);

}

mot_stop();

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_put_sensors_2m(0,0);

tim_suspend_task(500);

f=100;

printf("%d\r\n",f);

}

111

Appendix F. C code sent to the robot

/***********************************

*

* Process 4

moving 2044 units forward

***********************************/

int atom4()

{

int p1,p2, f=99;

uint32 mn1=0,mn2=1,maxSpeed=5,maxAccel=25;

int KP=3000,KI=20,KD=4000;

mot_config_profil_1m(mn1,maxSpeed,maxAccel);

mot_config_profil_1m(mn2,maxSpeed,maxAccel);

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_new_position_2m(2044,2044);

p1=mot_get_position(0);

p2=mot_get_position(1);

// while(p1 !=2044|| p2 !=2044){

while((p1 < 2041) || (p1 >2047)

|| (p2 < 2041) || (p2 > 2047))

{

p1=mot_get_position(0);

p2=mot_get_position(1);

// printf("p1_%d -- p2_%d\r\n",p1,p2);

112

Appendix F. C code sent to the robot

// printf("%d\r\n",f);

}

mot_stop();

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_put_sensors_2m(0,0);

tim_suspend_task(500);

f=100;

printf("%d\r\n",f);

}

/***********************************

*

* Process 5

moving 2044 units backward

***********************************/

int atom5()

{

int p1,p2, f=99;

uint32 mn1=0,mn2=1,maxSpeed=5,maxAccel=25;

int KP=3000,KI=20,KD=4000;

mot_config_profil_1m(mn1,maxSpeed,maxAccel);

mot_config_profil_1m(mn2,maxSpeed,maxAccel);

mot_config_position_1m(mn1,KP,KI,KD);

113

Appendix F. C code sent to the robot

mot_config_position_1m(mn2,KP,KI,KD);

mot_new_position_2m(-2044,-2044);

p1=mot_get_position(0);

p2=mot_get_position(1);

// while(p1 !=-2044|| p2 !=-2044){

while((p1 < -2047) || (p1 >-2041)

|| (p2 < -2047) || (p2 > -2041))

{

p1=mot_get_position(0);

p2=mot_get_position(1);

// printf("p1_%d -- p2_%d\r\n",p1,p2);

// printf("%d\r\n",f);

}

mot_stop();

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_put_sensors_2m(0,0);

tim_suspend_task(500);

f=100;

printf("%d\r\n",f);

}

/***********************************

*

114

Appendix F. C code sent to the robot

* Process 6

moving 130 units forward

***********************************/

int atom6()

{

int p1,p2, f=99;

uint32 mn1=0,mn2=1,maxSpeed=5,maxAccel=25;

int KP=3000,KI=20,KD=4000;

mot_config_profil_1m(mn1,maxSpeed,maxAccel);

mot_config_profil_1m(mn2,maxSpeed,maxAccel);

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_new_position_2m(130,130);

p1=mot_get_position(0);

p2=mot_get_position(1);

// while(p1 !=130|| p2 !=130){

while((p1 < 127) || (p1 >133) || (p2 < 127) || (p2 > 133))

{

p1=mot_get_position(0);

p2=mot_get_position(1);

// printf("p1_%d -- p2_%d\r\n",p1,p2);

// printf("%d\r\n",f);

}

mot_stop();

mot_config_position_1m(mn1,KP,KI,KD);

115

Appendix F. C code sent to the robot

mot_config_position_1m(mn2,KP,KI,KD);

mot_put_sensors_2m(0,0);

tim_suspend_task(500);

f=100;

printf("%d\r\n",f);

}

/***********************************

*

* Process 7

moving 2144 units forword

***********************************/

int atom7()

{

int p1,p2, f=99;

uint32 mn1=0,mn2=1,maxSpeed=5,maxAccel=25;

int KP=3000,KI=20,KD=4000;

mot_config_profil_1m(mn1,maxSpeed,maxAccel);

mot_config_profil_1m(mn2,maxSpeed,maxAccel);

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_new_position_2m(2144,2144);

p1=mot_get_position(0);

p2=mot_get_position(1);

