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Abstract 

This thesis presents new methods for predicting pile response under different loading and soil 

conditions.  The new methods offer practs engineers with a simple, quick and reliable tool for 

designing piles and ensuring that both safety and serviceability requirements are satisfied. 

In this thesis, an energy-based analytical approach for determining the dynamic response of 

piles subjected to dynamic loads is presented. The kinematic and potential energies of the 

pile-foundation system are minimized by a variational principle to obtain the governing 

equations of the pile-foundation system, along with the appropriate boundary conditions. 

Comparison with field data demonstrates the success of the new approach for predicting the 

resonant frequencies of laterally loaded piles.  

Energy-based methods are also developed for piles subjected to combined static loading. 

These methods are formulated for different constitutive models: linear-elastic, non-linear 

elastic and elasto-plastic models. In addition to energy-based methods, simple similarity 

methods have been developed to predict pile displacements. In the similarity methods, the 

load-displacement curve of a pile foundation can be obtained directly by scaling the stress-

strain response obtained from a triaxial test on a representative soil sample. Linear scaling 

factors are presented and extensive verification is carried out against field data, centrifuge 

models and nonlinear finite element analysis. 

Key words: laterally loaded pile, linear elastic soil, axial loaded pile, nonlinear elastic soil, 

elasto plastic soil, energy method. 
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1 Introduction 

  

1.1 Introduction  

The rising use of both, offshore piles and of high structures such as bridges has increased the 

importance of the study of the behaviour of laterally loaded piles. Recently, because of rising 

energy demands there is an increasing use of wind farms and oil platforms. Now there are 

approximately 3500 oil platforms around the world. In addition the cost of offshore piles is 

high, perhaps reaching £250,000 for a single wind farm. Generally, the cost varies according 

to the depth of the installation, Figure 1.1 shows examples of the usage of piles for a wind 

farm and for an oil platform. 

(a)                                                                                    (b)  

Figure 1.1: (a) The Bouri Offshore Field, Libya www.libya.spe.org , (b) Wind farm 

of Lake Erie, Ohio www.ubergizmo.com 

http://www.libya.spe.org/
http://www.ubergizmo.com/
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However, offshore foundations are subjected to a combination of environmental forces such 

as waves, currents, wind and possibly earthquakes. These forces are usually more hostile than 

those on conventional onshore structures. In the offshore case the lateral load is usually a 

substantial fraction of the vertical load, and the overturning moment is also very large 

compared to those found in the design of onshore structures. Furthermore, there is often a 

major cyclic component of both vertical and horizontal loads. Compared to onshore 

foundations, offshore foundations are usually very large. Because of this large scale, the 

variation of soil properties and the depth of the foundation are significant, and need to be 

accounted for (Reese and Van Impe 2001; Haldar and Sivakumar., 2009; Basu et al., 2008; 

Basu et al., 2009).  

 

Figure 1.2: Collapse of platform due to hurricane www.offshore-mag.com  

Although there is an increasing use of offshore piles, there are many uncertainties associated 

with their installation and operational performance. For instance, the lateral interaction 

between soil and pile is complex, since the load-deflection behaviour is non-linear, except in 

the case of very small loads (Farrell et al., 2000; Gavin et al., 2008; Khemakhem et al., 2010). 

Also the cyclic nature of the loading makes it even more non-linear as the properties of the 

soil change during repeated loading. 

In the offshore piling industry, the accurate prediction of pile deflection is an one important 

aim of geotechnical engineers, often carried out using 3D numerical analysis. However, such 

http://www.offshore-mag.com/
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analysis is expensive and needs time for computing. Therefore, there is a need for a tool that 

provides practising engineers with simple and accurate analysis of the performance of piles. 

1.2 Aims of the research 

The aim of this thesis is to develop simple methods that can be used by engineers to predict 

pile deformation and failure under different loads to address some of the problems 

highlighted above. The main objectives of the thesis are as follows: 

1. To develop analytical solutions based on an energy approach to predict the 

deformations of a pile under static and dynamic lateral loads that takes into account 

the variation of soil stiffness with strain. Then to validate this solution with field data 

and 3D finite element analysis. 

2. To develop other methods (analytical solutions) to calculate deformation under static 

and cyclic axial, lateral and combined loads for piles.  

3. To establish the failure envelopes for piles under combined loads.  

1.3 Outlines of the thesis 

This research is presented in eight chapters as follows:  

Chapter 2 gives brief reviews of the literature concerning the behaviour of a pile embedded in 

linear soil and nonlinear elastic soil, concentrating on modelling and current methods for pile 

analysis. 

Chapter 3 introduces the analytical solution based on energy method that is used to estimate 

pile deformation due to static horizontal loads, where the soil behaviour is modelled as linear 

elastic. This analytical solution is extended to predict lateral load piles and better predictions 

of the resonant frequency. 

Chapter 4 considers the behaviour of a single pile in nonlinear soil subjected to lateral 

loading, where soil stiffness is assumed to depend on the strain and stress levels. A single pile 

subjected to lateral cyclic loads is considered in this chapter. The results are successfully 

validated with previous studies and finite element modelling carried out in this thesis.   
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Chapter 5 is similar to Chapter 4 in that it considers an analytical solution for an axially 

loaded pile in nonlinear soil to calculate pile deflection, and cyclic axial load is also 

considered. Here then the results are validated with 3D finite element analysis, carried out in 

this thesis and in previous work. 

In Chapter 6 a new method to predict pile displacement using triaxial test data is presented, 

where the load-displacement response can be derived from a stress-strain curve using a 

simple calculation. This method is far quicker and simpler than 3D numerical analysis. The 

technique is not intended to replace advanced numerical methods, but to provide a tool which 

is simple enough to be used in preliminary design calculations, whilst capturing the important 

influence of soil non-linearity.  

In Chapter 7 finite element analysis to estimate the ultimate load of a pile is present. The 

analysis considers different variations of shear strength with depth and different pile 

geometries. 

Chapter 8 concludes and summarises the calculation of pile deflection due to different types 

of loading using different methods. Suggestions for future work are given. 
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2 Literature Review 

Introduction 

Extensive research has been conducted into pile-soil deformation under different types of 

loads. Designers of pile foundations have to satisfy two requirements: (i) the pile needs to 

withstand applied loads without triggering structural or soil failure, and (ii) the induced 

displacements should not affect functionality of the supported structure. In this chapter, a 

review is conducted of different existing analytical methods for predicting ultimate collapse 

loads in foundations, with the emphasis on deep foundations. Different methods for 

predicting displacements will also be reviewed. This chapter compares different design 

assumptions with real soil behaviour. Since it is not possible to cover every aspect of soil 

behaviour, only some of the most important issues are briefly discussed here. 

2.1 Predicting ultimate load analyses in foundations 

Different solutions related to the bearing capacity of foundations have been developed by 

researchers. Most of these studies have focused on shallow foundations. For example, the 

failure envelope of a shallow foundation was calculated by Salencon and Pecker (1995a, 

1995b) under static and dynamic loads. They assumed that the shallow foundation is resting 

on the surface of a homogeneous soil and that it was subjected to an inclined, eccentric load. 

Such studies have been extended to include different shapes of foundation and different 

constitutive models for soil (Meyerhof, 1951; Meyerhof, 1953; Shield, 1955; Cox et al., 

1961; Brinch Hansen, 1970; Randolph and Puzrin, 2003).    
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Thirty years ago, significant attention was paid to the vertical bearing capacity of shallow 

foundations on homogenous soil by considering different shapes of different constitutive 

models of soil. The shear strength in most of those studied was assumed to increase linearly 

with depth. The effect of lateral and overturning loads was also reported by many researchers 

(Davis and Booker, 1973; Houlsby and Wroth, 1983; Bransby and Randolph, 1998; 

Ukritchon et al., 1998; Bransby et al., 1999; Butterfield and Ticof, 1979; Taiebat and Carter, 

2010). 

An extensive analysis of strip and circular footings was carried out by Gourvenec et al., 

(2003) where the surface foundation is subjected to undrained loads (vertical, horizontal or 

moment). In their study, 2D and 3D finite element analyses were used in order to estimate the 

bearing capacity. The soil was taken to follow the Tresca model and the undrained shear 

strength was assumed to vary linearly with depth.  

The bearing capacity of offshore foundations has been studied by Bransby and Randolph 

(1998), Taiebat and Carter (2000), Taiebat and Carter (2002a &b), Gourvenec and Randolph 

(2003), and Gourvenec and Barnett (2011) where they applied 3D finite element analyses to 

the problem of offshore circular foundations resting on homogenous and cohesive soil, where 

the foundations were taken to be fully connected to the soil and were subjected to combined 

loads. This was extended by Gourvenec (2007) who used finite element analysis to obtain the 

failure envelope of offshore shallow foundations with peripheral skirts installed into the 

seabed. The shallow foundation was subjected to combined loading and assumed to be fully 

connected with the soil. Undrained conditions were assumed. Studies carried out by Houlsby 

and Puzrin (1999) and Taiebat and Carter (2002a and 2002b) based on finite element analysis 

assumed the foundation was free to be separated from the soil, and the soils in both studies 

were taken to be uniform.   
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2.1.1 Calculation of the ultimate load of a piled foundation 

1. Pile subjected to horizontal load 

Randolph and Houlsby (1984) developed solutions for a laterally loaded pile embedded in 

Tresca material. The upper bound and lower bound limit theorems were used to predict 

collapse loads. Figure 2.1 shows the soil movement around the pile. 

 

 

 

 

 

 

Figure 2.1: Soil movement around pile loaded laterally (Davies, 1987 from Randolph 

and Houlsby, 1984) 

2. Pile subjected to axial load 

Kezdi (1975) stated failure of piles depends on many factors such as the shear strength of soil 

surrounding the pile, the pile geometry and the material of the pile. Lambe and Whitman 

(1969) assumed that the axial capacity of piles can be calculated as follows: 

                                                                                                                                                       

where    represents pile capacity,    and    are pile base and shaft resistances respectively, 

and 
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   ∫         

 

 

                                                                                                                                     

   is area of pile base,        denotes ultimate bearing capacity, is cohesion term of soil 

which is equal to zero in sand,    is an increment of pile length,    is area of the pile surface 

in  , d denotes the depth of the base of the pile,    and    are dimensionless factors that 

depend only on friction angle of the soil, D is the pile diameter,   is the unit weight of the soil 

and    represents unit shaft resistance. Four patterns of failure zones due to axial load 

assumed by Vesic (1963) are shown in Figure 2.2.  

P0
P0

P0 P0

 

 

Figure 2.2: Failure mechanism of axial loaded pile (after Davies, 1987 from Vesic, 1963) 
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2.2 Analytical methods for calculation of pile displacement 

2.2.1 Laterally loaded piles 

Many researchers have developed methods over the past fifty years to describe the behaviour 

of elastic foundations subjected to axial and lateral loads. Several authors such as Poulos 

(1971), Banerjee (1978), Randolph (1981) and Verruijt et al. (1989) have detailed various 

models that can be used to analyse laterally loaded piles, where the pile can be modelled as a 

flexible beam. The major difference among these models is how the soil behaviour is treated.  

In some analytical methods, the soil is treated as a series of independent non-linear springs, 

and the simplest model is that produced by Winkler (1867) which considers the soil as a set 

of springs. Several solutions based on the Winkler method have been reported in the literature 

(Gieser 1953; Barbar 1953; McClelland and Focht 1956, Matlok and Resse 1961, Wood 

1979). The ground is modelled by a series of elastic springs that represent ground deflection, 

where the spring constant describes the soil’s stiffness relative to the acting load. The beam 

deflection is governed by a linear differential equation of fourth order, where the deflection 

of the beam, bending moment, displacement and shear force can be obtained by inserting 

input parameters such as elastic modulus, beam geometry, the load applied and the spring 

constant of the foundation into the model. The spring constants are determined empirically. 

These methods are used for both cases of linear homogenous soil and nonlinear 

heterogeneous soil around the pile. Figures 2.3 and 2.4 show a beam on an elastic foundation 

and a laterally loaded pile against a bed of springs.  

The beam-on-foundation concept has been adopted to apply to piles subjected to lateral loads. 

The main reason for this is that the pile behaves as a flexible beam when acted upon by 

lateral load. While the beam foundation can be rotated by 90°, the problem of laterally loaded 

piles is more complicated due to the nonlinear behaviour of soil in the field, especially near 

the top of the pile (Matlock et al., 1960; Reese 1971).    
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Beam

Springs

Applied force

 

Figure 2.3: Beam on an elastic foundation (Basu et al. 2008) 

Springs

Applied force

Pile

 

Figure 2.4: Laterally loaded pile in a bed of springs (Basu et al. 2008) 
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An empirical method has been commonly used to predict pile deformation due to horizontal 

loads, called the     method, which presumes that the pile is an Euler-Bernoulli beam and 

that the soil works as a series of springs, where p represents the soil resistance and y is the 

pile deflection. The spring model has been developed to match soil response to actual load-

displacement (Cox et al., 1974; Ashour and Norris., 2000; Basu et al., 2009; McGann and 

Mackenzie-Helnwein, 2011). In the case of three dimensions the     method allows the 

response of the pile to be calculated where the non-linearity of the soil is taken into account 

(Anderson et al., 1999). Ashour and Norris (2000) developed a method in which there was a 

division into thin slices and the resistance of the soil was obtained by using the p - y curve for 

each slice against its deflection. Poulos and Davies (1980), Basu et al. (2008), Fleming et al. 

(2008), Moller and Christiansen (2011), Huang (2011) and Heidari et al. (2013) all assumed 

that the     curves for a single pile can be developed for use among groups of piles, where 

the value of   will be reduced due to the interaction between piles leading to reductions in 

soil resistance. 

One of the common approaches for calculating the ultimate displacement due to soil yielding 

is the beam-on-foundation approach, where the soil is treated as plastic and its lateral 

capacity can be determined from its resistance (Poulos et al., 1980). Unfortunately, this 

method fails to predict pile response since the resistance of soil, which is used in the     

analysis is developed empirically and is fitted to numerical analysis results to meet the field 

results. The other disadvantage of the p - y curve is that a curve developed for a specific site 

is not suitable for another site. In other words, each site needs its own p - y curve depending 

on the properties of the soil there, as well as a load pile test in order to predict lateral pile 

response accurately. This method is therefore expensive because each site needs a pile load 

test (Anderson et al., 2003; Basu et al., 2008). An analytical solution based on an energy 

based method resulting in a set of governing equations and boundary conditions that 

represent the deformation of pile and soil under static lateral load has been used by Sun 

(1994) (homogenous soil linear elastic) and Basu et al. (2008, 2009) (multi-layered nonlinear 

and linear elastic soil). These equations were solved numerically using a finite difference 

method, while Das and Sargand (1999) used the same method to predict the deformation of a 

pile in homogenous linear elastic soil under dynamic lateral loads. 
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In order to predict pile displacement due to lateral load, three approaches can be used: the 

cantilever method, Winkler’s method and the elastic continuum method. The cantilever 

method was developed by Davisson and Robinson (1965) and Lee (1968), in this method, the 

soil reaction is ignored and the simple cantilever theory is used to calculate the deformation.  

For a floating pile (where the base of the pile is free to move under external load, see Figure 

2.5a). 

  
  (    )

 

     
                                                                                                                                      

For a clamped pile (where the base of the pile is fixed, see Figure 2.5b) 

  
  (    )

 

      
                                                                                                                                      

 

 

 

 

 

 

Figure 2.5: Deformation of rigid pile under lateral load 

  

    
    

(b) Floating 

pile 
(a) Clamped  pile 
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where   is the length of the pile above the ground level,   represent lateral displacement of 

the pile,    represents the lateral load,    the elastic modulus of pile,    is a second moment 

of area of pile and    is a distance to point of virtual fixity a point at a certain depth below 

ground surface where the piles are assumed fixed without movement under lateral load. 

Figure 2.6 shows   .  

 

Figure 2.6: Laterally loaded pile (after Broms, 1964a) 

In addition to Winkler’s approach, several methods which treat the soil as an elastic 

continuum approach have been developed (Poulos (1971a, b, c, 1974, 1980), Banerjee and 

Davis (1978), Butterfield and Banerjee (1971) and Randolph (1981)). A summary of some 

these methods are given below. 

