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Abstract

Mobile intelligent networks can play a key role in many different areas from emergency
response, surveillance and security, and battlefield operations to smart homes and factories
and environmental monitoring. Accurate mapping of the obstacles/objectsin the environ-
ment is key to the robust operation of unmanned autonomous networks asit is an integral
part of navigation and path planning. In the robotics community, the problem of mapping
has been widely explored. However, in the existing mapping approaches, only areas that
can be directly sensed by the sensors are mapped. In several scenarios, it may be necessary
to have see-through capabilities and map occluded objects without direct sensing. For in-
stance, the robots may need to build an understanding of the objects inside aroom before
entering it. Having see-through capabilities can also reduce the overall mapping time and

energy in any networked robotic operation.

In this dissertation, we consider a mobile robotic network that is tasked with building

a map of the objects/obstacles in an environment including the occluded ones. Since we

Vi



are interested in see-through capabilities, in our framework the robots cooperate to build
the map based on a small number of wireless channel measurements. This allows the
robots to efficiently map occluded areas of the workspace. By using the recent results in
the area of compressive sensing, we exploit the sparse representation of the map in space,
wavelet or spatial variations, in order to build it with minimal sensing. We discuss three
mapping strategies based on frequency sampling, coordinated space and random space
measurements and show the underlying tradeoffs of the possible sampling, sparsity and
reconstruction techniques. For instance, we shed light on the optimum number of angular
motion directions of the robots, as well as the choice of the angles, to distribute a given
number of wireless measurements. We establish that the total number of available channel
measurements should be distributed over a small number of angles, that is bigger than
or equal to the number of jump (discontinuity) angles of the structure, with a preference

given to the angles of jJumps.

We then propose an integration of our wireless-based mapping framework with exist-
ing mapping techniques in order to map more complicated structures. More specifically,
we propose an integrated framework where laser measurements are used to map the vis-
ible parts of the environment (the parts that can be sensed directly by the laser scanners)
using occupancy grid mapping approaches. The parts that can not properly be mapped
are then identified and mapped based on wireless channel measurements. We show how
to integrate occupancy grid mapping with two reconstruction methods based on wireless
measurements and compressive sensing: Bayesian compressive sensing (BCS) and total
variation (TV) minimization. We compare the performance of these two integrated ap-
proaches and shed light on the underlying tradeoffs. Finally, we propose an adaptive path
planning strategy that utilizes the current estimate of uncertainty to collect wireless mea-
surements that are more informative for obstacle mapping. Overall, our integrated frame-
work enables mapping occluded structures that can not be mapped with laser scanner data

alone or a small number of wireless measurements.

Vii



Most importantly, we show how to design an experimental robotic platform in order to
implement our approach. We then show the performance of our framework in efficiently
mapping a number of real obstacles including blocked ones. Our experimental results

confirm the feasibility of the proposed framework for mapping structures that include oc-
cluded parts.
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Chapter 1

| ntroduction

Over the past few years, considerable progress has been made in the area of mobile sen-
sor and robotic networks [9-18]. Mobile robotic networks can play a key role in areas
such as emergency response, surveillance and security, and battlefield operations. In order
for a such a network to be autonomous and robust, accurate mapping of obstacles/objects
is needed. The obstacle/object map can be a 2D (or 3D) grid map of the environment,
where we have zeros at |ocations where there is no obstacle and non-zero values at obsta-
cle locations. In several scenarios, it may be necessary to have see-through capabilities
and map the objects without direct sensing. For instance, the robots may need to build an
understanding of the objects inside a room, before entering it. See-through mapping fur-
thermore allows the robots to map the obstacles for navigation purposes, without having
to sense them directly. Thiscan be of particular interest in several scenarios such as search
and rescue, surveillance or threat detection. It also saves the overall obstacle mapping
time and energy in any cooperative robotic application, by eliminating the need for direct

sensing of all the objects.

In this dissertation, we consider cooperative mapping of obstacles (including occluded

ones) in robotic networks based on a small number of wireless transmissions. In the wire-



Chapter 1. Introduction

less communication literature, it is well-established that the shadowing component of a
wireless transmission contains implicit information on the objects located on the path be-
tween the transmitter and receiver [1]. Thus, wireless measurements between pairs of
robots can possibly be utilized for obstacle mapping, with the advantage that it can al-
low the robots to map the areas that are not directly sensed (mapping of occluded parts).
This has opened a new and different venue for the mapping of obstacles as shown by

Mostofi [6-8] and is the approach we shall pursue in thisthesis.

In general, extracting the obstacle information, without making a prohibitive number of
wireless transmissions, is considerably challenging due to al the propagation phenomena.
In order to address this and enable the mapping based on a small number of wireless
transmissions, we utilize the new theories of compressive sensing [3,4]. The Nyquist-
Shannon sampling theorem [19] revolutionized several different fields by showing that,
under certain conditions, it is indeed possible to reconstruct a uniformly sampled signal
perfectly. The new theory of compressive sensing (also known by other terms such as
compressed sampling, compressive sensing or sparse sensing) shows that under certain
conditions, it is possible to reconstruct a signal from a considerably incomplete set of
observations, i.e. with anumber of measurements much less than predicted by the Nyquist-
Shannon theorem [3,4]. This opens new and fundamentally different possibilitiesin terms
of information gathering and processing in mobile networks, as we shall utilize in this

thesis.

We next summarize the related work in the literature and continue with a summary of

our contributions.