116

Appendix F. C code sent to the robot

//while(p1 !=2144|| p2 !=2144){

while((p1 < 2141) || (p1 >2147)

|| (p2 < 2141) || (p2 > 2147))

{

p1=mot_get_position(0);

p2=mot_get_position(1);

// printf("p1_%d -- p2_%d\r\n",p1,p2);

// printf("%d\r\n",f);

}

mot_stop();

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_put_sensors_2m(0,0);

tim_suspend_task(500);

f=100;

printf("%d\r\n",f);

}

/***********************************

*

* Process 8

moving 3176 units forword

***********************************/

int atom8()

{

int p1,p2, f=99;

uint32 mn1=0,mn2=1,maxSpeed=5,maxAccel=25;

117

Appendix F. C code sent to the robot

int KP=3000,KI=20,KD=4000;

mot_config_profil_1m(mn1,maxSpeed,maxAccel);

mot_config_profil_1m(mn2,maxSpeed,maxAccel);

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_new_position_2m(3176,3176);

p1=mot_get_position(0);

p2=mot_get_position(1);

// while(p1 !=3176|| p2 !=3176){

while((p1 < 3173) || (p1 >3179)

|| (p2 < 3173) || (p2 > 3179))

{

p1=mot_get_position(0);

p2=mot_get_position(1);

// printf("p1_%d -- p2_%d\r\n",p1,p2);

// printf("%d\r\n",f);

}

mot_stop();

mot_config_position_1m(mn1,KP,KI,KD);

mot_config_position_1m(mn2,KP,KI,KD);

mot_put_sensors_2m(0,0);

tim_suspend_task(500);

f=100;

printf("%d\r\n",f);

}

118

Appendix F. C code sent to the robot

/***********************

*process 1

************************/

static int32 vIDProcess[1];

static void

process_1()

{ /*int receive = 9;

for(;;)

receive = getchar();

scanf("%d", &receive);

while (receive == 9)

{

scanf("%d", &receive);

}

tim_suspend_task(500);

printf("%d",receive);*/

int i;

int a[size] = {0,1,2,1,0,1,6,4,5,1,0,1,7,1,0,1,6,4,5,1,0,1,7,

1,0,1,6,4,5,1,8,3,0,3,6,4,5,1,8,3,0,3,6,4,5,1,8,3,0,3,6,4};

/* a[0] = 0;

a[1] = 1;

a[2] = 4;

a[3] = 1;

a[4] = 0;

119

Appendix F. C code sent to the robot

a[5] = 1;

a[6] = 0;*/

//int *pa;

//pa = &a[0];

for (i = 0; i < size; i++)

{

if (a[i] == 0)

{

printf("%d\r\n",a[i]);

atom0();

}

if (a[i] == 1)

{

printf("%d\r\n",a[i]);

atom1();

}

if (a[i] == 2)

{

printf("%d\r\n",a[i]);

atom2();

}

if (a[i] == 3)

{

printf("%d\r\n",a[i]);

120

Appendix F. C code sent to the robot

atom3();

}

if (a[i] == 4)

{

printf("%d\r\n",a[i]);

atom4();

}

if (a[i] == 5)

{

printf("%d\r\n",a[i]);

atom5();

}

if (a[i] == 6)

{

printf("%d\r\n",a[i]);

atom6();

}

if (a[i] == 7)

{

printf("%d\r\n",a[i]);

atom7();

121

Appendix F. C code sent to the robot

}

if (a[i] == 8)

{

printf("%d\r\n",a[i]);

atom8();

}

// else

// {

// printf("ERROR\r\n");

// }

tim_suspend_task(2000);

}

printf("%6s\r\n", "FINISH");

}

/***********************************

* Main

*

*

*

*

*

122

Appendix F. C code sent to the robot

*

**********************************/

int main(void)

{

int32 status;

static char prName_1[]="Process 1 : pick atom to run";

com_reset ();

var_reset ();

sens_reset ();

str_reset ();

mot_reset ();

tim_reset ();

tim_suspend_task(2000);

status = install_task (prName_1, 800, process_1);

if (status == -1)

exit (0);

vIDProcess[1] = (uint32) status;

return 0;

