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Abstract

Talebi, A. 2008. The relation between geometry, hydrology and stability of complex
hillslopes examined using low-dimensional hydrological models, Doctoral thesis,
Wageningen University, Wageningen, The Netherlands.

The hydrologic response of a hillslope to rainfall involves a complex, transient
saturated-unsaturated interaction that usually leads to a water table rise. An increase of
saturated groundwater flow can act as the triggering mechanism for slope failure. To account
for the three-dimensional hillslope shape in which the groundwater flow and storage
processes take place, simple (low-dimensional) but physically realistic models that represent
hydrological processes at the hillslope scales are needed for reliable simulation of hillslope
stability at the landscape scale. In this thesis the focus is on investigating the relation between
hillslope geometry, hillslope hydrology and slope stability in complex hillslopes and hollows.

Several models have been presented in this thesis which examine the stability of nine
characteristic hillslope types (landform elements) with three different profile curvatures
(concave, straight and convex) and three different plan shapes (convergent, parallel and
divergent). In addition to testing our models for nine characteristic hillslope types, a general
relationship between plan shape and profile curvature of landform elements and the factor of
safety is derived for a predefined hillslope length scale. Our results show that slope stability
increases when profile curvature changes from concave to convex. In terms of plan shapes,
changing from convergent to divergent, slope stability increases for all length profiles. Our
analyses also show that the minimum safety factor occurs when the rate of subsurface flow is
maximum. In fact, by increasing the subsurface flow, stability decreases for all hillslope
shapes. Moreover, after a certain period of rainfall, the convergent hillslopes with concave
and straight profiles become unstable faster than others whilst divergent convex hillslopes
remain stable (even after intense rainfall). We also demonstrate that in hillslopes with non-
constant soil depth (possible deep landslides), the ones with convex profiles and convergent
plan shapes have slip surfaces with the minimum safety factor near the outlet region. Finally,
we demonstrate that, in addition to bedrock slope, hillslope shape as represented by plan
shape and profile curvature is an important control on hillslope stability.

With respect to the relation between rainfall occurrence and slope instability, a
probabilistic model of rainfall-induced shallow landslides in complex hollows is also
presented to investigate the relation between return period of rainfall, deposit thickness and
landslide occurrence. A long term analysis of shallow landslides by the presented model
illustrates that all hollows show a quite different behavior from the stability view point.
Finally, we conclude that incorporating a more realistic description of hollow hydrology (the
hillslope-storage Boussinesq model instead of the kinematic wave model) in landslide
probability models is necessary, especially for hollows with a high convergence degree,
which are more susceptible to landsliding. This model helps to theoretically investigate the
relationship between return period of rainfall and landslide occurrence related to soil
production (deposit thickness) in complex hollows.

In summary this thesis aims to understand theoretically how hydrological processes
(subsurface flow and water table dynamics) affect slope stability in complex hillslopes and
hollows. The presented models can widely be applied in many investigations of hillslope
stability analysis because of their relative simplicity (low-dimensional).

Key words: Hillslope geometry, Hillslope hydrology, Hillslope stability, Complex hillslopes,
Modeling shallow landslides, HSB model, HSB-SM model.
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Introduction

1. Introduction

1.1. Problem definition

Landslides are common natural phenomena in many parts of the world. A landslide
event is defined as “the movement of a mass of rock, debris, or earth (soil) down a slope
(under the influence of gravity) (Cruden, 1991). This definition is the most widely used, and
is also adopted by the International Geotechnical Societies UNESCO Working Party on the
World Landslide Inventory (Fell et al., 2000). Landslides constitute one of the major natural
hazards that cause substantial damage to property and loss of life every year across the globe.
The term shallow landslide is used to describe movements by which material is displaced
more or less coherently over a discrete slip surface close to the land surface by disturbing
gravitational forces (shear stress). It is well known that rainfall is the most important and
frequent trigger of landslides in general and of shallow landslides in particular (Giannecchini,
2006). Commonly, it contributes to the triggering of the landslides by means of infiltration
into the slope cover, which causes an increase in the pore pressure value and a decrease in the
soil suction value.

In the study of hydrological processes in landslides, little attention has been paid to
techniques to determine the origin of groundwater and groundwater flow within landslides
(Bogaard et al., 2004). However, several studies have established that hydrological processes
affect the landslide initiation on hillslopes (e.g. Montgomery and Dietrich, 1994; Van Asch et
al., 1996; Terlien, 1997; Ng and Shi, 1998; Iverson, 2000; Onda et al., 2004; Malet et al.,
2005; Matsushi et al., 2006). Shallow landslides are one of the most common types of
landslides, which occur frequently in steep, soil-mantled landscapes in different climatic
zones. In these shallow soils the soil water balance is controlled by infiltration of rain water,
unsaturated percolation and a rapid response of the rise of (perched) groundwater during
storm events (Haneberg and Onder Gocke, 1994). The infiltration of rainfall reduces shear
strength at the slip surface by increasing pore water pressure and increasing soil weight,
resulting in increased landslide movement. Although pore water pressure fluctuation is an
important factor influencing landslide activity, it is difficult to observe its mechanism at
various depths of the slip surface because of the complex hydrogeological structure (7sao et
al., 2005).

Studies of rainfall-induced landslides mainly focus on the statistical relation between
landslide occurrence and rainfall (e.g. Finlay et al., 1997; Terlien, 1998; Dai and Lee, 2001;
Ibsen and Casagli, 2004; Floris and Bozzano, 2007), or on the experimental description of
landslides (e.g. Reichenbach et al., 1998; Au, 1998; Magirl et al., 2007; Matsushi et al.
2006). These approaches are important, but they provide no theoretical framework for
understanding the slope transient pore pressure behaviors in response to rainfall, and its
hydrological and physical influence on the occurrence of landslides.

Some researchers (e.g. Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Borga et
al., 1998; lida, 1999; Rosso et al., 2006; Claessens et al. 2007) have investigated the effect of
hydrological processes on slope stability by using the mathematical methods of slope stability
analysis and modeling. They have defined a soil saturation index which helps predict the
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groundwater table in function of the groundwater flow and rainfall intensity. These models
are based on the assumption that groundwater flow is driven by gravity (kinematic wave
approach), and thus parallel to the ground surface and equal to the total infiltration of rainfall
in the upstream area. From a hydrological view point, these models are limited to moderate to
steep slopes (Hilberts et al., 2004) with a straight or divergent plan shape. This is because
convergent hillslopes tend to concentrate subsurface water into a small area of the hillslope,
thereby generating rapid pore water pressure increases during storms (Sidle and Ochiai,
2006) and this process makes these hillslopes to be more susceptible to landslide occurrence.
Therefore, Kinematic wave models loose their ability to accurately describe the water table
and hydrographs for gentle and convergent hillslopes. Moreover, in assuming steady state
rainfall, these models consequently neglect slope-normal redistribution of groundwater
pressures associated with transient infiltration of rain (/verson, 2000), indicating they are
unable to predict the temporal response of landslides to varying rainfall patterns. Dynamic
models are needed to take into account the transient conditions of hillslope hydrology.

To study the relation between water table dynamics, subsurface flow and slope
stability, several researchers (e.g. Iverson 2000; Tsaparas et al., 2002; Wilkinson et al, 2002;
Frattini et al., 2004; Lan et al., 2005; D’Odorico et al., 2005; Tsai and Yang, 2006;
Salciarini et al., 2006) use numerical models based on the Richards equation (1D or 2D).
Nevertheless, by considering the 1D-2D Richards equation, only the vertical redistribution of
infiltrated rainfall can be examined along with the downslope movement of subsurface flow;
topographic complexity (both surface and subsurface) is usually not represented (Sidle and
Ochiai, 2006). None of these studies present models which account for the effect of the three-
dimensional hillslope shape on storage and hillslope stability. Therefore, in order to improve
our understanding of the role of (three-dimensional) hydrological processes on hillslope
stability, an attempt to incorporate the topographic structure of hydrologic processes in
hillslope stability models is required. These hydrological processes should preferably be
modeled in a low-dimensional yet physically-based manner.

1.2. Objectives of the thesis

In attempting to accurately model the three-dimensional hillslope hydrological
processes, 3D Richards equation models are often used. The 3D Richards equation is highly
non-linear and requires the solution of extremely large systems of equations even for small
problems (Paniconi et al., 2003). Moreover, the parameterization and calibration of these
models is often cumbersome due to the small amount and low accuracy of the available data
(Hilberts, 2006). Therefore, to account for the three-dimensional hillslope shape in which the
groundwater flow and storage processes take place, simple (low-dimensional) but physically
realistic models that represent hydrological processes at the hillslope scale are needed for
reliable simulation of hillslope stability at the landscape scale. The general objective of this
research is to investigate the relation between hillslope geometry, hillslope hydrology and
slope stability in complex hillslopes and hollows. The main core consists of using the low-
dimensional modeling of hillslope hydrological process to study the slope stability in
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complex hillslopes, i.e. hillslopes with different plan shape (convergent, parallel and
divergent) and different profile curvature (concave, straight and convex). The objectives of
this study can, therefore be, divided into the following specific themes:

e To present an analytical hillslope stability model to study the role of topography
(slope gradient, profile curvature and plan shape) on rain-induced shallow landslides.

e To investigate the relation between soil moisture storage and hillslope stability in
complex hillslopes (investigating the effect of neglecting the unsaturated storage on
the assessment of slope stability).

e To evaluate the critical slip surface in complex hillslopes with non-constant soil depth
(deep landsliding) by incorporating the low-dimensional modeling of hillslope
hydrology and a more complex approach of slope stability.

e To present a dynamic low-dimensional hillslope stability model, to investigate the
relation between subsurface flow processes and slope stability in complex hillslopes.

e To generalize a probabilistic hydrogeomorphological model for the stability of
complex hollows by incorporating the low-dimensional (yet physically-based)
hydrological model to investigate the relation between rain return period and landslide
return period in complex hollows.

Therefore, this thesis aims to investigate theoretically how hydrological processes
(subsurface flow and water table dynamics) affect slope stability in complex hillslopes and
hollows. The presented models can be widely be applied in many investigations of hillslope
stability analysis because of their relative simplicity. In the following an introduction will be
given to the models that are used and analyzed in this thesis.

1.3. Low-dimensional modeling of subsurface flow processes for slope

stability in complex hillslopes

Rainfall-induced landslides are triggered hydrologically, i.e. by a rise in the
groundwater depth at the slip plane. This raises the pore water pressure that carries part of the
total weight that acts on the potential slip plane. Subsurface water and the associated pore-
water pressure are the most important factors associated with the occurrence of most
landslides. Because subsurface flow processes control the movement of infiltrated water
through the hillslope, they influence both the temporal and spatial characteristics of the pore
water pressure distribution.

Recently, some researchers (e.g. Troch et al., 2002, 2003; Hilberts et al., 2004, 2007,
Berne et al., 2005) have shown that subsurface flow processes are influenced by plan shape
and profile curvature and the hydraulic properties of the porous medium. The mathematical
description of these flow processes results in the formulation of the 3D Richards equation
which is expensive to solve numerically. To overcome difficulties associated with three-
dimensional models, a series of low-dimensional hillslope models have been developed
(Troch et al., 2002, 2003). These models are able to treat geometric complexity in a simple
way based on a concept presented by Fan and Bras (1998), resulting in a significant
reduction in model complexity. This reduction of the dimensionality is achieved by
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introducing the subsurface storage capacity function, S, . This function (Fan and Bras, 1998)

defines the thickness of the pore space along the hillslope and accounts for plan shape,
through the width function, and bedrock profile curvature, through the soil depth function.
Assuming kinematic wave subsurface flow, Troch et al. (2002) derived the following

equation:

oS oS oz 0’z

—=k——+kS—+ 1.1
Vo ™ oo T o ) (5

where f'is the drainable porosity, S is the saturated storage, & is the hydraulic conductivity, N
is the recharge rate, w is the width function, z is the elevation and x is the horizontal distance
to the hillslope crest. At any position along the hillslope, the relative saturation of the soil
(wetness index) can be defined as: o(x) = S(x)/S,(x) which varies between 0 and 1.

The resulting hillslope-storage kinematic wave model shows quite different dynamic
behavior during a free drainage and a recharge experiment (7roch et al., 2002; Hilberts et al.,
2004). The authors conclude that the kinematic wave assumption is limited to moderate to
steep slopes, and that for more gentle slopes a new model formulation based on the
Boussinesq equation would be necessary. In Troch et al. (2003) the hillslope-storage
Boussinesq (HSB) model together with several simplified versions (e.g. a linearized version)
are derived and evaluated under free drainage and recharge scenarios. Troch et al. (2003)
reformulated the continuity and Darcy equations in terms of storage along the hillslope,
which leads to the hillslope-storage Boussinesq (HSB) equation for subsurface flow in

hillslopes:
0S" kcosp 0 |S'(0S" S'ow A
= —|—| —————||+ksinf—+ 1.2
4 ot f 8x'[w(8x' w@x’ﬂ 'Béx' Shw (12)

where £ is the hydraulic conductivity, # is the slope angle, x' is distance to the outlet

measured parallel to the impermeable layer and S’ is the saturated storage at a given distance
x" from the divide measured perpendicular to the bedrock. In this manner, the 3D soil mantle
is collapsed into a 1D storage capacity profile, and thus the governing equation is expressed
in terms of hillslope storage instead of water table height. The comparison between the
hillslope-storage Boussinesq and Richards’ equation models for various scenarios and
hillslope configurations shows that the HSB model is able to capture the general features of
the storage and outflow responses of complex hillslopes (Paniconi et al. 2003). In order to
analyze the effect of non-constant profile curvature, Hilberts et al., (2004) developed the
HSB model for complex hillslopes (hillslopes with different plan shape and profile
curvature). Therefore, by calculating the saturated storage at each time step of the simulation,
hillslope stability can be investigated for dynamic hydrological conditions. For long term
analysis, the linearized steady-state solution of the HSB equation (Berne et al., 2005) can also
be used to investigate the relation between rainfall characteristics (intensity and duration),
water table depth and slope stability corresponding to the growth of colluvial deposits in
complex hollows.

Generally, slope stability studies are based on the calculation of the factor of safety
(FS) considering a failure surface. Among the slope stability analysis methods, the infinite
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slope stability assumption has been widely applied in many investigations (e.g. Montgomery
and Dietrich, 1994; Wu and Sidle, 1995; Van Beek, 2002; Borga et al., 2002; D’Odorico and
Fagherazzi, 2003; Hennrich and Crozier, 2004; Claessens, 2005: Rosso et al., 2006) because
of its relative simplicity, particularly where the thickness of the soil mantle is much smaller
than the length of the slope and where the failure plane is approximately parallel to the slope
surface. For hillslopes it is common to define the safety factor as the ratio of the available

shear strength to the minimum shear strength needed for equilibrium. Shear strength (S, ) is a

combination of forces, including the slope normal component of gravity or normal stress
(o,), pore pressure (u) within the material, which counteracts the normal stress, total

cohesion of the material (c,), and the angle of internal friction (¢) (see Figurel.l). The
driving force that may cause slope failure is shear stress (7, ), the slope parallel component of

gravity (W) (Figure 1.1).

Figure 1.1: Definition sketch of cross section of a hillslope corresponding to the force diagram for
translational landslides (modified from Ritter, 2004).

As we will show, all presented models in this thesis are composed of three parts: a
topography model, a hydrological model and a slope stability model. By using a theoretical
topography model based on the three-dimensional soil mantle (Evans, 1980) and Fan and
Bras’s work (1998) on collapsing the three-dimensional soil mantle into a one-dimensional
profile, the stability of nine characteristic hillslope types (landform elements) with three
different profile curvatures (concave, straight and convex) and three different plan shapes
(convergent, parallel and divergent) has been studied. For the hydrological model, a steady-
state hydrological model (based on kinematic wave hydrology) of hillslope saturated storage
(Troch et al., 2002), applicable to a wide range of complex hillslopes, has been used.
Moreover, to overcome the limitations of a kinematic wave hydrology in gentle slopes
(Hilberts et al., 2004), the HSB model (Troch et al., 2003; Hilberts et al., 2004; Berne et al.,
2005; Hilberts et al., 2007) has been used for determining shallow subsurface flow and water
table depth for transient conditions.
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Finally, by incorporating the relative saturated storage (o , the ratio between actual
storage and storage capacity) in the safety factor formulation, the average shallow landslide

safety factor for complex hillslopes can be presented as follows:
L

[l @+-0()y, (x)+ o(x)y,1D(x)cos’ f(x)tan pdx
FS =2 (1.3)

[[a= ()7, (x)+ o(x)y,1D(x)sin B(x) cos A(x)dx

where y,, 7, and y, are respectively the moist, saturated and buoyant bulk density.

Equation 1.3 illustrates how with varying the topographic characteristics and hydrological
processes, slope stability changes in complex hillslopes.

To compare the stability of hillslopes with non-constant soil depth (deep landsliding)
and different geometric characteristics and to find the critical slip surface in these hillslopes a
more complex approach of slope stability analysis (Janbu, 1954; Bishop, 1955) has also been
incorporated in the kinematic wave hydrology model based on relative saturated storage.
Moreover, a linearized version of the HSB model (Berne et al., 2005) has been combined
with the infinite slope method to analyze the stability of complex hollows corresponding to
the long-term evolution of colluvial deposits through a probabilistic soil mass balance.

The advantages of the models presented in this thesis can be summarized as: (i) they
operate at the hillslope scale and allow to more realistically simulate the space-time evolution
of saturated storage; (ii) they are easy to connect to more complex slope stability methods (e.
g. Bishop and Janbu methods) to find the critical slip surface in complex hillslopes; (ii1) they
mimic the three-dimensional behavior of saturated storage and subsurface flow well
compared to the 3D Richards equation; (iv) they can form the basis of a simple yet effective
landscape scale model of slope stability (especially for complex hillslopes); and finally (v)
the presented models in this research help to understand theoretically how geometric
characteristics and hydrological processes affect slope stability in complex hillslopes and
hollows.

1.4. Thesis outline

Besides this introduction (Chapter 1), which sketches the outline of the work, this
thesis contains five chapters with different aspects covering the main objective and research
themes mentioned in the previous paragraph. These chapters (2-5) are based on and
structured as scientific papers published in or submitted to peer reviewed journals
(introduction, methodology, results, discussion, conclusions). Chapter 2 presents a steady-
state analytical slope stability model for complex hillslopes. We apply our analytical model to
investigate the stability of nine different hillslope types with a constant length scale by a
hydrology index (relative saturated storage). In Chapter 3, the analytical model (presented in
Chapter 2) has been applied to investigate the effect of neglecting the unsaturated storage on
slope stability. This model is applied also to hillslopes with non-constant soil depth to
compare the stability of different hillslopes and to find the critical slip surface in hillslopes
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with different geometric characteristics. In Chapter 4, a low-dimensional dynamic slope
stability model, coupling the HSB model (7roch et al., 2003; Hilberts et al., 2004) and the
infinite slope stability model for complex hillslopes (7alebi et al., 2007a), is presented. This
model is applied to investigate the relation between rainfall, soil moisture storage, subsurface
flow and slope stability in complex hillslopes. With respect to the relation between rainfall
occurrence and slope instability, in Chapter 5 a probabilistic model of rainfall-induced
shallow landslides in complex hollows is presented to investigate the relation between return
period of rainfall, deposit thickness and landslide occurrence. This model is based on an
infinite-slope stability analysis for complex hollows, a more realistic description of hollow
hydrology based on the linearized HSB model (Berne et al., 2005), a statistical model relating
intensity, duration, and frequency of extreme precipitation, and a probabilistic soil mass
balance (D ’Odorico and Fagherazzi, 2003). Therefore, this model helps to theoretically
investigate the relationship between return period of rainfall and landslide occurrence related
to soil production (deposit thickness) in complex hollows. Finally, Chapter 6 summarizes the
findings of this thesis and provides some recommendations for future research.
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Chapter 2

A steady-state analytical slope stability model
for complex hillslopes

This chapter is based on the published paper Talebi, A., P. A. Troch and R. Uijlenhoet
(2007), A steady-state analytical slope stability model for complex hillslopes, Hydrological
Processes, 21, doi:10.1002/hyp.6881.
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2. A steady-state analytical slope stability model for complex

hillslopes

Abstract

This paper presents a steady-state analytical hillslope stability model to study the role
of topography on rain-induced shallow landslides. We combine a bivariate continuous
function of the topographic surface, a steady-state hydrological model of hillslope saturated
storage, and the infinite slope stability assumption to investigate the interplay between terrain
characteristics, saturated storage within hillslopes and soil mechanics. We demonstrate the
model by examining the stability of nine characteristic hillslope types (landform elements)
with three different profile curvatures (concave, straight and convex) and three different plan
shapes (convergent, parallel and divergent). For each hillslope type, the steady-state saturated
storage corresponding to given recharge rates is computed for three different average bedrock
slope angles. Based on the infinite slope stability method, the factor of safety (FS) along the
hillslopes is determined. Our results demonstrate that in the steep slopes, the least stable
situation occurs in hillslopes with convergent plan shapes and concave length profiles, while
the convex ones are more stable. In addition to testing our method for nine characteristic
hillslope types, a general relationship between plan shape and profile curvature of landform
elements and the factor of safety is derived for a predefined hillslope length scale. Our results
show that slope stability increases when profile curvature changes from concave to convex.
In terms of plan shapes, changing from convergent to divergent, slope stability increases for
all length profiles. However, we find that the effect of plan shape is more pronounced for
convex length profiles. Overall, we demonstrate that, in addition to bedrock slope, hillslope
shape as represented by plan shape and profile curvature is an important control on hillslope
stability.