Chapter 1. Introduction

1.1 Prior Work

1.1.1 Obstacle Mappingin RoboticsLiterature

In the robotics community, the problem of mapping has been widely explored [20-23].
However, in the current approaches using sonar/laser sensors, only areas that are directly
sensed by the sensors are mapped. Depending on whether the positions and orientations
of the robots are known, the mapping problem can be tackled using different techniques.
In mapping with known poses, occupancy grid mapping approaches [23, 24] have been
proposed. The objective there is to build a grid map of the obstacles by sequentially
updating the posterior of having an obstacle in each cell of agrid, based sensory (sonar or

laser) measurements.

In mapping with unknown poses, the Simultaneous L ocalization and Mapping (SLAM)
approaches are used to incrementally build a map of the environment, while estimating
the location of the robot within the map [25-30]. The SLAM problem is among the most
challenging problemsin autonomousrobotics. Several techniquesbased on using extended
Kaman filters (EKF) [31] and Rao-Blackwell particle filters [32—35] have been proposed
by the researchers to solve this problem. Both occupancy grid maps and landmark maps
(aset of known landmarksin the environment) can be considered in SLAM, depending on
the algorithm used and type of the environment [25]. Approaches based on generating an
occupancy map address reducing the uncertainty of direct sensing [36, 37]. One common
limitation of all these approaches is that only areas that can be directly sensed by the

sensors are mapped.

Another set of approaches are based on the Next Best View (NBV) problem [38—42].
In NBV approaches, the aim is to move to the positions “good” for sensing by guiding
the vehicles to the perceived next safest area (area with the most visibility) based on the
current map [38]. However, similar to the approaches above, areas that are not sensed

directly are not mapped in NVB.
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1.1.2 Through-the-wall Radar for Detection

Though-the wall radar (TWR) is mostly focused on the detection of a single occluded
object, for instance a person or a weapon which is occluded by walls. The most com-
mon approaches for TWR are multilateration [43-45], and synthetic aperture radar (SAR)
[46,47]. In multilateration, range measurements from multiple sensors are correlated to
specific points in the image. Spatial diversity is used to have a large set of Transmit-
ter/Receiver combinations. SAR is an extension to the multilateration concept where a
complex matched filter isused. A key tool for successful TWR isthe use of diversity [48].
Possible ways of attaining diversity include: frequency, sensor position, angle, waveform
choice, and multiple-input multiple-output (MIMO). A popular approach for TWR is the

use of amodel-based reconstructionin which apriori structureinformationisutilized [48].

Ultra-wideband (UWB) has also been shown to yield good detection properties for
TWR. For instance, in [49] the authors use an UWB MIMO phased array radar system to
perform real-time detection of (possibly occluded) moving objects. To detect movement,
the radar system subtracts previously-acquired raw data sets from real-time readings and
then displays the image of the difference. In other words, this approach requires coherent
change detection, i.e. previous measurements of the scene of interest without the target, so
the changes can be detected. Furthermore, the approach is focused on detection of single
targets, not on mapping the layout of an environment. In [50], ahandheld deviceisused to
detect motion of individuals. However, it similarly requires prior knowledge of building
models to develop a ground truth to compare the predicted and the real measurements.
Along the same line, in [51], authors use a transmitter that is buried underground and

several fixed receivers on the surface to detect underground tunnels/facilities using radar.

In summary, a common characteristic of TWR is that it either requires a priori mea-
surements when the target is not present or some knowledge on the dielectric properties of

thefirst layer of occluders (or transparent first layer).
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1.1.3 Wireless-based Obstacle M apping

In [6-8], Mostofi proposed aframework for see-through mapping based on using very few
wireless channel measurements and by exploiting the sparse representation of the map in
another domain such as wavelet or spatial variations. In thisthesis, we follow this line of
work. On arelated topic, there are also a number of concurrent recent papers on detecting
an object using fixed sensors. In [52,53], for instance, the authors build a network of 28
fixed sensors in order to detect presence of a person. The framework is based on making
wireless measurements between pairs of sensors. Then the goal isto roughly track aperson
as opposed to building a map of obstacles. Thereisaneed for prior learning in the area of
interest aswell. As such, [52,53] is more on detecting an obstruction to a wireless signal

as opposed to obstacle mapping with minimal measurements.

We next summarize the contributions of thisthess.

1.2 Contributionsof this Dissertation

This dissertation is on the development of a framework for building obstacle maps with
see-through capabilities. We discuss three mapping strategies based on frequency sam-
pling, coordinated space and random space measurements. Then, we use compressive
sensing in order to exploit the sparse representation of the map in space, wavelet or spatial
variations, so that the map can be built with a small number of wireless measurements.
We furthermore show the underlying tradeoffs of the possible sampling, sparsity and re-
construction techniques using both simulation and experimental results. We thoroughly
compare the performance of our random and coordinated sampling strategies. Along this
line, we discuss the optimum number of angular motion directions of the robots, as well
as the choice of the angles, in order to distribute a given number of wireless measure-

ments. We establish that the total number of available channel measurements should be
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distributed along a small number of angles, that is bigger than or equal to the number of

jump angles of the structure, with a preference given to the angles of jumps.