}

123

References

[1] K-Team S. A. Khepera II User Manual. K-Team, 1.1 edition, March 2002.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3 – 34, 1995.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
A. Nerode P. Antsaklis, W. Kohn and S. Sastry, editors, Hybrid Systems: Com-
putation and Control, volume 736 of Lecture Notes in Computer Science, pages
209–229. Springer-Verlag, 1993.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[5] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification of hybrid
systems in charon. In Hybrid Systems: Computation and Control, volume 1790 of
Lecture Notes In Computer Science, pages 6–19. Springer-Verlag, 2000.

[6] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective synthesis of
switching controllers for linear systems. In Proceedings of the IEEE, volume 88,
pages 1011–1025, Jul 2000.

[7] P. Azema, G. Juanole, E. Sanchis, and Michel Montbernard. Specification and
verification of distributed systems using prolog interpreted petri nets. In ICSE ’84:
Proceedings of the 7th international conference on Software engineering, pages
510–518, Piscataway, NJ, USA, 1984. IEEE Press.

[8] J. Baeten, J. Bergstra, and J. Klop. Decidability of bisimulation equivalence for
process generating context-free languages. Journal of the ACM, 40(3):653–683,
1993.

124

References

[9] J. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1991.

[10] A. Balluchi, L. Benvenuti, M. DiBenedetto, C. Pinello, and A. Sangiovanni-
Vincentelli. Automotive engine control and hybrid systems: Challenges and op-
portunities. In Proceedings of the IEEE, volume 88, pages 888–912, Jul 2000.

[11] H. Bekic. Towards a mathematical theory of processes. Technical Report 25.125,
IBM Laboratory Vienna, 1971.

[12] H Bekic and C. B. Jones. Programming languages and their definition. Springer-
Verlag New York, Inc., New York, NY, USA, 1984.

[13] J. A. Bergstra and J. W. Klop. Fixed point semantics in process algebra. Technical
Report IW 208, Mathematical Centre, Amsterdam, 1982.

[14] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1–3):109–137, 1984.

[15] J. A. Bergstra and J. W. Klop. A convergence theorem in process algebra. In J. W.
de Bakker and J. J. M. M. Rutten, editors, Ten Years of Concurrency Semantics,
pages 164–195. World Scientific, 1992.

[16] A. Bouajjani, J-C. Fernandez, and N. Halbwachs. Minimal model generation. In
Proceedings of the 2nd International Workshop on Computer Aided Verification,
volume 531 of Lecture Notes in Computer Science, pages 197 – 203. 1991.

[17] R. W. Brockett. On the computer control of movement. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 534–540, 1988.

[18] R. W. Brockett. Formal languages for motion description and map making. In
J. Bailleul, R. Brockett, and B. Donald, editors, Robotics, volume 41, pages 181–
193. ACM, 1990.

[19] R. W. Brockett. Hybrid models for motion control systems. In JH. Trentelman and
J. C. Willems, editors, Perspectives in control, pages 29–51. Birkhauser-Verlag,
1993.

[20] S. D. Brookes, C. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560–599, 1984.

[21] P. E. Caines and Y. J. Wei. Hierarchical hybrid control systems: A lattice theoretic
formulation. IEEE Transactions on Automatic Control, 43(4):501–508, 1998.

125

References

[22] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic, 2001.

[23] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions on
Program Language System, 8(2):244–263, 1986.

[24] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. In-
troduction to Algorithms and Java. McGraw-Hill Higher Education, 2002.

[25] B. Courcelle. Handbook of Theoretical Computer Science, Volume B: Formal Mod-
els and Sematics. MIT Press, 1st edition, 1990.

[26] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

[27] J. Davoren and A. Nerode. Logics for hybrid systems. In Proceedings of the IEEE,
volume 88, pages 985–1010, Jul 2000.

[28] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid
Systems : Computation and Control, volume 1066 of Lecture Notes in Computer
Science, pages 208–219. Springer-Verlag, 1996.

