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Abstract 
 

It is well known that the inclusion of detailed spectral information in sensing, by 

means of targeting more bands with finer resolution, can enhance the performance of 

any application substantially. Unfortunately, this enhancement is clearly accompanied 

by a dramatic increase in the amount of collected data and increase in its 

dimensionality. Nature has, nevertheless, found a way to break this trade-off by finding 

ways to transmit what is needed. The human eye can distinguish more than 16 million 

colors but the retina strips the images down to its bare essentials before sending visual 

information to the brain. Such front-end processing is performed in the retina [Wässle 

et al., Nature Reviews Neuroscience, vol. 5, pp. 747–757, 2004]. There is evidence to 

believe that only 10-12 output channels, with a sparse representation of the world, are 

sent from the eye to the brain and each of these compressed signals, such as a signal 

representing color and the detection of a moving edge, are created by a set of amacrine 

cells [Roska et al., Nature, vol. 410, pp. 583–587, 2001]. As man-made sensors have 

evolved beyond the visible domain to the infrared and terahertz domains with fine 

spectral resolution and long spans in data acquisition.  

 

Among man-made spectral sensors, multispectral (MS) and hyperspectral (HS) 

infrared (IR) sensors have become known as enablers of a wide range of remote-

sensing applications. Over the past twenty years, the demand for MS/HS sensing 
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systems has been increasing steadily and many sensor technologies have been 

developed. Unlike the human eye, however, a MS/HS imager typically collects the 

maximum amount of spectral data corresponding to a large number of spectral bands 

(e.g. upwards of 15 bands in MS sensors and 350 bands in HS sensors). Such massive 

data acquisition requires long data-acquisition times, large data storage and a powerful 

processing unit to process and analyze the data via suitable algorithms. Inspired by the 

need to sense only the relevant information for a specific sensing application, the main 

objective of this dissertation is to develop and demonstrate data-compressive IR 

spectral-sensing algorithms and systems geared toward coarsely and electrically 

tunable nanoscale IR detectors, developed at Center for High Technology Materials, 

that can identify and employ minimal (compressed) set of spectral data required for 

applications including spectrometry, object classification and MS sensing in general. 

The data-compressive sensing algorithms developed here aim to pave the way for the 

development of a real-time, smart-pixel MS/HS sensing systems. 

 

Specifically, this dissertation contains three major parts: (1) demonstration of the 

algorithmic spectrometry in the mid-IR sensing regime using spectrally tunable 

quantum dots-in-a-well (DWELL) IR detector without employing any spectral filters; 

(2) further demonstration of the spectral-classification capability of tunable DWELL 

IR focal-plane array (FPA), again without using any spectral filters; and (3) 

development of a generalized filter-free data-compressive spectral sensing paradigm 

using the DWELL detector that enables arbitrarily specified MS sensing (e.g., spectral 

matched filtering, slope sensing, multicolor sensing, etc.) without using any spectral 

filters and possibly under constrained acquisition times. 

 

The DWELL detector offers relatively broad bias-dependent spectral tunability, 

resulting in data that is spectrally rich yet with a high level of redundancy. One of the 

main tasks of this dissertation is to create post-processing algorithms to deconvolve 

this redundancy in the data so that detailed spectral information is extracted beyond 

that which is readily accessible in the raw data. At the heart of these algorithms is our 

ability to approximate arbitrarily specified spectral shapes, e.g., a narrowband filter, a 

multiband filter, reflectance/transmittance spectrum of some material, etc., by means of 

forming a weighted linear superposition of the DWELL’s bias-dependent spectral 

responses. These algorithms carefully take into account the detector’s bias-dependent 

signal-to-noise ratio (SNR) in the calculation of the superposition weights so as to 

minimize the effect of noise accumulation in the superposition process. For the 
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spectrometry problem, the transmittance or reflectance of an unknown target at any 

wavelength is reconstructed by forming a superposition of photocurrents, one for each 

selected applied bias, using appropriate weights specified for each center wavelength 

of a hypothetical narrowband filter with a specified spectral resolution. This process 

eliminates the need for actual spectral filters. The post-processing algorithms are 

further extended to identify compressed bias sets to be used in the superposition 

process, resulting in uniformly-accurate solutions to arbitrarily specified MS sensing 

problems beyond spectrometry, including spectral matched filtering. For example, our 

experiments show that a minimum four biases out of 30 biases can be extracted, 

corresponding to a significant data reduction by a factor of 7.5, to achieve a 

performance that approximates that obtained while employing all 30 biases. Hence, the 

new compressive spectral-sensing paradigm developed in this dissertation takes us one 

step closer to mimicking the way a human retina works in its ability to sense only the 

relevant information that is needed for a specific application. 
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Chapter 1 
 

 

Introduction 
While the thrust of this dissertation is algorithm development and validation for 

spectral sensing with certain state-of-the-art detector technologies developed at UNM, 

it is important to first give a brief survey of infrared sensing technology before 

introducing the main content of the dissertation. As such, we follow the survey by a 

subsection on the motivation for this dissertation, a summary of prior work and a 

summary of the key contributions of this dissertation. 

 

1.1 State of the art in infrared detectors 

The important performance metric (or broadband figures of merit) in mid-IR detectors 

are detectivity, quantum efficiency and noise equivalent difference in temperature. The 

detectivity D* [1,2] is defined as the normalized signal-to-noise ratio performance of 

detectors. The quantum efficiency (QE) [1,2] is defined as the number of electron-hole 

pairs generated per incident photon. The noise equivalent difference in temperature 

(NEDT) [3] is the relevant parameter for focal-plane array (FPA), which is the smallest 

difference in a uniform temperature scene that the FPA can detect. The smaller the 

NEDT, the better in terms of the sensitivity of FPA. Mercury cadmium telluride 

(HgCdTe) IR detector [1], as shown in Fig. 1.1, is predominantly the current state-of-

the-art as it continues to demonstrate superior sensitivity (high D*≥1012 cmHz1/2W-1, 

QE ≥70% and pixel NEDT ≤10 mK) as compared to the state-of-the-art quantum dot 

IR photodetector (QDIP) or quantum well IR photodetector (QWIP) [1,2] in mid-IR 

region. For multispectral sensing, HgCdTe detectors have also been integrated with 

arrays of diffractive optics at the detector level. Examples of such diffractive optics are 

lenslet arrays [4], micro-electromechanical systems (MEMS) [5] and acousto-optic 

tunable filters (AOTFs) [6]. Sample images of HgCdTe IR FPA are shown in Fig. 1.2. 

However, despite its superior performance, HgCdTe suffers from difficulties in spatial 

uniformity, problems in epitaxial growth and low fabrication yields, leading to 

extremely expensive manufacturing of large FPAs extremely expensive [1,7,8] and also 

are not spectrally tunable. Another dominant technology is the micro-bolometer, which 
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is an uncooled semiconductor device (room temperature operation), in which the 

incident IR radiation heats the pixel elements and causes a change in the resistance of 

the pixel. Due to the nature of the thermal energy transfer process, micro-bolometer [9] 

detector have slow response (milliseconds) and hence find very limited use in high 

performance applications which require large frame rates with small integration times. 

Moreover, the bolometer is spectrally broad and is not tunable.  

 

 
 

Figure 1.1: Cross section view of unit cell for back-illuminated dual-band HgCdTe detector approach [2]   
 

 
 
 
 
 
 
 
 
 
 

Figure 1.2: MWIR and LWIR images taken with two-color HgCdTe FPA [2] 

 

One of the potential alternatives to replace above technologies is InAs-GaSb strained 

layer superlattice (SLS) material system [10,11]. SLS has theoretically been predicted 

to yield a higher D*, than HgCdTe. The SLS system has shown the potential to operate 

at room temperature. Since SLS can usually be grown with greater uniformity on 

cheaper substrates, the yields are expected to be greater. However, one of the major 

drawbacks is the control of interfaces between the InGaSb/InAs material, which can 

significantly affect the cutoff wavelength of the device and the dark current. Also the 

processing of SLS structure is difficult, due to the high surface leakage currents. The 

surface currents dominate the bulk currents and limit the performance of the devices, 

as the pixel sizes become smaller. Nonetheless, SLS is a promising technology for IR 

detection. Images taken by the dual color SLS FPA are shown in Fig. 1.3. 

