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Abstract

Mobile intelligent networks can play a key role in many different areas from emergency

response, surveillance and security, and battlefield operations to smart homes and factories

and environmental monitoring. Accurate mapping of the obstacles/objects in the environ-

ment is key to the robust operation of unmanned autonomous networks as it is an integral

part of navigation and path planning. In the robotics community, the problem of mapping

has been widely explored. However, in the existing mapping approaches, only areas that

can be directly sensed by the sensors are mapped. In several scenarios, it may be necessary

to have see-through capabilities and map occluded objects without direct sensing. For in-

stance, the robots may need to build an understanding of the objects inside a room before

entering it. Having see-through capabilities can also reduce the overall mapping time and

energy in any networked robotic operation.

In this dissertation, we consider a mobile robotic network that is tasked with building

a map of the objects/obstacles in an environment including the occluded ones. Since we
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are interested in see-through capabilities, in our framework the robots cooperate to build

the map based on a small number of wireless channel measurements. This allows the

robots to efficiently map occluded areas of the workspace. By using the recent results in

the area of compressive sensing, we exploit the sparse representation of the map in space,

wavelet or spatial variations, in order to build it with minimal sensing. We discuss three

mapping strategies based on frequency sampling, coordinated space and random space

measurements and show the underlying tradeoffs of the possible sampling, sparsity and

reconstruction techniques. For instance, we shed light on the optimum number of angular

motion directions of the robots, as well as the choice of the angles, to distribute a given

number of wireless measurements. We establish that the total number of available channel

measurements should be distributed over a small number of angles, that is bigger than

or equal to the number of jump (discontinuity) angles of the structure, with a preference

given to the angles of jumps.

We then propose an integration of our wireless-based mapping framework with exist-

ing mapping techniques in order to map more complicated structures. More specifically,

we propose an integrated framework where laser measurements are used to map the vis-

ible parts of the environment (the parts that can be sensed directly by the laser scanners)

using occupancy grid mapping approaches. The parts that can not properly be mapped

are then identified and mapped based on wireless channel measurements. We show how

to integrate occupancy grid mapping with two reconstruction methods based on wireless

measurements and compressive sensing: Bayesian compressive sensing (BCS) and total

variation (TV) minimization. We compare the performance of these two integrated ap-

proaches and shed light on the underlying tradeoffs. Finally, we propose an adaptive path

planning strategy that utilizes the current estimate of uncertainty to collect wireless mea-

surements that are more informative for obstacle mapping. Overall, our integrated frame-

work enables mapping occluded structures that can not be mapped with laser scanner data

alone or a small number of wireless measurements.
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Most importantly, we show how to design an experimental robotic platform in order to

implement our approach. We then show the performance of our framework in efficiently

mapping a number of real obstacles including blocked ones. Our experimental results

confirm the feasibility of the proposed framework for mapping structures that include oc-

cluded parts.
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Chapter 1

Introduction

Over the past few years, considerable progress has been made in the area of mobile sen-

sor and robotic networks [9–18]. Mobile robotic networks can play a key role in areas

such as emergency response, surveillance and security, and battlefield operations. In order

for a such a network to be autonomous and robust, accurate mapping of obstacles/objects

is needed. The obstacle/object map can be a 2D (or 3D) grid map of the environment,

where we have zeros at locations where there is no obstacle and non-zero values at obsta-

cle locations. In several scenarios, it may be necessary to have see-through capabilities

and map the objects without direct sensing. For instance, the robots may need to build an

understanding of the objects inside a room, before entering it. See-through mapping fur-

thermore allows the robots to map the obstacles for navigation purposes, without having

to sense them directly. This can be of particular interest in several scenarios such as search

and rescue, surveillance or threat detection. It also saves the overall obstacle mapping

time and energy in any cooperative robotic application, by eliminating the need for direct

sensing of all the objects.

In this dissertation, we consider cooperative mapping of obstacles (including occluded

ones) in robotic networks based on a small number of wireless transmissions. In the wire-

1



Chapter 1. Introduction

less communication literature, it is well-established that the shadowing component of a

wireless transmission contains implicit information on the objects located on the path be-

tween the transmitter and receiver [1]. Thus, wireless measurements between pairs of

robots can possibly be utilized for obstacle mapping, with the advantage that it can al-

low the robots to map the areas that are not directly sensed (mapping of occluded parts).

This has opened a new and different venue for the mapping of obstacles as shown by

Mostofi [6–8] and is the approach we shall pursue in this thesis.

In general, extracting the obstacle information, without making a prohibitive number of

wireless transmissions, is considerably challenging due to all the propagation phenomena.

In order to address this and enable the mapping based on a small number of wireless

transmissions, we utilize the new theories of compressive sensing [3, 4]. The Nyquist-

Shannon sampling theorem [19] revolutionized several different fields by showing that,

under certain conditions, it is indeed possible to reconstruct a uniformly sampled signal

perfectly. The new theory of compressive sensing (also known by other terms such as

compressed sampling, compressive sensing or sparse sensing) shows that under certain

conditions, it is possible to reconstruct a signal from a considerably incomplete set of

observations, i.e. with a number of measurements much less than predicted by the Nyquist-

Shannon theorem [3,4]. This opens new and fundamentally different possibilities in terms

of information gathering and processing in mobile networks, as we shall utilize in this

thesis.

We next summarize the related work in the literature and continue with a summary of

our contributions.

2



Chapter 1. Introduction

1.1 Prior Work

1.1.1 Obstacle Mapping in Robotics Literature

In the robotics community, the problem of mapping has been widely explored [20–23].

However, in the current approaches using sonar/laser sensors, only areas that are directly

sensed by the sensors are mapped. Depending on whether the positions and orientations

of the robots are known, the mapping problem can be tackled using different techniques.

In mapping with known poses, occupancy grid mapping approaches [23, 24] have been

proposed. The objective there is to build a grid map of the obstacles by sequentially

updating the posterior of having an obstacle in each cell of a grid, based sensory (sonar or

laser) measurements.

In mapping with unknown poses, the Simultaneous Localization and Mapping (SLAM)

approaches are used to incrementally build a map of the environment, while estimating

the location of the robot within the map [25–30]. The SLAM problem is among the most

challenging problems in autonomous robotics. Several techniques based on using extended

Kalman filters (EKF) [31] and Rao-Blackwell particle filters [32–35] have been proposed

by the researchers to solve this problem. Both occupancy grid maps and landmark maps

(a set of known landmarks in the environment) can be considered in SLAM, depending on

the algorithm used and type of the environment [25]. Approaches based on generating an

occupancy map address reducing the uncertainty of direct sensing [36, 37]. One common

limitation of all these approaches is that only areas that can be directly sensed by the

sensors are mapped.

Another set of approaches are based on the Next Best View (NBV) problem [38–42].

In NBV approaches, the aim is to move to the positions “good” for sensing by guiding

the vehicles to the perceived next safest area (area with the most visibility) based on the

current map [38]. However, similar to the approaches above, areas that are not sensed

directly are not mapped in NVB.
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1.1.2 Through-the-wall Radar for Detection

Though-the wall radar (TWR) is mostly focused on the detection of a single occluded

object, for instance a person or a weapon which is occluded by walls. The most com-

mon approaches for TWR are multilateration [43–45], and synthetic aperture radar (SAR)

[46, 47]. In multilateration, range measurements from multiple sensors are correlated to

specific points in the image. Spatial diversity is used to have a large set of Transmit-

ter/Receiver combinations. SAR is an extension to the multilateration concept where a

complex matched filter is used. A key tool for successful TWR is the use of diversity [48].

Possible ways of attaining diversity include: frequency, sensor position, angle, waveform

choice, and multiple-input multiple-output (MIMO). A popular approach for TWR is the

use of a model-based reconstruction in which a priori structure information is utilized [48].

Ultra-wideband (UWB) has also been shown to yield good detection properties for

TWR. For instance, in [49] the authors use an UWB MIMO phased array radar system to

perform real-time detection of (possibly occluded) moving objects. To detect movement,

the radar system subtracts previously-acquired raw data sets from real-time readings and

then displays the image of the difference. In other words, this approach requires coherent

change detection, i.e. previous measurements of the scene of interest without the target, so

the changes can be detected. Furthermore, the approach is focused on detection of single

targets, not on mapping the layout of an environment. In [50], a handheld device is used to

detect motion of individuals. However, it similarly requires prior knowledge of building

models to develop a ground truth to compare the predicted and the real measurements.

Along the same line, in [51], authors use a transmitter that is buried underground and

several fixed receivers on the surface to detect underground tunnels/facilities using radar.

In summary, a common characteristic of TWR is that it either requires a priori mea-

surements when the target is not present or some knowledge on the dielectric properties of

the first layer of occluders (or transparent first layer).

4



Chapter 1. Introduction

1.1.3 Wireless-based Obstacle Mapping

In [6–8], Mostofi proposed a framework for see-through mapping based on using very few

wireless channel measurements and by exploiting the sparse representation of the map in

another domain such as wavelet or spatial variations. In this thesis, we follow this line of

work. On a related topic, there are also a number of concurrent recent papers on detecting

an object using fixed sensors. In [52, 53], for instance, the authors build a network of 28

fixed sensors in order to detect presence of a person. The framework is based on making

wireless measurements between pairs of sensors. Then the goal is to roughly track a person

as opposed to building a map of obstacles. There is a need for prior learning in the area of

interest as well. As such, [52, 53] is more on detecting an obstruction to a wireless signal

as opposed to obstacle mapping with minimal measurements.

We next summarize the contributions of this thesis.

1.2 Contributions of this Dissertation

This dissertation is on the development of a framework for building obstacle maps with

see-through capabilities. We discuss three mapping strategies based on frequency sam-

pling, coordinated space and random space measurements. Then, we use compressive

sensing in order to exploit the sparse representation of the map in space, wavelet or spatial

variations, so that the map can be built with a small number of wireless measurements.

We furthermore show the underlying tradeoffs of the possible sampling, sparsity and re-

construction techniques using both simulation and experimental results. We thoroughly

compare the performance of our random and coordinated sampling strategies. Along this

line, we discuss the optimum number of angular motion directions of the robots, as well

as the choice of the angles, in order to distribute a given number of wireless measure-

ments. We establish that the total number of available channel measurements should be
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distributed along a small number of angles, that is bigger than or equal to the number of

jump angles of the structure, with a preference given to the angles of jumps.

We then propose a novel integrated occupancy grid and wireless-based mapping ap-

proach for mapping with see-through capabilities. Our proposed approach uses occupancy

grid mapping (with known poses or with unknown poses using SLAM) to map the parts of

the environment that can be sensed directly by the laser scanners of the robots. The parts of

the map that can not be seen by the laser scanners are then mapped based on the wireless

channel measurements and by using our proposed wireless-based mapping framework.

We rigorously show how to integrate occupancy grid mapping with two different wireless-

based compressive map reconstruction methods: our previous TV-based approach and a

probabilistic Bayesian Compressive Sensing-based approach. More specifically, we pro-

pose an integrated probabilistic approach based on utilizing Bayesian Compressive Sens-

ing (BCS) for extracting the map of the occluded parts from wireless measurements. We

then compare the performance of our BCS-based integrated framework with that of our

TV-based integration and shed light on the underlying tradeoffs. For instance, our results

indicate that the integrated BCS-based method is more appropriate for mapping based on

random wireless measurements while TV-based integrated approach performs better with

coordinated wireless measurements.

Another contribution of this thesis is to propose adaptive sample collection strategies

that can enable pairs of robots to efficiently choose the positions from which to take

the next wireless measurements such that the mapping performance is improved. More

specifically, we propose two strategies: ad-hoc and variance-based. The variance-based

approach, for instance, utilizes the current estimated variance of our integrated BCS ap-

proach to identify the map cells with highest uncertainty and plans the motion of the robots

to cover those cells next.

Finally, we also show how to design an experimental robotic platform in order to im-

plement the proposed mapping approaches. We then show the performance of our frame-
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work in efficiently mapping a number of real obstacles (including blocked ones) using our

robotic testbed. We discuss hardware requirements, such as the use of directional adaptive

antennas, in order to mitigate the effects of multipath fading. Our experimental results

demonstrate the feasibility and good performance of the proposed framework for mapping

real structures that have occluded parts.

1.3 Dissertation Overview

This dissertation is organized as follows: Chapter 2 serves as an overview of the char-

acterization of the underlying multi-scale dynamics of a wireless link, the knowledge of

which would be useful for the subsequent chapters. We further describe our experimen-

tal setup for automating the channel measurement process, using our robots. In Chapter

3 we give a brief summary of the area of compressive sampling, as relevant to our pro-

posed framework and explain our wireless-based mapping approach. In Chapter 4, we

discuss different possibilities for compressive sampling and reconstruction and show their

underlying tradeoffs. We furthermore show how to properly design a robotic platform to

implement our proposed mapping framework. In that chapter, we then validate our re-

sults through simulations and experimental data gathered with our robots. In Chapter 5,

we propose an integrated framework for mapping with see-through capabilities using both

laser and wireless channel measurements. In this framework, laser measurements are used

to map the visible parts of the environment while the rest of the map (e.g. the occluded

parts) are then mapped based on our wireless-based mapping framework. We also propose

an adaptive exploration strategy which enables a pair of robots to efficiently collect wire-

less measurements that are more informative for see-through mapping. We conclude in

Chapter 6.
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Chapter 2

Wireless Channel Modeling and

Experimental Validation

This chapter serves as an overview of the characterization of the underlying multi-scale

dynamics of a wireless link. By utilizing the knowledge available in the wireless commu-

nication literature, we summarize a probabilistic framework for the characterization of the

three dynamics of a wireless channel. We furthermore describe our experimental setup for

automating the channel measurement process, using our robots. In this chapter, we use

this experimental setup to confirm the probabilistic channel characterization framework,

by making an extensive number of channel measurements. The three wireless channel

dynamics are then used in the next chapters as the basis for the sensing model of our

wireless-based compressive mapping framework.

In a realistic communication settings, such as an urban area or an indoor environment,

Line-Of-Sight (LOS) communication between a wireless transmitter and a receiver may

not be possible due to the existence of several objects that can attenuate,reflect, diffract or

block the transmitted signal. The received signal power typically experiences considerable

variations and can change drastically in even a small distance. As an example, consider

8
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Fig. 1, where channel measurements in our building are shown. It can be seen that channel

can change drastically even within small distance intervals. Thus, communication between

mobile units can degrade due to factors such as shadowing, fading or distance-dependent

path loss [1], which can impact the overall performance of the network considerably.
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Figure 2.1: Sample channel measurements in (left) 1D and (right) 2D.

Exact mathematical characterization of a wireless channel is extremely challenging,

due to its time-varying and unpredictable nature. One can possibly solve Maxwell’s equa-

tions with proper boundary conditions that reflect all the physical constraints of the en-

vironment. However, such calculation is difficult and requires the knowledge of several

geometric and dielectric properties of the environment, which is not easily available. In

wireless communication systems, it is therefore common to model the channel proba-

bilistically, with the goal of capturing its underlying dynamics. The utilized probabilistic

models are the results of analyzing several empirical data over the years. In general, a

communication channel between two mobile robotic platforms can be modeled as a multi-

scale dynamical system with three major dynamics: small-scale fading (multipath fading),

shadowing (shadow fading) and path loss. These three dynamics are key to the realistic

characterization of the performance of networked robotic systems. We start this chapter

by providing a description of our robotic testbed, which was used to automate the channel

measurement process.
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2.1 An Experimental Robotic Platform for Channel Mea-

surement Collection

The analyses of this dissertation are all accompanied by experimental validations. As such,

in this section we briefly describe our experimental testbed. This can help the readers un-

derstand the conditions under which our measurements are collected so they can reproduce

the results.

Traditionally, there has been considerable interest in measurement and characteriza-

tion of the received communication signal strength in the context of cellular systems

[54–58]. Automating the measurement process, however, has been difficult in the past due

to the lack of an automated mobile system. For outdoor measurements, vehicle-mounted

transceivers have been used in some experiments [57, 58]. Collecting indoor measure-

ments, however, is more challenging. For instance, in [54], the authors use a cart to move

the receiver and transmitter units, resulting in a positioning accuracy of about 10 cm, which

may not suffice depending on the required analysis. Using rails with motorized position-

ers is another common approach for moving the transmitter/receiver [59]. The advent of

robotic networks facilitates the design of an automated measurement system considerably

and allows for collecting measurements with flexibility, reconfigurability and a high spatial

resolution. As such, we have developed a robotic testbed to automate our channel mea-

surement process. The testbed consists of two Pioneer 3-AT (P3-AT) mobile robots from

MobileRobots Inc. [60], each equipped with an onboard PC, an IEEE 802.11g (WLAN)

card and various sensors used for localization and obstacle avoidance. Each robot acts as

a mobile transceiver and can record its received signal strength as it moves. The resulting

data set is then used in this chapter for the characterization of wireless channels for mobile

robotic networks and most importantly, for wireless-based obstacle mapping in the later

chapters of this dissertation.

Next, we explain the hardware and software components of our testbed in more details,
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including our software-based controller and navigation infrastructure.

2.1.1 Hardware Architecture

Our setup consists of two P3-AT mobile robots [60]. Pioneer 3-AT is a high performance

robotic platform from MobileRobots, which is a popular and reliable team performer for

indoor, outdoor and rough-terrain projects. We equipped each robot with a removable

electromechanical fixture to possibly hold a directional antenna. Fig. 2.2 (right) shows

one of our robots in its original form, while the left figure shows the robot with a direc-

tional antenna mounted on it. A block diagram of the hardware architecture of one of the

robots is shown in Fig. 2.3. The remote PC is a supervising unit, in charge of planning

the motion of the robots and collecting the signal strength data from the robots. Each

P3-AT base comes with an onboard PC104 and a Renesas SH7144-based microcontroller

platform to control the motors, actuators and sensors. MobileRobots provides a C/C++

application programming interface (API) library called ARIA [60] to program and control

the robot via its onboard microcontroller platform. We also developed a servo mechanism

to intelligently rotate the directional antenna of the robot. The servo mechanism is con-

trolled by the onboard PC of the robot through a microcontroller-based external hardware.

We make use of Hitec HS-7955TG high performance coreless digital servo motors with

180◦ rotation in our servo mechanism. As for the directional antennas, we use a GD24-15

2.4GHz parabolic grid antenna from Laird Technologies [61]. This model has a 15 dBi

gain with 21◦ horizontal and 17◦ vertical beamwidth and is suitable for IEEE 802.11b/g

applications (Fig. 2.2-left).

Robot Localization

Accurate localization of the robots is crucial to proper channel measurement and analysis.

For instance, characterizing the spatial correlation of different channel dynamics requires
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Figure 2.2: (left) Pioneer 3-AT robot equipped with a servo mechanism and a directional
antenna. (right) Pioneer 3-AT robot equipped with an omnidirectional antenna.

accurate position information. In our testbed, each robot uses both the onboard gyroscope

and the wheel encoders for localization. Since the localization error is additive in time,

the calibration unit resets the gyroscope and the wheel encoders periodically, after an ad-

justable number of steps. Currently, our localization error is less than 2.5 cm for every 1 m

of a straight line movement. If additional accuracy is needed over longer distances, more

advanced localization strategies, from the robotic literature, can also be utilized. Alterna-
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Figure 2.3: A block diagram of the hardware architecture of one of the robots.
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tively, a long route can be divided into shorter sub-routes and the robot can be manually

repositioned at the beginning of each sub-route to provide a better overall accuracy.

2.1.2 Software Architecture

A high-level schematic of the software architecture is shown in Fig. 2.4. The software-

based control infrastructure consists of two application layers running on different ma-

chines: The robot-side application runs on the onboard PC of the robot whereas the

client-side application runs on the remote PC. The robot-side application is developed as

a TCP/IP server and is in charge of reading the sensory data, sending it to the client-side

application, receiving the high-level control of motion/antenna angle commands from the

client-side application and executing the commands. The client-side application, which

runs as a TCP/IP client for robot-side application, is in charge of supervising the entire op-

eration, planning the motion, generating the high-level control commands to be sent to the

robots and collecting the signal strength data from the robots for future processing. The

microcontroller of the servo mechanism is also programmed to decode the rotation com-

mands and send the corresponding Pulse Width Modulation (PWM) signals to the servo

motor that rotates the antenna. The operating system is Microsoft Windows XP and all

the programs are developed in C++ using MS Visual Studio 2008. The user can run both

robots simultaneously, calibrate and test the servo mechanism and run several automatic

data gathering scenarios. Among all the possible scenarios, the following two are used

extensively for the analysis presented in this dissertation:

• Scenario 1: The transmitter is a wireless 802.11g router with an omnidirectional

antenna at a height of 1.5 m. The receiver is a robot with an omnidirectional antenna

at the height of 27 cm (see Fig. 2.2 (right)).