Keywords: slope stability, hillslope hydrology, kinematic wave.
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2.1. Introduction

In general, triggering of shallow landslides is controlled by the strength of the soil and
the geometry of a slope, although other factors like soil depth (fida, 1999) and storm
properties (D ’Odorico et al., 2005) also play an important role in the mechanism of landslide
triggering. For shallow translational landsliding, topography, particularly slope angle and
convergence, plays an important role in controlling stability (Hennrich and Crozier, 2004).
Field studies and numerical simulation have shown that bedrock profile curvature and
hillslope plan shape are the most significant controls on subsurface flow and saturation
(Troch et al., 2003). Since subsurface flow processes are strongly affecting slope stability, the
occurrence of landslides is thus controlled twofold by topography (Hennrich and Crozier,
2004). Montgomery and Dietrich (1994) and Borga et al. (2002) have shown that shallow
landslides are strongly controlled by surface topography through subsurface flow
convergence, increased soil saturation, and shear strength reduction. [lida (1999) states that
slope angle, slope shape (e.g. concavity or convexity) and the soil (regolith) depth are
important controlling factors of shallow landsliding.

In quantitative slope stability studies, the effect of terrain on soil pore pressure during
periods of extended rainfall has been modeled in two ways: by means of topographic
(wetness) indexes (e.g. Montgomery and Dietrich, 1994) and through detailed modeling of
the 3-D flow processes and unsteady rainfall infiltration in hillslopes (e.g. Iverson, 2000;
Wilkinson et al., 2002 and D’Odorico et al., 2005). Montgomery and Dietrich (1994)
combined a contour-based steady-state hydrologic model with the infinite slope stability
model to define slope stability classes based upon slope and specific catchment area.
Wilkinson et al. (2002) presented a more elaborate model that couples dynamic modeling of
the hydrology with Janbu's non-circular slip surface stability analysis (Janbu, 1954) and
Bishop's circular method (Bishop, 1955), accounting for soil cohesion, varying root strength
and vegetation weight.

The approach taken in this paper is similar to that of Montgomery and Dietrich (1994) in
that it combines steady-state hydrologic concepts with the infinite slope stability model, but
has an important difference, viz. we present an analytical expression for the computation of
the factor of safety (FS) for the different hillslope types that constitute a landscape.

This paper describes the development of a steady-state analytical hillslope stability
model. We start by modeling profile curvature and plan shape of the land surface using a
bivariate continuous function proposed by Evans (1980). This allows to analytically derive
the hillslope width function and area function. Combining the hillslope width function with
an assumed soil depth function and effective porosity results in the formulation of the soil
moisture storage capacity function. The space-time evolution of saturated storage along such
hillslopes is modeled by means of the mass conservation equation and a kinematic form of
Darcy's equation. The resulting quasi-linear wave equation can be solved analytically for
given boundary and initial conditions (7roch et al., 2002). The steady-state storage profile
corresponding to a given recharge rate forms the basis for the slope stability analysis. The
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infinite slope stability model leads to an analytical expression for the factor of safety as
function of position along the hillslope.

Finally, we apply our analytical model to investigate the stability of nine different
hillslope types with a constant length scale. These nine characteristic hillslope types are
formed by combining three profile curvatures (concave, straight, convex) with three plan
shapes (convergent, parallel, divergent), and can be considered basic landform elements
(Pennock et al., 1987). We generalize our results by studying the relation between slope
angle, profile and plan curvature, and landform stability.

2.2. Model formulation
2.2.1. Hillslope geometry

We consider only catchments with moderate to steep terrain and shallow (constant soil
depth), permeable soil where subsurface storm flow is the dominant flow mechanism. To
study the effect of topography on rain-induced shallow landsliding, we characterize the
hillslopes of such catchments by the combined curvature in the gradient direction (profile
curvature) and the direction perpendicular to the gradient (plan curvature). The profile
curvature is important because it controls the change of velocity of mass flowing down the
slope. The plan curvature defines topographic convergence which is an important control on
subsurface flow concentration.

One can approximate a certain portion of the topographic surface of a catchment by a
continuous function. Here we use a specific form of the bivariate function, suggested by
Evans (1980), to describe the hillslope shape:
z2(x,y)=E+H(-x/L)" +wy’ 2.1
where z is elevation, x is horizontal distance measured in the downstream length direction of
the surface, y is horizontal distance from the slope centre in the direction perpendicular to the
length direction (the width direction), £ is the minimum elevation of the surface above an
arbitrary datum, H is the maximum elevation difference defined by the surface, L is the total
length of the surface, n is a profile curvature parameter, and @ is a plan shape parameter.
Allowing profile curvature (defined by n) to assume values less than, equal to, or greater than
1 and plan curvature (defined by w) to assume either a positive, zero, or negative value, one
can define nine basic geometric relief forms. Figure 2.1 illustrates the three-dimensional view
of a convergent hillslope on top of a convex bedrock profile explaining the symbols w, 4, d
and H used in this study.

The contour lines of the surface defined by Equation 2.1 can be obtained from the
condition that z is constant, i.e.:

H x n—1
oz . oz dy  0z/ox nL(l_L]
dz=Lde+ Edy =0 L= =

ox oy dx 0z /oy 2wy

(2.2)

Because the streamlines are perpendicular to the contour lines, the following differential
equation defines the streamlines on this surface:
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G L — (23)
dx 0z/0x H ( xj"
nili=2
L L
which has as general solution:
2 2-n
1ny:2LL(1—fj +C (2.4)
n(2-n)H L

where C is an integration constant. A specific value of C can be found by selecting a point on
the surface which then defines the streamline passing through that point. Equation 2.4
describes all streamlines generated by Equation 2.1 and allows us to derive the shape of a
hillslope (a stream tube) in the length direction. Figure 2.2 shows the location of the slope
divides (streamlines) as well as some contour lines, generated by specific geometric relief
forms, each belonging to a different basic type (for parameter values see Table 2.1).

x=0

Figure 2.1: Three-dimensional view of a convergent hillslope on top of a convex bedrock profile.

Due to symmetry about the y=0 axis, the width of the hillslope measured in the y
direction is given by:

w(x)=c, exp{cs (1 —%) "} (2.5)

and

2
¢, =2k (2.6)
n(2-n)H

where ¢, =2exp(C) defines the width of the hillslope at the outlet (x = L) and ¢, defines the

degree of topographic convergence. The hillslope drainage area 4 at a distance x is:

A(x) = jsw(u)du 2.7)
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Figure 2.2: Plan view of the drainage divides (solid lines) and contour lines (dashed lines) for the
nine basic hillslope types of Table 1. The upslope divide of each hillslope is at x=0, so the flow
direction is from right to left. The hillslope length is 100 m and the average bedrock slope angle

is #=20". Hence, H (the maximum elevation difference) is equal to 36.40 m.

Table 2.1: Geometrical parameters for the nine characteristic hillslopes.

Hillslope Profile Plan n o [10° m'] Area*
Nr. Curvature Shape [-] [m?]
plog=05 p/¢=075 p/$=0.9
1 concave convergent 1.5 +3.6 +5.8 +7.3 2441
2 concave parallel 1.5 0 5000
3 concave divergent 1.5 -3.6 -5.8 -7.3 1049
4 straight convergent 1 +3.6 +5.8 +7.3 2162
5 straight parallel 1 0 5000
6 straight divergent 1 -3.6 -5.8 -7.3 2162
7 convex convergent 0.5 +3.6 +5.8 +7.3 1402
8 convex parallel 0.5 0 5000
9 convex divergent 0.5 -3.6 -5.8 -7.3 2268

* This is the area surrounded by two stream lines acting as drainage divides (assuming a maximum
width of 50 m), x=0 and x=100 m.
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2.2.2. Hillslope hydrology

Subsurface flow processes are influenced by plan and profile curvatures and the
hydraulic properties of the porous medium. The mathematical description of these flow
processes results in the formulation of the 3D Richards equation which is difficult to solve
numerically. One way to overcome this problem is to reduce the dimensionality by
introducing the subsurface storage capacity function, S, (Fan and Bras, 1998):

S.(x) =w(x)D(x) f (2.8)
where D(x) is the (width-averaged) soil depth at distance x and f is the specific yield or
effective porosity (also sometimes referred to as drainable porosity). Equation 2.8 defines the
thickness of the pore space along the hillslope and accounts for plan shape, through the width
function, and bedrock profile curvature, through the soil depth function. If d(x) is constant (as
will be assumed in this paper), the bedrock follows the surface defined by Equation 2.1. S(x,7)
represents the saturated storage at a given distance x from the divide and at time ¢:
S(x,t) =w(x)h(x,t) f (2.9)
where A(x,?) is the (width-averaged) saturated depth, measured vertical from the bedrock up.
Subsurface flow rate Q is related to the storage S through Darcy’s equation. In steep
terrain, gravitational forces dominate pressure forces and a kinematic form of Darcy’s
equation becomes a reasonable simplification of the mathematical description of the flow
process (e.g. Fan and Bras, 1998; Hilberts et al., 2004; Rezzoug et al., 2005):
ok S
S f ox

where K is saturated hydraulic conductivity of the soil. Combining Equation 2.10 with the

(2.10)

continuity equation
oS 00
EJFE_ N(t)w(x) (2.11)
and assuming no spatial variability in K and f, one obtains a quasi-linear wave equation in
terms of saturated storage that can be solved analytically with the method of characteristics
(Troch et al., 2002). N in Equation 2.11 is the recharge to the saturated storage and is defined
as a vertical flux. For shallow permeable soils during heavy rainfall the recharge rate will be
close to the rainfall intensity.

Given the hydrological conditions in steep terrain, it is reasonable to assume the
following initial and boundary conditions:
{S(x,O) =g(x), 0<x<L

S(0,1) =0, vt @12)

where g(x) is the initial saturated storage along the hillslope. When N is considered to be a

constant recharge rate the steady-state subsurface flow rate Q(x) = NA(x) (from Equations
2.11 and 2.7 and the corresponding storage profile is given by (from Equations 2.10 and

2.1)):

__ (X .
S(x)—nKH(l Lj NA(x) (2.13)

s
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At any position along the hillslope the steady-state relative saturation of the soil is now given
by:
S(x)

o(x)= S (x) =a(x)

where 7'= KD is soil transmissivity and a(x) = A(x)/w(x) is drainage area per unit hillslope

E 1
T |82/8x|

(2.14)

width. The variable o describes the steady-state wetness of the soil and is similar to the
wetness index W derived by Montgomery and Dietrich (1994).

2.2.3. Hillslope stability

Slope stability studies are based on the calculation of the factor of safety (FS)
considering a failure surface. For hillslopes it is common to define the safety factor as the
ratio of the available shear strength to the minimum shear strength needed for equilibrium.
The infinite slope stability hypothesis has been widely applied in many investigations of
natural slope stability (e.g. Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Van Beek,
2002; Borga et al., 2002; D’Odorico and Fagherazzi, 2003; Zaitchik et al., 2003; Hennrich
and Crozier, 2004; Claessens, 2005) because of its relative simplicity, particularly where the
thickness of the soil mantle is much smaller than the length of the slope and where the failure
plane is approximately parallel to the slope surface. The infinite slope model imposes the
condition that the groundwater flow is parallel to the slope surface. Because of the geometry
of an infinite slope, overall stability can be determined by analyzing the stability of a single,
vertical element in the slope. Under these assumptions and with stability expressed by the
factor of safety, F1S, the infinite slope stability equation is given by (Wu and Sidle, 1995; Van
Beek, 2002):

¢, +[(D = h(x))y, + h(x)y,]cos’ ftang
(D~ h(x))7,, +h(x)y,]sin fcos

where ¢, is the total soil cohesion, ¢ is the angle of internal friction, D is the depth to the

FS(x) =

(2.15)

shear plane, f is the local slope angle, 4 is the water level above this plane, and y,, y, and
7, » are respectively the moist, saturated and buoyant bulk specific weights.

Applying Equation 2.15 together with the solution for o(x) (Equation 2.14), we can
compute the shallow landslide safety factor for cohesionless soils as follows:
Fs(r) - [1=0(Dp, +o(p,lang

[A-o(x))p, +o(x)p,]tan f

where FS(x) i1s the factor of safety at location x along the hillslope, p, 1s the moist soil

(2.16)

density, p, 1is the saturated soil density and p, is the buoyant density defined as
P, =P, —p,, where p  1is density of water. If one assumes that the soil density above and
below the water table is the same and equal to p, , then Equation 2.16 can be written as:

R P, || tang
FS = {1 O'(x)( Py H—tanﬂ (2.17)
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Again, Equation 2.17 is the basic equation used by Montgomery and Dietrich (1994) to study
shallow landslides. It should be noted that Equation 2.17 defines the factor of safety at a
given location along the hillslope where soil depth and slope angle are constant. In order to

derive the FS for the entire hillslope given a steady-state rainfall input, the following
expression is proposed:

j{l - O'(x)(pwﬂ cos? B(x)dx tan ¢
e,

s

FS ="

(2.18)

L

J.sin L(x)cos B(x)dx

0

2.2.4. Analytical solution for straight hillslopes
If S is constant along the hillslope, Equation 2.18 reduces to:

F_Sz[l—E(&ﬂM (2.19)
p, ) |tanf

where o is the average relative saturation along the hillslope. Note that Equation 2.19 is
simply the average of Equation 2.17. The assumption of a constant £ is equivalent to taking

n =1 in Equation 2.1. In that case it is possible to obtain an analytical solution to Equation
2.19. If n =1 (straight hillslopes) the width function (Equation 2.5) reduces to:

w(x) =w, exp(— %x} (2.20)

where w, is the hillslope width at the upstream divide (x = 0) . Note that Equation 2.20 is the

exponential width function, which has been employed previously in hillslope hydrology
(Troch et al., 2003; Berne et al., 2005). As a consequence the hillslope drainage area
upstream of x becomes:

A(x) = WOIZ {1 - exp(—%xﬂ 2.21)

2.

Recall that in the steady-state the subsurface flow rate at location x is simply Q(x) = NA(x).
Therefore, the saturated storage profile for straight hillslopes (where 0z/0x =—H /L) can be
calculated as:

S(x)= %{1 - exp(— %xﬂ (2.22)

Dividing by the subsurface storage capacity function(S,(x)=w(x)df ) leads to the

following steady-state relative soil saturation profile:

o(x)= Za)]]Z 5 {exp( 2ZL xj - 1} (2.23)
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Note that this reduces to a triangular profile (o(x) = NLx/(K,DH)) in the limit where @

approaches 0 (parallel hillslopes). Finally, taking the average of Equation 2.23 between x =0
and x = L yields:

o 2
A _| exp 2001112, (2.24)
20K D | 20L H

which reduces to o = NL? /(2K DH) for parallel hillslopes (@ =0). Substitution of

Equation 2.24 in Equation 2.19 gives the desired analytical solution for the hillslope factor of
safety (F_S ).

2.3. Stability of basic hillslope types

To study the effect of plan shape and profile curvature of the hillslope on its stability,
we apply the model to a set of nine characteristic hillslopes. The nine characteristic hillslopes
consist of three plan shapes (convergent, parallel, and divergent) and three profile curvatures
(concave, straight, convex). Figure 2.2 illustrates the nine basic hillslope types used in this
study. The parameters used to generate them are listed in Table 2.1. The horizontal length of
the nine hillslopes is chosen to be constant (L = 100 m), whereas the average slope angle will
be varied in subsequent applications.

These nine hillslopes represent a wide range of landforms traditionally considered in
hydrology and geomorphology (Pennock et al., 1987). For different hillslopes within a
catchment each individual hillslope type can be fitted using the geometrical scaling
parameters H, L, and n to the observed terrain profile curvature, and a proper choice of @ to
represent plan curvature (obviously, @ =0 for parallel hillslopes). In order to reduce the
number of free parameters that define the topographic surface of the hillslope we take @
equal to +(H /L") for convergent hillslopes and equal to —(H /L*) for divergent hillslopes.

This has the added advantage that streamlines do not converge immediately on the surface
when the average gradient approaches zero (see Equation 2.6). A maximum hillslope width
of 50 m is assumed, which defines the value of ¢, in Equation 2.5.

Table 2.2: Hydrological and geotechnical parameters.

Parameter group Parameter name Symbol Units Value
Hydrological Saturated hydraulic conductivity K ms’ 0.0001
Effective porosity f - 0.34
Recharge N mm d’! 10
Geotechnical Total soil cohesion c, kN m™ 0
Effective angle of internal friction @ ° 40
Slice length dx m 0.5
Saturated soil density 0, kgm” 1600
Density of water 0, kg m™ 1000

21



Chapter 2

Figure 2.3 shows the relative saturated storage along these hillslopes and Table 2.2 lists
the values of the hydrological variables used to generate these storage profiles. The effect of
plan shape and profile curvature on saturated storage is clear from inspection of Figure 2.3.
Hillslopes with convergent plan shape (1, 4 and 7) and concave profile curvature (1, 2 and 3)
have the largest saturated section. This should have important consequences on slope
stability, as will be discussed hereafter.
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Figure 2.3: Relative saturated storage along the nine basic hillslopes of Table 2.1 for a constant
recharge rate of 10 mm d”' (solid line: B/ ¢$=0.5; dashed line: f/¢$=0.75; dotted line: B/¢=0.9).

Relative storage in excess of one indicates surface saturation and overland flow regions.

Figure 2.4 reports the values of the average safety factor (Equation 2.18) for each
hillslope and for three different average bedrock slope angles. For all profile curvatures, the
overall slope stability increases when plan shape changes from convergent to divergent. For
the parallel hillslopes (2, 5, and 8) the F1S slightly drops when profile curvature changes from
convex to concave. For the convergent hillslopes (1, 4, and 7) the same trend is observed: the
F'S increases slightly when profile curvature changes from concave to convex. In both cases,
this is due to a decrease in saturated storage near the outlet when profile curvature changes
from concave to convex (see Figure 2.3). For divergent hillslopes (3, 6, and 9) the FS stays
almost the same, independent of profile curvature. This is due to the relatively small storages
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in these hillslopes. In conclusion, it seems that the convergent concave hillslope (hillslope 1
in Figure 2.2) is the least stable among the nine basic hillslope types studied here and will be
prone to failure as the constant rainfall rate would increase.
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Figure 2.4: Factor of safety for the nine basic hillslopes of Table 2.1 as computed using Equation
2.18. Slope angle is equal to 20°, 30°, and 36° (£ /¢ = 0.5, 0.75, and 0.9) in the first, second and

third panels, respectively.
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In order to generalize these results we have computed the factor of safety for a wider
range of plan shapes and profile curvatures. Figure 2.5 presents these results, where FS is
plotted in (n,®) space, again for three different ratio’s of the average bedrock slope angle to
the effective angle of internal friction (#/¢ = 0.5, 0.75, and 0.9). For convenience the
locations of the nine basic hillslopes treated above have been indicated as well. We see that
the general shape of the FS surface does not change much with increasing bedrock slope
angle, so that we can limit our discussion of the figure to the most critical case (/¢ = 0.9).

In general, the maximum stability is reached for small values of n, i.e. for convex
hillslopes, and for negative values of w, i.e. for divergent hillslopes. For concave bedrock
profiles (n>1), stability decreases slightly when plan shape changes from divergent (w<0) to
convergent (@>0). This is due to the increasing saturated storage near the outlet for
convergent hillslopes. For strongly convex profiles (n<0.5) there is a large effect of plan
shape: as plan shape changes from divergent to convergent, the FS drops quickly (the contour
lines of the FS surface are closely aligned). As a final result, when profile curvature changes
from concave to convex, stability increases. However, this effect is more pronounced when it
changes from straight to convex (see Figure 2.5).

2.4. Discussion and conclusion

The approach described in this paper provides an analytical hillslope stability model for
assessing the relation between slope geometry and slope stability. The model consists of a
topography model, a steady-state hydrological model and the infinite slope stability
assumption. The presented hydrological model takes account of the effects of topography on
hillslope saturated storage through the plan shape and profile curvature. By varying these two
parameters, nine basic hillslope shapes were used to compute their factor of safety (FS) for
given hydraulic and hydrologic conditions. The proposed hillslope stability model generalizes
the results from other studies (e.g. Montgomery and Dietrich, 1994; Wu and Sidle, 1995) in
that slope geometry and its effect on steady-state saturated storage is explicitly taken into
account in a closed (analytical) form.

We have demonstrated that these nine basic hillslopes show quite different behavior from
the stability viewpoint. Based on this analysis, it is shown that in addition to average bedrock
slope angle, topographic characteristics (especially profile curvature and plan shape) of the
hillslope control the subsurface flow and this process affects slope stability by changing the
soil strength. In particular, when the width function (plan shape) changes from convergent to
divergent, hillslope stability generally increases. However, this effect is more pronounced for
convex length profiles. As a result, for a given plan shape (convergent, parallel or divergent)
convex hillslopes are generally more stable than either concave or straight hillslopes,
particularly when the average bedrock slope angle approaches the effective angle of internal
friction.
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Figure 2.5: Relation between the factor of safety and profile curvature and plan shape changes for
three different bedrock slope angles (/¢ = 0.5, 0.75, and 0.9 in the first, second and third panels,
respectively). The bold numbers correspond to the nine basic hillslope types of Table 2.1 and Figure

2.4.
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Several assumptions have been made to derive the relationships in this approach.
Although the assumptions incorporated in the model limits its use, the model can determine
relative stability in different hillslopes with different profile curvature and plan shape. The
first assumption is the use of the kinematic wave approximation for subsurface flow. The
advantages of the kinematic wave approximation are, first, that analytical solutions exist, and
second, that the model accounts explicitly for the profile curvature and plan shape (Troch et
al., 2002). The main disadvantage of the kinematic wave approximation is that it does not
account for diffuse drainage, hence the model is not applicable for gently to moderately
sloping terrains. It should be noted that the key element for initiation of shallow landslides is
the average bedrock slope angle, such that instability takes place only in steep sloping terrain.
Therefore this assumption is not expected to have a large influence on the slope stability
analysis.

