W Durham
University

AR

Durham E-Theses

Analytical methods for predicting load-displacement
behaviour of piles

HASHEM-ALI, SALMA ,FIDEL

How to cite:

HASHEM-ALIL, SALMA,FIDEL (2014) Analytical methods for predicting load-displacement behaviour of
piles, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk,/10918/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.



http://www.dur.ac.uk
http://etheses.dur.ac.uk/10918/
 http://etheses.dur.ac.uk/10918/ 
htt://etheses.dur.ac.uk/policies/

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://etheses.dur.ac.uk

Analytical methods for
predicting load-displacement
behaviour of piles

A
W Durham

University

Thesis submitted for the degree of Doctor of Philosophy in the Faculty of
science University of Durham

Salma Fidel Hashem Ali

Mechanics Research Group
School of Engineering and Computing Sciences

Durham University



Abstract

This thesis presents new methods for predicting pile response under different loading and soil
conditions. The new methods offer practs engineers with a simple, quick and reliable tool for

designing piles and ensuring that both safety and serviceability requirements are satisfied.

In this thesis, an energy-based analytical approach for determining the dynamic response of
piles subjected to dynamic loads is presented. The kinematic and potential energies of the
pile-foundation system are minimized by a variational principle to obtain the governing
equations of the pile-foundation system, along with the appropriate boundary conditions.
Comparison with field data demonstrates the success of the new approach for predicting the

resonant frequencies of laterally loaded piles.

Energy-based methods are also developed for piles subjected to combined static loading.
These methods are formulated for different constitutive models: linear-elastic, non-linear
elastic and elasto-plastic models. In addition to energy-based methods, simple similarity
methods have been developed to predict pile displacements. In the similarity methods, the
load-displacement curve of a pile foundation can be obtained directly by scaling the stress-
strain response obtained from a triaxial test on a representative soil sample. Linear scaling
factors are presented and extensive verification is carried out against field data, centrifuge

models and nonlinear finite element analysis.

Key words: laterally loaded pile, linear elastic soil, axial loaded pile, nonlinear elastic soil,

elasto plastic soil, energy method.
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Chapter 1: Introduction

1 Introduction

1.1 Introduction

The rising use of both, offshore piles and of high structures such as bridges has increased the
importance of the study of the behaviour of laterally loaded piles. Recently, because of rising
energy demands there is an increasing use of wind farms and oil platforms. Now there are
approximately 3500 oil platforms around the world. In addition the cost of offshore piles is
high, perhaps reaching £250,000 for a single wind farm. Generally, the cost varies according

to the depth of the installation, Figure 1.1 shows examples of the usage of piles for a wind

farm and for an oil platform.

(b)

Figure 1.1: (a) The Bouri Offshore Field, Libya www.libya.spe.org , (b) Wind farm

of Lake Erie, Ohio www.ubergizmo.com
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However, offshore foundations are subjected to a combination of environmental forces such
as waves, currents, wind and possibly earthquakes. These forces are usually more hostile than
those on conventional onshore structures. In the offshore case the lateral load is usually a
substantial fraction of the vertical load, and the overturning moment is also very large
compared to those found in the design of onshore structures. Furthermore, there is often a
major cyclic component of both vertical and horizontal loads. Compared to onshore
foundations, offshore foundations are usually very large. Because of this large scale, the
variation of soil properties and the depth of the foundation are significant, and need to be
accounted for (Reese and Van Impe 2001; Haldar and Sivakumar., 2009; Basu et al., 2008;
Basu et al., 2009).

Figure 1.2: Collapse of platform due to hurricane www.offshore-mag.com

Although there is an increasing use of offshore piles, there are many uncertainties associated
with their installation and operational performance. For instance, the lateral interaction
between soil and pile is complex, since the load-deflection behaviour is non-linear, except in
the case of very small loads (Farrell et al., 2000; Gavin et al., 2008; Khemakhem et al., 2010).
Also the cyclic nature of the loading makes it even more non-linear as the properties of the

soil change during repeated loading.

In the offshore piling industry, the accurate prediction of pile deflection is an one important

aim of geotechnical engineers, often carried out using 3D numerical analysis. However, such


http://www.offshore-mag.com/
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analysis is expensive and needs time for computing. Therefore, there is a need for a tool that

provides practising engineers with simple and accurate analysis of the performance of piles.

1.2 Aims of the research

The aim of this thesis is to develop simple methods that can be used by engineers to predict
pile deformation and failure under different loads to address some of the problems

highlighted above. The main objectives of the thesis are as follows:

1. To develop analytical solutions based on an energy approach to predict the
deformations of a pile under static and dynamic lateral loads that takes into account
the variation of soil stiffness with strain. Then to validate this solution with field data
and 3D finite element analysis.

2. To develop other methods (analytical solutions) to calculate deformation under static
and cyclic axial, lateral and combined loads for piles.

3. To establish the failure envelopes for piles under combined loads.

1.3 Outlines of the thesis

This research is presented in eight chapters as follows:

Chapter 2 gives brief reviews of the literature concerning the behaviour of a pile embedded in
linear soil and nonlinear elastic soil, concentrating on modelling and current methods for pile

analysis.

Chapter 3 introduces the analytical solution based on energy method that is used to estimate
pile deformation due to static horizontal loads, where the soil behaviour is modelled as linear
elastic. This analytical solution is extended to predict lateral load piles and better predictions
of the resonant frequency.

Chapter 4 considers the behaviour of a single pile in nonlinear soil subjected to lateral
loading, where soil stiffness is assumed to depend on the strain and stress levels. A single pile
subjected to lateral cyclic loads is considered in this chapter. The results are successfully

validated with previous studies and finite element modelling carried out in this thesis.
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Chapter 5 is similar to Chapter 4 in that it considers an analytical solution for an axially
loaded pile in nonlinear soil to calculate pile deflection, and cyclic axial load is also
considered. Here then the results are validated with 3D finite element analysis, carried out in

this thesis and in previous work.

In Chapter 6 a new method to predict pile displacement using triaxial test data is presented,
where the load-displacement response can be derived from a stress-strain curve using a
simple calculation. This method is far quicker and simpler than 3D numerical analysis. The
technique is not intended to replace advanced numerical methods, but to provide a tool which
is simple enough to be used in preliminary design calculations, whilst capturing the important

influence of soil non-linearity.

In Chapter 7 finite element analysis to estimate the ultimate load of a pile is present. The
analysis considers different variations of shear strength with depth and different pile

geometries.

Chapter 8 concludes and summarises the calculation of pile deflection due to different types

of loading using different methods. Suggestions for future work are given.



Chapter 2: Background

2 Literature Review

Introduction

Extensive research has been conducted into pile-soil deformation under different types of
loads. Designers of pile foundations have to satisfy two requirements: (i) the pile needs to
withstand applied loads without triggering structural or soil failure, and (ii) the induced
displacements should not affect functionality of the supported structure. In this chapter, a
review is conducted of different existing analytical methods for predicting ultimate collapse
loads in foundations, with the emphasis on deep foundations. Different methods for
predicting displacements will also be reviewed. This chapter compares different design
assumptions with real soil behaviour. Since it is not possible to cover every aspect of soil

behaviour, only some of the most important issues are briefly discussed here.

2.1 Predicting ultimate load analyses in foundations

Different solutions related to the bearing capacity of foundations have been developed by
researchers. Most of these studies have focused on shallow foundations. For example, the
failure envelope of a shallow foundation was calculated by Salencon and Pecker (1995a,
1995b) under static and dynamic loads. They assumed that the shallow foundation is resting
on the surface of a homogeneous soil and that it was subjected to an inclined, eccentric load.
Such studies have been extended to include different shapes of foundation and different
constitutive models for soil (Meyerhof, 1951; Meyerhof, 1953; Shield, 1955; Cox et al.,
1961; Brinch Hansen, 1970; Randolph and Puzrin, 2003).
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Thirty years ago, significant attention was paid to the vertical bearing capacity of shallow
foundations on homogenous soil by considering different shapes of different constitutive
models of soil. The shear strength in most of those studied was assumed to increase linearly
with depth. The effect of lateral and overturning loads was also reported by many researchers
(Davis and Booker, 1973; Houlsby and Wroth, 1983; Bransby and Randolph, 1998;
Ukritchon et al., 1998; Bransby et al., 1999; Butterfield and Ticof, 1979; Taiebat and Carter,
2010).

An extensive analysis of strip and circular footings was carried out by Gourvenec et al.,
(2003) where the surface foundation is subjected to undrained loads (vertical, horizontal or
moment). In their study, 2D and 3D finite element analyses were used in order to estimate the
bearing capacity. The soil was taken to follow the Tresca model and the undrained shear
strength was assumed to vary linearly with depth.