 Poulos’s method (1971) 

This method considers the pile as a thin rectangular strip with constant flexural stiffness 

embedded vertically in a homogenous isotropic semi-infinite elastic medium. The pile is 

assumed to be fully connected with the soil. The horizontal shear stress between the pile and 

Q0 

zf 

e 
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the soil is ignored in order to obtain a simple solution. The pile is divided into elements but 

the top and bottom elements of the pile are not counted. The deformation for all central 

elements can be described as  

  
 

       
                                                                                                                                            

where   represents lateral displacement of the pile,   is uniform stress,    is elastic modulus 

of soil,    describes the influence factor of dimensionless soil deformation and   is the width 

of the strip (as mentioned the pile is assumed to be a rectangular strip). Poulos solution can 

regarded as an extension to Mindlin’s solution (1936)
1
The soil here is assumed to be a linear 

elastic material, and its modulus constant, Poulos predicts free pile head deflection under 

horizontal load and rotation as 

  (
  

   
)     (

  

    
)                                                                                                                   

  (
  

    
)     (

  

    
)                                                                                                                    

and deformation for a fixed head pile in homogenous soil as 

    (
  

   
)                                                                                                                                         

For non-homogenous soil, the displacement of a free head pile can be calculated as 

  (
  

    
) (     (

 

 
)     )                                                                                                      

                                                           
1
 Mindlin’s solution is the solution for the stresses and displacements in the case of a concentrated force in 

interior of semi-infinite elastic uniform isotropic solid. 
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  (
  

    
) (     (

 

  
)     )                                                                                                     

and for a fixed head pile as 

   
  (

  

    
)                                                                                                                                  

where   is rotation deformation for free head pile,   is the eccentricity of lateral load,     is 

lateral displacement for fixed head pile in homogenous soil,    ,    ,     ,     and      are 

Poulos’s dimensionless deformation factors for a pile in homogenous soil, L denotes pile 

length,    is lateral load and    represents bending moments,    
 is lateral displacement 

for fixed head pile in non-homogenous soil     ,     ,      ,      and      are Poulos 

dimensionless deformation factors for a pile in non-homogenous soil and     is the rate of 

increase of soil elastic modulus. 

 Budhu and Davies’ Method 

A set of equations to predict lateral deformation of free and fixed head of pile and rotation 

were developed by Budhu and Davies (1987 and 1988). These analyses are based on the p-y 

method for a laterally loaded pile in elasto-plastic soil. For a free head pile the displacements 

can be obtained by 

  
  

    
    

  

    
                                                                                                                       

  
  

    
    

  

    
                                                                                                                      

The displacement and the moment of a fixed pile head can be calculated by 
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where the maximum moment estimated by                that occurs at depth    

           , and             .    ,    ,    ,     and     are influence factors which are 

calculated as             ,                 ,               and     

        .   is the stiffness ratio of the pile-soil which is calculated as   
   

   
 and     is  

the effective elastic modulus of  pile      (
    

      
), where    is pile radius. 

 Randolph’s method (1981) 

Randolph derived the response of a laterally loaded pile embedded in homogenous soil using 

finite element analysis as follows 

      
  

    
(
  

  
)
 
 
 
     

  

     
(
  

  
)
 
 
 
                                                                                    

      
  

     
(
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(
  

  
)
 
 
 
                                                                                    

where   is the shear modulus of soil,     (  
 

 
 ),   is  Poisson ratio,    is bending 

moment. Equations (2.18 and 2.19) were modified to calculate the deformation in non-

homogeneous soil for laterally loaded piles as 

      
  

     
(

  

    
)
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The rotation deformation for non-homogenous soil can be obtained as  

     
  

     
(

  

    
)
 
 
 
     

  

     
(

  

    
)
 
 
 
                                                                          

where   is the rate of increase of soil shear modulus with depth and    is the product of 

       (  
 

 
 ). 

 Banerjee and Davies’s Method 

Deformations due to lateral and moments loads on a pile are presented by Banerjee and 

Davies (1978) using boundary element analysis and the following relationships are obtained; 

For free head piles  

  (
  

    
)    (

  

    
)                                                                                                                    

  (
  

     
)     (

  

    
)                                                                                                                

Displacement of a fixed head pile is given as 

  (
  

   
)                                                                                                                                             

where    is the soil modulus at the tip of the pile, and                      represent the 

influence factors. The difference between Poulos and Banerjee & Davies’s methods is that 

Poulos used an integral approach while Banerjee & Davies’s used boundary element analysis 

in order to obtain the displacement of pile loaded laterally. 
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 Broms’s method 

Broms (1964b) suggested two methods to predict the ultimate lateral resistance of soil 

according to type of soil and geometry and boundary conditions of the pile. 

For cohesion-less soil, the ultimate lateral resistance of a soil for a short pile at any depth can 

be obtained as  

                                                                                                                                                   

where   is the effective unit weight of cohesion-less soil,    is ultimate lateral load    can 

be calculated as    
       

       
 and   is the effective soil friction angle, this solution is 

suitable for soil with     approximately equal to 3. However, Fleming et al. (1985) presents a 

solution for the ultimate lateral resistance of soil that is suitable for cohesion-less soil when 

   is greater than 3 as 

 

     
                                                                                                                                              . 

Broms (1964b) also suggested a calculation of the ultimate lateral load capacity for rigid free 

head piles in cohesion-less soil as 

   
          

 

   
                                                                                                                                  

For rigid fixed head piles as 

                                                                                                                                                 

For flexible free head piles as  
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and for flexible fixed head piles as  

   
   

    
                                                                                                                                            

The lateral deflection can be obtained from the relationship 

 

                                                                                                                                                        

 where    is the modulus of horizontal subgrade reaction and   is the lateral displacement,    

is equal to 1.5 for granular soil or stiff clay and 3 for soft clay and silt from surface level, 

Broms (1981) then suggested an alternative solution to obtain the maximum moments and 

lateral resistance in cohesive soil for a free head rigid pile as follows  

                                                                                                                                 

and for a fixed head rigid pile as  

   
   

         
                                                                                                                                  

The ultimate moments and lateral resistance in a cohesion-less soil for a flexible free head 

pile is 

                                                                                                                                         

For a flexible fixed head pile the ultimate load is 

   
   

      √
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where   defined as        √
  

    
         

Based on these relations Broms (1981) presented a chart to obtain ultimate moment and 

lateral resistance of soil. 

Guo (2009) developed a closed-form solution to calculate the lateral displacement of a single 

pile and group of piles embedded in elasto-plastic soil. This solution was based on the 

uncoupled (plastic zone) and coupled (elastic zone) load transfer models (see Figure 7a), 

based on a model which developed by Guo (2006). Guo (2009) assumes that the soil modulus 

and limiting force profile between pile and soil linearly increases with depth. A load transfer 

model was used in the elastic state to predict the load-displacement response by adopting a 

simplified displacement field that results in the simplified stress field derived by Guo and Lee 

(2001) where the radial stress is assumed to be given by: 

        
  

  

          

      
                                                                                                                   

In this solution      and     assumed to be zero, where          and      are radial, tangent 

and vertical stresses respectively,    is soil shear modulus,   is an angle between the line 

joining the centre of the pile cross section and direction of the loading,    is a factor which 

can be determined by the relation            ,         for lateral load applied on the 

pile when the pile head level at the ground       and               are modified Bessel 

functions of the second kind of order  . 

The lateral displacement can be determined by 

  
 

     
                                                                                                                                                 

Z is depth,   is pile diameter for circural pile and width for rectangular pile,   is force for 

unit depth, and     can be calculated as: 

    
    

 
(   
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  ))                                                                   
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 Then elasto-plastic solution was use, the displacement at depth z was calculated as  

                                                                                                                                                 

   is pile head displacement and   is rotation angle that can be calculated as 

  
  

   

  (  
  
 
)

((  
  
 
) (

  
 

 
  
 
)   ) (  

  
 
)
 
                                                                              

and     can be obtained from following chart (Figure 2.7b). Figure 2.8 shows pile deflection 

under lateral load. 

 

               Figure 2.7: (a) Pile soil system; (b) Gradient of the limiting force profile (from 

Guo, 2009) 
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Figure 2.8: pile-soil system 

2.2.2 Axially loaded pile 

Several solutions for predicting the displacement of axially loaded piles are reported in the 

literature. Some of which are listed below: 

 Poulos and Davis’s method 

Poulos and Davis (1968) presented analysis based on linear elastic theory to predict the 

behaviour of an incompressible single cylindrical floating pile in a semi-infinite mass and 

infinite layer under vertical load, for a wide range of  ratios  of length and diameter, and four 

values of  Poisson’s ratio. In this method the pile is divided in to   cylindrical elements as 

shown in Figure 2.9. Each element is subjected to uniform shear stress    , the circular base 
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of the pile having uniform vertical stress    , the initial analysis for shaft of the pile assumed 

to be rough while the base of the pile smooth, for incompressible pile each element has the 

same vertical displacements, the soil displacements due to shear stress at     element as 

shown in followed relationship 

   ∑             

   

   

                                                                                                                        

The displacement of pile due to uniform stress the base is 

   ∑                     

   

   

                                                                                                              

where     is the factor of vertical displacement for   resulting from shear stress on element   ,   

    represents the vertical displacement factor for   resulting from uniform vertical stress 

acting the tip of the pile,     is  the factor of vertical displacement for the base resulting from 

shear stress on element  ,    and      represent displacement in the shaft and the base of the 

pile.                are uniform shear loading and stress vertical stress on shaft and the base of 

the pile respectively. The displacement factors can be obtained from  

      ∫ ∫        
   

 

  

      

                                                                                                              

where   represents the thickness of the element, and     can be calculated according to 

Mindlin (1936) as  
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where 

             ,              ,       
          and   

     
       

  
 .       

The influence factor of   point at the shaft due to uniform load in the base of the pile given by                            

    ∫ ∫         
  

 

  

 

                                                                                                                      

where    can be obtained from equation 2.41 however            
  calculated as 

             
                      

    
    

                

The calculation of displacement factor of centre of the base due to stress shear on element   

calculated as 

        ∫      
  

      

                                                                                                                       

where    can be calculated using Equation 2.41 and        ,         
  and   

  

  
    

 . The factor of vertical displacement for the base of the pile due to the load on the 

base is evaluated as 

    
 

 
  ∫       

  

 

                                                                                                                          

where    is obtained by inserting these values                                

   

and    is the radius of pile in Equation 2.41.Using the equilibrium condition we obtain 

∑       
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Poulos and Davis (1968) also presented Equation 2.44 to predict the vertical displacement for 

a unit applied load     

Moreover, Poulos and Davis (1968) proposed a solution for a floating pile in an infinite layer 

by assuming the shear stress distribution the independent of the depth of the layer. The 

deformation of the pile is estimated as 

      (∑             

   

   

)                                                                                                     

where     is the settlement of a pile in a layer of any depth h,    is  settlement of the pile in a 

semi-infinite mass,     is the factor of  displacement due to uniform shear on element   and  

    represents the factor of  displacement due to uniform load on the base. 
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Figure 2.9: Stress acting on pile and adjacent soil (from Poulos & Davis, 1968) 

 Randolph and Wroth’s method (1978) 

Randolph and Wroth (1978) explained that the analytical solution for deformation of piles 

should be usable for different pile geometries and soil stiffness, and the soil will deform due 

to the application of an axial load at the top of pile along and below the pile. The analysis of 

the axially loaded pile is based on a division of loads between the shaft and the base. Figure 

2.10 shows the upper and lower soil layers and the separate deformation of these layers, 

where the plane    is exploded to      and     . The deformation around the shaft is 

modelled as a shearing of concentric soil cylinders. The shear stress around the pile will 
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increase when the pile is loaded, and will be greater than the increase of vertical stress. The 

vertical equilibrium of the soil element can be derived from Figure 2.10 as follows 

The shaft pile response 

 

  
       

   

  
                                                                                                                                

where 
 

  
  represents the increment of shear stress,  

   

  
 is the vertical total stress increment 

and   is the radius of circular slice which is concentric with the pile.     represents the shear 

stress along the shaft pile and   is the shear stress at distance  . When the axial load is 

applied to the pile the shear stress in the shaft of the pile will be greater than the vertical 

stress so Equation 2.45 becomes  

 

  
                                                                                                                                                   ) 

By integrating Equation (2.46) the shear stress on the pile shaft will be obtained when      

as 

    
  
 
                                                                                                                                                    

 The shear strain is  

  
 

 
 

   

  
 

   

  
                                                                                                                               

where    represents the radial displacement of soil,    represents the vertical displacement of 

the soil,   is the shear strain and   is the shear modulus of soil. Based on Randolph and 

Wroth (1978) the vertical displacement is larger than the radial displacement, so Equation 

2.48 becomes 
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where  

    
 

 
    

Since           hence  

   
    
 

∫
  

 

  

  

                                                                                                                                    

where    is the shaft pile displacement and    is the magic radius (at which the ground 

settlement is zero) that can be calculated from              

   
    
 

  (
  
  

)  
    
 

  
  

    
                                                                                                 

where     (
  

  ⁄ ).  

The base pile response 

Soil below the pile will deform because the pile acts as a rigid punch and the deformation of 

the soil at the base of the pile will decrease with   when the vertical stress    increases 

(Randolph & Wroth, 1978). Randolph and Wroth expresses the settlement at radius   as 

     
    
 

  (
 

  
)                                                                                                                             

Where   is the settlement at radius  . Timoshenko and Goodier (1987) had described the 

displacement at the base of the pile as 
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where    represents the shear stress under the pile,    is the base shear modulus,   is the 

Poisson’s ratio and   is base enlargement ratio, equal to 1.   

The head pile response  

For vertical equilibrium  

                                                                                                                                                     

where    is the axial load on the top of the pile,         ,    is the shear stress at the base 

of pile and         , and    is the cross-section of area of the pile. 

To predict the accurate displacement of the soil-pile system due to pure vertical load, the 

response of the shaft and the base of the pile must be combined  

           

  

      
 

  

      
 

  
      

                                                                                                                    

  

      
 

 

      
 

   

    
                                                                                                                     

where    is the combined deformation,    is settlement of the pile shaft,    is the base 

displacement,    represents total vertically loaded pile,   is geometric factor which equal to 1 

and       (
  

  
). 
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Figure 2.10: Analysis of pile by uncoupling of loads carried by the shaft and base (after 

Randolph and Wroth 1978). 
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2.3 Discretised continuum approach (numerical method) 

Unlike the beam-on-foundation method, the discretised continuum approach treats the 

surrounding soil in three dimensions. Several numerical methods are used to estimate the pile 

deflection in 3 directions with different pile geometry and different constitutive models: finite 

element method, finite difference method and boundary element method (Poulos, 1971a), 

Poulos (1971b), Banerjee and Davies (1978), Budhu and Davies (1988), Basack & Dey 

(2012), Georgiadis et al (2013), Verruijt et al. (1989) and Basu et al. (2009).    

2.3.1 Laterally loaded pile 

The finite element method has been used to calculate pile displacement for different pile 

geometries in uniform and multi-layered soil and with different constitutive models of soil 

and for single pile and group of piles (Comodromos & Papadopoulou, 2012; Verruijt & 

Kooijman, 1989; Randolph, 1981; Bransby 1999; McGann et al 2011; Georgiadis et al. 2013)  

The boundary element method has been used to analyse the behaviour of a pile under 

dynamic loading, although the accuracy of numerical dynamic solutions depends on 

frequency parameters (Kaynia. 1982; Sen, et al. 1985; Banerjee, et al. 1987). The boundary 

element method tackles pile-soil interaction by dividing the pile into slices and modelling the 

interaction between pile slices and the soil by using the solution proposed by Mindlin.  

Various authors (Sun, 1994; Zhang et al. 2000; Guo and Lee, 2001) have found solutions 

which are based on energy approaches to determine lateral pile deflection at depth (analytical 

solutions). However, the disadvantage of these methods is that they assume the displacement 

in the radial and tangent directions are the same that gives a stiffer soil response compared 

with the response of the soil in reality.  

Cox, et al. (1974), Ashour and Norris (2000) and Basu, et al. (2009) obtained solutions for 

the responses of laterally loaded piles by developing an analysis for multi-layered elastic 
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media. Displacements in the pile-soil system are derived from functions which vary in the 

three directions. The governing differential equations are derived using Hamilton’s principle 

for pile deflections in different soil layers. The response of a pile group embedded in non-

homogenous elastic linear soil subjected to lateral load was developed by Salgado et al., 

(2014) using semi-analytical approach based on the displacements of the soil mass at any 

point around a pile is tying the with the displacement pile themselves, the governing equation 

here obtained by minimizing and variations the potential energy. 