Another assumption is that soil density above and below the water table is the same in
the steady-state condition. Future research will attempt to relax this assumption by combining
the saturated storage hydrological model with a steady-state unsaturated storage hydrological
model. This will allow us to derive soil moisture profiles defined by the constant rainfall rate
and the lower boundary condition (i.e. the groundwater level) from which the unsaturated soil
density can be computed.

The steady-state hydrologic model requires the assumption that the predicted spatial
pattern of critical steady-state rainfall represents that which occurs during an unsteady,
landslide producing rainfall event (Claessens, 2005). In general, the notion of critical rainfall
should only be considered as a relative measure of failure potential (Borga et al., 2002). For
the model presented in this paper, soil properties (hydraulic conductivity, soil depth and
drainable porosity) are considered to be spatially uniform over the hillslope domain and
constant in time.

It is important to recognize that all forces in the infinite slope analysis are assumed to
vary only in the direction normal to the ground surface. The mathematical simplicity that
results from this assumption makes the infinite slope analysis well-suited for drawing
conclusions about the effects of ground water flow on slope stability (Borga et al., 2002). The
performance of the infinite slope hypothesis adopted here with respect to alternative
approaches to estimate slope stability (such as the Bishop and Janbu methods) is the subject
of ongoing investigations. The presented model proves to be an efficient tool for evaluating
slope stability in hillslopes with different geometrical characteristics. One of its limitations
lies in the steady-state hydrology. More research is needed to account for a dynamic slope
stability model.
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3. Soil moisture storage and hillslope stability

Abstract

Recently, we presented a steady-state analytical hillslope stability model to study rain-
induced shallow landslides. This model is based on kinematic wave dynamics of saturated
subsurface storage and the infinite slope stability assumption. Here we apply the model to
investigate the effect of neglecting the unsaturated storage on the assessment of slope
stability in the steady-state hydrology. For that purpose we extend the hydrological model to
compute the soil pore pressure distribution over the entire flow domain. We also apply this
model for hillslopes with non-constant soil depth to compare the stability of different
hillslopes and to find the critical slip surface in hillslopes with different geometric
characteristics. In order to do this, we incorporate more complex approaches to compute
slope stability (Janbu’s non-circular method and Bishop’s simplified method) in the steady-
state analytical hillslope stability model. We compare the safety factor (FS) derived from the
infinite slope stability method and the more complex approach for two cases: with and
without the soil moisture profile in the unsaturated zone. We apply this extended hillslope
stability model to nine characteristic hillslope types with three different profile curvatures
(concave, straight, convex) and three different plan shapes (convergent, parallel, divergent).
Overall, we find that unsaturated zone storage does not play a critical role in determining the
factor of safety for shallow and deep landslides. As a result, the effect of the unsaturated zone
storage on slope stability can be neglected in the steady-state hydrology and one can assume
the same bulk specific weight below and above the water table. We find that steep slopes
with concave profile and convergent plan shape have the least stability. We also demonstrate
that in hillslopes with non-constant soil depth (possible deep landslides), the ones with
convex profiles and convergent plan shapes have slip surfaces with the minimum safety
factor near the outlet region. In general, when plan shape changes from divergent to
convergent, stability decreases for all length profiles. Finally, we show that the applied slope
stability methods and steady-state hydrology model based on the relative saturated storage
can be used safely to investigate the relation between hillslope geometry and hillslope
stability.

Keywords: soil moisture, hillslope stability, hillslope hydrology.

29



Chapter 3

3.1. Introduction

Slope instability in steep mountainous terrain is a major problem to land managers
worldwide. One of the types of hillslope instability occurs in the form of shallow landslides.
Shallow landslides are one of the most common types of landslides in steep, soil-mantled
landscapes in different climate zones. Recently, theoretical models have been developed to
predict how landslide susceptibility depends on topographic and hydrologic variables (e.g.
Sidle, 1992; Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Borga et al., 2002; Van
Beek, 2002; Claessens, 2005). In all of these models, topography has been introduced as a
factor affecting slope stability. The effect of terrain on soil pore pressure during periods of
extended rainfall has been modeled in two ways: by means of topographic (wetness) indices
(e.g. Montgomery and Dietrich, 1994; Claessens, 2005; Rosso et al., 2006) and through
detailed modeling of the 3-D flow processes along hillslopes (e.g. Cai et al., 1998; Wilkinson
et al., 2000). Montgomery and Dietrich (1994) presented a simple model for the topographic
influence on shallow landslide initiation by combining a contour-based steady-state
hydrologic model with the infinite slope stability model to define slope stability classes based
upon slope and specific drainage area. Montgomery et al. (1998) developed this model further
(SHALSTAB) to evaluate slope instability associated with the potential occurrence of
shallow landsliding. Although several applications show this approach to be capable of
capturing the spatial variability of shallow landslide hazard, it only accounts for straight
hillslopes with infinite length profile, neglecting other topographic characteristics (e.g. plan
shape and profile curvature, as well as variable soil depth).

Anderson and Kemp (1991) presented a combined detailed hydrology and stability
model (CHASM) that allows the simulation of changes in pore water pressures in response to
individual rainfall events, and consider their role in maintaining slope stability. Further
developments of this model presented by Wilkinson et al. (2002) couples dynamic modeling
of the hydrology with Janbu’s non-circular slip surface stability analysis (Janbu, 1954),
accounting for soil cohesion, slope plan topography and vegetation.

To investigate the key role of geometric characteristics of hillslopes (plan shape and
profile curvature) on shallow landslides, Talebi et al. (2007a) presented a steady-state
analytical hillslope stability model based on kinematic wave subsurface storage dynamics.
Their analytical approach is similar to the method of Montgomery and Dietrich (1994) in that
it combines steady-state hydrologic concepts with the infinite slope stability model, but has
an important difference. Talebi et al. (2007a) presented a complete analytical expression for
the computation of the factor of safety (FS) for finite hillslopes. Possible shortcomings of
their approach, however, are that the analytical model does not include the effect of
unsaturated storage on slope stability, and that it applies infinite slope stability computations
to finite hillslope types. The first purpose of this study is to investigate the appropriateness of
those simplifying assumptions (neglecting the unsaturated zone storage and the infinite slope
stability approach) for the accurate determination of the factor of safety for shallow
landslides. Therefore, in this paper, the infinite slope stability method is replaced by a more
complex approach (Janbu’s non-circular method and Bishop’s simplified method) to compute
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the stability and the critical slip surface in hillslopes with different geometric characteristics
and different soil depth (to allow for possible deep landslides). The latter approach is similar
to Wilkinson et al. (2002) but it considers unsaturated zone storage by computing vertical soil
moisture profiles from steady-state solutions to Richards’ equation (Rockhold et al., 1997).

Section 3.2 briefly summarizes the development of the steady-state analytical hillslope
stability model (Talebi et al., 2007a). This model computes the space-time evolution of
saturated storage along hillslopes by means of the mass conservation equation and a
kinematic form of Darcy’s equation (7roch et al., 2002). The steady-state storage profile
corresponding to a given recharge rate forms the basis for the slope stability analysis. The
infinite slope stability model leads to an analytical expression for the factor of safety as a
function of position along the hillslope.

In section 3.3 we present an extension to the hydrological component of this model
that accounts for unsaturated zone storage based on steady-state solutions to the 1D Richards’
equation (Rockhold et al., 1997). With respect to the influence of soil suction on soil cohesion
(Fredlund, 1978), we also investigate the effect of the unsaturated zone storage on soil
cohesion and thus slope stability. Therefore, the safety factor will be calculated with and
without considering the soil moisture profiles in the unsaturated zone.

As soil depth usually is not constant and failures are often non-parallel to the bedrock
(due to hydrological and geological discontinuities within the hillslope profile), the infinite
slope stability assumption needs to be relaxed. In Section 3.4 we further extend the model to
compute the factor of safety by using Bishop’s circular method and Janbu’s non-circular
method. Bishop’s method assumes zero interslice shear forces, satisfies moment equilibrium
around the center of the circular failure surface and satisfies vertical force equilibrium. The
Janbu method assumes that failure occurs through sliding of a block of soil on a non-circular
slip surface. In this paper, we use Bishop’s method to find the critical slip surface and Janbu’s
method to compare the stability of hillslopes with a common slip surface.

Section 3.5 explains the main results of the paper and describes the application of the
analytical model and the more complex approach to investigate the stability of nine different
hillslope types with a constant length scale. We generalize our results by studying the relation
between slope angle, profile and plan curvature, and landform stability (with and without the
effect of unsaturated zone storage). Hillslope stability is studied for two cases (constant and
non-constant soil depth). The focus of this paper lies in a comparison of the two cases of
slope stability analysis to determine the role of hillslope geometry (profile curvature and plan
shape) on hillslope stability with and without considering the unsaturated zone storage. The
first case is based on infinite slope assumption (constant soil depth) and the second one is
based on Janbu’s non-circular method (Janbu, 1954) and Bishop’s simplified (Bishop, 1955)
method (non-constant soil depth). Finally, Section 3.6 summarizes the main results of the

paper.

3.2. Steady-state analytical hillslope stability model

Here we summarize the main features of the hillslope stability model recently
developed by Talebi et al. (2007a). This model applies to catchments with moderate to steep
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terrain and shallow, permeable soils where subsurface storm flow is the dominant flow
mechanism. To study the effect of topography on rain-induced shallow landsliding, the
hillslopes of such catchments are characterized by the combined curvature in the gradient
direction (profile curvature) and the direction perpendicular to the gradient (contour or plan
curvature). The profile curvature is important because it controls the change of velocity of
mass flowing down the slope and the plan curvature defines topographic convergence which
is an important control on subsurface flow concentration (7roch et al., 2002). Other
investigations (e.g. Montgomery and Dietrich, 1994; Borga et al., 2002; Hennrich and
Crozier, 2004) have also shown that shallow landslides are strongly controlled by subsurface
flow convergence. The surface of an individual hillslope is represented by the following
bivariate function (Evans, 1980):

z2(x, ) =E+H(-x/L)" + 0wy’ (3.1
where z is the elevation, x is the horizontal distance measured in the downstream length
direction of the surface, y is the horizontal distance from the slope centre in the direction
perpendicular to the length direction (the width direction), £ is the minimum elevation of the
surface above an arbitrary datum, H is the maximum elevation difference defined by the
surface, L is the total length of the surface, 7 is a profile curvature parameter, and @ is a plan
curvature parameter. Allowing profile curvature (defined by n) to assume values less than,
equal to, or greater than 1 and plan curvature (defined by w) to assume either a positive, zero,
or negative value, one can define different basic geometric relief forms. Subsurface flow
processes are influenced by plan and profile curvatures and the hydraulic properties of the
porous medium. The mathematical description of these flow processes results in the
formulation of the 3D Richards equation which is difficult to solve analytically and
numerically. One way to overcome this problem is to reduce the dimensionality by
introducing the subsurface storage capacity function defined by the hillslope width at flow
distance x, the average soil depth at that distance and the effective porosity. Assuming
kinematic wave subsurface flow, Troch et al. (2002) derived the following analytical
expression for steady-state saturated storage of the hillslope:

S(x) = nkiH(l —%)l-" NA(x) (3.2)

where f is the drainable porosity, k, is the saturated hydraulic conductivity, N is the
(constant) recharge rate, A(x) is the upstream drainage area at location x and S(x) represents
the saturated storage at a given distance x from the divide. Dividing by the storage capacity
function, S, one finds the relative saturated storage:
S(x)

S.(x)

The variable o describes the steady-state wetness of the soil. Note that S_(x) = fw(x)D(x)

o(x)= (3.3)

where w(x) is the hillslope width function and D(x) is the (width-averaged) soil depth at
distance x.
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Slope stability studies are based on the calculation of the factor of safety (FS)
considering a failure surface. For hillslopes it is common to define the safety factor as the
ratio of the available shear strength to the minimum shear strength needed for equilibrium.
With stability expressed by the factor of safety, FS, the infinite slope stability equation is
given by (Wu and Sidle, 1995; Van Beek, 2002):

¢, +[(D = h(x))y,, +h(x)y,]cos’ ftang
[(D = h(x))y,, +h(x)y,]sin fcos 3

where ¢, is the total soil cohesion, ¢ is the angle of internal friction, D is the depth to the

FS(x) =

(3.4)

shear plane (vertical soil depth), £ is the slope angle, / is the water level above this plane,
and y,, 7, and y,, are respectively the moist, saturated and buoyant bulk specific weights
(the buoyant bulk specific weight is defined as y, = ¥, —y,, ). Applying Equation 3.4 together

with the solution for o(x) (Equation 3.3), and by assuming the same soil density for whole
soil profile (above and below the water table), Talebi et al. (2007a) presented the following
simple equation to compute the shallow landslide safety factor for cohesionless soils:

j{l - a(x)(”WH cos? B(x)dx tan ¢

N

FS =

(3.5)

L

j sin B(x) cos B(x)dx

0

where p, and p are the density of water and saturated soil, respectively.

3.3. Incorporating the unsaturated zone storage

The computation of y, (moist bulk specific weight) and ¢, (total soil cohesion)

involves the assessment of the water storage in the unsaturated zone (the zone between the
steady-state water table and the land surface). For steady vertical water flow in the
unsaturated zone, Darcy’s law gives (Rockhold et al., 1997):

Vr
ZT—ZB:jN/kd‘/’ 1 (3.6)
b (v ) -

where Z is the depth, w is the soil-water suction (negative pressure head), N is the steady-
state recharge flux, &k (y ) is the hydraulic conductivity, and subscripts 7" and B denote the

top and bottom, respectively, of a layer with uniform, homogeneous hydraulic properties.
Note that Equation 3.6 is written such that Z is positive downward and N is positive for
infiltration. An exact analytical solution to Equation 3.6 was obtained by Gardner (1958)
using the exponential & (i ) function:

k(y ) =k exp( —ay ) (3.7
where £k is the saturated hydraulic conductivity and o is a parameter. The resulting

analytical solution to Equation 3.6 is:
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1 | Ae" -1
Zy=Zy=yr-yy+—In o va 1 (3.8)
a |[1e" ~1

where yr and wp are the soil-water suction head at the top and bottom of each layer
respectively and 4 = N / k. From Equation 3.8 and the soil water retention characteristic,

the soil moisture () profile can be determined. Here we use the van Genuchten equation
(van Genuchten, 1980):

O)=0.+(0, 01 +(ay)" 1™ (3.9)
to model the soil water retention characteristic. The parameters o, and n, are empirical
constants that affect the shape of the function and m, =I-1/n,. The parameters 6, and 6, are

the residual and saturated water content, respectively. Combining Equations 3.8 and 3.9
allows the computation of the soil moisture profile in the unsaturated zone. We are now able
to derive the average soil moisture content in the unsaturated zone, which allows computing

the moist bulk specific weight (7 ,, ) at each position along the hillslope.
With respect to the influence of soil suction on the slope stability, Fredlund (1978)

proposed a linear shear strength equation for an unsaturated soil. According to this model, the
total cohesion of the soil can be calculated as:

c,=c,+u, —u,)tang’ (3.10)
where c. is the effective cohesion of saturated soil, (#, —u,) is the matric suction of the soil
on the plane of failure where u, and u, (kPa) are the pressures of pore air and pore water,
respectively. In other words, (u, —u,)equals the soil water suction expressed in kPa. For
slope stability analysis, the pore air pressure is assumed to be atmospheric and constant. ¢” is
the angle of shearing resistance with respect to matric suction (degrees). It has been
demonstrated (e.g. Gan et al., 1988; Oeberg and Sallfors, 1997) that ¢"is a nonlinear
function of matric suction, however, it is difficult to determine the detailed pattern of

decreasing ¢” with increasing suction (Jiao et al., 2005). Vanapalli et al. (1996) proposed

that the relation between ¢” and ¢ is determined by the degree of saturation as follows:

ct:ce+(ua—uv)(g_i;jtan¢ (3.11)

Substituting the average soil moisture content and the average soil water suction into
Equation 3.11 leads to a value of the soil cohesion in the unsaturated zone for each position
along the hillslope. Finally, the total soil cohesion at each position is calculated as a weighted
average of the soil cohesion in the unsaturated and saturated zone.

3.4. Different methods for hillslope stability analysis
3.4.1. Infinite slope method

First we generalize the infinite slope method by incorporating the effects of the
unsaturated zone into Equation 3.4. If we assume the height of the water table, the moist bulk
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specific weight and the total soil cohesion to be dependent on the x-coordinate, the local

factor of safety can be calculated as:

¢,() +[(1-o(x))y,,(x) + 5(x)y,1D(x)cos’ f(x) tan ¢
[(I-0o(x))7,, (x) + o (x)y,]1D(x)sin f(x)cos f(x)

where FS(x) is the factor of safety at location x along the hillslope. Note that y, is calculated

FS(x)= (3.12)

based on the weight of dry soil and the soil moisture content (Equation 3.9) at each position
along the hillslope.
Obviously, Equation 3.12 defines the factor of safety at a given location along the

hillslope where soil depth and slope angle are constant. In order to derive the FS for the entire

hillslope given a steady-state rainfall input, the following expression is proposed:
L

e @ =07, (0 +o(x)7,1D(x)cos’ A(x)tan gl
FS =" (3.13)

I [(1=0o(x))y,, (x) +o(x)y,1D(x)sin f(x) cos f(x)dx

3.4.2. More complex approaches toward hillslope stability

Limit equilibrium methods have been used for decades to safely design major
geotechnical structures. Bishop’s simplified method, utilizing a circular arc slip surface, is
probably the most popular limit equilibrium method (Han and Leshchinsky, 2004). Although
Bishop’s method is not rigorous in the sense that it does not satisfy horizontal force limit
equilibrium, it is simple to apply and, in many practical problems, it yields results close to
rigorous limit equilibrium methods. In this paper Bishop’s simplified method (Bishop, 1955)
and Janbu’s non-circular method (Janbu, 1954) are used for the hillslope stability analysis.
Bishop’s method assumes zero interslice shear forces, satisfies moment equilibrium around
the center of the circular failure surface and vertical force equilibrium. The factor of safety

according to this method is computed as:
L

j ¢, (x)/ cos B(x) + (P(x) — u(x)/ cos B(x))tan ¢ Jdx

FS =2 : (3.14)
[ (x)sin B(x)dx

where 0

P(x) = [W(x) - FLS (¢, (x) tan B(x) — u(x)tan B(x) tan ¢)} / M (x) (3.15)

and

M (x) = (1+ tan B(x) tf}f) cos B(x) (3.16)

In the Janbu method, the assumption is made that the interslice shear forces are zero
and thus the expression obtained from the total normal force at the base of each slice is the
same as that obtained by the Bishop method. To allow for the effect of the interslice shear
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force, a correction factor f, is applied (taken to be 1 here); thus the factor of safety of the

slope (FS) in the Janbu method is given as:
L

j[c, (x)/cos f(x) + (P(x) — u(x)/ cos B(x))tan ¢]/ cos f(x)dx
FS = f, :

z (3.17)
j W (x)tan B(x)dx

In these equations, c, is the total soil cohesion, dx is the horizontal slice width, u is the pore
water pressure, ¢ is the effective angle of internal friction and W(x)dx is the weight of a soil

slice. The computation of W involves the assessment of the water storage in the unsaturated
zone (Section 3.3). Since Equation 3.14 and 3.17 are implicit equations in FS, this set of
equations must be solved iteratively.

3.4.3. Reference case: neglecting the effect of the unsaturated zone

For all three slope stability methods presented above, we also consider the simplifying
situation where the unsaturated zone does not play a role in the steady-state hydrology. For
the infinite slope method, the assumption of the same bulk specific weight above and below
the water table leads to following simplification of Equation 3.13:

 Jle @+~ o)y, )DG)cos® f(x) tan gldx
FS =" (3.18)

.L[;/SD(x) sin A(x)cos f(x)dx

In case of the complex slope stability approach (Equations 3.14-3.17), the safety factor
can be calculated by considering wu(x)=y, h(x)cosf(x) and W(x)=y D(x), where

h =S/(wf ) (see Troch et al., 2002). By incorporating u (based on S, the saturated soil
storage) and W (based ony_, the specific weight of the saturated soil), the presented models

can be used for hillslopes with different geometrical characteristics (plan shape and profile
curvature) and constant or non-constant soil depth. They can help understanding the
hydrologic control of shallow and deep landslides in the case of steady-state hydrology.

3.5. Results and discussion

3.5.1. Evaluation of different approaches to model hillslope stability

To investigate the critical slip surface and effect of the unsaturated zone storage on
slope stability, we evaluate 6 possible slope stability computations: Case A: the same bulk
specific weight for saturated and unsaturated storage and the infinite slope stability
assumption (as in Talebi et al., 2007a, our base case); Case B: considering the soil moisture
profile (unsaturated storage) and the infinite slope stability assumption; Case C: the same
bulk specific weight for saturated and unsaturated storage and Bishop’s circular slip surface
method; Case D: considering the soil moisture profile (unsaturated zone storage) and
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Bishop’s circular slip surface method; Case E: the same bulk specific weight for saturated
and unsaturated storage and Janbu’s non-circular slip surface method; and finally Case F:
considering the soil moisture profile (unsaturated zone storage) and Janbu’s non-circular slip
surface method (see Table 3.1). We apply these 6 cases to nine different hillslope types.
These nine characteristic hillslopes consist of three plan shapes (divergent, parallel, and
convergent) and three profile curvatures (convex, straight, and concave). Figure 3.1 illustrates
the nine basic hillslope types used in this study. The parameters to generate them are listed in
Table 3.2. The horizontal length of the nine hillslopes is chosen to be constant (L=100 m),
whereas the average slope is 26, 41 and 50 percent (B/¢= 0.5, 0.75 and 0.9) for the infinite
slope method. As the soil depth is changed along the x direction in the complex slope stability
approach, the bedrock slope and surface slope angle are assumed 30 and 50 percent (B/¢= 0.6
and 0.9), respectively. These nine hillslopes represent a wide range of landforms traditionally
considered in hydrology and geomorphology (Pennock et al., 1987). For different hillslopes
within a catchment each individual hillslope type can be adjusted to the observed terrain
profile curvature using the geometrical scaling parameters H, L, and n and a proper choice of

 to represent plan shape.