[29] J. de Bakker and J. Zucker. Denotational semantics of concurrency. In STOC ’82:
Proceedings of the fourteenth annual ACM symposium on Theory of computing,
pages 153–158, New York, NY, USA, 1982. ACM.

[30] J. de Bakker and J. Zucker. Processes and the denotational semantics of concur-
rency. Information and Control, 54:70–120, 1982.

[31] R. DeCarlo, M. Branicky, and S. Pettersson. Perspectives and results on the stability
of hybrid systems. In Proceedings of the IEEE, volume 88, pages 1069–1082, Jul
2000.

[32] F. Delmotte, T. R. Mehta, and M. Egerstedt. Modebox: A software tool for obtain-
ing hybrid control strategies from data. IEEE Robotics and Automation Magazine,
15(1):87–95, March 2008.

[33] D. Curtis Deno, Richard M. Murray, Kristofer S. J. Pister, and S. Shankar Sastry.
Control primitives for robot systems. IEEE Transactions on Systems, Man, and
Cybernetics, 22:183–193, Jan/Feb 1992.

126

References

[34] P. Devanbu and E. Wohlstadter. Evolution in distributed heterogeneous systems. In
Proceedings of the NSF Workshop on New Visions for Software Design and Produc-
tivity: Research and Applications, 2001.

[35] J. B. Dugan and G. Ciardo. Stochastic petri net analysis of a replicated file system.
IEEE Transactions on Software Engineering, 15:394–401, 1989.

[36] H. Ehrig. Introduction to the algebraic theory of graph grammars. In Graph-
Grammars and Their Application to Computer Science and Biology, volume 73
of Lecture Notes in Computer Science, pages 1–69. Springer Berlin, 1979.

[37] E. A. Emerson. Temporal and modal logic. In Elsevier Science, editor, Handbook of
Theoretical Computer Science, volume B, pages 995–1072. Elsevier Science, 1990.

[38] S. Engell, S. Kowalewski, C. Schulz, and O. Stursberg. Continuous discrete interac-
tions in chemical processing plants. In Proceedings of the IEEE, volume 88, pages
1050–1068, Jul 2000.

[39] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning for
nonlinear systems with symmetries. IEEE Transanctions on Robotics, 21:1077–
1091, 2005.

[40] Emilio Frazzoli. Explicit solutions for optimal maneuver-based motion planning.
Proceedings of 42nd IEEE Conference on Decision and Control, 4:3372 – 3377,
Dec. 2003.

[41] Martin Gardner. The hypnotic fascination of sliding-block puzzles. Scientific Amer-
ican, 210:122–130, 1964.

[42] V. Gavrilets, E. Frazzoli, B. Mettler, M. Piedmonte, and E. Feron. Aggressive
maneuvering of small autonomous helicopters: A human-centered approach. The
International Journal of Robotics Research, 20(10):795 – 807, 2001.

[43] U. Goltz and W. Reisig. CSP-programs as nets with individual tokens. Advances
in Petri Nets 1984, pages 169–196, 1985.

[44] Ursula Goltz and Alan Mycroft. On the relationship of CCS and petri nets. In
Proceedings of the 11th Colloquium on Automata, Languages and Programming,
pages 196–208, London, UK, 1984. Springer-Verlag.

[45] M. Harrison, I. Havel, and A. Yehudai. On equivalence of grammars through trans-
formation trees. Theoretical Computer Science, 9:173–205, 1979.

127

References

[46] Robert A. Hearn and Erik D. Demaine. Pspace-completeness of sliding-block puz-
zles and other problems through the nondeterministic constraint logic model of
computation. Theoretical Computer Science, 343(1-2):72–96, October 2005.

[47] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1st edition, 1988.

[48] M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In
J.W. de Bakker and J. van Leeuwen, editors, Proceedings 7th International Collo-
quium on Automata, Languages and Programming, volume 85 of Lecture Notes in
Computer Science, pages 299–309. Springer Verlag, 1980.

[49] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual
Symp Logic in Computer Science, pages 278–292, 1996.