• Scenario 2: Both the transmitter and receiver are robots with different combinations

of directional/omnidirectional TX/RX antennas. The directional antenna is as shown
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in Fig. 2.2 (left).
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Figure 2.4: The overall software architecture of the robotic platform.

2.2 Characterization of the Spatial Variations of a Wire-

less Channel [1, 2]

In this section, our goal is to summarize the existing results on the probabilistic character-

ization of wireless channels, from the wireless communication literature, and to confirm

this characterization with our robots. As we have previously mentioned, a communication

channel between two robotic platforms can be modeled as a multi-scale dynamical system

with three major dynamics: small-scale fading (multipath fading), shadowing (shadow

fading) and path loss. These three dynamics are key to the realistic characterization of

the performance of networked robotic systems. We first show an example of these three

dynamics through an experiment with our robotic testbed.

Fig. 2.5 shows the blueprint of the basement of our building where we made several

measurements along more than 70 routes using our experimental setup. In this chapter, un-

less we specifically indicate otherwise, the experimental setup consists of a Pioneer P3-AT
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robot (receiver) and a fixed wireless router (transmitter), both of which were equipped with

omnidirectional antennas. The transmitter is fixed at the height of 1.5 m and the receiver

is at a height of 27 cm. The figure also shows a colormap of our measured received signal

power for the transmitter at location#1. It should, however, be noted that the framework

of this dissertation is also fully applicable for modeling outdoor wireless measurements.

We used indoor measurements in this chapter since wireless link quality is typically worse

inside a building (due to the higher chance of lacking a line of sight communication).

Figure 2.5: (right) Blueprint of the basement of our building, where channel measurements
are collected – a colormap of the measured received signal power is superimposed on
the map for the transmitter at location#1 (see the pdf file for a color version). (left) A
magnified inset of the blueprint.

As an example, Fig. 2.6 shows the received signal power across route 1, as marked in

Fig. 2.5, for the transmitter at location#1 and as a function of the distance to the transmitter.

The three main dynamics of the received signal power are marked on the figure. As can

be seen, the received power can have rapid spatial variations that are referred to as small-

scale fading. By spatially averaging the received signal locally and over distances that

channel can still be considered stationary, a slower dynamic emerges, which is called

shadowing. Finally, by averaging over the variations of shadowing, a distance-dependent
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trend is seen, which is referred to as path loss. In this chapter, we provide an understanding

and modeling of these underlying dynamics.
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Figure 2.6: Underlying dynamics of the received signal Power across route 1 of Fig. 2.5
and for the transmitter at location#1. The blue curve is the measured received power which
exhibits small-scale fading. By averaging locally over small-scale variations, the under-
lying shadowing variations can be seen (gray). The average of the shadowing variations
then follows the distance-dependent path loss curve (dashed line).

2.2.1 Small-Scale Fading (Multipath Fading)

When a wireless transmission occurs, replicas of the transmitted signal will arrive at the

receiver due to phenomena such as reflection and scattering. This results in the following

baseband equivalent channel at time instant t:

ch(t) =

N(t)∑

i=1

κi(t)e
jςi(t)−j2πfc τ̃i(t), (2.1)

where N(t) represents the total number of paths that arrive at the receiving robot at time

t, fc is the carrier frequency, and κi, τ̃i and ςi are the attenuation, delay and Doppler

phase shift of the ith path respectively. As can be seen from (2.1), different paths can be

added constructively or destructively depending on the phase terms of individual paths.
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As a result, with a small movement, the phase terms can change drastically, resulting in

the rapid variations of the channel. Such rapid variations are referred to as small-scale

fading (multipath fading) and can be seen in Fig. 2.6. The higher the number of reflectors

and scatterers in the environment, the more severe small-scale variations could be. Next,

we characterize the distribution of |ch(t)| (which easily translates to a distribution for the

received Signal to Noise Ratio (SNR) since it is proportional to |ch(t)|2).

In the wireless communications literature, several efforts have been made in order to

mathematically characterize the behavior of small-scale fading. As can be seen from Fig.

2.6, the small-scale fading curve is non-stationary over large distances as its average is

changing. Therefore, it is common to characterize the behavior of it over small enough

distances where channel can be considered stationary. Then, the behavior of the average

of the small-scale variations is characterized in order to address channel dynamics over

larger distances, as we shall see in the next part. Over small enough distances where

channel (or equivalently the received signal power) can be considered stationary, it can

be mathematically shown that Rayleigh distribution is a good match for the distribution

of |ch(t)| if there is no Line Of Sight (LOS) path while Rician provides a better match

if an LOS exists. These distributions also match several empirical data. A more general

distribution that was shown to match empirical data is Nakagami distribution [2, 62, 63],

which has the following pdf for z(t) = |ch(t)|:

p(z) =
2mmz2m−1

Γ(m)P
m

z

exp

[−mz2
P z

]
, for z ≥ 0, (2.2)

where m ≥ 0.5 is the fading parameter, P z = E
[|ch(t)|2] represent the average power

of the channel (averaged over small-scale fading) and Γ(.) is the Gamma function. If

m = 1, this distribution becomes Rayleigh: pray(z) = 2z
P z

exp
[
−z2

P z

]
, for z ≥ 0, whereas

for m = (m′+1)2

2m′+1
, it is approximately reduced to a Rician distribution with parameter m′:

pric(z) =
2z(m′ + 1)

P z

exp

[
−m′ − (m′ + 1)z2

P z

]
I0

(
2z

√
m′(m′ + 1)

P z

)
, (2.3)

for z ≥ 0. Similarly, distributions of the power of the channel (|ch|2), the received power
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and SNR can be derived by a change of variables. Such distributions can be very help-

ful in generating realistic communication links for the purpose of mathematical analysis,

optimization as well as simulation in robotic networks.

We verified the Nakagami distribution using several measurements in our building.

While Rayleigh and Rician distributions are more heavily assumed for the purpose of

analysis involving wireless channels, we found that a general Nakagami distribution is a

better match for most of our gathered data. As an example, consider the measurement

of Fig. 2.6, which is across route 1 of Fig. 2.5 and for the transmitter at location#1. Fig.

2.7 shows the probability density function (pdf) and cumulative distribution function (cdf)

of three different sections of the small-scale variations across this route. These parts are

chosen such that the data can be considered stationary within each section (since small-

scale analysis is only relevant to the small enough and thus stationary parts). It can be seen

that the distribution of the gathered data matches power distribution for Nakagami fading

with parameters m = 1.20 and m = 1.30 well. Note that since the distribution of the

power of the received signal, which is proportional to |ch(t)|2, is plotted, the figure does

not show a Nakagami distribution directly. It shows the power distribution of Nakagami

fading, i.e. the distribution of a non-negative variable whose square root has a Nakagami

distribution.

While Nakagami distribution shows a good match for the distribution of small-scale

fading, mathematical analysis of the performance of a robotic network under such a dis-

tribution is generally challenging. Alternatively, a simpler but sub-optimum match is log-

normal. In [64], the authors showed that a Gaussian distribution can possibly provide an

acceptable match for the distribution of the small-scale variations in dB (albeit with some

loss of performance as compared to Nakagami). Fig. 2.8 compares the match of both Nak-

agami and lognormal to the distribution of small-scale fading for two different stationary

sections of the data of Fig. 2.6. As can be seen, Nakagami provides a considerably better

match while lognormal can be acceptable depending on the required accuracy.
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Figure 2.7: The distribution of small-scale fading using three different parts of our gath-
ered measurements. Nakagami distribution shows a very good match – (top figures) pdf
and (bottom figures) cdf.
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Figure 2.8: Comparison of Nakagami and lognormal for the distribution of small-scale
fading – (left) pdf and (right) cdf.

2.2.2 Shadow Fading (Shadowing)

As discussed in the previous part, the received wireless signal is non-stationary over large

distances. While small-scale fading characterizes the behavior of the channel over a small

distance, it does not suffice for characterizing the channel over larger distances. Small-

scale variations are the result of a number of paths arriving at the receiver at approximately

the same time but being added constructively or destructively, depending on their phase

terms, which results in rapid variations. As Fig. 2.9 shows, once we average over small-

scale variations, another dynamic can be observed which changes at a slower rate. Let
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P z = E
[|ch(t)|2] represent the average power of the channel (averaged over small-scale

fading), as defined for (2.2). This signal varies over larger distances and is referred to

as shadow fading or shadowing. Shadowing is the result of the transmitted signal being

possibly blocked by a number of obstacles before reaching the receiver. Empirical data

has shown P z to have a lognormal distribution (mathematical justification also exists by

using Central Limit Theorem [2]). Let P z,dB = 10 log10(P z). We have the following for

the distribution of P z,dB [2, 63, 65, 66]:

p
(
P z,dB

)
=

1√
2πσdB

e
− (Pz,dB−μdB)2

2σ2
dB , (2.4)

where μdB = βdB − 10η log10(d) and σdB is the standard deviation of P z,dB. Consider

the distance-dependent path loss, μ = β/dη, where d represents the distance between the

transmitting and receiving robots, η denotes the power fall-off rate and β > 0 is a constant.

Then, it can be seen from (2.4) that μdB = 10 log10(μ) = βdB − 10η log10(d) represents

the average of shadowing variations. Note that average SNR will also have a lognormal

distribution.

Figure 2.9: Illustration of moving average over small-scale variations in order to obtain
shadowing dynamics. An appropriate window length is chosen such that the small-scale
variations can be considered stationary over that length. Then, the value of shadowing
at the center of this window corresponds to the average of all the data points within the
window. Alternatively, the window size can be adaptive.
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Fig. 2.10 shows the pdf and cdf of shadow fading for all the collected data in the base-

ment of our building, as shown in Fig. 2.5, and for the transmitter at location#1. In order

to access the shadowing variations, the gathered data of each route is averaged locally

over small-scale fading, as illustrated in Fig. 2.9. It should be noted that the resulting

shadowing variation is non-stationary as its average changes with distance. The distance-

dependent path loss component for each route can be easily estimated by finding the best

linear fit that relates the log of the received power of the collected data to the log of the

distance traveled (see Fig. 2.6 for an example). We then remove the distance-dependent

average from shadowing variations before characterizing the distribution of the collected

data. As a result, the distribution of the resulting gathered data should match a zero-mean

lognormal distribution. It can be seen from Fig. 2.10 that the distribution of the log of

the shadowing variations (after removing the distance-dependent average) matches a zero-

mean normal distribution very well. The three columns correspond to averaging window

sizes of 0.4λ, 1λ and 10λ from left to right, where λ is the wavelength of operation. The

standard deviations for these matches are σdB = 2.7, σdB = 2.3 and σdB = 1.4, respec-

tively. As can be seen, as the averaging window size increases, the standard deviation of

the best fit becomes smaller. This is as expected since by averaging over larger distances,

the resulting signal becomes closer to the underlying overall average (distance-dependent

path loss). For this specific data, the best fit corresponds to the averaging window size of

0.4λ, with a Normalized Mean Square Error of 2.89× 10−4.

2.2.3 Distance-dependent Path Loss

It can be seen from (2.4) that the distance-dependent path loss, characterized as βdB −
10η log10(d), is the average of the shadowing variations. This completes the relationship

between the three underlying dynamics: small-scale fading, shadow fading and path loss.

As mentioned earlier, the distance-dependent path loss component can be found by finding

the best linear fit that relates the log of the received signal power to the log of the distance
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Figure 2.10: (top figures) pdf and (bottom figures) cdf of the log of shadow fading (after
removing the distance-dependent path loss) and the normal distribution match for all the
data gathered in the basement of our building. The three columns show the impact of the
averaging window size on the match: (left column) window size of 0.4λ, (center column)
window size of 1.0λ and (right column) window size of 10.0λ, with λ = 0.125 m denoting
the wavelength of the transmitted signal.

traveled. For instance, for the data of Fig. 2.6, path loss component can be characterized

as −17.35 − 30 log10(d). It should be noted that the parameters of path loss curve, such

as exponent η, vary from route to route. They can even vary within a route if the route is

considerably long.

In current networked robotics literature, it is common to use fixed-radius disc models

to model wireless channels. It is noteworthy that this over-simplified model only considers

path loss. It furthermore assumes the same path loss parameters everywhere in the envi-

ronment. Therefore, it is only a very crude representation after considerable averaging is

done.

2.2.4 Channel Spatial Correlation

Thus far we characterized the distribution of a wireless channel at a single position (or

equivalently at a time instant). Another important parameter that characterizes a wireless
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channel is its spatial correlation, i.e. how fast the small-scale and shadow fading com-

ponents are changing spatially. Channel spatial correlation plays a critical role in the

cooperative operation of autonomous agents. For instance, it impacts how well we can

predict channel spatial variations [67–69] and embed the corresponding communication

objectives in a motion-planning function [68, 69].

Spatial correlation of small-scale fading depends on the speed of the robots, frequency

of operation and antenna beamwidth/gain, among several other factors. The least corre-

lation is typically observed when there exists a rich scatterer/reflector environment that

results in a uniform angle of arrival of the paths. In such cases, the power spectrum of

small-scale fading will have a form that is referred to as Jakes spectrum [1] and channel

decorrelates on the order of 0.4λ, with λ representing the wavelength (5 cm for 2.4 GHz

WLAN transmission). If this is not the case, the spatial correlation function of small-scale

fading can be mathematically derived for more general cases [1]. However, a general

model that can fit several scenarios does not exist. For most scenarios, small-scale fading

decorrelates considerably fast, as compared to the other dynamics.

For shadow fading, there is less mathematical characterization of spatial correlation.

Gudmundson [70] characterizes an exponentially-decaying spatial covariance function for

the log of the shadow-fading variations, based on outdoor empirical data, which is widely

used:

Acov,Pz,dB

(‖q1 − q2‖
)

= E

[(
P z,dB,1 − μdB,1

)(
P z,dB,2 − μdB,2

)]

= σ2
dBe

− ‖q1−q2‖
Xc , q1, q2 ∈ R

2 (2.5)

where P z,dB,1 and P z,dB,2 are the average power of the channel (averaged over small-scale

fading) at positions q1 and q2 respectively, μdB,1 and μdB,2 are the corresponding path loss

components, σ2
dB is the variance of the log of shadowing as defined in (2.4) and Xc is

the decorrelation distance, which is defined as the distance at which the autocovariance
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reaches 1/e of its maximum value. It has been shown that the decorrelation distance is on

the order of the size of the blocking objects or clusters of objects [2].

We used our channel measurements and found the exponential to be a good match for

the correlation of shadowing. Figure 2.11 shows the normalized autocovariance function

for the data gathered in route 2 of Fig. 2.5 with the transmitter at location #1. It can be

seen that the real autocovariance function matches the exponential model considerably

well although this is an indoor measurement. We see similar matches across other routes

of Fig. 2.5.
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Figure 2.11: Exponential match for the normalized autocovariance of the log of shadowing
variations. It can be seen that exponential provides a good match.

2.3 Impact of Antenna Angle

As seen in the previous sections, small-scale fading can result in the severe fluctuations of

the received signal power, which can degrade the performance of a robotic network con-

siderably. The main contributor to such fluctuations is the fact that different multipaths can

be added constructively or destructively depending on their traveled routes. One possible

way to mitigate the impact of multipath fading is to use adaptive directional antennas with

a small beamwidth (angle). A smaller beamwidth can limit the number of multipaths that
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reach the receiver, which will reduce the chance of the paths being added out of phase.

This approach, however, would require alignment and adaption of the transmitting and re-

ceiving antennas in order to make sure that they face each other when communicating. As

such, it does not work for non-robotic communication systems, such as cellular systems

or Wireless Local Area Networks (WLAN), where control of angle is simply not possi-

ble. In a robotic network, however, the angle can be adapted. Each robot typically knows

the position of another robot in the network, which can be used for on-line adaption and

alignment of directional antennas.

As we showed in Section 2.1, we equipped our robots with adaptive directional anten-

nas in order to see their impact on multipath fading. Fig. 2.12 (left), for instance, shows

an operation using an adaptive and an omnidirectional antenna whereas in the right fig-

ure, both robots are using adaptive antennas. Fig. 2.13 shows the impact of small antenna

beamwidth on small-scale fading. The figure shows the received signal power across route

2, marked on Fig. 2.5, and for the transmitting robot at location#2. In the omni-to-omni

case, both the transmitter and receiver are omnidirectional. In the omni-to-dir case, the

transmitter is omnidirectional while the receiver is directional. Finally, for the dir-to-dir

case, both the transmitter and receiver are directional. Our directional antenna has a hori-

zontal and vertical beamwidth of 21◦ and 17◦ respectively.

It can be seen that the dir-to-dir case results in the smallest amount of variations.

To measure this, the standard deviations of the received signal power from the distance-

dependent path loss are calculated to be 4.53, 2.44 and 1.89 for the omni-to-omni, omni-

to-dir and dir-to-dir cases, respectively. Furthermore, it can be seen that the overall signal

power increases as we use directional antennas. We saw similar behaviors across other

routes in our building. This shows the potential of directional adaptive antennas for net-

worked robotic applications. In the next sections, we extensively use such antennas to

limit the impact of multipath fading on our proposed wireless-based obstacle mapping

framework.
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Figure 2.12: (left) Pioneer robots gathering data at the basement of our building with
the transmitter using an omnidirectional antenna and the receiver using a directional one.
(right) Pioneer robots using directional antennas for both transmission and reception.

2.4 Summary

In this chapter, we utilized the knowledge available in the wireless communication liter-

ature in order to provide a comprehensive overview of the key underlying dynamics of
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Figure 2.13: Impact of antenna angle in reducing small-scale fading. It can be seen that
using an adaptive antenna with a small beamwidth can reduce the amount of multipath
fading considerably and also increase the overall received signal power.
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wireless channels: small-scale fading, shadowing and the distance-dependent path loss.

We confirmed the characteristics of these dynamics experimentally by making an exten-

sive number of channel measurements with our robotic testbed. In order to automate the

channel measurement process, we developed a robotic testbed. We furthermore showed

how adaptive directional antennas can effectively reduce the effects of multipath fading

on the received signal strength. In the next chapter we will introduce our wireless-based

obstacle mapping framework, which is based on the fact that the shadowing component

of a wireless transmission contains implicit information on the objects located on the path

between the transmitter and receiver.
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Chapter 3

Wireless-Based Compressive

Cooperative Obstacle Mapping

In this chapter, we consider the problem of cooperative mapping of obstacles based on

wireless measurements. As previously mentioned, we are interested in mapping with see-

through capabilities, i.e. an approach that allows a group of mobile agents to map occluded

obstacles without having to sense them directly. This can be particularly useful in several

scenarios such as search and rescue, surveillance, and threat detection. It can also save the

overall obstacle mapping time and energy in any cooperative robotic scenario by eliminat-

ing the need for direct sensing of all the objects.

In general devising strategies for see-through mapping is considerably challenging

since traditional sensing and mapping techniques can not be used. In [6–8], Mostofi pro-

posed a framework for mapping of occluded obstacles based on wireless measurements

and compressive sampling theory. In this chapter, we summarize that work as it is the line

of work we will follow in this thesis. More specifically, we use wireless channel measure-

ments between pairs of robots in order to extract information on the visited objects along

the communication path. However, extracting this information from a wireless reception,
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without making a prohibitive number of measurements, is very challenging due to several

propagation phenomena such as multipath fading discussed in Chapter 2. Thus, we make

use of the recent breakthroughs in the area of compressive sampling (CS), which will al-

low us to properly map obstacles with a small number of wireless measurements as shown

in [6–8]. More specifically, we show how the sparse representation of an obstacle map

in space, wavelet or spatial variations can be exploited in order to build a map with mini-

mal sensing. We furthermore present three sampling approaches based on coordinated or

random wireless measurements [6–8].

We start this chapter by providing a brief overview of CS theory as relevant to our

obstacle/object mapping framework.1 We then explain the details of our wireless-based

mapping framework and show how a group of mobile nodes can build a map of obstacles

(includes mapping completely blocked objects) by taking very few wireless measurements.

We furthermore introduce our strategies for sampling, sparsity domains and reconstruction

methods.

3.1 An Overview of Compressive Sampling Theory [3–5]

The new theory of compressive sampling (also known as compressive sensing or CS)

is based on the fact that real-world signals typically have a sparse representation in a

certain transformed domain. Exploiting sparsity has a rich history in different fields. For

instance, it can result in reduced computational complexity (such as in matrix calculations)

or better compression techniques (such as in JPEG2000). However, in such approaches,

the signal of interest is first fully sampled, after which a transformation is applied and

only the coefficients above a certain threshold are saved. This, however, is not efficient

as it puts a heavy burden on sampling the entire signal when only a small percentage of

the transformed coefficients are needed to represent it. The new theory of compressive

1The readers are referred to [3–5] and the references therein for a more general study of CS.
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sampling, on the other hand, allows us to sense the signal in a compressed manner to

begin with. Consider a scenario where we are interested in recovering a vector x ∈ R
N .