Table 3.1: Hydrological assumptions and stability methods used in this study.

Stability
Hydrology Infinite slope Bishop* Janbu*
Constant bulk specific
weight A C E
Saturated/Unsaturated B D F

* Note that for the Bishop and Janbu method, the soil depth is changed along the hillslope.

Table 3.2: Geometrical parameters for the nine characteristic hillslopes

Hillslope Profile Plan Shape n[-] ® [10° m']* Area [m’]
Nr. Curvature
1 concave convergent 1.5 +2.7 2441
2 concave parallel 1.5 0 5000
3 concave divergent 1.5 -2.7 1049
4 straight convergent 1 +2.7 2162
5 straight parallel 1 0 5000
6 straight divergent 1 -2.7 2162
7 convex convergent 0.5 +2.7 1402
8 convex parallel 0.5 0 5000
9 convex divergent 0.5 2.7 2268

* This parameter has been calculated based on B =15 (B/¢ =0.5).
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Figure 3.1: Plan view of drainage divides (solid lines) and contour lines (dashed lines) of nine
hillslope types ( f/¢ = 0.9). The upslope divide of each hillslope is at x=0.

3.5.2. Hydrology

Figure 3.2 shows the relative saturated storage along these hillslopes and Table 3.3 lists
the values of the hydrological variables used to generate these storage profiles. The
hydrological behavior of these hillslopes is quite different as can be seen from Figure 3.2, e.g.
hillslopes with convergent plan shape (1, 4 and 7) have the largest saturated section. For the
rainfall recharge rate (20 mm d') and slope angle (27 degrees, 3 = 0.9¢) chosen, hillslopes

1, 2, 4 and 7 saturate near the outlet. This hydrological behavior of hillslopes (storage
changes) has important consequences for slope stability, as will be discussed hereafter.

In the procedure adopted to model the unsaturated zone pore water pressure and soil
moisture, each hillslope is divided into a series of rectangular vertical columns or slices, each
subdivided into regular cells. Using Equation 3.8 and considering i 3 = 0 at the water table,

v r (the soil-water suction) for all cells in each column can be obtained. Figure 3.3 shows the

steady state soil moisture profiles that develop in the unsaturated zone above the water table
for each hillslope type (assuming a constant soil depth). In the hillslopes with a divergent
plane shape, subsurface saturation is limited and as a result, the range of soil moisture
profiles is small, in the sense that the depth to the saturated layer is more uniform in these
cases (Figure 3.3). Although soil moisture dynamics is the result of complex interaction
between many elements like climate, soil, and vegetation, this analysis shows that spatial soil
moisture changes under steady-state conditions are strongly influenced by hillslope geometry

38



Soil moisture storage and hillslope stability

(especially plan shape). This has also been shown by other studies (e.g. Qiu et al., 2001;
Pelleng et al., 2003; Ridolfi et al., 2003; Hilberts et al., 2007).
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Figure 3.2: Relative saturated storage along the different hillslopes (D=2 m, N=20 mm d’,
L=27andB/¢=0.9).
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Table 3.3: Hydrological and geotechnical model parameters

Parameter Parameter name Symbol Units Value
group
Hydrological  Saturated hydraulic K, ms’ 6.383*107
conductivity '
Effective porosity f - 0.34
Recharge N mmd’ 20 (infinite method) and 50
(complex approach)
Van Genuchten a, m’ 2.761
parameter
Van Genuchten n, - 3.022
parameter
Residual water 0, m’ m™ 0.044
content
Saturated water 6, m’ m? 0.375
content A
Geotechnical Effective soil Ce kN m? 7.85
cohesion
Effective angle of @ o 30
internal friction
Slice width dx m 0.5
Saturated bulk 7, kN m™ 20.35
specific weight
Water specific weight 7o kKN m” 9.81

3.5.3. Infinite slope stability analysis

Figure 3.4 reports the values of the safety factor for each hillslope and for a range of
average bedrock slope angles using the infinite slope method (constant soil depth) for the two
cases: with and without considering the unsaturated zone storage (Cases 4 and B). In this
figure, the solid lines have been calculated by Equation 3.18 (case 4) which assumes the bulk
specific weight above and below the water table is equal. The dashed lines have been
obtained by Equation 3.13 (case B), which is based on the calculation of the soil moisture
profile in the unsaturated zone (Equation 3.8) and the relative saturated soil moisture storage
(Equation 3.3). The effect of matric suction on soil cohesion also has been incorporated in the
stability analysis (Equation 3.11). Because divergent hillslopes (3, 6 and 9) have the smallest
saturated zone (see Figure 3.2), they exhibit the most stability in both cases. On the other
hand, for a given profile curvature, convergent hillslopes (1, 4 and 7) have the least stability
because they have the largest saturated zone (see Figure 3.2). As can be seen (Figure 3.4),
both methods yield comparable results, illustrating the hillslope stability is determined by the
water table dynamics (saturated soil moisture storage). This means that unsaturated zone
storage does not play a critical role in determining the factor of safety for shallow landslides.
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Hence, the bulk specific weight of the unsaturated zone can be considered equal to that of the
saturated zone in the steady-state hydrology.
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Figure 3.4: Factor of safety for nine hillslopes and different average slope angles. Solid lines (Case
A): the bulk specific weight above and below the water table is the same and the infinite slope
stability assumption is applied (as in Talebi et al., 2007a); Dashed lines (Case B): the unsaturated
storage is taken into account and the infinite slope stability assumption is applied; Average bedrock
slope angle is different for each row; from top to bottom: 15, 22.5 and 27 degrees

(B/é=0.50.750.9).
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To generalize the obtained results for the infinite slope method, the slope stability has
also been investigated in the n- @ parameter space considering the unsaturated zone storage.
On the basis of Equation 3.1, and for the parameter intervals 0.4<n < 1.9 and — (H/L’) < & <
+ (H/L?) (for L=100), the factor of safety has been calculated. Figure 3.5 illustrates the
relation of the safety factor with profile curvature (n) and plan shape (@) for a critical slope

angle (B /¢ =0.9). For any given plan shape (@ =cst), when profile curvature (n) changes

from convex to concave, stability decreases. In the case of plan shape, when it changes from
<0 to w>0 (from divergent to convergent), slope stability decreases in all profiles. This
is due to the effect of plan shape on saturated soil storage (7roch et al., 2002, Hilberts et al.,
2004). When plan shape changes from divergent to convergent, the soil moisture storage
increases in all profiles (see Figure 3.2). In both cases, the convergent hillslopes with concave
profile have the least stability. For the convex profiles (n<1), the effect of plan shape on
hillslope stability is more pronounced than for the other profiles: as plan shape changes from
divergent to convergent, 'S drops quickly. For concave bedrock profiles (n>1), stability
decreases slightly when plan shape changes from divergent (w<0) to convergent (&>0).

Plan shape (m"1)
|

|
N

'3 L
1 1.2
Profile curvature (-)

Figure 3.5: Factor of safety as a function of profile curvature (n) and plan shape (w) for case B:
considering the soil moisture profile in the unsaturated zone and the infinite slope stability assumption
(B /¢ =0.9). The bold numbers shows the location of the nine basic hillslopes.
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3.5.4. Bishop and Janbu methods

Hillslope stability has also been investigated for hillslopes with non-constant soil depth
(deep landslides) using more complex approaches: Bishop’s and Janbu’s methods taking the
soil moisture in the unsaturated zone and its effect on soil cohesion into consideration. To do
this, the Bishop circular method is incorporated into the analytical model to find the critical
slip surface in hillslopes with different geometric characteristics. Here, we consider a series
of slip circles of different radii but with the same center of rotation and find the minimum FS
for this circle center. This procedure is repeated for several circles, each investigated from an
array of centers. Each center will have a minimum FS, and the overall lowest FS from all the
centers is considered to be the FS for the whole hillslope. Hence, a large number of possible
slips (6000) has been considered for the calculation of the minimum safety factor. Finally, by
assuming the same slip surface for all hillslopes (namely the bedrock), the safety factor is
computed by Janbu’s non-circular method.

Figure 3.6 shows the values of the minimum safety factor for each hillslope and for the
two cases: with and without considering the unsaturated storage. The final results of both
cases are similar and the previous conclusion that the unsaturated zone can be neglected is
confirmed for hillslopes with non-constant soil depth. Figure 3.6 shows that when plan shape
changes from convergent to divergent, for all profiles slope stability increases. In both cases
the convex convergent hillslopes have the minimum safety factor as convex hillslopes have a
large slope angle in the outlet region.
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Figure 3.6: Factor of safety for nine hillslope shapes. Solid lines (Case C): considering the same bulk
specific weight above and below the water table and Bishop’s circular slip surface method. Dashed
lines (Case D): taking into account the unsaturated storage and Bishop’s circular slip surface method.
Average bedrock slope is 30 and 50 percent for bedrock and surface, respectively.
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The slip surface corresponding to the minimum FS has also been investigated. Figure
3.7 illustrates the location of the critical slip surface as computed by the Bishop simplified
method (circular slip surface) for case D. The bedrock and surface slope angles are 30 and 50
percent, respectively (non-constant soil depth). As can be seen, not only the FS is different
for all hillslopes, but also the location of the critical slip surface has changed. It is located in
the upstream part of the slope for the concave and in the downstream part of the slope for the
convex profiles. The location of the critical slip surface is dependent on the profile curvature
but much less on plan shape (specifically for the convex profiles). This is because the
stability strongly depends on the local slope angle, although plan shape also affects stability
by increasing the saturated part near the outlet.
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Figure 3.7: The critical slip surface (dotted lines) in hillslopes with different geometric characteristics
as computed by Bishop’s circular slip surface method and considering the unsaturated zone storage
(case D). The dashed lines show the location of the water table. Average bedrock slope (bottom solid
line) and surface slope angle (top solid line) are 30 and 50 percent, respectively.

In order to generalize the obtained results for hillslopes with non-constant soil depth,
slope stability has again been investigated in the n-@ parameter space considering the
unsaturated zone storage. Figure 3.8 indicates the obtained FS for the different values of n
(profile curvature) and ® (plan shape). For any given plan shape (@ =cst), when profile
curvature changes from straight to concave or convex, stability decreases because concave
and convex hillslopes have a large slope angle in the upstream and downstream parts of the
slope, respectively. Hillslopes with a small degree of convexity (n=0.9) have the maximum

44



Soil moisture storage and hillslope stability

safety factor (see Figure 3.8). For concave profiles (n>1), the contour lines are almost
parallel, indicating a weaker effect of plan shape on stability. Finally, hillslopes with a
convex length profile and convergent plan shape have the least stability. Furthermore, there is
no significant difference between the results of both cases (C and D), which confirms again
that the unsaturated zone storage can be neglected for the slope stability analysis in the case
of steady-state hydrology.

Plan shape (m'1)

.15

| | L.} |
J
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Profile curvature (=)

Figure 3.8: Factor of safety as function of profile curvature (#) and plan shape (w) using the more
complex approach (Bishop’s circular slip surface method and non-constant soil depth), and
considering the soil moisture in the unsaturated zone (case D). Average bedrock slope is 30 and 50
percent for bedrock and surface, respectively. The bold numbers shows the location of the nine basic
hillslopes.

To compare the stability of hillslopes by assuming the same slip surface on the bedrock,
the FS is also calculated by the Janbu non-circular method. Figure 3.9 shows the stability of
nine hillslopes when the soil depth changes along the hillslopes. According to this method,
when the slip surface lies on the bedrock, the convex hillslopes are the most stable and the
concave ones are the least stable. For all profile curvatures, slope stability slightly increases
when plan shape changes from convergent to divergent.

This is confirmed by Figure 3.10, where we have computed the F'S for a wide range of
plan shapes and profile curvatures. When profile curvature changes from concave to convex,
stability decreases. The fact that the contour lines are nearly parallel indicates that plan shape
only plays a minor role. With respect to the similarity of the Bishop and Janbu methods (see
Equations 3.14 and 3.17), it should be kept in mind that in this paper, the slip surface with the
minimum FS has only been determined with the Bishop circular method. However, the Janbu
non-circular method has been used for comparison of slope stability for entire hillslopes

45



Chapter 3

(when the slip surface lies on the bedrock). Overall, Figure 3.10 illustrates how slope stability
is changed when hillslope geometry and thus hillslope hydrology is varied.
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Figure 3.9: Factor of safety for nine hillslope shapes. Solid lines (Case F): considering the same bulk
specific weight above and below the water table and Janbu non-circular slip surface method. Dashed
lines (Case F): taking into account the unsaturated storage and Janbu non-circular slip surface method.
Average bedrock slope is 30 and 50 percent for bedrock and surface, respectively.
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Figure 3.10: Factor of safety as function of profile curvature (n) and plan shape (w) using the more
complex approach (Janbu non-circular slip surface method and non-constant soil depth), and
considering the soil moisture in the unsaturated zone (case D). Average bedrock slope is 30 and 50
percent for bedrock and surface, respectively. The bold numbers shows the location of the nine basic

hillslopes.
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3.6. Summary and conclusions

The aim of this paper was to analyze the role of the geometric characteristics of
hillslopes as well as the effect of the unsaturated zone storage on the hillslope stability in the
steady-state hydrology. This was studied on the basis of computing and analyzing the FS in
two different manners. First, an analytical model (Talebi et al., 2007a) that is based on
kinematic wave dynamics of the saturated subsurface storage and the infinite slope stability
assumption (for a constant soil depth and shallow landslides). Second, a more complex
approach (for a non-constant soil depth associated with deep landslides) that accounts for the
unsaturated zone storage and that relaxes the simplifying assumptions of the infinite slope
stability model (Janbu’s non-circular method and Bishop’s simplified method). All methods
were studied in two cases: with and without considering the soil moisture profile in the
unsaturated zone. The effect of soil suction on soil cohesion has also been investigated.

We started our analysis from the observation that the geometry (that is plan shape and
profile curvature) of a hillslope exerts a major control on the hydrologic storage, by defining
the domain and boundary conditions of moisture storage (7roch et al., 2002). The presented
hydrological model (kinematic wave dynamics of saturated subsurface storage) takes into
account the effects of topography on the hillslope-storage through the plan shape and profile
curvature by computing the relative saturated soil moisture storage. We applied the
considered hillslope stability models to nine characteristic hillslope types with three different
profile curvatures (concave, straight, convex) and three different plan shapes (convergent,
parallel, divergent). Furthermore, in order to generalize the results, we also applied the slope
stability models to a wider range of plan shapes and profile curvatures. Our conclusions are
the following:

1) When the width function (plan shape) changes from convergent to divergent,
hillslope stability generally increases. In case of the infinite slope method for shallow
landslides (with and without the unsaturated zone storage), the convergent hillslopes with
concave profile curvature have the least stability in both cases. The divergent convex
hillslopes have the most stability as they have less storage than other hillslopes.

ii) To find the critical slip surface in the hillslopes with non-constant soil depth, the
simplified Bishop method was incorporated in the analytical model. In this case, not only the
rate of FS is different in the hillslopes but also the location of the critical slip changes. In fact,
the critical slip surface is located at the upstream end of the slope in the concave hillslopes
and near the outlet in the convex hillslopes. This is because the local slope angle (profile
curvature) plays a key role in the slope stability. Therefore, it can be concluded that the
location of the critical slip surface is more dependent on profile curvature than on plan shape.
Overall, for a given plan shape (convergent, parallel or divergent) convex convergent
hillslopes have slip surfaces with the minimum safety factor in the outlet region.

iii)) To compare the stability of entire hillslopes, the Janbu non-circular method was
incorporated in the analytical model with its slip surface at the bedrock. This method also
shows that the convergent hillslopes with concave profile curvature have the least stability.
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iv) A comparison of the results of the different slope stability models with and without
considering the unsaturated zone storage shows that there is no noticeable difference between
the two cases. This means that the bulk specific weight of the unsaturated soil can be
considered equal to that of the saturated soil in the steady-state hydrology. Hence, the
hillslope stability (FS) is completely determined by the water table dynamics. Therefore the
effect of the unsaturated zone storage can be neglected safely in the steady-state hydrology.

v) Finally, it can be stated that the incorporated more complex approaches (simplified
Bishop method and Janbu’s non-circular method) and steady-state hydrology model based on
the relative saturated storage can help to predict the critical slip surface and slope stability for
hillslopes with different geometrical characteristics. But due to its limitation (steady-state
hydrology) more research is needed to account for dynamical slope stability effects.
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A low-dimensional physically-based model of
hydrologic control on shallow landsliding in complex
hillslopes

This chapter is based on the accepted paper Talebi, A., R. Uijlenhoet and P. A. Troch
(2007), A low-dimensional physically-based model of hydrologic control on shallow
landsliding in complex hillslopes, Earth Surface Processes and Landforms, (in press).
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4. A low-dimensional physically-based model of hydrologic

control on shallow landsliding in complex hillslopes

Abstract

Hillslopes have complex three-dimensional shapes that are characterized by their plan
shape, profile curvature of surface and bedrock, and soil depth. To investigate the stability of
complex hillslopes (with different slope curvatures and plan shapes), we combine the
hillslope-storage Boussinesq model (HSB) with the infinite slope stability method. The HSB
model is based on the continuity and Darcy equations expressed in terms of storage along the
hillslope. Solutions of the HSB equation account explicitly for plan shape by introducing the
hillslope width function and for profile curvature through the bedrock slope angle and the
hillslope soil depth function. The presented model is composed of three parts: a topography
model conceptualizing three-dimensional soil mantled landscapes, a dynamic hydrology
model for shallow subsurface flow and water table depth (HSB model), and an infinite slope
stability method based on the Mohr-Coulomb failure law. The resulting Hillslope-Storage
Boussinesq Stability Model (HSB-SM) is able to simulate rain-induced shallow landsliding in
hillslopes with non-constant bedrock slope and non-parallel plan shape. We apply the model
to nine characteristic hillslope types with three different profile curvatures (concave, straight,
convex) and three different plan shapes (convergent, parallel, and divergent). In the presented
model, the unsaturated storage has been calculated based on the unit head gradient
assumption. To relax this assumption and to investigate the effect of neglecting the variations
of unsaturated storage on the assessment of slope stability in the transient case, we also
combine a coupled model of saturated and unsaturated storage and infinite slope stability
method. The results show that the variations of the unsaturated zone storage do not play a
critical role in hillslope stability. Therefore, it can be concluded that the presented dynamic
slope stability model (HSB-SM) can be used safely for slope stability analysis in complex
hillslopes. Our results show that after a certain period of rainfall, the convergent hillslopes
with concave and straight profiles become unstable faster than others whilst divergent convex
hillslopes remain stable (even after intense rainfall). In addition, the relation between
subsurface flow and hillslope stability has been investigated. Our analyses show that the
minimum safety factor (FS) occurs when the rate of subsurface flow is maximum. In fact, by
increasing the subsurface flow, stability decreases for all hillslope shapes.

Key words: hillslope stability, subsurface flow, HSB-SM model
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4.1. Introduction

Hillslopes can be considered as the basic landscape elements of many catchments. A
proper understanding of the interaction and feedbacks between hillslope forms and the
processes responsible for hillslope hydrology and stability are of great importance for
catchment scale land management. Hillslope failures are complex natural phenomena that
pose a serious natural hazard in many countries. Consequently, not only considerable
financial costs are suffered, but also major ecological and environmental problems may arise
in larger geographical areas (Sidle and Ochiai, 2006). To prevent or mitigate these damages,
hillslope stability analysis requires an understanding and evaluation of the processes that are
affected by the hydrologic behavior of the hillslopes.

The relationship between rainfall, water table fluctuations and landslide movement is
often difficult to establish. Keefer and Larsen (2007) state that although major causes of
landslides are well known, predicting just where and when a landslide will occur continues to
be a complex proposition, because the properties of earth materials and slope conditions vary
greatly over short distances, and the timing, location, and intensity of triggering events are
difficult to forecast. Shallow slope failures, in general, are controlled by surface topography
through shallow subsurface flow and increased soil saturation (Montgomery and Dietrich,
1994; lida, 1999; Borga et al., 2002). Many studies (e.g. Sidle and Swanston, 1982; Harp et
al., 1990; Anderson and Sitar, 1995; Iverson, 2000; Dhakal and Sidle, 2004; lida, 2004;
Rosso et al., 2006), have indicated that hillslope instability can be caused by increased
subsurface pore pressures during periods of intense rainfall which reduce the shear strength
of hillslope materials. Although in these studies topography has been reported as an important
factor in slope stability, in most of the models applied only slope angle has been investigated.
From a slope stability view point, other topography parameters like profile curvature and plan
shape are sometimes equally important. Former (Beven and Kirkby, 1979; Sidle, 1984;
Montgomery and Dietrich, 1994) and more recent studies (e.g. Tsuboyama et al., 2000; Troch
et al., 2002; Troch et al., 2003; Hilberts et al., 2004; Berne, et al., 2005; Rezzoug et al., 2005;
Sidle and Ochiai, 2006) have shown that in addition to bedrock slope, hillslope form as
represented by plan shape and profile curvature is an important control on subsurface flow
response.