We then propose a novel integrated occupancy grid and wireless-based mapping ap-
proach for mapping with see-through capabilities. Our proposed approach uses occupancy
grid mapping (with known poses or with unknown poses using SLAM) to map the parts of
the environment that can be sensed directly by the laser scanners of the robots. The parts of
the map that can not be seen by the laser scanners are then mapped based on the wireless
channel measurements and by using our proposed wireless-based mapping framework.
We rigorously show how to integrate occupancy grid mapping with two different wireless-
based compressive map reconstruction methods. our previous TV-based approach and a
probabilistic Bayesian Compressive Sensing-based approach. More specifically, we pro-
pose an integrated probabilistic approach based on utilizing Bayesian Compressive Sens-
ing (BCS) for extracting the map of the occluded parts from wireless measurements. We
then compare the performance of our BCS-based integrated framework with that of our
TV-based integration and shed light on the underlying tradeoffs. For instance, our results
indicate that the integrated BCS-based method is more appropriate for mapping based on
random wireless measurements while TV-based integrated approach performs better with

coordinated wirel ess measurements.

Another contribution of thisthesisis to propose adaptive sample collection strategies
that can enable pairs of robots to efficiently choose the positions from which to take
the next wireless measurements such that the mapping performance is improved. More
specifically, we propose two strategies: ad-hoc and variance-based. The variance-based
approach, for instance, utilizes the current estimated variance of our integrated BCS ap-
proach to identify the map cellswith highest uncertainty and plans the motion of the robots

to cover those cells next.

Finally, we also show how to design an experimental robotic platform in order to im-

plement the proposed mapping approaches. We then show the performance of our frame-
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work in efficiently mapping anumber of real obstacles (including blocked ones) using our
robotic testbed. We discuss hardware requirements, such as the use of directional adaptive
antennas, in order to mitigate the effects of multipath fading. Our experimental results
demonstrate the feasibility and good performance of the proposed framework for mapping
real structures that have occluded parts.

1.3 Dissertation Overview

This dissertation is organized as follows: Chapter 2 serves as an overview of the char-
acterization of the underlying multi-scale dynamics of a wireless link, the knowledge of
which would be useful for the subsequent chapters. We further describe our experimen-
tal setup for automating the channel measurement process, using our robots. In Chapter
3 we give a brief summary of the area of compressive sampling, as relevant to our pro-
posed framework and explain our wireless-based mapping approach. In Chapter 4, we
discuss different possibilities for compressive sampling and reconstruction and show their
underlying tradeoffs. We furthermore show how to properly design a robotic platform to
implement our proposed mapping framework. In that chapter, we then validate our re-
sults through simulations and experimental data gathered with our robots. In Chapter 5,
we propose an integrated framework for mapping with see-through capabilities using both
laser and wireless channel measurements. In thisframework, laser measurements are used
to map the visible parts of the environment while the rest of the map (e.g. the occluded
parts) are then mapped based on our wirel ess-based mapping framework. \We also propose
an adaptive exploration strategy which enables a pair of robots to efficiently collect wire-
less measurements that are more informative for see-through mapping. We conclude in
Chapter 6.



Chapter 2

Wireless Channel Modeling and

Experimental Validation

This chapter serves as an overview of the characterization of the underlying multi-scale
dynamics of awirelesslink. By utilizing the knowledge available in the wireless commu-
nication literature, we summarize a probabilistic framework for the characterization of the
three dynamics of awireless channel. We furthermore describe our experimental setup for
automating the channel measurement process, using our robots. In this chapter, we use
this experimental setup to confirm the probabilistic channel characterization framework,
by making an extensive number of channel measurements. The three wireless channel
dynamics are then used in the next chapters as the basis for the sensing model of our

wireless-based compressive mapping framework.

In arealistic communication settings, such as an urban area or an indoor environment,
Line-Of-Sight (LOS) communication between a wireless transmitter and a receiver may
not be possible due to the existence of several objects that can attenuate,reflect, diffract or
block the transmitted signal. Thereceived signal power typically experiences considerable

variations and can change drastically in even a small distance. As an example, consider
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Fig. 1, where channel measurementsin our building are shown. It can be seen that channel
can change drastically even within small distanceintervals. Thus, communication between
mobile units can degrade due to factors such as shadowing, fading or distance-dependent

path loss [1], which can impact the overall performance of the network considerably.
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Figure 2.1: Sample channel measurementsin (left) 1D and (right) 2D.

Exact mathematical characterization of a wireless channel is extremely challenging,
dueto itstime-varying and unpredictable nature. One can possibly solve Maxwell’s equa-
tions with proper boundary conditions that reflect all the physical constraints of the en-
vironment. However, such calculation is difficult and requires the knowledge of several
geometric and dielectric properties of the environment, which is not easily available. In
wireless communication systems, it is therefore common to model the channel proba
bilistically, with the goal of capturing its underlying dynamics. The utilized probabilistic
models are the results of analyzing several empirical data over the years. In general, a
communication channel between two mobile robotic platforms can be modeled as a multi-
scale dynamical system with three major dynamics. small-scale fading (multipath fading),
shadowing (shadow fading) and path loss. These three dynamics are key to the realistic
characterization of the performance of networked robotic systems. We start this chapter
by providing a description of our robotic testbed, which was used to automate the channel

measurement process.
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2.1 An Experimental Robotic Platform for Channel M ea-

surement Collection

The analyses of thisdissertation are all accompanied by experimental validations. Assuch,
in this section we briefly describe our experimental testbed. This can help the readers un-
derstand the conditions under which our measurements are collected so they can reproduce

the results.