Sun (1994) calculated the response of a pile in linear elastic soil under static horizontal load 

while Das and Sargand (1999) have used the Vlasov energy method to analyse the dynamic 

lateral loading that acts on the pile. This method is based on strain-stress relations to calculate 

the potential energy for the soil column and surrounding soil, then inserting them through 

Hamilton’s principle. The energy method can be used for both static and dynamic analysis, 

and Vallabhan and Das (1991a) have modified the Vlasov energy method for the static 

analysis of beams on elastic foundations. Vallabhan and Das used a variational method to 

obtain the equilibrium configuration. The finite difference method is used to solve the 

differential equation for soil displacement in Verruijt and Kooijman (1989) and Basu, et al. 

(2009). Basu, et al. (2009) developed an advanced continuum-based method to analyse 

laterally loaded piles by considering soil displacement decay when the distance from the pile 

increases. They assumed the direction of soil displacement is consistent with the direction of 

the load, the constitutive model of the soil in his study was linear elastic. They also explained 

that, by using the variational principle, the governing differential equations for pile and soil 

displacements can be derived.  

Sun (1994) predicted the deflection of a laterally loaded pile in homogenous soil using an 

energy based method, and used the same dimensionless displacement function of soil      in 

radial and tangent displacements           , meaning that displacement must be in the load 

direction. However, Basu et al., (2009) improved Sun’s analysis by assuming the soil as 

multi-layered  instead of a single layer, and the value of soil displacement was taken not only 

in the load direction, but also had a component perpendicular to the load direction, which 

meant that      ; in other words           , where    is the dimensionless 
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displacement function of soil in the radial direction, and    represents a dimensionless 

displacement function of soil in the tangential  direction (more details in Chapter 3). 

Das and Sargand (1999) calculated displacement along the pile, and supposing that the soil 

displacement will be in the load direction and parallel to it (using Sun (1994) assumption but 

for dynamic load instead of static load), the soil displacement found from this method is 

larger than real displacements. The main point of this study is that to obtain a realistic result 

using the Basu et al. (2009) assumption, the pile here subjected to dynamic lateral load, and  

an analytical method suggested to analyse deformation data for laterally loaded piles depends 

on the energy conservation of the pile-soil system. 

2.3.2 Axially loaded pile 

The continuum approach treats the surrounding soil in three dimensions for the analysis of 

axially and laterally loaded piles, because in nature, the soil interacts with the pile in three 

dimensions. Three numerical techniques are widely used in the analysis of piles, namely the 

finite element method (FEM) (Randolph, 1981; Brown et al., 1989; Trochanis et al., 1991; 

Carter and Kulhawy, 1992; Bransby and Springman 1996; Bransby, 1999), the boundary 

element method (BEM) (Banerjee and Davies, 1978; Budhu and Davies, 1988; Basack and 

Dey, 2011, 2012) and the finite difference method (Ng and Zhang, 2001; Klar and Frydman, 

2002; Basu et al., 2008 and Haldar and Sivakumar Babu, 2012). The disadvantage of the FE 

method is that it usually takes a longer time for computing compared with the FD method.   

Analytical solutions such as those developed by Butterfield and Banerjee (1971), and Poulos 

and Davis (1968), are widely used in engineering practice. These solutions treat the soil as a 

linear elastic material. Vallabhan and Mustafa, (1996) developed solutions for displacement 

of a pile embedded into two-layered soil. This analysis was expanded by Lee and Xiao 

(1999), Salgado et al. (2007) and Seo et al. (2009) to multi-layered soil. In this thesis the 

response of a pile in non-uniform soil is considered, where the elastic moduli         

(Lame’s constant) are varied in three directions, and both are functions of stress and strain. 

As stress and strain decay with increases in the length of radial direction, the soil stiffness 
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    increases. In other words, soil stiffness degrades with increasing strain, so         vary 

in radial and depth directions. The soil in reality is not uniform, and the stiffness in the soil 

varies in all directions. Thus, studies which consider soil as linear elastic are not suitable for 

predicting real structural behaviour during working loads.  

2.4 Soil behaviour 

In order to model pile response accurately, an appropriate constitutive model is needed. 

However, soil behaviour is complex so it is difficult to find a single constitutive model that 

describes the soil behaviour. For example the undrained strength of soils depends on a 

number of factors such as the failure mode, strain rate, stress history, and soil anisotropy as 

well as the mode of loading effects of stress-strain non-linearity. These factors make the   

undrained strength dependent on test type (Koutsoftas and Ladd, 1985; Kulhawy and Mayne,  

1990), a summary of some these factors (such as stress history, hysteric behaviour of soil) 

which affect the response of a pile can be explained as follows 

2.4.1 Stress history 

The term ‘recent stress history’ has been used by Atkinson et al. (1990) to define the previous 

stress path and the time spent at a constant stress state before an imposed change in stress. A 

series of laboratory stress path tests on London clay samples made by  Atkinson et al. (1990) 

to investigate the effect of current state, the recent stress history and the sudden change in the 

different directions on soil stiffness. They stated that at small strain (of the order 0.01%) the 

stiffness at        is larger than stiffness of the order     , and stiffness for       

falls between those      and       . This study was extended in Stallebrass (1990) and 

Stallebrass and Taylor (1997). Figure 2.11shows the stiffness-stress response for different 

rotations                         , from this experiment we can concluded that as 

engineering to apply the load depends on the sequence of the load application the response is 

different. 
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Figure 2.11: The effect of recent stress on soil stiffness (from Stallebrass and Taylor, 

1997) 

 

Figure 2.12: Stress-strain curve with different over consolidation ratio (Burland et al. 

(1996) modified by Vardanega & Bolton (2011b). 
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Vardanega & Bolton (2011c) tested a samples of natural London clay in order to investigate 

the relationship between the mobilisation strain is and depth. They stated that mobilisation 

strain increases with decreasing depth and also increases with OCR. Figure 2.12 shows the 

response of Todi clay for different over consolidation ratios (OCRs). 

2.4.2 Hysteretic behaviour of soil 

Hysteretic behaviour can be observed in an unloading and reloading cycle in an undrained 

triaxial test as shown in Figure 2.13. Wood (1990) illustrated that in a loading-unloading-

reloading loop, the stress-strain relationship is not unique because of the inelastic response 

due to energy being dissipated in a closed load cycle. An experiment carried out by Jardine et 

al. (1984) showed that the pure elastic region did not exceed 0.1% of strain. Figure 2.13 

shows the strain-stress response of dense sand resulting from cyclic triaxial test (Biarez and 

Hicher, 1994). 

 

Figure 2.13: Hysteresis loop for dense Huston sand resulting from drained triaxial test 

(from Biarez & Hicher, 1994) 
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2.4.3 Nonlinear behaviour of soil 

Atkinson (2000) stated that for loading structures the decay of the soil stiffness varies with 

strain, where the stiffness of soil is high at very small strain level and decreases with the 

increase in strain. This decay differs according to the type of material. Soil behaviour has 

been studied by many researchers using triaxial tests and the results show that high stiffness 

occurs when shear strain is less than      (Jardine et al., 1984; Burland, 1990; Atkinson and 

Sallfors, 1991; Houlsby and Wroth, 1991; Osman et al., 2007). There are some factors that 

affect small strain stiffness     , such as mean effective stress, void ratio, stress history, rate 

of loading, soil plasticity for silts and clays, stress anisotropy for sands, and effective 

confining stress (Drnevich and  Massarsch, 1979; Hardin, 1978; Hardin and Drnevich, 1972; 

Lo Presti et al., 1996; Vucetic, 1994; Yamashita et al., 2003). A power law can be used to 

describe the decay of stiffness with the increase of strain (Bolton and Whittle, 1999; Bolton et 

al., 1993; Gunn, 1992). A simple power law has been used by Gunn (1993), where the soil is 

assumed to be nonlinear-elastic, perfectly plastic and with a Tresca yield surface.  

Two parameters (A and n) that have been obtained experimentally (by using a pressuremeter 

test), are used to describe the variation of shear stress with strain as follows 

   (  )
 
                                                                                                                                               

where   represents equivalent shear stress,    is deviator shear strain. Gunn (1993) stated that 

this model is valid to predict undrained displacement but is unsuitable for determining the 

response of soil under cyclic loads because it cannot capture the change of soil stiffness 

during unloading. Atkinson (2000) shows the decay of stiffness with strain and concludes that 

the stiffness-strain curve can be divided into three regions as shown in Figure 2.14. The first 

region represents the very small strain where the stiffness is almost constant, the second 

region (small strain) starts from    till         in this region the stiffness decay rapidly and 

in large strain the stiffness is the smallest, where the soil stiffness is high at small strain and 

decrease with large strain (Atkinson, 2000). Figure 2.15 shows the degradation of stiffness 

with increasing of strain for different types of clay. 
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Figure 2.14: The variation of normalizing shear secant with logarithmic strain   or 

normalized displacement (after Atkinson, 2000) 

 

Figure 2.15: Degradation of tangent with deviatoric strain (after Dasari, 1996) 
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2.5 Soil plasticity 

Once strain increases to exceed yield stress the material becomes plastic and will not return to 

original state after load removed. Several models have been used to model soil plasticity. In 

elasto-perfectly plastic models, the stress remains constant beyond the yield stress point with 

an increase strain, see Figure 2.16b. Similar to elasto-perfectly plastic material, the strains 

hardening models behaves as linear elastic before yield stress, and become plastic beyond the 

yield point and the stress increases with strain, see Figure 2.16c. In the strain softening 

model, the material behaves as elastic to yield followed by a dropping stress, as shown in 

Figure 2.16d. 
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Figure 2.16: Different soil models (a) Linear elastic model; (b) linear elastic perfectly 

plastic model; (c) linear elastic strain hardening model; (d) linear elastic strain softening 

model (after Elhakim, 2005) 
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Plasticity occurs when the stress reaches the yield surface  (   )   , where   is a yield 

function that governs each element of material and this function depends only on stress 

components (   )  The yield function for perfectly plastic material depends on the stress 

component rather the strain component. When  (   )    the material is elastic.  

Two terms have been used to describe the plastic flow: yield and failure. Yield is the change 

of the material from an elastic response while failure means that the material is continuing to 

plastically deform at constant stress. Perfectly- plastic models such as Drucker-Prager, Mohr-

Coulomb, Von-mises and Tresca are often used in practice. The wide use of these models is 

due to the fact that only a few parameters are needed to describe plasticity. 

Tresca yield criterion 

Tresca assumed that yield takes place when the maximum shear stress is equal to k where k is 

the limit value, in other words the maximum difference between principal stresses taken in 

pairs must equal to 2k or twice the undrained soil shear strength 2Su (measured in a triaxial 

test). 

                                                                                                                                                 

where    is undrained shear strength,    is maximum principal stress and    is minimum 

principal stress (Tresca, 1869), see Figure 2.17. 

Von-mises yield criterion 

Von-mises (1913) modified the Tresca yield criterion, where he assumed the surface yield is 

a smooth yield function instead of one with corners, these corners implying singularities in 

the yield function that lead to difficulties in numerical analysis. The yield surface in the Von - 

mesis model is plotted as a circular cylinder in principal stress space as, shown in Figure 

2.18. The failure occurs in Von-mises criterion when the energy of distortion reaches the 
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same energy for yield or it failed in uniaxial tension. This model has been widely used in case 

of undrained soils and metals (Von Mises, 1913; Potts and Zdravkovic, 1999), the 

relationship between undrained shear strength and main principal stresses can be expressed as   

   √
 

 
                                                                                                         

Mohr-Coulomb yield criterion 

Mohr-Coulomb assumes that the plastic deformation takes place when the shear stress 

reaches an amount that depends linearly upon the material cohesion and normal stress σ.   

This model is considered as the best model for anisotropic pressure-sensitive soil, since this 

model agrees well with experimental studies. On the other hand, because of singularities this 

model is not mathematically convenient (Coulomb, 1773). The yield “surface” in case of one 

dimension is defined by a linear line between shear stress τ   and normal or effective stress      

is calculated as   

                                                                                                                                                     

where    represents the angle of internal friction of soil (see Figure 2.17).  
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Figure 2.17: Mohr Coulomb circle of stress 

Drucker-Prager yield criterion 

The Drucker-Prager et al. (1952) yield criterion plots as a cone in effective stress space, and 

is a pressure-dependent model. The yielding surface of this criterion depends on the cohesion 

and the material internal friction angle. This criterion is a modification of the Coulomb yield 

criterion but avoids the singularity problem co and is similar to the Von-Mises yield criterion, 

see Figure 2.18. Von-mises and Drucker-Prager models are commonly used for elasto- plastic 

analyses (Drucker et al. 1952).  

The differences between the four models mentioned above are their shapes in the deviatoric 

plan, the strength is related to the difference between major and minor stresses. 

𝜏 

   

          

 

   

 
 ⁄     

  
    

  



Chapter 2: Background 
 
 

43 
 

Ϭb

Ϭa

Ϭc

Space
 d

ia
gonal Ϭ

a
=Ϭ

b
=Ϭ

c

Ϭb

Ϭa

Ϭc

Spa
ce

 d
ia
go

na
l Ϭ

a
=Ϭ

b
=Ϭ

c 

Ϭb

Ϭa

Ϭc

Space
 d

ia
gonal Ϭ

a
=Ϭ

b
=Ϭ

c

Von-Mesis yield criterion                                  Drucker- Prager  yield criterion                                  

Coulomb yield criterion                                  Tresca yield criterion

Ϭb

Ϭa

Ϭ

c

Space
 d

ia
gonal Ϭ

a
=Ϭ

b
=Ϭ

c

 

Figure 2.18: Different yield criteria (after Potts and Zdravkovic, 1999) 

2.6 Similarity method for foundation analysis 

A similarity approach is presented in Atkinson (2000), which is a simple method to predict 

structural displacement in geotechnics. The analysis is based on the straining of undrained 
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soil in a triaxial test, related to ground movement. In this approach, Atkinson (2000) used 

elastic solutions to link the load and displacement via secant stiffness. His solution allows 

nonlinear soil to be considered. Atkinson (2000) suggested that the decay in soil stiffness 

with strain level and the decay in foundation stiffness with normalised displacement take the 

same form.  

Using the stress-strain response resulting from a triaxial test, the soil secant stiffness      can 

be obtained, and then the soil secant stiffness is plotted against the deviatoric strain. The soil 

stiffness-strain curve can be converted directly into a stiffness-displacement curve by scaling 

the x-axis (the strain axis) using a linear scaling factor. Once the displacement is known 

together with the corresponding secant stiffness, the lateral load    can then be calculated 

from the conventional linear elastic solution for axial and lateral loads. 

Atkinson (2000) obtained a strain scaling factor for vertical displacement by assuming 

   
(
  

 ⁄ )

  
  , where   is vertical displacement,   denotes foundation diameter and    is 

compressive strain. The former method was extended by Osman et al. (2007), where a 

similarity method was developed for circular shallow foundations and which coefficients for 

circular foundations subjected to vertical, horizontal and moment loads were derived. The 

calculation in this approach can give quicker and simpler results than numerical analysis. The 

technique is not intended to replace advanced numerical methods but to provide a tool which 

is simple enough for use in preliminary design calculations, whilst also capturing the 

important influence of soil non-linearity. There is no need for a large number of parameters in 

this method, and it is also cheaper than numerical analysis. Osman et al. (2007) obtained the 

coefficients of displacement for circular shallow foundations under undrained loads 

(horizontal and bending moment) using the similarity approach. The similarity method will 

be extended in this thesis to piled foundations under vertical and horizontal loads. 
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2.7 Summary 

The literature review in this chapter has outlined the background to the types and failure 

mechanisms of piles. In doing so, existing methods that are used to analyse piles under 

different types of loads have been categorized based on analytical solution and numerical 

analysis. This analysis methods are suitable for specific problems; for example, in the case of 

laterally loaded pile, Winkler’s method can be used for a clamped pile in cohesive and 

cohesion-less soil, while Poulos’ method is most suitable for free rigid and fixed rigid pile in 

homogenous and heterogeneous soil. Budhu and Davies’ method works for free and fixed 

head piles in elasto-plastic soil, whereas Randolph’s method can be used for rigid and 

flexible piles in homogenous soil. Finally, Broms’ method is most suitable for free and fixed 

of short pile in cohesion and cohesion-less soil. Nevertheless, in the case of axially loaded 

piles, Poulos and Davies’ method is used for a floating pile in semi-infinite and infinite 

layers, while Randolph’s method is used for piles in homogenous soil. 