The bearing capacity of offshore foundations has been studied by Bransby and Randolph
(1998), Taiebat and Carter (2000), Taiebat and Carter (2002a &b), Gourvenec and Randolph
(2003), and Gourvenec and Barnett (2011) where they applied 3D finite element analyses to
the problem of offshore circular foundations resting on homogenous and cohesive soil, where
the foundations were taken to be fully connected to the soil and were subjected to combined
loads. This was extended by Gourvenec (2007) who used finite element analysis to obtain the
failure envelope of offshore shallow foundations with peripheral skirts installed into the
seabed. The shallow foundation was subjected to combined loading and assumed to be fully
connected with the soil. Undrained conditions were assumed. Studies carried out by Houlsby
and Puzrin (1999) and Taiebat and Carter (2002a and 2002b) based on finite element analysis
assumed the foundation was free to be separated from the soil, and the soils in both studies

were taken to be uniform.
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2.1.1 Calculation of the ultimate load of a piled foundation

1. Pile subjected to horizontal load

Randolph and Houlsby (1984) developed solutions for a laterally loaded pile embedded in
Tresca material. The upper bound and lower bound limit theorems were used to predict

collapse loads. Figure 2.1 shows the soil movement around the pile.

s5liding concentric
cylindrical shells

Figure 2.1: Soil movement around pile loaded laterally (Davies, 1987 from Randolph
and Houlsby, 1984)

2. Pile subjected to axial load

Kezdi (1975) stated failure of piles depends on many factors such as the shear strength of soil
surrounding the pile, the pile geometry and the material of the pile. Lambe and Whitman

(1969) assumed that the axial capacity of piles can be calculated as follows:
P=P,+P (2.1)

where P represents pile capacity, P, and P; are pile base and shaft resistances respectively,

and



Chapter 2: Background

P, = Ap(Aqs)u (2.2)
DN.
(Aqs)y = cNe + ==L + ydN, (2.3)
L
P, = f AL ag S (2.4)
0

A, is area of pile base, (Aqs), denotes ultimate bearing capacity, is cohesion term of soil
which is equal to zero in sand, A L is an increment of pile length, a, is area of the pile surface
inA'L, d denotes the depth of the base of the pile, N, and N,, are dimensionless factors that
depend only on friction angle of the soil, D is the pile diameter, y is the unit weight of the soil
and Sg represents unit shaft resistance. Four patterns of failure zones due to axial load

assumed by Vesic (1963) are shown in Figure 2.2.

[———r ————ar ————aay —————aay ———aay ———
— — — p— q— g

I l

Figure 2.2: Failure mechanism of axial loaded pile (after Davies, 1987 from Vesic, 1963)
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2.2 Analytical methods for calculation of pile displacement

2.2.1 Laterally loaded piles

Many researchers have developed methods over the past fifty years to describe the behaviour
of elastic foundations subjected to axial and lateral loads. Several authors such as Poulos
(1971), Banerjee (1978), Randolph (1981) and Verruijt et al. (1989) have detailed various
models that can be used to analyse laterally loaded piles, where the pile can be modelled as a
flexible beam. The major difference among these models is how the soil behaviour is treated.

In some analytical methods, the soil is treated as a series of independent non-linear springs,
and the simplest model is that produced by Winkler (1867) which considers the soil as a set
of springs. Several solutions based on the Winkler method have been reported in the literature
(Gieser 1953; Barbar 1953; McClelland and Focht 1956, Matlok and Resse 1961, Wood
1979). The ground is modelled by a series of elastic springs that represent ground deflection,
where the spring constant describes the soil’s stiffness relative to the acting load. The beam
deflection is governed by a linear differential equation of fourth order, where the deflection
of the beam, bending moment, displacement and shear force can be obtained by inserting
input parameters such as elastic modulus, beam geometry, the load applied and the spring
constant of the foundation into the model. The spring constants are determined empirically.
These methods are used for both cases of linear homogenous soil and nonlinear
heterogeneous soil around the pile. Figures 2.3 and 2.4 show a beam on an elastic foundation

and a laterally loaded pile against a bed of springs.

The beam-on-foundation concept has been adopted to apply to piles subjected to lateral loads.
The main reason for this is that the pile behaves as a flexible beam when acted upon by
lateral load. While the beam foundation can be rotated by 90°, the problem of laterally loaded
piles is more complicated due to the nonlinear behaviour of soil in the field, especially near
the top of the pile (Matlock et al., 1960; Reese 1971).
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Applied force

Figure 2.3: Beam on an elastic foundation (Basu et al. 2008)

Applied force

Springs

Pile

Figure 2.4: Laterally loaded pile in a bed of springs (Basu et al. 2008)

10



Chapter 2: Background

An empirical method has been commonly used to predict pile deformation due to horizontal
loads, called the p — y method, which presumes that the pile is an Euler-Bernoulli beam and
that the soil works as a series of springs, where p represents the soil resistance and y is the
pile deflection. The spring model has been developed to match soil response to actual load-
displacement (Cox et al., 1974; Ashour and Norris., 2000; Basu et al., 2009; McGann and
Mackenzie-Helnwein, 2011). In the case of three dimensions the p —y method allows the
response of the pile to be calculated where the non-linearity of the soil is taken into account
(Anderson et al., 1999). Ashour and Norris (2000) developed a method in which there was a
division into thin slices and the resistance of the soil was obtained by using the p - y curve for
each slice against its deflection. Poulos and Davies (1980), Basu et al. (2008), Fleming et al.
(2008), Moller and Christiansen (2011), Huang (2011) and Heidari et al. (2013) all assumed
that the p — y curves for a single pile can be developed for use among groups of piles, where
the value of p will be reduced due to the interaction between piles leading to reductions in

soil resistance.

One of the common approaches for calculating the ultimate displacement due to soil yielding
is the beam-on-foundation approach, where the soil is treated as plastic and its lateral
capacity can be determined from its resistance (Poulos et al., 1980). Unfortunately, this
method fails to predict pile response since the resistance of soil, which is used in the p — y
analysis is developed empirically and is fitted to numerical analysis results to meet the field
results. The other disadvantage of the p - y curve is that a curve developed for a specific site
IS not suitable for another site. In other words, each site needs its own p - y curve depending
on the properties of the soil there, as well as a load pile test in order to predict lateral pile
response accurately. This method is therefore expensive because each site needs a pile load
test (Anderson et al., 2003; Basu et al., 2008). An analytical solution based on an energy
based method resulting in a set of governing equations and boundary conditions that
represent the deformation of pile and soil under static lateral load has been used by Sun
(1994) (homogenous soil linear elastic) and Basu et al. (2008, 2009) (multi-layered nonlinear
and linear elastic soil). These equations were solved numerically using a finite difference
method, while Das and Sargand (1999) used the same method to predict the deformation of a

pile in homogenous linear elastic soil under dynamic lateral loads.

11
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In order to predict pile displacement due to lateral load, three approaches can be used: the
cantilever method, Winkler’s method and the elastic continuum method. The cantilever
method was developed by Davisson and Robinson (1965) and Lee (1968), in this method, the
soil reaction is ignored and the simple cantilever theory is used to calculate the deformation.
For a floating pile (where the base of the pile is free to move under external load, see Figure
2.5a).

3

_ Qo(e + Zf) 2.5)

-~ 3E,I, '
For a clamped pile (where the base of the pile is fixed, see Figure 2.5b)
y = etz (26)
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Figure 2.5: Deformation of rigid pile under lateral load

12



Chapter 2: Background

where e is the length of the pile above the ground level, u represent lateral displacement of
the pile, Q, represents the lateral load, E,, the elastic modulus of pile, I, is a second moment
of area of pile and z is a distance to point of virtual fixity a point at a certain depth below
ground surface where the piles are assumed fixed without movement under lateral load.

Figure 2.6 shows z.

QO NPT e
e ‘ .
MVIAN
(= 1:5d
. Zs
L

' 9cud Mmax

_ o (s

Pile deflection Soil reaction Bending moment

Figure 2.6: Laterally loaded pile (after Broms, 1964a)

In addition to Winkler’s approach, several methods which treat the soil as an elastic
continuum approach have been developed (Poulos (19714, b, ¢, 1974, 1980), Banerjee and
Davis (1978), Butterfield and Banerjee (1971) and Randolph (1981)). A summary of some

these methods are given below.

e Poulos’s method (1971)

This method considers the pile as a thin rectangular strip with constant flexural stiffness
embedded vertically in a homogenous isotropic semi-infinite elastic medium. The pile is

assumed to be fully connected with the soil. The horizontal shear stress between the pile and

13
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the soil is ignored in order to obtain a simple solution. The pile is divided into elements but
the top and bottom elements of the pile are not counted. The deformation for all central

elements can be described as

_ B
EsIs/p

2.7)

where u represents lateral displacement of the pile, p is uniform stress, E is elastic modulus
of soil, I describes the influence factor of dimensionless soil deformation and B is the width
of the strip (as mentioned the pile is assumed to be a rectangular strip). Poulos solution can
regarded as an extension to Mindlin’s solution (1936)"The soil here is assumed to be a linear
elastic material, and its modulus constant, Poulos predicts free pile head deflection under

horizontal load and rotation as

(LQE0 ) lon + (EMLZ) lum (28)

o= (EQZZ) lon + <EMZ3) lom (2.9)

and deformation for a fixed head pile in homogenous soil as

Ues = (EQOL) Iyr- (2.10)

For non-homogenous soil, the displacement of a free head pile can be calculated as

~ () (1 o+ ()1 o) (211)

! Mindlin’s solution is the solution for the stresses and displacements in the case of a concentrated force in
interior of semi-infinite elastic uniform isotropic solid.