Traditionally, there has been considerable interest in measurement and characteriza-
tion of the received communication signal strength in the context of cellular systems
[54-58]. Automating the measurement process, however, has been difficult in the past due
to the lack of an automated mobile system. For outdoor measurements, vehicle-mounted
transceivers have been used in some experiments [57, 58]. Collecting indoor measure-
ments, however, is more chalenging. For instance, in [54], the authors use a cart to move
thereceiver and transmitter units, resulting in apositioning accuracy of about 10 cm, which
may not suffice depending on the required analysis. Using rails with motorized position-
ers is another common approach for moving the transmitter/receiver [59]. The advent of
robotic networks facilitates the design of an automated measurement system considerably
and allowsfor collecting measurementswith flexibility, reconfigurability and a high spatial
resolution. As such, we have developed a robotic testbed to automate our channel mea-
surement process. The testbed consists of two Pioneer 3-AT (P3-AT) mobile robots from
MobileRobots Inc. [60], each equipped with an onboard PC, an IEEE 802.11g (WLAN)
card and various sensors used for localization and obstacle avoidance. Each robot acts as
amobile transceiver and can record its received signal strength as it moves. The resulting
dataset isthen used in this chapter for the characterization of wireless channelsfor mobile
robotic networks and most importantly, for wireless-based obstacle mapping in the later

chapters of this dissertation.

Next, we explain the hardware and software components of our testbed in more details,

10
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including our software-based controller and navigation infrastructure.

2.1.1 Hardware Architecture

Our setup consists of two P3-AT mobile robots [60]. Pioneer 3-AT is a high performance
robotic platform from MobileRobots, which is a popular and reliable team performer for
indoor, outdoor and rough-terrain projects. We equipped each robot with a removable
electromechanical fixture to possibly hold a directional antenna. Fig. 2.2 (right) shows
one of our robots in its original form, while the left figure shows the robot with a direc-
tional antenna mounted on it. A block diagram of the hardware architecture of one of the
robots is shown in Fig. 2.3. The remote PC is a supervising unit, in charge of planning
the motion of the robots and collecting the signal strength data from the robots. Each
P3-AT base comes with an onboard PC104 and a Renesas SH7144-based microcontroller
platform to control the motors, actuators and sensors. MobileRobots provides a C/C++
application programming interface (API) library called ARIA [60] to program and control
the robot viaits onboard microcontroller platform. We aso developed a servo mechanism
to intelligently rotate the directional antenna of the robot. The servo mechanism is con-
trolled by the onboard PC of the robot through a microcontroller-based external hardware.
We make use of Hitec HS-7955TG high performance coreless digital servo motors with
180° rotation in our servo mechanism. As for the directional antennas, we use a GD24-15
2.4GHz parabolic grid antenna from Laird Technologies [61]. This model has a 15 dBi
gain with 21° horizontal and 17° vertical beamwidth and is suitable for IEEE 802.11b/g
applications (Fig. 2.2-1¢ft).

Robot Localization

Accurate localization of the robotsis crucia to proper channel measurement and analysis.

For instance, characterizing the spatial correlation of different channel dynamics requires

11
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Figure 2.2: (left) Pioneer 3-AT robot equipped with a servo mechanism and a directional
antenna. (right) Pioneer 3-AT robot equipped with an omnidirectional antenna.

accurate position information. In our testbed, each robot uses both the onboard gyroscope
and the wheel encoders for localization. Since the localization error is additive in time,
the calibration unit resets the gyroscope and the wheel encoders periodically, after an ad-
justable number of steps. Currently, our localization error islessthan 2.5 cm for every 1 m
of a straight line movement. If additional accuracy is needed over longer distances, more

advanced localization strategies, from the robotic literature, can also be utilized. Alterna-
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Figure 2.3: A block diagram of the hardware architecture of one of the robots.
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tively, a long route can be divided into shorter sub-routes and the robot can be manually

repositioned at the beginning of each sub-route to provide a better overall accuracy.

2.1.2 Software Architecture

A high-level schematic of the software architecture is shown in Fig. 2.4. The software-
based control infrastructure consists of two application layers running on different ma-
chines: The robot-side application runs on the onboard PC of the robot whereas the
client-side application runs on the remote PC. The robot-side application is developed as
a TCP/IP server and is in charge of reading the sensory data, sending it to the client-side
application, receiving the high-level control of motion/antenna angle commands from the
client-side application and executing the commands. The client-side application, which
runsasa TCP/IP client for robot-side application, isin charge of supervising the entire op-
eration, planning the motion, generating the high-level control commandsto be sent to the
robots and collecting the signal strength data from the robots for future processing. The
microcontroller of the servo mechanism is aso programmed to decode the rotation com-
mands and send the corresponding Pulse Width Modulation (PWM) signals to the servo
motor that rotates the antenna. The operating system is Microsoft Windows XP and all
the programs are developed in C++ using M S Visual Studio 2008. The user can run both
robots simultaneously, calibrate and test the servo mechanism and run several automatic
data gathering scenarios. Among all the possible scenarios, the following two are used

extensively for the analysis presented in this dissertation:

e Scenario 1. The transmitter is a wireless 802.11g router with an omnidirectional
antennaat aheight of 1.5 m. Thereceiver isarobot with an omnidirectional antenna
at the height of 27 cm (see Fig. 2.2 (right)).

e Scenario 2: Both the transmitter and receiver are robots with different combinations

of directional/omnidirectional TX/RX antennas. Thedirectional antennaisas shown

13
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in Fig. 2.2 (left).
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Figure 2.4: The overall software architecture of the robotic platform.