There is a need to develop tools that are suitable for modelling a large range of constitutive 

models of soil and different pile geometries. These tools should be simple and quick. 

Therefore, an analytical solution based on an energy method will be considered in this thesis, 

where the energy method has been used for the soil-structure problem. This method will be 

used to analyse the following:  

 The deformation of a pile in linear elastic soil under lateral dynamic load. 

 The displacement of a pile subjected to static lateral load; the shear modulus of 

soil,   assumed to vary linearly with depth. 

 The response of a pile in nonlinear elastic soil under lateral, axial and combined 

loads. 
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There is also a need to develop a method using the similarity approach that can provide a 

powerful tool for estimating the stiffness and working displacements of a pile under 

combined loading. A calculation method is needed that is far quicker and simpler than 

numerical analysis. The technique is not intended to replace advanced numerical methods, 

but to provide a tool which is simple enough for use in preliminary design calculations, whilst 

capturing the important influence of soil non-linearity. The potential benefit to engineering 

practice of being able to apply the similarity principle is obvious. 
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3 The response of a laterally loaded pile in linear elastic soil 

 

Introduction  

Many factors can affect pile deflection due to lateral loads, such as soil properties, the pile - 

soil interaction (e.g. soil is fully connected to the pile or able to slip), the direction of the 

load, the pile material, geometry and stiffness. The resistance of the soil and lateral deflection 

should all be considered when designing vertical piles, whether a single pile or in a group of 

piles. 

In this part of the thesis, an energy-based method has been developed to predict pile 

deformation. An analytical solution based on the energy method was used by several 

researchers (Vlasov and Leont’ev, 1966; Vallabhan and Das, 1991a; Basu, et al., 2009; Seo 

and Prezzi, 2007; Basu et al., 2008) to estimate laterally and axially loaded pile deformation 

for linear elastic soil. Independent functions describing the soil displacement have been used; 

these functions vary in vertical, radial and circumferential directions. The linear elastic 

analysis has been developed by employing variational principles and minimization of energy, 

called Hamilton’s principle, to derive the governing equation and boundary conditions. 

Hamilton’s equation can be expressed as 

∫ (     )   ∫      
  

  
  

  

  
                                                                                                 (   )  

where         are the kinetic and potential energies of the pile and soil and   is work done 

by applying lateral load,   and      are the initial and final times of loading (Asik and 

Vallaban, 2001).  

The governing equations for pile deflection are obtained by minimizing kinetic and potential 

energies. These governing equations can be solved either numerically or analytically once the 

boundary conditions are included. Each of the displacement components are expressed as a 

multiplication of one-dimensional functions when minimizing the energy, a set of one 
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dimensional equation is obtained. These equations are solved numerically, using the finite 

difference technique.  

Sun (1994), and Das and Sargand (1999) developed an analysis based on energy methods to 

estimate the response of a laterally loaded pile due to static and dynamic loads. Both studies 

assume zero soil displacement perpendicular to the direction of the applied force and the 

resultant displacement vector at any point within the soil is taken to be parallel to the applied 

force. This artificial constraint leads to stiffer pile response as demonstrated by Basu et al. 

(2009). Sun (1994), and Das and Sargand (1999) assumed the displacement field in the soil as 

    ( ) ( )                                                                                                                           (    ) 

     ( ) ( )                                                                                                                        (    ) 

where  ( ) represents a displacement function with a dimension of length, and  ( ) is 

dimensionless soil displacement in the   direction. 

Basu et al. (2009) suggests a more realistic displacement field which is described as: 

    ( )  ( )                                                                                                                         (    )  

     ( )  ( )                                                                                                                      (    ) 

where  ( ) represents a displacement function with a dimension of  length.   ( ) is 

dimensionless soil displacement in the radial direction ( ), and    is dimensionless soil 

displacement in the tangent direction ( ) (see Figure 3.1). However, in the work of Basu et 

al. (2009) only static loads are considered and the soil stiffness is taken to be constant within 

the soil layer. Field data shows that the soil stiffness varies with depth and it is quite often 

that variation is described by a linear function. In this chapter the analysis will extend the 

energy-based method to deal with (i) stiffness variation with depth, (ii) dynamic lateral loads.  
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3.1 Response of a lateral loaded pile in elastic soil with stiffness 

varying linearly   

Consider a circular pile with radius    and length L. The pile is assumed to be vertical and 

embedded in an isotropic linear elastic medium which extends to infinity. The pile is 

perfectly connected to the surrounding soil, which means there is no separation at the 

interface between the soil and pile, and the head of the pile is located at the ground surface. 

The pile is subjected to a lateral load with a bending moment    at the head of the pile. In 

this analysis, cylindrical coordinates (     ) have been chosen, and the downward direction 

is taken as positive (see Figure 3.1). The shear modulus of soil here varies linearly with 

depth, see Figure 3.3. 

 

 

 

 

 

 

 

 

Figure 3.1: Cylindrical coordinate system and components of displacement at top of pile 
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3.1.1 Energy based approach 

In this method, the deformation of the pile-soil system can be obtained using the energy 

approach. The variational method used here to minimize the potential energy allows us to 

estimate the governing equations. The pile-soil system is divided into three parts: the pile, the 

soil column below the pile, and the soil around the pile (see Figure 3.2). The governing 

equation and boundary conditions are obtained by minimizing the energy into three parts. 
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Figure 3.2: Zones of energy of the pile - soil system  

Potential Energy 

The lateral load acting on the top of the pile leads to lateral displacement of the pile-soil 

system, which causes potential and/or kinetic energies in the pile and surrounding elastic 

media (Sun, 1994). The potential energy of the pile and soil for both external and internal 

potential energies is given by  
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where   is the pile displacement,    represents the pile Young’s modulus,    is the second 

moment of area,     and     are the stress and the strain in the soil, respectively and   is the 

shear modulus of soil which is assumed to change with depth (Figure 3.3) as follows:  

 ( )                                                                                                                                        (   ) 
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Figure 3.3: The shear modulus of soil vary linearly with depth 

The first part of the integration represents the potential energy for the pile according to 

Bernoulli’s theory 

    
 

 
                                                                                                                                             (   )                                                                                                      

where   is the bending moment,       (
   

   ), and k is the curvature,   
   

     (Menaldi, 

et al., 2001). 

The second part of the integration represents the internal potential energy of the soil column 

below the pile, which is calculated from   to infinity in the depth direction. The third part 

represents the internal potential energy of the surrounding soil. The strains are derived from 

displacements in cylindrical coordinates, and are described as follows: 
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The stress components in cylindrical coordinates are given by 

     (           )                                                                                                          (    ) 

     (           )                                                                                                        (    ) 

     (           )                                                                                                            (    )     
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The governing equation is obtained by inserting the stress-strain relations into the potential 

energy Equation 3.4, and applying Hamilton’s principle and the calculus of variations to 

obtain 
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3.1.2 The governing equation of the pile displacement for a static load 

Governing equation that presents pile displacement can be obtained by collecting    

coefficients from Equation 3.9 

For       



Chapter 3: The response of laterally loaded pile in linear elastic soil 

 

54 
 

    
   

   
  (     )

   

   
   

  

  
  (     )                                                    (    ) 

Governing equation for pile displacement at              
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and   is the rate of variation of the shear modulus with depth. Governing equation of pile can 

be solved when boundary conditions are known which are obtained by collecting 
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3.1.3 The governing equation of soil displacement for a static load 

Governing equation for soil can be obtained by collecting coefficients that associated with     as 

follows: 
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By collecting the coefficients of     we get: 
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These governing equations can be solved using the boundary conditions 

when           

  

                                                                                                                                                  (     ) 

     

when     

                                                                                                                                                  (     ) 

     

All terms related to the variation of    and  
  

  
 at domain       are equal to zero, but 

   is not necessarily equal to zero, which gives the governing equation below the pile 

(Equation 3.10). For clamped pile, displacement at the tip of the pile equal to zero while the 

displacement under the pile in the case of a floating pile does not equal zero, so the general 

solution of the differential equation of the second order Equation 3.11 (at      ) can be 

given in the form 

 ( )   
 √

 
  

(   )
 ( )                                                                                                                   (    ) 

The second order equation can be written as  

     (   )        
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and can be solved using a confluent hypergeometric function. By substituting Equation 3.20 

into Equation 3.11 and introducing    √
 

  
(
  

 
  ), it can be shown that X is governed by 

the confluent hypergeometric equation 
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where 
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The solution for X requires that it remains finite as    , therefore 

    (     )                                                                                                                              (    )  

where A is a constant which can be determined from the pile displacement at z=L and 

 (     ) is the confluent hypergeometric function of second order. 
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The boundary condition at (   ) given by Equation 3.14 can be re-written as 

    
   

   
  (     )
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where at      
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Solution procedure 

The solution of the governing differential equation for the floating pile displacement 

Equation 3.10 with the boundary conditions (Equations 3.12, 3.13, 3.14 and 3.15) follows 

procedure below  

I. Assume initial values for             . In the author’s experience, the values could 

be less than 0.001. 

II. Calculate           by solving Equations 3.17 and 3.18 simultaneously together with 

the boundary conditions given by Equation 3.23. The one dimensional finite 

difference technique can be used.  

III. Calculate the coefficients           . 

IV. Solve Equation 3.10 together with the boundary conditions given by Equations 3.12, 

3.13, 3.14 and 3.15. One dimensional finite difference technique can be used here as 

well.  

V. Insert the results obtained in IV to calculate the new values for             . 

VI. Iterate until the difference between the new              and the old values 

becomes negligible. 

The procedure should be repeated until the relative error (  (   )    (   ))   (   ) is 

less than the specified tolerance. A program written in Wolfram MATHEMATICA version 

9.10 has been used here to solve this iterative procedure. 
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3.1.4 Comparison with static load solution  

The validity of the proposed solution can be compared with other solutions for piles under 

static lateral loads. For uniform soil, by taking the limits when 0 , the displacement 

beneath a floating pile (Equation 3.20) at (     ) is reduced to 

 ( )   
 √

 
  

(   )
                                                                                                                            (    ) 

and the quantity  in Equation 3.12 reduces to 

  √                                                                                                                                           (    ) 

Thus, the solution becomes similar to that derived by Basu et al. (2009) (            ) 

For a pile embedded in non-uniform elastic soil, the stiffness of soil is assumed to change 

with depth according to this relation (    ), Randolph (1981) derived algebraic 

expressions which allow the behaviour of flexible piles under lateral loading to be calculated, 

in terms of fundamental soil properties. These expressions are based on the results of finite 

element studies. The pile displacement at the ground surface is given by Equations 2.20 and 

2.21. For the case of one layer soil  the pile head displacement is given by Equations 2.18 and 

2.19, and the soil stiffness assumed to be constant. The proposed solution and previous work 

show that, the results are of the same order of magnitude, see Figures 3.4, 3.5, 3.6 and 3.7. 
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Figure 3.4: Variation of pile displacement under lateral load with stiffness ratio (uniform soil) 

 

Figure 3.5: Variation of pile displacement under lateral moment with stiffness ratio (uniform 

soil) 
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Figure 3.6: Variation of pile displacement under lateral load with stiffness ratio (non-uniform 

soil) 

 

 

Figure 3.7: Variation of pile displacement under lateral moment with stiffness ratio (non-

uniform soil) 
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3.2 Analysis of piles under dynamic lateral loads 

There is a solution developed by Liu et al. (2014) this solution based on the energy approach 

to predict the response of pile in uniform isotropic linear elastic soil, the pile-soil system 

overlying on rigid rock base (see Figure 3.8). The pile is subjected to vertical propagating 

waves, and the Hamilton’s principle has been used. However, in this thesis the pile is subject 

to lateral propagation waves, where the governing equations for pile and soil resulting from 

current study are different compared with Liu et al. (2014), although both studies are used the 

energy method to predict the dynamic pile response. Liu et al. (2014)’s assumption of the 

deformation field (Equations 3.28a-3.28c) could lead to high stiffness response as 

demonstrated by Basu et al. (2009), see Figure 3.13.  

   (   (    ) )                                                                                                           (     ) 

    (   (    ) )                                                                                                        (     ) 

                                                                                                                                                   (     ) 

and the governing equations and boundary conditions are obtained by minimizing the 

potential and kinetic energies as follows  
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The governing equation for the soil  
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Figure 3.8: Piles under vertically propagating waves (from Liu et al., 2014) 

In this thesis, the governing equation of the pile and the soil for a static load can be obtained 

by using potential energy and external energy. However, for the response of a laterally loaded 

pile subjected to a dynamic force, kinetic energy is involved and Hamilton’s principle has 

been used. The potential energy of the pile-soil system is  
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Equation 3.33 should be differentiated to minimize the potential energy for the equilibrium of 

the system. The set of equations below represents the differentiations of the potential energy 

equation, where it divides into three parts. The first part denotes the potential of the pile    , 

the second part is the soil column under the pile    , and the third part is the surrounding soil 
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Full details can be found in Appendix 3.5.  

The kinetic energy of the pile - soil system, which is based on stresses and strains, is given by 
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Where          are elastic modulus which are constant,            represent the pile and 

the soil masses, and    is soil density.  

Similar to the potential energy, kinetic energy should be differentiated for the equilibrium 

system as follows: 
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Full details on differentiating potential and kinetic energies can be found in the Appendix. 

3.2.1 Pile displacement 

Governing equation pile displacement under lateral dynamic load represents as 
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The boundary conditions for the governing equation of the free base pile are calculated by 

collecting    and  
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The domain below the pile will be considered as       and we can write 

  

   

   
     

   

   
                                                                                                                (    ) 

The fourth part of the governing (Equation 3.37) represents the lateral displacement as a 

function of time; for a linear system and harmonic force with frequency  , the steady state 

response of the pile - soil system can be expressed as  
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where   is the imaginary number (√  ),  ̂ is the amplitude of pile displacement and   

represents a circular frequency.  For the domain below the pile, similar to the case of static 

load, the pile displacements   ( ) at the connection point with the soil   ( ) are the same, 

   is a pile displacement in domain       and    denotes soil displacement in domain 
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           .   

The boundary condition at     is   ( )    ( ) 
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The third part is with respect to time, so it changes to the frequency domain 
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Equation 3.36 then becomes 
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The governing equation will be 
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The boundary condition equations for floating piles are then as follows 
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The boundary conditions for a clamped pile are as follows 
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3.2.2 Soil displacement 

By collecting       from differentiating potential and kinetic energies, the governing 

equation for static loading will be obtained  
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By dividing Equation 3.47 by (          ), the governing differential equation is obtained 

as follows 
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In the same way, by collecting     and dividing the term by (    )  we obtain 

(
    

   
 

 

 

   

  
)  ((

  

 
)
 

 (
  

  
)
 

)   
  

 

   

  
 (

  

 
)
 

                                            (    ) 

where 

   √
(    ) ∫    

 
  

 ∫    

 
  

                                                                                                          (     ) 

   √
     ∫     

 

 
  ∫ (

  
  

)
 

 

 
  

 ∫    

 
  

                                                                             (     ) 



Chapter 3: The response of laterally loaded pile in linear elastic soil 

 

71 
 

   √
 ∫    

 
    ∫    

 
  

 ∫    

 
  

                                                                                               (     ) 

The boundary conditions for both governing equations are  

  ( )    when      and  ( )    when    . Similarly       when      , and  

     when    . The values of    and    vary between 1 and zero. 

3.2.3 Closed-form solution for pile displacement 

The governing equation of the pile can be solved using a closed-form solution, the general 

solution of differential equations of pile displacement of the 4
th

 order is 

                                                                                                                    (    ) 

where a, b, c and d are constants, and                  are the individual solutions of the 

differential equations.  

a, b, c and d constants can be determined by solving the boundary conditions in a matrix form 

[  ]     [  ]    [  ]                                                                                                                (    ) 

The   matrix represents the boundary conditions,   describes the constants and F is the 

external load. The response of a laterally loaded pile depends on a number of factors, such as 

the soil properties and the pile geometry.  