14



Chapter 2: Background

6 = (7523) (1" on+ (%)1 on) (2.12)

and for a fixed head pile as

Uy = <&)I - (2.13)

nhLZ

where 6 is rotation deformation for free head pile, e is the eccentricity of lateral load, u, is
lateral displacement for fixed head pile in homogenous soil, Iy, Iyum, loy , Iyr and gy, are
Poulos’s dimensionless deformation factors for a pile in homogenous soil, L denotes pile
length, Q, is lateral load and M, represents bending moments, uef/ is lateral displacement
for fixed head pile in non-homogenous soil Iy, Iy, I e, 1 yrand I’ g, are Poulos
dimensionless deformation factors for a pile in non-homogenous soil and n;, is the rate of

increase of soil elastic modulus.

e Budhu and Davies’ Method

A set of equations to predict lateral deformation of free and fixed head of pile and rotation
were developed by Budhu and Davies (1987 and 1988). These analyses are based on the p-y
method for a laterally loaded pile in elasto-plastic soil. For a free head pile the displacements

can be obtained by

Qo M,
u = W v T+ WIUM (2.14)
Qo My
0 =——lgy +——Igu- 2.15
nhD3 6H nhD4, oM ( )

The displacement and the moment of a fixed pile head can be calculated by

15
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Qo
Uer = WIFH (2.16)

where the maximum moment estimated by M,,,, = Iyy Qo D that occurs at depth [, =
0.53 D K?/°, and Iyy = 0.3K%/°. Iyy, Iyy, lon, Iym and Izy are influence factors which are
calculated as Iy = 3.2K73/°, Iy = Igy = 5.0K73°, Iy = 13.6K77/° and Ipy =

Eef
Tlhd

1.4K~3/°, K is the stiffness ratio of the pile-soil which is calculated as K = and Ey is

Eplp
nrot/4

the effective elastic modulus of pile E.r = ( ) where 1y is pile radius.

e Randolph’s method (1981)

Randolph derived the response of a laterally loaded pile embedded in homogenous soil using

finite element analysis as follows

Qo (Ep\77 My (Ep\"7
u= 02577 (G—) + 0'27G*r02(5) (2.18)

5

Qo (Ep\ 7 My (Ep\77
=022 (2) 7 o o (B) 219

where G is the shear modulus of soil, G* = G (1 + %v) v is Poisson ratio, M, is bending

moment. Equations (2.18 and 2.19) were modified to calculate the deformation in non-

homogeneous soil for laterally loaded piles as

u=0.54&(1f—”) 0.6 (i) g (2.20)
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The rotation deformation for non-homogenous soil can be obtained as

5 7

E, \7® My [ E, \d
6 = 0.6 ( ”) +1.13— ( ”) (2.21)
m*ry3 \m*r, m*ryt \m*r,

where m is the rate of increase of soil shear modulus with depth and m* is the product of

3
m and (1 + Zv).
e Banerjee and Davies’s Method

Deformations due to lateral and moments loads on a pile are presented by Banerjee and

Davies (1978) using boundary element analysis and the following relationships are obtained;

For free head piles

Q M
u= (E OL)IH + <—E 22) Lum (2.22)
S S
Qo M,
S S

Displacement of a fixed head pile is given as

. (%) I (2.24)

where E is the soil modulus at the tip of the pile, and Iy, Iyum, Iry and Iy represent the
influence factors. The difference between Poulos and Banerjee & Davies’s methods is that
Poulos used an integral approach while Banerjee & Davies’s used boundary element analysis

in order to obtain the displacement of pile loaded laterally.

17
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Broms’s method

Broms (1964b) suggested two methods to predict the ultimate lateral resistance of soil

according to type of soil and geometry and boundary conditions of the pile.

For cohesion-less soil, the ultimate lateral resistance of a soil for a short pile at any depth can

be obtained as

Qy = 3y'zK, (2.25a)

where y ~ is the effective unit weight of cohesion-less soil, Q,, is ultimate lateral load K, can

1+sin@’

P and @ is the effective soil friction angle, this solution is

be calculated as K, =

suitable for soil with K, approximately equal to 3. However, Fleming et al. (1985) presents a
solution for the ultimate lateral resistance of soil that is suitable for cohesion-less soil when

K,, is greater than 3 as

Qu =K,y (2.25b).

Broms (1964b) also suggested a calculation of the ultimate lateral load capacity for rigid free

head piles in cohesion-less soil as

_ 05B L*K,y’ 596
Qu= e+L (2.26)
For rigid fixed head piles as
Qu = 15By LK, (2.27)

For flexible free head piles as

18
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- M 2.28
%=y, (2.28)
and for flexible fixed head piles as

- 2.29
=gy (2:29a)
The lateral deflection can be obtained from the relationship
P, = kpu (2.29h)

where kj, is the modulus of horizontal subgrade reaction and u is the lateral displacement, z¢
is equal to 1.5 for granular soil or stiff clay and 3 for soft clay and silt from surface level,
Broms (1981) then suggested an alternative solution to obtain the maximum moments and

lateral resistance in cohesive soil for a free head rigid pile as follows
Mpax = Qo(e + 1.5B + 0.5f) (2.30)
and for a fixed head rigid pile as

2M,,

G =155+ 05f

(2.31)

The ultimate moments and lateral resistance in a cohesion-less soil for a flexible free head

pile is
M,ax = Qe + 0.67f) (2.32)
For a flexible fixed head pile the ultimate load is

2M,,
Qu= (2.33)

Qu
e + 0.54 VBK

19
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- - f&
where f defined as f = 0.82 .

Based on these relations Broms (1981) presented a chart to obtain ultimate moment and
lateral resistance of soil.

Guo (2009) developed a closed-form solution to calculate the lateral displacement of a single
pile and group of piles embedded in elasto-plastic soil. This solution was based on the
uncoupled (plastic zone) and coupled (elastic zone) load transfer models (see Figure 7a),
based on a model which developed by Guo (2006). Guo (2009) assumes that the soil modulus
and limiting force profile between pile and soil linearly increases with depth. A load transfer
model was used in the elastic state to predict the load-displacement response by adopting a
simplified displacement field that results in the simplified stress field derived by Guo and Lee
(2001) where the radial stress is assumed to be given by:

¥b K1(ypr/10)

Oy = 2Gu 0 Ko(ry)

cos 6. (2.34)
In this solution agy and o,, assumed to be zero, where a,,, 099 and a,, are radial, tangent
and vertical stresses respectively, G is soil shear modulus, 6 is an angle between the line
joining the centre of the pile cross section and direction of the loading, y; is a factor which
can be determined by the relation y,, = k,(r,/1), k; = 2.14 for lateral load applied on the
pile when the pile head level at the ground (e = 0) and K;(y,)(i = 0,1) are modified Bessel

functions of the second kind of order i.

The lateral displacement can be determined by

p
k()Z D

u= (2.35)

Z is depth, D is pile diameter for circural pile and width for rectangular pile, p is force for

unit depth, and k,D can be calculated as:

3G Kaw) (Kl(m)z_
koD = 2 ZYbKo(Vb) Yo (Ko(]/b) 1) (2.36)
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Then elasto-plastic solution was use, the displacement at depth z was calculated as
Uu=oz+u (2.37a)

u, is pile head displacement and @ is rotation angle that can be calculated as

s ~2(2+%)

v ) o3

(2.37b)

and A, can be obtained from following chart (Figure 2.7b). Figure 2.8 shows pile deflection

under lateral load.