2.2 Characterization of the Spatial Variations of a Wire-

less Channdl [1, 2]

In this section, our goal isto summarize the existing results on the probabilistic character-
ization of wireless channels, from the wireless communication literature, and to confirm
this characterization with our robots. Aswe have previously mentioned, a communication
channel between two robotic platforms can be modeled as a multi-scale dynamical system
with three mgjor dynamics. small-scale fading (multipath fading), shadowing (shadow
fading) and path loss. These three dynamics are key to the realistic characterization of
the performance of networked robotic systems. We first show an example of these three

dynamics through an experiment with our robotic testbed.

Fig. 2.5 shows the blueprint of the basement of our building where we made several
measurements along more than 70 routes using our experimental setup. In thischapter, un-

lesswe specifically indicate otherwise, the experimental setup consists of a Pioneer P3-AT
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robot (receiver) and afixed wirelessrouter (transmitter), both of which were equipped with
omnidirectional antennas. The transmitter is fixed at the height of 1.5 m and the receiver
isat aheight of 27 cm. The figure a so shows a colormap of our measured received signal
power for the transmitter at location#1. It should, however, be noted that the framework
of this dissertation is also fully applicable for modeling outdoor wireless measurements.
We used indoor measurementsin this chapter since wirelesslink quality istypically worse

inside a building (due to the higher chance of lacking aline of sight communication).
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Figure 2.5: (right) Blueprint of the basement of our building, where channel measurements
are collected — a colormap of the measured received signal power is superimposed on
the map for the transmitter at location#1 (see the pdf file for a color version). (left) A
magnified inset of the blueprint.

As an example, Fig. 2.6 shows the received signal power across route 1, as marked in
Fig. 2.5, for thetransmitter at |ocation#1 and as afunction of the distance to the transmitter.
The three main dynamics of the received signal power are marked on the figure. As can
be seen, the received power can have rapid spatial variations that are referred to as small-
scale fading. By spatially averaging the received signal locally and over distances that
channel can still be considered stationary, a slower dynamic emerges, which is caled

shadowing. Finally, by averaging over the variations of shadowing, a distance-dependent
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trend isseen, which isreferred to as path loss. In this chapter, we provide an understanding
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Figure 2.6: Underlying dynamics of the received signal Power across route 1 of Fig. 2.5
and for the transmitter at location#1. The blue curveisthe measured received power which
exhibits small-scale fading. By averaging locally over small-scale variations, the under-
lying shadowing variations can be seen (gray). The average of the shadowing variations
then follows the distance-dependent path loss curve (dashed line).

2.2.1 Small-Scale Fading (Multipath Fading)

When a wireless transmission occurs, replicas of the transmitted signal will arrive at the
receiver due to phenomena such as reflection and scattering. Thisresultsin the following

baseband equivalent channel at time instant ¢:

=

®)
ch(t) = /fi(t)ejgi(t)’ﬂ”fc%i(t), (2.1)

=1

where N (t) represents the total number of paths that arrive at the receiving robot at time
t, f. isthe carrier frequency, and «;, 7; and ¢; are the attenuation, delay and Doppler
phase shift of the i path respectively. As can be seen from (2.1), different paths can be
added constructively or destructively depending on the phase terms of individual paths.
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As aresult, with a small movement, the phase terms can change drastically, resulting in
the rapid variations of the channel. Such rapid variations are referred to as small-scale
fading (multipath fading) and can be seen in Fig. 2.6. The higher the number of reflectors
and scatterers in the environment, the more severe small-scale variations could be. Next,
we characterize the distribution of |ch(t)| (which easily translates to a distribution for the
received Signal to Noise Ratio (SNR) since it is proportional to |ch(t)|?).

In the wireless communications literature, several efforts have been made in order to
mathematically characterize the behavior of small-scale fading. As can be seen from Fig.
2.6, the small-scale fading curve is non-stationary over large distances as its average is
changing. Therefore, it is common to characterize the behavior of it over small enough
distances where channel can be considered stationary. Then, the behavior of the average
of the small-scale variations is characterized in order to address channel dynamics over
larger distances, as we shall see in the next part. Over small enough distances where
channel (or equivalently the received signal power) can be considered stationary, it can
be mathematically shown that Rayleigh distribution is a good match for the distribution
of |ch(t)| if thereis no Line Of Sight (LOS) path while Rician provides a better match
if an LOS exists. These distributions also match several empirical data. A more general
distribution that was shown to match empirical data is Nakagami distribution [2, 62, 63],
which has the following pdf for z(t) = |ch(?)]:

2mm 2l —mz
_ > l

2
= — — , forz > 0, 2.2
ple) = e PJ ’ (22

where m > 0.5 is the fading parameter, P. = E||ch(t)|*] represent the average power
of the channel (averaged over small-scale fading) and I'(.) is the Gamma function. |f

m = 1, this distribution becomes Rayleigh: p'®(z) = %—ZeXp [%—ﬂ , for 2 > 0, whereas

for m = (;’””n;,*j)f , it is approximately reduced to a Rician distribution with parameter m/:
: 2z(m/ + 1) (m + 1)21 m/(m’ + 1)
p"e(2) . exp |—m 7 ol 22 i (2.3)

for z > 0. Similarly, distributions of the power of the channel (|ch|?), the received power
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and SNR can be derived by a change of variables. Such distributions can be very help-
ful in generating realistic communication links for the purpose of mathematical analysis,

optimization as well as simulation in robotic networks.