For 2D signals, vector x can represent the columns of the matrix of interest stacked up to

form a vector. Let y ∈ R
K where K � N represent the incomplete linear measurement

of vector x obtained by the sensors. We will have

y = Φx, (3.1)

where we refer to Φ as the observation matrix. Clearly, solving for x based on the obser-

vation set y is an ill-posed problem as the system is severely under-determined (K � N).

However, suppose that x has a sparse representation in another domain, i.e. it can be

represented as a linear combination of a small set of vectors:

x = ΓX, (3.2)

where Γ is an invertible matrix andX is S-sparse, i.e. |supp(X)| = S � N where supp(X)

refers to the set of indices of the non-zero elements of X and | · | denotes its cardinality.

This means that the number of non-zero elements in X is considerably smaller than N .

Then we will have

y = ΨX, (3.3)

where Ψ = Φ × Γ. If S ≤ K and we knew the positions of the non-zero coefficients of

X , we could solve this problem with traditional techniques like least-squares. In general,

however, we do not know anything about the structure of X except for the fact that it is

sparse (which we can validate by analyzing similar data). The new theory of compressive

sensing allows us to solve this problem.

Theorem 1 (see [3] for details and the proof): IfK ≥ 2S and under specific conditions,

the desired X is the solution to the following optimization problem:

min||X||0, such that y = ΨX, (3.4)
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where ||X||0 = |supp(X)| represents the zero norm of vector X .

Theorem 1 states that we only need 2 × S measurements to recover X and therefore

x fully. This theorem, however, requires solving a non-convex combinatorial problem,

which is not practical. For over a decade, mathematicians have worked towards developing

an almost perfect approximation to the �0 optimization problem of Theorem 1 [71, 72].

Recently, such efforts resulted in several breakthroughs.

More specifically, consider the following �1 relaxation of the aforementioned �0 opti-

mization problem:

min||X||1, subject to y = ΨX. (3.5)

Theorem 2: (see [3], [4]) Assume that X is S-sparse. The �1 relaxation can exactly

recover X from measurement y if matrix Ψ satisfies the Restricted Isometry Condition for

(2S,
√
2− 1), as described below.

Restricted Isometry Condition (RIC) [5]: Matrix Ψ satisfies the RIC with parameters

(Z, ε) for ε ∈ (0, 1) if

(1− ε)||c||2 ≤ ||Ψc||2 ≤ (1 + ε)||c||2 (3.6)

for all Z-sparse vector c. The RIC is mathematically related to the uncertainty principle

of harmonic analysis [5]. However, it has a simple intuitive interpretation, i.e. it aims at

making every set of Z columns of the matrix Ψ as orthogonal as possible. Other conditions

and extensions of Theorem 2 have also been developed [73,74]. While it is not possible to

define all the classes of matrices Ψ that satisfy RIC, it is shown that random partial Fourier

matrices [75] as well as random Gaussian [76]- [77] or Bernoulli matrices [78] satisfy RIC

(a stronger version) with the probability 1− O(N−M) if

K ≥ BMS × logO(1)N, (3.7)

where BM is a constant, M is an accuracy parameter and O(·) is Big-O notation [3]. Eq.

3.7 shows that the number of required measurements could be considerably less than N .
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While the recovery of sparse signals is important, in practice signals may rarely be

sparse. Most signals, however, will be compressible, i.e. most of the energy of the signal

is in very few coefficients. In practice, the observation vector y will also be corrupted

by noise. The �1 relaxation and the corresponding required RIC condition can be easily

extended to the case of noisy observations with compressible signals [79].

3.1.1 Reconstruction Approaches

Basis Pursuit (BP): Reconstruction Using �1 Relaxation

The �1 optimization problem of Eq. 3.5 can be posed as a linear programming prob-

lem [80]. The compressive sensing algorithms that reconstruct the signal based on �1

optimization are typically referred to as “Basis Pursuit” [4]. Reconstruction through �1

optimization has the strongest known recovery guarantees [5]. However, the computa-

tional complexity of such approaches can be high. The �1 magic toolbox [81] provides

several optimization tools for solving the aforementioned �1 relaxation and its variations.

The computational complexity, however, can be high, especially when dealing with real

data. SPARSA [82], GPSR [83] and AC [84] are a few examples of the continuing attempts

to reduce the computational complexity of the convex relaxation approach. Overall, we

found SPARSA to be more computationally efficient yet effective in solving this problem

and we will use it in the subsequent chapters.

Matching Pursuit (MP): Reconstruction using Successive Interference Cancellation

[5, 85, 86]

While the �1 relaxation of the previous part can solve the compressive sampling problem

with performance guarantees, its computational complexity can be high, as mentioned

above. Alternatively, there are greedy approaches that can solve the compressive sampling
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problem more efficiently, at the cost of a (possibly slight) loss of performance. Next, we

summarize such approaches.

The Restricted Isometry Condition implies that the columns of matrix Ψ should have

a certain near-orthogonality property. Let Ψ = [Ψ1Ψ2 . . .ΨN ], where Ψi represents the ith

column of matrix Ψ. We will have y =
∑N

j=1ΨjXj , where Xj is the j th component of

vector X . Consider recovering Xi:

ΨH
i y

ΨH
i Ψi

= Xi︸︷︷︸
desired term

+
N∑

j=1,j �=i

ΨH
i Ψj

ΨH
i Ψi

Xj

︸ ︷︷ ︸
interference

. (3.8)

If the columns of Ψ were orthogonal, then Eq. 3.8 would have resulted in the recovery

of Xi. For an under-determined system, however, this will not be the case. Then there

are two factors affecting recovery quality based on Eq. 3.8. First, how orthogonal is the ith

column to the rest of the columns and second how strong are the other components ofX . In

other words, it is desirable to first recover the strongest component ofX , subtract its effect

from y, recover the second strongest component and continue the process. Orthogonal

Matching Pursuit (OMP) iteratively multiplies the measurement vector, y, by ΨH , recovers

the strongest component, subtracts its effect and continue again [85]. Let Iset denote the set

of indices of the non-zero coefficients ofX that is estimated and updated in every iteration.

Once the locations of the S nonzero components of X are found, we can solve directly for

X by using a least squares solver: X̂ = argmin
X : supp (X)=Iset

||y − ΨX||2. A variation of OMP,

Regularized Orthogonal Matching Pursuit (ROMP), was later introduced by Needell et

al. [5]. The main difference in ROMP as compared to OMP is that in each iterative step, a

set of indices (locations of vector X with non-negligible components) are recovered at the

same time instead of only one at a time, resulting in a faster recovery [5].
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Reconstruction using Total Variation Minimization

In our case, we are interested in reconstructing an obstacle map. Thus, the spatial vari-

ations of the map (gradient) are also considerably sparse. In such cases, another re-

lated sparsity-based reconstruction approach is to use the sparsity in the gradient [3],

[81], [87]. Let f = [fi,j] denote an m × m matrix that represents the spatial function

of interest. Define the following operators: Dh,i,j(f) =

⎧
⎨

⎩
fi+1,j − fi,j i < m

0 i = m
and

Dv,i,j(f) =

⎧
⎨

⎩
fi,j+1 − fi,j j < m

0 j = m
. Then, the Total Variation (TV) function is defined

as follows:

TV(f) =
∑

ij

‖Di,j(f)‖, (3.9)

where Di,j(f) = [Dh,i,j(f) Dv,i,j(f)], and the ‖.‖ operator can either represent the �1

norm, corresponding to the anisotropic discretization of TV, or the �2 norm, corresponding

to the isotropic discretization of TV. TV minimization approaches then solve the following

problem or a variation of it:

min TV(f), subject to y = Ψf ×X, (3.10)

where X is a column vector that results from stacking up the columns of matrix f , and y

is the observation vector, which is linearly related to X through matrix Ψf . In [88], the

authors show that solving Eq. 3.10, based on both isotropic and anisotropic TV, results

in a similar reconstruction. We have also observed that at the low sampling rates used in

this dissertation, anisotropic and isotropic TV yield very similar results, in terms of speed

of convergence and reconstruction quality. Consequently, unless we specifically indicate

otherwise, the results of this dissertation are based on using anisotropic TV.

The concept of Total Variation was first introduced in [89] for image denoising. TV

minimization is a variant of �1 relaxation that tends to give sharper results on certain types
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Figure 3.1: An indoor obstacle map with the obstacles marked in white and the illustration
of the proposed compressive cooperative mapping using coordinated (left) and random
(right) wireless measurements.

of signals [90], and is effective in restoring signals that have staircase characteristics [91].

Thus, it is especially appropriate for the recovery of obstacle maps since the borders,

separating different objects, result in sharp discontinuities. Recently, TVAL3 (TV Min-

imization by Augmented Lagrangian and Alternating Direction Algorithms) is proposed

for solving the TV minimization problem efficiently and robustly, which we will use ex-

tensively in this dissertation [87].

3.2 Compressive Wireless-based Obstacle Mapping [6–8]

Let an obstacle map refer to a 2D (or 3D) map of the environment, where we have zeros

at locations where there is no obstacle and non-zero values at obstacle locations. Each

non-zero value could be the decay rate of the wireless signal within the object at that

location. Let g(u, v) then represent a binary obstacle map at position (u, v) for u, v ∈ R.

We consider building a 2D map of the obstacles in this work. For instance, for real 3D

structures, we reconstruct a horizontal cut of them, as shown in Section V. It should be
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noted that our proposed approach can also be easily extended to 3D maps. Figure 3.1

(both left and right) shows a sample 2D map where a number of vehicles want to map the

space before entering it. We will have

gn(u, v) =

⎧
⎨

⎩
1 if (u, v) is an obstacle

0 else
(3.11)

Consider communication from Transmitter 1 to Receiver 1, as marked in Fig. 3.1 (left). As

we showed in Chapter 2, a wireless transmission can be degraded by several factors [1],

namely path loss, shadowing and small-scale fading. Since shadowing is caused by block-

ing objects, each obstacle along the transmission path leaves its mark on the received signal

by attenuating it to a certain degree characterized by its properties. A communication from

Transmitter 1 to Receiver 1 in Fig. 3.1 (left), therefore, contains implicit information of the

obstacles along the communication path. Consider the dashed ray (line) that corresponds

to distance t and angle θ in Fig. 3.1 (left). This line is at distance t from the origin and

is perpendicular to the line that is at angle θ with the x-axis. Let P (θ, t) represent the

received signal power in the transmission along the ray that corresponds to distance t and

angle θ, as shown in Fig. 3.1 (left). We will have [1, 92, 93],

P (θ, t) = Ps(θ, t)ω(θ, t), (3.12)

where

Ps(θ, t) =
βPT(
d(θ, t)

)η
︸ ︷︷ ︸

path loss

× e
∑

i ri,obj(θ,t)αi,obj(θ,t)︸ ︷︷ ︸
shadowing due to obstacles

(3.13)

represents the contribution of distance-dependent path loss and shadowing. For the path

loss term, PT represents the transmitted power, d(θ, t) is the distance between the trans-

mitter and receiver across that ray, η is the degradation exponent and β is a constant that is

a function of system parameters. For the shadowing (or shadow fading) term, ri,obj is the

distance travelled across the ith object along the (θ, t) ray and αi,obj < 0 is the decay rate

of the wireless signal within the ith object. Furthermore, the summation is over the objects
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across that line. As can be seen, shadowing characterizes wireless signal attenuation as it

goes through the obstacles along the transmission path and therefore contains information

about the objects along that line. As we saw in Chapter 2, it is also common to character-

ize the shadowing term probabilistically, using a lognormal distribution [1]. However, the

model of Eq. 3.13 is more suitable for our proposed obstacle mapping framework.

ω(θ, t) of Eq. 3.12, on the other hand, is a positive random variable with unit average,

which models the impact of multipath fading. As discussed in Chapter 2, Nakagami power

distribution or its special cases such as Rician power or exponential are common models

for the distribution of ω(θ, t).2 We can then model lnP (θ, t) as follows

lnP (θ, t) = lnPT︸︷︷︸
transmitted power in dB

+ βdB − ηlnd(θ, t)︸ ︷︷ ︸
path loss (≤0)

+
∑

i

ri,obj(θ, t)αi,obj(θ, t)

︸ ︷︷ ︸
shadowing effect due to blocking objects (≤0)

+ ωdB(θ, t),︸ ︷︷ ︸
multipath fading

(3.14)

where βdB = lnβ and ωdB(θ, t) = lnω(θ, t). Then we have

h(θ, t) � lnP (θ, t)− lnPT −
(
βdB − ηlnd(θ, t)

)

=
∑

i

ri,obj(θ, t)αi,obj(θ, t)

︸ ︷︷ ︸
shadowing effect

+ ωdB(θ, t)︸ ︷︷ ︸
multipath fading

. (3.15)

Path loss and shadowing represent the signal degradation due to the distance travelled and

obstacles respectively and ωdB(θ, t) represents the impact of multipath fading. By using an

integration over the line that corresponds to θ and t, we can express Eq. 3.15 as follows:

h(θ, t) =

∫ ∫

line (θ,t)

g(u, v)dudv + ωdB(θ, t), (3.16)

2Rician is a possible distribution for
√
ω(θ, t). Thus we use the term “Rician power” to refer

to the corresponding distribution for ω(θ, t).
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where

g(u, v) =

⎧
⎨

⎩
α(u, v) if gn(u, v) = 1

0 else
, (3.17)

with gn(u, v) representing the binary map of the obstacles (indicated by Eq. 3.11) and

α(u, v) denoting the decay rate of the signal inside the object position (u, v). g(u, v) then

denotes the true map of the obstacles including wireless decay rate information. As can

be seen, h(θ, t), obtained through wireless measurements, contains implicit information

on the obstacle map.3 This is the foundation of our wireless-based obstacle mapping

framework. More specifically, we show different ways of extracting the obstacle map

from a small number of wireless measurements, as we shall see in the next section.

3.3 Different possibilities for compressive sampling and

reconstruction

In this section, we further present the details of our framework for compressive obstacle

mapping, using wireless measurements [6–8]. More specifically, we discuss different pos-

sibilities in terms of 1) sampling, 2) sparsity domain and 3) reconstruction technique. A

summary of our proposed framework is shown in Fig. 3.2. Note that not all the combi-

nations of the figure result in a proper problem formulation, as we shall discuss in this

chapter.

3In practice, path loss component of Eq. 3.13 can be estimated by using a few Line Of Sight
(LOS) transmissions in the same environment as we showed in Chapter 2. Therefore, its impact
can be removed and the receiving robot can calculate h(θ, t).
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Elements of Compressive Cooperative Obstacle Mapping

 sampling sparsity
domain
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space wavelet space
TV

Basis
Pursuit 
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frequency coordintated
space

random
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Figure 3.2: Elements of our proposed framework for compressive cooperative obstacle
mapping.

3.3.1 Frequency Sampling using Coordinated Wireless

Measurements

In this section, we present our obstacle mapping approach that is motivated by computed

tomography approaches in medical imaging [94], geology [95], and computer graph-

ics [96]. Consider Fig. 3.1 (left), where pairs of robots are making coordinated wireless

measurements. Consider the illustrated line at angle θ that passes through the origin. Out-

side the structure, two robots can move parallel to this line, in a coordinated fashion, such

that a number of wireless channel measurements are formed at different ts. By changing t

at a specific θ, a projection is formed (P (θ, t) for a set of ts), i.e. a set of ray integrals, as

is shown in Fig. 3.1 (left).

Let Gf (θf , f) represent the 2D Fourier transform of g, expressed in the polar coor-

dinates, where θf is the angle from the x-axis and f is the distance from the origin.

Let Ht(θ, f) denote the 1D Fourier transform of h(θ, t) with respect to t: Ht(θ, f) =
∫
h(θ, t)e−j2πftdt. The following theorem allows us to sample the frequency response of

the 2D obstacle map, using a projection, i.e. based on the coordinated wireless measure-

ments.
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Fourier Slice Theorem: Consider the case where there is no multipath fading in Eq.

3.16, i.e. ωdB = 0. Then Ht(θ, f), the Fourier transformation of h(θ, t) with respect to t,

is equal to the samples of Gf(θf , f) across angle θf = θ.

Proof: See [94].

By making a number of measurements at different ts for a given θ, the Fourier Slice

Theorem allows us to measure the samples of the Fourier transform of the map at angle θ.

By changing θ, we can sample the Fourier transform of the obstacle map at different an-

gles. We can then pose the problem in a compressive sampling framework. By measuring

the received signal power across a number of rays, the vehicles can indirectly sample the

Fourier transformation of the obstacle map. Then the sparsity in the space, space TV or

wavelet domain could be used for reconstruction, as explained next.

Reconstruction using the Sparsity in Space or TV

Let VGf
denote the vector representation of the discrete version of Gf (2D Fourier trans-

form of the obstacle map), where the columns are stacked up to form a vector. Let yf

represent the very few samples of Gf acquired using the proposed framework, i.e. wire-

less channel measurements across a number of coordinated rays and applying the Fourier

Slice Theorem.4 We have,

yf = ΦptVGf
and VGf

= ΓfVgs ⇒ yf = Ψf,sVgs

Fourier Sampling and space or TV sparsity, (3.18)

4We assume equally-spaced spatial samples across each angle θ.

40



Chapter 3. Wireless-Based Compressive Cooperative Obstacle Mapping

where Φpt is a point sampling matrix:

∀i 1 ≤ i ≤ K, ∃j 1 ≤ j ≤ N such that Φpt(i, j) = 1 and

∀i 1 ≤ i ≤ K, ∀ j �= j′, 1 ≤ j, j′ ≤ N,

if Φpt(i, j) = 1→ Φpt(i, j
′) = 0, (3.19)

withK andN denoting the sizes of yf and VGf
respectively. MatrixΦpt represents a matrix

with only one 1 in every row. If there are redundant measurements, there may be more

than one 1 in every column. Otherwise, there will be at most one 1 in every column. Let gs

represent the discrete obstacle map. Then, Vgs denotes the vector representation of gs and

Γf is the Fourier transform matrix, such that when applied to a vector that is formed by

stacking the columns of a 2D map, it results in the vector representation of the 2D Fourier

transform of the map. Then Ψf,s � Φpt × Γf . Such matrices meet the RIC condition, as

shown in [75]. Eq. 3.18 can then be solved by any of the compressive sensing approaches

of the previous section (BP or MP). Alternatively, we can consider the sparsity in the Total

Variation of Vgs . In the next chapter, we show the underlying tradeoffs between these

approaches.

Reconstruction using the Sparsity in the Wavelet Domain

Typically, an obstacle map is also considerably sparse in the wavelet domain, as we shall

see later in this section. Let Gw represent the 2D wavelet transform matrix of the discrete

obstacle map gs. We have,

yf = ΦptVGf
and VGf

= ΓwVGw ⇒ yf = Ψf,wVGw

Fourier sampling and wavelet sparsity, (3.20)

where Γw = Γf × W−1 with W representing a 2D wavelet matrix such that when

applied to a vector that is formed by stacking the columns of a 2D map, it results in the

vector representation of the 2D wavelet transform of the map. We have Ψf,w � Φpt × Γw.
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Impact of Non-ideal Frequency Sampling

So far, we discussed sampling in the frequency domain using Fourier Slice Theorem.

However, this theorem is for the case where we have continuous signals. For the case

of a sampled signal (which is the case with our obstacle mapping), the theorem becomes

an approximation. The quality of the approximation will then depend on the resolution

of the sampled 2D signal and projections. We use the term non-ideal frequency sampling

to differentiate this realistic case from the case where the frequency samples are ideally

available through Fourier Slice Theorem. Let g(θ, t), Gf (θ, f), h(θ, t) and Ht(θ, f) be

the continuous signals, expressed in polar coordinates, as defined in the previous sections.