Qo Tbl-
c r;
I 25

PN AN f -
: Zo i's K_ Plastic 20 ¢
I L -
l Zr zone L
: ’/ ;—\{.’*}r 15 T
[ C
: ! V\ . 10 +
i Elastic K
: zone St
I 25 30 35 40 45
VY L ¢ (deg)
I
d (a) (b)

Figure 2.7: (a) Pile soil system; (b) Gradient of the limiting force profile (from

Guo, 2009)
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Qo
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[ ] Zr

S

Figure 2.8: pile-soil system

2.2.2 Axially loaded pile

Several solutions for predicting the displacement of axially loaded piles are reported in the

literature. Some of which are listed below:

e Poulos and Davis’s method

Poulos and Davis (1968) presented analysis based on linear elastic theory to predict the
behaviour of an incompressible single cylindrical floating pile in a semi-infinite mass and
infinite layer under vertical load, for a wide range of ratios of length and diameter, and four
values of Poisson’s ratio. In this method the pile is divided in to n cylindrical elements as

shown in Figure 2.9. Each element is subjected to uniform shear stress a,.,, the circular base
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of the pile having uniform vertical stress a,,, the initial analysis for shaft of the pile assumed
to be rough while the base of the pile smooth, for incompressible pile each element has the
same vertical displacements, the soil displacements due to shear stress at it" element as

shown in followed relationship

j=n
Vg = Z l;j0y; + 1150z, (2.38)
=

The displacement of pile due to uniform stress the base is

Vp = ijGTZ + IbbGZZ (239)

where [;; is the factor of vertical displacement for i resulting from shear stress on element j,
I;, represents the vertical displacement factor for i resulting from uniform vertical stress
acting the tip of the pile, I,,; is the factor of vertical displacement for the base resulting from
shear stress on element j, v, and v, represent displacement in the shaft and the base of the
pile. o,, and g,, are uniform shear loading and stress vertical stress on shaft and the base of

the pile respectively. The displacement factors can be obtained from
jé /2

Iy = 4af f pl dOdc (2.40)
(J-1é-0

where & represents the thickness of the element, and pI can be calculated according to
Mindlin (1936) as

1+v [212 3—4v 5—12v+8v2_|_(3—4v)22—2cz+2€2

I = + +
P en(1—0E|RS T R R R3

N 6sz}(?zs — c)l (2.41)
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where

z=(—05)8+c, z=(—05)8—c, R?>=4ry%cos?*0+z%> and R,* = 4rycos?6 +

Z12.

The influence factor of i point at the shaft due to uniform load in the base of the pile given by

2w rap
lip = f f plr drd6 (2.42a)
o Jo

where pI can be obtained from equation 2.41 however ¢, R? and R, ? calculated as
c=n6,R?>=2%+ 1,2 +1r%—2rry cosf and R,* = z,%2 + 1,2 + 1% — 2rry cos b

The calculation of displacement factor of centre of the base due to stress shear on element j
calculated as
j&

Iy = 27‘[7‘0] pl dc (2.42b)
U-18

where pI can be calculated using Equation 2.41 and i = n + 0.5, R? = z% + 1,2 and R,* =
7,2 + 152, The factor of vertical displacement for the base of the pile due to the load on the

base is evaluated as

T b
Iyp = ZZnJ plr dr (2.42¢)
0

where pl is obtained by inserting these values i = n + 0.5,c = n§,R? = 4c? + r?and R, =

r

and r, is the radius of pile in Equation 2.41.Using the equilibrium condition we obtain

n

-
Il

L o2
0
OrzM To + Oz 4 = P, (2.43)

.
I
Juy
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Poulos and Davis (1968) also presented Equation 2.44 to predict the vertical displacement for

a unit applied load (P)

Moreover, Poulos and Davis (1968) proposed a solution for a floating pile in an infinite layer
by assuming the shear stress distribution the independent of the depth of the layer. The

deformation of the pile is estimated as

j=2

Vp = Ve — Z O-‘I‘ZIhj + O-ZZIhb (244)
=1

where v;, is the settlement of a pile in a layer of any depth h, v, is settlement of the pile in a
semi-infinite mass, I; is the factor of displacement due to uniform shear on element j and

I, represents the factor of displacement due to uniform load on the base.
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Figure 2.9: Stress acting on pile and adjacent soil (from Poulos & Davis, 1968)

e Randolph and Wroth’s method (1978)

Randolph and Wroth (1978) explained that the analytical solution for deformation of piles

should be usable for different pile geometries and soil stiffness, and the soil will deform due

to the application of an axial load at the top of pile along and below the pile. The analysis of

the axially loaded pile is based on a division of loads between the shaft and the base. Figure

2.10 shows the upper and lower soil layers and the separate deformation of these layers,

where the plane AB is exploded to A;B; and A,B,. The deformation around the shaft is

modelled as a shearing of concentric soil cylinders. The shear stress around the pile will
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increase when the pile is loaded, and will be greater than the increase of vertical stress. The

vertical equilibrium of the soil element can be derived from Figure 2.10 as follows

The shaft pile response

d do,
E(r ) +r P 0 (2.45)

d : da, - . .
where — T represents the increment of shear stress, f is the vertical total stress increment

and r is the radius of circular slice which is concentric with the pile. T, represents the shear
stress along the shaft pile and t is the shear stress at distance r. When the axial load is
applied to the pile the shear stress in the shaft of the pile will be greater than the vertical

stress so Equation 2.45 becomes

() =0. (2.46)

By integrating Equation (2.46) the shear stress on the pile shaft will be obtained when r = 1

as
T=Tg— (2.47)

The shear strain is

T dv, dv,

V=T T

(2.48)

where v,. represents the radial displacement of soil, v, represents the vertical displacement of
the soil, y is the shear strain and G is the shear modulus of soil. Based on Randolph and
Wroth (1978) the vertical displacement is larger than the radial displacement, so Equation

2.48 becomes
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T dv,

V:E_ dr

(2.49)

where
T

dv, = c dr

Since T = 147, hence

1y (mdr

vs == fro : (2.50)

where v, is the shaft pile displacement and r,, is the magic radius (at which the ground

settlement is zero) that can be calculated from r;,, = 2.5L(1 — v)

_Tsrol <rm)_Tsr0 K
s "\ T 6 T 2nG

¢ (2.51)
where ¢ = in("™/y. ).

The base pile response

Soil below the pile will deform because the pile acts as a rigid punch and the deformation of
the soil at the base of the pile will decrease with r when the vertical stress o, increases

(Randolph & Wroth, 1978). Randolph and Wroth expresses the settlement at radius r as

v=v,— 20, (1) (2.52)

Where v is the settlement at radius . Timoshenko and Goodier (1987) had described the

displacement at the base of the pile as
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_Pb(].—v)

Vp = 4 GS T (253)

where P, represents the shear stress under the pile, G, is the base shear modulus, v is the

Poisson’s ratio and 7 is base enlargement ratio, equal to 1.

The head pile response

For vertical equilibrium

P, =P, + P (2.54)

where P; is the axial load on the top of the pile, P, = q;, As, qp IS the shear stress at the base

of pileand P, = 1,A,, and A is the cross-section of area of the pile.

To predict the accurate displacement of the soil-pile system due to pure vertical load, the

response of the shaft and the base of the pile must be combined

Ve = Vg =V

P _ P P, (255)
G ToVe G ToVp G ToVs '
P, 4 2mL (2.56)

= +
Grove n(l—-v) {ny

where v, is the combined deformation, v is settlement of the pile shaft, v, is the base

displacement, P; represents total vertically loaded pile, n is geometric factor which equal to 1

T,

and { =1In (f)
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Figure 2.10: Analysis of pile by uncoupling of loads carried by the shaft and base (after
Randolph and Wroth 1978).
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2.3 Discretised continuum approach (numerical method)

Unlike the beam-on-foundation method, the discretised continuum approach treats the
surrounding soil in three dimensions. Several numerical methods are used to estimate the pile
deflection in 3 directions with different pile geometry and different constitutive models: finite
element method, finite difference method and boundary element method (Poulos, 1971a),
Poulos (1971b), Banerjee and Davies (1978), Budhu and Davies (1988), Basack & Dey
(2012), Georgiadis et al (2013), Verruijt et al. (1989) and Basu et al. (2009).

2.3.1 Laterally loaded pile

The finite element method has been used to calculate pile displacement for different pile
geometries in uniform and multi-layered soil and with different constitutive models of soil
and for single pile and group of piles (Comodromos & Papadopoulou, 2012; Verruijt &
Kooijman, 1989; Randolph, 1981; Bransby 1999; McGann et al 2011; Georgiadis et al. 2013)

The boundary element method has been used to analyse the behaviour of a pile under
dynamic loading, although the accuracy of numerical dynamic solutions depends on
frequency parameters (Kaynia. 1982; Sen, et al. 1985; Banerjee, et al. 1987). The boundary
element method tackles pile-soil interaction by dividing the pile into slices and modelling the

interaction between pile slices and the soil by using the solution proposed by Mindlin.

Various authors (Sun, 1994; Zhang et al. 2000; Guo and Lee, 2001) have found solutions
which are based on energy approaches to determine lateral pile deflection at depth (analytical
solutions). However, the disadvantage of these methods is that they assume the displacement
in the radial and tangent directions are the same that gives a stiffer soil response compared

with the response of the soil in reality.