Because of the strong relation between hydrological processes, hillslope shape and
slope stability, efficient tools are needed to investigate the effect of complex topography on
slope stability at the landscape scale. Existing tools either neglect topographic curvature or
model it in a very complex computationally inefficient manner. The main purpose of this
study is therefore to present a dynamic low dimensional but physically-based model that
includes both hydrological processes (saturated and unsaturated zone storage) and a stability
model (based on the infinite slope assumption) for hillslopes with different topographic
characteristics.

To study the effect of topography on rain-induced shallow landsliding, some
researchers (e.g. Montgomery and Dietrich, 1994; Sidle and Wu, 1999; Dhakal and Sidle,
2003, 2004; Talebi et al., 2007a) used the kinematic wave (KW) assumption for hillslope
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hydrology and showed that, in addition to bedrock slope, plan shape and slope curvature play
important roles in hillslope stability in case of a steady-state hydrology. However, by
comparing the KW model with the fully three-dimensional Richards’ equation, Hilberts et al.
(2004) showed for convergent slope forms, the KW model looses its ability to accurately
describe water table dynamics and the resulting hillslope drainage. Since the dynamic
response of hillslopes is strongly dependent on plan shape, slope curvature and slope angle
(Troch et al., 2002; Hilberts et al., 2004), a three dimensional model of dynamic hillslope
hydrology would be necessary for stability analysis of complex hillslopes.

Recent studies (Troch et al., 2003; Paniconi et al., 2003; Hilberts et al., 2004; Hilberts
et al., 2007) have generalized the Boussinesq equation to account for the three-dimensional
soil mantle in which subsurface flow processes take place. This hillslope-storage Boussinesq
(HSB) equation is formulated by expressing the continuity and Darcy equations in terms of
soil water storage as the dependent variable. In this model, the method proposed by Fan and
Bras (1998) is used to collapse the three-dimensional soil mantle of complex hillslopes into a
one-dimensional drainable pore space. The resulting HSB model shows that the dynamic
response of complex hillslopes during drainage and recharge events depends very much on
the slope angle, plan shape and slope curvature. Because of the ability of the HSB model to
analyze hydrological process in complex hillslopes in a very (computationally) efficient way,
it is a good candidate to combine with the infinite slope stability method. The resulting model
(HSB-SM) can be used for dynamic slope stability analyses in complex hillslopes.

To keep the model low-dimensional, the average soil moisture in the unsaturated zone
has been calculated according to Campbell’s method (Campbell, 1974), using Darcy’s law
with the unit-gradient assumption. As a result, in the HSB-SM model, the effect of the
temporal variations of the unsaturated zone storage has been neglected. To investigate the
effect of this simplification, a coupled model of the dynamic unsaturated and saturated zone
is needed. Recently, Hilberts et al. (2007) developed a model that couples the one-
dimensional Richard's equation for vertical unsaturated flow and the HSB equation for lateral
saturated flow along complex hillslopes. By introducing the unsaturated zone matric pressure
head as a system-state and reformulating the derived equations into state-space notation, they
have solved the coupled system simultaneously as a set of ordinary differential equations.
Considering the importance of the capillary fringe on groundwater flow, this component has
also been included into the HSB flow domain (see Hilberts, et al., 2007). Their model allows
for an accurate investigation of the relationship between rainfall intensity, drainable porosity,
unsaturated storage and recharge.

To investigate the importance of neglecting the variations of the unsaturated zone
storage in the HSB-SM model, the coupled HSB model (Hilberts et al., 2007) is combined
with the infinite slope stability method. Moreover, the effect of unsaturated soil moisture on
soil cohesion is incorporated in the slope stability model.

Hence, in this paper we present a methodology to investigate the effect of rainfall and
water table variations on slope movement in complex hillslopes by coupling an integrated
hydrologic model for the saturated and unsaturated zone with the infinite slope method for
hillslope stability analysis. Specifically, the study aims (i) to present a dynamic hillslope
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stability model (applicable in complex hillslopes), (ii) to investigate the relation between
rainfall, soil moisture storage, subsurface flow and hillslope stability, and (iii) to investigate
the changes of hillslope stability with respect to plan shape and slope curvature during
rainfall.

4.2. Model formulation

In this study we combine a dynamic hillslope hydrology model with the infinite slope
stability assumption for hillslopes with different topographic characteristics. Hence, this
model incorporates three important aspects of a hillslope: its topography, hydrology and
stability.

4.2.1. Hillslope topography

To study the effect of topography (plan shape and profile curvature) on rain-induced
shallow landsliding, Talebi et al. (2007a) following Evans (1980), characterized hillslopes by
the combined curvature in the gradient direction (profile curvature) and the direction
perpendicular to the gradient (contour or plan curvature). The surface of an individual
hillslope is represented by the following bivariate function (Evans, 1980):

2(x,y) = E+H(X/L)" + ay?, (4.1)
where z is the elevation, x is the horizontal distance from the outlet, y is the horizontal
distance from the slope centre in the direction perpendicular to the length direction (the width
direction), E is the minimum elevation of the surface above an arbitrary datum, H is the
maximum elevation difference defined by the surface, L is the total horizontal length of
hillslope, n is a profile curvature parameter, and w is a plan curvature parameter.

The presented model (HSB-SM) is applied to nine distinct hillslope types which can be
viewed as a first-order approximation of the landscape elements (Troch et al., 2002) that
constitute a catchment. Figure 4.1 shows a hillslope with a three-dimensional soil mantle on
top of an impermeable layer and a straight bedrock profile explaining the symbols w, L', D’
and g in this study. By using Equation 4.1 and allowing profile curvature (defined by n) to

assume values less than, equal to, or greater than 1 and plan curvature (defined by w) to
assume either positive, zero, or negative values, one can define different basic geometric
relief forms. Figure 4.2 illustrates nine basic hillslope types that are formed by combining
three plan and three profile curvatures. These nine hillslopes represent a wide range of
hillslope types traditionally considered in hydrology and geomorphology (see also Tsukamoto
and Ohta, 1988). The parameters for Equation 4.1 are different for each of these nine
hillslopes, and are listed in Table 4.1. The values of the hydrological and geotechnical
parameters have been listed in Table 4.2. The horizontal length of the nine hillslopes
(measured along the bedrock) is chosen to be constant (L = 100 m). For different hillslopes
within a catchment each individual hillslope type can be fitted using the geometrical scaling
parameters H, L, and n to the observed terrain profile curvature, given a known soil depth
function, and a proper choice of ® to represent the observed hillslope width function (Troch
et al., 2002).
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(a)

Channel

Figure 4.1: a) A three dimensional view of a convergent hillslope overlying a straight bedrock
profile, b) a definition sketch of the cross section of a one-dimensional hillslope aquifer overlying a
bedrock with a constant bedrock slope angle (modified from Troch et al., 2003).

Table 4.1: Geometrical parameters for the nine characteristic hillslopes

Hillslope Profile Plan Shape n[-] o [10° m']* Area [m?]

Nr. Curvature

1 concave convergent 1.5 +2.7 2441
2 concave parallel 15 0 5000
3 concave divergent 1.5 -2.7 1049
4 straight convergent 1 +2.7 2162
5 straight parallel 1 0 5000
6 straight divergent 1 -2.7 2162
7 convex convergent 0.5 +2.7 1402
8 convex parallel 0.5 0 5000
9 convex divergent 05 -2.7 2268

* This parameter has been calculated based on B =15" (/¢ = 0.5).
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Figure 4.2: Three-dimensional view (top) and a two-dimensional plot of the contour lines and slope
divides (bottom) of the nine hillslopes considered in this study (after Hilbert et al., 2004).
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Table 4.2: Hydrological and geotechnical model parameters

Parameter Parameter name Symbol Units Value in this paper
group
Hydrological ~ Saturated hydraulic Kk, md™ 5.0
conductivity
Effective porosity f - 0.35
Recharge N mm d™* 50
Van Genuchten a, m™* -2.54
parameter
Van Genuchten n, - 1.953
parameter
Residual water 6. m*m’ 0.054
content
Saturated water 6, m*m’ 0.408
content
Geotechnical Effective soil c, kNm™ 5.0
cohesion
Soil depth D’ m 2.0
Effective angle of @ o 30
internal friction
Slice length dx m 0.5
Saturated bulk Y, kNm® 17.66
specific weight
Water specific weight Y, kNm 9.81

4.2.2. Hillslope hydrology

The hillslope hydrological model used here is the hillslope-storage Boussinesq (HSB)
model for subsurface flow (Troch et al., 2003) in complex hillslopes. The Darcy equation
along a unit-width hillslope with sloping bedrock reads:

q= —kh’@:’ cos S +sin ﬂj (4.2)

Substituting in the continuity equation:
on__a (4.3)
ot ox'

yields the Boussinesq equation (Boussinesq, 1877):

oh’ _k {i(h’a—h’jcosﬁ% Zh’ sin ,B}L% (4.4)
X

ot f|ox'l ox

where h'(x’,t)is the elevation of the groundwater table measured perpendicular to the
underlying impermeable layer which has a slope angle £, k is the hydraulic conductivity, f
is the drainable porosity, x' is the distance from the outlet measured parallel to the
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impermeable layer, t is time and N represents the rainfall recharge to the groundwater table.
Note that the flow lines for these equations are assumed to be parallel to the bedrock.

As the application of Equation 4.4 is limited to one-dimensional soil mantle, Troch et
al. (2003) reformulated the continuity and Darcy equations in terms of storage along the
hillslope which leads to the hillslope storage Boussinesq (HSB) equation for subsurface flow
in complex hillslopes:

(08" _keosf 0 (i_s_@j +ksin B2 4 tw (4.5)
8X ox'

ox"  wox'

ot f

where S’ =S'(x',t) = wfh' is the subsurface water storage, h' = W(x’,t) is the water table
height averaged over the width of the hillslope, and w( x") is the hillslope width function. The
total storage capacity along the hillslope can be expressed asS.(x') = fw(x')D'(x), where

D’ is the soil depth averaged over the width of the hillslope. Paniconi et al. (2003) have
shown that the HSB model is able to capture the general features of the storage and outflow
response of complex hillslopes, as compared to a 3D Richards equation based simulations.
Equation 4.5 allows us to investigate the hydrological behavior of the original
Boussinesq equation on hillslopes of variable plan geometry. In order to analyze the effect of

non-constant profile curvature, Hilberts et al. (2004) presented the HSB model as:

fﬁ'zhco S B(x )[ BB, fs'aﬂ(x)}— m,B(x){ & S'B—aﬂ(x’)}+fN
ot ox' X ox'

(4.6)
where B =0/0x'(S"/w). The model is solved numerically, can handle spatially and

temporally variable parameters, and allows for the computation of subsurface flow and
saturation excess overland flow. By determining the saturated storage (S') at each time step
(daily) of the simulation, the relative saturated storage (o =S'/S/) is calculated and is

directly coupled to the infinite slope stability method for determining the factor of safety.

During wet conditions, as will occur in the case of shallow landsliding, precipitation as
an input parameter can be assumed equal to the recharge rate. The average soil moisture
content in the unsaturated zone (0) can then be calculated according to Campbell (1974) by
using Darcy’s law with the unit-gradient assumption as:

1
2b+3
0= ﬂ(kﬁj @.7)

where 0 is the volumetric soil moisture content averaged over a depth (D'—h’"), u is the
porosity, N is the recharge rate, k, is the saturated hydraulic conductivity and b is a pore size
distribution parameter. Since g and b are generally correlated withk,, we related these to k.
by linear regression withIn(k, ), fitted to the data provided by Clapp and Hornberger (1978).
This yields x« =-0.0147In(k,) + 0.545 and b =-1.24In(k,) +15.3 where Kk is expressed in

mm d* (Teuling and Troch, 2005). Hence, at each time step (daily), the average soil moisture
content in the unsaturated zone can be changed based on the recharge rate (rainfall).
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4.2.3. Hillslope stability

Next, from the water table depth along the hillslope and the average soil moisture in the
unsaturated zone, the factor of safety (FS) can be calculated at each time step. The safety
factor is the ratio of the available shear strength to the minimum shear strength that is needed
for equilibrium. Many variables are involved in slope stability evaluation and the calculation
of the FS requires geometrical data, physical data on the geologic materials and their shear-
strength parameters (cohesion and angle of internal friction), information on pore-water
pressures, etc. In general, the infinite slope stability analysis has been widely applied in many
investigations of natural slope stability (e.g. Montgomery and Dietrich, 1994; Wu and Sidle,
1995; Van Beek, 2002; Borga et al., 2002; D’Odorico and Fagherazzi, 2003; Hennrich and
Crozier, 2004; Claessens, 2005: Rosso et al., 2006) because of its relative simplicity,
particularly where the thickness of the soil mantle is much smaller than the length of the
slope and where the failure plane is approximately parallel to the slope surface. The infinite
slope model imposes the condition that the groundwater flow is parallel to the slope surface,

which is consistent with the HSB model. In order to derive the FS for the entire hillslope,
Talebi et al. (2007a, 2007b) presented the shallow landslide safety factor for complex
hillslopes by incorporating the relative saturated storage (the ratio between actual storage and
storage capacity) in the safety factor formulation as follows:

[l () + A= o (X))y (X) + 5(x'), 1D cos B(x')tan pax’
FS=2 (4.8)

[[@=6(x))7n (X) +o(x)y,]D"sin B(x")dx’

where L' is the total length of hillslope (measured parallel to bedrock),c, is the total soil
cohesion, ¢ is the angle of internal friction, £ is the slope angle, and o(x') is the relative
saturated storage. y,, 7, and y, are respectively the moist, saturated and buoyant bulk

density (note that in this equation, x’ is measured along the bedrock and x' =0 in the outlet).

With respect to the influence of soil suction on the slope stability, Fredlund (1978)
proposed a linear shear strength equation for unsaturated soils. According to this model, the
total cohesion of the soil (c,) can be calculated as:

¢, =C, +(u, —u,)tang’ (4.9)
where c. is the effective cohesion of saturated soil (kPa), (u, —u,) is the matric suction of the

soil on the plane of failure (kPa), where u, and u, are the pressures of pore air and pore water,
respectively. For slope stability analysis, the pore air pressure is assumed to be atmospheric

and constant. ¢° is the angle of shearing resistance with respect to matric suction. Vanapalli

et al., (1996) proposed that the relation between ¢° and ¢ can be replaced by the degree of
saturation as follows:

-6
c,=c +(u,—u L |tan 4.10
t e (a v)(es_e] ¢ ( )

r
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Equation 4.10 shows how the total cohesion of the soil (c,) is changed as a function of

the soil moisture in the unsaturated zone (0 ) in each slice and each time step. As can be seen,
by substituting the average soil moisture content and the average soil water suction into
Equation 4.11, the soil cohesion in the unsaturated zone for each x-position along the
hillslope is computed. Finally, the total soil cohesion at each x-position along the slip surface
is calculated as a weighted average of the soil cohesion in the unsaturated and saturated zone.

4.2.4. Numerical analysis

After determining the plan shape and slope curvature (Equation 4.1) for each hillslope
(see Talebi et al., 2007a), the dynamic model of hillslope stability is solved starting from the
initial condition h’ =0 at time 0 and the following steps are performed with a time step, At,
of one day: (i) the saturated soil moisture storage and the relative saturated storage are
calculated from Equation 4.6; (ii) the averaged soil moisture content in the unsaturated zone
is estimated from Equation 4.7; (iii) Equation 4.10 is used to calculate the influence of soil
suction on soil cohesion; (iv) the factor of safety is determined by Equation 4.8 and (v) back
to step i for the subsequent time step. For the saturated zone, it is assumed that the downhill
boundary condition is h'(0,t) = 0and the uphill boundary condition is a zero-flux boundary

as are all sides and the bedrock. In this manner, FS is obtained for the hillslope, with any
temporal variations arising from dynamic hydrological responses. This will be used for the
investigation of its relation with water table fluctuations and subsurface flow.

4.3. Results and Discussion

4.3.1. Effect of the unsaturated zone storage

In the HSB-SM model, the rate of daily precipitation is substituted by the recharge rate
directly. This means that the variations of the unsaturated zone storage have been ignored
(note that soil moisture in the unsaturated zone has been calculated by Darcy’s law with a
unit gradient assumption (see Equation 4.7)). To relax this assumption, the slope stability
analysis has also been investigated based on coupling the saturated and unsaturated storages.
Hilberts et al. (2007) presented a coupling between the one-dimensional Richards’ equation
for vertical unsaturated flow and the one-dimensional hillslope-storage Boussinesq equation
(HSB model) for lateral saturated flow along hillslopes with different plan shapes. They also
incorporated the capillary fringe in the Boussinesq flow domain. In this paper, to investigate
the effect of the unsaturated zone storage on hillslope stability under time-varying conditions,
this model has been combined with the infinite slope stability method. Figure 4.3 reports the
values of the safety factor for hillslopes with different plan shape using the original HSB
model (solid line) and coupled HSB model (dashed line) (Hilberts et al., 2007). As can be
seen (Figure 4.3), both methods yield comparable results, illustrating the hillslope stability is
mainly determined by the water table dynamics (saturated soil moisture storage). Based on
our analysis (see Figure 4.3) and for both methods, after the onset of rainfall, stability starts
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to decrease in all hillslopes. Obviously, after a certain period of rainfall (depending on
hillslope type), stability becomes constant as the hydrological conditions approach the steady-
state. As can be seen, the FS obtained from the original HSB model is a little less than that
from the coupled HSB model; this is because the original HSB model produces a higher
water table than the coupled HSB model (Hilberts et al., 2007).
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Figure 4.3: Variations of the safety factor in hillslopes with different plan shapes computed using the
original HSB model (solid line) and the coupled HSB model (dashed line), assuming £ = 0.5¢ and
N=20 mmd™. Top panel: convergent, middle panel: parallel and bottom panel: divergent hillslope

(profile curvature is constant).
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These results are confirmed by other studies (e. g. lverson, 2000; lida, 2004; Rosso et
al., 2006) that have shown slope stability is controlled mainly by the water table dynamics.
Therefore, with respect to the obtained results (Figure 4.3) and limitation of the coupled
model (Hilberts et al., 2007) for hillslopes with non-constant bedrock, we can safely use the
original HSB model (Troch et al., 2003; Hilberts et al., 2004) for stability analysis in
hillslopes with different plan shapes and profile curvatures. To compare the stability of these
nine hillslopes by the Janbu method (Janbu, 1954), we also computed the FS by two methods
(Equation 4.8 and Janbu method) (see Table 4.3). As can be seen, the results of both methods
are closely following each other.

Table 4.3: The results of computed FS by the HSB_SM model and Janbu method for the nine
hillslopes in Figure 4.2 (8 = ¢ and N=50 mmd™).

Hillslope shapes 1 2 3 4 5 6 7 8 9

HSB_SM model 095 111 125 093 105 120 104 114 136

Janbu equation 103 121 132 101 113 127 102 107 1.29

4.3.2. The relation between recharge rate and slope stability

The results of the stability analysis for three recharge rates equal to 10, 20 and 50 mmd™
(Figure 4.4) indicate clear differences in the stability of different hillslope types for the same
soil condition. In all cases (different recharge rates), convergent hillslopes with concave and
straight profiles (Figure 4.4, no. 1 and no. 4) become unstable faster than others (FS <1).
This is because the convergent hillslopes drain much more slowly than the divergent
hillslopes (Troch et al., 2003) and this process increases the saturated zone storage which
consequently decreases the factor of safety quickly. In contrast, in the divergent hillslopes
(Figure 4.4, no. 3, 6 and 9) which drain fast, even with 50 mm recharge per day, the slopes
remain stable (FS >1).

As can be seen, by increasing the recharge rate from 10 to 50 mm per day the stability
duration decreases, however, the time to reach instability is different in all hillslopes. For
instance, when the recharge is 10 and 20 mmd™, all hillslopes are stable, whilst by increasing
the recharge to 50 mmd™ all convergent hillslopes become unstable after 8-10 days. As a
result, it can be stated that from the plan shape view point, the convergent hillslopes and from
the profile curvature view point, the straight and concave hillslopes become unstable faster
than the others.
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Figure 4.4: Variations of the safety factor in different hillslopes (Figure 4.2) by changing the recharge
rate from 10 (dotted line), via 20 (dashed line) to 50 (solid line) mmd™ ( B = ¢).

4.3.3. Effect of slope angle change

The hillslope stability has also been investigated for different slope angles. Figure 4.5
illustrates how by varying the slope angle, FS is changed. The variations are completely
regular in all hillslopes and for all slope angles. Comparison of Figures 4.4 and 4.5 shows
that in a specific hillslope, by changing the slope angle, FS also changes regularly whilst by
changing the plan shape and slope curvature, the variations of FS are different for each
hillslope type. This means that in addition to the slope angle, the plan shape and slope
curvature should be incorporated as additional key factors in slope stability models. As can
be seen in Figure 4.5, when = ¢ , all convergent hillslopes (1, 4, and 7) become unstable

(FS <1) a few days after the onset of rainfall, whilst other hillslopes remain stable. This
means that for steep slopes and for shallow landslides, the effect of plan shape on hillslope
stability is much more important than that of profile curvature.
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Figure 4.5: Variations of the safety factor in different hillslopes (Figure 4.2) by changing the slope
angle from 20 (dotted line), via 30 (dashed line) to 40 (solid line) degrees (N=50 mmd™).