The governing equations of soil displacement can be solved by using the finite difference 

method (see Figure 3.9). These equations are mutually dependent, therefore, they must be 

solved concurrently using a central difference scheme. Then the governing equations can be 

written as 
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where   is the node     at     distance in radial axis;    represents the distance between two 

nodes and should be small for accuracy. The number of nodes is  . 

1 2 3 i-1 i i+1 m-1 m

Δr Δr Δr Δr

ri

node

pile

  

Figure 3.9: Finite difference discretisation for    and     

The governing equation of soil has been calculated by assuming initial values for 

                 to calculate C, k, m1, m2,.. m6 to obtain           the results for these 

variables can be inserted into the governing differential equation of the pile. Also, the 

iterative technique has been employed by obtaining the condition 
         

    
      , see 

Figure 3.10. 
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Figure 3.10: Solution flow chart 
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3.2.4 Comparison with field data and previous work 

El-Marsafawi et al. (1992) tested a single concrete pile subjected to a horizontal vibration 

load. The pile, of length 7.5m and diameter 0.32m, was installed in homogenous sandy clay 

soil in Harbin (China). The Young’s modulus of the pile being              . The 

exciting force applied to the top of the pile was given by 

  ( )       
                                                                                                                        (    ) 

where    is the mass of exciter which (     ),   is the length of the pile above the surface, 

and   represents a circular frequency which is equal to   
     

  
, where    is a function of 

the dimensionless frequency and     is the soil shear wave velocity, which is equal to 

       in the surface. 

Figure 3.11 shows the single pile used in the experiment, where the normalized amplitudes 

are for three excitation intensities,              ,                and      

         , where    represents the mass of the pile cap and   is the length of the pile 

between the bottom face of the pile cap and above the surface. The maximum normalized 

amplitudes were at frequencies 18, 17 and 15.6, respectively. The results of the present study 

were reasonable with the field data, as compared with those of Das and Sargand’s analysis. 

The frequency response at the head of the clamped pile is shown in Figure 3.12. Here, the 

ratio between the Young modulus for the pile and the soil is 1000 (
  

  
     ). As shows in 

this figure, the present formulations gives the better prediction to resonant frequency 

compared with Das and Sargand (1999). The present study’s assumptions leads to more 

accurate pile-soil prediction, because it assumed that soil displacement was not only occurs in 

the load direction as it assumed in Das and Sargand (1999), but that the soil mass 

displacement had components perpendicular to the load direction, which meant that        

whereas. Das and Sargand (1999) assumed that the radial and circumferential components of 

displacements are equal   ( )    ( )   ( ) Figure 3.12 shows the difference between 

these sets of assumptions. Figure 3.14 shows the dimensional frequency (a0) plotted against 

the normalised displacement u(a0)/u(a0=0). This figure shows that Das and Sargand (1999) 

that the predicts higher resonant frequency compared this analytical solution. Comparing 
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Figure 3.14 with Figure 3.13, it could be concluded that Das and Sargand (1999) gives stiffer 

unrealistic response while the present solution can capture the resonant response of 

structures. 

 

Figure 3.11: Single concrete pile subjected to a lateral load (El-Marsafawi, 1992) 

 

Figure 3.12: Dimensionless displacement of the top of the pile at different frequenci 
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Figure 3.13: Laterally loaded pile displacement according to Sun’s (1994) and Basu, et 

al.’s assumptions (after Basu, et al., 2009)       

 

 

Figure 3.14: Horizontal response of the single pile 
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3.3 Summary 

 The displacement of a single circular pile under static lateral load is presented in this 

chapter using anenergy based approach. The shear modulus of soil in this analysis is 

assumed to vary linearly with depth. The differential equations governing the 

displacements of the pile-soil system are obtained using variational principles.  

 The response of a pile in linear elastic soil subjected to harmonic lateral load has also 

been studied using the same technique presented in the case of static load. In both 

cases, the more realistic displacement field introduced by Basu et al. (2009) has been 

used to give more accurate results, instead of the displacement field used by Sun 

(1994) and Das & Sargand (1999), where they assumed zero soil displacement 

perpendicular to the direction of the applied force and the resultant displacement 

vector at any point within the soil is taken to be parallel to the applied force.  

 The results of the analyses in this chapter are reliable and reasonable compared with 

field data and finite element analysis. 
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3.4 Appendix  

The stress-strain relationships is used to calculate potential energy as follows  

       (    ) ( 
   

  
)
 

  
  

 
     (     )                                                          (     ) 

       (    ) [(
 

 
       )

 

   
  

 
         (

 

 
      ))

 

 (
  

 

   

  
     (     ))]                                                                      (     ) 

        [(
 

 
      )

 

 ( 
   

  
    )

 

 (
 

 
      )

 

  
  

 
  

   

  
     

  
  

  
           

  

 

   

  
       ]                                                  (     ) 

        (
  

  
      )

 

                                                                                                         (     ) 

        ( 
  

  
      )

 

                                                                                                     (     ) 

Potential energy 

The potential energy equation can be obtained by inserting equations (3.   a-3.   e) in 

equation 3.4.  
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The following equation expresses the minimum potential energy,  
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Kinetic energy 

The equations below describe the differentiation of the kinetic energy 
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By inserting potential and kinetic energies in Hamilton’s principle the governing 

equations and boundary condition for pile soil system can be obtained 
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The following equations give the solutions for the governing equation of pile displacement  
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The boundary conditions at the surface  
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4 Lateral Pile Displacement in Nonlinear Soil 

 

Introduction 

Most solutions that have been used to predict the deformation of a pile under different loads 

treat the soil as a linear elastic material in order to simplify the calculations. However, in 

reality the behaviour of soil is highly nonlinear and soil stiffness depends on the stress and 

strain levels. In this chapter, a new method, based on an energy approach, to predict the 

displacement of a pile in nonlinear soil is presented. Unlike the assumptions made in the 

previous chapter, the soil moduli (       ) are not treated as constants but assumed to vary 

in radial, circumference and depth directions according to the strain and stress levels. A 

simple power law has been assumed to describe the variation of the soil stiffness. These 

solutions have been developed for static and cyclic loading. Comparison has been made with 

finite element analysis, field data, centrifuge tests and other published analytical methods.  

4.1 Lateral pile displacement in nonlinear soil 

4.1.1 Problem definition  

Clays behave in a nonlinear manner at a very wide range of shear strain, whereas soil behaves 

as an linear elastic material only at a very small strain        (Atkinson, 2000). Thus, a 

power law can be used to describe the stress-strain behaviour of soil (Gunn, 1993; Bolton & 

Whittle, 1999). The decay of soil stiffness with strain can be expressed as 
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where    
  

   
 
 ,   is a constant determined empirically,   describes soil nonlinearity which 

is equal to (-0.5) according to the experimental data analysed by Osman et al. (2007) (see 

Figure 4.1),    represents the deviatoric strain and    
 is the maximum deviatoric strain with 

linear elastic behaviour which is equal to     . Soil stiffness is estimated by calculating 

strain at each location, then using the power law.  

 

Figure 4.1: Logarithmic scale of degradation of tangent stiffness with strain level (data 

adopted by Osman et al. 2007 after Dassari, 1996) 

4.1.2 Energy variation method for pile  

 Potential energy 

The potential energy of the pile and the soil is given by 
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The variations                are functions of  ( )   ( )       ( ) and are independent. 

To obtain the pile governing equation, from folloing equation (4.4) all terms associated with 

    
  

  
  will be collected. Furthermore, the terms that are related to             will be 

collected to get the governing equation of the soil.  
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Soil displacement 

To form the soil governing equation, all terms that are associated with    over domain                   

       must be summed and the sum equalize to zero. 
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By simplifying Equation 4.5 we get   
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where                          for homogenous soil are represented as follows: 
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For multilayer soil the summation of                         will be considered.   

represents the number of layers and   is the last layer number. 
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Equation 4.9 below is a simplified version of Equation 4.6 using integration by parts of the 

terms that comprise  (
   

  
). The governing equation can then be obtained by dividing the 

resulting equation by (    ). 
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In order to derive the governing equation for soil, terms related to    in the circumferential  

directional must be collected.  
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Then Equation 4.10 is simplified as  
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Dividing Equation 4.11 by (    ) gives 
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    for homogenous and non-homogenous soil respectively is denoted as  
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The boundary conditions for the soil are  
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the governing equations of soil can then be rewritten as  
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where  
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These equationshave been solved in this study using MATLAB.. 

Pile displacement  

In a similar manner the governing equation of piles installed in nonlinear soil can be obtained 

by collecting terms that are associated with    and  (
  

  
) for (     ) from the potential 

energy (Equation 4.4), then equating them to zero.  
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The governing equation becomes 
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where   denotes the layer number from the surface level pile length 
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and where   represents the layer number from pile length to infinity. 

In addition for Equation 4.19 
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The fourth order differential Equation 4.19 can be solved using a central finite difference 

scheme (see Section 5.8)). Equation 4.20 becomes  

    (
                         

   
)   (

          

  
)                         (    ) 

where   denotes the     node in   direction, and     is the distance between two nodes. At 

each point in the soil domain,         have been calculated (see Figure 4.2).  

ΔӨ Pile

Δr

Δz

(a)

(b)  

Figure 4.2: Discretization of the soil   

The pile deflection equation can be solved when the soil parameters           are known 

however these parameters depend on the unknown dimensionless soil functions,         , 

which can be estimated by calculating                              . The soil deformation is 

calculated in radial and circumference directions, then calculated in the depth direction. To 

obtain the soil displacement the initial numbers of these values, 

                              must be assumed. Then they are inserted into Equations 4.9 

and 4.12, from which the soil parameters    and   are obtained as a result of the pile 

displacement. New values of                               can then be inserted into 

Equations 4.9 and 4.12 to evaluate          , which are then inserted into Equation 4.19 to 

obtain displacement  , so an iteration technique is needed to the condition (
         

    
)  

     . Figure 4.3 shows the flow chart of the solution procedure 

(a) Plan 

(b) Elevation 
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Figure 4.3: Flow chart for the iterative scheme to predict pile displacement 
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4.2 Alternative stiffness function 

In the previous section, the energy based solution was derived assuming that the soil stiffness 

is a function of the strain only. However, as shown by Richart et al. (1970), the shear 

modulus should depend on the effective stress. The variation of stiffness with stress and 

strain is modelled by the constitutive relationship of Atkinson and Sallfors(1991) and 

Atkinson, (2000) as follows: 

    (
  

   

)

 

                                                                                                                                  (    ) 

where G0 is given by: 
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where    is the reference pressure, equal to      ,             are constants obtained 

experimentlly, where       ,       ,      and         for normal consolidation. 

   denotes the effective mean stress which is equal to    
(   

     
     

 )

 
, 

   
      

        
  being the principal effective  stresses 

4.3 Comparison with the finite element method 

3D finite element analysis is discussed in this part of the thesis (using ABAQUS 6.10 

software) to predict the response of a pile subjected to lateral load. The soil is assumed to be 

uniform and the size of the mesh here needs to ensure that all displacement fields are 

contained within the mesh boundary. The mesh radius is equal to 15 D and 20 D depth, where 

D is pile diameter. 3649 quadratic hexahedral elements and 354 quadratic wedge elements 

have been used (see Figure 4.4). The pile geometry is 1m radius and 20 m length, the pile 

elastic modulus             and  the initial soil stiffness                
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Figure 4.4: Finite element mesh 

Figure 4.5 shows that the mean stress has little effect on the lateral response of piles. 

Therefore its effect can be ignored for practical purposes.  

Figure 4.6 shows that predictions of the energy-based method for lateral displacements in 

piles are in excellent agreement with the finite element analysis. 

 

15D 

20D 
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Figure 4.5: Response of the pile subjected to lateral load 

 

Figure 4.6: Deformation of the pile head due to lateral load 
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4.4 Comparison with field data  

4.4.1 Phillips and Lehane (1998) 

The analytical solution has also been validated against field data from a pile tests at 

greenfield sites near Dublin city centre, as reported by Phillips and Lehane (1998). In this 

case history, two steel piles were driven into stiff glacial till. A series of lateral loads were 

applied to the free top of the piles. The stiff glacial till contained 0.2 m of granular fill over 

1.2 m of brown boulder clay, lying on black boulder clay (see Figure 4.7), n is a constant 

obtained experimentlly equal to -0.5, and each layer was divided into a number of sub-layers 

so that degradation of the moduli could be calculated in an accurate way. The average 

undrained shear strength for the brown boulder clay was 100 kPa while for the black boulder 

clay layer was between 350kPa and 600 kPa. Here the average undrained shear stress was 

used. The shear modulus for each layer was calculated following the empirical formula 

suggested by Atkinson (2000). For stiff clay, the initial stiffness of the soil can be related to 

the undrained shear strength as  
   

   
       (see Atkinson, 2000), where    is the initial 

Young’s  modulus and      . 

The two steel piles were H-piles (               ) and the pile length was 5 m. The 

distance between the two piles (A & B) was 2 m. Three static load tests were performed and 

the initial two loads were denoted as LT1 and LT2, while the ultimate load was applied in the 

third test, denoted as LT3 (more than 220kN). The deformation here is  supposed  to  be 

controlled by the average soil stiffness.  Figure 4.8 shows the observed displacement of the 

pile head plotted against applied load compared with the prediction obtained using the 

analytical solution detailed in Section 4.1. This figure demonstrates that the analytical 

solution gives consistent results compared with field data. For pile displacement less than 30 

mm, the analytical solution slightly overestimates the lateral load but by less than 20%. 
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Figure 4.7: Stratigraphy of the site 

 

Figure 4.8: Load versus pile head displacement comparison with Phillips and Lehan 

(1998) 
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4.5 Comparison with centrifuge tests 

4.5.1 Ilyas et al. (2004) tests 

The analytical solution was also compared with centrifuge tests carried out by Ilyas et al. 

(2004). The centrifuge test was for piles embedded in kaolin clay, where the pile cross 

section was square. This area was modified to a circlular cross section area.  

The pile was hollow, square and made from aluminium. A series of tests were applied to 

different pile cross sections. The experiment was conducted at 70 g, with a pile width of 0.84 

m and 14.7 m in the prototype. The flexural rigidity      was equal to         , the soil 

stiffness of soil derived from triaxial test carried out by Atkinson (2000). The shear strength 

of soil (normal consolidation soil) can be obtained from relationship stated by Wood (1990) 

  
  

 ⁄      , where    is shear strength of soil and   
  is vertical effective stress. Once    

is known we can calculate Young modulus from relation carried out by Atkinson (2000) for 

soft soil 
   

   
⁄      , and shear modulus of calculated from       , the initial shear 

modulus of soil for first layer as              , for second layer is             , for 

third layer              , and              .  

A series of tests for a single pile and a group of piles were carried out. The response of a 

single laterally loaded pile for experiment and analytical analysis was validated. These 

comparisons demonstrate clearly that the analytical solution can be used as a useful 

approximation for the piles performance. The slight discrepancies between the predicted 

performace and the  measured beformance could be attributed to the approximation in 

modelling the stress-strain response (see Figure 4.9). 
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Figure 4.9: The pile-soil deformation comparison with centrifuge tests 

4.5.2 Khemakhem et al. (2010) tests 

Khemakhem et al. (2010) carried out a centrifuge test, where the pile was manufactured to 

simulate at 50g a prototype steel pile with a diameter of 0.9 m and length of 16 m. The 

thickness of the pile was 1 mm and the bending stiffness of the pile was                 . 

The experiment was designed for variable lateral loading in order to estimate the pile head 

displacement. Figure 4.10 indicates that at a very small load (0-60 kN) the displacement 

increases linearly. However, at load   60 kN there is a significant change in slope as the 

load-displacement curve is slightly higher in the analytical solution based on the energy 

method  than the result from test 1 of Kemakem et al. (2010) as shown in Figure 4.10. The 

analytical solution shows a softer response compared with the experimental data particularly 

at the initial stage of loading. These results indicate that more appropriate functions to 

describe the stress-strain response might be needed.  
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Figure 4.10: Response of laterally loaded piles comparison with Khemakhem et al. 

(2010) 

 

4.6 Comparison with published numerical analysis 

4.6.1 Allotey and El Naggar (2008) 

A numerical analysis of lateral cyclic nonlinear soil-pile response was carried out by Allotey 

and El Naggar (2008) using a beam on nonlinear Winkler foundation model (BNWF dynamic 

model), where the model was compression-dominant, used to model the pile-soil interaction. 