Let hs(θ, t) represent samples of h(θ, t), acquired through wireless measurements at step

intervals of Δ: hs(θ, t) =
∑

n h(θ, t = nΔ)δ(t − nΔ), where δ(.) is the impulse func-

tion. Let Ĥt(θ, f) represent the Fourier transformation of this sampled signal. We have

Ĥt(θ, f) =
∑

n h(θ, t = nΔ)e−j2πfnΔ = 1
Δ

∑
nHt(θ, f − n

Δ
). Thus, to prevent aliasing,

we need Δ ≤ 1
2Ωf,θ

, where Ωf,θ is the bandwidth of the corresponding continuous func-

tion at that angle (h(θ, t)). Similarly, let gs denote the sampled version of g, using a 2D

impulse train. We have Ĝf(fi, fq) =
∑

n

∑
m g(i = nΔ, q = mΔ)e−j2πnΔfi−j2πmΔfq =

1
Δ2

∑
n

∑
mGf(fi − n

Δ
, fq − m

Δ
), where Ĝf(fi, fq) is the Fourier transformation of gs,

expressed in the Cartesian coordinates and g(i = nΔ, q = mΔ) is the original map calcu-

lated at the inphase and quadrature components of nΔ and mΔ respectively. In order to

prevent aliasing, we need Δ ≤ 1
2Ω

, where Ω represents the bandwidth of the continuous

2D obstacle map.

Wireless measurements will result in measuring Ĥt(θ, f). Then, that is related to the

2D Fourier of the sampled 2D map through approximation, using the Fourier Slice Theo-

rem: Ĥt(θ, f) ≈ Ĝ(θ, f) for samples of f ∈ [−1
2Δ
, 1
2Δ

)
. Since the map (and any projection)

is space-limited, it can not be bandlimited and as such, there will always be aliasing. Then,

the smaller Δ is, the better the quality of this approximation will be. For instance, Eq. 3.18

is written under the assumption that aliasing is negligible. In the next chapter, we show
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the impact of non-ideal frequency sampling on mapping quality.

3.3.2 Coordinated Wireless Measurements and Space Sampling

In Section 3.3.1, we used coordinated wireless measurements in order to sample the

Fourier transform of the map. Another option is to use the coordinated measurements

for direct space sampling. Let vector yc denote the vector of the gathered samples of

h(θ, t) of Eq. 3.15, using coordinated measurements. We have

yc = ΨcX + e coordinated space sampling and TV sparsity, (3.21)

where e models the impact of multipath fading and measurement noise. In each row of

Ψc, the non-zero elements correspond to the obstacle map pixels that the corresponding

ray visited, with each non-zero value indicating the distance travelled in the corresponding

pixel.5 This matrix may not have good RIC properties, which can result in a poor perfor-

mance if we use sparsity in the space domain (same is the case for the formulation in the

wavelet domain). As such, a better way of solving for the obstacle map based on Eq. 3.21

is by using the sparsity in TV.

We know from the compressive sampling literature, especially in the context of �0 and

�1 optimization problems, that a minimum number of measurements is needed to find the

correct solution. For our TV-based coordinated obstacle mapping approach, we can easily

see this with a counter example.

Definition 1 - Horizontal Wall Map: We define a Horizontal Wall Map as a discretized

obstacle map f of size m × m pixels where a homogeneous horizontal wall of length p

pixels, for 2 ≤ p < m, is placed along the kth row of f , with no obstacles anywhere else.

5We can also approximate the distance travelled in each pixel by the size of a side of a pixel as
long as the designated resolution of the map is not too low. This can simplify our modeling and
reconstruction, which is what we do in the next chapter.
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Lemma 1: Consider the case where e = 0. The TV minimization of the spatial

variations of the obstacle map based on the coordinated wireless measurements yc =

Ψc×X+e, may not result in the correct solution if the number of gathered measurements

is too low or the sampling motion angles are not chosen properly.

Proof. Consider the scenario where the Horizontal Wall Map is sampled with coordinated

wireless channel measurements along θ = 90◦, such that one measurement is taken along

each of the m rows of f . Without loss of generality, we assume that the decay rate of the

wireless signal inside the obstacle structure is equal to 1, i.e. α = −1 in Eq. 3.17 and fi,j ∈
{0, 1} ∀i, j ∈ Z, 1 ≤ i, j ≤ m. Let X be the vector representation of the discrete obstacle

map f . Also let Ψ90 denote the corresponding measurement matrix and y90 represent the

resulting measurement vector. We have the following minimization problem:

min TV(f), subject to y90 = Ψ90 ×X. (3.22)

Let [y90]i be the ith component of y90. Note that [y90]i = 0 ∀i �= k, and [y90]k = p. Thus,

the feasible solutions are such that fi,j = 0 ∀(i, j), i �= k. The TV of the recovered map

can then be characterized as follows where fi,j is the value of the pixel at the ith row and

j th column of f :

TV (f) = 2(fk,1 + fk,2 + . . .+ fk,m)

+|fk,1 − fk,2|+ |fk,2 − fk,3|+ . . .+ |fk,m − fk,1|
= 2p+ |fk,1 − fk,2|+ |fk,2 − fk,3|+ . . .+ |fk,m − fk,1|. (3.23)

It can be seen that for this case, TV (f) is minimized if and only if fk,1 = fk,2 = . . . =

fk,m = p
m

. However, it does not correspond to the original map f where the kth row has

p < m pixels equal to 1 and m− p pixels equal to 0.
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3.3.3 Random Wireless Measurements and Space Sampling

Due to the environmental constraints, it may not always be possible to make coordinated

measurements. For instance, the path where the robots need to move for making coordi-

nated measurements may be partially blocked. In such cases, the robots can make mea-

surements at different θ and t pairs that are chosen randomly, without trying to maintain a

specific pattern. Consider Fig. 3.1 (right), where pairs of robots are making wireless mea-

surements. In this case, we do not assume that the robots are attempting to have a specific

pattern, i.e. the θ and t can be chosen randomly. Similar to the coordinated case, we have,

yr = ΨrX + e random space sampling and TV sparsity, (3.24)

where vector yr denotes the gathered samples of h(θ, t) of Eq. 3.15, using random mea-

surements and Ψr is similar to Ψc, except that in this case it does not have the coordinated

structure. Similar to the previous case, we use the sparsity in the spatial variations (TV)

for map reconstruction.

3.4 Summary

In this chapter, we considered a mobile network that is tasked with building a map of ob-

stacles/objects in an environment, including mapping occluded obstacles. We summarized

our framework for mapping obstacles including occluded ones, based on wireless measure-

ments. In order to limit the number of needed measurements, we made use of compressive

sampling theory. Specifically, we showed how the sparsity of the map in space, wavelet

or spatial variations can be exploited in order to build the map with minimal sensing. Fur-

thermore, we presented two sampling strategies based on random or coordinated wireless

measurements, the latter of which can be used for direct space sampling or sampling of

the Fourier transform of the obstacle map. On the other hand, random wireless measure-

ments are suitable for cases where making coordinated measurements is not possible, such
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as scenarios with environmental constraints. We also discussed different reconstruction

approaches based on Basis Pursuit, Matching Pursuit and Total Variation minimization. In

the next chapter, we will analyze the performance and show the underlying tradeoffs of

these sparsity, sampling and reconstruction approaches. We also show the good perfor-

mance of our framework with both simulations and experiments on our robotic platforms.
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Tradeoffs of Wireless-Based Obstacle

Mapping

In this chapter, we study the performance of our wireless-based compressive obstacle map-

ping framework and show the underlying tradeoffs of different sampling and reconstruc-

tion techniques. We start by discussing the case of ideal sampling in the frequency domain,

using the Fourier Slice Theorem introduced in the previous chapter, and show the tradeoffs

of different reconstruction techniques and sparsity domains. We also compare this sam-

pling strategy with coordinated space and random space sampling. We show that, under

certain conditions, the coordinated approach may perform better than the random case. We

validate our findings analytically, as well as through simulations. Furthermore, using our

experimental robotic platform, we show how to successfully map real obstacles (includ-

ing completely occluded structures) with see-through capabilities, based on only wireless

channel measurements.

We also develop a better understanding of the tradeoffs between the coordinated and

random sampling approaches. It is one of our goals to study whether the coordinated ap-

proach always outperforms the random one and to what extend. We show that the right
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approach for comparing these sampling techniques is to look at this problem from the

perspective of optimizing the number/choice of the angular motion directions. In partic-

ular, random sampling can be considered as an asymptotic case where the total number

of given wireless measurements are randomly distributed over an infinite number of an-

gles. We then establish that the total number of available channel measurements should

be distributed over a small number of angles, that are bigger than or equal to the number

of jump angles of the structure, with a preference given to the angles of jumps. This sug-

gests that the coordinated approach does not necessarily have a better performance than

the random case unless the jump angles are chosen. We also validate these findings with

our experimental setup that can involve environmental constraints.

4.1 Underlying Tradeoffs of different sampling and re-

construction techniques

In this section, we show the performance of our framework for compressive obstacle map-

ping in a simulation environment. We see the underlying tradeoffs of different sparsity

domains, sampling and reconstruction techniques. As mentioned earlier, an obstacle map

is typically considerably sparse in both space and wavelet domains. Furthermore, its spa-

tial variations, measured by its Total Variation (TV), are also considerably sparse. To see

this, Fig. 4.1 (left) shows a T-shaped obstacle map. This is a horizontal cut of a real obsta-

cle (see Fig. 4.7, first row) which we will later use to show the performance of our mapping

framework in reconstructing real obstacles. Fig. 4.1 (center) shows the 2D wavelet trans-

form of the obstacle map, using Haar wavelets. As can be seen, the map is sparse in both

domains, i.e. it can be represented by only a small percentage of the coefficients. More

specifically, in the wavelet domain, this map can be represented with only 1.82% of the

coefficients as compared to 7.52% in the space domain. While it is hard to mathematically

prove the higher sparsity of the wavelet domain for a general obstacle map, our analysis
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of several other obstacle maps consistently asserted this hypothesis.

Alternatively, an obstacle map is also considerably sparse in its spatial variations. For

instance, consider non-zero changes in both x and y directions as Fig. 4.1 (right) shows

for the T-shaped obstacle. Definitely, the number of changes is less than the direct number

of non-zero values in the space domain. It is hard, however, to establish any general com-

parison with the sparsity in the wavelet domain. Our analysis of several maps, however,

shows that utilizing the sparsity in spatial variations results in efficient obstacle mapping,

as we shall explore in this chapter.

Original obstacle map Wavelet transform Spatial Variations

Figure 4.1: A T-shaped obstacle map with the obstacle areas denoted in white, where
100% of the energy is in 7.52% of the space samples (left), its transformed representation
in wavelet domain, where 100% of energy is in less than 1.82% of the coefficients (center),
and its spatial variations (right).

We start by comparing the case of ideal sampling in the frequency domain, using the

Fourier Slice Theorem discussed in the previous chapter. Fig. 4.2 compares the perfor-

mance of different reconstruction techniques (SPARSA, OMP and ROMP) for the case

of frequency sampling when using the sparsity in the space domain. The figure shows

the Normalized Mean Square Error (NMSE) of the reconstruction of the T-shape of Fig.

4.1 (left) as a function of the percentage of the measurements collected in the frequency

domain. Alternatively, the x-axis could be represented in terms of the number of angle

measurements collected.1 For instance, case of one angle indicates that two robots moved

1Throughout the dissertation, we may represent the performance as a function of the sampling
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parallel to each other for only one given angle (θ of Fig. 3.1) and made wireless measure-

ments at different ts along that angle. As a reference point, the case of 12 angles results

in sampling only 9.09% of the Fourier transformation of this map. As such, without the

compressive sensing framework, proper reconstruction would require prohibitive number

of measurements. As can be seen from the figure, the MP approaches perform consider-

ably worse than the BP approach using SPARSA. This is expected as MP approaches are

simpler alternatives (but at the cost of a possible loss of performance) to the original �1

relaxation method. In between MP approaches, OMP performs worse than ROMP as it

is aimed at catching only one non-zero coefficient in every iteration (see Section 3.1.1).

In terms of computational complexity, OMP also takes considerably longer than the other

two approaches, and as such is not a suitable compressive reconstruction technique for

obstacle mapping. While the BP approaches are typically computationally more complex

than ROMP, the recently-proposed SPARSA is very efficient with a computational com-

plexity comparable to ROMP. As such, it is a possible efficient technique for compressive

reconstruction of an obstacle map.

Next, we consider frequency sampling and reconstruction using the sparsity in the

wavelet domain (see Eq. 3.20). We expect to gain a considerable performance improve-

ment as the sparsity in the wavelet domain is noticeably higher than the space domain (see

Fig. 4.1). The solid and dashed curves of Fig. 4.3 compare the performance of SPARSA

reconstruction based on using the sparsity in the space and wavelet domains, respectively.

As can be seen, the performance improves drastically when considering the sparsity in the

wavelet domain. This, however, comes at the cost of a non-negligible increase in com-

putational complexity as the corresponding function handles have to deal with wavelet

transformation.

The last possibility for the case of frequency sampling is to use the sparsity in the spa-

tial variations for reconstruction. The solid-circle curve of Fig. 4.3 shows the performance

rate or the number of utilized angles, depending on the context.
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Figure 4.2: Performance of different reconstruction techniques using the proposed Fourier
sampling and space sparsity approach. As can be seen SPARSA outperforms the MP
approaches considerably. It also has a much less computational complexity as compared
to OMP and a comparable complexity to ROMP.

of this case using TVAL solver. As can be seen, this approach results in further perfor-

mance improvement. Only at considerably high sampling rates, wavelet sparsity approach

outperforms this case. Furthermore, with the newly-proposed TVAL, the computational

complexity of this approach is considerably less than both SPARSA wavelet and space

approaches. We consistently see the aforementioned observations with several other ob-

stacle maps. As such, we find frequency sampling and reconstruction based on spatial

variations a viable candidate for compressive obstacle mapping. Using the sparsity in the

wavelet domain is also another possibility, specially if the computational complexity is not

a concern. Fig. 4.4 compares the reconstructed map for the aforementioned techniques,

for the case where only 9.09% of the 2D Fourier function is sampled using Fourier Slice

Theorem. As can be seen, the TV approach performs the best. This is followed by wavelet

approaches, in particular BP reconstruction with SPARSA. ROMP approach and wavelet
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sparsity can also produce a recognizable map. The ROMP-based space approach, on the

other hand, results in a pointy map as it attempts to directly capture the non-zero space

values.
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Figure 4.3: Performance of different reconstruction techniques using the proposed Fourier
sampling approach. The figure compares the performance of reconstruction based on the
sparsity in space, wavelet and total variation. As can be seen, using the sparsity in the
spatial variations provides the best performance for most part. This is then followed by
using the sparsity in the wavelet domain.

So far, we considered the performance of different reconstruction techniques and spar-

sity approaches for the case of Fourier sampling. Next, we compare the performance

of different sampling techniques, i.e. Fourier, coordinated-space and random-space ap-

proaches. The solid and dashed lines of Fig. 4.5 show the performance of coordinated and

random space sampling approaches respectively, for the obstacle map of Fig. 4.1 (left).

For the coordinated space case, the x-axis can be thought of similar to the frequency sam-

pling case, i.e. coordinated measurements along a number of angles are collected. The

total number of coordinated transmissions/receptions along these angles then results in an
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Figure 4.4: The reconstructed obstacle map for the case of frequency sampling when
only 9.09% of the Fourier function is sampled. The figure compares the performance of
different sparsity/reconstruction techniques.

equivalent percentage of the overall map size in pixels (the quoted sampling rate). Then,

for the random space case, the same number of transmissions/receptions is randomly gath-

ered. This number can also be thought of as an equivalent number of frequency samples

for comparison. As can be seen, the coordinated approach outperforms the random one

considerably for the range of demonstrated sampling rates.

Figure 4.5 also shows the performance with ideal frequency sampling. As can be seen,

if the frequency samples can be selected perfectly, the performance is considerably better

than the space approaches. In reality, however, this will not be the case as we discussed

in Section 3.3.1. In the next section, we show the impact of non-ideal frequency sampling

when dealing with real data. As we shall see, the performance of the frequency sampling
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case becomes comparable to the coordinated space approach for real data.
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Figure 4.5: A comparison of different proposed sampling techniques. All the reconstruc-
tions are with TVAL.

4.2 Cooperative Mapping of Real Obstacles using

our Proposed Framework

In the previous section, we showed the performance of our framework in a simulation

environment. Next, we show its performance in constructing real obstacles, based on very

few wireless measurements. Specifically, we will see that it is indeed possible to map real

obstacles and have see-through capabilities using our framework.

In our experiment, we utilize the robotic testbed described in Section 2.1. There are

two key enabling factors that contribute to the success of our experimental setup: 1) use of

robotic units, which enables automated positioning for collecting wireless measurements
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and 2) use of adaptive directional narrow-beam antennas. The latter is crucial in limiting

the impact of multipath fading, as we showed in Section 2.3. As can be seen from Eq.

3.15, the proposed mapping framework is based on following the shadowing component.

More specifically, the shadowing component carries information on the obstacles, which

we have utilized in our framework. As such, multipath fading appears as additional noise

and can ruin the mapping quality. Therefore, we use adaptive directional antennas with

narrow beamwidth for cooperative obstacle mapping.

We tested our framework outside, where two of our robots made a small number of

wireless measurements cooperatively, in order to build a 2D map of a number of obstacles.

Fig. 4.6 shows our robots making wireless measurements in order to see through the walls

and reconstruct the obstacle. Since our mathematical modeling of a wireless transmission

can not embrace all the propagation phenomena, we do not expect a perfect recovery with

a very small number of wireless measurements in a real environment. However, as long as

the reconstruction is informative, for the cooperative operation of the robots, it could be

considerably valuable.

Figure 4.6: (left) Two pioneer 3-AT robots equipped with our servo control mecha-
nism/fixture and an adaptive narrow-beam directional antenna in action, making wireless
measurements in order to map the obstacle.

In this section, we show the mapping performance for the reconstruction of the three
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obstacles of Fig. 4.7 (left column). Horizontal cuts (2D maps) of these obstacles are shown

in the right column of Fig. 4.7. Our robots then aim at reconstructing these structures,

based on only wireless channel measurements. In this dissertation, we consider recon-

struction in a horizontal plane, i.e. the goal is for the robots to map the horizontal cuts of

Fig. 4.7 (right column).

Figure 4.8 shows the mapping quality as a function of the number of utilized angles. In

this figure, all the reconstructions are based on coordinated space sampling, i.e. two robots

move along a number of angles in parallel, as shown in Fig. 3.1 (left). As we observed from

the previous section, coordinated space or frequency sampling and TV sparsity provided

the best overall performance and computational complexity for most cases. As such, we

used coordinated space sampling, sparsity in the spatial variations (TV) and TVAL for

reconstruction in this figure. Later in this chapter, we discuss the underlying tradeoffs

with other sampling and reconstruction techniques for real data.

The first row of Fig. 4.8 shows the reconstruction of the T-shape structure for different

total number of utilized angles. For each total angle number, uniformly-distributed angles

are chosen. For instance, the first case of four total angles means that the robots made

coordinated wireless measurements, by moving along 4 pairs of parallel lines. These lines

have the angles of 0, 90, 45 and 135 degrees with respect to the x-axis in Fig. 3.1 (left). For

comparison with the previous results, where we discussed the performance as a function

of the percentage of the sampled points, the case of 4 angles is equivalent to the sampling

rate of 3.03%, which is considerably low. As can be seen, by making more coordinated

measurements at 6 angles, the performance improves considerably. The improvement is

slightly less from 6 to 12 angles, as expected. Adding more measurements at a low sam-

pling rate can typically result in a more drastic improvement. Overall, the reconstructions

are noisy as expected, due to several propagation phenomena that our modeling did not in-

clude. However, the T-shape structure, with all its details, can be easily seen. The second

row shows the mapping performance for the column structure of Fig. 4.7. In this case, if
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Figure 4.7: The figures show a T-shaped column, a circular column and a blocked column.
A horizontal cut of these structures are also shown. Our robots aim to reconstruct the
horizontal cut, using our proposed framework.
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only two angles are used, this object will not be fully observable, even if the wireless mea-

surements were perfect with no multipath fading/noise. By not fully-observable, we mean

that some details of the object will not be detectable even in the perfect sampling scenario.

For instance, in the case of 2 angles, this obstacle will be reconstructed as a square in the

best case. For the case of real measurements, as can be seen, our proposed framework tries

to reconstruct a square for the case of two angles. As we increase the number of angles to

4, then the reconstruction attempts to map the curvatures as well. Similar to the previous

case, 4 angles only results in 3.03% sampling rate, which is considerably low. Still, the

structure can be correctly identified in the right location, even with such small number

of measurements. Depending on the application, the robots may not have time to make

several wireless measurements. As such, the capability to identify and map structures with

such small sampling rates is very promising.

Finally, the last row shows the performance in mapping the blocked-column structure

of Fig. 4.7, for 4 and 8 angles. As can be seen, the reconstruction is noisy with 4 angles

while increasing the angles to 8 can considerably improve the mapping quality. It is impor-

tant to note how the robots can see through the walls and correctly map the column inside

for this case. Fig. 4.9 shows the case where a threshold is applied to three of the recon-

structed maps of Fig. 4.7,such that any value that is 10dB below the maximum is zeroed.