LWIR MWIR 
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Figure 1.3: Images taken by the dual color InAs/GaSb SLS FPA [2]. MWIR (blue channel) image is on 
the left and LWIR (red channel) image is shown on the right. 

 

Other potential alternatives are the intersubband detectors such as QWIP and QDIP 

shown in Fig. 1.4. Standard QWIP [12] is based on the III-V mature material systems 

increasing the feasibility of production with low cost and large scale devices as 

compared to current state of the art detectors. Potential advantages of QWIP FPAs [2] 

include a lower uncorrected-response nonuniformity (typically 1 %–3 %) coupled with 

a higher operability (above 99.9 %) compared to HgCdTe detectors [2]. Images 

captured by QWIP FPA are shown in Fig. 1.5. QDIPs [13,14] have some advantages 

over QWIPs. The advantages of QDIPs include normal incidence operation [15,16], 

lower darkcurrent due to increased lifetime [15-17], higher operating temperature and 

D* [15-17] than QWIPs. Additionally, QDIPs offer the electrically tunable spectral 

response through the applied bias voltages. As a result of the quantum-confined Stark 

effect [18,19], a single QDIP can serve as a multispectral detector without any 

dispersive optics. In Table 1.1, QWIP, QDIP, SLS and micro-bolometer detectors are 

compared to the state of the art HgCdTe detector for different figures of merit. 
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Figure 1.4: (Top) QWIP structure and (Bottom) QDIP structure 

 
Figure 1.5: Images taken with a dual band QWIP FPA [2]. The left image shows the scene in the MW 
and the right image shows the same scene in the LW. 

 

Detector QE D* NEDT 

HgCdTe ≥70% at 77K ~1012 cmHz1/2W-1 at 77K 10 mK 

InAs-GaSb SLS 52% at 77K ~1011 cmHz1/2W-1 at 70K 23.8 mK at 77K 

QWIP ≤ 10% at 70K ~1011 cmHz1/2W-1 at 70K 33 mK at 70K 

QDIP ≤ 3% ~1010 cmHz1/2W-1 at 77K 40 mK at 60K 

Micro-bolometer N/A ~108 cmHz1/2W-1 at 77K 200 mK 

Table 1.1: Comparison of figures of merit in various mid-IR detectors [1, 2, 9, 11] 
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1.2 Motivation of dissertation 

Multispectral (MS) and hyperspectral (HS) infrared (IR) sensing continues to be a 

pivotal tool in remote sensing. The role of MS/HS sensing in a wide spectrum of 

applications has been increasing with advancements in sensor technology as well as 

data-processing and interpretation techniques. MS/HS sensing systems offer spectral 

information of a scene (target or an agent) in a spectral band by sensing a wide range 

of narrow segments of the IR spectrum in a spectral range of interest. Conventionally, 

this is realized through either multiple IR detectors, each sensing at a specific range, or 

a single broadband IR detector integrated with dispersive optics or some sort of an 

“optical filter wheel,” where each filter admits a single IR spectral band. However, this 

conventional approach yields sub-systems that can be bulky and often expensive due to 

the complexity of their optical systems.  

 

In recent years, spectrally multicolor detectors have been emerging as a highly 

desirable alternative to conventional MS/HS sensing strategies. Such alternative 

sensing systems feature simplicity through their single-detector nature (or array of 

identically fabricated detectors) without requiring dispersive elements. In this direction, 

a new class of IR photodetectors, based on epitaxial quantum dots (QDs) have recently 

been proposed and developed. A key feature of this detector is that it exploits 

intersubband transitions between quantum-confined energy levels in a self-assembled 

dots-in-a-well (DWELL) structure in which QDs are embedded in a quantum well as 

shown in Fig. 1.6 (a). Advantages of this detector technology are operating wavelength 

tailoring [17,20], sensitivity to normally incident radiation [17,20], increased carrier 

lifetime [17,20], and notably electrically controlled spectral tunability [17,20]. The 

quantum-confined Stark effect (QCSE) [18,19] in the DWELL structure results in a 

bias-dependent spectral response and also introduces a spectral shift with significant 

spectral overlap by varying the applied bias voltage, as shown in Fig. 1.6 (b). This 

property leads to greater optical simplicity as the spectral response is tuned electrically 

rather than optically. Hence, a single DWELL photodetector can be thought of as a MS 

detector albeit with overlapping spectral bands.  
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(a)  

 

(b) 
Figure 1.6: (a) Growth schematic of the DWELL heterostructure (left) and cross-sectional transmission 
electron microscopy image of active region (right). (b) Bias-tunable spectral bands of the DWELL 
photodetector for various applied bias voltages ranging from -5 to 5 V. 

 

Now the overlapping nature of the spectral responses results in significant redundancy 

in the sensed data when a large set of biases is used to produce a set of spectral data. 

Nonetheless, despite the redundancy present in the data resulting from sensing at 

different biases, each bias brings new spectral information that is buried by the 

redundant portion of the data. Meanwhile, the DWELL’s spectral response at any 

applied bias, as shown in Fig. 1.6 (b), is not sufficiently narrow (≥2 µm) for use in 

high resolution MS/HS sensing applications without the aid of spectral filters. Hence, 

to extract the detailed spectral information amidst spectrally rich yet redundant data, 

we need to develop signal-processing algorithms that can deconvolve the spectral 

overlap and redundancy in the sensed data.  
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Along these lines, the main question that we should ask is whether we can develop 

post-processing algorithms that employ data from a large set of (or even from a 

continuum of biases, in principle) of spectrally overlapping bands of the DWELL, one 

for each applied bias, to perform applications that require high spectral resolution. And, 

can we identify a substantially reduced set of sensing biases that can perform equally 

well without wasting acquisition time on redundant data? The benefit of such a hybrid 

algorithmic-hardware approach is that it enables us to perform spectral sensing for 

applications that require spectral resolutions beyond that offered by the raw DWELL 

detector without the need for spectral filters. This dissertation aims to address these 

two questions, both theoretically and experimentally. 

 

1.3. An integrated algorithm-hardware approach for 

spectral sensing 

 

1.3.1 Prior work 

To enhance the spectral resolution of the DWELL beyond what is available at each 

fixed applied bias, the bias-dependent spectral tunability of the DWELL was exploited 

and the novel multi-bias modes of sensing through post processing were explored. In 

recent years, our group has reported post-processing algorithms that offer two 

functionalities beyond those offered by the single-bias mode of the DWELL. The 

underlying idea is to sense an object of interest repeatedly at multiple applied biases 

and then form a linear superposition of the bias-dependent photocurrents (i.e., the bias-

dependent detector outputs) according to pre-calculated weights that are designed for 

specific MS sensing tasks, such as narrow-band spectral filtering, spectroscopy and 

spectral matched filtering among other tasks. Below are the qualitative descriptions of 

algorithmic sensing methodologies.          

 

The first algorithm, termed spectral tuning [21-24], allows performing algorithmic 

spectrometry, which is capable of reconstructing the transmittance of target of interest 

without utilizing any physical optics or spectrometer. Specifically, for an arbitrarily 

specified narrowband tuning filter, the algorithmic spectral-tuning technique yields an 

optimal set of weights that can be used to add the bias-dependent spectral responses of 

the DWELL. The resulting superposition spectral response is the best approximation of 
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the desired shape of the specified narrowband tuning filter. The bandwidth of the 

tuning filter can be as narrow as 0.5 µm, which is less than one fourth of the DWELL’s 

bandwidth. A reconstruction of a target’s transmittance at each wavelength is then 

obtained by forming a weighted linear superposition of bias-dependent photocurrents. 