This model has been produced to predict the response of pile for four main parts: the 

backbone curve, the standard reload curve, the general unload curve and the direct reload 

curve. The advantage of using the BNWF model is its ability to account for cyclic soil 

degradation and reduced radiation damping due to increased soil nonlinearity. Allotey and El 

Naggar (2008) simulated a reinforced concrete pile of length 12 m and diameter 600 mm 

embedded in uniform stiff clay. The undrained shear strength was 50 kPa. Six tests with 

different assumptions were undertaken. Case C is considered here, which assumed full 
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gap between the pile and the soil. Figure 4.11 shows the load-deflection response from the 

numerical analysis and compares it to the analytical solution. The displacement is 

overestimated by 10% at loads ranging from 0 to 70kN, but overall, there is a good agreement 

between the backbone curve of Allotey and El Naggar (2008) and the proposed analytical 

solution.  

 

Figure 4.11: Load-displacement response: comparison with allotey and El Naggar 

(2008)  

 

4.7  Modelling the pile subjected to lateral cyclic load 

To predict the response of soil due to cyclic loading, an empirical model for undrained soil 

can be used which is based on Masing’s rules (Masing, 1926) and Pyke (1975) and can be 

sumarrised as: 

 (a) the shear modulus on each loading reversal assumes a value equal to initial 

tangent modulus of the intial loading (back-boned) curve. (b) the shape of the 
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strain is exceeded. (d) the current unloading or reloading curve intersects the curve 

described by a previous unloading or reloading curve (Puzrin et al., 1995) 

The stress follows the previous unloading or reloading curve. The stiffness of the soil during 

unloading-reloading can be expressed as 

   (
   

 
)
 

                                                                                                                                   (    ) 

where     is accumulated of deviatoric strain relative to the previous stress reversal state 

    √
 

 
          where         

      and    
  is the strain tensor at the reversal point. 

The reversal point for undrained soil can be estimated by the change in 

accumulateddeviatoric strain because the volumetric strain is taken to be zero in the case of 

undrained soil. The soil stiffness when         is taken  to be constant. 

4.7.1 Comparison with field data 

Phillips and Lehane (1998) reported three cyclic loading tests (unloading-reloading) 

performed on a pile. More details about soil properties and pile geometry are mentioned in 

Section 4.4.1. The load here was increased regularly by 10 kN each time. The maximum 

loads for LT1, LT2 and LT3 were 91 kN, 156 kN and 215 kN, respectively. The analytical 

solution has been used to make a comparison with the field data. The cyclic load-

displacement is shown in Figure 4.12. This figure demonstrates that the energy-based method 

can be used to estimate the pile behaviour in this situation as well.  
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Figure 4.12: Cyclic lateral load versus pile horizontal displacement 

4.7.2 Comparison with published numerical analysis 

A numerical study carried out by Allotey and El Naggar (2008) predicted the response of a 

pile subjected to cyclic lateral load. The BNWF model was used (more details were given in 

Section 4.6.1). A very good agreement between the numerical analysis and analytical solution 

is shown in Figure 4.13. 
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Figure 4.13: Lateral pile displacement resulting from numerical analysis  

4.8 Summary  

 An analytical solution based on an energy method has been developed to predict pile-

soil  displacements, where the soil is assumed to be nonlinear elastic (soil parameters 

vary in radial, tangential and depth directions). 

 Governing equations for pile and soil have been obtained by applying the variational 

principle to the potential energy. The soil stiffness is expressed as a function of 

strain  ( ), and as a function of the stress and the strain  (    ). 

 The analysis in this chapter has considered static and cyclic lateral loads. 

 Comparisons have been made with the finite element method, field data and 

centrifuge tests. 
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5 The response of a pile under axial and combined loads in 

nonlinear soil 

Introduction 

In Chapter 4, the development of an analytical approach based on the energy method was 

illustrated for laterally loaded piles. In this chapter, an energy-based solution is presented for 

axially loaded piles and for piles subjected to combined axial, lateral and moment loading. 

Piles under both static and cyclic loads are considered.  

5.1 Axially loaded pile in  a nonlinear elastic soil  

5 .1.1 Basic assumptions  

As the horizontal and tangential strains are very small in an axially loaded pile, both 

displacements can be neglected (Salgado et al., 2007). For a circular pile there are two 

functions that can be considered,   ( ) and  ( ), where  ( ) is vertical displacements at 

depth   and  ( ) represents dimensionless functions describing the variation of soil 

displacements in the radial direction.  

The vertical displacement at any point of the soil is represented as a function in (   )   

                                                                                                                                                     (    ) 

                                                                                                                                                     (    ) 

  (   )    ( )   ( )                                                                                                                     (    ) 

For the same cross-sectional area of the pile  ( )    when          , while  ( )    

when    , which explains the decay of  ( ) with an increase in the radial direction.   
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Figure 5.1: An axially loaded pile in a homogeneous nonlinear elastic medium  

5.1.2 Potential energy 

The vertical load acting on the top of the pile leads to the vertical displacement of the pile-

soil system, which results in potential energy in the pile and the surrounding elastic medium. 

The total potential energy of the pile and the soil is a summation of internal potential energy 

and external potential energy (Basu et al., 2008), which is given as 

  
 

 
    ∫ (

  

  
)
  

 

   
 

 
∫       

 

  

   
 

 
∫       

 

 

                                         (   ) 

where    denotes the elastic Young modulus of the pile,    denotes the cross-section area of 

the pile,   represents the vertical displacement, and         are stress and strain components 

respectively. 

The first term of the equation represents pile  potential pile energy, the second and third terms 

are potential energy from the surrounding soil and the soil below the pile respectively, and    

is the vertical load. By inserting the nonlinear stress-strain relationships into Equation  5.2, 

the potential energy equation becomes 

Homogeneous and anisotropic soil 

Pile 
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The variational principle has been used to calculate          , where           are 

potential and external energies respectively (Vallabhan and Mustafa, 1996; Lee and Xiao, 

1999). As a result, the governing equations of the pile-soil system are obtained by minimizing 

the potential energy of soil and pile. 

The expression of potential energy contains different functions, such as  ( )   ( )  (
  ( )

  
) 

and (
  ( )

  
)  so by minimizing the potential energy we get: 

   [ ( )    ( ) (
  

  
)]  [ ( )  ]                                                                          (   ) 

A, B and C are terms associated with variations      (
  

  
) and   , and the variation of 

Equation 5.3 becomes  
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          (   )

                                                                                                                               (   )  

The governing equation of the pile is obtained for       by collecting terms associated 

with     ,  
  

  
   and its derivative,    and  

  

  
  . The governing equation is obtained as 

follows: 

 
   

   
  

  

  
                                                                                                                         (   ) 
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where 

    ∫  [(    )   ]
 

  

                                                                                                        (    ) 

         ∫  [(    )   ]
 

  

                                                                                          (    ) 

     ∫     (
  

  
)
  

  

                                                                                                            (    ) 

For this study, the tip of a pile is assumed to be clamped, which means that the displacement 

and the curvature are equal to zero at the base of the pile. The boundary conditions are 

obtained by collecting    and  
  

  
 at the head of the pile (   )   

 
  

  
                                                                                                                                            (   ) 

where 

          ∫   [   (    )]
 

  

                                                                                   (   ) 

The displacement at the tip of the pile    . 

                                                                                                                                                      (    ) 

Similar to the solution of pile governing equation in Chapetr 4, the second order differential 

Equation 5.6 can be solved using cental finite difference scheme (see appendix). 
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5.2 Response of the pile subject to vertical load 

5.2.1 Soil displacement 

Collecting the terms of       for        , the governing equation of soil is 

  
   

   
   

  

  
                                                                                                                  (    ) 

where 

   
∫      
 

 

∫  
 

 

                                                                                                                            (     ) 

   
 ∫ (    ) (

  
  
)
 

 

 

∫     
 

 

                                                                                                           (     ) 

This governing equation for the soil has been solved numerically using the finite difference 

method (MATLAB 7.12). Similar to the calculation of the pile displacement in Chapter 4, the 

pile displacement is solved using the central finite element technique.  

5.3 Iterative solution scheme  

The pile deflection equation can be solved when the soil parameters     and   are known; 

however, these parameters depend on the unknown dimensionless soil function  , which can 

be estimated by calculating           .  

Soil displacement is obtained when the initial numbers of these values,           , are 

inserted into Equation 5.11, from which the soil parameters     and   are obtained as a 

result of the pile displacement. New values of            (Equations 5.12a and 5.12b) are 

determined and then inserted into Equation 5.11 to evaluate         , so an iteration 
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technique is needed to obtain the condition (
         

    
)       . Figure 5.2 shows the flow 

chart of the solution procedure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Flow chart for the iterative scheme to predict the reponse of pile under axial 

load  
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5.4 Comparison with field data 

Two case histories were used to validate the results of the analytical solutions, both from the 

city of Dublin. Farrell et al. (1998) tested piles at Trinity College Dublin (TCD), which is 

located between River Liffey and River Dodder. This area was also investigated by Long and 

Menkiti (2007), and Gavin et al. (2008), who tested two compression piles and a tension pile 

about 2 km south of Dublin city centre. The geology of the area was investigated by Long 

and Menkiti (2007), who classified the layers into four categories: upper brown, upper black, 

lower brown, and black boulder clay, these lying on a limestone bed.  

An undrained triaxial compression test was conducted in order to determine the undrained 

shear strength of the black boulder clay, which was 450kPa. Moreover, Phillips and Lehane 

(1998), and Long and Menkiti (2007), determined that the average undrained strength for  

upper brown boulder clay (UBrBC) was 100kPa, and between 350kPa and 600kPa for upper 

black boulder clay (UBkBC). For this analysis, an average undrained strength of 450kPa was 

adopted. 

As mentioned in this study, Lame’s modulus and shear modulus vary in nonlinear soil and 

pile responses calculated by assuming the soil as homogenous. Long and Menkiti (2007) 

reported           for the first layer and           for the second layer. The 

degradations of soil stiffness for upper brown and upper black boulder clay are shown in 

Figures 5.3 and 5.4. The initial soil stiffness used in the calculation was taken from Long’s 

study, and was also calculated using the power law relation, Equation (4.2).  

   (  )
 
                                                                                                                                        (    ) 

where    is a constant value,    donates deviatoric strain, and   represents a constant. 

Following Osman et al. (2007),        fits the undrained data well. 
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Figure 5.3: Variation of soil stiffness with strains for upper brown boulder clay 

 

Figure 5.4: Variation of soil stiffness with strains for upper black boulder clay 
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5.4.1 Farrell et al. (1998) 

Site location  

Many investigations into Dublin boulder clay (DBC) have been reported. Much of the data 

has been obtained from the Dublin Port Tunnel (DPT) project and shaft WA2 sites, which 

cover approximately 10-12 square kilometres.  

Croke Park

Trinity Collage Dublin

 

Figure 5.5: Location sites in Dublin (Long & Menkiti, 2007) 

Field test 

Fieldwork was also carried out by Farrell et al. (1995) at TCD. A steel driven pile 0.273 m in 

diameter and 7.5 m in length, a close end tubular pile, was embedded in the boulder clay. The 

thickness of the cross-section was 1 mm (0.001m) (see Figure 5.6).  



Chapter 5: The response of the pile under axial and combined loads in 

nonlinear soil 

 

115 
 

2.5 m 2-3m

4-12m

Water table

LBrBC

Pile

UBrBC

UBkBC

 

Figure 5.6: Soil profile at TCD in Dublin 

A series of axial loads were applied to the pile in order to obtain a pile-soil deformation. The 

initial undrained shear strength    in the first layer was        , and         in the second 

and third layers (Long & Menkiti, 2007). The results were then compared with analytical 

solutions. Figure 5.7 shows axial load versus observed and predicted pile head deflection.  

This figure shows that the energy-based method prediction fits well with the field 

measurements.  

 

Figure 5.7: Response of the head of the axially loaded pile 
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Farrell et al. (1998) also reported results from unload-reload applied on the head of the pile. 

The displacement increased linearly from 0-100 kN, then there was a significant increase of 

pile displacement at loads greater than 100kN. The results were validated with deformations 

resulting from the analytical solution based on the energy method, where the corresponds of 

displacement were measured from the previous load reversal point. Figure 5.8 shows an 

unload-reload cycle compared with the analytical solution using Masing’s rule (1926). 

Although, there are discrepancies between the measured and predicted response, the energy 

based method appears to provide quick initial estimates of pile reponse. Therefore, it could 

provides engineers with a useful tool for initial design of piles. 

 

Figure 5.8: Cycle axial load 

5.4.2 Gavin et al. (2008) piles test  

Site location  

Three piles were installed at the site located 2 km south of Dublin city centre (see Figure 5.9). 

The geology of Dublin has been described in the previous Section (5.4.1), and Figure 5.10 

shows the geological cross section with installed piles.  
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The ground level of the soil is +4 m0D. The thickness of these layers varies in Dublin and the 

surrounding area. Undrained shear strength was estimated for a number of samples. Other 

soil properties were also measured, such as water content, liquid and plastic limits (see Figure 

5.11). 

 

Figure 5.9: Location of pile test in DBC (Gavin et al., 2008) 
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Figure  5.10: Geological cross section (Gavin et al., 2008) 

 

Figure 5.11: Water content and plastic limits at the site (Gavin et al., 2008) 
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Field test  

Non-displacement pile tests were carried out by Gavin et al. (2008) to estimate the 

displacement of three piles subjected to monotonic and cyclic load at a site near Dublin city 

centre. The three pile diameters were 762 mm. Pile TP1 was 12 m in length and TP2 was 

13.8 m in length and they were loaded in compression, while TP3 was loaded in tension. 

Only TP1 and TP2 are considered in this study.  

Figure 5.12 shows the vertical displacement versus the axial force (TP1 and TP2). The load-

displacement curve of the TP2 test results from the  energy based method again fit well with 

the field data  

 

Figure 5.12: Response of the head of the axially loaded pile 

5.4.3 Comparison with field data and the energy based method for linear 

elastic soil 

Russo (2004) reported a test on a steel pile of 0.1 m diameter and 19 m length, installed in 
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thickness of the first layer was 12 m and the Young’s modulus was 50 MPa. The second layer 

thickness was 9m and the Young’s modulus was 117 MPa. The Poisson's ratio for both layers 

was 0.3 and the elastic modulus of the pile was 27 GPa (see Figure 5.13). A series of loads 

were applied to the top of the pile.  

Figure 5.14 compares the energy-based method with the field data. A comparison with the 

linear elastic solution of Salgado et al. (2007) is also shown in this figure. In the energy-based 

method, the soil stiffness is modelled as a function of strain using the power law of Equation 

5.13. This figure illustrates clearly the superiority of the new energy-based method to the 

elastic methods which are widely used in practice. The predictions of the simple energy-

based method fit well with the field data.  

 

 

 

 

 

                                    

 

 

Figure 5.13: Cross-section area of the site 
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Figure 5.14: Response of the pile due to axial load 

5.4.4 McCabe and Lehane pile test (2006) 

McCabe and Lehane (2006) investigated a single pile and group of piles embedded in a site 

located 10 km north east of Belfast city centre in Northern Ireland and 2 km south east of 

Hollywood village. Figures 5.15 and 5.17 show a location map and the classification of the 

geology. Triaxial and odometer tests were made to estimate soil stiffness, water content, and 

undrained shear stress, which varied with depth (Figure 5.16). 
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Figure 5.15: Site location map (from McCabe and Lehane (2006) & Lehan et al.(2003)) 

 

Figure 5.16: Undrained shear stress(from McCabe and Lehane (2006) & Lehan et 

al.(2003)) 
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Figure 5.17: Cross section area of the pile 

Three piles were tested as a group and a single pile acted by an axial static load. The cross 

section of the pile was square with a width of 250 mm and a pile length of 6 m. A square pile 

was treated as a circular pile of an equivalent area. These piles were embedded in multilayer 

soil. The initial soil stiffness was calculated using undrained shear strength (Lehane et al., 

2003). Figure 5.18 the energy-based method overpredict the vertical displacements at high 

loads  (i.e. 60- 70kN). This is might be due to the simple nonlinear elastic power law which is 

used to model the soil. This model does not account for plasticity at small strain . 
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Figure 5.18: Pile head displacement 

5.5  Comparison with finite element analysis 

A nonlinear finite element analysis was also carried out using ABAQUS software to predict 

the deformation of an axially loaded pile. Tresca yield criterion with strain hardening 

function was adopted in the analysis, and in this study the pile was assumed to be perfectly 

rough, so the soil and the pile are taken to be fully connected. The size of the finite element 

model is 15D and 20D depth, the pile diameter is 0.5 m and 20 m length, and the mesh 

comprises 16108 hexahedral elements and 72807 nodes (Figure 5.19). The initial soil 

stiffness is   13 MPa. The hardening function was chosen so that the stress-strain curve in a 

simulated triaxial compression test is governed by Equation 2.62 where q is the deviatoric 

stress and     is deviatoric strain,           are constants. The values of the constants were 

taken as      , and      . The same pile geometry and soil properties were inserted 

into the analytical solution. Figure 5.20 shows the good fit between the finite element 

analysis and the energy-based method for the case of a pile under pure vertical load. A good 

fit was also observed for the case of purely horizontal load (Figure 5.22). 
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Figure 5.19: Finite element mesh 

 

Figure 5.20: Pile deflection resulting from numerical analysis 
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5.6  The response of a pile subjected to combined load 

To predict the deformation of pile embedded in nonlinear elastic soil subjected to combined 

loads, an axial load is assumed to be applied first, then a lateral load is applied. This is typical 

in the installation of offshore foundations (e.g. foundations of wind turbines), which are 

initially subjected to self-weight before exposure to wind, wave and other lateral loads.  