[50] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HYTECH. In
E. Brinksma, W.R. Cleaveland, K.G. Larsen, T. Margaria, and B. Steffen, editors,
TACAS 95: Tools and Algorithms for the Construction and Analysis of Systems,
volume 1019 of Lecture Notes in Computer Science, pages 41–71. Springer-Verlag,
1995.

[51] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata. Computer System Science, 57:94–124, 1998.

[52] Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for normed
process algebra. Technical Report ECS-LFCS-98-386, School of Informatics at the
University of Edinburgh, May 1998.

[53] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, 1978.

[54] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[55] A. Holt. Introduction to occurrence systems. In Associative Information Tech-
niques, pages 175–203, New York, USA, 1971. American Elsevier.

[56] A. Holt and F. Commoner. Events and conditions: introduction. In Record of the
Project MAC conference on concurrent systems and parallel computation, pages
3–52, New York, NY, USA, 1970. ACM.

[57] A. Holt, H. Saint, R. Shapiro, and S. Warshall. Final report of the information
systems theory project. Technical Report RADCTR-68-305, New York: Griffiss
Air Force Base, 1968.

128

References

[58] J. E. Hopcroft, J. T. Schwarz, and M. Sharir. On the complexity of motion planning
for multiple independent objects:pspace-hardness of the ’warehouseman’s problem.
International Journal of Robotics Tesearch, 3(4):76–88, 1984.

[59] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley, 2007.

[60] R. Horowitz and P. Varaiya. Control design of an automated highway system. In
Proceedings of the IEEE, volume 88, pages 913–925, Jul 2000.

[61] D. Hristu and S. Anderson. Directed graphs and motion description language for
robot navigation. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 2689–2694, 2002.

[62] D. Hristu and S. Anderson. Symbolic feedback control for navigation. IEEE Trans-
actions on Automatic Control, 51:926–937, June 2006.

[63] D. Hristu, P. Krishnaprasad, S. Anderson, F. Zhang, L. D’Anna, and P. Sodre. The
MDLe engine: A software tool for hybrid motion control. Technical Report 2000-
54, Institute for Systems Research, University of Maryland, 2000.

[64] D. Hristu-Varsakelis, M. Egerstedt, and P. Krishnaparsad. On the structural com-
plexity of the motion description language MDLe. In Proceedings of the 42nd IEEE
Conference on Descision and Control, pages 3360–3365, 2003.

[65] E. Klavins. Automatic synthesis of controllers for distributed assembly andfor-
mation forming. In IEEE International Conference on Robotics and Automation,
volume 3, pages 3296–3302, 2002.

[66] E. Klavins, R. Ghrist, and D. Lipsky. A grammatical approach to self-organizing
robotic systems. IEEE Transactions on Automatic Control, 51:949–962, 2006.

[67] Werner E. Kluge. Reduction, data flow and control flow models of computation.
In Proceedings of an Advanced Course on Petri Nets: Central Models and Their
Properties, Advances in Petri Nets 1986-Part II, pages 466–498, London, UK, 1987.
Springer-Verlag.

[68] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. ACM Transactions on Graph-
ics (Special Issue: Proc. ACM SIGGRAPH 2002), 21(3):473–482, 2002.

[69] H. Kress-Gazit, G. Fainekos, and G. J. Pappas. From structured english to robot mo-
tion. In IEEE/RSJ International Conference on Robots and Systems, pages 2717–
2722, 2007.

129

References

[70] G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable hybrid sys-
tems. In Hybrid Systems : Computation and Control, volume 1569 of Lecture Notes
in Computer Science, pages 137–151. Springer Verlag, 1999.

[71] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, Oct 1997.

[72] C. Livadas, J. Lygeros, and N. Lynch. High-level modeling and analysis of the
traffic alert and collision avoidance system (tcas). In Proceedings of the IEEE,
volume 88, pages 926–948, Jul 2000.

[73] J. Lygeros. Lecture notes on hybrid systems. Notes for an ENSIETA workshop,
February–June 2004.