Such “superposition photocurrent” represents the best approximation of the ideal 

photocurrent that would be obtained if we were to use a broadband detector to probe 

the same target of interest through a physical narrowband spectral filter. The entire 

procedure is repeated for other tuning wavelengths within the spectral regions of 

interest to complete the spectral reconstruction of the arbitrary unknown target.  

 

The second algorithm, termed spectral matched-filtering [25,26], is also based upon a 

similar principle of forming a superposition. However, the objective is to perform 

target classification instead of spectral reconstruction. Specifically, for a known 

transmittance (representing a class of targets of interest), the spectral matched-filtering 

technique finds an optimal set of weights to be used to form a weighted superposition 

of the DWELL’s bias-dependent spectral responses approximating the transmittance of 

interest. Such superposition response can be represented as the most “informative 

direction” for a given target’s transmittance in the presence of noise. A matched-output 

for the target’s transmittance is obtained by forming a weighted linear superposition of 

the bias-dependent photocurrents. The superposition photocurrent represents the best 

approximation of the ideal photocurrent that would be obtained if we were to use a 

broadband detector through a spectral filter that is matched to the target’s transmittance. 

Both algorithms accommodate the noise characteristics (SNRs) of the DWELL’s 

photocurrents to minimize the noise accumulation in a superposition process. While 

both algorithms were formulated earlier [21-26], the principles have not been 

demonstrated in conjunction with the DWELL photodetectors heretofore nor have they 

been generalized for versatile spectral sensing with minimal number of biases, as done 

in this dissertation. 
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1.3.2. Contributions of this dissertation 

This dissertation presents the first demonstration of the spectral tuning algorithm using 

the spectrally tunable DWELL photodetector. The experimental results show that it is 

possible to reconstruct the spectral content (transmittance or reflectance) of a target 

electronically without using any dispersive optical elements for tuning, thereby 

demonstrating a DWELL-based algorithmic spectrometer (DAS) [27-29]. (Later, the 

DAS was also successfully demonstrated by an other research group at the University 

of Sheffield, UK [30].)  

 

To generalize both spectral tuning and spectral matched-filtering for near real-time 

implementation, this dissertation presents a new generalized data-compressive spectral 

sensing algorithm [31] with the DWELL photodetector to substantially compress the 

number of necessary biases, and hence the amount of data to be sensed, subject to a 

prescribed performance level across multiple sensing applications. In essence, the 

algorithm identifies a minimal set of data-acquisitions to capture only the relevant 

spectral information for multiple remote-sensing applications of interest. As a result, 

this new algorithm can substantially reduce the required data-acquisition time. The 

algorithm is demonstrated for target spectrometry and classification. Note that the 

selection of suitable biases and the photocurrent weights must be done with the bias-

dependent SNR of the detector in mind due to the noise accumulation in superposition 

process.  

 

The example shown in Fig. 1.7 demonstrates the use of minimal biases that are 

judiciously selected by the generalized data-compressive spectral-sensing algorithm for 

spectral filter approximation. Minimum of four biases out of a total of 30 biases were 

selected, yielding a significant data-reduction in the required number of biases by a 

factor of 7.5. As shown in Fig. 1.7 (blue), the approximations of various types of 

specified spectral filters using minimal four biases are uniformly accurate. Also the 

approximations using minimal four biases are comparable to those using all 30 biases 

shown in Fig. 1.7 (red). Thus, the use of minimal biases does not sacrifice the 

performance of algorithm. 
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Figure 1.7: The data-compressive spectral-sensing algorithm is used to approximate the specified 
spectral-filter collection: (top row) hypothetical narrowband triangular sensing filters and (bottom row) 
spectral matched filters using only minimal four biases out of total 30 biases. The successful 
approximations using minimal four biases are shown in blue, which corresponds to the error metric 
6.7% as compared to the approximations using all 30 biases shown in red [31].  

 

Generalizing the concept of sensing sequentially at different biases and forming a 

weighted superposition of the detector’s photocurrents, this dissertation also 

investigates optimal biasing the detector, within a fixed integration time, using a 

continuously varying bias. This is especially relevant when it is desirable to extract the 

most relevant spectral information in a limited integration time. The basic question 

here is what is the optimal time-varying bias within the integration time that enables 

the sensor to gather the most relevant spectral information for a specific sensing 

application? Clearly, when the waveform is restricted to a piece-wise constant form, 

this approach reduces to the DAS. We particularly emphasize this modality of 

spectrally agile sensing is most relevant for focal-plane arrays (FPAs), for which 

integration time can be a constraint imposed by the readout circuit. Note that as in the 

case of the DAS, here too the SNR considerations must be taken into account, with the 

added complexity that changing shape and values of the bias waveform within the 

integration time affects the instantaneous SNR. 
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1.4 Organization of the dissertation 

The organization of this dissertation is as follows. Demonstration of the DWELL-

based algorithmic spectrometer is presented in Chapter 2. The MS classification 

capability of tunable DWELL FPA is demonstrated in Chapter 3. A new data-

compressive MS sensing paradigm, based upon the tunable DWELL photodetector, is 

presented in Chapter 4. Chapter 5 presents the sensitivity analysis of data-compressive 

MS sensing algorithm for hardware implementation. In Chapter 6, theory and 

simulations are presented to define the acquisition-time/data-volume constraints to 

optimally solve a specific sensing problem for potential use in FPAs.   
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Chapter 2 
 

 

Demonstration of Bias-controlled 

Algorithmic Spectrometry using Quantum 

Dots-in-a-well (DWELL) Photodetectors  
 

In this chapter, we first review germane aspects of the operation principle and 

characterization of the DWELL single pixel device. We then show the experimental 

demonstration of the concept of DWELL-based algorithmic spectral tuning and further 

develop an algorithmic spectrometer. The performance of the DWELL-based 

algorithmic spectrometer (DAS) is examined taking into account issues such as 

sensitivity to bias selection, dark current and detector temperature. 

 

2.1 Device concept and characterization of DWELL 

photodetectors  

A DWELL photodetector is a clever hybrid of conventional QW and QD infrared 

photodetectors. In a representative DWELL heterostructure InAs QDs are embedded in 

InGaAs/GaAs multiple QW structures as shown in Fig. 2.1. Electrons in the ground 

state of QD are promoted to a set of bound states within the QW by photoexcitation. 

Altering the QW thickness of the DWELL detector alters the nature of the allowable 

energy transitions (bound-to-bound, bound-to-quasi-bound, and bound-to-continuum) 

as shown in Fig. 2.2 (a), thereby altering the DWELL’s operating wavelengths as 

shown in Fig 2.2 (b). These energy transitions enable the detection of photons from 

MWIR to VLWIR within a single detector. Moreover, a bias-dependent spectral 

response is also observed in DWELL detectors due to the QCSE. The asymmetric 

geometry of the electronic potential, due to the shape of the dot and the different 

thicknesses of QW above and below the dot, results in variation of the local potential 

as a function of the applied bias as shown in Fig. 2.3. From these measurements, one 
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can observe the bias-dependent multicolor capability of the DWELL detector structure. 

As a result, in the context of MS sensing, a single DWELL detector can be operated as 

multiple detectors, obviating the need of optical systems, offering on-demand 

electronically controlled agility. 

 

Figure 2.1: General schematic of the DWELL heterostructure (top, left), example of the DWELL growth 
schematic (middle) and cross-sectional transmission electron microscopy (TEM) image (right) [27].  

 
(a) 
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(b) 
 
Figure 2.2: (a) DWELL energy band diagram describing: (1) bound-to-bound, (2) bound-to-quasibound, 
and (3) bound-to-continuum transitions [27]. (b) Operating-wavelength tailoring by the DWELL 
structure: the MWIR (LWIR) peak is possibly a transition from a state in the dot to a higher (lower) 
lying state in the well, whereas the VLWIR response is possibly from two quantum-confined levels 
within the QD [2].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: (a) Band diagram and (b) spectral tunability of the DWELL MidIR photodetector as a 
function of electrically applied bias voltages. 