5.6.1 Comparison with finite element analysis 

Finite element modelling was carried out to simulate the response of piles subjected first to 

vertical load followed by a horizontal load. The same finite element model used in Section 

5.5 was used with the pile is subjected first to a vertical load of 80 kN, then followed by a 

lateral load (50kN). Figure 5.21 shows the comparison between the finite element analysis 

and the energy based method for pile under lateral. As can be seen  in Figure 5.22, the 

energy-based method is capable of replicating the pile response under combined vertical and 

horizontal loads.  

 

Figure 5.21: Lateral pile displacement resulting from numerical analysis and energy 

method  
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Figure 5.22: Pile displacement due to combined load 

5.6.2 Comparison with field data 

In order to further validate the energy method for combined loads, comparison is now made 

with field data. Phillips and Lehane (2004) carried out field trials on a pile in a site located on 

the outskirts of Belfast city. A reinforced concrete pile, 10 m length and 350 mm square, was 

cast in multilayered soil. Very stiff fill was located 1 m below ground level, a layer of sand 

sleech with a thickness of 1 m was located under the first layer, 6.5m of silt sleech lay over 

the sand, and the average undrained shear stress was 20 kPa. Figure 5.23 shows pile 

displacement due to pure lateral loads. This figure also shows a comparison between the field 

data reported  by Phillips and Lehane and the analytical solution based on the energy method, 

the result shows good agreement with field data.  

Figure 5.24 shows deformation of the pile due to combined loads. The load is applied in two 

steps: axial load is applied firstly followed by a horizontal load. This figure shows the results 

for the second step of loading. In this figure, the prediction of the analytical solution is 

compared with the field data of Phillips and Lehane (2004). At small loads 0-30kN, both the 

proposed solution and field data shows almost the same deformation. However, the analytical 
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solution slightly overestimates the displacements at loads between 25kN-65kN and 

underestimates  the displacement at loads between 65kN-75kN compared  with the energy 

based method. 

 

Figure 5.23: Response of the pile 

 

Figure 5.24: Pile deflection due to combined loads 

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

Lateral displacement (mm)

L
a
te

ra
l 

fo
rc

e
 (

k
N

)

 

 

Field data (Phillips and Lehan., 2004)

Energy based method

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Pile head displacement (mm)

L
a
te

ra
l 

fo
rc

e
 a

ft
e
r 

a
x
ia

l 
lo

a
d

 (
k
N

)

 

 

Field data (Phillips and Lehane., 2004)

Energy based method



Chapter 5: The response of the pile under axial and combined loads in 

nonlinear soil 

 

129 
 

5.7  Summary  

 The energy-based method has been extended to axially loaded piles and to piles under 

combined loading.  

 

 Comparison with field data and finite element analysis demonstrates the success of 

the proposed energy-based method in predicting pile displacements. 
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5.8 Appendix  

A laterally loaded pile is embedded in homogenous soil. The pile is clamped and the elastic 

parameters ( (   )  (   )) vary in three directions. The governing equation has been 

solved using the finite difference method. To obtain an accurate result C and k will be 

calculated for different depths and the depth will be divided by nodes   in the z direction. The 

total nodes are   the length between nodes (  ). The governing equation will be determined 

for each node,   and   calculate in the middle between two nodes. The central difference 

method has been used to combine 2 boundary conditions equations in one line in the matrix. 

In this thesis, the soil is homogeneous but because of soil nonlinearity the soil will be divided 

into  layers. The stiffness and the displacement for each layer will be determined. In other 

words if the thickness of the layer is 1m, the displacement will be calculated for each 1 cm 

along the pile. 

 

This method has been used for pile loaded laterally and axially, so we assume the 

displacement as (u) . 

The governing equation  



Chapter 5: The response of the pile under axial and combined loads in 

nonlinear soil 

 

131 
 

    
   

   
  

   

   
                                                                                                              (    ) 

The boundary conditions at     and     are  
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Both boundary conditions were used to find out            then inserting them into 

Governing equation at     . 

Equation 5.15 becomes 

    [
         

   
]                                                                                                            (    ) 

From equation 5.17 
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Equation 5.16  becomes 
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From equation 5.19  by inserting    We can obtain     
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 6 Similarity Method  

Introduction 

The response of a pile under pure axial load and pure lateral load in elasto-plastic soil has 

been investigated using a similarity method which is based on elasticity theory. This method 

can provide a powerful tool which enables advanced element test data (quantifying soil non-

linearity) to be used to estimate the stiffness and working displacements of a pile under 

combined loading. It yields a calculation method that is far quicker and simpler than 

numerical analysis. The technique is not intended to replace advanced numerical methods but 

to provide a tool which is simple enough to be used in preliminary design calculations, whilst 

capturing the important influence of soil non-linearity. 

A similarity method was first proposed by Atkinson (2000). This method assumes that the 

strain of undrained soil in a triaxial test is related to ground movement, where the decay in 

soil stiffness with strain takes the same shape as the decay in structure stiffness with 

normalized displacement. Atkinson (2000) explains the calculation method that allows non-

linearity to be considered in the design based on elasticity theory; a summarization can be 

found in Figure 6.1.  

Osman et al. (2007) extended the similarity method for circular shallow foundations and 

derived coefficients for circular foundations subjected to vertical, horizontal and moment 

loads. This chapter discusses how the similarity method has been extended to estimate the 

response of a pile under vertical and horizontal loads.  

6.1 The calculation procedure in the similarity approach  

6.1.1 Similarity approach for pile 

A similarity method was used based on the secant stiffness below the foundation at settlement 

 

 
 equal to secant stiffness resulting from the triaxial test compressive strain 

 

 
     , where 

  is displacement,    represents the deviatoric strain, and   is the coefficient of displacement 
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that must be obtained. These coefficients of displacement are different according to load 

direction. Figure 6.1 summarizes the similarity approach. 
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Figure 6.1: Illustration of Atkinson’s method (Osman et al., 2007) 

 

6.1.2 Similarity method for laterally loaded pile 

Evaluating the load-displacement response of a laterally loaded pile using the similarity 

approach: 

 The response is obtained using the following steps: 

1. The soil stress-strain data is obtained by performing a triaxial test on a representative 

soil sample.   

2. The soil secant stiffness        is calculated from  the  strain-stress curve: 

     
 

   
 

       where q is the deviator stress and    is deviatoric strain. 

3. The soil secant stiffness is plotted against the deviatoric strain  
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4. The soil stiffness-strain curve can be converted directly into stiffness-displacement 

curve by scaling the x-axis (the strain axis) using a linear scaling factor     as 

follows: 

 

 
      

where   represents lateral displacement and  D is pile diameter. 

5. Once the displacement is known together with the corresponding secant stiffness, the 

lateral load    can then be calculated from the conventional linear elastic solution for 

laterally loaded piles:   

          (    (    
 )

    
) 

             where      product of               and    is Young’s modulus of pile 

From Gsec-εq response and using scaling 

factor, G can be found once limiting 

settlement u/D is known   u/D= αh εq

Calculate Gsec

Gsec=q / 3εq

Calculate G* using Gsec from 

G*=Gsec(1+3ν/4)

Caculate the  lateral load using 

Q=u G*r0/(0.25 (Ep/G*) -1/7)

 

Figure 6.2: Flow chart for predicting the lateral load 

From         response and using scaling 

factor, G can be found once limiting lateral 

displacement 
 

 
 is known  

 

 
      

           

Calculate        

 

  
     

(    (
  

  )
    

)

 

Calculate    then the lateral load 

using 



Chapter 6: Similarity method 

 

141 
 

6.2 Determination of the scaling parameters 

In order to estimate the scaling parameters, a series of finite element analyses for axially and 

laterally loaded piles were carried out using ABAQUS 6.10 software (FEM). The Tresca 

model with strain hardening parameters was used to replicate soil nonlinearity. Figure 6.3 

shows a typical response of a triaxial test using finite element software.  

 

Figure 6.3: Response of triaxial test  

6.2.1 Finite element mesh 

Three dimensional finite element meshes were used to analyze piles with different 

geometries. Figure 6.4 shows the meshes with piles with different diameters D and lengths L. 

The dimensions, mesh depth, mesh size and element details are shown in Table 6.1. 

Displacement boundary conditions prevented the base of the mesh from moving. It was fixed 

in three directions in the flat diametrical plan on the front face and the circumference plane of 

the mesh prevented movement in z and x directions. The mesh was composed of second order 

reduced integration hexahedral elements. Smaller elements were used near the pile where the 

changes of stresses and strains were significant.  
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Table 6.1: Mesh size and element details 

L/r0 Mesh diameter Mesh depth Number of 

elements 

Number of 

nodes 

Type of elements 

10        10 D     10 D 3649 

354 

   17575 Quadratic hexahedral  

Quadratic wedges 

20        30 D     30 D 16108 72807 Quadratic hexahedral  

30        60 D     60 D 5503 25625 Quadratic hexahedral  

40        40 D     40 D 9110 41210 Quadratic hexahedral  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Geometries of the mesh for different pile geometries 

Figures 6.5, 6.6 and 6.7 show the lateral displacement versus load obtained from finite 

element analysis for piles with length 10 m, 30 m and 40 m, radius 1 m, and curves calculated 
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using the similarity method with the stress–strain shown in Figure 6.3. These curves were 

obtained using different values for the scaling factor   . It can be seen that a scaling factor of 

     fits better to the finite element results, as can be seen in Figure 6.8. 

 

Figure 6.5: Response of laterally loaded pile with 40 m and load-displacement from 

triaxial test 

 

Figure 6.6: Response of laterally loaded pile with 30 m and load-displacement from 

triaxial test 
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Figure 6.7: Response of laterally loaded pile with 10 m and load-displacement from 

triaxial test 

 

Figure 6.8: Comparison with FE analysis for laterally loaded pile 
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6.2.2 Similarity method for axially loaded pile 

The method is performed using similar steps as laterally loaded piles. A scaling factor    is 

used to relate the deviatoric strain to the vertical displacement: 

 

 
      

and the vertical load    is calculated using: 

         ((
 

      
)  

   

   
) 

where   represents vertical displacement,   geometric coefficient,     (
  

  
) and    is the 

magic radius that can be calculated from             . The scaling factor which gives 

the best fit is        

The responses of piles resulting from finite element and load-displacement derived from 

triaxial tests are shown in Figures 6.10, 6.11, 6.12 and 6.13 for piles with lengths of 10 m, 20 

m, 30 m and 40 m, and a radius of 1 m, respectively. Regarding similarity analyses for 

different   , Figure 6.9 shows a flow chart that explains the similarity analyses. Figures 6.10, 

6.11, 6.12 and 6.13 show the axial displacement versus load obtained from finite element 

analysis for piles with length 10 m, 20m, 30 m and 40 m, and a radius of 1 m. Curves 

calculated using the similarity method with the stress–strain response are shown in Figure 

6.3. These curves were obtained using different values for the scaling factor   . It can be 

seen that a scaling factor of        fits better with to the finite element results, as can be 

seen in Figure 6.14. 
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From Gsec-εq response and using scaling 

factor, G can be obtained once settlement 

u/D is known u/D=αv εq  

Gsec=q/3εq

Calculate the vertical load

Pt=Gsec u ((4/η(1-v))+2πL/ ζ r0)

 

Figure 6.9: Flowchart of axially loaded pile  

 

Figure 6.10: Response of axially loaded pile with length 10 m and load-displacement 

from triaxial test 
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Figure 6.11: Response of axially loaded pile with length 20 m and load-displacement 

from triaxial test 

 

Figure 6.12: Response of axially loaded pile with length 30 m and load-displacement 

from triaxial test 
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Figure 6.13: Response of axially loaded pile with length 40 m and load-displacement 

from triaxial test 

 

Figure 6.14: Comparison with FE analysis for axially loaded pile 
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6.3 Validation with field data 

6.3.1 Comparison with Farrell et al. (1998)  

A similarity method was used for comparison with field data obtained by Farrell et al. (1998), 

where a single steel pile in Dublin was subjected to an axial load. More details about the site 

location and field test can be found in Section 5.4.1. The comparison of field data using the 

similarity method (Figure 6.15) showed a very good agreement between both curves.  

 

Figure 6.15: Deformation of pile and soil  
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Site location  

Analysis using a similarity method was validated with field data obtained by Gavin et al. 
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previous chapter, Section 5.4.2.  
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The load deformation curve has been compared with the similarity analysis. Figure 6.16 

shows the vertical displacement versus the axial force, where for both piles (TP1 and TP2) at 

very small loading the displacement increases linearly. The load-displacement curves for TP1 

and TP2 tests resulting from the similarity method and field data fit very well. 

 

Figure 6.16: Deformation of pile and soil for Gavin et al. (2008) 
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Figure 6.17: Soil stratigraphy at site in Loopy et al. (1995) 

 

Figure 6.18: Deformation of pile and soil for Looby et al. (1995) 
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Figure 6.19: Similarity analysis for different axial loaded pile 

6.4 Validation with centrifuge tests  
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                 .  
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Moreover, a centrifuge test for square piles embedded in kaolin clay was carried out by Ilyas 

et al. (2004), where the pile cross section was square. This area was modified by finding the 

diameter of the pile by square area. The pile was hollow, square and made from aluminium.  

A series of tests of different pile radiuses were reported by Ilyas et al. (2004). Their 

experiment was conducted at 70 g, with a pile width of 0.84 m and 14.7 m in the prototype. 

The flexural rigidity      was equal to         . A series of tests for a single pile and 

group of piles were carried out. The response of a single laterally loaded pile for both 

experiments was validated with a simulation method derived from Stallebrass and Taylor 

(1997). These comparisons demonstrate clearly that a similarity approach can predict the 

performance of piles with reasonable accuracy, as can be seen in Figure 6.22. 

 

 

Figure 6.20: Triaxial test of kaolin clay (Stallebrass & Taylor, 1997) 
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Figure 6.21: Similarity analysis of different laterally loaded pile 

 

Figure 6.22: Similarity analysis of different laterally loaded pile 
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6.5 Comparison of different methods for predicting pile 

displacement 

This section shows the validation of field data and centrifuge tests with similarity and energy 

methods. For a pile under axial load, Figure 6.23 shows that field data validated with an 

analytical solution and similarity method (using Equation 6.5), and load-displacement curves 

for two piles loaded axially resulting from two methods were close to field data obtained by 

Gavin et al. (2008) (all data which used to predict vertical displacement for pile under axial 

load using the energy method and similarity approach can be found in Section 5.4.2). 

Moreover, unlike the load-displacement curve estimated from a similarity method, the 

response of a pile under axial load calculated using an analytical solution was very close to 

the field data obtained by Farrell et al. (1998) (see Figure 6.24). For a pile loaded laterally, 

Figures 6.25 and 6.26 show that there is a very good agreement between centrifuge tests 

carried out by Khemekhem et al. (2010) and Ilyas et al. (2004) and the analytical solution. 

These results show that the analytical solution is more accurate while the calculations in the 

similarity method are much simpler. 