4.3.4. The relation between subsurface flow and hillslope stability

With respect to the important role of subsurface flow on slope stability (e.g. Borga et
al., 2002; Matsushi et al., 2006), the relation between variations of subsurface flow and FS
has also been studied. Figure 4.6 illustrates how the variations of FS and subsurface flow at
the outlet are almost each other’s mirror image: when subsurface flow increases, slope
stability decreases in all hillslopes and vice versa. When the water table reaches a constant
(steady-state), subsurface flow and FS obviously also become constant. Also at the moment
when subsurface flow rate becomes maximum, the FS approaches its minimum. Moreover,
the time to reach the steady-state condition and constant FS are different in all hillslopes. In
the concave convergent hillslopes (Figure 4.6, no.1), it takes less time and in the convex
divergent hillslopes (Figure 4.6, no. 9) it takes longer than in the others. This is because the
convergent hillslopes, due to the reduced flow domain near the outlet, drain much slower than
the divergent hillslopes (Troch et al., 2003), and as a result build up saturated storage much
quicker. Note that when the subsurface flow reaches a constant (steady-state) with respect to
recharge rate (N=50 mmd™), the subsurface flow at the outlet for some hillslopes is less than
20 mmd™. This is because in these hillslopes flow concentrates near the outlet region,
resulting in overland flow. Finally, based on the Figure 6 it can be concluded that when the
hillslope shape changes from divergent to convergent (with the same rainfall), hillslopes
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become unstable earlier. On the other hand, when profile curvature changes from convex to
concave, hillslopes also become unstable faster.

Sidle and Ochiai (2006) note that spatial and temporal variability in subsurface flow
may be strongly linked to three-dimensional preferential flow networks at the hillslope scale
and may can exert a huge effect on landslide initiation. However, our model cannot address
this issue and to better understand the effect of preferential flow on hillslope stability, it is
necessary to evaluate or spatially simulate a likely array of pathways rather than simply
preferential fluxes (Sidle and Ochiai, 2006).

1.8 60 1.8 60 1.8 60
16 Liso 1.6 _2|50 16 ,——§ 50
1.4 40 44 e 40 44 &40

30 . 30 P 30
2 A NG 20 12 - 20 12 ,/ 20
7/
1 P 10 1 10 1p, 10
0.8L= 0o 087 0 08 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
‘_T-\
|

31.8 . 60 1.8 60 1.8 60 ;

5 6

%1.6 50 16 _~=150 16 _-—"1%0 g

s ~

B 14 a0 ., P 0 ., - 40 2

1<) 30 7 30 &30 =

512 ] o 12 ) 20 120 7 20 §

1 . 10 1 7 10 1/ 105

(N _ - 7 / >
0.8 0 08-% 0 08 0 4

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 2
1.8 60 1.8 60 1.8 60
1.6 7 50 16 8 50 16 B g 50
14 0 5, . 0, - 40

30 . 30 P 30
1.2 o 12 » o 12 7 0

1 T 10 1 7 10
0.8 —== 0 08 0 08Yf 0

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Time (day)

Figure 4.6: The relation between subsurface flow (dotted line) and hillslope stability (solid line) in
different hillslopes (3 = ¢ and N=50 mmd™).

4.4. Conclusion

In this paper we have presented a physically-based hillslope stability model to
investigate the hydrologic control of shallow landsliding for complex hillslopes (HSB-SM).
The model is based on a combination of the hillslope-storage Boussinesq model (HSB)
(Troch et al., 2003; Hilberts et al., 2004) and the infinite slope stability method based on the
Mohr-Coulomb failure law. The HSB model is based on the continuity and Darcy equations
in terms of storage along the hillslope. The resulting HSB-SM model shows that the dynamic
response of complex hillslopes during drainage and recharge events depends very much on
the slope angle, plan shape and slope curvature. We have focused on the study of flow
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processes in the situation where the topographic relief and the shallow subsurface moisture
control the storage and stability of the hillslope.

We have also combined the coupled system for soil moisture storage in the saturated
and unsaturated zone (Hilberts et al., 2007) with the infinite slope method to investigate the
effects of unsaturated storage variations on hillslope stability in complex hillslopes. Our
analysis shows that there is not a large difference between both methods, illustrating that the
variations of the unsaturated zone storage can be ignored safely in the dynamic slope stability
analysis for shallow landslides. Therefore, it can be concluded that the presented model
(HSB-SM) can be used safely for hillslope stability analysis in complex hillslopes under
dynamic hydrological conditions. Furthermore, this model allows to investigate the relation
between subsurface flow and slope stability in hillslopes with different plan shapes and
different slope curvatures.

Based on our analysis, the minimum safety factor (FS) coincides with the maximum
rate of subsurface flow. In fact, an increase of subsurface flow, leads to a decrease of stability
in all hillslopes and vice versa. Consequently, after a certain period of rainfall, the convergent
hillslopes with concave and straight profiles become unstable faster than others. However, the
divergent convex hillslopes remain stable even after intense rainfalls. Finally, it can be
concluded that, in addition to the average bedrock slope angle, topographic characteristics
(especially profile curvature and plan shape) of the hillslope control the subsurface flow as
well and this process affects hillslope stability by changing the soil strength. As the current
model is limited to event-based analyses, further research is needed to present a probabilistic
model of rainfall-triggered shallow landslides for complex hillslopes with changing rainfall
input and soil depth.
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Application of a probabilistic model of rainfall-
induced shallow landslides to complex hollows

This chapter is based on the submitted paper Talebi, A., R. Uijlenhoet and P. A. Troch
(2007), Application of a probabilistic model of rainfall-induced shallow landslides to
complex hollows, Natural Hazards and Earth System Sciences
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5. Application of a probabilistic model of rainfall-induced shallow

landslides to complex hollows

Abstract

Recently, D’Odorico and Fagherazzi (2003) proposed "A probabilistic model of
rainfall-triggered shallow landslides in hollows" (Water Resour. Res., 39(9), 2003). Their
model describes the long-term evolution of colluvial deposits through a probabilistic soil
mass balance at a point. Further building blocks of the model are: an infinite-slope stability
analysis; a steady-state kinematic wave model (KW) of hollow groundwater hydrology; and a
statistical model relating intensity, duration, and frequency of extreme precipitation. Here we
extend the work of D’Odorico and Fagherazzi (2003) by incorporating a more realistic
description of hollow hydrology (hillslope storage Boussinesq model, HSB) such that this
model can also be applied to more gentle slopes and hollows with different plan shapes. We
show that results obtained using the KW and HSB models are significantly different as in the
KW model the diffusion term is ignored. We generalize our results by examining the stability
of several hollow types with different plan shapes (different convergence degree). For each
hollow type, the minimum value of the landslide-triggering saturated depth corresponding to
the triggering precipitation (critical recharge rate) is computed for steep and gentle hollows.
Long term analysis of shallow landslides by the presented model illustrates that all hollows
show a quite different behavior from the stability view point. In hollows with more
convergence, landslide occurrence is limited by the supply of deposits (supply limited
regime) or rainfall events (event limited regime) while hollows with low convergence degree
are unconditionally stable regardless of the soil thickness or rainfall intensity. Overall, our
results show that in addition to the effect of slope angle, plan shape (convergence degree)
also controls the subsurface flow and this process affects the probability distribution of
landslide occurrence in different hollows. Finally, we conclude that incorporating a more
realistic description of hollow hydrology (instead of the KW model) in landslide probability
models is necessary, especially for hollows with high convergence degree which are more
susceptible to landsliding.

Key words: probabilistic model, shallow landslides, complex hollows, HSB model
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5.1. Introduction

The relationship between the return period of rainfall and shallow landslides has
attracted the interest of numerous researchers (e.g. Dietrich and Dunne, 1978; Montgomery et
al., 1998; Iverson, 2000; D ’Odorico et al., 2005; Rosso et al., 2006) because rainfall is the
most frequent landslide-triggering factor in many regions in the world. In steep soil-mantled
landscapes, landslides tend to occur in topographic hollows due to convergence of water and
accumulation of colluvial soils that leads to a cycle of periodic filling and excavation by
landsliding (Dietrich and Dunne, 1978).

Shallow landsliding is a stochastic process, and understanding what controls the return
period is crucial for risk assessment (Sidle et al., 1985; lida, 1999; D’Odorico and
Fagherazzi, 2003). Observations of repeated landslides in certain areas indicate that for some
slopes and soil properties there exist a threshold of soil thickness, beyond which failure must
occur, provided the slope gradient is greater than the angle of internal friction of the failure
surface (Sidle and Ochiai, 2006). Therefore, to estimate the long-term susceptibility to
shallow landsliding, a combined model of soil depth development and rainstorm occurrence
is needed, since both of these factors control the recurrence interval of shallow landsliding
(lida, 2004).

Recently D’Odorico and Fagherazzi (2003) have presented a probabilistic model of
rainfall-triggered shallow landslides in hollows and showed that landslide frequency is linked
to the rainfall intensity-duration-frequency characteristics of the region. They developed a
stochastic model that computes the temporal evolution of regolith thickness in a hollow and
hollow hydrologic response to rainfall based on a steady-state kinematic wave model for
subsurface flow. In this research, we will use some elements of this model (stochastic soil
mass balance) to simulate the soil production (colluvial deposit) and soil erosion (landslide)
in time for hollows with complex shapes. Although our model is similar to that presented by
D’Odorico and Fagherazzi (2003) in that it is a probabilistic model of rainfall-induced
shallow landslides, there is an important difference. Convergent plan shapes or concave
profile curvatures cause the kinematic wave model to perform relatively poorly even in steep
slopes (Hilberts et al., 2004). Troch et al. (2003) observed that hillslope plan shape rather
than mean bedrock slope angle determines the validity of the kinematic wave approximation
to describe the subsurface flow process along complex hillslopes. Therefore, incorporating a
more realistic description of hollow hydrology in the stochastic landslide model is needed, as
hollows are generally convergent (e.g. Hack, 1965; Reneau and Dietrich, 1987) and hollows
with more convergence have more potential for landslide occurrence.

To investigate the role of rain infiltration on landslide triggering, some investigators
(e.g. Iverson, 2000) have employed the Richards equation to assess the effects of transient
rainfall on the timing, rate and location of landslides. However, the Richards equation is
highly complex and requires the solution of large systems of equations even for small
problems (Paniconi et al., 2003). Troch et al. (2003) introduced the hillslope-storage
Boussinesq (HSB) model to describe subsurface flow and saturation along geometrically
complex hillslopes. This model is formulated by expressing the continuity and Darcy
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equations in terms of soil storage as the dependent variable. The resulting HSB model shows
that the dynamic response of complex hillslopes during drainage and recharge events depends
very much on the slope angle, plan shape and profile curvature (7roch et al., 2003; Hilberts
et al., 2004; Berne et al., 2005; Hilberts et al., 2007). The HSB model can be linearized and
further reduced to an advection-diffusion equation for subsurface flow in hillslopes with
constant bedrock slopes and exponential width functions (Berne et al., 2005).

To relax the KW assumptions, in this paper we substitute the linearized steady-state
HSB model in the work of D’Odorico and Fagherazzi (2003) for complex hollows (hollows
with different length, slope angle and convergence degree). In fact, using an exponential
width function, hollows with different convergence degree is presented and then for each
hollow the critical soil depth, the minimum value of landslide-triggering saturated depth and
the minimum rainfall intensity needed to trigger a landslide along hollow length are
computed. Moreover, the temporal evolution of colluvium thickness is studied through a
stochastic soil mass balance. Therefore, by considering the soil production function and
hydrology condition in the different hollows, stability of each hollow is analyzed by the
infinite slope stability method. Finally, the generalized model helps to investigate the relation
between rainfall characteristics (intensity and duration), water table depth and slope stability
of colluvial deposits in complex hollows.

5.2. Model formulation
5.2.1 Hollow geometry

Topography influences shallow landslide initiation through both concentration of
subsurface flow and the effect of slope gradient on slope stability (Montgomery and Dietrich,
1994). Slope failure often occurs in areas of convergent topography where subsurface soil
water flow paths give rise to excess pore-water pressures downslope (Wilkinson et al., 2002;
Talebi et al., 2007a, 2007¢c). In most models of slope stability only the slope angle is
considered. Although slope gradient is an important factor in landslide initiation, other
geometric characteristics (such as profile curvature and plan shape) also control the
hydrological process (Hilberts et al., 2004) and as such affect hillslope stability (Talebi et al.,
2007b). The plan shape defines topographic convergence which is an important control on
subsurface flow concentration. Several investigations (e.g. Fernandes et al., 1994;
Montgomery et al., 1997; Tsuboyama et al., 2000; Troch et al., 2002; Hilberts et al., 2004)
have shown that hillslopes with convergent plan shape tend to concentrate subsurface water
into small areas of the slope, thereby generating rapid pore water pressure increases during
rain storms.

We consider only hollows with moderate to steep slopes and shallow, permeable soils
overlying a straight bedrock where subsurface storm flow is the dominant flow mechanism.
Shallow soils are most prone to rain-induced landslides. It is assumed that the plan shape of
the hollow can be described using an exponential width function:
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w(x') =w,e” = A(x') = &(e“” - e‘”‘,), (5.1)
a

where w is the hollow width (deposits) along the x’ direction (see Figure 4.1), x’ is the
distance from the outlet of hollow parallel to bedrock), w, is the hollow width at the outlet, 4

is the hollow area, L' is the hollow length and « is a plan shape parameter. Allowing this
plan shape parameter to assume either a positive, zero, or negative value, one can define
several basic geometric relief forms: a>0 for convergent, a<0 for divergent and a=0 for
parallel shapes. As hollows are generally convergent (e.g. Hack, 1965; Reneau and Dietrich,
1987), we will assume a wide range of positive numbers for convergent hollows.

As the purpose of this study is to investigate the effect of hollow geometry and
hydrology on landslide probability, we employ the subsurface flow similarity parameter for
complex hollows proposed by Berne et al. (2005). This dimensionless parameter, the
hillslope Péclet number, is defined for subsurface flow as the ratio between the characteristic
diffusive time and the characteristic advective time, taken from the middle of the hillslope:

Pe = (%) tan f — (%L’j , (5.2)

where p is a linearization parameter, D' is the soil depth and £ is the bedrock slope angle.
As can be seen, Pe is a function of three independent dimensionless groups:L'/(2 pD’),
tan 8 and aL'/2 ; L'/(2pD') represents the ratio of the half length and the average depth of
the aquifer (related to the hollow hydrology), and tanf and al'/2 define the hollow
geometry (see Berne et al., 2005).

5.2.2 Hollow stability

Planar infinite slope analysis has been widely applied to the determination of natural
slope stability, particularly where the thickness of the soil mantle is small compared with the
slope length and where landslides are due to the failure of a soil mantle that overlies a sloping
drainage barrier (Borga et al., 2002). lida (1999) used the same approach in his stochastic
hydro-geomorphological model for shallow landsliding due to rainstorms. He states that the
two-layer model of soil (regolith) and bedrock, which assumes a potential landsliding (soil)
layer, is suitable for the slope stability analysis in case of shallow landsliding. In this study
the slope stability model is based on a Mohr-Coulomb failure law applied to an infinite planar
slope. The failure condition can be expressed as (e.g. Montgometry and Dietrich, 1994;
D’Odorico and Fagherazzi, 2003):

7., D'sinB=c, +(y,D' cos -y, h'cos B)tan ¢ (5.3)
where y ,andy, are the specific weights of saturated soil and water respectively, £ is the
bedrock slope angle, ¢ is the soil repose angle, ¢, is the soil cohesion and 4’ is the saturated

water depth, with both 4" and D' (deposit thickness) being measured perpendicularly to the
bedrock.
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By solving Equation (5.3) for 4, the minimum value of landslide-triggering saturated
depth (4, ) can be obtained as (D 'Odorico and Fagherazzi, 2003):

h, =Lwp(i- BB, < (5.4)
7. tang ) y, tangcos/f

When the soil depth (D") is equal to 4,
given as follows (e. g. lida, 1999; D ’Odorico and Fagherazzi, 2003):
c

= ! (5.5)
v, tangcos f+y, , cos ﬂ(tan £ —tan (b)

the critical soil depth or immunity depth (D,,) is

cr

As long as D' < D, , no shallow landslide will occur as the depth A" of the saturated

cr?

layer cannot reach the critical value %_., even following an intense rainstorm. For this reason

the period during which D' < D, may be named “immunity period” (/ida, 1999; D’Odorico
and Fagherazzi, 2003). In gentle slopes (in contrast to steep slopes), an increase in colluvium
thickness increases stability. Hence, for gentle slopes the likelihood of landslide occurrence is

maximum when D’ = D_ and decreases for larger values of D' (e.g. lida, 1999; D ’Odorico

and Fagherazzi, 2003). For steep slopes the occurrence of a rainstorm can lead to landsliding
as soon as the soil depth starts to exceed the critical depth.

The hydrogeomorphological significance of these equations is as follows:
-When D'< D

rainfall).
-When D'>D

no shallow landsliding occurs and the slope is stable (independent of

cr?

the water table depth (/') can exceed 4, during a rainstorm, potentially

leading to shallow landsliding.
In the case of relatively steep slopes (S>¢), h, decreases linearly (i.e. stability decreases)

with an increase of soil depth D' (see Equation (5.4)). The soil depth D__ for which shallow

landsliding can occur without saturated throughflow (corresponding toh, =0) is (lida,
1999):
c

Donas = ¥ €08 B(tan  — tan @) (3-6)

In practice, D,,

is never reached because the soil depth increases slowly with time (see

section 5.2.5) and periodic rainstorms will produce at least some saturated subsurface flow

and consequently destabilization at thicknesses less than D Therefore, according to this

max *

model, shallow landsliding occurs when the soil depth D' ranges between D, andD,_, .
Note that in the case of relatively gentle slopes (f<¢), A, increases linearly (i.e. stability

increases) with an increase of D', hence no upper limit to the soil depth (D, ) exists. This

means that for gentle slopes, the likelthood of landslide occurrence is maximum
whenD' =D, .
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5.2.3 Hollow Hydrology

Hillslope hydrological response has traditionally been studied by means of hydraulic
groundwater theory (7roch et al., 2003). In many regions, groundwater flow is the main
source of streamflow between rainfall events. The basic macroscopic equation describing the
movement of water in the soil is known as the three-dimensional Richards’ equation. It is
highly complex and requires the solution of relatively large systems of equations even for
small problems (Paniconi et al., 2003).

To incorporate the hydrological process in hillslope stability analysis, many researchers
(e.g. Montgomery and Dietrich, 1994; Wu and Sidle, 1995; D’Odorico and Fagherazzi, 2003)
have used kinematic wave hydrology (KW). When water table gradients are high and bedrock
slopes are relatively small, diffusive effects become important. In such hillslopes (e.g.
convergent and gentle hillslopes) the KW model shows a relatively poor match to the
Richards’ model (Hilberts et al., 2004). Therefore, we propose to relax the KW assumption in
hillslope stability analysis.

Troch et al. (2003) reformulated the continuity and Darcy equations in terms of storage
along the hillslope, which leads to the hillslope storage Boussinesq (HSB) equation for
subsurface flow in hillslopes. Extending Brutsaert’s (1994) analysis, they linearized this
equation as:

' 2 1 ’
ai:]{a S; +U8S
ot ox' ox'

k, pD'cos S .

+ Nw (5.7)

with K = du=ksnb_ e

where S’ is the subsurface saturated storage, N is the recharge to the ground water table, &,

is the saturated hydraulic conductivity and f'is the drainable porosity (note that the value of
p is determined iteratively as pD’' should be equal to the average water table height

o
_[ S'(x")dx"/(Af") where A is the hollow drainage area). The assumptions are that the recharge
0

rate of subsurface flow is equal to the rainfall intensity and that water flows parallel to
bedrock. Comparison between the hillslope-storage Boussinesq and Richards’ equation
models for various scenarios and hillslope configurations shows that the HSB model is able
to capture the general features of the storage and outflow responses of complex hillslopes
(Paniconi et al., 2003; Hilberts et al., 2004). Berne et al. (2005) derived the steady-state
solution of Equation (5.7), with a zero-storage downstream boundary condition and a zero-
flux upstream boundary condition, for a given recharge N as:

Nw, [ e ([ Yx L
Sy=M | €k L R e (5.8)
a | U (Ka+U)
For parallel hillslopes (a = 0), this reduces to:
Nw I K U
S'(x)y=—"2|| =+L'|1-e X |- 5.9
(x) U (U )( J :l (5.9)
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According to the definition of the storage S’, the mean groundwater table height (over the
hillslope width) is:

= o S'(x) _Nefax' et B ,%x, 1 f%f_ o
h'(x") = o) = o [ U (1 e j+—(Ka+U)(e e ]] (5.10)

Again, for parallel hillslopes this reduces to:

W) = %K% ; L’j(l - e-?"j_ x'] (5.11)

The x-coordinate x/, where the mean groundwater table height is maximum (the critical point

for slope stability), can be obtained by solving ﬁ(x,'n) =0 (see Berne et al., 2005):
X!, = gln{l s e )} (5.12)

. . K L'
which for parallel hillslopes reduces to x/, = Uln(l + U?j .
Now, by substituting the Equation (5.12) into Equations (5.10) or (5.11), we can obtain
the maximum groundwater table depth in each hillslope (which is critical for landslide
occurrence):

TN N al’ i _al’ 77_
h(xm)_—fa(aKJrU) e {1+aK(1 e )} | (5.13)

which for parallel hillslopes reduces to:
F(x;,,)=i L'—Eln(lJr%j (5.14)
fUu U K

Equating F(x;n) and 4, the critical rainfall intensity for triggering landslides (R, ) can now

cr?

be calculated as:

R - hcrfa(aK + U) _ (5.15)
e {1 s Ve )}U -1
ak
which for parallel hillslopes (a = 0) reduces to:
R, = U, (5.16)

=K 14 YL
U K

Note that Equations (5.15) and (5.16) illustrate how R, (the minimum rainfall intensity
needed to trigger a landslide) is a function of the deposit thickness (D, ).