(b) 

(a) 
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Spectral response measurements were performed for the DWELL photodetectors using 

a Nicolet 870 Fourier Transform Infrared (FTIR) spectrometer and a Keithley 428 

current amplifier, which controls the electrical bias voltage to the detectors. 

Experimental photocurrents and dark currents were also taken at different biases. The 

characterization setup is shown in Fig. 2.4.  

 

DWELL 

photodetector

Cryostat

Current amplifier and bias control

FTIR

Mirror

IR 
beam

)(

)(1

λ

λ

KR

R

Bias-dependent

detector’s spectral responses

Parameter analyzer used
in generating I-V trace KI

I 1

Bias-dependent 
photocurrents  

Figure 2.4: Experimental setup for device characterization 

 

Bias-dependent spectral responses of the DWELL-1780 photodetector measured at a 

device temperature of 30 K are shown in Fig. 2.5, which illustrates the multicolor 

attribute of the DWELL in the LWIR range. Figure 2.5 also demonstrates photocurrent 

characteristic measured from a DWELL photodetector at different biases. A spectral 

shift with significant overlaps was observed from the peak wavelength of 8.5 µm with 

negative bias voltage to 10 µm with positive bias voltage. This demonstrates that a 

DWELL single photodetector can simply serve as a multicolor detector as a series of 

the bias voltage based spectral tunability. The spectral measurements of the optimized 

DWELL-1781 are illustrated in Fig. 2.6. There are two distinct peaks at LWIR region 

observed, one in about 9.5 µm and the other in 10.5 µm. Improvement in the 

performance was evident showing shifts in the operating wavelengths. The peak 
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operating wavelengths for negative biases shift from 8.5 µm (in DWELL-1780) to 9.5 

µm (in DWELL-1781) and for positive biases they shift from 10 µm (in DWELL-

1780) to 10.5 µm (in DWELL-1781). This red shift is due to the lowering of the 

quantum well state in the heterostructure.    
 

 
Figure 2.5: (Left) Bias-dependent DWELL-1780’s spectral responses at 30 K. (Right) Photocurrent and 
darkcurrent characteristics obtained from a detector at different bias voltages [28]. 

 

 
Figure 2.6: Bias-dependent spectral responses of DWELL-1781 as a function of a number of operating 
temperatures at 30 K (top, left), 50 K (top, right), 60 K (bottom, left), and 77 K (bottom, right) [28].  

 

The limitation of the DWELL’s operating temperature was observed due to higher dark 

current levels at higher device temperatures. Figure 2.6 shows the bias-dependent 
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spectral responses for various device operating temperatures. It is to be noted that the 

performance of DWELL-1781 begins to degrade dramatically as device operating 

temperature exceeds 60 K. At 77 K, noise dominates the spectral measurements and 

almost no spectral variation is observed for any bias. 

 

As shown in Fig. 2.6, the DWELL photodetectors exhibit a high level of spectral 

redundancy due to their highly overlapping spectral responses as a function of bias. 

Also the DWELL’s spectral response is too wide for high spectral resolution 

applications. To remedy these two drawbacks, we developed a post-processing 

algorithm which can reduce the redundancy by projecting the DWELL’s spectral 

responses into a new low-dimensional function space that is capable of extracting high-

resolution spectral information. The next section presents a post-processing algorithm 

that exploits the bias-dependent spectral tunability of DWELL to perform spectral 

sensing for spectrometry application. 

 

2.2 DWELL-based algorithmic spectrometer (DAS) 

In this section, we review germane aspects of the spectral-tuning algorithm theoretically 

developed by Sakoglu et al. [21-24]. This algorithm is then to be used in conjunction 

with the bias-tunable DWELL detector in producing the DAS. 

 

We assume that an unknown object is probed repeatedly by the DWELL detector, each 

time using a different operating bias voltage, resulting in a set of bias-dependent 

photocurrents. The photocurrent vector represents the bias-driven MS signature vector 

of the object as seen by the DWELL photodetector operated at the prescribed bias set. 

The idea of an algorithmic spectrometer is to utilize these bias-dependent photocurrents 

to construct an approximation of the transmittance spectrum of the object of interest 

without using any physical spectrometer or optics. The implementation of algorithmic 

spectrometer is described as follows. First, a hypothetical narrowband tuning filter is 

selected with a specified center (tuning) wavelength and a specified full-width at half-

maximum (FWHM) linewidth. Next, a set of weights, one for each operating bias 

voltage, is obtained through the use of the projection algorithm as illustrated in Fig. 2.7. 

These weights have the property that once used to form a weighted linear superposition 

of the DWELL’s bias-dependent spectral responses, the resulting superposition spectral 

response best approximates the hypothetical tuning filter. Next, the bias-dependent 

photocurrents are linearly combined using the same weights, yielding an approximation 
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of the target’s spectrum at the prescribed tuning wavelength. This superposition termed 

the “synthesized photocurrent” represents the reconstructed transmittance of object seen 

through the approximated narrowband tuning filter without any information about 

object of interest. The reconstruction of the transmittance spectrum of object is 

completed by repeating the earlier procedure for other tuning wavelengths as illustrated 

in Fig. 2.8. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7: Illustration of the projection step in the algorithmic MS sensing. Desired shape of 
transmittance of narrowband tuning filter is approximated by forming a weighted linear superposition of 
the DWELL’s bias-controlled spectral responses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 K 
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Figure 2.8: Illustration of the spectrometry step in the algorithmic MS sensing. The reconstructed 
transmittance of object is obtained by forming a weighted linear superposition with a set of DWELL’s 
photocurrent measurements. 

 

2.2.1 Review of the spectral-tuning algorithm 

Consider an arbitrary object-of-interest whose transmittance in the LWIR range is 

represented by the function f(λ). We assume that the object is illuminated by a black-

body source. Suppose that a DWELL detector is used to probe the illuminated object 

using various biases, v1,…,vK, yielding a set of bias-dependent photocurrents, I1,…,IK, 

respectively. Let the detector’s spectral response at the i
th applied bias be denoted by 

Ri(λ). 

 

Our approach for achieving an algorithmic spectrometer can be described as follows. 

Imagine an ideal (and hypothetical) narrowband LWIR tuning filter centered at 

wavelength λn and with transmittance function r(λ;λn). (In a conventional spectrometer, 

as schematically shown in Fig. 2.9 (a), such a filter would be used with a broadband 

detector to estimate the spectrum of the object-of-interest at wavelength λn.) Our earlier 

<Experiment> <Spectrometry>

<Offline computation>

Projection step
(w1,….,wK)
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theoretical work [22] provides a method for calculating a set of superposition weights, 

wn,1,…, wn,K, which depends upon the choice of r(λ;λn), so that the synthesized 

photocurrent, ,,11, KKnn IwIwI
n

++≡
∧

Kλ best approximates the ideal photocurrent
n

I λ that 

we would have obtained if we were to sense the same target-of-interest f using an ideal 

broadband (spectrally flat response) detector that is looking at the object through the 

spectral filter r(λ;λn). The formula for these weights reported by [22] is given as follows. 

The set of weights, wn,i  for center wavelength λn, which we compactly write as wn = 

[wn,1 , …,  wn,K]T,  is given by the formula ((18) in [22])  

   wn =[AT
A + Φ + αQ

T
A

T
AQ]-1[AT

nλr ],            (1) 

where ],,[ 1 KRRA K= and T

kkk RR )](,),([ maxmin λλ K=R  for k=1,…,K, while 

T

nn rr )];(,),;([ maxminn
λλλλλ K=r . Here, the wavelengths at which the spectrum is sampled 

range from a minimum value of λmin to a maximum value of λmax. Moreover, Φ is a 

diagonal noise-equivalent matrix whose kth diagonal entry is Rk
T
Rk/SNRk

2, where SNRk 

is the signal-to-noise ratio of the photocurrent at the kth bias vk. The regularization term, 

αQ
T
A

T
AQ, penalizes spurious fluctuations in the approximation [22]. In this work, the 

matrix Q is taken as a Laplacian operator and α is the corresponding regularization 

weight, which is selected by the user. The approximation is in the sense of minimizing 

the mean-squared-error (MSE) between the synthesized photocurrent 
∧

n
Iλ and the ideal 

response
n

I λ . Our earlier theoretical work also teaches us that the same set of weights is 

characterized as that for which the superposition spectrum, 

),()();(ˆ ,11, λλλ KKnnn RwRwλr ++≡ K best approximates the imaginary tuning filter 

r(λ;λn) in the sense of minimizing the wavelength-integrated MSE. Now, if we repeat 

the above procedure while sweeping the center wavelength λn of the narrowband tuning 

filter r in a specified range of interest, we will obtain, for each center wavelength, an 

estimate of the spectrum of the source transmittance. Hence, as we sweep across the 

center wavelength λn of our “hypothetical” tuning filter r and apply the superposition 

procedure described earlier, we will reproduce the transmittance function f, albeit, 

within the confines of the approximation. 
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The above concept of an algorithmic spectrometer is schematically shown in Fig. 2.9 (b). 