Cox, et al. (1974), Ashour and Norris (2000) and Basu, et al. (2009) obtained solutions for

the responses of laterally loaded piles by developing an analysis for multi-layered elastic
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media. Displacements in the pile-soil system are derived from functions which vary in the
three directions. The governing differential equations are derived using Hamilton’s principle
for pile deflections in different soil layers. The response of a pile group embedded in non-
homogenous elastic linear soil subjected to lateral load was developed by Salgado et al.,
(2014) using semi-analytical approach based on the displacements of the soil mass at any
point around a pile is tying the with the displacement pile themselves, the governing equation

here obtained by minimizing and variations the potential energy.

Sun (1994) calculated the response of a pile in linear elastic soil under static horizontal load
while Das and Sargand (1999) have used the Vlasov energy method to analyse the dynamic
lateral loading that acts on the pile. This method is based on strain-stress relations to calculate
the potential energy for the soil column and surrounding soil, then inserting them through
Hamilton’s principle. The energy method can be used for both static and dynamic analysis,
and Vallabhan and Das (1991a) have modified the Vlasov energy method for the static
analysis of beams on elastic foundations. Vallabhan and Das used a variational method to
obtain the equilibrium configuration. The finite difference method is used to solve the
differential equation for soil displacement in Verruijt and Kooijman (1989) and Basu, et al.
(2009). Basu, et al. (2009) developed an advanced continuum-based method to analyse
laterally loaded piles by considering soil displacement decay when the distance from the pile
increases. They assumed the direction of soil displacement is consistent with the direction of
the load, the constitutive model of the soil in his study was linear elastic. They also explained
that, by using the variational principle, the governing differential equations for pile and soil

displacements can be derived.

Sun (1994) predicted the deflection of a laterally loaded pile in homogenous soil using an
energy based method, and used the same dimensionless displacement function of soil ¢(r) in
radial and tangent displacements(u, and ug), meaning that displacement must be in the load
direction. However, Basu et al., (2009) improved Sun’s analysis by assuming the soil as
multi-layered instead of a single layer, and the value of soil displacement was taken not only
in the load direction, but also had a component perpendicular to the load direction, which

meant that u, # ug; in other words ¢(r) # ¢, # ¢pg, Where ¢, is the dimensionless
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displacement function of soil in the radial direction, and ¢, represents a dimensionless

displacement function of soil in the tangential direction (more details in Chapter 3).

Das and Sargand (1999) calculated displacement along the pile, and supposing that the soil
displacement will be in the load direction and parallel to it (using Sun (1994) assumption but
for dynamic load instead of static load), the soil displacement found from this method is
larger than real displacements. The main point of this study is that to obtain a realistic result
using the Basu et al. (2009) assumption, the pile here subjected to dynamic lateral load, and
an analytical method suggested to analyse deformation data for laterally loaded piles depends
on the energy conservation of the pile-soil system.

2.3.2 Axially loaded pile

The continuum approach treats the surrounding soil in three dimensions for the analysis of
axially and laterally loaded piles, because in nature, the soil interacts with the pile in three
dimensions. Three numerical techniques are widely used in the analysis of piles, namely the
finite element method (FEM) (Randolph, 1981; Brown et al., 1989; Trochanis et al., 1991;
Carter and Kulhawy, 1992; Bransby and Springman 1996; Bransby, 1999), the boundary
element method (BEM) (Banerjee and Davies, 1978; Budhu and Davies, 1988; Basack and
Dey, 2011, 2012) and the finite difference method (Ng and Zhang, 2001; Klar and Frydman,
2002; Basu et al., 2008 and Haldar and Sivakumar Babu, 2012). The disadvantage of the FE
method is that it usually takes a longer time for computing compared with the FD method.

Analytical solutions such as those developed by Butterfield and Banerjee (1971), and Poulos
and Davis (1968), are widely used in engineering practice. These solutions treat the soil as a
linear elastic material. Vallabhan and Mustafa, (1996) developed solutions for displacement
of a pile embedded into two-layered soil. This analysis was expanded by Lee and Xiao
(1999), Salgado et al. (2007) and Seo et al. (2009) to multi-layered soil. In this thesis the
response of a pile in non-uniform soil is considered, where the elastic moduli G and 4
(Lame’s constant) are varied in three directions, and both are functions of stress and strain.

As stress and strain decay with increases in the length of radial direction, the soil stiffness
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(@) increases. In other words, soil stiffness degrades with increasing strain, so G and A vary
in radial and depth directions. The soil in reality is not uniform, and the stiffness in the soil
varies in all directions. Thus, studies which consider soil as linear elastic are not suitable for

predicting real structural behaviour during working loads.

2.4 Soil behaviour

In order to model pile response accurately, an appropriate constitutive model is needed.
However, soil behaviour is complex so it is difficult to find a single constitutive model that
describes the soil behaviour. For example the undrained strength of soils depends on a
number of factors such as the failure mode, strain rate, stress history, and soil anisotropy as
well as the mode of loading effects of stress-strain non-linearity. These factors make the
undrained strength dependent on test type (Koutsoftas and Ladd, 1985; Kulhawy and Mayne,
1990), a summary of some these factors (such as stress history, hysteric behaviour of soil)

which affect the response of a pile can be explained as follows

2.4.1 Stress history

The term ‘recent stress history” has been used by Atkinson et al. (1990) to define the previous
stress path and the time spent at a constant stress state before an imposed change in stress. A
series of laboratory stress path tests on London clay samples made by Atkinson et al. (1990)
to investigate the effect of current state, the recent stress history and the sudden change in the
different directions on soil stiffness. They stated that at small strain (of the order 0.01%) the
stiffness at & = 1807 is larger than stiffness of the order 8 = 0°, and stiffness for 8 = 90°
falls between those 8 = 0° and 8 = 180°. This study was extended in Stallebrass (1990) and
Stallebrass and Taylor (1997). Figure 2.11shows the stiffness-stress response for different
rotations (9 = 0°,90° —90° and 180°), from this experiment we can concluded that as
engineering to apply the load depends on the sequence of the load application the response is
different.
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Figure 2.11: The effect of recent stress on soil stiffness (from Stallebrass and Taylor,
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Figure 2.12: Stress-strain curve with different over consolidation ratio (Burland et al.
(1996) modified by Vardanega & Bolton (2011b).
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Vardanega & Bolton (2011c) tested a samples of natural London clay in order to investigate
the relationship between the mobilisation strain is and depth. They stated that mobilisation
strain increases with decreasing depth and also increases with OCR. Figure 2.12 shows the
response of Todi clay for different over consolidation ratios (OCRs).

2.4.2 Hysteretic behaviour of soil

Hysteretic behaviour can be observed in an unloading and reloading cycle in an undrained
triaxial test as shown in Figure 2.13. Wood (1990) illustrated that in a loading-unloading-
reloading loop, the stress-strain relationship is not unique because of the inelastic response
due to energy being dissipated in a closed load cycle. An experiment carried out by Jardine et
al. (1984) showed that the pure elastic region did not exceed 0.1% of strain. Figure 2.13
shows the strain-stress response of dense sand resulting from cyclic triaxial test (Biarez and
Hicher, 1994).

Deviatoric stress q (kN/m?)

A

100

-
F g

3x10 5x10"  Vertical strain &,

——  Calculated
C-6-© Rivera/Bard (initial)

O-8-8 Rivera/Bard (reloading)

Figure 2.13: Hysteresis loop for dense Huston sand resulting from drained triaxial test
(from Biarez & Hicher, 1994)
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2.4.3 Nonlinear behaviour of soil

Atkinson (2000) stated that for loading structures the decay of the soil stiffness varies with
strain, where the stiffness of soil is high at very small strain level and decreases with the
increase in strain. This decay differs according to the type of material. Soil behaviour has
been studied by many researchers using triaxial tests and the results show that high stiffness
occurs when shear strain is less than 10~° (Jardine et al., 1984; Burland, 1990; Atkinson and
Sallfors, 1991; Houlsby and Wroth, 1991; Osman et al., 2007). There are some factors that
affect small strain stiffness G,,,., such as mean effective stress, void ratio, stress history, rate
of loading, soil plasticity for silts and clays, stress anisotropy for sands, and effective
confining stress (Drnevich and Massarsch, 1979; Hardin, 1978; Hardin and Drnevich, 1972;
Lo Presti et al., 1996; Vucetic, 1994; Yamashita et al., 2003). A power law can be used to
describe the decay of stiffness with the increase of strain (Bolton and Whittle, 1999; Bolton et
al., 1993; Gunn, 1992). A simple power law has been used by Gunn (1993), where the soil is

assumed to be nonlinear-elastic, perfectly plastic and with a Tresca yield surface.