[74] J. Lygeros, D. Godbole, and S. Sastry. Simulation as a tool for hybrid system design.
In Proceeding of the 5th Annual Conference on AI, Simulation, and Planning, in
High Autonomy Systems, pages 16–22, 1994.

[75] J. Lygeros, D. N. Godbole, and S. Sastry. Verified hybrid controllers for automated
vehicles. IEEE Transactions on Automatic Control, 43:522 – 539, 1998.

[76] J. Lygeros, G. J. Pappas, and S. Sastry. An approach to the verification of the center-
tracon automation system. In Hybrid Systems : Computation and Control, volume
1386 of Lecture Notes in Computer Science, pages 289–304. Springer Verlag, 1998.

[77] D. Mandrioli, R. Zicari, C. Ghezzi, and F. Tisato. Modeling the ada task system by
petri nets. Computer Languages, 10(1):43–61, 1985.

[78] V. Manikonda, J. Hendler, and P. Krishnaprasad. Formalizing behavior-based plan-
ning for nonholonomic robots. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 142–149, August 1995.

[79] V. Manikonda, P. Krishnaprasad, and J. Hendler. A motion description language
and a hybrid architecture for motion planning with nonholonomic robots. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation, pages
2021–2028, May 1995.

[80] V. Manikonda, P. Krishnaprasad, and J. Hendler. Languages, behaviors, hybrid
architectures and motion control. In J. Baillieul and J. C. Willems, editors, Mathe-
matical Control Theory, pages 200–226. Springer-Verlag, 1998.

[81] A. Marigo and A. Bicchi. Steering driftless nonholonomic systems by control
quanta. In Proceedings of the 37th IEEE Conference on Decision and Control,
pages 4164–4169, Tampa, FL, USA, 1998.

130

References

[82] Mazurkiewicz. Concurrent program schemes and their interpretations. Technical
Report DAIMI PB-78, Aarhus University, 1977.

[83] N. H. McClamroch and I. Kolmanovsky. Performance benefits of hybrid controller
design for linear and nonlinear systems. In Proceedings of the IEEE, volume 88,
pages 1083–1096, Jul 2000.

[84] G.J. Milne and R. Milner. Concurrent processes and their syntax. Journal of the
ACM, 26(2):302–321, 1979.

[85] R. Milner. A Calculus of Communicating Systems. Springer Verlag,1980.

[86] R. Milner. An approach to the semantics of parallel programs. In Proceedings of
the Conference on Information Theory, pages 285–301, 1973.

[87] R. Milner. A mathematical model of computing agents. In H.E. Rose and J.C. Shep-
herdson, editors, Proceedings Logic Colloquium, volume 80 of Studies in Logic and
the Foundations of Mathematics, pages 157–174. North-Holland, 1975.

[88] R. Milner. Synthesis of communicating behaviour. In J. Winkowski, editor, Pro-
ceedings 7th Mathmatical Foundations of Computer Science, volume 64 of Lecture
Notes in Computer Science, pages 71–83. Springer Verlag, 1975.

[89] R. Milner. Flowgraphs and flow algebras. Journal of the ACM, 26(4):794–818,
1979.

[90] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267–310, 1983.

[91] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[92] T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the
IEEE, volume 77, pages 541–580, 1989.

[93] X. Nicolin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description and
analysis of hybrid automata. In Hybrid Systems: Computation and Control, volume
736 of Lecture Notes in Computer Science, pages 149–178. Springer-Verlag, 1993.

[94] M. T. Ozsu. Modeling and analysis of distributed database concurrency control
algorithms using an extended petri net formalism. IEEE Transactions on Software
Engineering, 11(10):1225–1240, 1985.

[95] G. J. Pappas and S. Sastry. Towards continuous abstractions of dynamical and
control systems. In A. Nerode P. Antsaklis, W. Kohn and S. Sastry, editors, Hybrid
Systems: Computation and Control, volume 1273 of Lecture Notes in Computer
Science, pages 329–341. Springer-Verlag, 1997.

131

References

[96] D. M. R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th Graph Isomorphism Conference, volume 104 of Lecture
Notes in Computer Science, pages 167–183. Springer Verlag, 1981.