To compare with the linearized HSB model, we also derive the steady-state solution of
Equation (5.7) for a given recharge N under the KW assumption (K = 0) as:
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§'(x')y = W (gt _ oo )= (') = S') _ N (e —1) (5.17)
Ua fw(x") Uaf
As x/, =0 (in the KW case), then:
_ N .
h(x)=—Ie" —1 5.18
() =g 1) G19)
Now, the critical rainfall intensity for triggering landslides (R, ) can be calculated as:
U
=L (5.19)
e’ —1
Note that for parallel hillslopes (a = 0), these equations reduce to:
Nw
S'(x)y=—2(L =h L' —x' 5.20
() =— (L= )(x)Uf( x'), (5.20)
h(x!) = NL (5.21)
ur
and
o Urh,, _ h, k sin S (5.22)
L' L'

D’Odorico and Fagherazzi (2003) have presented critical rainfall intensity equal to
R =h'k w,sin f/ A for all hollow shapes and based on the KW assumptions. As can be seen,

this equation is similar to Equation (5.22) which has been presented based on the KW
assumptions and for parallel hollows. As we will show, the results of the KW and HSB
models for hollow hydrology differ significantly (especially for hollows with high
convergence degree) and this affects landslide probability.

The analysis of landslide frequency also requires the estimation of the duration of the
triggering rainfall. For this purpose, D 'Odorico and Fagherazzi (2003) applied the rational
method (e.g. Chow et al., 1988) to the subsurface flow in hollows to determine the most
critical storm duration for a given return period. The rational method assumes that the time of
concentration (7, ) is the most critical storm duration. Thus the maximum saturated depth

generated by storms of a given frequency is due to events of duration7, . Here, we update the

way in which the time of concentration is calculated to make it fully consistent with the
linearized steady-state HSB model. Hence, the concentration time can be expressed as:

S0
523
J.Q(X) -2
Nwy ( u ax'
with 0(x) = & (e =) @z 0)

Nw, (L' - x') (a=0)
In the KW limit this reduces to7, = L'/U , which for parallel hillslopes can be written as
T. = L'f /(k, sin B). D’Odorico and Fagherazzi (2003) expressed the concentration time as

T. = 4/ (k, sin B), where C is a dimensionless coefficient accounting for other factors
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affecting the concentration time and A4 is the hollow contributing area. This suggests that an
equivalent hollow length can be estimated asL' = CJA/ f . According to the exponential
width function, Equation (5.1), the contributing area is 4 = w, (e“” —1)/ a . This provides an

implicit equation to estimate the degree of convergence of an equivalent exponential hollow
from given values of 4,w,, and L'.

5.2.4 Return period of the triggering rainfall

Rainfall is considered to be the most important factor in triggering slope failure. To
accomplish a hazard analysis of the landslide phenomenon, a probability analysis of intense
rainfall occurrence for different return periods is needed. The objective of rainfall frequency
analysis is to estimate the amount of rainfall falling at a given point for a specified duration
and return period. The frequency of extreme rainfall is usually defined by reference to the
annual maximum series, which comprises the largest values observed in each year. The
Gumbel distribution has been the most common probabilistic model used in modelling
hydrological extremes (Brutsaert, 2005). Since landslides are triggered by extreme rainfalls,
following D ’Odorico and Fagherazzi (2003), we use a Gumbel distribution to express the

dependence between annual maximum rainfall intensity for events of duration 7, and return

period T, as follows:

TL =A=1- exp[— exp(— Mﬂ (5.24)

v

where 7. is the return period, R(7,) is the annual maximum rainfall intensity of duration7,
u and v are the parameters of the Gumbel distribution and A is the probability that the
maximum intensity exceeds R(7,) in a given year. As our model is applied to a parameter set

(for four realistic hollows) derived from published data from the Oregon Coastal range (e.g.
Montgomery et al., 1997; Torres et al., 1998; Stock and Dietrich, 2003; D’Odorico and
Fagherazzi, 2003), based on rainfall data available for the Oregon Coastal range
(Montgomery et al., 1997) the relation between u, v and 7, is found to be u/v = 2.6 and

v=4.75T,"°. From the value of 7. in a hollow, the parameters u and v are computed and

the return period of the critical rainfall intensity will be determined. Note that A =1/T is a

function of the soil depth due to the dependence between the intensity of the triggering
precipitation, R ., and D, (see Equations (5.15), (5.16), (5.19), and (5.22)).

5.2.5 Temporal evolution of deposit thickness

The temporal evolution of colluvial deposits in hollows can be characterized by a
continuous process of deposit accretion, and a discontinuous random process of denudation
caused by rainfall-triggered landslides, which scour to the bedrock large portions of the
hollow (D’Odorico and Fagherazzi, 2003). The temporal evolution of colluvium thickness
can thus be studied through a stochastic soil mass balance, accounting for the supply of debris
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from the adjacent slopes and for random denudation due to landsliding. The description of the
probabilistic soil mass balance model we apply in this study largely follows that of
D’Odorico and Fagherazzi (2003).

Many studies analyzed the soil production and landscape evolution to investigate the
spatial and temporal patterns of soil thickness (e.g. Kirkby, 1985; Dietrich et al., 1986;
Heimsath et al., 1997; Heimsath et al., 2001). Based on the conservation of mass equation for
a tipped triangular trough and slope-dependent transport, Dietrich et al. (1986) presented an
expression for the rate of colluvium accumulation in hollows. They showed that the rate of
accumulation is a function of the side-slope gradient and the difference between the side-
slope and hollow gradient. For a hollow composed of a tipped triangular trough and two
planar side slopes, the accretion of colluvial deposits can be obtained as (Dietrich et al.,
1986):

D' =[2D, cosﬂ(‘tan2 o —tan’ ﬂ)t] 3, (5.25)
where D, is the soil creep diffusivity, « is the angle between the side slopes and a horizontal

plane and ¢ is time. Dietrich et al. (1986) also showed that basin form, consisting of noses,
side slopes, and a hollow appears to be well represented by the geometry of a tipped
triangular trough and typically the ratio of hollow slope to side slope is about 0.8. If we
assume that o andf do not vary substantially with time, then Equation (5.25) can be

expressed as (D 'Odorico and Fagherazzi, 2003):
D'=+Mt; M =2D, cosﬂ(tan2 o —tan’ ,B) (5.26)
with M being independent of time. The differentiation of Equation (5.26) with respect to time

leads to:
daD' M

=/(D) =" 5.27
dt (D) 2D’ ( )

showing that the rate of colluvium accretion decreases with the depth, D', of the deposit
(D’Odorico and Fagherazzi, 2003). Now, the overall temporal evolution of the deposit
thickness ( D") can be stated as:

dD'’

dt
where [(D') is a depth-dependent function of net colluvium accretion expressed by Equation

(5.27) and J(D',¢t) is the rate of soil removed by debris flow and shallow landslides. The

latter is modelled as a stochastic Poisson process (D 'Odorico and Fagherazzi, 2003):

= (D) - J(D',1) (5.28)

J(D',1)=¢ (DY 5t -t,) (5.29)
where

D 0,0<D'<D, 530
g(D)= D D' D, (5.30)

In this equation ¢ represents a Dirac-0 function and the sequence ¢ is such that the
interarrival time of the triggering precipitation,z =¢,,, —¢,, 1s an exponentially distributed
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random variable. As a result, the temporal variability of colluvium thickness is controlled by
the rates of colluvium accretion and erosion (i.e., landslides), and both of them depend on the
actual state (i.e., deposit thickness) of the system. Note that the time needed to accumulate a
colluvium thickness D' =D, (T,

., ) 1s computed as:
T

=D /]2D, cos ,B(tan2 a — tan” ﬂ)] (5.31)

5.2.6 Numerical simulation of landslide occurence

To simulate the dynamics of complex hollows, the following steps are performed:
- The deposit thickness of a simulated hollow is D'=0 at /=0.
- The linearization parameter (p) is determined iteratively as p D' should be equal to average

water table depth in each hollow (F) and /' is calculated using S’ (saturated storage,
Equation (5.8) and (5.9)). Note that N is also computed iteratively by substituting D_ (in

stead of £, ) in Equations (5.15) and (5.16).
- The time of concentration (7, ) of each hollow is determined by Equation (5.23).
- Gumbel rainfall parameters (# and v) are estimated for extreme precipitation of duration7, .

- The minimum saturated depth (%, ) able to trigger a landslide is calculated from Equation
(5.4).
- The critical rainfall intensity (R, ) corresponding to /4, is computed from Equations (5.15)

and (5.16).

- The probability that R is exceeded in given year is estimated by from Equation (5.24).

- A random number to determine if a landslide occurs is drawn; if a triggering storm occurs,
the landslide scours the hollow entirely.

- The deposit thickness D' increases by transport from uphill based on Equation (5.27). Note
that in this model, a landslide occurs when D, > D'>D,_ .

The presented model, which is an extension of that of D’Odorico and Fagherazzi
(2003), simulates the long term evolution of soil depth. The extension lies in the fact that the
probability distribution of scar depth, landslide return period and colluvium thickness is
calculated for complex hollows based on a more realistic description of hollow hydrology
(the linearized HSB model). As the aim of this paper is to investigate the effect of geometry
and hydrology of hollows on landslide probability, we compare the different approaches of
hollow hydrology (KW and HSB models) in hollows with different geometries.

The model is applied to a parameter set (for four hollows) derived from published data
from the Oregon Coastal range (e.g. Montgomery et al., 1997; Torres et al., 1998; Stock and
Dietrich, 2003; D’Odorico and Fagherazzi, 2003). To apply the exponential width function
to these four hollows (which are convergent, see Figure 2, Montgomery et al., 1997),
Equation (5.1) is fitted using the total contributing areas (4), the outlet width (w,) and the

dimensionless coefficient affecting concentration time (C coefficient in Equation 6,
D’Odorico and Fagherazzi, 2003), as was explained previously after equation (5.23). The
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hollow length assuming exponential geometry is estimated by L' = CVA/ f . Now, from the

equivalent hollow length (L"), the plan shape parameter (a) is calculated using the Equation
(5.1). Finally, by computing pD' (see Equation (5.2)) in each hollow (iteratively), the
subsurface saturated storage is obtained by the HSB model (Equations 5.8 and 5.9).

Table 5.1 lists the values of the hydrological and geotechnical variables used to perform
stability analyses in the different hollows and Table 5.2 shows the geometric characteristics
of these four hollows. To generalize the obtained results, we also apply the model for a wide
range of hollows with different geometric characteristics and different hydrology conditions
(different Péclet numbers).

Table 5.1: Hydrological and geotechnical model parameters
(Published data from Montgomery et al., 1997).

Parameter name Symbol Units Value in this paper
Saturated hydraulic k, md’ 65
conductivity
Effective porosity f - 0.30
Soil cohesion c, kN m™ 11.0
Soil repose angle @ o 33
Saturated unit Vut kN m™ 20.0
weight of soil
Unit  weight of Y. kN m™ 9.81
water
Diffusivity D, m” yr’! 0.0032
coefficient
Side slope angle a o arctan(tan £#/0.8)
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Table 5.2: Geometric characteristics of four hollows used in this study (Published data from
Montgomery et al., 1997; D’Odorico and Fagherazzi, 2003). L' and a are determined from Equation
(5.1), b, from Equation (5.5) and 7, from Equation (5.31).

Parameter  Symbol Units 1 2 3 4
Drainage area A m” 3700 860 7500 4500
Bedrock slope p o 43 43 30 30

angle
Outlet width w, m 12 6 12 12
Length L' m 77 37 110 85
Convergence a m’ 0.030 0.061 0.026 0.029
degree
Immunity D, m 1.25 1.25 2.58 2.58
depth
Immunity T, yr 682 682 6389 6389
period

5.3. Results and discussion

Based on Equation (5.5), the critical soil depth (D, ) for the two steep hollows (S > ¢)
is found to be 1.25 m and for the two gentle hollows (S < ¢) 2.58 m (see Table 5.2). Table

5.3 and Table 5.4 show the results of the landslide probability analysis for the KW and the
HSB model, respectively. They illustrate how the hydrological properties and stability of
hollows change as a function of hollow geometry. As can be seen, the values of the
concentration time (7, ) are slightly longer for the HSB model than for the KW model. This is

because in the KW model the diffusion term is ignored (K=0 in Equation (5.7)). As a result,
other parameters (R, and7, ) for all hollows are also larger for the HSB model. This affects
the stability regime, especially in gentle and convergent hollows (see Table 5.4).

Based on the obtained results (Tables 5.3 and 5.4), the immunity period (7,,, i.e. the

time needed to accumulate a colluvium thicknessD'= D, ) of hollows 1 and 3 are

significantly longer than the return period of the triggering rainfall (7). This means that
landslide occurrence is limited by the supply of debris from the adjacent slopes, rather than
by the occurrence of triggering rainfall. As soon as the soil depth reaches D, , a landslide will
occur shortly. D’Odorico and Fagherazzi (2003) denote this regime as “supply limited”,
indicating that the landslide return period depends first and foremost on soil production. On
the other hand, in hollow 2 (where 7, is the same as for hollow 1), a higher rainfall intensity

is needed to trigger landslides (7,

im

<T.). In that case landslides occur when an extreme
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rainfall intensity is able to produce the critical saturated depth (4, ) required for landslide

occurrence. This is called the event-limited regime. Hence, it can be concluded that hollow

geometry is an important control on subsurface flow response (7roch et al., 2003; Hilberts et
al., 2004) and this process affects slope stability (7Talebi et al., 2007b).

Table 5.3: Characteristics of hollows based on the kinematic wave assumption.

Parameter Symbol Units 1 2 3 4

Time of T, hr 12.5 6.0 24.3 18.8

concentration

Critical rainfall R mm hr! 7.5 16.1 5.6 9.3

intensity

Return period T, yr 98 1581 216 6623

of  triggering

rainfall

Condition - - Supply- Event- Supply- Event-limited to
limited limited limited unconditionally

stable
Table 5.4: Characteristics of hollows based on the HSB model.
Parameter Symbol Units 1 2 3 4

Péclet number Pe - 170 74.16 91.7 55.8

Linearization )% - 0.168 0.184 0.132 0.167

parameter

Time of T, hr 13.5 6.4 24.7 19.2

concentration

x-coordinate x, m 1.10 1.02 2.46 2.85

where

W= hy

Critical rainfall R mm hr! 7.8 17.6 6.1 10.5

intensity

Return period T, yr 191 5948 481 32342

of  triggering

rainfall

Condition - - Supply- Event- Supply- Unconditionally
limited limited limited stable
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Figure 5.1 shows long term simulations of deposit thickness evolution in the four
hollows (from top to bottom) and illustrates how shallow landsliding occurs when the soil

thickness (D") ranges between D, and D__ . In this figure, left and right columns show the

time series of deposit thickness for the KW and HSB models, respectively. As can be seen,
the landslide probability analysis for the HSB model (using a more realistic description of
hollow hydrology) shows significant differences with respect to the results of the KW model
(especially in gentle and convergent hollows, Figure 5.1, last row). Comparison of the results
reported in Tables 5.3 and 5.4 with Figure 5.1 also illustrate that the KW model looses its
ability in gentle hollows, such as in hollow no. 4, where the stability regime has also been
changed. Figure 5.1 also indicates how, as a function of the hollow geometry from steep
slopes (top) to gentle slopes (bottom), the landslide probability is changed as well. For
instance in hollow 4 (where7.>>T, ), landslides never occur and the system can be termed
“unconditionally-stable”.

Figure 5.2 illustrates the probability distribution of colluvium thickness when a
landslide occurs as simulated by the KW model (left column) and the HSB model (right
column) (D,,, ). Note that hollow 4 lies in the unconditionally-stable regime, hence the

distribution of D, can only be presented for the three remaining hollows. These histograms

show that not only the different hollows have different distributions of scar depth, but also the
results of the KW and HSB models are significantly different. The average (m) and standard
deviation (sd) of histograms in each row shows these differences clearly. As can be seen, the
probability of distribution of D, is concentrated close to the immunity depth (D, ) for the
supply-limited case, whereas it is concentrated at significantly larger depths for the event-
limited cases.
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D’ (m)

Figure 5.1: Long term simulation of deposit thickness for the four hollows in Table 5.1 (from first to
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fourth row, respectively). Left column: KW; right column: HSB model.
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Figure 5.2: Probability distribution of scar depth (colluvium thickness when a landslide occurs) for
hollows 1, 2 and 3, respectively. Left column: KW; right column: HSB model.
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Figures 5.3 and 5.4 indicate how the probability distributions of the interarrival of the
landslide-producing rain events (7}, ) and the corresponding rainfall intensities (R, ) vary
for the different hollows. As in the previous figure, the left and right columns show the
results of the KW model and the HSB model, respectively. These results show that in hollow
1 (which has less convergence and a larger area), T, is close to 7, (supply limited regime),
while in hollow 2 (which has more convergence and a smaller area), T,,,, moves in the
direction of 7, (event limited regime). Comparison of the left and right columns in Figure 5.4
also indicates that the values of R, (the rainfall intensity generating a landslide) are
significantly different for the KW and HSB models. This is because the computation of the
concentration time of the HSB model (Equation 5.23) includes the effect of diffusion.

Figure 5.5 shows the probability distribution of colluvium thickness for the different
hollows corresponding to the KW (left column) and the HSB model (right column). As can
be seen, as soon as the soil depth reaches the immunity depth, landslides begin to occur.
Hollow 2 (second row in Figure 5.5) shows a significant difference between the KW and
HSB models. This is because in hollow 2 (which lies in the event-limited regime), the value
of T./T,, forthe KW model is less than for the HSB model, indicating that landslides occur a

longer time after D, for the HSB model. Hence, including a diffusion term in the steady-state

hydrological model has a noticeable influence on the landslide probability.
In order to quantify the effect of variations of hollow geometrical parameters (e.g. D',
L', A, a and f) and hollow hydrological parameters (e.g. S, 4" and p) and to generalize the

results obtain, different landslide regimes have been investigated for a wide range of hollow
geometrical and hydrological parameters for gentle and steep slopes (see Figure 5.6). As can
be seen, by changing the length (L"), slope () and shape (a) of several hollows, a wide

range of Péclet number (Equation 5.2, dimensionless parameter for hollow geometry and
hydrology), corresponding to the immunity period (7,,) and return period of triggering
rainfall (7.) has been obtained. In particular, we have investigated the relationship between
the Péclet number of a large number of hollows and the ratio of 7../7, . Based on our model,
(see Table 5.4).

Figure 5.6 summarizes the results of this paper and shows how presented model allows to

different regimes can occur, which depend on the ratio between 7. and 7,

¥ im

identify different landslide regimes as a function of hollow geometry, hydrology and
climatology. Therefore, Péclet number (pe) as the index of geometry and hydrology, T, as

the index of temporal variability of colluvium thickness and T as the index of climatology

can be used to investigate the probability distribution of shallow landslides in the different
hollows.
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87



Chapter 5

KW1
2.5
m=7.15
=0.27
2 sd=0 Rcr
~ 1.5
S
[
i
SO
0.5
0 .
5 6 7 8
1
Rslide(mm h )
KW2
0.4 T Y
m=12.9 I
sd=1.3 1
03 :Ra
— I
3 1
L° 0.2 :
g I
I
0.1 |
0 n
5 10 15 20
1
Rgige(MMh )
KW3
40 m=5.6
sd=0.02
cr
30
3
CCE
= 20
10
0 . n n n
5.5 5.7 5.9 6.1 6.3 6.5
1
Rgige(MMh )

Figure 5.4: Probability distribution of the landslide triggering rainfall intensity for hollows 1, 2 and 3,

p(Rslide)

p(Rslide)

HSB1
2.5 T Y
m=7.24 1
- I
,|  s0=0.38 q!
cr
I
1.5( :
I
I
1t |
0.5
0
5 6 7 8
-1
Rslide(mm h )
HSB2
04 T Y
m=12.6 |
sd=1.6 1
0.3} R!
M cr
11 I
H b I
0.2 |
I
I
0.1t |
I
I
0
5 10 15 20
-1
Rgige(Mmh ™)
HSB3
40 L m=603 I
sd=0.05 |
1R
cr
I
30 :
I
20t :
10}
0 " " n
5.5 5.7 5.9 6.1 6.3 6.5

respectively. Left column: KW; right column: HSB model.

88

R, (mmh™)

slide(



Application of a probabilistic model ...

KWH1

m=0.88
sd=0.31 D

1.5

0.5

KW2
1.5

m=1.03
50d=0.37 D,

p(D)
\

0.5

o
o
[
—

1.5

m=1.74

50=0.62 Der
08

0.4

0.2

p(D)
|

D’ (m)

HSB1

m=0.90 1
s0=0.32 D !

1.5}

0.57

o
o
o
-

1.5 2

HSB2
1.5

m=1.01
sd=0.40 D

p(D)
|

0.5}

o
o
[
-

1.5 2

m=1.79
sd=0.642
0.8} Dcr

0.67 —

p(D)

0.4}

0.2}

D’ (m)

Figure 5.5: Probability distribution of colluvium thickness for hollows 1, 2 and 3, respectively. Left

column: KW; right column: HSB model.