After several repetitions for desired tuning centers, λ1,…,λm , say, the set of synthesized 

outputs
∧∧

m
II λλ ,,

1
K is generated and regarded as the approximate reconstruction of the 

spectrum of the target of interest within the prescribed wavelength range. Each 

reconstructed value 
∧

n
I λ of the spectrum of the target-of-interest, at a desired tuning 

wavelength λn, is mathematically expressed as      .ΙwI i

K

i

inn ∑
=

∧

=
1

,λ     (2) 

We reiterate that these synthesized outputs approximate those obtained by using an ideal 

IR detector in conjunction with an actual tunable spectral filter shown schematically in 

Fig. 2.9 (a). Thus, the algorithmic spectrometer shown in Fig. 2.9 (b), which uses no 

physical spectral filters, is functionally equivalent to the actual spectrometer 

schematically shown in Fig. 2.9 (a). 
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Figure 2.9: (Left) Conventional spectral sensing method using a standard broadband IR detector and a 
family of optical IR filters. (Right) Proposed algorithmic spectrometer equivalent of (Left). Initially, 
several photocurrents (of the target spectrum) are taken at different bias voltages V1,…,VK. Then, the 
measured photocurrents are algebraically combined with pre-determined weights wi,j that are used to 
match a desired filter centered at wavelength λi. By changing the weights, the effect of different desired 
filters (similar to the ones used in (left)) is synthesized, albeit, without the use of any optical filters [28]. 
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Before we proceed with the experimental verification of the DAS, we will show a 

representative example of the superposition tuning filter );(ˆ
nr λλ that approximates a 

desired triangular tuning filter with center wavelength of 8.5 µm and a FWHM width of 

0.5 µm. The results corresponding to DWELL-1780 are shown in Fig. 2.10 using the 

bias-dependent spectral responses shown in Fig. 2.5. Note that the initial choice of 

α=0 (no regularization), shown in Fig. 2.10 (a), yielded a somewhat fluctuating 

reconstruction, which can be avoided. Much better results are obtained when 

regularization with α=12 is used, as shown in Fig. 2.10 (b). Generally, if the parameter 

α is selected too large then the reconstructed spectrum loses resolution; on the other 

hand, if α is selected too small, then the reconstructed spectrum exhibits spurious 

fluctuations.  

 
Figure 2.10: Approximation of a desired narrowband LWIR tuning filter by the DWELL-1780 spectra at 
30 K shown in Fig. 2.5 with (a) α = 0 and (b) α = 12 [28].  

 

The 3-D graph in Fig. 2.11 illustrates the desired tuning filter approximations over 

various tuning wavelengths λn ranging from 2.55 µm to 12.25 µm, in steps of 0.05 µm. 

Good approximations );(ˆ nr λλ of r(λ;λn) were observed in LWIR in the range 8–10.5 µm, 

showing the reconstructed peak regions of the desired tuning filter. However due to the 

effect of weak spectral responses from DWELL-1780 in the MWIR region (along with 

atmospheric absorptions), poor approximations in the range 2.55 µm to 7 µm are 

observed. Also the limitation of tuning filter approximation was evident beyond 11.5 

µm because of the lack of spectral responses (contents) by DWELL-1780 in Fig. 2.5 

(left). As a result, we anticipate that the DAS with DWELL-1780 can potentially 

perform well over the range 8–10.5 µm. 
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Figure 2.11: Approximation of a desired tuning filter for various tuning wavelengths λn (from 2.55 to 
12.25 µm) with regularization parameter α = 12 [28].  
2.2.2  First experimental demonstration of DAS 

For the experiments presented here, we considered four different LWIR targets, f1(λ), 

…, f4(λ), as depicted in Fig. 2.12 (solid curves), with different center wavelengths in 

the range 8-10 µm and different spectral bandwidths, Δλ=1.0-3.5 µm. The spectral 

response of the DWELL-1780 detector in Fig. 2.5 (left) was measured at detector 

operating temperature of 30 K for 82 bias voltages between -5 V and 5 V by using an 

FTIR spectrometer and a black-body source. Next, for every applied bias the 

photocurrent and associated dark current were measured for each one of the four 

targets illuminated by the global source. It is to be noted that in the experiment, the 

same detector was sequentially biased to generate the bias-dependent spectral response 

of the DWELL detector. 

 

The SNR at each bias was estimated by utilizing a standard Poisson approximation to 

model the dark current [24,32] in conjunction with our experimental data for the 

variance of the dark current. Each quantity SNRk (corresponding to the kth bias) was 

calculated using     

    SNRk =
kN

kpy

,

,

σ
,                          (3) 
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where yp,k is the experimentally averaged photocurrent (over 100 realizations) and σN,k 

is the standard deviation of the dark current, also calculated empirically from the dark 

current realizations. This step allows us to determine the noise-equivalent matrix Φ, as 

shown by (1).  

 

Next, the algorithmic tuning procedure described earlier in Subsection 2.2.1 was 

followed to calculate the synthesized superposition photocurrents, one for each desired 

tuning wavelength. We used 195 ideal triangular tuning filters representing r(λ;λn) 

(with FWHM of 0.5 µm, similar to the one shown in Fig. 2.10), whose center 

wavelengths range from 2.55 to 12.5 µm in steps of 0.05 µm, and calculated the 

corresponding weight vectors for each center wavelength according to (1). As a result, 

195 synthesized photocurrents are calculated according to (2) yielding a reconstruction 

of each target spectrum. The best regularization parameter of α = 12, was obtained by 

trial and error and used.  

 

Figure 2.12 shows the experimentally reconstructed spectra from the DWELL-1780 

detector (dotted curves) along with the actual spectra of the targets (solid curves). The 

figure demonstrates two key points. First, the experimental reconstructions of the target 

spectra are good approximations of their true spectra, validating our approach. 

Secondly, the limitation of the proposed approach is also evident. For example, the 

DWELL-1780 detector shown in Fig. 2.5 does not accurately reconstructed the long 

wavelength edge of target f2(λ) [Fig. 2.12 (b)]. This is due to the lack of response of the 

DWELL-1780 detector beyond 11.5 µm. It is also observed that peaks in reconstructed 

spectrum [Fig. 2.12 (a) and (b)] are opposed to actual flat response due to the 

triangular shape of tuning filter. To remedy this, we can apply the rectangular tuning 

filter to flatten the reconstruction around peak region. 
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Figure 2.12: Experimental reconstructions using algorithmic spectrometer incorporated with the 
DWELL detector at 30 K. Solid curves represent the actual responses of the targets and the dotted curves 
represent the reconstructed spectra using tuning algorithm. (a) f1(λ). (b) f2(λ). (c) f3(λ). (d) f4(λ) [28]. 
 

We observe that in general, the algorithmic spectrometer works well for tuning 

wavelengths in the spectral range (8-12 µm) for which the DWELL’s response is strong, 

as shown in Fig. 2.5. However, as the tuning wavelength is extended beyond 3 µm 

(toward near IR) or beyond 12 µm (toward very long wavelength IR), the tuning 

algorithm can no longer reconstruct the tuning filter properly, as seen from Fig. 2.11. 