[97] D. Pepyne and C. Cassandras. Optimal control of hybrid systems in manufacturing.
In Proceedings of the IEEE, volume 88, pages 1108–1123, Jul 2000.

[98] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall
PTR, NJ, USA, 1981.

[99] C. A. Petri. Concepts of net theory. In Mathematical Foundations of Computer
Science, pages 137–146, 1973.

[100] C. A. Petri. Concurrency. In Advanced Course on General Net Theory of Processes
and Systems, pages 251–260, 1975.

[101] C. A. Petri. Introduction to general net theory. In Advanced Course on General Net
Theory of Processes and Systems, pages 1–19, 1975.

[102] C. A. Petri. Tools of general net theory (abstract). In PNPM ’87: The Proceedings of
the Second International Workshop on Petri Nets and Performance Models, page 2,
Washington, DC, USA, 1987. IEEE Computer Society.

[103] C. A. Petri and W. Reisig. Petri net. Scholarpedia, 3(4):6477, 2008.

[104] A. Platzer and E. M. Clarke. The image computation problem in hybrid systems
model checking. In Hybrid Systems: Computation and Control, volume 4416 of
Lecture Notes in Computer Science, pages 473–486. Springer–Verlag, 2007.

[105] Plotkin and D. Gordon. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, 1981.

[106] Plotkin and D. Gordon. The origins of structural operational semantics. Journal of
Logic and Algebraic Programming, 60–61:3–15, 2004.

[107] Amir Pnueli. The temporal logic of programs. In SFCS ’77: Proceedings of the
18th Annual Symposium on Foundations of Computer Science, pages 46–57, Wash-
ington, DC, USA, 1977. IEEE Computer Society.

[108] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular differential
inclusions. In Computer Aided Verification, pages 95–104, 1994.

[109] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the 5th Colloquium on International Symposium on
Programming, volume 137 of Lecture Notes in Computer Science, pages 337–351.
Springer Berlin, 1982.

132

References

[110] M. Rem. Partially ordered computations, with applications to vlsi-design. In J.W.
de Bakker and J. van Leeuwen, editors, Foundations of Computer Science IV, part
2., volume 159 of Mathematical Centre Tracts, pages 1–44. 1983.

[111] Stuart Russell and Peter Norvig. Artificial intelligence: A modern approach. Pren-
tice Hall, 1st edition, 1995.

[112] Géraud Sénizergues. The equivalence problem for deterministic pushdown au-
tomata is decidable. ICALP ’97: Proceedings of the 24th International Colloquium
on Automata, Languages and Programming, pages 671–681, 1997.

[113] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
1997.

[114] J. Slocum and D. Sonnevel. The 15 Puzzle. Slocum Puzzle Foundation, 2006.

[115] T. Smigelski, T. Murata, and M. Sowa. A timed petri net model and simulation of
a dataflow computer. In International Workshop on Timed Petri Nets, pages 56–63,
Washington, DC, USA, 1985. IEEE Computer Society.

[116] M. Song, T. J. Tarn, and N. Xi. Integration of task scheduling, action planning, and
control in robotic manufacturing. In Proceedings of the IEEE, volume 88, pages
1097–1107, Jul 2000.

[117] Colin Stirling. Decidability of DPDA equivalence. Theoretical Computer Science,
255(1–2):1–31, 2001.

[118] Herbert Tanner, Jorge Piovesan, and Chaouki T. Abdallah. Discrete asymptotic
abstractions of hybrid systems. In 45th IEEE Conference on Decision and Control,
pages 917–922, San Diego, CA, USA, 2006.

[119] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic manage-
ment: A study in muti-agent hybrid systems. IEEE Transactions on Automatic
Control, 43(4):509–521, 1998.

[120] P. Varaiya. Smart cars on smart roads: Problems of control. IEEE Transactions on
Automatic Control, 38:195 – 207, 1993.

[121] S. Yovine. KRONOS: A verification tool for real-time systems. Springer Interna-
tional Journal of Software Tools for Technology Transfer, 1:123–133, 1997.

133