We verified the Nakagami distribution using several measurements in our building.
While Rayleigh and Rician distributions are more heavily assumed for the purpose of
analysis involving wireless channels, we found that a general Nakagami distribution is a
better match for most of our gathered data. As an example, consider the measurement
of Fig. 2.6, which is across route 1 of Fig. 2.5 and for the transmitter at location#1. Fig.
2.7 showsthe probability density function (pdf) and cumulative distribution function (cdf)
of three different sections of the small-scale variations across this route. These parts are
chosen such that the data can be considered stationary within each section (since small-
scale analysisisonly relevant to the small enough and thus stationary parts). It can be seen
that the distribution of the gathered data matches power distribution for Nakagami fading
with parameters m = 1.20 and m = 1.30 well. Note that since the distribution of the
power of the received signal, which is proportional to |ch(t)|?, is plotted, the figure does
not show a Nakagami distribution directly. It shows the power distribution of Nakagami
fading, i.e. the distribution of a non-negative variable whose sgquare root has a Nakagami
distribution.

While Nakagami distribution shows a good match for the distribution of small-scale
fading, mathematical analysis of the performance of a robotic network under such adis-
tribution is generally challenging. Alternatively, a simpler but sub-optimum match islog-
normal. In [64], the authors showed that a Gaussian distribution can possibly provide an
acceptable match for the distribution of the small-scale variationsin dB (albeit with some
loss of performance as compared to Nakagami). Fig. 2.8 compares the match of both Nak-
agami and lognormal to the distribution of small-scale fading for two different stationary
sections of the data of Fig. 2.6. As can be seen, Nakagami provides a considerably better

match while lognormal can be acceptable depending on the required accuracy.
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Figure 2.7: The distribution of small-scale fading using three different parts of our gath-
ered measurements. Nakagami distribution shows a very good match — (top figures) paf
and (bottom figures) cadf.
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Figure 2.8: Comparison of Nakagami and lognormal for the distribution of small-scale
fading — (left) pdf and (right) cdf.

2.2.2 Shadow Fading (Shadowing)

Asdiscussed in the previous part, the received wireless signal is non-stationary over large
distances. While small-scale fading characterizes the behavior of the channel over asmall
distance, it does not suffice for characterizing the channel over larger distances. Small-
scalevariations are the result of anumber of pathsarriving at the receiver at approximately
the same time but being added constructively or destructively, depending on their phase
terms, which results in rapid variations. As Fig. 2.9 shows, once we average over small-

scale variations, another dynamic can be observed which changes at a lower rate. Let
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P. = E[|ch(t)|?] represent the average power of the channel (averaged over small-scale
fading), as defined for (2.2). This signal varies over larger distances and is referred to
as shadow fading or shadowing. Shadowing is the result of the transmitted signal being
possibly blocked by a number of obstacles before reaching the receiver. Empirical data
has shown P, to have alognormal distribution (mathematical justification also exists by
using Central Limit Theorem [2]). Let P, g = 10log;o(P.). We have the following for
the distribution of P 45 [2, 63,65, 66]:

- 1 _ (ﬁz,dB_Ql"dB)Q
p(PZ,dB) - \/%UdBe 2UdB 9 (2.4)

where ugg = Ba — 10nlog,o(d) and ogs is the standard deviation of P, g5. Consider
the distance-dependent path loss, ;« = 3/d", where d represents the distance between the
transmitting and receiving robots, n denotes the power fall-off rate and g > 0 isaconstant.
Then, it can be seen from (2.4) that e = 10log,o(11) = Bus — 10nlog,,(d) represents
the average of shadowing variations. Note that average SNR will also have alognormal
distribution.
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Figure 2.9: Illustration of moving average over small-scale variations in order to obtain
shadowing dynamics. An appropriate window length is chosen such that the small-scale
variations can be considered stationary over that length. Then, the value of shadowing
at the center of this window corresponds to the average of all the data points within the
window. Alternatively, the window size can be adaptive.
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Fig. 2.10 shows the pdf and cdf of shadow fading for all the collected datain the base-
ment of our building, as shown in Fig. 2.5, and for the transmitter at location#1. In order
to access the shadowing variations, the gathered data of each route is averaged locally
over small-scale fading, as illustrated in Fig. 2.9. It should be noted that the resulting
shadowing variation is non-stationary as its average changes with distance. The distance-
dependent path loss component for each route can be easily estimated by finding the best
linear fit that relates the log of the received power of the collected data to the log of the
distance traveled (see Fig. 2.6 for an example). We then remove the distance-dependent
average from shadowing variations before characterizing the distribution of the collected
data. Asaresult, the distribution of the resulting gathered data should match a zero-mean
lognormal distribution. It can be seen from Fig. 2.10 that the distribution of the log of
the shadowing variations (after removing the distance-dependent average) matches a zero-
mean normal distribution very well. The three columns correspond to averaging window
sizesof 0.4\, 1\ and 10\ from left to right, where X is the wavelength of operation. The
standard deviations for these matches are ogg = 2.7, ogg = 2.3 and ogg = 1.4, respec-
tively. As can be seen, as the averaging window size increases, the standard deviation of
the best fit becomes smaller. Thisis as expected since by averaging over larger distances,
the resulting signal becomes closer to the underlying overall average (distance-dependent
path loss). For this specific data, the best fit corresponds to the averaging window size of
0.4, with aNormalized Mean Square Error of 2.89 x 107