This is primarily attributable to the weak response of the DWELL at these extreme 

wavelengths, as seen in Fig. 2.5. Consequently, we expect the performance of the 

algorithmic spectrometer to be poor too at these extreme wavelengths. Moreover, the 

sensitivity to extreme wavelengths is particularly accentuated in cases for which the 

SNR of the photocurrent is low (<10 dB). Thus, there is a tradeoff between the SNR 

and the spectral range of the algorithmic spectrometer. We therefore expect DAS to 

exhibit higher sensitivity to SNR at extreme wavelengths, which, in turn, would 

require lower operating temperatures. Additional theoretical analysis on tuning 

limitation is described in [21-24]. 
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2.3 Experimental performance analysis 

In previous section, we demonstrated the capability of the proposed DAS (with 

DWELL-1780) in the spectral sensing various LWIR targets. In this section we study 

the performance of the DAS (using DWELL-1781) as a function of SNR, detector’s 

temperature variation and bias diversity. Here, we use the DWELL-1781, instead of 

using DWELL-1780, due to its higher operating temperature, its spectral response at 

longer wavelengths, and its superior tunability. 

 

We begin by examining the dependence of the DAS performance on the photocurrent’s 

SNR. The spectrum-reconstruction procedure used to generate Fig. 2.12 (c) for the 

LWIR target f3(λ) was repeated for various levels of the photocurrent’s SNR. For each 

level of the SNR, a scaling factor, ρ, is used to modify the average photocurrent, yp,k 

uniformly in k, which, in turn, amplifies the photocurrent’s SNR according to (3). (The 

noise variance in (3) is held fixed.) This analysis is useful, for instance, in examining 

the effect of changing the quantum efficiency of the QDIP on the performance of the 

algorithmic spectrometer. The results are shown in Fig. 2.13; they show that at high 

signal-to-noise levels (ρ >1000), the reconstruction of the spectrum f3(λ) is improved 

compared to the case shown in Fig. 2.12 (c). In particular, the approximation of the 

passband region is improved while the response in the stopband region is lowered. As 

ρ  is lowered below a critical value of approximately 100, some spurious peaks emerge 

in the stopband region (3 µm < λ < 6.5 µm). The performance degrades slightly as ρ is 

lowered below 100 down to 0.1. Finally, for very poor SNRs, i.e., ρ < 0.1, the 

performance becomes poor in that the passband region (8-9 µm) becomes almost flat 

and the spurious peaks in the stopband region (3-4 µm) become amplified.  
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Figure 2.13: Examples of experimental reconstructions of LWIR f3(λ) using algorithmic spectrometer 
incorporated with the DWELL-1780 detector at 30 K for synthesized, high (ρ = 1000), moderate (ρ = 
100), and low (ρ = 0.1) SNRs of the photocurrent as compared to SNR of the actual photocurrent [28].  

 

Next, we investigate the dependence of the performance of the algorithmic 

spectrometer on the DWELL’s operating temperature. Here, the procedure used to 

generate Fig. 2.12 (c) for the LWIR target f3(λ) was repeated for various operating 

temperatures of the DWELL detector and the results are depicted in Fig. 2.14 (dark 

solid curves) along with the actual spectra of the target filter (thin solid curves). As 

expected, the performance of the algorithmic spectrometer is degraded as the detector’s 

temperature increases. This is a result of the increase in the dark current with 

temperature, which reduces the SNR, as well as the reduction in the overlap in the 

DWELL’s spectral responses as the temperature increases (as it was pointed out in 

Section 2.1). While accurate reconstruction is observed at 30 K [see Fig. 2.12 (c)], as 

the DWELL temperature increases the reconstructed target spectra deteriorates in the 

passband region. For example, the performance is poor at 77 K. Thus, the algorithmic 

spectrometer at higher device temperatures cannot properly reconstruct the target peak 

even at 8-9 µm because at low SNRs the peak of the DWELL detector is buried in the 

DWELL’s noise floor [22]. 
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Figure 2.14: Experimental reconstructions of the spectrum f3(λ) using algorithmic spectrometer 
incorporated with the DWELL-1781 detector for various detector temperatures: (a) 30 K, (b) 50 K, (c) 
60 K and (d) 77 K [28].  

 

Finally, we examine the dependence of the performance on the diversity of the 

available operating biases of the DWELL-1781 detector. The bias selection is pursued 

to find the number of biases required to achieve acceptable target reconstruction. As a 

benchmark, all 82 bias-dependent spectra (i.e., 41 each at negative and positive biases 

from -5 to -1 V in 0.1 V step, and from 1 to 5 V in 0.1 V step) of the DWELL-1781 

detector were considered to generate the LWIR target f3(λ). Then the reconstruction 

procedure was repeated for the subsampled bias voltages as follows: 40, 20, and 10. 

Figure 2.15 describes the reconstruction results for different bias selections. It was 

observed that a good target estimation was achieved even with many fewer bias 

voltages (for the case of ten bias voltages), showing the clear cutoff and strong 

response at the passband region. For consistency, the performances of DAS on the 

diversity of operating bias voltage were further tested with the other three LWIR filter 

targets f1(λ), f2(λ), and f4(λ) in Fig. 2.12. After applying DAS with subsampled bias 

voltages, target-spectrum reconstruction was achieved for these LWIR targets with an 

accuracy similar to that for f3(λ). Thus, the spectral information of original target is 

well maintained and preserved even with a reduced number of bias voltages. This is 

due to the existence of strong DWELL spectral responses at the particular bias 
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selections. However, the selection of weak DWELL spectral responses at biases from -

1.5 to 1.5 V leads to the poor reconstructions (results not shown). 

 
Figure 2.15: Experimental reconstructions of the spectrum f3(λ) using algorithmic spectrometer 
incorporated with the DWELL-1781 detector at 30 K for various bias selections: (a) with all 82 bias 
voltages (from -5 to -1 V in steps of 0.1 V, and from 1 to 5 V in steps of 0.1 V); and with a uniform 
subselection of (b) 40 bias voltages, (c) 20 bias voltages, and (d) 10 bias voltages [28]. 
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2.4 Conclusions 

We demonstrated an algorithmic spectrometer comprising a DWELL detector with bias-

dependent spectral response, which is due to the QCSE, and a postprocessing tuning 

algorithm. The implementation of the algorithmic spectrometer consists of two key 

stages and it requires that a target is probed repeatedly by the DWELL detector at 

different operating bias conditions, yielding a collection of bias-dependent 

photocurrents. In the first stage, sets of weights are calculated using the projection 

algorithm reported in [22]; in particular, one set of weights is calculated for each 

wavelength of interest. In the second stage and for each wavelength of interest, the 

photocurrents are linearly combined using the very weights associated with the specific 

wavelength, yielding a reconstruction of the target spectrum at that wavelength. 

Successful algorithmic reconstructions were obtained of the spectra of four LWIR target 

filters validating our approach for an algorithmic spectrometer. The performance was 

further examined in terms of the dependences on the photocurrent’s SNR, the 

DWELL’s operating temperature, and the diversity of the available operating biases. As 

expected and depending upon the DWELL’s operating temperature, the performance of 

the algorithmic spectrometer is degraded by the increase in the dark current as the 

detector’s temperature increases above 50 K (which, in turn, reduces the SNR), and the 

lack of the overlap in the DWELL’s spectral responses at high temperatures. The best 

reconstruction result was observed at 30 K. Notably, good reconstruction can be 

achieved even by using only ten appropriately placed biases for which strong, 

overlapping DWELL spectral responses exist. 
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Chapter 3 
 

 

Multispectral Classification with Bias-

tunable DWELL Focal Plane Array  
 

In this chapter, we describe the operation principle and characterization of the DWELL 

FPA. Then a multispectral classification capability of the DWELL FPA is demonstrated 

to identify the “class” of the object of interest. The approach is validated for the filter 

classification problem.   