This was done because we noticed that there could be scenarios where reconstructed pix-

els with very small values get magnified by some printers or monitors with certain gamma

settings. A simple thresholding can avoid such cases.

So far, we showed the performance of coordinated space sampling in mapping real

obstacles. Next, we consider the performance of the proposed frequency sampling ap-

proach. As we saw from Fig. 4.5, if the frequency samples could be chosen perfectly,

then the frequency approach outperforms any space approach considerably. However, in

reality, there will be a loss of performance due to the fact that Fourier Slice Theorem,

while fully holding for continuous functions or proper sampling of bandlimited signals,
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Figure 4.8: Performance of our proposed framework in mapping three real structures.
The three structures and their horizontal cuts are shown in Fig. 4.7. As can be seen, the
original structures and their details can clearly be seen in our reconstruction although very
few wireless measurements were taken.

becomes an approximation when sampling space-limited signals, as discussed in Section

3.3.1. The quality of this approximation depends on the sampling resolution and the fre-

quency response of the original map. Fig. 4.10 shows the mapping quality of the frequency

approach for two of the structures of Fig. 4.7. As can be seen, the reconstruction quality

is almost the same as that of Fig. 4.8 with coordinated space measurements (we note that

it is not exactly the same). In general, we observed that frequency sampling results in a

reconstruction very similar to the coordinated space approach.
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reconstructed maps
with no thresholding

12 angles

reconstructed maps
after thresholding

4 angles

8 angles

12 angles

4 angles

8 angles

Figure 4.9: Mapping quality after a threshold of 10dB is applied to three of the recon-
structed maps of figure 4.8. The threshold is applied such that any value that is 10dB
below the maximum is zeroed.

4.3 Coordinated or Random Wireless Measurements?

In previous sections, our results suggested that the coordinated sampling approach may

perform better than the random case. It is the goal of this section to thoroughly understand

and compare the performance of these two approaches and 1) better understand if and

to what extent this is correct and 2) validate our findings through experiments with our

experimental robotic setup.
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12 angles 8 angles

Figure 4.10: Performance of the proposed frequency sampling approach. As can be seen,
the reconstruction quality is very similar to that of Fig. 4.8, where coordinated measure-
ments and space sampling were used.

In order to motivate our discussion, we recall the results of Fig. 4.5 for the reconstruc-

tion of the T-shape obstacle of Fig. 4.1 (left) using TV minimization. It can be seen that the

coordinated space outperforms the random space strategy for the demonstrated sampling

rates. However, at extremely low sampling rates (for instance one angle only), the random

approach may outperform the coordinated one depending on the sampling angles. To see

this more clearly, Fig. 4.11 shows the reconstruction of the aforementioned T-shaped ob-

stacle map, for two different sampling rates. The top row shows the reconstruction for the

case where only 0.77% measurements are taken whereas the bottom row shows the recon-

struction quality for the case with 4.6% measurements. For the coordinated case of the top

left figure, all the measurements are made periodically along one angle (θ = 0◦ with the

x-axis in this case) while the right figure corresponds to the case of random measurements,

i.e. the measurements are randomly distributed over a very high number of angles.2 It can

be seen that for the top row, the random projection can provide a recognizable reconstruc-

tion while the coordinated one can not provide any useful information. This makes sense

2Note that for the random case it is not necessary for each angle to have at least one measure-
ment.
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as the coordinated approach makes measurements at only one angle in this case. The ran-

dom approach, on the other hand, samples the map from possibly different views even at

a considerably small sampling rate. If the sampling rate is not extremely small, however,

the coordinated approach can outperform the random one considerably. This can be seen

from Fig. 4.5 as well as from Fig. 4.11 (bottom row), where the coordinated approach can

provide an almost perfect reconstruction with only 4.6 % measurements.

random with 0.77% 
measurements

coordinated with 0.77% 
measurements

random with 4.60% 
measurements

coordinated with 4.60% 
measurements

Figure 4.11: Comparison of our mapping framework in the reconstruction of the T-shaped
structure of Fig. 4.14 at an extremely small (top row) and small (bottom row) sampling
rates in the reconstruction of a T-shaped obstacle, with (left column) random sampling
and (right column) coordinated samples.

To see this in mapping a real obstacle, Fig. 4.12 shows the performance of the random

and coordinated approaches in mapping the T-shape structure of Fig. 4.7, for the case of

one angle for the coordinated sampling (0.77 % sampling rate), as well as for the ran-

dom case, with the same percentage of gathered measurements chosen from the pool of

available coordinated measurements for the case of 12 angles for this structure. As can

be seen, for the case of random sampling, the structure is still visible, albeit very noisy,

whereas with coordinated measurements, the structure is simply not observable at this low
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rate. However, once the structure is sampled from more angles, the coordinated approach

can outperform the random one. It is our goal to better understand and compare the per-

formance of random and coordinated wireless measurement approaches in the rest of this

chapter.

Figure 4.12: Comparison of coordinated and random space sampling approaches in map-
ping a real obstacle at extremely low sampling rates. Both attempt to build the T-shape
structure of Fig. 4.7 with only 0.77% measurements (only one angle for the coordinated
case).

Then, we have the following question: given a total number of possible pair-wise wire-

less measurements, what is the optimum number of angles (optimum in terms of recon-

struction quality) to distribute the measurements over? If the optimum number of angles

becomes very large, then a more randomized strategy becomes appropriate. Before we can

answer this question, however, we need to address the choice of optimum angles.

Optimum strategy for the distribution of the measurements

Consider the case where a pair of robots are making coordinated measurements. For a

given angle θi, we define a set of ordered ts where measurements are taken, as follows:

Ti = {t1(θi), t2(θi), . . . , tNi
(θi)}, where Ni denotes the total number of gathered measure-

ments at angle θi. In this dissertation, we only consider periodic coordinated measure-
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ments with respect to t.3 In other words, we consider the case where the measurements

are such that for all i, the distance Δtj(θi) = tj+1(θi) − tj(θi), for 1 ≤ j ≤ Ni − 1, is a

constant denoted by Δt. Without loss of generality, we assume that tj+1(θi) > tj(θi).

By incorporating a random offset in the range [0,Δt) to the start position of the first

measurement sample along each angle, the case of random sampling can indeed be con-

sidered as a special case of coordinated, when the total number of available measurements

are randomly distributed among an infinite number of angles.

Consider a structure whose layout corresponds to Fig. 4.13 (left), which has walls

laid out along seven different angles. Consider the case where two robots are making

coordinated measurements, along a given number of angles in this environment. If the

robots can freely choose the angles across which to make wireless measurements, then it

is intuitive that the angles that correspond to the directions of the most changes (jumps)

should be sampled first. Fig. 4.13, for instance, shows the case where the robots can make

a given number of wireless measurements across a given number of angles. The figure

shows the impact of choosing some (or all) of the measurement angles to be along the

directions of jumps. It can be seen that as the robots make more coordinated measurements

along the directions of jumps, the performance improves considerably. While proving this

mathematically for a general map is beyond the scope of this dissertation, we provide a

simple proof for the case of Horizontal Wall Map defined previously.

Lemma 2: Consider the Horizontal Wall Map of Definition 1 and the case where e =

0. Then, sampling along the angle where the majority of the jumps occur (θ = 90◦)

provides a better reconstruction quality than sampling along θ = 0◦. Furthermore, if a

binary constraint is enforced in the reconstruction, the samples at θ = 90◦ provide more

information.

Proof. Similar to the proof of Lemma 1 and without loss of generality, we assume that

3The observations are also equally applicable to the case of non-periodic coordinated sampling.
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Figure 4.13: (left) An obstacle map with discontinuities occurring at seven angles,
(middle-left) reconstruction with no measurements along the jump angles, (middle-right)
reconstruction with some measurements along the jump angles and (right) reconstruction
with all the measurements along the jump angles.

the decay rate of the wireless signal inside the obstacle structure is equal to 1, i.e. n =

−1 in Eq. 3.17. Consider the scenario of Lemma 1, where the Horizontal Wall Map is

sampled with coordinated wireless channel measurements along θ = 90◦, such that one

measurement is taken along each of the m rows of f . Let Ψ90 and y90 be as defined in

Lemma 1 for this case. By using the result of Lemma 1, we can calculate the reconstruction

error variance when sampling along θ = 90◦ as follows:

E90 =
( p
m
− 1

)2

p+
p2

m2
(m− p) = p− p2

m
. (4.1)

Next, consider the case where coordinated wireless channel measurements are made

along θ = 0◦, such that one measurement is taken along each column of f . After a few

lines of derivations, we can confirm that we have the following error variance for this case:

E0 =

(
1

m
− 1

)2

p+
1

m2
(mp− p) = p− p

m
. (4.2)

Clearly, E90 < E0.

If we further place a constraint on the TV minimization problem that forces the solu-

tion to be binary for each pixel (this would be the case if we knew n a priori), then the
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solution may not be unique for the aforementioned two cases. In this case, we can further

analyze the amount of information that each of the sampling patterns provides as follows.

Consider a binary map f bin with 0.5 probability of having an obstacle at each of the 2m
2

pixels. Let Xfbin represent the random vector of the stacked columns of the map and also

let Xfbin,θ represent the random vector of the map conditioned on the gathered wireless

measurements along angle θ. We can easily confirm that,

I(Xfbin, Xfbin,θ=90◦) = H(Xfbin)−H(Xfbin|Xfbin,θ=90◦) = m2 − log2

(
m

p

)
, (4.3)

where I andH are the mutual information and the entropy respectively. On the other hand,

if the samples are such that θ = 0◦, then,

I(Xfbin, Xfbin,θ=0◦) = m2 − p log2(m). (4.4)

Since
(
m
p

) ≤ mp

p!
≤ mp, we conclude that I(Xfbin, Xfbin,θ=90◦) ≥ I(Xfbin, Xfbin,θ=0◦).

This observation is important, especially in mapping indoor environments, since there

are typically a small number of jump angles (mainly perpendicular walls). Thus, if the

environmental constraints allow it, then the directions with more jumps should be sampled

first, for the case of coordinated mapping.

Consider the case where the robots can make a given number of coordinated wireless

measurements. We next discuss the optimum number of angles, over which the given

measurements should be distributed. In this way, we also compare the random and coor-

dinated cases. In all these reconstructions, first the angles that correspond to the directions
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of jumps are chosen. The rest of the angles are then chosen so as to make the angle dis-

tribution as uniform as possible, while keeping the previously-chosen angles. Fig. 4.15

shows the mapping performance for the three structures of Fig. 4.14, where a total number

of given measurements are distributed along a variable number of angles. As the num-

ber of angles increases, the randomness of mapping increases as well. As can be seen,

for each structure, there is an optimum number of angles where the coordinated measure-

ments should be distributed. For instance, for the middle and right structures of Fig. 4.14,

the optimum number of angles is 4 whereas it is 10 for the left one.4 The results suggest

that the case of random measurements (equivalent to a very high number of angles) does

not typically provide the best performance. Furthermore, the optimum number of angles is

typically equal to or more than the number of jump angles of the structure. As the structure

becomes more complicated (the left structure of Fig. 4.14), the given samples should be

distributed along more angles. We have consistently observed these behaviors with other

structures.

Figure 4.14: Obstacle maps corresponding to (left) a section of the basement of our build-
ing, (center) a blocked diamond-shaped column and (right) a T-shaped column.

4Note that this is independent of the existence of the column in the left figure, since its contri-
bution to the overall structure is small.
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Figure 4.15: Error curves for the reconstruction quality of the obstacle maps of Fig. 4.14,
using our coordinated approach. As the number of angles increases, the randomness of
mapping increases.

4.3.1 Comparison of the Mapping and See-Through Capabilities of

the Coordinated and Random Cases - An Experimental Test

We next show the performance and see-through capabilities of the two approaches in map-

ping an obstacle structure (that includes an occluded part). Figure 4.16 (left) shows a

structure, with its horizontal cut shown in the center figure. For the coordinated case, two

robots make coordinated movements and periodic measurements along lines with angles

0◦, 90◦ (marked on the center figure), 45◦ and 135◦. On the other hand, for the random

case, the transmitting and receiving robots make wireless measurements at random posi-

tions along the dashed lines of Fig. 4.16 (right), while avoiding the cases where both the

transmitting and receiving robots are on the same side of the structure. For the random

case, we consider two scenarios of unconstrained and constrained mapping. In the for-

mer, the robots are free to position themselves anywhere outside of the structure and make

measurements at any position along the dashed lines of Fig. 4.16 (right). In the latter,

however, there are environmental constraints (marked in the right figure) that prevent the
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robots from moving along certain segments of the lines. In order to have a fair comparison,

all the three approaches make the same number of wireless measurements.

environmental
constraints

0°

90°

0°

90°

horizontal
cut

Figure 4.16: (left) An obstacle structure, (center) its horizontal cut and (right) illustra-
tion of the physical constraints that limit the positioning of the robots for the constrained
case. Our robots aim to reconstruct the structure, based on only making a few wireless
transmissions from outside.

Figure 4.17 shows the reconstruction performance for different sampling rates.5 Each

sampling rate denotes the total number of wireless transmissions divided by the size of the

2D map in pixels, as discussed before. The top and bottom rows show the performance

for the two cases of 0.76% and 1.83% sampling rates respectively. The three columns

show the mapping quality for the cases of coordinated, random unconstrained and random

constrained measurements from left to right. As can be seen, the coordinated case, with

measurements along four angles, performs considerably better than the random ones, as

expected from the previous discussions of the dissertation. Even at a very low sampling

rate of 0.76%, the occluded column can be clearly seen, in terms of its position and di-

mension. Furthermore, the random unconstrained case outperforms the constrained one,

as expected. As the number of measurements increases, the reconstruction performance

improves for all the cases. As mentioned earlier, we use anisotropic TV minimization

approach and TVAL3 solver [87] for all these reconstructions. Fig. 4.18 compares the

5A threshold is applied to the reconstructed figures such that any value that is 10dB below the
maximum is zeroed.
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sampling rate needed in order for the random (unconstrained) approach to have a similar

reconstruction quality (same MSE) to the coordinated one. As can be seen, 6.98% more

samples (3.81 times more) need to be gathered for the random case.

Coordinated
with four angles

Random
unconstrained

Random
constrained

0.76 %

1.83 %

Figure 4.17: Comparison of the mapping and see-through capabilities of the coordinated
and random approaches in mapping the structure of Fig. 4.16, using our experimental
robotic platform. The top and bottom rows show the performance for the two cases of
0.76% and 1.83% sampling rates respectively. The three columns show the mapping qual-
ity for the cases of coordinated (along four angles), random unconstrained and random
constrained measurements from left to right. It can be seen that the mapping performance
improves considerably from right to left.

Finally, Fig. 4.19 compares the performance of the coordinated and random approaches

as a function of the sampling rate. The coordinated measurements are made along 0◦,

90◦, 45◦ and 135◦, whereas the random cases make measurements at positions along the

dashed lines of Fig. 4.16 (right), as explained before. As can be seen, the coordinated case

outperforms the random ones.

As we discussed earlier, the performance of the coordinated case depends heavily on
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Coordinated
with four angles

1.83% 6.98 %

Random
unconstrained

Figure 4.18: Reconstruction of the structure of Fig. 4.16, with (left) coordinated sampling
with 1.83% measurements along four angles and (right) random unconstrained sampling
with 6.98% measurements. Both reconstructions result in the same Mean Squared Error
(MSE).

the choice of the sampling angles. In Fig. 4.17, four angles including the jump ones

were sampled, which resulted in the coordinated case performing better than the random

one. However, the random case can perform better if the coordinated case is not sampled

along the jump angles. The next experiment shows this in mapping the structure of Fig.
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Figure 4.19: Error curves for the reconstruction quality of the obstacle map of Fig. 4.16,
using our coordinated approach along four angles and our random approaches. Even at
very low sampling rates, the coordinated approach outperforms the random ones.

71



Chapter 4. Tradeoffs of Wireless-Based Obstacle Mapping

4.16. For the first set of measurements, the robots make measurements along the jump

angles of the outer wall i.e. at 0◦ and 90◦, while for the second set the measurements

are made along 45◦ and 135◦. As can be seen in Fig. 4.20 (center), making coordinated

measurements along the angles that do not correspond to the jump angles does not result in

a useful reconstruction as neither the outer walls nor the occluded obstacle can be correctly

mapped. In contrast, if the jump angles are used, the location of the outer walls can be

correctly detected, as seen in Fig. 4.20 (left). On the other hand, Fig. 4.20 (right) shows

the reconstruction using unconstrained random wireless measurements at the same low

sampling rate used for the coordinated cases (0.76%). As can be seen, the reconstruction

is considerably better than the case of coordinated along 45◦ and 135◦ in Fig. 4.20 (center).

Coordinated along 0° and 90° Coordinated along 45° and 135° Random unconstrained

Figure 4.20: Reconstruction of the structure of Fig. 4.16 with 0.76% measurements, with
(left) coordinated sampling along the jump angles of the outer walls (0◦ and 90◦), (center)
coordinated sampling along 45◦ and 135◦ and (right) random unconstrained sampling. It
can be seen that random sampling can be more informative than coordinated if the structure
is not sampled along the jump angles in the coordinated case.

Practical Issues of Wireless-Based Obstacle Mapping

So far, we established that coordinated sampling, along a small number of angles, provides

a better reconstruction quality and see-through capability, as compared to the random case.

Furthermore, the total number of available channel measurements should be distributed

along a small number of angles (bigger than or equal to the number of jump angles), with
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a preference given to the angles of jumps. This comparison, however, assumes that there

are no environmental, computational or hardware constraints in implementing both ap-

proaches. In case of environmental constraints, the random case has a clear advantage. In

such cases, partial coordinated measurements can be taken, within the limits of environ-

mental constraints, in addition to random measurements. Both the random and coordinated

cases require communication of position information for antenna alignment. Furthermore,

they need narrow beamwidth antennas, to limit multipath fading. The random case, how-

ever, also requires a constant control and adaptation of the antenna angles to maintain the

alignment. Thus, it needs a more advanced hardware. The coordinated case, on the other

hand, requires coordinated movement of the robots. Finally, the computational complexity

of solving for the map is lower, using the coordinated approach. In summary, we envision

that both approaches will be used in practice, depending on the operation environment and

the available hardware/software resources.

4.4 Summary

In this chapter, we discussed the underlying tradeoffs of all the possible sampling, sparsity

and reconstruction techniques of our obstacle mapping framework. We validated the fea-

sibility and good performance of our framework through simulations as well as through

experimental results, where we used our experimental robotic platform to map real ob-

stacles with very few wireless measurements. Our results indicated that the coordinated

space sampling or frequency sampling approaches, along with utilizing the sparsity in total

variations or wavelet result in a good mapping performance. We also showed a thorough

analysis of the performance of the coordinated and random sampling approaches. One

of our goals was to understand and compare the performance of both techniques, using

both simulation and experimental results. We showed that the right way for comparing

the performance of these two sampling patterns is to consider the relationship between the
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reconstruction quality and the angular directions where the map is sampled. More specif-

ically, we established that the total number of available channel measurements should be

distributed over a small number of angles (bigger than or equal to the number of jump

angles of the structure), with a preference given to the angles of jumps. These findings

were also validated by mapping an occluded structure using our robotic testbed.
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Chapter 5

Integrated Wireless and Grid-Based

Obstacle Mapping Framework

So far, we have discussed the underlying tradeoffs of different sampling, sparsity domains

and reconstruction techniques of our wireless-based mapping, and showed its performance

in reconstructing simple occluded structures. In general, however, obstacle mapping of

more complicated structures, solely based on wireless measurements, is extremely chal-

lenging due to all the propagation phenomena. Obstacle mapping based on laser scanner

data, on the other hand, can typically detect the visible objects with a good accuracy but

has no see-through capability. The first goal of this chapter is then to develop an integrated

framework that keeps the benefits of both laser-based (or sonar-based) and wireless-based

mapping approaches for the reconstruction of occluded structures. Our proposed approach

integrates occupancy grid mapping (with known or unknown poses) with compressive

sensing (CS) to fuse the laser and wireless channel measurements. More specifically, laser

measurements are used to map the parts of the environment that can be sensed directly by

the laser scanners of the robots. Based on the partial map built using the laser measure-

ments, we then identify the parts of the environment that can not be mapped efficiently

using the laser scanners (e.g., the occluded parts). These parts are then mapped based on

75



Chapter 5. Integrated Wireless and Grid-Based Obstacle Mapping Framework

our wireless-based mapping framework. Our goal is to enable mapping of occluded struc-

tures that can not be mapped with only laser scanner data or a small number of wireless

measurements.