2.2.3 Distance-dependent Path L oss

It can be seen from (2.4) that the distance-dependent path loss, characterized as Sgg —
10nlogo(d), isthe average of the shadowing variations. This completes the relationship
between the three underlying dynamics: small-scale fading, shadow fading and path loss.
As mentioned earlier, the distance-dependent path |oss component can be found by finding

the best linear fit that relates the log of the received signal power to the log of the distance
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Figure 2.10: (top figures) pdf and (bottom figures) cdf of the log of shadow fading (after
removing the distance-dependent path loss) and the normal distribution match for all the
data gathered in the basement of our building. The three columns show the impact of the
averaging window size on the match: (left column) window size of 0.4\, (center column)
window size of 1.0 and (right column) window size of 10.0\, with A = 0.125 m denoting
the wavelength of the transmitted signal.

traveled. For instance, for the data of Fig. 2.6, path loss component can be characterized
as —17.35 — 301log;,(d). It should be noted that the parameters of path loss curve, such
as exponent n, vary from route to route. They can even vary within aroute if the route is

considerably long.

In current networked robotics literature, it is common to use fixed-radius disc models
to model wireless channels. It isnoteworthy that this over-simplified model only considers
path loss. It furthermore assumes the same path loss parameters everywhere in the envi-
ronment. Therefore, it isonly a very crude representation after considerable averaging is

done.

2.2.4 Channel Spatial Correlation

Thus far we characterized the distribution of a wireless channel at a single position (or

equivalently at a time instant). Another important parameter that characterizes a wireless
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channel is its spatial correlation, i.e. how fast the small-scale and shadow fading com-
ponents are changing spatially. Channel spatial correlation plays a critica role in the
cooperative operation of autonomous agents. For instance, it impacts how well we can
predict channel spatial variations [67—69] and embed the corresponding communication
objectives in a motion-planning function [68, 69].

Spatia correlation of small-scale fading depends on the speed of the robots, frequency
of operation and antenna beamwidth/gain, among several other factors. The least corre-
lation is typically observed when there exists a rich scatterer/reflector environment that
results in a uniform angle of arrival of the paths. In such cases, the power spectrum of
small-scale fading will have a form that is referred to as Jakes spectrum [1] and channel
decorrelates on the order of 0.4\, with \ representing the wavelength (5 cm for 2.4 GHz
WLAN transmission). If thisis not the case, the spatial correlation function of small-scale
fading can be mathematically derived for more general cases [1]. However, a generd
model that can fit several scenarios does not exist. For most scenarios, small-scale fading

decorrelates considerably fast, as compared to the other dynamics.

For shadow fading, there is less mathematical characterization of spatial correlation.
Gudmundson [ 70] characterizes an exponentially-decaying spatial covariance function for
the log of the shadow-fading variations, based on outdoor empirical data, which iswidely
used:

Acov,TDwIB (H‘h - Q2H> = E [(ﬁz,dB,l - MdB,1> (PZ,dB,2 - ,UdB,2>:|

_ g1 —a2ll

= 0'386 Xe , q1,42 € Rz (25)

where Fz,dB,l and RﬁdB,Q are the average power of the channel (averaged over small-scale
fading) at positions ¢; and ¢, respectively, qs 1 and pqs 2 are the corresponding path loss
components, ¢3; is the variance of the log of shadowing as defined in (2.4) and X, is

the decorrelation distance, which is defined as the distance at which the autocovariance
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reaches 1 /e of its maximum value. It has been shown that the decorrelation distanceis on

the order of the size of the blocking objects or clusters of objects[2].

We used our channel measurements and found the exponential to be a good match for
the correlation of shadowing. Figure 2.11 shows the normalized autocovariance function
for the data gathered in route 2 of Fig. 2.5 with the transmitter at location #1. It can be
seen that the real autocovariance function matches the exponential model considerably
well athough thisis an indoor measurement. We see similar matches across other routes
of Fig. 2.5.

1
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Figure 2.11: Exponential match for the normalized autocovariance of thelog of shadowing
variations. It can be seen that exponential provides a good match.

2.3 Impact of Antenna Angle

As seen in the previous sections, small-scale fading can result in the severe fluctuations of
the received signal power, which can degrade the performance of a robotic network con-
siderably. The main contributor to such fluctuationsisthe fact that different multipaths can
be added constructively or destructively depending on their traveled routes. One possible
way to mitigate the impact of multipath fading is to use adaptive directional antennaswith

asmall beamwidth (angle). A smaller beamwidth can limit the number of multipaths that
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reach the receiver, which will reduce the chance of the paths being added out of phase.
This approach, however, would require alignment and adaption of the transmitting and re-
ceiving antennas in order to make sure that they face each other when communicating. As
such, it does not work for non-robotic communication systems, such as cellular systems
or Wireless Local Area Networks (WLAN), where control of angle is simply not possi-
ble. In arobotic network, however, the angle can be adapted. Each robot typically knows
the position of another robot in the network, which can be used for on-line adaption and

alignment of directional antennas.

Aswe showed in Section 2.1, we equipped our robots with adaptive directional anten-
nas in order to see their impact on multipath fading. Fig. 2.12 (left), for instance, shows
an operation using an adaptive and an omnidirectional antenna whereas in the right fig-
ure, both robots are using adaptive antennas. Fig. 2.13 shows the impact of small antenna
beamwidth on small-scale fading. The figure shows the received signal power across route
2, marked on Fig. 2.5, and for the transmitting robot at location#2. In the omni-to-omni
case, both the transmitter and receiver are omnidirectional. In the omni-to-dir case, the
transmitter is omnidirectional while the receiver is directional. Finally, for the dir-to-dir
case, both the transmitter and receiver are directional. Our directional antenna has a hori-

zontal and vertical beamwidth of 21° and 17° respectively.