 

3.1 Operation principle and characterization of the 

DWELL FPA  

This section details the FPA development based on the optimized DWELL single pixel 

architecture. Then it is followed by the performance evaluations and comparisons of 

original DWELL and optimized DWELL FPAs that include spatial uniformity, 

responsivity and NEDT. The bias-dependent spectral tunability of DWELL FPA is also 

demonstrated. In addition, the DWELL FPAs are compared to the commercially 

available QWIP FPA.     

  

3.1.1  FPA development and operation principle 

Recently, the DWELL design was modified by maximizing the volume of the active 

region to improve the QE of DWELL detectors. This is accomplished by reducing the 

strain generated during the growth of a single DWELL stack. In an initial attempt, 

GaAs well was used along with an InAs QD to form the DWELL structure with 

Al.10Ga.90As as the barrier. However, this structure produced poor photoluminescence 

(PL) intensity and the QD density was low in this structure. An In.15Ga.85As layer was 

then re-introduced between the GaAs well and the InAs QDs. This modification had 
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shown the improvement in the QD density. Furthermore, the amount of material in the 

QD and doping in the dots were optimized. Also, the effect of capping the dots with a 

lower interfacial strain In.15Ga.85As layer was studied for optimizing the QD optical 

quality. It was certainly observed that the capping of the dots with InGaAs improves 

the responsivity of the DWELL detector. Based upon these modifications, the 

optimized DWELL design (so-called the double DWELL) was achieved. This structure 

consists of n-doped InAs QDs in In.15Ga.85As/GaAs wells and Al.10Ga0.9As. With the 

strain reduction, the number of stacks in the active region was increased to 30. The 

structural progression from standard DWELL to double DWELL is well summarized in 

Fig. 3.1. 

 
Figure 3.1: Progression of heterostructure from standard DWELL to double DWELL [33,34]. 

 

The spectral characteristics of double DWELL structure were also experimentally 

demonstrated by measuring its bias-tunable spectral responses over various device 

operating temperatures shown in Fig. 3.2. For this device structure, the spectral 

responses were obtained for a bias range from -3 to 3 V. No spectral responses were 

measured beyond this bias range due to the noise dominance. The spectra showed the 

spectral shift from 8.5 to 9.5 µm as the bias is increased form negative to positive. 

Some signs of shifts in MWIR were also observed in a 4~7 µm range. More 

importantly, improvement in device operating temperature was clearly evident since 

the spectral responses were obtained until at a device temperature of 120 K. This 

further validates that the optimizations on device growth and processing improve the 

responsivity and the QE without altering the bias-dependent spectral characteristics. 
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Figure 3.2: Bias-dependent spectral responses of optimized DWELL structure for different device 
operating temperatures at (a) 60 K, (b) 77 K, (c) 100 K and (d) 120 K [33].  

 

The DWELL FPA samples based upon the already proven single pixel design 

structures were grown in a V-80 Molecular Beam Epitaxy (MBE) system, with an As2 

cracker source. After the growth, the FPA sample was then processed into a 320×256 

array format with a single pixel area of 24×24 µm2 and 30 µm pitch. The processed 

FPA sample was then hybridized to an Indigo 9705 Si readout integrated circuit 

(ROIC) with a standard bump-to-bump bonding using a FC 150 flip-chip bonder. Each 

pixel in FPA is essentially identical to the single pixel structure except that the 

substrate and bottom GaAs layer are removed and the pixel is flipped by 180°. Figure 

3.3 shows the scanning electron microscope (SEM) images of fabrication procedure 

and the packaged FPA.   
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Figure 3.3: SEM images of fabrication procedure and the packaged DWELL FPA. 

 

The DWELL FPA hybridized with ROIC was mounted in a closed-cycle dewar and 

cooled down. The FPA was characterized by using a commercial CamIRaTM FPA 

demonstration system manufactured by SE-IR Corporation with an f/2.3 broadband 

(3~12 µm bandwidth) optics. This system provides the clock, the frame and line 

synchronizations and the bias voltages to the ROIC. The entire measurement setup is 

illustrated in Fig. 3.4. The ROIC then reads the pixel values of entire array and sends 

them serially to the computer for data processing and storage. 

 

Figure 3.4: A diagram of FPA measurement setup for data acquisition. 
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3.1.2 Responsivity and array uniformity  

The uncorrected outputs of standard DWELL and double DWELL FPAs against 

various blackbody temperatures were measured. The outputs were obtained as Analog-

to-Digital Units (ADUs) and the maximum ADU counts for this camera system 

provided is 16383, corresponding to 14 bit Analog-to-Digital Converters (ADCs). 

During the measurements, the FPA temperature was 60 K and the applied bias was 

0.82 V. Irradiance provided by a calibrated blackbody source was increased until the 

integration capacitors in the ROIC began to fill indicating pixels were saturated. The 

integration time during measurements was 11.52 ms. These values were selected in 

conjunction with the detector bias to maximize SNR across the observable blackbody 

temperature range. The results for the responsivity and the array uniformity are shown 

in Fig. 3.5 and compared with that of the commercial QWIP FPA. 

 
Figure 3.5: (a) FPA outputs (Counts) vs blackbody temperature for standard DWELL FPA (left), double 
DWELL FPA (middle) and QWIP FPA (right) over the entire array at 60 K device temperature. (b) FPA 
outputs (Volts) vs illumination over the 20 healthy pixels [34].      
 

Figure 3.5 (a) displays the spatial variations of entire array and demonstrates the pixel 

behaviors as a function of a calibrated blackbody temperature. While the standard 

DWELL FPA and the QWIP FPA had a linear response, the double DWELL FPA had 
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shown a piecewise linear response. Based on observation by considering the variance 

over all pixels at each blackbody temperature, the double DWELL FPA had lower 

spatial deviation than the standard DWELL FPA. However, the QWIP FPA had shown 

the lowest spatial deviation.      

 

The responsivity R for each FPA is proportional to the slope of FPA output (Volts) as a 

function of blackbody illumination in Fig. 3.5, as demonstrated by 

 

     (4) 

   

Based on (4), the responsivity was estimated and tabulated in Table 3.1.  

 

Device Responsivity ∝  (V/W) 

QWIP FPA 719.46 

Standard DWELL FPA 291.45 

Double DWELL FPA 182.5-313.7 

 
Table 3.1: Results for estimated responsivity for standard DWELL FPA, double DWELL FPA and QWIP 
FPA [34]. 

 

In Table 3.1, the QWIP FPA showed the highest responsivity and the double DWELL 

FPA has a range of values. This is because the double DWELL FPA showed a high 

responsivity at low illuminations and a low responsivity at high illuminations in a 

piecewise linear pixel behavior, as demonstrated in Fig. 3.5. At low illuminations, the 

double DWELL FPA showed a higher responsivity than the standard DWELL FPA, 

whereas the standard DWELL FPA had a higher responsivity than the double DWELL 

FPA at high illuminations.     

 

The surface plots shown in Fig. 3.6 give further details of the uncorrected array 

uniformity. Aside from the large and small pixel counts (i.e. shown as sharp spikes) 

attributable to hot and cold pixels, respectively, remaining pixels were considered as 

healthy (operating) population. By visual inspection, more healthy pixels were 

observed on the double DWELL FPA than the standard DWELL FPA, whereas the 

QWIP FPA showed the largest number of healthy pixels. A linear gradient in at least 

one direction was clearly observed on the standard DWELL FPA as compared to the 

double DWELL FPA. In general, the linear gradient is caused by manufacture, possibly 

due to inherent non-uniformity in layer thicknesses and compositions in the MBE 
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growth. 

 
Figure 3.6: Three-dimensional surface plots of uncorrected outputs for standard DWELL FPA (left), 
double DWELL FPA (middle) and QWIP FPA (right) over the entire array at 60 K device temperature. 
Each plot was obtained when observing a blackbody source at 30°C. 