In previous chapters, we discussed compressive sensing methods based on �1 or TV

minimization. Recently, the compressive sensing problem has been considered from a

Bayesian perspective [97–99]. The goal of Bayesian Compressive Sensing (BCS) is to

reconstruct the signal by using an a prior probability distribution that preserves the spar-

sity [100]. A valuable property of the BCS approach is that it also provides a posterior

belief of the signal of interest (an estimated variance). Therefore, it is possible to calcu-

late a measure of uncertainty for the estimation of each cell, which is not possible using

traditional CS methods. This property of BCS makes it a potential candidate for prob-

abilistic obstacle mapping as it allows for online adaptive data collection. However, the

applicability of BCS approach for see-through mapping of real obstacles, based on wire-

less measurements, has not been studied before. Therefore, the second goal of this chapter

is to develop an integrated grid mapping and BCS approach for mapping of occluded

structures. Along this line, we compare the performance of our BCS-based and TV-based

integrated approaches, using both simulated and real data, and shed light on the underlying

tradeoffs. We then show how the estimated variance of the BCS approach can be utilized

to devise adaptive online data collection strategies that guide the robots to make wireless

measurements at positions that minimize the uncertainty of the estimated map. In general,

the BCS-based mapping approach relies on an initial estimation of the underlying model

parameters, which requires some form of a priori measurements and can be prone to er-

ror propagation. On the other hand, the estimated variance can be informative for adaptive

path planning. Thus, it is worth studying both integrated approaches since a given scenario

may favor one over the other.
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5.1 System model

Consider the case that a workspaceW ⊂ R
2 needs to be mapped by a team of M mobile

robots.1 We discretizeW into n small non-overlapping cells. The map of the workspace

then refers to a binary vector x = [x1, · · · , xn]T, where xk = 1 if there is an obstacle in

the kth cell in the workspace, and xk = 0 otherwise.

As in previous chapters, each mobile node collects wireless channel measurements

by using a wireless communication device (e.g. a IEEE 802.11 WLAN card) along with

adaptive directional antennas. Additionally, each robot is also equipped with laser scanners

in order to collects laser measurements. A schematic of the mapping scenario considered

in this chapter is shown in Fig. 5.1.

TX robot

laser 
scanner

antenna

trajectory of TX robot
discretized workspace

RX robot

trajectory of RX robot

wireless
channel

Figure 5.1: Schematic of the proposed integrated mapping scenario using laser and wire-
less channel measurements.

1Although for our experiments we use only two mobile robots, the proposed mapping frame-
work of this chapter is applicable to more than two robots. We, therefore, introduce our framework
for a team of M robots that cooperate to map the workspace. However, we assume that mea-
surement collection is coordinated (or is done serially) such that different transmissions are not
interfering with each other.
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Note that the trajectories of the robots when taking the laser measurements may not

be the same as their trajectories when taking the wireless channel measurements. In other

words, the laser and wireless channel measurements could be available from two different

sets of trajectories for the robots.

5.1.1 Laser Measurement Model

Let zi,t denote the laser measurement of the ith mobile robot at time step t.2 Furthermore,

let qi,t = (ξi,t, θi,t), for ξi,t ∈ W and θi,t ∈ (−π, π], represent the position and orientation

of the ith mobile robot at time step t when taking the laser measurement. We show by

zt and qt the stacked vectors of zi,t and qi,t of all the robots at time t, respectively. The

stacked vectors of zt and qt from time step 1 to time step t are also shown by z1:t and q1:t,

respectively.

By the laser measurement model, we mean the probabilistic model that relates zi,t,

qi,t to the map x at any time t. In the robotics literature, this model is generally found

empirically and is given in two different ways. The forward measurement model for laser

scanners gives p(zi,t|x, qi,t), i.e., the probability density function (pdf) of zi,t conditioned

on x and qi,t [23]. The reverse measurement model, on the other hand, gives p(xk|zi,t, qi,t),
i.e., the probability of the presence or absence of an obstacle in the k th cell conditioned on

zi,t and qi,t [23]. The probability p(x|zi,t, qi,t) is then calculated assuming independent xk:

p(x|zi,t, qi,t) =
∏n

k=1 p(xk|zi,t, qi,t).

In Section 5.2, we summarize how the forward or reverse measurement models can

be used to calculate the map posterior probability, i.e., the posterior probability of having

an obstacle in each cell, at any time t. The map posterior can then be used to find the

cells that have not been scanned efficiently by the onboard laser scanners of the robots

2For a typical laser scanner (e.g. SICK LMS laser range finders), zi,t is a vector of a fixed
number of scalar range measurements.
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up to time t. After using all the collected laser measurements of the robots, xk for such

cells are estimated based on the wireless channel measurements in our proposed integrated

framework. In this framework, we integrate occupancy grid mapping with Bayesian com-

pressive sensing (BCS) and TV minimization to map the parts of the map that could not

be seen by the laser scanners of the robots. These two methods are explained in Sections

5.3 and 5.4, respectively.

5.1.2 Wireless Channel Measurement Model

In addition to the laser measurements, the robots also take a set of wireless channel mea-

surements. These measurements can be collected while the robots take the laser measure-

ments or after taking the laser measurements along a different set of trajectories. Let yi,j,t

denote the received signal strength indicator (RSSI) measurement between the ith robot

as the transmitter (TX) and the j th one as the receiver (RX) at time t.3 In Eq. 3.14 we

showed an expression for the received signal strength between a wireless transmitter and

a receiver. Here we summarize that discussion. As in Chapter 2, we have the following

expression for yi,j,t, in the dB domain, where we instead use log in base ten [93, 101]:

yi,j,t = βdB,i,j − ηi,j log10
(‖ξi,t − ξj,t‖

)
︸ ︷︷ ︸

path loss

−ψT(ξi,t, ξj,t)α︸ ︷︷ ︸
shadowing

+ ωdB,i,j,t︸ ︷︷ ︸
multipath fading

, (5.1)

where βdB,i,j is the path loss constant and ηi,j is the path loss exponent for the channel

between robots i and j. For the shadowing term, the vector α contains the exponential

decay coefficients of the wireless signal at each cell, i.e. for each cell k, we have αk = 0

if xk = 0, and αk > 0 otherwise. Note that in Chapters 3 and 4, we used α(u, v) to

only denote the decay rate at position (u, v) of the map if there was an obstacle (see Eq.

3.17). We then let Vgs denote the vector representation of the whole discrete map by using

α and adding zeros for the places where there is no obstacle. For the sake of simplicity

3Note that the wireless channel measurements may not be available for every pair (i, j). In
other words, only a subset of robots are typically used for channel measurements.
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of notation, in this chapter, we simply use α to represent Vgs by assuming that α = 0

when there is no obstacle. The kth element of vector ψ(ξi,t, ξj,t) is the distance that the line

segment between ξi,t and ξj,t travels across the kth cell multiplied by log10 e. Finally, the

term corresponding to multipath fading, ωdBi,j,t, can be modeled as a zero-mean random

variable, which is what we will assume henceforth in this chapter.

By subtracting the path loss terms from yi,j,t in (5.1), stacking up all the centered

(unbiased) wireless measurements with an arbitrary order, and flipping the sign, we get

the following:

ỹ = Ψα + ωdB, (5.2)

where ỹ is the stacked vector of the centered RSSI values, Ψ is a matrix with its rows

given by ψT(ξi,t, ξj,t) in the same order as the elements of ỹ, and ωdB is the vector of

zero-mean random variables ωdB,i,j,t. In order to use the BCS method for estimating the

decay coefficients in Section 5.3, we furthermore assume that the elements of ωdB are

uncorrelated Gaussian random variables with the variance of σ2
0 . This implies that the

pdf of ỹ conditioned on α, i.e., p(ỹ|α), can be characterized by a multi-variate zero-mean

Gaussian pdf with covariance matrix σ2
0Inw , for Inw denoting the nw-dimensional identity

matrix and nw representing the number of total wireless channel measurements. In Chapter

2 we used a stationary chunk of our experimental data to show that distributions such as

Nakagami or Rayleigh may better characterize ωdB in non-dB domain [101]. We also saw

that a Gaussian distribution (in the dB domain) can also provide a good enough fit [64]. In

this chapter we assert this with our channel measurements in Fig. 5.2. In this experiment,

we take the RSSI values of the wireless channel measurements between two robots (in

the setup of Fig. 5.1) and subtract the ideal measurements (in dB) to obtain the noise

component as follows: ωdB = ỹ − Ψα. Fig. 5.2 then shows the distribution of this noise,

which confirms that a Gaussian distribution can provide a good enough fit. The mean and

standard deviation of this best fit are μ̂ = 0.22 and σ̂0 = 10.25, respectively.

Note that vector α is related to the binary vector x. It is, however, a real vector as op-
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Figure 5.2: The distribution of the noise (ωdB) of Eq. 5.2 from our experimental data and
the corresponding best Gaussian fit (μ̂ = 0.22 and σ̂0 = 10.25).

posed to a binary one, as it shows the decay coefficients of the cells that contain obstacles.

In Sections 5.3 and 5.4, we show how to estimate α, using BCS and TV minimization

methods. Since the final goal is to estimate the binary vector x, the estimated α is then

passed through a hard-limiter, as we further elaborate in Sections 5.3 and 5.4.

5.2 A Brief Overview of Occupancy Grid Mapping using

Laser Measurements

In the occupancy grid mapping, the goal is to calculate the map posterior probability,

i.e., the probability of having an obstacle (or not) in any cell, conditioned on the laser and

pose/odometry measurements. Depending on whether q1:t is available, the map posterior is

found using two approaches: mapping with known poses and mapping with unknown poses

using SLAM. Next we briefly explain these two approaches. More detailed explanations

can be found in [23, 25, 26].
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5.2.1 Mapping with Known Poses

Assume that xk, for k = 1, · · · , n, are probabilistically independent. Also, assume no prior

knowledge on the existence of an obstacle in each cell, i.e., p(xk = 1) = p(xk = 0) = 1
2
.

In mapping with known poses, the map posterior of interest is p(xk|z1:t, q1:t), which can

be written as follows:

p(xk|z1:t, q1:t) = p(zt|xk, qt)p(xk|z1:t−1, q1:t−1)

p(zt|z1:t−1, q1:t)
,

p(zt|xk, qt) =
M∏

i=1

p(zi,t|xk, qi,t) =
M∏

i=1

p(xk|zi,t, qi,t)p(zi,t|qi,t)
p(xk)

, (5.3)

which results in

p(xk|z1:t, q1:t) =
∏M

i=1 p(xk|zi,t, qi,t)
∏M

i=1 p(zi,t|qi,t)
p(zt|z1:t−1, q1:t)

∏M
i=1 p(xk)

p(xk|z1:t−1, q1:t−1). (5.4)

Let us define ϑk,t � log
(

p(xk=1|z1:t,q1:t)
p(xk=0|z1:t,q1:t)

)
. Using (5.4), we obtain the following recursion:

ϑk,t = ϑk,t−1 +

M∑

i=1

log

(
p(xk = 1|zi,t, qi,t)
p(xk = 0|zi,t, qi,t)

)
−M log

(
p(xk = 1)

p(xk = 0)

)
, (5.5)

with the property that ϑk,0 = log
(

p(xk=1)
p(xk=0)

)
. Since p(xk = 1) = p(xk = 0) = 1

2
, we have

log
(

p(xk=1)
p(xk=0)

)
= 0. Therefore,

ϑk,t =
t∑

τ=1

M∑

i=1

log

(
p(xk = 1|zi,τ , qi,τ )
p(xk = 0|zi,τ , qi,τ )

)
, (5.6)

where p(xk = 1|zi,t, qi,t) = 1 − p(xk = 0|zi,t, qi,t) is given by the reverse measurement

model for the laser scanner. In case only the forward measurement models are available,

(5.6) is calculated by marginalizing the pdf p(zi,t|x, qi,t) as follows:

ϑk,t =

t∑

τ=1

M∑

i=1

log

(∑
x−k

p(zi,τ |qi,τ , x−k, xk = 1)
∑

x−k
p(zi,τ |qi,τ , x−k, xk = 0)

)
, (5.7)

where x−k denotes all the elements of x except xk. Note that the measurement zi,t is

only a function of the cells that fall inside the footprint of the i th laser scanner at time t.
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Therefore, if a cell xk falls outside the footprint of the laser scanner at time t, we have
p(xk=1|zi,t,qi,t)
p(xk=0|zi,t,qi,t) =

∑
x−k

p(zi,τ |qi,τ ,x−k,xk=1)
∑

x−k
p(zi,τ |qi,τ ,x−k,xk=0)

= 1. Finally, the probability of having an obstacle

in each cell k is calculated as follows based on ϑk,t: p(xk = 1|z1:t, q1:t) = 1

e
−ϑk,t+1

.

5.2.2 Mapping with Unknown Poses using SLAM

In case the positions and orientation of the mobile robots are not given, the map posterior

is found using the SLAM algorithm. Given only the laser measurements and the odometry

inputs of the robots, the map posterior of interest is p(x|z1:t, u1:t−1) in this case, where

u1:t−1 is the stacked vector of the odometry inputs of the robots up to time t − 1. We

next briefly summarize how p(x|z1:t, u1:t−1) can be estimated using the well-known Rao-

Blackwell particle filter (RBPF) for SLAM [25]. The RBPF for SLAM works based on

the following factorization:

p(x|z1:t, u1:t−1) =

∫
p(x|z1:t, q1:t)︸ ︷︷ ︸

mapping with known poses

p(q1:t|z1:t, u1:t−1)︸ ︷︷ ︸
localization

dq1:t. (5.8)

This integral is then approximated by the weighted sum of p(x|z1:t, q1:t) for a number of

potential trajectories of the robots. Based on the Markovian property for the dynamical

model of the robots, the pdf p(q1:t|z1:t, u1:t−1) can be written as follows:

p(q1:t|z1:t, u1:t−1) = p(qt|q1:t−1, z1:t, ut−1)p(q1:t−1|z1:t−1, u1:t−2)

=
p(zt|q1:t, z1:t−1)p(qt|qt−1, ut−1)

p(zt|z1:t−1, u1:t−1)
p(q1:t−1|z1:t−1, u1:t−2) (5.9)

In RBPF for SLAM, the potential trajectories of the robots are represented by a number

of particles. For each particle, an individual map posterior is built sequentially based on

the new observations and the pose posterior estimates from the localization part. Assume

L particles are used. Let q[�]t denote the potential position and orientation of the robots at

time t generated by the �th particle. The general form of the RBPF for SLAM is described

by the following four steps [35]:
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1. A proposal distribution π(qt|q[�]1:t−1, z1:t, ut−1) is calculated for each particle �. Then

q
[�]
t is found by sampling from this proposal distribution:

q
[�]
t ∼ π(qt|q[�]1:t−1, z1:t, ut−1).

2. The weights of the particles are calculated as follows: w [�]
t =

p(q
[�]
1:t|z1:t,u1:t−1)

π(q
[�]
1:t|z1:t,u1:t−1)

, which

results in the following recursion for updating the weights based on (5.9):

w
[�]
t ∝

p(zt|q[�]1:t, z1:t−1)p(q
[�]
t |q[�]t−1, ut−1)

π(qt|q[�]1:t−1, z1:t, ut−1)
w

[�]
t−1, (5.10)

for p(zt|q[�]1:t, z1:t−1) given as follows:

p(zt|q[�]1:t, z1:t−1) =
∑

x

p(zt|x, q[�]t )p(x|z1:t−1, q
[�]
1:t−1). (5.11)

The updated weights are normalized such that
∑L

�=1w
[�]
t = 1.

3. The effective number of particles is calculated as Leff,t =
[∑L

�=1

(
w

[�]
t

)2]−1

. If

Leff,t < Lth, for a given threshold Lth, then resampling is performed. This is done by

selecting L particles, with replacement, from the set of all the particles up to time

t, with probability of selection proportional to w [�]
t . The selected particles are given

uniform weights of 1
L

.

4. For each particle, p(x|z1:t, q[�]1:t) is found using mapping with known pose methods

of the previous section. The final map posterior that is reported is then
∑L

i=1w
[�]
t p(x|z1:t, q[�]1:t).

Several proposal distributions have been utilized in the literature. For instance, the

landmark-based FastSLAM 1.0 algorithm uses the motion model as the proposal:

π(qt|q[�]1:t−1, z1:t, ut−1) = p(qt|q[�]t−1, ut−1) [32]. The more updated FastSLAM 2.0 algorithm

uses π(qt|q[�]1:t−1, z1:t, ut−1) = p(qt|q[�]1:t−1, z1:t, ut−1) [33]. An improved RBPF algorithm

for grids called gmapping uses a Gaussian approximation of the observation likelihood as

the proposal distribution [35].
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Note that similar to mapping with known poses, we define the quantity ϑk,t as follows

in this case: ϑk,t � log
(

p(xk=1|z1:t,u1:t−1)
p(xk=0|z1:t,u1:t−1)

)
. This way, ϑk,t represents a measure of certainty

for any cell k at time t, independent of how the map posterior is calculated.

5.3 Integration of Occupancy Grid Mapping and

Bayesian Compressive Sensing (BCS) for Mapping

with See-Through Capabilities

In this section, we explain how the BCS approach can be used to map the portion of the

workspace that cannot be seen by the onboard laser scanners of the robots. BCS uses the

fact that the vector α is sparse in the spatial domain. By applying Baysian filtering methods

and using a prior distribution for α that preserves its sparsity, BCS can effectively estimate

α in places that cannot be seen by the laser scanners. Next we explain this method in more

details.

Consider the partial map found using the laser measurements up to time t (in the middle

or at the end of laser mapping operation). Define the following sets of indices: If �
{
1 ≤

k ≤ n
∣∣ϑk,t ≤ −ϑth

}
, Io �

{
1 ≤ k ≤ n

∣∣ϑk,t ≥ ϑth
}

and Iu �
{
1 ≤ k ≤ n

∣∣|ϑk,t| < ϑth
}

,

where ϑth > 0 denotes a threshold. The sets If and Io correspond to the indices of the

cells that are estimated to be free-of-obstacle or occupied-by-obstacle, respectively. In

other words, we have x̂k = 0 for k ∈ If , and x̂k = 1 for k ∈ Io, where x̂k denotes the

estimate of xk. The cells whose indices are in Iu are the unknown cells which could not be

seen by the laser scanners. Note that laser scanners can typically provide a good mapping

quality and, therefore, every cell k that has been seen by the laser scanner of one of the

robots belongs to either If or Io with a high probability.

Let us rearrange the elements of x as follows: x =
[
xTf xTo xTu

]T
, where xf , xo and
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xu denote the stacked vectors of the elements of x whose indices are in If , Io and Iu,

respectively. Also let x̂f , x̂o and x̂u denote the vectors with the estimates of the elements

of x corresponding to If , Io and Iu, respectively. Since xf and xo are already estimated

well using laser scanners, i.e., the all the elements of x̂f are set to zero and all the elements

of x̂o set to one, the goal is then to estimate xu using wireless channel measurements. Our

strategy consists of two steps:

1. We first estimate the corresponding decay coefficients of the cells in Io and Iu
jointly, based on wireless channel measurements and assuming that decay coeffi-

cients of the cells in If are zero.

2. Using the estimated decay coefficients of the cells in Iu, we set x̂k = 1, for k ∈ Iu,

if the estimated decay coefficient of the kth cell is larger than a threshold αth, and

x̂k = 0 otherwise.

Note that based on only laser measurements, the decay coefficients of the cells in Io are

not known beforehand. We, therefore, need to estimate their decay coefficients together

with the decay coefficients of the cells in Iu in the first step. However, since these cells

are already estimated to be occupied, we do not use their decay coefficients to detect their

occupancy in the second step, i.e. we impose the decision generated by the laser scanner

for these cells.