Two parameters (A and n) that have been obtained experimentally (by using a pressuremeter
test), are used to describe the variation of shear stress with strain as follows

q=A4(g,)" (2.57)

where g represents equivalent shear stress, &, is deviator shear strain. Gunn (1993) stated that
this model is valid to predict undrained displacement but is unsuitable for determining the
response of soil under cyclic loads because it cannot capture the change of soil stiffness
during unloading. Atkinson (2000) shows the decay of stiffness with strain and concludes that
the stiffness-strain curve can be divided into three regions as shown in Figure 2.14. The first
region represents the very small strain where the stiffness is almost constant, the second
region (small strain) starts from g, till € = 0.1%, in this region the stiffness decay rapidly and
in large strain the stiffness is the smallest, where the soil stiffness is high at small strain and
decrease with large strain (Atkinson, 2000). Figure 2.15 shows the degradation of stiffness

with increasing of strain for different types of clay.
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2.5 Soil plasticity

Once strain increases to exceed yield stress the material becomes plastic and will not return to
original state after load removed. Several models have been used to model soil plasticity. In
elasto-perfectly plastic models, the stress remains constant beyond the yield stress point with
an increase strain, see Figure 2.16b. Similar to elasto-perfectly plastic material, the strains
hardening models behaves as linear elastic before yield stress, and become plastic beyond the
yield point and the stress increases with strain, see Figure 2.16c. In the strain softening
model, the material behaves as elastic to yield followed by a dropping stress, as shown in

Figure 2.16d.

Perfectly plastic

Stress

Linear elastic Linear elastic

N > H
Strain Strain
(a) (b)
Strain hardening
A A
Strain softening
n 7))
;] n
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& _ | 0
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- >
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Figure 2.16: Different soil models (a) Linear elastic model; (b) linear elastic perfectly
plastic model; (c) linear elastic strain hardening model; (d) linear elastic strain softening
model (after Elhakim, 2005)
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Plasticity occurs when the stress reaches the yield surface f(aij) = 0, where f is a yield
function that governs each element of material and this function depends only on stress

components (aij). The vyield function for perfectly plastic material depends on the stress

component rather the strain component. When f(aij) < 0 the material is elastic.

Two terms have been used to describe the plastic flow: yield and failure. Yield is the change
of the material from an elastic response while failure means that the material is continuing to
plastically deform at constant stress. Perfectly- plastic models such as Drucker-Prager, Mohr-
Coulomb, Von-mises and Tresca are often used in practice. The wide use of these models is

due to the fact that only a few parameters are needed to describe plasticity.

Tresca yield criterion

Tresca assumed that yield takes place when the maximum shear stress is equal to k where k is
the limit value, in other words the maximum difference between principal stresses taken in
pairs must equal to 2k or twice the undrained soil shear strength 2S, (measured in a triaxial
test).

(01 —03) =25, (2.58)

where S, is undrained shear strength, g; is maximum principal stress and o5 is minimum

principal stress (Tresca, 1869), see Figure 2.17.

Von-mises yield criterion

VVon-mises (1913) modified the Tresca yield criterion, where he assumed the surface yield is
a smooth yield function instead of one with corners, these corners implying singularities in
the yield function that lead to difficulties in numerical analysis. The yield surface in the VVon -
mesis model is plotted as a circular cylinder in principal stress space as, shown in Figure

2.18. The failure occurs in Von-mises criterion when the energy of distortion reaches the
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same energy for yield or it failed in uniaxial tension. This model has been widely used in case
of undrained soils and metals (Von Mises, 1913; Potts and Zdravkovic, 1999), the

relationship between undrained shear strength and main principal stresses can be expressed as

Su= (20— 0 + (01— 037 + (0, = 03, (2.59)

Mohr-Coulomb yield criterion

Mohr-Coulomb assumes that the plastic deformation takes place when the shear stress

reaches an amount that depends linearly upon the material cohesion and normal stress c.

This model is considered as the best model for anisotropic pressure-sensitive soil, since this
model agrees well with experimental studies. On the other hand, because of singularities this
model is not mathematically convenient (Coulomb, 1773). The yield “surface” in case of one
dimension is defined by a linear line between shear stress T and normal or effective stress o'

is calculated as

T=o0'tan¢’ . (2.60)

where ¢’ represents the angle of internal friction of soil (see Figure 2.17).
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T=o0'tan ¢’ ,

Figure 2.17: Mohr Coulomb circle of stress

Drucker-Prager yield criterion

The Drucker-Prager et al. (1952) yield criterion plots as a cone in effective stress space, and
is a pressure-dependent model. The yielding surface of this criterion depends on the cohesion
and the material internal friction angle. This criterion is a modification of the Coulomb yield
criterion but avoids the singularity problem co and is similar to the Von-Mises yield criterion,
see Figure 2.18. Von-mises and Drucker-Prager models are commonly used for elasto- plastic

analyses (Drucker et al. 1952).

The differences between the four models mentioned above are their shapes in the deviatoric

plan, the strength is related to the difference between major and minor stresses.
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Figure 2.18: Different yield criteria (after Potts and Zdravkovic, 1999)
2.6 Similarity method for foundation analysis
A similarity approach is presented in Atkinson (2000), which is a simple method to predict

structural displacement in geotechnics. The analysis is based on the straining of undrained
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soil in a triaxial test, related to ground movement. In this approach, Atkinson (2000) used
elastic solutions to link the load and displacement via secant stiffness. His solution allows
nonlinear soil to be considered. Atkinson (2000) suggested that the decay in soil stiffness
with strain level and the decay in foundation stiffness with normalised displacement take the

same form.

Using the stress-strain response resulting from a triaxial test, the soil secant stiffness G, can
be obtained, and then the soil secant stiffness is plotted against the deviatoric strain. The soil
stiffness-strain curve can be converted directly into a stiffness-displacement curve by scaling
the x-axis (the strain axis) using a linear scaling factor. Once the displacement is known
together with the corresponding secant stiffness, the lateral load Q, can then be calculated

from the conventional linear elastic solution for axial and lateral loads.

Atkinson (2000) obtained a strain scaling factor for vertical displacement by assuming

Uy
a, = M = 3, where v is vertical displacement, D denotes foundation diameter and ¢, is

€a
compressive strain. The former method was extended by Osman et al. (2007), where a
similarity method was developed for circular shallow foundations and which coefficients for
circular foundations subjected to vertical, horizontal and moment loads were derived. The
calculation in this approach can give quicker and simpler results than numerical analysis. The
technique is not intended to replace advanced numerical methods but to provide a tool which
is simple enough for use in preliminary design calculations, whilst also capturing the
important influence of soil non-linearity. There is no need for a large number of parameters in
this method, and it is also cheaper than numerical analysis. Osman et al. (2007) obtained the
coefficients of displacement for circular shallow foundations under undrained loads
(horizontal and bending moment) using the similarity approach. The similarity method will

be extended in this thesis to piled foundations under vertical and horizontal loads.
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2.7 Summary

The literature review in this chapter has outlined the background to the types and failure
mechanisms of piles. In doing so, existing methods that are used to analyse piles under
different types of loads have been categorized based on analytical solution and numerical
analysis. This analysis methods are suitable for specific problems; for example, in the case of
laterally loaded pile, Winkler’s method can be used for a clamped pile in cohesive and
cohesion-less soil, while Poulos’ method is most suitable for free rigid and fixed rigid pile in
homogenous and heterogeneous soil. Budhu and Davies’ method works for free and fixed
head piles in elasto-plastic soil, whereas Randolph’s method can be used for rigid and
flexible piles in homogenous soil. Finally, Broms’ method is most suitable for free and fixed
of short pile in cohesion and cohesion-less soil. Nevertheless, in the case of axially loaded
piles, Poulos and Davies’ method is used for a floating pile in semi-infinite and infinite

layers, while Randolph’s method is used for piles in homogenous soil.

There is a need to develop tools that are suitable for modelling a large range of constitutive
models of soil and different pile geometries. These tools should be simple and quick.
Therefore, an analytical solution based on an energy method will be considered in this thesis,
where the energy method has been used for the soil-structure problem. This method will be

used to analyse the following:

e The deformation of a pile in linear elastic soil under lateral dynamic load.

e The displacement of a pile subjected to static lateral load; the shear modulus of

soil, G assumed to vary linearly with depth.

e The response of a pile in nonlinear elastic soil under lateral, axial and combined

loads.
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There is also a need to develop a method using the similarity approach that can provide a
powerful tool for estimating the stiffness and working displacements of a pile under
combined loading. A calculation method is needed that is far quicker and simpler than
numerical analysis. The technique is not intended to replace advanced numerical methods,
but to provide a tool which is simple enough for use in preliminary design calculations, whilst
capturing the important influence of soil non-linearity. The potential benefit to engineering

practice of being able to apply the similarity principle is obvious.
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3 The response of a laterally loaded pile in linear elastic soil

Introduction

Many factors can affect pile deflection due to lateral loads, such as soil properties, the pile -
soil interaction (e.g. soil is fully connected to the pile or able to slip), the direction of the
load, the pile material, geometry and stiffness. The resistance of the soil and lateral deflection
should all be considered when designing vertical piles, whether a single pile or in a group of

piles.