It can be seen that the dir-to-dir case results in the smallest amount of variations.
To measure this, the standard deviations of the received signal power from the distance-
dependent path loss are calculated to be 4.53, 2.44 and 1.89 for the omni-to-omni, omni-
to-dir and dir-to-dir cases, respectively. Furthermore, it can be seen that the overall signal
power increases as we use directional antennas. We saw similar behaviors across other
routes in our building. This shows the potential of directional adaptive antennas for net-
worked robotic applications. In the next sections, we extensively use such antennas to
limit the impact of multipath fading on our proposed wireless-based obstacle mapping

framework.
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Figure 2.12: (left) Pioneer robots gathering data at the basement of our building with
the transmitter using an omnidirectional antenna and the receiver using a directional one.
(right) Pioneer robots using directional antennas for both transmission and reception.

24 Summary

In this chapter, we utilized the knowledge available in the wireless communication liter-

ature in order to provide a comprehensive overview of the key underlying dynamics of
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Figure 2.13: Impact of antenna angle in reducing small-scale fading. It can be seen that
using an adaptive antenna with a small beamwidth can reduce the amount of multipath
fading considerably and also increase the overall received signal power.
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wireless channels. small-scale fading, shadowing and the distance-dependent path loss.
We confirmed the characteristics of these dynamics experimentally by making an exten-
sive number of channel measurements with our robotic testbed. In order to automate the
channel measurement process, we developed a robotic testbed. We furthermore showed
how adaptive directional antennas can effectively reduce the effects of multipath fading
on the received signal strength. In the next chapter we will introduce our wireless-based
obstacle mapping framework, which is based on the fact that the shadowing component
of awireless transmission containsimplicit information on the objects located on the path

between the transmitter and receiver.
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Chapter 3

Wireless-Based Compressive

Cooper ative Obstacle Mapping

In this chapter, we consider the problem of cooperative mapping of obstacles based on
wireless measurements. As previously mentioned, we are interested in mapping with see-
through capabilities, i.e. an approach that allows a group of mobile agentsto map occluded
obstacles without having to sense them directly. This can be particularly useful in severa
scenarios such as search and rescue, surveillance, and threat detection. It can also save the
overall obstacle mapping time and energy in any cooperative robotic scenario by eliminat-

ing the need for direct sensing of all the objects.

In general devising strategies for see-through mapping is considerably challenging
since traditional sensing and mapping techniques can not be used. In [6-8], Mostofi pro-
posed a framework for mapping of occluded obstacles based on wireless measurements
and compressive sampling theory. In this chapter, we summarize that work asitistheline
of work we will follow in thisthesis. More specifically, we use wireless channel measure-
ments between pairs of robots in order to extract information on the visited objects along

the communication path. However, extracting this information from a wireless reception,
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without making a prohibitive number of measurements, is very challenging due to several
propagation phenomena such as multipath fading discussed in Chapter 2. Thus, we make
use of the recent breakthroughs in the area of compressive sampling (CS), which will al-
low usto properly map obstacles with a small number of wireless measurements as shown
in [6-8]. More specificaly, we show how the sparse representation of an obstacle map
in space, wavelet or spatia variations can be exploited in order to build a map with mini-
mal sensing. We furthermore present three sampling approaches based on coordinated or

random wirel ess measurements [6-8].

We start this chapter by providing a brief overview of CS theory as relevant to our
obstacle/object mapping framework.! We then explain the details of our wireless-based
mapping framework and show how a group of mobile nodes can build a map of obstacles
(includes mapping completely blocked objects) by taking very few wireless measurements.
We furthermore introduce our strategiesfor sampling, sparsity domains and reconstruction
methods.

3.1 An Overview of Compressive Sampling Theory [3-5]

The new theory of compressive sampling (also known as compressive sensing or CS)
is based on the fact that real-world signals typically have a sparse representation in a
certain transformed domain. Exploiting sparsity has arich history in different fields. For
instance, it can result in reduced computational complexity (such asin matrix calcul ations)
or better compression techniques (such as in JPEG2000). However, in such approaches,
the signal of interest is first fully sampled, after which a transformation is applied and
only the coefficients above a certain threshold are saved. This, however, is not efficient
as it puts a heavy burden on sampling the entire signal when only a small percentage of

the transformed coefficients are needed to represent it. The new theory of compressive

1The readers are referred to [3-5] and the references therein for amore general study of CS.
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sampling, on the other hand, allows us to sense the signal in a compressed manner to
begin with. Consider a scenario where we are interested in recovering a vector x € RY.
For 2D signals, vector x can represent the columns of the matrix of interest stacked up to
form avector. Let y € R where K < N represent the incomplete linear measurement

of vector x obtained by the sensors. We will have
y = Pz, (3.1

where we refer to ® as the observation matrix. Clearly, solving for = based on the obser-
vation set y isan ill-posed problem as the system is severely under-determined (K < N).
However, suppose that = has a sparse representation in another domain, i.e. it can be

represented as alinear combination of a small set of vectors:
r=TX, (3.2

whereT" isaninvertiblematrix and X isS-sparse, i.e. |supp(X)| = S < N where supp(X)
refers to the set of indices of the non-zero elements of X and | - | denotes its cardinality.
This means that the number of non-zero elementsin X is considerably smaller t