Similar to vector x, let us also rearrange the elements of the decay coefficient vector α

as α =
[
αT
f αT

o αT
u

]T
. We next show how to estimate αo,u =

[
αT
o αT

u

]T
using wireless

channel measurements and Bayesian Compressive Sensing (BCS). Consider the stacked

vector of the centered RSSI values ỹ in Section 5.1.2. Using the rearranged vector α, we

get

ỹ =
[
Ψf Ψo,u

]
⎡

⎣ αf

αo,u

⎤

⎦ + ωdB ≈ Ψo,uαo,u + ωdB, (5.12)
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where Ψf and Ψo,u are the parts of Ψ corresponding to the elements of αf and αo,u. Note

that we set αf ≈ 0 in (5.12). BCS works based on the assumption that αo,u is sparse, which

is the case for our obstacle mapping. The vector αo,u is then estimated using a maximum

a posteriori (MAP) estimator and by using a prior distribution that preserves the sparsity

of αo,u. Several prior distributions have been proposed in the literature [97–99]. In this

chapter, we assume a zero-mean Gaussian prior for αo,u. Such a prior is very simple to use

and has been shown to achieve a sparse MAP estimate [99]. Conditioned on the channel

measurements ỹ and assuming uncorrelated Gaussian ωdB in (5.12), we have

p(αo,u|ỹ) = p(ỹ|αo,u)p(αo,u)∫
p(ỹ|αo,u)p(αo,u)dαo,u

, (5.13)

where p(ỹ|αo,u) =
1

(2π)
nw
2 σnw

0

exp
(
−‖ỹ−Ψo,uαo,u‖2

2σ2
0

)
,

p(αo,u) =
1

(2π)
no,u

2 |Ro,u|
1
2
exp

(−1
2
αT
o,uR

−1
o,uαo,u

)
, no,u is the number of elements of αo,u and

Ro,u is its covariance matrix. It can be easily shown that the posterior distribution p(αo,u|ỹ)
is also Gaussian in this case, i.e.,

p(αo,u|ỹ) = 1

(2π)
no,u
2 |Σo,u| 12

exp

(
−1
2
(αo,u − α̂o,u)

TΣ−1
o,u(αo,u − α̂o,u)

)
, (5.14)

where

α̂o,u =
1

σ2
0

Σo,uΨ
T
o,uỹ, Σo,u =

(
1

σ2
0

ΨT
o,uΨo,u +R−1

o,u

)−1

. (5.15)

The vector α̂o,u is the MAP estimate of αo,u, which can be similarly partitioned as α̂o,u =
[
α̂T
o α̂T

u

]T
. Here, α̂o and α̂u are the estimated decay coefficients of the cells in Io and Iu,

respectively. Then, for every k ∈ Iu we have x̂k = 1 if α̂k > αth, and x̂k = 0 otherwise.

Note that estimates of σ0 and Ro,u are needed to find the MAP estimate of αo,u in

(5.15) Next, we show how to estimate σ0 and Ro,u based on the channel measurements.

The estimation of σ0 is based on Expectation Maximization as is utilized in the BCS

literature. As for Ro,u, an uncorrelated vector is assumed in the BCS literature. In our

case of wireless-based obstacle mapping, if the spatial correlation is not considered, the

sparsest map may not be the right one. In other words, it is important to consider the spatial
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correlation of the map when reconstructing based on sparse wireless measurements. We

thus next show how we can have an estimate of the spatial correlation of the map.

5.3.1 Estimation of the Hyperparameters

Without loss of generality, we assume that indices of the elements of αo,u are 1, · · · , no,u.

To account for the correlation of the cells, we assume the following form for Ro,u: Ro,u =
(
σo,uσ

T
o,u

) ⊗ So,u, where σo,u = [σ1, · · · , σno,u]
T is the vector of the standard deviations

of the elements of αo,u and So,u is their correlation matrix. In general, finding a good

model for the spatial correlation of the map is challenging due to its sparse structure.

Based on our experience with several maps, an exponential correlation matrix results in

a good reconstruction quality. Thus, we consider the following function in this chapter:

[So,u]k1,k2 = exp
(
−‖ξcm,k1

−ξcm,k2
‖

ζ

)
, for 1 ≤ k1, k2 ≤ no,u. Here, ξcm,k denotes the posi-

tion of the center of the mass of the kth cell. The correlation parameter ζ determines how

correlated the elements of αo,u are.

Note that due to the high quality of laser measurements, the uncorrelated assumption

in laser mapping approach of Section 5.2 does not degrade the map reconstruction perfor-

mance. However, considering the correlation of the cells is important when mapping the

see-through parts of the workspace using the BCS method, as we indicated before.

Based on the proposed model, the hyperparameters to estimate are σ0, · · · , σno,u and

ζ . Our proposed approach for estimating these hyperparameters is summarized into two

steps:

1. Estimate the ζ a priori using a number of sample maps.

2. Estimate σ0, · · · , σno,u using expectation maximization (EM) and based on the esti-

mated ζ from the previous step.
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Next, we explain these two steps in more details.

Estimation of the Correlation Parameter ζ

In general, coming up with an estimate of the spatial correlation of an obstacle map is a

challenging task. In this chapter, we use a set of available obstacle maps to estimate ζ

a priori. This estimate is then utilized in our obstacle mapping with real measurements.

Consider a set X which contains a number of binary maps. For every x ∈ X , define the

set B(x, d) �
{
(k1, k2)

∣∣∣
∣∣‖ξcm,k1 − ξcm,k2‖ − d

∣∣ ≤ ε
}

, for a small ε. The estimation of

correlation at distance d is then given as follows:

γ(d) =

∑
x∈X

∑
(k1,k2)∈B(x,d) ¬(xk1 ⊕ xk2)∑

x∈X |B(x, d)|
, (5.16)

where ⊕ and ¬ denote bitwise exclusive-or and negation. The estimate ζ̂ of ζ is then

calculated by finding the best exponential fit to γ(d) for a given vector of distances D =

[d1, · · · , dM ]T. It can be easily confirmed that ζ̂ = − DTΓ
DTD

, where

Γ =
[
log(γ(d1)), · · · , log(γ(dM))

]T
.

Estimation of σ0, · · · , σno,u using Expectation Maximization (EM)

The EM approach provides an iterative method for estimating σ0, · · · , σno,u and has been

used in the BCS literature. Let us define ρ � (σ0, · · · , σno,u). Also, let

ρ̂τ = (σ̂τ
0 , · · · , σ̂τ

no,u
) represent the estimates of ρ at iteration τ . We then have,

E step: Θ(ρ|ρ̂τ ) = Eαo,u|ỹ,ρ̂τ
{
log

[
p(ỹ|αo,u)p(αo,u)

]}
,

M step: ρ̂τ+1 = argmaxρΘ(ρ|ρ̂τ ). (5.17)
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Let α̂τ
o,u and Σ̂τ

o,u denote α̂o,u and Σo,u in (5.15) when σ0, · · · , σno,u are replaced with

σ̂τ
0 , · · · , σ̂τ

no,u
. After some straightforward calculations, we then have the following:4

Θ(ρ|ρ̂τ ) = −nw log(σ0)− 1

2
log

(|Ro,u|
)− 1

2σ2
0

‖ỹ −Ψo,uα̂
τ
o,u‖2

− 1

2
(α̂τ

o,u)
TR−1

o,uα̂
τ
o,u −

1

2σ2
0

tr
(
ΨT

o,uΨo,uΣ̂
τ
o,u

)− 1

2
tr

(
R−1

o,uΣ̂
τ
o,u

)
+ const.

(5.18)

Maximizing Θ(ρ|ρ̂τ ) as a function of ρ is not straightforward for ζ > 0. At this step, we

sub-optimally assume that ζ is small.5 We can show that for ζ → 0, Ro,u will be diagonal

which results in the following update rules for ρ [99]:

στ+1
0 =

[
1

nw

(
tr

(
ΨT

o,uΨo,uΣ̂
τ
o,u

)
+ ‖ỹ −Ψo,uα̂

τ
o,u‖2

)]1/2

,

στ+1
k =

[[
Σ̂τ

o,u

]
k,k

+
[
α̂τ
o,u

]2
k

]1/2
, k = 1, · · · , no,u. (5.19)

Note that although (5.19) is the true EM update rule, some authors suggested suboptimal

update rules that have a faster convergence rate in the general context of BCS [99]. Al-

gorithm 1 shows the steps involved in estimating the map using our integrated occupancy

grid and BCS method.

5.4 Integration of Occupancy Grid Mapping and Total

Variation (TV) Minimization for Mapping with See-

Through Capabilities

So far we have discussed an integrated BCS and occupancy grid mapping approach for

wireless-based obstacle mapping of hidden objects. In the previous chapters, we have

4Here we have used the fact that for a Gaussian α, with mean α̂ and covariance Σ, we have
E{Rα} = Rα̂ and E{αTRα} = α̂TRα̂+ tr(RΣ), for any positive definite R.

5Although we assume an uncorrelated map for the sake of estimating σ0, · · · , σno,u , the estimate
of ζ of Eq. 5.16 is used when calculating α̂τo,u and Σ̂τ

o,u.
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Algorithm 1: Integrated Occupancy Grid Mapping and BCS for See-Through Map-

ping
Input: z1:t, q1:t (if poses are known) or u1:t−1 (if poses are unknown), ỹ, Ψ, αth, ϑth, τmax,

σinit,comm, σinit,cell, tol, X , ε

Output: Estimate of the binary map x̂ =
[
x̂Tf x̂To x̂Tu

]T

Using z1:t and q1:t (or u1:t−1), calculate ϑk,t, for all k, using the occupancy grid approach of

Section 5.2;

Calculate the set of indices If , Io and Iu and rearrange the elements of x and α accordingly

as x =
[
xTf xTo xTu

]T
and α =

[
αT
f αT

o αT
u

]T
;

Set elements of x̂f to zero and elements of x̂o to one;

Using a set of maps X , calculate ζ̂ using the approach of Section 5.3.1;

Set σ̂00 = σinit,comm and σ̂0k = σinit,cell, for k ∈ 1, · · · , no,u, assuming that the indices of the

elements of αo,u =
[
αT
o αT

u

]T
are 1, · · · , no,u;

for τ ← 0 to τmax do

Calculate α̂τo,u and Σ̂τ by substituting σ̂τ0 , · · · , σ̂τno,u
and ζ̂ in (5.15);

Calculate σ̂τ+1
0 , · · · , σ̂τ+1

no,u
using (5.19) or the suboptimal update rule of [99] with a

better convergence rate;

If max1≤k≤no,u

∣∣∣∣log
σ̂τ+1
k
σ̂τ
k

∣∣∣∣ < tol break;

end

From the most updated α̂τo,u, use α̂τ
u and set x̂u = U(α̂τ

u > αth), where U(.) is the vector

indicator function;

considered a Total Variation framework for wireless-based mapping of hidden objects. In

this section, we discuss how to integrate it with occupancy grid mapping. In the subsequent

sections, we then compare the performance of the integrated occupancy grid/BCS-based

and occupancy grid/TV-based approaches and discuss the underlying tradeoffs. As we

previously discussed, the TV-based approach does not depend on estimating any underly-

ing model parameters or assuming a specific model, which is an advantage over the BCS

approach. However, the estimated variances of the BCS approach can provide a base for
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guiding the robots to the places better for collecting wireless measurements, as we propose

later in Section 5.6. Thus, in this chapter we consider integration based on both approaches

and bring an understanding to the underlying tradeoffs.

We next explain how TV minimization can be used for mapping the portion of the

workspace that cannot be seen by the onboard laser scanners of the robots. Without loss

of generality, assume that the obstacle map of interest is a rectangular map and α is the

vectorized version of the 2D signal that represents the wireless decay coefficients of the

cells on the grid. Using (3.10), we then propose the following integrated approach for

estimating the parts of the map that have not been seen by the laser scanners of the robots:

1. The sets If , Io and Iu are found using the laser measurements and following the

same approach of Section 5.3. We then set x̂k = 0 for k ∈ If , and x̂k = 1 for

k ∈ Io.

2. The laser measurement matrix Ψlas is formed. Each row of Ψlas has n elements and

corresponds to a cell k ∈ If , with its kth element equal to log10 e and the rest of its

n− 1 elements equal to zero.

3. The estimate α̂ of α is then found by solving the following TV minimization prob-

lem using the TVAL3 algorithm:

min
α

TV(α), subject to

⎡

⎣ỹ

0

⎤

⎦ =

⎡

⎣ Ψ

Ψlas

⎤

⎦α. (5.20)

4. For each k ∈ Iu, we then set x̂k = 1 if α̂k > αth, and x̂k = 0 otherwise.
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Algorithm 2: Integrated Occupancy Grid Mapping and TV minimization for See-

Through Mapping
Input: z1:t, q1:t (if poses are known) or u1:t−1 (if poses are unknown), ỹ, Ψ, αth and ϑth

Output: Estimate of the binary map x̂ =
[
x̂Tf x̂To x̂Tu

]T

Using z1:t and q1:t (or u1:t−1), calculate ϑk,t, for all k, using the occupancy grid approach of

Section 5.2;

Calculate the set of indices If , Io and Iu and rearrange the elements of x and α accordingly

as x =
[
xTf xTo xTu

]T
and α =

[
αT
f αT

o αT
u

]T
;

Set elements of x̂f to zero and x̂o to one;

Form the laser measurement matrix Ψlas;

Solve the TV minimization problem of (5.20) using a set of initial values for the Lagrange

multipliers and α (the initial guess for α is usually the least square (LS) solution

α0 =
[
ΨT ΨT

las

]
⎡

⎣ ΨΨT ΨlasΨ
T

ΨlasΨ
T ΨlasΨ

T
las

⎤

⎦
−1 ⎡

⎣ỹ

0

⎤

⎦ ) ;

From the estimated α̂ pick α̂u and set x̂u = U(α̂u > αth), where U(.) is the vector

indicator function;

5.5 Coordinated vs. Random Wireless Channel Measure-

ments

The quality of our wireless-based sampling depends heavily on the positions from which

the map is sampled. In the previous chapters, we proposed two motion sampling strategies

for wireless-based cooperative mapping based on TV minimization, namely coordinated

and random approaches, which we will extensively use for our integrated approaches. Fig-

ure 5.3 summarizes both approaches. The left figure shows the robots making coordinated

wireless measurements at 0◦. The trajectories indicated by the arrows in Fig. 5.3 (left), are

examples of routes where coordinated measurements at angles 0◦ and 90◦ can be taken.

Similar coordinated measurements can be made across any other angle.
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As discussed in Chapter 4, having the robots move in a coordinated way may not

always be possible due to environmental constraints. As such, we also consider a random

measurement case, where the robots make wireless measurements at randomly-chosen

TX-RX positions. Fig. 5.3 (right) shows an example of such a case.

0°0°

90°90°

0°0°

90°90°

TX

RX

TX 1

TX 2

RX 1 RX 2

Figure 5.3: An illustration of wireless-based obstacle mapping with (left) coordinated
wireless measurements and (right) random wireless measurements.

In Chapter 4, we established that in general TV minimization with coordinated mea-

surements provides a better reconstruction quality and see-through capability, as compared

to TV minimization with random measurements, as long as jump angles are sampled.

It now becomes pertinent to understand how BCS compares to TV minimization in the

context of both random and coordinated measurements. We start by comparing the perfor-

mance of our integrated BCS-based and TV-based approaches in a simulation environment

where we can test more scenarios. We then present our experimental results in Section 5.7.

Suppose that a pair of robots are trying to map the structure in Fig. 5.4. For the co-

ordinated case, the robots move periodically along routes outside of the structure. Figure

5.3 (left) shows the routes where the robots move to make measurements along 0◦ and 90◦
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routes. As the number of measurements increases, the robots make measurements along

more angles, which are chosen so as to make the angle distribution as uniform as possible,

while keeping the previously-chosen angles. For the random case, the robots make mea-

surements at random positions along the dashed lines of Fig. 5.3 (right) without following

a specific pattern.

Figure 5.4: An obstacle map with the obstacle areas denoted in white.

In order to motivate our discussion, we start by comparing the performance of these

approaches for a noiseless case, i.e. when ωdB,i,j,t of Eq. 5.1 is equal to zero. In this

example, we assume that the positions of the robots are known at any time and that the

reconstruction is based only on wireless measurements, i.e. no probabilistic grid mapping

is used. We show the results as a function of the wireless sampling rate, where, as before,

each sampling rate denotes the total number of wireless transmissions divided by the size

of the 2D map in pixels. In this example, the size of the map is 64 by 64 pixels and the

following underlying parameters are used: αth = 0.2, σinit,comm = 0, σinit,cell = 1, ζ̂ = 0.2

m, τmax = 150 and tol = 0.001 (see Algorithm 1 for more on tol). We discuss how we

estimate the initial values of the underlying parameters for the BCS approach when we

present our experimental results in Section 5.7.

Figure 5.5 shows the reconstruction using only 10% of measurements. As can be

seen, TV minimization with coordinated measurements results in a perfect reconstruction.

Furthermore, similar to TV minimization, BCS coordinated also has a smaller Normalized
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Mean Squared Error (NMSE) than BCS random. As Fig. 5.6 shows, by increasing the

number of measurements to 15%, a significant increase in the reconstruction quality of

BCS coordinated is observed. For both cases (BCS and TV minimization), the coordinated

approaches outperform the random ones. Furthermore, for the random strategy, BCS has

a better reconstruction quality than TV minimization. Fig. 5.7 confirms the same trend in

the noiseless case, for a range of percentage measurements.

BCS coordinated (NMSE = −5.57093 dB) BCS random (NMSE = −2.45513 dB)

TV coordinated (NMSE = −Inf dB) TV random (NMSE = −0.523881 dB)

Figure 5.5: The reconstruction of the obstacle of Fig. 5.4 using 10% noiseless simulated
measurements.

Next, we consider the impact of noise. As we indicated in the wireless channel mea-

surement model of Eq. 5.12, the elements of ωdB are taken to be uncorrelated Gaussian

random variables with the variance σ2
0 . We furthermore showed that this assumption does

indeed provide a good match with the data obtained using our experimental robotic plat-

form. We next show the effect of such noise in a simulation environment with the same

parameters as before except for: τmax = 500 and σinit,comm = σ0.
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BCS coordinated (NMSE = −11.8105 dB) BCS random (NMSE = −6.10029 dB)

TV coordinated (NMSE = −Inf dB) TV random (NMSE = −3.40257 dB)

Figure 5.6: The reconstruction of the obstacle of Fig. 5.4 using 15% noiseless simulated
measurements.
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Figure 5.7: NMSE versus the percentage of wireless measurements in the noiseless case
for the reconstruction of the obstacle of Fig. 5.4.
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Figures 5.8 and 5.9 show the mapping performance using 15% noisy measurements

with σ0 = 0.1 and σ0 = 0.2 respectively. As can be seen, similar to the noiseless case,

the coordinated approaches provide a better reconstruction quality than the random ones.

Furthermore, TV minimization with random measurements has the worse performance for

these two sample noise variances. Fig. 5.10 then shows the NMSE as a function σ0. It

can be seen that similar trends hold in this figure except at very low values of σ0 where the

random TV starts outperforming the random BCS. However, the reconstruction quality at

such high level of noise may not be acceptable anymore.

BCS coordinated (NMSE = −6.52227 dB) BCS random (NMSE = −1.15823 dB)

TV coordinated (NMSE = −6.7497 dB) TV random (NMSE = 0.992725 dB)

Figure 5.8: The reconstruction of the obstacle of Fig. 5.4 using 15% noisy simulated
wireless measurements (σ0 = 0.1).
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BCS coordinated (NMSE = −3.46787 dB) BCS random (NMSE = 0.767066 dB)

TV coordinated (NMSE = −3.23306 dB) TV random (NMSE = 1.69461 dB)

Figure 5.9: The reconstruction of the obstacle of Fig. 5.4 using 15% noisy simulated
wireless measurements (σ0 = 0.2).

5.6 An Adaptive Data Collection Strategy for Integrated

Obstacle Mapping

So far, we have assumed that the laser and wireless channel measurements are collected

through either random or coordinated motion patterns, without an online optimization of

the data collection process. The trajectories can further be adapted online to better collect

laser or wireless channel measurements based on a feedback from the current mapping

quality. Online motion optimization for occupancy grid mapping, using laser measure-

ments, has been extensively studied in the robotics literature. Examples include next-best-

view (NBF) [102] and frontier-based [103,104] algorithms. However, online motion adap-

tion based on a feedback from the current mapping quality for wireless-based see-through

mapping has not been studied before. In this section, we propose an adaptive strategy for
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Figure 5.10: NMSE versus σ0 for the reconstruction of the obstacle of Fig. 5.4 with 15%
simulated wireless measurements.

collecting wireless channel measurements that aims to improve the see-through perfor-

mance of either BCS or TV minimization methods.

Consider the obstacle-free part of the workspaceWf ⊂ W , estimated using the occu-

pancy grid approach of Section 5.2. Without loss of generality, assume that there exists

only one pair of TX and RX robots. Let P ⊂ Wf denote the set of possible positions

where the robots can be. For instance, P could be the set of positions along the rectan-

gle that surrounds the workspace (see the dashed line of Fig. 5.3 (right) for an example).

Consider the wireless channel measurements available to the robots at time t. These chan-

nel measurements include the channel measurements collected by the robots along their

trajectories up to time t, and possibly a set of a priori channel measurements available at

the beginning of the operation. The idea is to choose the next best positions of the robots

such that the new channel measurement at time t + 1 is the most informative, given the

past measurements.