In this part of the thesis, an energy-based method has been developed to predict pile
deformation. An analytical solution based on the energy method was used by several
researchers (Vlasov and Leont’ev, 1966; Vallabhan and Das, 1991a; Basu, et al., 2009; Seo
and Prezzi, 2007; Basu et al., 2008) to estimate laterally and axially loaded pile deformation
for linear elastic soil. Independent functions describing the soil displacement have been used,;
these functions vary in vertical, radial and circumferential directions. The linear elastic
analysis has been developed by employing variational principles and minimization of energy,
called Hamilton’s principle, to derive the governing equation and boundary conditions.

Hamilton’s equation can be expressed as
[.18T = 8U)dt + [* 6W dt = 0 (3.1)

where T and U are the kinetic and potential energies of the pile and soil and W is work done
by applying lateral load, t;and t, are the initial and final times of loading (Asik and
Vallaban, 2001).

The governing equations for pile deflection are obtained by minimizing kinetic and potential
energies. These governing equations can be solved either numerically or analytically once the
boundary conditions are included. Each of the displacement components are expressed as a

multiplication of one-dimensional functions when minimizing the energy, a set of one
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dimensional equation is obtained. These equations are solved numerically, using the finite

difference technique.

Sun (1994), and Das and Sargand (1999) developed an analysis based on energy methods to
estimate the response of a laterally loaded pile due to static and dynamic loads. Both studies
assume zero soil displacement perpendicular to the direction of the applied force and the
resultant displacement vector at any point within the soil is taken to be parallel to the applied
force. This artificial constraint leads to stiffer pile response as demonstrated by Basu et al.
(2009). Sun (1994), and Das and Sargand (1999) assumed the displacement field in the soil as

u, = u(z)¢(r)coso (3.2a)

ug = —u(z)¢(r)sin 0 (3.2b)

where u(z) represents a displacement function with a dimension of length, and ¢(r) is

dimensionless soil displacement in the r direction.

Basu et al. (2009) suggests a more realistic displacement field which is described as:

u, = u(z)¢,(r)cos b (3.3a)

ug = —u(z)pg(r)sin 6 (3.3b)

where u(z) represents a displacement function with a dimension of length. ¢,.(r) is
dimensionless soil displacement in the radial direction (r), and ¢4 is dimensionless soil
displacement in the tangent direction (0) (see Figure 3.1). However, in the work of Basu et
al. (2009) only static loads are considered and the soil stiffness is taken to be constant within
the soil layer. Field data shows that the soil stiffness varies with depth and it is quite often
that variation is described by a linear function. In this chapter the analysis will extend the

energy-based method to deal with (i) stiffness variation with depth, (ii) dynamic lateral loads.
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3.1 Response of a lateral loaded pile in elastic soil with stiffness

varying linearly

Consider a circular pile with radius r, and length L. The pile is assumed to be vertical and
embedded in an isotropic linear elastic medium which extends to infinity. The pile is
perfectly connected to the surrounding soil, which means there is no separation at the
interface between the soil and pile, and the head of the pile is located at the ground surface.
The pile is subjected to a lateral load with a bending moment M, at the head of the pile. In
this analysis, cylindrical coordinates (r, 8, z) have been chosen, and the downward direction
is taken as positive (see Figure 3.1). The shear modulus of soil here varies linearly with

depth, see Figure 3.3.

Qo/>< HWW

Figure 3.1: Cylindrical coordinate system and components of displacement at top of pile
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3.1.1 Energy based approach

In this method, the deformation of the pile-soil system can be obtained using the energy
approach. The variational method used here to minimize the potential energy allows us to
estimate the governing equations. The pile-soil system is divided into three parts: the pile, the
soil column below the pile, and the soil around the pile (see Figure 3.2). The governing

equation and boundary conditions are obtained by minimizing the energy into three parts.

U
Q
=1
Part 3 Part 3
Surround Surround
soil soil
o
]
N
-— Soil column

Figure 3.2: Zones of energy of the pile - soil system

Potential Energy

The lateral load acting on the top of the pile leads to lateral displacement of the pile-soil
system, which causes potential and/or kinetic energies in the pile and surrounding elastic
media (Sun, 1994). The potential energy of the pile and soil for both external and internal

potential energies is given by

1t d2u\’ 1(° dwy’
U:Efo EPIP(P) dZ+EJ; Ty G(E) dz
1 0 2T (0O
+ E .[ J. f (Urrgrr + 0ggcgp + OrgErg T OrzErz
o Y0 Jo

+ 0g,€9,) rdrdOdz (3.4)
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where u is the pile displacement, E,, represents the pile Young’s modulus, I, is the second
moment of area, g;; and ¢;; are the stress and the strain in the soil, respectively and G is the

shear modulus of soil which is assumed to change with depth (Figure 3.3) as follows:

G(z) = Gy + Yz. (3.5)

[
L)

]
D

Figure 3.3: The shear modulus of soil vary linearly with depth

The first part of the integration represents the potential energy for the pile according to

Bernoulli’s theory
U =Mk (3.6)

2 2
where M is the bending moment, M = E, [, (d—Z) and K is the curvature, k = d—l; (Menaldi,
dz dz

etal., 2001).

The second part of the integration represents the internal potential energy of the soil column
below the pile, which is calculated from L to infinity in the depth direction. The third part
represents the internal potential energy of the surrounding soil. The strains are derived from

displacements in cylindrical coordinates, and are described as follows:
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The stress components in cylindrical coordinates are given by
Orr = AErrteggtes) + 2Ger,

099 = A(&rrt+eggtes;) + 2Gegg
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(3.7a)

(3.7b)

(3.70)

(3.7d)

(3.7e)

(3.71)

(3.8a)

(3.8b)

(3.80)

(3.8d)

(3.8¢)

(3-8f)

The governing equation is obtained by inserting the stress-strain relations into the potential

energy Equation 3.4, and applying Hamilton’s principle and the calculus of variations to

obtain

52



Chapter 3: The response of laterally loaded pile in linear elastic soil

o)

6U:<Ep1pdz—u5<d—u)>—[El @6u]L+fLE I dilé‘udz+[nr zGd—u(Su]
dz? "~ \dz R A O Tdz 7,
o d?u  dudG © dp.
_fL - <GF —— >5udz+fr0 r(dr) fo (A + 2G) ubudz
+fmn(l+36)u2dzf (d)r_(.'be s :
0 70 r

Cogr|
— foon(l + 2G)u? dzfOo (r dzd)r dd)r) d¢,dr
0 To

) Spdr + foon(l +26G)u?dz [
0

dr? ~ d
+ J: <¢T (;1)9) J:On(l + 3G)ududz

- fooon(l +36) uzdzfOo (d)r ; ('be) Spgdr

To

+foo (%)2 drf°°nGu6udz+f TGu? dz[ ¢9]
0 0

< ¢ d(‘be)@qﬁgdr + foonG (ZZ) dszrqﬁr Spydr

drz
(o)

-

o dzu dG du du
f f G—— oudz +f rqbr dr [n6—6u]
7o dz 0

a2 " dzdz .

o)

oord)g Spodr + | re’dr nGd—Su
L J| rou*arlmo o

0

mGu? dzf dr + foonGu dz[(¢r — Pg)delry

e dzu dG du
rde” drf | G—=— dudz

] wo

-

J; a2 " dzdz
f — 90"

I

of o

f mAubudz + f mAu? dz f ﬂ&pr
0

0 To

Tau? dz f —r6q59dr+ f “Hhi? dzl (@ — $6)56,1%

0

2nGududz + f
0

¢9)—drf°°

0

(00 (00 d
nGu? dzf %&prdr (3.9
To

3.1.2 The governing equation of the pile displacement for a static load

Governing equation that presents pile displacement can be obtained by collecting 6u

coefficients from Equation 3.9

For0<z<L
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d*u d*u du
Eplpy_C(GO+¢Z)F_C¢E+k(00+lpz)u: 0 (310)
Governing equation for pile displacementat L < z < o

d?u du
Cs(Gy + 1pz)@ + Cs— s, + k(Gy +¢Yz)u =10 (3.11)
where

C= nfoor(cprz + ¢p”) dr

=) [ (B
(547 )Lw () o

+n£’° ﬁ dr + 2w — f(cl)r qbg)

¢r

(o]