 

Figure 6.23: Validation similarity method and energy based method with Gavin et al. 

(2008) 
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Figure 6.24: Validation similarity method and energy based method with Farrell et al. 

(1998) 

 

Figure 6.25: Validation with similarity method and energy based method (Khemakhem 

et al., 2010) 
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Figure 6.26: Validation with similarity method and energy based method (Ilyas et al., 

2004) 

6.6 Summary  

 A similarity method has been developed for piles in elasto-plastic soil (using Tresca 

constitutive model), and has been used to derive a load-displacement curve from a 

triaxial test, where shear strain was related to pile settlement. The strain scaling 

factors which were derived from the finite element analysis of the pile (with different 

geometries and loads direction) were used to predict pile displacement (for axially 

loaded pile       
 

 
 , and for lateral loaded pile    

 

 
 ).  

 The deformation of a pile under different loads resulting from the similarity method 

was compared with three groups of field data and two centrifuge tests. The results 

show good agreement between previous work and the proposed solution.  

 A comparison between the energy based method (derived in Chapters 4 and 5), the 

similarity approach and previous work has been considered in this chapter. Unlike the 

similarity method, the displacement-load curve resulting from the energy based 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

500

Lateral displacement (m)

L
a
te

ra
l 

d
is

p
la

c
e
m

e
n

t 
(k

N
)

 

 

Centrifuge testa (Ilyas et al, 2004)

Energy based method

Similarity method



Chapter 6: Similarity method 

 

158 
 

method has been found to fit well with previous work. However, the similarity 

method is far quicker and simpler than the numerical analysis. 
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7 Analysis of piles in elasto-plastic Soils 

Introduction 

Offshore structure vertical piles are regularly used as foundation elements. However, unlike 

shallow foundations, their bearing capacity under combined loads has not been studied 

extensively, so solutions for bearing capacity under combined loads will be presented. It is 

quite common for engineers to use plasticity theory to estimate collapse, while the 

calculations for displacements are based on elasticity. In previous chapters an extensive 

analysis were made to predict the static and dynamic response of piles embedded in linear 

elastic soil and nonlinear elastic soil. However, a new analytical solution for calculating 

lateral displacements of piles embedded in an elasto-plastic material will also be presented in 

this chapter.   

7.1 Ultimate loads of piles 

Piles subjected to pure vertical or horizontal loads have been studied and reported extensively 

in the literature. However, there is a need to evaluate the effect of combined loading (Achmus 

& Abdel-Rahman, 2007).  

3D finite element analyses have been carried out to determine the shape of the failure 

envelope for piles under undrained combined (vertical and horizontal) loading. This chapter 

describes how a Tresca yield criterion with perfect plasticity was adopted. The undrained 

strength here was assumed to vary linearly with depth.  

Displacement-controlled analysis has been conducted to enable observation of post failure 

condition and hence the accurate identification of the failure envelope. An analysis based on 

the side probe loading paths (Gourvenec & Randolph, 2003; Martin & Houlsby, 2001; Bell, 

1991) has been used to identify the shape of the failure, where each loading path travels 

around the failure envelope until it reaches a point where normally the failure envelope 

matches the prescribed displacement ratio. In order to identify the failure envelope in V-H 

plane (V-H plane means vertical load-horizontal load, where probe test based on first apply 
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axial load then apply lateral load), vertical displacement is applied first to bring the pile to 

vertical bearing failure first. Then, translation displacement can be applied until the ultimate 

lateral load is reached.  The translation displacement is applied in order to obtain the 

complete failure envelope.  

7.1.1 Finite element model: geometry and soil conditions  

The soil is assumed to be an isotropic material with elasticity and perfect plasticity. The clay 

is taken to be undrained and is modelled using the Tresca material model. The pile is 

assumed to be fully-bonded to the surrounding soil and the head of the pile is levelled with 

the ground surface. The undrained shear strength may vary in a linear relationship with depth 

(Figure 7.1) according to the following equation:          , where    and     represent 

the varying undrained shear strength with depth and on the surface, respectively,   is the 

strength gradient with z,           , and   is the degree of heterogeneity of the soil. The 

Poisson's ratio of the soil, v, is taken to be equal to 0.49, and the ratios between the Young's 

modulus of the pile and the soil      =1000. 
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Figure 7.1: Soil and pile conditions 

The finite elements analysis has been carried out using ABAQUS 6.10 software. Two finite 

element meshes for a homogenous soil profile and for a non-uniform profile (the undrained 
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strength varies with depth) have been used in the analysis, as shown in Figure 7.2. Second 

order reduced integration elements have been used in the analysis. In the case of a pile with 

homogenous soil, the mesh consists of 3649 quadratic hexahedral and 354 quadratic wedge 

elements, and for a pile with different soil properties the mesh consists of 5358 quadratic 

hexahedral elements.  

 

 

Figure 7.2: Finite element mesh for pile embedded in homogeneous soil  

The mesh radius is taken to be equal to 15 D and 20 D depth to ensure that the entire 

displacement field is contained within the mesh boundary. The mesh under and around the 

piles is dense due to significant displacement changes in these regions. 

7.1.2 Results and discussion 

The load path rises due to external loads and displacements. It moves from elastic stiffness to 

plasticity yielding as a load path approaches the failure envelope. The failure envelope can be 

reached by applying different values of loads, and the failure envelope shape and size is 

computed using probe test.  
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The results for vertical and horizontal loading V-H at moment loading      are shown in 

Figures 7.3 and 7.4. These results are presented in normalized form with respect to the cross-

sectional area of the pile and undrained strength.  

 

Figure 7.3: Rigid pile in homogeneous soil      
⁄    

 

Figure 7.4: Rigid pile in heterogeneous soil      
⁄    
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7.2 Displacement of laterally loaded pile in elasto-plastic soil 

In Chapters 3, 4 and 5 an extensive analysis to predict the deformation of laterally and axially 

loaded pile embedded in different constitutive soils, such as linear elastic soil and nonlinear 

elastic soil, has been carried out using an analytical solution based on an energy method. 

Here, a demonstration on how this solution can be extended to elasto-plastic soil is given. 

7.2.1 Problem definition 

Plane strain conditions are assumed and a plane with strain in   direction is assumed to be 

equal to zero. This analysis (2D) is used in the case of an axisymmetric pile and while the 

load is non- axisymmetric (Figure 7.5).  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Laterally loaded pile in elasto-plastic soil 
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7.2.2 Basic equations 

The displacement components in cylindrical coordinates represented by Fourier series are 

expressed as 

  ∑  
( )
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where           represent radial, vertical and circumferential incremental displacements, 

and   
( ) ,   

( ) ,   
( ) and   

( )  are the     and     order cosine and     order sine 

harmonic coefficients of variables U and V. The increments of total strain can be found from 

the first derivative of displacements as 
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where     denotes a strain component and   is a total strain. 

An elastic strain can be calculated as 

                                                                                                                                                 (   ) 

   is a plastic strain which is defined as  
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Equation 7.2 represents the total strain and the elastic strain is calculated as 

{  }  { }  {  }                                                                                                                                (   ) 

Then the stress can be calculated by multiplying the elastic strain vector with the stiffness 

matrix 
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where [ ] is the stiffness matrix, and           are elastic moduli which are assumed to be 

constant for linear soil.  

The total potential energy can be expressed as 

                                                                                                                                                (   ) 
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where F denotes the free energy and D is dissipated energy, which can be rewritten as 

  { } {  }̇  { } {  } ̇                                                                                                                 (   ) 

where   is the dissipative stress. 

Or, if it is written in term of total strain 

  { } { }̇  {   } {  } ̇                                                                                                          (   ) 

Since there is no kinematic hardening, the true stresses and the dissipative stresses are equal: 

{   }                                                                                                                                        (    ) 

then Equation 7.8 becomes 

  { } { }                                                                                                                                     (    ) 

and the free energy can be defined as 
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For equilibrium the difference between external and internal energy must be zero 
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Similar to the procedure used in previous chapters, the energy equation can be differentiated 

to obtain the governing equation 
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The governing equations for deformation can be obtained by collecting the coefficients of 
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7.2.3 Solution procedure 

To solve the above governing equations, an iterative procedure is required. At first, the right 

hand of Equations 7.15 and 7.16, which represent the plasticity terms, can be taken to be zero 

(i.e. we start by assuming elastic response). Then the components (         ) and the 

displacements are calculated, and the total strains are calculated using Equation 7.2. The 

stresses are then calculated from the total strain. If the stresses falls outside the yield surface, 

corrections to the stresses are needed using Von-Mises material, the yield surface is given by 

                                                                                                                                              (    ) 

where   denotes the second stress invariant and    is yield stress. The plastic strain can be 

estimated as 

    ̇
  

  
                                                                                                                                          (    ) 

Using a radial return algorithm, the Lagrangian multiplier  can be evaluated as  
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  ̅̅̅̅  
    

  
                                                                                                                                      (    ) 

   is the plastic potential function, and   ̅̅̅̅  is equal to the deviatoric plastic strain equivalent. 

From Equation 7.3 we can obtain the elastic strain, and then the stress in Equation 7.5 will be 

calculated. Once the plastic strain is calculated then the harmonic coefficients are calculated 

using the fitted method (see the Appendix) and substituted in Equations 7.17 and 7.18 to 

calculate   
   and   

  .  

The plastic terms in Equations 7.15 and 7.16 are then updated and the equations are solved 

for new displacements. These calculations need to be iterated until the difference between the 

new and old displacements became within a certain tolerance. A flow chart is shown in 

Figure 7.6. 
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Figure 7.6: Solution flow chart 
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7.2.4 Results 

An analytical solution of a pile under lateral load has been used to estimate the displacement; 

the pile had a radius of 1 m and was embedded in elasto-plastic soil with soil Young modulus 

           soil stiffness   
  

 (   )
, elastic modulus   

     

(    )
 and Poisson ratio 

       . Figure 7.7 shows the pile load-displacement curve obtained from the analytical 

solution fitting well with the finite element results. 

 

Figure 7.7: The deflection of laterally loaded pile in elasto-plastic 
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7.3 Summary  

 3D finite element analyses have been carried out to determine the shape of the failure 

envelope of piles under undrained loading.  

 A Tresca yield criterion was adopted in the constitutive model to predict the 

undrained capacity of the piles.  

 2D energy method analysis has been developed to predict the response of a pile in 

linear elasto-plastic soil. The results were compared with the finite element analysis. 
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7.4 Appendix 

The fitted method here is suitable to determine the harmonic coefficients, by assuming   is 

known values, and   represents the unknown harmonic coefficients. Fourier series harmonic 

coefficients can be estimated by considering variable   which is a function of    (   ( )). 

Then   can be given by   

                                                    

                                                                                                                            (    ) 

Equation 7.22 can be rewritten in matrix form as 

{
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             (    ) 

Equation 7.23 can be rewritten as  

  [ ]                                                                                                                                             (    ) 

where L denotes the order of Fourier series,   is the vector of known values,    represents the 

vector of unknown harmonic coefficients and    is the harmonic transformation matrix. 

Then we can estimate the harmonic coefficients from the following equations 
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Figure 7.8 shows the location of   and    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8: Location of value   and   
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8 Conclusions and Further Work 

 

In this thesis, two methods (an energy based method and a similarity method) have been 

developed to predict pile deformation under different directions for loads (axial, lateral and 

combined loads), considering different constitutive models for soil. These two new analytical 

methods have been validated with finite element analysis, centrifuge tests and field data. The 

finite element analysis to estimate the ultimate load of a pile was used in this thesis, where 

analysis considers different variations of shear strength with depth and different pile 

geometries, also the response of pile embedded in elasto-plastic soil and subjected to lateral 

load was calculated using energy method. 

8.1 Achievements 

8.1.1 Development of an analytical solution to estimate pile deflection under 

static and dynamic lateral loads 

A simple and quick energy-based analytical method has been developed. This new analytical 

method represents an extension to the Vlasov method for predicting the displacement of piles 

under different loading and soil conditions, without the need to conduct complex numerical 

simulations. A new solution for piles embedded in linear elastic soil, whose stiffness varies 

with depth, has been developed. This analytical solution can be used in engineering practice 

providing that appropriate soil stiffness is selected. A new solution for obtaining the dynamic 

response of laterally loaded piles has also been developed.  

Comparison with field data has shown that the presented solution can predict the resonant 

frequency of piles with reasonable accuracy.  

8.1.2 Deformation of piles in nonlinear soil under different types of loads 

The energy based method has been extended to analyse piles in nonlinear soil, where the 

variations of soil stiffness with strain and stress are taken into account. The results have 
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shown there is good agreement between the proposed analytical method and finite element 

analyses, field data and centrifuge tests.  

Solutions have been developed for different pile loading conditions. These analytical 

solutions have been developed for monotonically loaded piles as well as piles subjected to 

loading-reloading cycles. Masing’s rule has been used to model soil behaviour during 

unloading-reloading cycles. A comparison with field data demonstrates the success of the 

proposed energy-based method. 

8.1.3 Prediction of pile deformation using similarity method 

In addition to the energy-based method, a simpler method has been developed to predict the 

displacements of piles. This method is based on the similarity between the stress-strain 

response of a representative element of soil and the load-displacement curve of the 

foundation.  

A scaling factor has been used to obtain the structural response. A series of nonlinear finite 

element analyses have been carried out to obtain the scaling factor, which depends on the 

type of loading, not the geometry of the problem or the boundary conditions. Once the 

scaling factors are known, then the nonlinear response of the pile is obtained using a simple 

hand calculation.  

The similarity has been validated with field data obtained by Farrell et al. (1998), where the 

maximum pile head displacement derived from the hand calculation similarity approach was 

within 15% of the field data 

In addition to the methods for calculating displacements of piles, the failure envelope for 

piles under combined loads has also been investigated. The failure envelope was obtained 

using 3D finite element (FE) analyses assuming the Tresca yield criterion. Different 

variations of shear strength with depth were investigated. The failure envelope has been 

obtained using displacement-controlled analysis and probe-test-type analysis.  
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8.2 Further work 

In this thesis, an analytical solution for pile under dynamic lateral load is developed assuming 

the soil is linear elastic material. Maheshwari et al. (2005) show that the deformation of piles 

obtained using linear-elasticity may not be valid for strong excitations. Therefore, the 

proposed solution need be extended to account for soil nonlinearity. The nonlinear solution 

for piles under static lateral loads, which is detailed in Chapter 4, can be extended to the case 

of dynamic loads. Furthermore, the solution for axially loaded pile in nonlinear soil which is 

in Chapter 5 can also be extended to dynamic loading.   

The response of piles embedded in linear elasto-plastic soil subjected to lateral load was 

calculated using plane strain to simplify the analysis. This solution will not be capable of 

replicating pile response near the ground surface. These solutions need to be extended to 3D. 

In this thesis we only focus on single pile deflection under different external loads, the 

deformation of  a group of piles due to lateral or axial loads is larger than the displacement in  

single isolated piles  (Ilyas et al. (2004); McCabe and Lehane (2006); Basu et al. (2008)). 

Therefore, this work needs to extend to determine the response of group of piles subjected to 

different loads.  

The response of a group of piles under external loads influences the interaction between 

individual piles. If piles are placed close to each other the load causes interaction between 

piles displacement. This interaction leads to increase displacement on the group of piles. For 

a laterally loaded pile there will be an increase in lateral stresses in the soil near the piles.  

These zones of high stresses lead to soil yield zones around each pile may lead to an overlap. 

As a result; it increases the deflection (McVay et al. (1996); Brown et al. (1987)). The 

response of a group of piles can be calculated by using the energy method (we can use the 

same procedure in chapters 4 and 5). 

Finally, all of the analyses used in this thesis have been related to the response of piles in 

undrained soil or fully drained soil. In both cases, the analysis is based on total stresses and 

pore water pressure was not taken into account. These analyses can be extended to take into 

account the consolidation effect and the development and the dissipation of excess-pore water 

pressure. Solutions for excess pore water pressure dissipation around a laterally loaded pile 
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can be obtained by solving Biot’s equation of consolidation analytically. The accumulation of 

excess pore water pressure during cyclic load needs to be taken into account as it plays an 

important role in the stability and the performance of piles. 
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MATLAB and Mathematica codes 

MATLAB and Mathematica codes were used in this thesis are included on CD, and each file 

contains programs which used to solve the problem in each chapter. 
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