We specifically propose two adaptive approaches: ad-hoc and variance-based. The

100



Chapter 5. Integrated Wireless and Grid-Based Obstacle Mapping Framework

ad-hoc approach can be used to adaptively collect wireless measurements in both BCS

and TV minimization methods. The variance-based approach, on the other hand, uses the

estimated variance of the BCS case and is therefore only applicable to the BCS method.

Let Ψt denote the measurement matrix found based on the available wireless channel

measurements up to time step t. Also let Ψo,u,t denote the part of Ψt that corresponds to

the occupied and unknown cells whose indices are in the set Io,u, which is given at the end

of the occupancy grid mapping operation. Additionally, let Σ̂o,u,t represent the estimated

covariance matrix Σo,u in the BCS method, calculated based on the available wireless

channel measurements up to time t. The column vector of the diagonal elements of Σ̂o,u,t

is then shown by diag
(
Σ̂o,u,t

)
. At any time t, the set of admissible pairs of positions for

the RX and TX robots is a subset of P × P defined as follows:

Ft �
{
(p1, p2) ∈ P × P

∣∣∣ ‖ξi,t − pi‖ ≤ dmax, i = 1, 2,

dir. antennas can be aligned along L(p1, p2)
}
, (5.21)

where dmax is the maximum step size of the robots and L(p1, p2) denote the line segment

between p1 and p2. Note that due to possible constraints on the rotation of the onboard

antennas of the robots, some of the points may not be feasible and need to be excluded

from the set of admissible points. For any pair of positions (p1, p2) ∈ Ft we then propose

the following ad-hoc and variance-based next position optimization problem:

• Ad-hoc:

(ξ1,t+1, ξ2,t+1) = argmax
(p1,p2)∈Ft

ψT
o,u(p1, p2) exp

(−ΨT
o,u,t1

)
, (5.22)

• Variance-based:

(ξ1,t+1, ξ2,t+1) = argmax
(p1,p2)∈Ft

ψT
o,u(p1, p2)diag

(
Σ̂o,u,t

)
, (5.23)
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where ΨT
o,u,t1 denotes the column vector of the column-sum of matrix Ψo,u,t and

ψo,u(p1, p2) denotes the column vector corresponding to the parts of ψ(p1, p2) that are

in Io,u. The intuition behind the ad-hoc strategy is that the new measurement vector

(ψT(ξ1,t+1, ξ2,t+1)) should have a small correlation with the existing measurement vec-

tors, i.e. rows of Ψt. This will increase the probability that the new wireless measurement

(the line segments between the TX and RX robots) hits the cells that are not yet visited.

We have further found that amplifying the impact of the unvisited cells by using the ex-

ponential function can improve the performance. The ad-hoc strategy (5.22) then chooses

the pair whose connecting line segment passes through the cells that have previously been

visited the least. This strategy can be used with both BCS and TV. The variance-based

optimization function of (5.23), on the other hand, is based on the summation of the vari-

ances of the cells that the new wireless measurement line hits. Thus, the new measurement

line is chosen such that the cells with high variances (high uncertainty) are selected. As

expected, the variance-based approach can be more informative for adaptation, which is

an advantage of using BCS over TV.

Algorithm 3 summarizes our adaptive strategy for collecting wireless channel mea-

surements.

We next show the performance of our online adaption integrated mapping framework

in a simulation environment. Consider the case where the robots are trying to reconstruct

the obstacle map of Fig. 5.4 based on only noiseless wireless measurements. We will show

the performance of the non-ideal case when we discuss our experimental results in the next

section.

Assume that no occupancy grid mapping is performed, i.e. Ψt = Ψo,u,t for all t. For

this example, we let P correspond to a set of discrete positions along the square dashed

line that surrounds the map of interest (see Fig. 5.3 (right)). The size of the map is 64×64

pixels. Thus, we let the admissible positions be evenly distributed along the dashed line

such that card(P) = 256. We also set Ft �
{
(p1, p2) ∈ P × P

}
.
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Algorithm 3: Adaptive Path Planning for our Integrated Obstacle Mapping
Input: toper, P, If , Io, Iu, ỹ0, Ψ0 (a priori wireless channel measurements)

Output: The trajectory of the TX and RX robots as well as an extra set of wireless channel

measurements

for t← 0 to toper do

Estimate the αo,u based on the available wireless channel measurements ỹt and Ψt;

Calculate the admissible set Ft using the current positions of the robots;

Calculate (ξ1,t+1, ξ2,t+1) using either (5.22) or (5.23). The variance-based strategy of

(5.23) uses the current estimate of covariance matrix,Σ̂o,u,t;

Navigate the robots to ξ1,t+1 and ξ2,t+1;

Collect the new wireless channel measurement and add it to ỹt to form ỹt+1. Also, set

Ψt+1 =

⎡

⎣ Ψt

ψT(ξ1,t+1, ξ2,t+1)

⎤

⎦

end

At the beginning of the operation, the robots make a very small number of random

wireless measurements, corresponding to 3% of the map. The reconstruction of BCS and

TV minimization using these initial measurements is shown in Fig. 5.11. For BCS, the

same parameters of the example of Fig. 5.7 is used. The robots then proceed to make

additional wireless measurements based on our online adaptive approach, choosing the

next best positions out of Ft. We assume that dmax is infinite and that any pair of posi-

tions can be selected from Ft. Fig. 5.12 shows the quality of adaptive mapping after 15%

measurements are adaptively collected. As can be seen, the mapping quality has improved

considerably. It can furthermore be seen that, while the ad-hoc methods result in an accept-

able reconstruction quality, the variance-based approach outperforms the adhoc strategies

as expected. Figure 5.13 shows the mapping performance curves as a function of the

percentage of the additional wireless measurements. As can be seen, BCS approaches per-

form better than TV and the variance-based approach outperforms the adhoc one. These

results highlight an advantage of mapping based on BCS by using the estimated variances.
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However, due to the same reason, BCS also requires an initial estimation of the underlying

model parameters, which can make it prone to error propagation.

Original TV minimization (NMSE = 2.00 dB)BCS  (NMSE = 1.65 dB)

Figure 5.11: Initial reconstruction of the obstacle of Fig. 5.4 based on 3% noiseless simu-
lated wireless measurements.

5.7 Experimental Results

So far we have proposed two approaches for integrating occupancy grid mapping (using

laser measurements) with CS mapping (using wireless channel measurements). In this

section, we show the performance of our two approaches in the reconstruction of a real

structure that includes an occluded part. We start by describing the additions we made to

our experimental robotic setup in order to enable our proposed integrated approach.

5.7.1 Summary of the Experimental Setup to Enable our Proposed

Integrated Approach

In Chapter 2, we described our experimental setup, which consisted of Pioneer P3-AT

robots equipped with directional narrow-beam antennas and the corresponding servo

mechanisms for antenna rotation. In order to test our proposed integrated approach, we

equipped each robot with a Hokuyo URG laser scanner which has a maximum range of
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Original

TV ad-hoc (NMSE = −3.38 dB) BCS ad-hoc (NMSE = −6.84 dB)

BCS variance−based (NMSE = −Inf dB)

Figure 5.12: The reconstruction of the obstacle of Fig. 5.4 after 15% additional adaptive
wireless measurements are collected.

5.6 m and a scanning angle of 240◦. Figure 5.14 (left) shows the resulting platform with

the laser scanner and the directional antenna. Figure 5.14 (right) shows the robots making

wireless measurements in order to see through the walls and reconstruct the obstacle inside

while the onboard laser scanners are used to map the portions of the workspace that can

be directly seen by the laser scanners.

In addition to the software package that we developed in order to collect RSSI mea-

surements between the two robots (see Chapter 2 for the details), we have developed an

additional software package for motion planning and occupancy grid mapping using laser

scanners. This second software package is developed in C++ under Linux and makes use

of the Robot Operating System (ROS) [105] for controlling the Pioneer P3-AT platform
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Figure 5.13: MSE as a function of the percentage of the additional wireless measurements
for our adaptive path planning strategy, in reconstructing the whole map of Fig. 5.4 (3%
initial random measurements were used)

.

(using p2os stack), operating the Hokuyo URG laser scanner (using hokuyo node laser

driver) and implementing SLAM (using the gmapping stack). The main application of

this package runs as a ROS node itself and is in charge of controlling the robot, prepro-

cessing the map built by the SLAM algorithm and logging it into a log file in real-time for

postprocessing in MATLAB.

We then implement our integrated framework in MATLAB by using the RSSI data

collected by the robots and the occupancy grid map that is given by the SLAM algorithm

to build the entire map of the structure.
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Figure 5.14: (left) A Pioneer P3-AT robot equipped with our servo control mechanism
/fixture, adaptive narrow-beam directional antenna and Hokuyo laser scanner; (right) two
robots using laser scanners and wireless measurements in order to map an obstacle struc-
ture that includes occluded parts.

5.7.2 Experimental Results for Mapping a Structure with Occluded

Parts

We next show the performance and see-through capabilities of our proposed integrated

approach in mapping an obstacle structure that has occluded parts. Figure 5.15 (left) shows

a structure with its horizontal cut shown in the right figure. First, consider the case where

a robot only uses its laser scanner outside of the structure as far as it can get using the

entrance on the lower right side. In order to avoid the laser scanner falsely detecting the

antenna as an obstacle, we set the gmapping algorithm to discard any laser reading beyond

the range −60◦ to 60◦ (with respect to the robot frame). Fig. 5.16 (b) shows the resulting

generated map. As can be seen, the existence, position and dimensions of the occluded

parts can not be determined by the laser scanner, as expected. Thus, we let the robots do a

few random wireless measurements along the dashed trajectories of Fig. 5.15 (right) and

apply our proposed integrated approach.6 The following parameters are used for the BCS

6Note that the robots make wireless measurements when positioned on the dashed line of Fig.
5.15 (right) in our experiment. If one robot transmits from inside the structure (using the entrance
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case: αth = 7, σinit,comm = 10.34. The rest of the parameters are the same as in Section

5.5. As pointed out before, we estimated ζ by using several existing real maps a priori and

applying Eq. 5.16. We consistently found that BCS is not as sensitive to the initialization

of σinit,cell and therefore we have fixed it to a small value of one. As for σinit,comm, we have

used a priori wireless measurements with other structures that we have constructed in the

past and estimated ωdB by subtracting the impact of the structure to measure samples of

the noise as illustrated in Fig. 5.2. We then calculated the standard deviation of this noise.

Subfigures (e) and (f) of Fig. 5.16 show the performance of our proposed integrated

approach with BCS and TV minimization respectively. As can be seen, even at the very

low sampling rate of 18% of the unknown part, corresponding to 6% of the overall map,

the occluded wall can be clearly seen. The unknown part refers to the area where the laser

scanner can not see the obstacles as marked in Fig. 5.16 (b). 18% wireless measurements

is then the percentage of the wireless measurements as compared to the total number of

pixels of the unknown part. This percentage translates to 6% of the overall map, which

is fairly small. It can be seen that the robots can map the structure with our integrated

approach. Furthermore, it can be observed that random BCS performs better than random

TV as we expected from the simulation results of the previous section. For the sake of

comparison, Fig. 5.16 (c) and (d) show the reconstruction if we only use the collected

wireless measurements (6% wireless measurements), without integration with the laser

scanner data. As can be seen, it is hard to map this structure based on only 6% wireless

measurements that are collected from the dashed line of Fig. 5.15 (right), which motivates

the use of the integrated approach.

We next show the performance of our proposed adaptive exploration strategy of Section

5.6 in an experimental setup. In the previous section we showed through simulations that

an adaptive strategy can improve the wireless-based mapping performance. In addition

to doing SLAM, which yields the reconstruction previously shown in Fig. 5.16 (b), we

on the lower-right corner), better reconstructions can be achieved.
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horizontal 
cut

Figure 5.15: (left) The obstacle structure of interest and (right) its horizontal cut. The
paths where the robots can make random wireless measurements are marked with dashed
lines in the right figure.

let the robots take a very small number of random wireless measurements of 2.7% of the

unknown part, along the dashed trajectories of Fig. 5.15 (right). As can be seen in Fig.

5.17, this does not yield a good enough reconstruction quality, with neither the BCS nor

the TV minimization approaches. The variance of this reconstruction is shown in Fig. 5.18

for the integrated BCS approach. For the BCS case, we use σinit,comm = 10.25 and ζ̂ = 0.1

m. The rest of the parameters are the same as the ones used for Fig. 5.16. Our proposed

variance-based approach then aims at making additional wireless measurements such that

the wireless ray crosses as many cells with high variances as possible. By utilizing our

adaptive strategy, the reconstruction quality is significantly improved, as Fig. 5.19 shows.

Furthermore, we can observe that with the same number of measurements, the variance-

based approach has the best performance (measured by the NMSE), followed by the ad-

hoc based approaches with BCS and TV. Fig. 5.20 shows the variance of the reconstruction

after utilizing the variance-based strategy, which is considerably smaller than that of Fig.

5.18, as expected. Finally, Fig. 5.21 shows the performance of the adaptive approaches

as a function of the percentage of the additional wireless measurements. It can be seen

that the variance-based approach outperforms the ad-hoc ones after a few steps. In this

adaptive experiment, the new pair of TX/RX positions is selected from an existing pool

of available wireless measurements that were made along the dashed trajectories of Fig.
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Original

Integrated approach
with BCS

no
information 

available

Occupancy grid
with laser only

Integrated approach
with TV

(a) (b) (c) (d)

Wireless-based only
with BCS

Wireless-based only
with TV

(f)(e)

Figure 5.16: (a) Horizontal cut of the obstacle map of Fig. 5.15, (b) occupancy grid map-
ping with laser scanners, reconstruction using wireless measurements with (c) BCS and
(d) TV minimization, our proposed integrated framework with (e) BCS and (f) TV mini-
mization. The percentage of wireless measurements is 18% of the unknown part, which
corresponds to 6% of the overall map.

5.15 (right). Both the transmitter and receiver positions are uniformly distributed along the

dashed lines. For each TX/RX pair a wireless measurement is available, while avoiding the

cases where both transmitting and receiving robots are on the same side of the structure.

We assume that dmax is infinite. The next position (ξ1,t+1, ξ2,t+1) is then chosen using

our proposed strategies. Note that random wireless measurements are used for all the

experimental results, as mentioned earlier.

In summary, our experimental results confirmed that the proposed integrated frame-

work can map occluded obstacles based on a small number of wireless measurements and

overcome the deficiencies of both laser-based and wireless-based mapping approaches.

110



Chapter 5. Integrated Wireless and Grid-Based Obstacle Mapping Framework

Furthermore, our adaptive wireless measurement collection can further improve the per-

formance. Finally, both integrated TV and BCS-based approaches provide comparable

reconstruction results, with the BCS-based approach performing better with random mea-

surements and TV-based approach with coordinated measurements. Additionally, the

BCS-based approach can result in a better online adaptation by utilizing the estimated

variance information. However, integrated BCS-based approach requires estimating the

underlying model parameters as compared to the TV-based approach. This needs an initial

estimation of the model parameters, which can be prone to errors. Thus, depending on the

system requirements, the integrated mapping choice that is more suitable can be selected

in practice.

Original
Integrated approach with

BCS (NMSE = 1.86 dB)
Integrated approach with 

TV minimization (NMSE = 1.96 dB)

Figure 5.17: The reconstruction of the obstacle of Fig. 5.15 using laser scanner data and
193 wireless measurements (corresponding to 2.7% of the unknown part or 0.8% of the
overall map). As can be seen, the number of collected wireless measurements is too small
to detect the occluded parts.

5.8 Summary

In this chapter we considered the problem of obstacle/object mapping using a team of

mobile robots that are equipped with a laser scanner, a wireless communication device

and a directional antenna. We proposed an integrated framework for mapping with see-
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Figure 5.18: Variance of the reconstruction of Fig. 5.17 for the integrated BCS-based
strategy.

through capabilities based on both laser and wireless channel measurements. We specifi-

cally showed how to integrate occupancy grid mapping with two CS-based reconstruction

methods: Bayesian compressive sensing (BCS) and total variation (TV) minimization.

We compared the performance of these two approaches using both simulated and real data

from our robotic platforms. For instance, our results indicated that the integrated BCS-

based method is more appropriate for mapping based on random wireless measurements

while TV-based integrated approach performs better with coordinated wireless measure-

ments. The integrated BCS-based approach furthermore provides an estimate of the vari-

ance, which can be more informative for adaptive path planning and wireless measurement

collection. It, however, requires an initial estimation of the underlying model parameters.

We finally proposed an adaptive path planning strategy that utilizes the current estimate of

uncertainty to better guide the robots for wireless measurement collection.
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Original
Integrated approach with BCS 
for variance−based  strategy 

(NMSE = 0.73 dB)

Integrated approach with 
TV minimization for ad-hoc strategy

(NMSE = 1.47 dB)

Integrated approach with BCS
for ad-hoc strategy
(NMSE = 1.11 dB)

Figure 5.19: Improvement to the reconstruction of Fig. 5.17 based on an additional 7.03%
(of the unknown part) wireless measurements that are collected using our adaptive strate-
gies of Section 5.6.
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Figure 5.20: Variance of the reconstruction of Fig. 5.19 for the integrated BCS adaptive
variance-based strategy.
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Figure 5.21: MSE versus number of additional wireless measurements for the proposed
adaptive motion planning strategies of Section 5.6. Initial wireless measurements corre-
sponding to 2.7 % of the unknown part or 0.8% of the whole map are used.
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Conclusion and Future Extensions

In this dissertation, we considered the problem of obstacle/object mapping in robotic net-

works. Our goal was to develop a framework for mapping obstacles, including occluded

ones, by using a small number of wireless measurements. We started by tapping into the

knowledge available in the wireless communication literature in order to provide a com-

prehensive overview of the key underlying dynamics of wireless channels: small-scale

fading, shadowing and the distance-dependent path loss. We confirmed the characteristics

of these dynamics experimentally by making an extensive number of channel measure-

ments with our robotic testbed. In order to automate the channel measurement process, we

developed a robotic testbed and showed how adaptive directional antennas can effectively

reduce the effects of multipath fading on the received signal strength.

We then proceeded with our wireless-based obstacle mapping framework. The frame-

work was based on the fact that the shadowing component of a wireless transmission

contains implicit information on the objects located on the path between the transmitter

and receiver. In order to limit the number of needed measurements we made use of com-

pressive sampling theory. Specifically, we exploited the sparse representation of the map

in space, wavelet and total variations in order to build it with minimal sensing, and without
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directly sensing a large percentage of the area. We also considered different reconstruction

approaches based on Basis Pursuit, Matching Pursuit and Total Variation minimization.

We then showed the underlying tradeoffs of different sampling, sparsity and recon-

struction techniques. For instance, we saw that coordinated space or frequency sampling

with total variation minimization can provide a good reconstruction quality. We estab-

lished that the right way to compare the performance of the random and coordinated sam-

pling patterns is to consider the relationship between the reconstruction quality and the

angular directions where the map is sampled. More specifically, we showed that the to-

tal number of available channel measurements should be distributed over a small number

of angles (bigger than or equal to the number of jump angles of the structure), with a

preference given to the angles of jumps.

Finally, we considered a scenario where each robot is equipped with a laser scanner,

a wireless communication device and a directional antenna. We proposed an integrated

framework for mapping with see-through capabilities that allows the robots to use laser

scanners to map areas that can be directly sensed, and wireless channel measurements to

map the occluded areas. We specifically showed how to integrate occupancy grid map-

ping with two compressive sensing reconstruction methods: Bayesian compressive sens-

ing (BCS) and TV minimization. We compared the performance of these approaches us-

ing simulated and real data from our robotic platforms. For instance, our results indicated

that the integrated BCS-based method is more appropriate when using random wireless

measurements, while the TV-based integrated approach performs better for coordinated

wireless measurements. The integrated BCS-based approach furthermore provides an es-

timate of the variance, which can be more informative for adaptive path planning and

wireless measurement collection. It, however, requires an initial estimation of the un-

derlying model parameters. We then proposed an adaptive path planning framework that

utilizes the current estimate of uncertainty to better guide the robots for further wireless

measurement collection.
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We further validated all our findings with our experimental robotic testbed. We showed

the performance of our framework in efficiently mapping a number of real obstacles (in-

cluding blocked ones).

There are several possible extensions of this work. For instance, mapping of more

complicated structures would be an immediate extension. Along this line, understanding

the complexity of the map and the related required number of wireless measurements is an

interesting problem. As we indicated in previous chapters, multipath fading can negatively

impact the mapping performance of our proposed framework. For the experimental plat-

form used in this dissertation, we used transceivers operating at 2.4 GHz. Exploring other

frequencies and understanding their tradeoffs for wireless-based mapping is the subject of

our future work. Finally, improving the modeling of the wireless transmission to include

more propagation phenomena is another line of future work.
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