89



Chapter 5

10° -
i |
I . .
Supply-limited [ Event-limited
.. |
. |
e . o
T R S
= LT : 5 . ) . :
3 0 T L . T I : L
& o S e V! PO TR o, i o . et - -
S 10°F, - " B R E g
@ L
) 3
P !
* [
|
|
[
[
!
101 . . L] . . L ! .
107 107 10° 10’

/T

107

Supply-limited Unconditionaly-stable |

T
|
I
|
|
|
|
"I‘ |
— I
| —
o |
.g Lt : . |
R A - P P A
5 10°h, w v ur T e T | .
c PARRCRCCE U S ST
e I M ., s 1} ‘e - . ol M
° te . . -~ A .
& : w . L, o L
. ;i T S o
‘e "
| .
I
|
|
|
101 N N S S RS | N P S S R SR | N P S S S SR
107 10” 10° 10’

/T

Figure 5.6: The relation between hollow geometry (Pe) and hollow stability and landslide regime in
steep (top) and gentle hollows (bottom).

90



Application of a probabilistic model ...

5.4. Conclusions

The aim of this paper was to investigate the effect of hollow geometry and hydrology
on probability distribution of landslides in complex hollows (hollows with different length,
slope and convergence degree). For that purpose and to relax the KW assumptions, we
substituted a more realistic description of hollow hydrology (the linearized steady-state HSB
model) in the work of D’Odorico and Fagherazzi (2003). The obtained model constitutes a
probabilistic model of rainfall-induced shallow landsliding in complex hollows and allows to
investigate the relation between the return period of rainfall, deposit thickness and landslide
occurrence. The main assumptions of the presented model are:

- infinite planar slope stability analysis;
- steady-state hydrology;
- statistical model relating depth-duration-frequency of extreme precipitation based on
Gumbel extreme value distribution;
- growth of colluvial deposits in hollow only due to transport of soil from uphill, not
from physical weathering of underlying bedrock;
- and landslides scour hollow to bedrock.
Note that similar assumptions regarding hillslope hydrology and stability have been
employed by other researchers (e.g. Montgomery et al., 1998; lida, 1999; D ’Odorico and
Fagherazzi, 2003; Rosso et al., 2006).

The following conclusions can be drawn from our rainfall-induced landslide stability
analysis in response to deposit thickness evolution in complex hollows:

(1) Although shallow landslides in hollows are mainly triggered by high rainfall intensities,
deposit thickness also plays an important role in stability.

(i) With other site variables constant, shallow landslides usually occur when the soil depth
(deposits thickness) is between D, and D,

e.g. lida, 1999; D’Odorico and Fagherazzi, 2003).
(ii1) Given a deposit thickness, for each hollow there exists a critical rainfall intensity leading

(as has been confirmed by other researchers,

to the highest water table and subsequent landslide occurrence.
(iv) In general, when convergence degree of hollows increases, the time period between land
slides (T, ) decreases. This means that hollows with more convergence degree are generally

more susceptible to landsliding.

(v) In addition to the effect of slope angle, plan shape also controls the subsurface flow and
this process affects the probability distribution of landslide occurrence in complex hollows
and should be considered in hollow stability analysis.

(vi) Finally, it can be concluded that incorporating a more realistic description of hollow
hydrology (instead of the KW model) in landslide probability models is necessary, especially
for hollows with high convergence degree (which are more susceptible to land sliding).
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6. Summary and conclusions

6.1. Introduction

The hydrologic response of a hillslope to rainfall involves a complex, transient
saturated-unsaturated interaction that usually leads to a water table rise. Rising pore water
pressures can reduce the effective weight of the soil mass by producing an uplift force. An
increase of saturated groundwater flow is the triggering mechanism for slope failure. Since
the dynamic response of hillslopes is strongly dependent on plan shape, slope curvature and
slope angle (Troch et al., 2002; Hilberts et al., 2004), a three dimensional model of dynamic
hillslope hydrology is needed for stability analysis of complex hillslopes. The mathematical
description of these flow processes results in the formulation of the 3D Richards equation,
which is difficult to solve numerically. To overcome difficulties associated with three-
dimensional models, low-dimensional hillslope models have been developed by Troch and
co-workers. These models are able to treat geometric complexity in a simple way based on a
concept presented by Fan and Bras (1998), resulting in a significant reduction in model
complexity. These models can cope with varying hillslope width functions and bedrock
slopes (Hilberts et al., 2004). This final chapter will reflect on the most important
conclusions from coupling these low-dimensional models with slope stability models in
complex hillslopes and hollows and discuss the main objectives and research aims postulated
in Chapter 1. Finally some ideas for future research are put forward.

6.2. A steady-state analytical slope stability model for complex hillslopes

The approach described in Chapter 2 provides an analytical hillslope stability model for
assessing the relationship between slope geometry and slope stability in complex hillslopes.
The model consists of a topography model, a steady-state hydrological model and the infinite
slope stability assumption. The presented hydrological model takes account of the effects of
topography on hillslope saturated storage through the plan shape and profile curvature. By
varying these two parameters, nine basic hillslope shapes were used to compute their factor
of safety (FS) for given hydraulic and hydrologic conditions. We have demonstrated that
these nine basic hillslopes show quite different behavior from a slope stability viewpoint. It is
shown that in addition to average bedrock slope angle, topographic characteristics (especially
profile curvature and plan shape) of the hillslope control the subsurface flow and this process
strongly affects slope stability by changing the soil strength. In particular, when the width
function (plan shape) changes from divergent to convergent, hillslope stability generally
decreases. This effect is more pronounced for concave length profiles. As a result, for a given
plan shape (convergent, parallel or divergent) convex hillslopes are generally more stable
than either concave or straight hillslopes, particularly when the average bedrock slope angle
approaches the effective angle of internal friction.

Several assumptions have been made to derive the relationships in Chapter 2. Although
the assumptions incorporated in the model limit its use, the model can determine relative
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stability in different hillslopes with different profile curvatures and plan shapes. The first
assumption is the use of the kinematic wave approximation for subsurface flow. The
advantages of the kinematic wave approximation are, first, that analytical solutions exist, and
second, that the model accounts explicitly for the profile curvature and plan shape (Troch et
al., 2002). The main disadvantage of the kinematic wave approximation is that it does not
account for diffuse drainage; hence the model is not applicable for gently to moderately
sloping terrains. Since the key element for initiation of shallow landslides is the average
bedrock slope angle, this assumption is not expected to have a large influence on the slope
stability analysis (except for convergent hillslopes).

Another assumption is that soil density above and below the water table is the same in
the steady-state condition. The next step in our analysis has been to relax this assumption by
combining the saturated storage hydrological model with a steady-state unsaturated storage
hydrological model (Chapter 3). This has allowed us to derive soil moisture profiles defined
by the constant rainfall rate and the lower boundary condition (i.e. the groundwater level)
from which the unsaturated soil density can be computed. The performance of the infinite
slope hypothesis compared to alternative approaches to estimate slope stability (such as the
Bishop and Janbu methods) has also been investigated (Chapter 3).

6.3. Soil moisture storage and hillslope stability

The aim of this part of the research is to analyze the role of the geometric
characteristics of hillslopes as well as the effect of the unsaturated zone storage on the
hillslope stability in the steady-state hydrology. This was studied on the basis of computing
and analyzing the factor of safety in two different manners. First, by means of the analytical
model presented in Chapter 2 (Talebi et al., 2007a). Second, by means of a more complex
approach (i.e. non-constant soil depth associated with deep landslides) that accounts for the
unsaturated zone storage and that relaxes the simplifying assumptions of the infinite slope
stability model (Janbu’s non-circular method and Bishop’s simplified method). All methods
were studied in two cases: with and without considering the soil moisture profile in the
unsaturated zone. The effect of soil suction on soil cohesion was also incorporated.

We again applied the different hillslope stability models to nine characteristic hillslope
types with three different profile curvatures (concave, straight, convex) and three different
plan shapes (convergent, parallel, divergent). In order to generalize the results, we also
applied the slope stability models to a wide range of plan shapes and profile curvatures. In the
case of the infinite slope method for shallow landslides (with and without the unsaturated
zone storage), the convergent hillslopes with concave profile curvature have the least stability
in both cases. The divergent convex hillslopes have the most stability as they have less
storage than other hillslopes.

To evaluate the critical slip surface for hillslopes with non-constant soil depth, Bishop’s
method was incorporated in the analytical model. In this case, not only the factor of safety is
different in the hillslopes but also the location of the critical slip surface changes. The critical
slip surface is located at the upstream end of the slope in the concave hillslopes and near the
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outlet in the convex hillslopes. This is because the local slope angle (profile curvature) plays
a key role in the slope stability. Therefore, it can be concluded that the location of the critical
slip surface is more dependent on profile curvature than on plan shape. Overall, for a given
plan shape (convergent, parallel or divergent) convex convergent hillslopes have slip surfaces
with the minimum safety factor in the outlet region. To compare the stability of entire
hillslopes, Janbu’s non-circular method was incorporated in the analytical model with a slip
surface at the bedrock. This method also shows that convergent hillslopes with concave
profile curvature have the least stability.

A comparison of the results of the different slope stability models with and without
considering the unsaturated zone storage shows that there is no noticeable difference between
the two cases. This means that the bulk specific weight of the unsaturated zone can be
considered equal to that of the saturated zone in the steady-state hydrology. Hence, the
hillslope stability is completely determined by the water table dynamics. Therefore the effect
of the unsaturated zone storage can safely be neglected in the steady-state hydrology. Finally,
we conclude that the more complex approach (simplified Bishop method and Janbu’s non-
circular method) and a steady-state hydrology model can predict the critical slip surface and
slope stability for hillslopes with different geometrical characteristics. Due to its limitation
(steady-state hydrology) more research is needed to account for dynamical slope stability
effects. In Chapter 4 we have presented a dynamic slope stability model for complex
hillslopes.

6.4. A low-dimensional physically-based model of hydrologic control on

shallow landsliding in complex hillslopes

In Chapter 4, a physically-based hillslope stability model is presented to investigate the
dynamic controls of shallow landsliding for complex hillslopes. The presented model is
composed of three parts: a topography model conceptualizing three-dimensional soil mantled
landscapes, a dynamic hydrology model for shallow subsurface flow and water table depth
(HSB model) (Troch et al., 2003; Hilberts et al., 2004) and an infinite slope stability method
based on the Mohr-Coulomb failure law. The HSB model is based on the continuity and
Darcy equations in terms of storage along the hillslope. The resulting Hillslope-Storage
Boussinesq Stability Model (HSB-SM) is able to simulate rain-induced shallow landsliding in
hillslopes with non-constant bedrock slope and non-parallel plan shape. Based on the HSB-
SM model, the dynamic response of complex hillslopes during drainage and recharge events
depends very much on the slope angle, plan shape and slope curvature.

In the HSB-SM model, the rate of daily precipitation is substituted by the recharge rate
directly. This means that the variations of the unsaturated zone storage have been ignored
(note that soil moisture in the unsaturated zone has been calculated by Darcy’s law with a
unit gradient assumption). To relax this assumption, the slope stability analysis has also been
investigated based on coupling the saturated and unsaturated storages (Hilberts et al., 2007).
To investigate the effect of the unsaturated zone storage on hillslope stability under time-
varying conditions, this model has been combined with the infinite slope stability method.
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Both methods yield comparable results, illustrating the hillslope stability is mainly
determined by the water table dynamics (saturated soil moisture storage). These results are
confirmed by others (e.g. Iverson, 2000; lida, 2004; Rosso et al., 2006; Talebi et al., 2007b).
Therefore, we can safely use the original HSB model (7roch et al., 2003; Hilberts et al.,
2004) for stability analysis in hillslopes with different plan shapes and profile curvatures.

The results of the stability analysis for different recharge rates (using the HSB-SM
model) indicate clear differences in the stability of different hillslope types for the same soil
condition. In all cases (different recharge rates), convergent hillslopes with concave and
straight profiles become unstable faster than others. This is because the convergent hillslopes
drain much more slowly than the divergent hillslopes (7roch et al., 2003) and this process
increases the saturated zone storage, which consequently decreases the factor of safety
quickly. In contrast, in the divergent hillslopes which drain fast, even with 50 mm recharge
per day, the slopes remain stable.

With respect to the important role of subsurface flow on slope stability (e.g. Borga et
al., 2002; Matsushi et al., 2006), the relation between variations of subsurface flow and the
factor of safety has also been studied. Based on the results obtained by the HSB-SM model,
the minimum safety factor coincides with the maximum rate of subsurface flow. In fact, an
increase of subsurface flow leads to a decrease of stability in all hillslopes and vice versa. As
the current model is limited to event-based analyses, further research is needed to present a
probabilistic model of rainfall-triggered shallow landslides for complex hillslopes with
changing rainfall input. This probabilistic model has been presented in Chapter 5.

6.5. Application of a probabilistic model of rainfall-induced shallow

landslides to complex hollows

The aim of this chapter was to generalize a probabilistic model of rainfall-induced
shallow landslides in complex hollows to investigate the relation between return period of
rainfall, deposit thickness and landslide occurrence. The basis of this model is the same as the
work presented by D ’Odorico and Fagherazzi (2003), whose model describes the long-term
evolution of colluvial deposits through a probabilistic soil mass balance at a point. Further
building blocks of their model are: an infinite-slope stability analysis; a steady-state
kinematic wave model of hollow groundwater hydrology; and a statistical model relating
intensity, duration, and frequency of extreme precipitation. With respect to the limitation of
the kinematic wave hydrology for gentle slopes and especially for hillslopes with convergent
plan shape or a concave profile (Hilberts et al., 2004), we incorporated a more realistic
description of hollow hydrology (HSB model) (7Troch et al., 2003; Berne et al., 2005) in the
stochastic landslide model. We applied the presented model in four realistic hollows. The
results obtained by the KW and HSB models show significant differences, as in the KW
model the diffusion term is ignored.

We generalize our results by examining the stability of several hollow types with
different plan shapes (different convergence degrees). For each hollow type, the minimum
value of the landslide-triggering saturated depth corresponding to the triggering precipitation
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(critical recharge rate) is computed for steep and gentle hollows. Long term analysis of
shallow landslides by the presented model illustrates that all hollows show a quite different
behavior from the stability view point. In hollows with more convergence, landslide
occurrence is limited by the supply of deposits (supply limited regime) or the occurrence of
rainfall events (event limited regime) while hollows with low convergence degree are
unconditionally stable regardless of the soil thickness or rainfall intensity. Overall, our results
show that in addition to the effect of slope angle, plan shape (convergence degree) also
controls the subsurface flow and this process affects the probability distribution of landslide
occurrence in different hollows. Finally, we conclude that incorporating a more realistic
description of hollow hydrology (instead of the KW model) in landslide probability models is
necessary, especially for hollows with a high convergence degree, which are more susceptible
to landsliding.

The main assumptions of the presented model are: infinite planar slope stability
analysis; steady-state hydrology (no antecedent moisture); statistical model relating intensity-
duration-frequency of extreme precipitation based on the Gumbel extreme value distribution;
growth of colluvial deposits in the hollow only due to transport of soil from uphill, not from
physical weathering of the underlying bedrock; landslides scour the hollow to the bedrock.
Note that similar assumptions regarding hillslope hydrology and stability have been
employed by other researchers (e.g. Montgomery et al., 1998; lida, 1999; D’Odorico and
Fagherazzi, 2003; Rosso et al., 2006).

6.6. Ideas for future research

As vegetation plays an important role in improving slope stability and preventing mass
movements (e.g. Waldron, 1977; Ziemer, 1981; Sidle et al., 1985; Greenway, 1987; Abe and
Ziemer, 1991; Wu, 1995; Gray and Sotir, 1996, Montgomery et al., 2000; Norris et al., 2006),
this component should be incorporated in the models presented in this thesis. Two ways are
considered in which vegetation can affect slope stability: changes in the soil moisture regime
and contribution to soil strength by the roots (O ’Loughlin, 1974; Wu et al., 1979, Sidle, 1991;
Schmidt et al., 2001). The first way is not particularly important for shallow landslides that
occur during an extended rainy season, except possibly in the tropics and subtropics, where
evapotranspiration is high throughout the year (Sidle, 2006). By incorporating models (e.g.
Waldron, 1977; Wu et al., 1979; Gray and Sotir, 1996) to estimate the root resistance per unit
area in the dynamic slope stability model (HSB-SM model, Talebi et al., 2007c), an
integrated hillslope stability model can be presented. To consider the effect of
evapotranpiration and interception, a water balance model for the unsaturated zone can also
be incorporated in the presented model. Therefore, incorporating the vegetation component in
the dynamic slope stability model is suggested as a next step for this research.

Mapping areas susceptible to landslides is essential for land-use management and
should become a standard tool to support land management decision-making. Recent
advances in incorporating advanced GIS and DEM technology into distributed, physically
based modeling (e.g. Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Dhakal and Sidle,
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2003; lida, 2004; Hong et al., 2007) has facilitated the prediction of landslides at the
catchment scale. Therefore, a next idea following this line of research could be landslide
hazard mapping by incorporating the integrated hillslope stability model (the developed
HSB-SM model) with GIS tools. For doing this, an effort should be made to scale up from
hillslope to catchment. The result would be an improved slope stability screening tool. This
objective is met by uniformly describing and completely mapping all potentially unstable
slope areas in the watershed. Finally, landform hazard classification is linked to the
identified sensitivity to land management practices.
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Samenvatting

De hydrologische reactie van een helling op regen gaat gepaard met een complexe,
niet-stationaire interactie tussen de onverzadigde en verzadigde zones van de bodem, die in
de meeste gevallen tot een stijging van de grondwaterspiegel leidt. Een toename in
verzadigde grondwaterstroming kan het bezwijken van hellingen tot gevolg hebben. Om
betrouwbare simulaties te kunnen uitvoeren van de stabiliteit van hellingen op
landschapsschaal zijn eenvoudige (laag-dimensionale), maar fysisch realistische modellen
nodig die kunnen omgaan met de drie-dimensionale vorm van hellingen waarin stroming en
berging van grondwater plaatsvindt, zodat hydrologische processen op hellingsschaal op een
correcte manier worden gerepresenteerd. In dit proefschrift wordt het verband tussen de
vorm, de hydrologie en de stabiliteit van complexe hellingen en nissen onderzocht.

In dit proefschrift worden verschillende modellen gepresenteerd die worden gebruikt
om de stabiliteit van negen karakteristicke hellingtypen (landschapselementen) te
onderzoeken, met drie verschillende krommingen in de lengterichting (concaaf, recht en
convex) en drie in de dwarsrichting (convergent, parallel en divergent). Naast het testen van
deze modellen voor negen verschillende hellingtypen wordt er een algemeen verband tussen
de krommingen van de landschapselementen (hellingen) in lengte- en dwarsrichting en een
veiligheidsfactor afgeleid voor een gegeven hellinglengte. Onze resultaten laten zien dat de
stabiliteit van hellingen toeneemt als de kromming van het lengteprofiel van concaaf naar
convex verandert. In termen van krommingen van het dwarsprofiel neemt de stabiliteit toe als
de vorm verandert van convergent naar divergent, ongeacht de vorm van het lengteprofiel.
Analyses van de veiligheidsfactor laten zien dat deze minimaal is als de grondwaterstroming
maximaal is. Met andere woorden, de stabiliteit neemt altijd af met een toenemende
grondwaterstroming, ongeacht de vorm van de helling. Na een regenbui worden convergente
hellingen met concave en rechte profielen sneller instabiel dan andere hellingen, terwijl
divergente convexe hellingen stabiel blijven (zelfs na intense regen). Er is ook gebleken dat
hellingen met een variabele bodemdikte (mogelijk diepe aardverschuivingen) en met een
convex lengteprofiel en een convergent dwarsprofiel een minimale veiligheidsfactor hebben
op het uitstroompunt. Samenvattend kan gezegd worden dat, naast de hellingshoek van het
onderliggende gesteente, de krommingen van een helling in lengte- en dwarsrichting een
grote invloed hebben op de stabiliteit ervan.

Met betrekking tot het verband tussen het voorkomen van regen en de instabiliteit van
hellingen is een probabilistisch model van door regen geiniticerde ondiepe
aardverschuivingen in complexe nissen gebruikt om het verband tussen de herhalingstijd van
regen, de depositiedikte en het voorkomen van aardverschuivingen te onderzoeken. Een
lange-termijn analyse van ondiepe aardverschuivingen gesimuleerd met dit model laat zien
dat alle nissen zich anders gedragen uit het oogpunt van stabiliteit. Tenslotte kan er worden
geconcludeerd dat het nodig is om een realistischere beschrijving van de hydrologie van
nissen te gebruiken (het hillslope-storage Boussinesq model in plaats van een kinematische
golf model) voor het modelleren van de kans op aardverschuivingen, in het bijzonder voor
zeer convexe nissen, die het meest gevoelig zijn voor aardverschuivingen. Dit model kan
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worden gebruikt als hulp bij het onderzoeken van het verband tussen de herhalingstijd van
regen en het voorkomen van aardverschuivingen in relatie tot bodemproductie
(depositiedikte) in complexe nissen.

Kort gezegd was het doel van dit proefschrift om theoretisch te begrijpen hoe
hydrologische processen (grondwaterstroming en de dynamica van de grondwaterspiegel) de
stabiliteit van de bodem van complexe hellingen en nissen beinvloeden. De gepresenteerde
modellen kunnen op een breed vlak worden toegepast bij het analyseren van de stabiliteit van
hellingen vanwege de relatieve eenvoud van deze (laag-dimensionale) modellen.
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Cover pages:

Front: shows a shallow landslide in the west of Iran (Mahdavifar, 2005).

Back: shows the distribution of shallow and deep landslides in Iran (Reference: National
Geoscience Database of IRAN, http://www.ngdir.ir/landslide/PLandSlideMap.asp?#Nod).
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