"jr (b — 60 22 4y

C, = nj (¢, + pg”) dr + mry?
T

0

and v is the rate of variation of the shear modulus with depth. Governing equation of pile can

be solved when boundary conditions are known which are obtained by collecting

Su and 52—’2‘

Forz=0
d3u
Eplp d 3 C(GO + wZ)_ - QO u —_ 0 (312)
d?u du
Eply—— + Mo | §— =0 (3.13)
Forz=1L
<E1d3u CGo+ 9™ + .Gy + v )6 0 (3.14)
Z)— zZ) - u= :
PP {73 0 deile 0 dZSOll column
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Eldzu 6du—0 3.15
pp@ E— (3.15)
Forz - o

du
(CS[GO + Yz] E) ou=20 (3.16)

3.1.3 The governing equation of soil displacement for a static load

Governing equation for soil can be obtained by collecting coefficients that associated with §¢, as

follows:
d’¢,  dé,  (y1)? dpe (pr — Ps)
"arr Tar T (E) ér =72 ar 1?7 7 =0 (317
where
* 26 (22 g
(E)2= Jy (E) z
7o fooo (A + 26G)u?dz
fooo (1 + G)u?dz
2= fooo (1 + 26)u?dz
fooo w1+ 3G)u?dz
BT G 26wrdz)
By collecting the coefficients of §¢ We get:
d’¢g  dpg  (Va)? do, (¢ — dg)
r—drz e <E) Ty + Vs a7 + ¥ " =0 (3.18)
where
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G (&) a

[ mGu? dz

0

fooo (A + G)u?dz

fooo nGu? dz

fooo (A + 3G)udz
fooo nGu? dz

Y6 =

These governing equations can be solved using the boundary conditions

when r=m,

$r=1 (3.19a)
b =1

whenr — oo

b, =0 (3.19b)
b =0

All terms related to the variation of u and 83—‘; at domain L < z < oo are equal to zero, but

Su is not necessarily equal to zero, which gives the governing equation below the pile
(Equation 3.10). For clamped pile, displacement at the tip of the pile equal to zero while the
displacement under the pile in the case of a floating pile does not equal zero, so the general
solution of the differential equation of the second order Equation 3.11 (at L < z < o) can be

given in the form

k
u(z) =e \/C_S(Z L)X(z) (3.20)
The second order equation can be written as

zu"+(x+2)u' —uu =20
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and can be solved using a confluent hypergeometric function. By substituting Equation 3.20
into Equation 3.11 and introducing Z = ZJCE (% + z), it can be shown that X is governed by

the confluent hypergeometric equation

X de+dX TX=0 3.21
dz? dZ  dZ B (3:21)

where

r = WG o
29 JkC,

The solution for X requires that it remains finite as Z — oo, therefore

X=AU(T,1,2) (3.22)

where A is a constant which can be determined from the pile displacement at z=L and

U(T,1,Z) is the confluent hypergeometric function of second order.

AtL<z<

N U(T,l,z Cis(fp—%z))
u(z) =ulz) =e \/C:(Z g \/_ . (3.23)
U(T,LZJCES(%M))
The boundary condition at (z = L) given by Equation 3.14 can be re-written as
d3u du
E,lL, 5 C(Gy + Yz) 1, = 0 (3.24)

whereat z =1L
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kC,

=0T, 1,2)

(% + L) 1+yU(T +1,2,2) (3.25)

Solution procedure

The solution of the governing differential equation for the floating pile displacement
Equation 3.10 with the boundary conditions (Equations 3.12, 3.13, 3.14 and 3.15) follows

procedure below

I.  Assume initial values for y,, ... ... and y¢. In the author’s experience, the values could
be less than 0.001.

Il.  Calculate ¢, and ¢4 by solving Equations 3.17 and 3.18 simultaneously together with
the boundary conditions given by Equation 3.23. The one dimensional finite

difference technique can be used.
I1l.  Calculate the coefficients C, k and Cj.

IV.  Solve Equation 3.10 together with the boundary conditions given by Equations 3.12,

3.13, 3.14 and 3.15. One dimensional finite difference technique can be used here as

well.
V. Insert the results obtained in 1V to calculate the new values for y4, ... ... and .
VI. lterate until the difference between the new y,,...... and y, and the old values

becomes negligible.

The procedure should be repeated until the relative error ()’i (new) — yi(old)) /yi(old) is
less than the specified tolerance. A program written in Wolfram MATHEMATICA version

9.10 has been used here to solve this iterative procedure.
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3.1.4 Comparison with static load solution

The validity of the proposed solution can be compared with other solutions for piles under

static lateral loads. For uniform soil, by taking the limits when » —0, the displacement

beneath a floating pile (Equation 3.20) at (L < z < o) is reduced to

u(z) = e_\/czs(z_”. (3.26)

and the quantity y in Equation 3.12 reduces to

x = JkC,G, . (3.27)

Thus, the solution becomes similar to that derived by Basu et al. (2009) (u = Ae™%* + Be%%)

For a pile embedded in non-uniform elastic soil, the stiffness of soil is assumed to change
with depth according to this relation (G =nz), Randolph (1981) derived algebraic
expressions which allow the behaviour of flexible piles under lateral loading to be calculated,
in terms of fundamental soil properties. These expressions are based on the results of finite
element studies. The pile displacement at the ground surface is given by Equations 2.20 and
2.21. For the case of one layer soil, the pile head displacement is given by Equations 2.18 and
2.19, and the soil stiffness assumed to be constant. The proposed solution and previous work

show that, the results are of the same order of magnitude, see Figures 3.4, 3.5, 3.6 and 3.7.
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\ —— Current solution
oost L T Randolph (1981) |
0.06} -
0.04} .
0.02] \\ :

D 2I I”””ISI .......|4. ””””5' I IB I-'
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Ep /IIJTO2

Figure 3.4: Variation of pile displacement under lateral load with stiffness ratio (uniform soil)

— Current solution

g & 2020 = Randolph (1981) |
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Figure 3.5: Variation of pile displacement under lateral moment with stiffness ratio (uniform

soil)
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0.04 e
— Current solution
y == Randolph (1981)
0.03¢ .
0.02+ .
0.01¢+ .
10 10 10 10 10 10
Ep /II)TO
Figure 3.6: Variation of pile displacement under lateral load with stiffness ratio (non-uniform
soil)
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—— Current solution
e Randolph (1981) |
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Figure 3.7: Variation of pile displacement under lateral moment with stiffness ratio (non-
uniform soil)
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3.2 Analysis of piles under dynamic lateral loads

There is a solution developed by Liu et al. (2014) this solution based on the energy approach
to predict the response of pile in uniform isotropic linear elastic soil, the pile-soil system
overlying on rigid rock base (see Figure 3.8). The pile is subjected to vertical propagating
waves, and the Hamilton’s principle has been used. However, in this thesis the pile is subject
to lateral propagation waves, where the governing equations for pile and soil resulting from
current study are different compared with Liu et al. (2014), although both studies are used the
energy method to predict the dynamic pile response. Liu et al. (2014)’s assumption of the
deformation field (Equations 3.28a-3.28c) could lead to high stiffness response as
demonstrated by Basu et al. (2009), see Figure 3.13.

v, = (v — (vf = v)¢)cosb (3.28a)
Vg = —(Vf — (Vf — V)gb)sin@ (3.28b)
v, = 0. (3.28¢)

and the governing equations and boundary conditions are obtained by minimizing the

potential and kinetic energies as follows

4 2

\Y%
—2t—— + MV =&V, =0 (3.29)

Eple i =2t 52

Boundary conditions

Whenz =0

v _o 3.30

dz? (3:30a)
Eolp Y _ 2™ g 3.30

PP dz3 dz (3:30)
Whenz =L

4V _o 3.30

dz? (3:30¢)
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d3v dv dv
E; ~ 20—+ (20 +GA) =0 (3.30d)

b
The governing equation for the soil

d*¢ 1ddp (y\*, _
W-I_;E_(_) ¢=0 (3.31)

To
(X az dt ~dt
To

(m? + 1)G; fOH(V - Vf)2 dz

dve\? dve\?
>2 2Gs f:' (dV ﬁ) dz —2p fOH (dV_ Vf) dz
= (3.32)

0 r
A
L
*Pile (Ep,vp)
Soils )
2R ——— |18}
(Es,vs) =
Soil column
7

Ri;;id‘reckbase § é é é é ‘% (a)

Vertically incident S waves

Figure 3.8: Piles under vertically propagating waves (from Liu et al., 2014)

In this thesis, the governing equation of the pile and the soil for a static load can be obtained
by using potential energy and external energy. However, for the response of a laterally loaded
pile subjected to a dynamic force, kinetic energy is involved and Hamilton’s principle has

been used. The potential energy of the pile-soil system is
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” d¢ dér (¢r— o)
+E [(/1+26)u (dr) + 22—
r 2 d 2 d 2 d 2
(¢pr— ¢9) doe T (% (®du\ ~
+ 2Gu2 Pr=%0) drl rdrdz +2GfL fr (5) rariz=0. (333

Equati