 

3.1.3 Noise equivalent difference in temperature (NEDT)  

NEDT is typically a measure of the sensitivity of a detector of thermal radiation in IR 

region. In other words, NEDT is a performance measure that indicates the smallest 

difference in uniform scene temperature that a detector can detect, so a small value is 

desired. 

 

Procedure of computing NEDT is as follows, first, for each pixel of the entire 320 x 

256 FPA, the device responses (output voltages) at low, T1 and high, T2 scene 

temperatures are obtained over 51 frames. Scene temperature is controlled by a 

calibrated blackbody source. Next, average responses Rlow and Rhigh are calculated over 

51 frames and the temporal noise voltage (N) of each pixel at T1 is quantified by the 

standard deviation. Then the response to noise ratio is found by Rs / N = (Rhigh – Rlow) / 

N. With this ratio, the NEDT between T1 and T2 is determined by the following 

expression given as,     

         

   (5) 

 

where ∆T is the change of blackbody temperature (i.e., ∆T = T2 – T1). 

 

Two kinds of NEDT were calculated: the first NEDT is the spatial average, which is 

the average over the 320 x 256 pixels and the second NEDT is the minimum, which 

represents the best value for the entire array. The results of the calculated NEDTs for 

the standard DWELL FPA and the double DWELL FPA were summarized in Table 3.2. 
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The NEDTs for the standard DWELL FPA and the double DWELL FPA were 

compared to that of the QWIP FPA.  

 

Device Parameter (mK) 60 K 80 K 

Average NEDT 29.9 N/A QWIP FPA 

Minimum NEDT 16.8 N/A 

Average NEDT 76.9 186.1 Double DWELL FPA 

Minimum NEDT 44.3 N/A 

Average NEDT 124.5 N/A Standard DWELL FPA 

Minimum NEDT 71.1  N/A 

 
Table 3.2: The minimum and average NEDTs for the standard DWELL FPA, the double DWELL FPA 
and the QWIP FPA. 

 

The average NEDT for the entire FPA was measured using a blackbody source at 30°C. 

At 60 K FPA temperature, the average NEDT with the double DWELL FPA was lower 

than that with the standard DWELL FPA. The QWIP FPA showed the lowest value. In 

the minimum NEDT, the double DWELL FPA also demonstrated a significant 

improvement in NEDT over the standard DWELL FPA, although the QWIP FPA had 

the lowest minimum with 16.8 mK. However as a FPA temperature was raised to 80 K, 

both the standard DWELL FPA and the QWIP FPA were inoperable because of very 

high dark currents. Although the double DWELL FPA had around 186 mK, they were 

still operable at 80 K. The histogram plots in Fig. 3.7 give further details of NEDTs for 

the standard DWELL FPA and the double DWELL FPA as compared to the QWIP FPA. 

The low variance of histogram corresponds to the high array uniformity. The double 

DWELL FPA had the lower NEDT and variance over the standard DWELL FPA, while 

the QWIP FPA showed the lowest NEDT with the highest array uniformity. For 

spectral analysis, for example, material classification, the spatially uniform region 

associated with each object is selected. As shown in Section 3.4, each selected region 

was used for training the classifier and objects in the testing scenes taken at different 

times carrying inherent variability in the data were successfully classified. This 

demonstrates the robustness of sensing algorithm against the pixel variability. Details 

of classification results are shown in Section 3.4. To compensate for the spatially non-

uniform response of the detectors within the FPA, we also perform a non-uniformity 

correction algorithm to radiometrically correct the pixel values at each bias voltage. 
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Commercial QWIP FPA 

Double DWELL FPA

Standard DWELL FPA 

Commercial QWIP FPA 

Double DWELL FPA

Standard DWELL FPA 

 
Figure 3.7: Histogram plots of NEDTs for standard DWELL FPA (green), double DWELL FPA (blue) 
and QWIP FPA (red) over the entire array at 60 K device temperature. Each plot was obtained when 
observing a blackbody source at 30°C. 

 

3.2 Bias-tunability of the DWELL FPA 

FPA imagery shown in Fig. 3.8 is used to demonstrate the bias tunability of double 

DWELL FPA. For imagery, the operating temperature of the DWELL FPA was set to 

60 K and the integration (exposure) time was 11.5 ms. A 150°C temperature was used 

since such a high temperature blackbody offered a good transmittance for objects in a 

scene. The images are taken at 0.6, 0.8 and 1.2 V, respectively. Normalized images are 

shown in Fig. 3.8 (bottom row). The DWELL FPA data is normalized at each pixel by 

the approximate area of the multibias pixel response in order to eliminate the intensity 

effect in the calculations. More details about the normalization are given in Subsection 

3.3.2. 
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Figure 3.8: DWELL FPA images of three IR optical filters taken at 0.6 V, 0.8 V and 1.2 V bias voltages. 
Top figures are raw data and bottom figures are normalized data. 

 

The spectral tunability of DWELL FPA had been confirmed by considering the 

calculated spectral ratios for pairs among IR spectral filters (at 3-4 µm, at 4-5 µm and at 

8.5 µm) as shown in Fig. 3.8. Figure 3.9 shows the spectral ratios calculated for the pair 

of objects (filters and background) from the normalized scene in Fig. 3.8 as a function 

of the applied bias voltages. The spectral ratios vary between 0.4 to almost 1.4 when the 

applied bias voltage changes in the range from 0.3 to 1.2 V with a step of 0.1 V. Note 

that for bias voltages 0.7 and 0.8 V, the ratios between pair of objects are close to one, 

indicating low spectral separability between the objects at these particular bias voltages.  
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Figure 3.9: Ratio of pixel values for various pairs of the objects (filters and background) as a function of 
applied bias voltage.  
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The fact that the ratio values change from one bias to another demonstrates that the 

double DWELL FPA can sense different spectral contents of the materials observed in a 

scene simply by changing the applied bias voltage. Note that for the conventional 

(spectrally non-tunable) broadband FPA the spectral ratios would remain fixed as a 

function of the applied bias voltage. This can be demonstrated with a commercial device 

such as micro-bolometer, which shows a broadband and non-tunable spectral response..    

 

3.3 Multispectral classification using bias-tunable 

DWELL FPA 

In this section, we provide a brief overview of the mathematical model for bias-tunable 

multispectral sensing and discuss the classification problem. 

 

3.3.1 Bias-tunable multispectral sensing 

Mathematically, the DWELL spectral bands can be viewed as a family of 

functions )}({ λ
ivf , parameterized by the applied bias voltages vi [35]. In what follows, 

we denote the spectrum of an object by p(λ). For example, p(λ) may represent 

transmittance, bidirectional reflectance measurement or hemispherical reflectance data. 

The photocurrent for the i
th band of the DWELL detector sensing an object with a 

given spectrum p(λ) can be written as 

   .)()(
max

min
iii vvv NdfpI += ∫

λ

λ
λλλ    (6) 

Here,
ivN denotes additive, scene-independent noise associated with the i

th band, and 

the interval [λmin, λmax] represents the common spectral support for all bands and 

objects. Next, for a given set of applied bias voltages {v1,…,vn}, the output of the 

DWELL detector is a set of photocurrents at these bias voltages  

     
).,...,(I

1 nvv II=                  (7) 

This set represents the multibias or multispectral signature of the object as “seen” by 

the DWELL detector. 

 

Because the DWELL bands are wide and overlapping, the photocurrents in I are highly 
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correlated. The redundancy in the information content of the photocurrents can be 

reduced by a suitable postprocessing algorithm, which, in turn, can be used to improve 

the efficiency of the classification process. Here, we shall use the canonical correlation 

feature selection (CCFS) [35] algorithm to replace the n–dimensional multibias 

signature in (7) by a single feature that is optimized with respect to a given class of 

objects. 

 

For a given class of objects represented by a mean spectrum )(λp , the output from the 

CCFS algorithm is a single transformed feature ∑ =
=

n

i vi i
IaI

1
, which is a weighted 

linear combination of all features in (7). The weights ai are optimized by the CCFS for 

every class of objects represented by their mean spectrum )(λp . 

 

The transformed feature I  can be viewed as the current generated by a “virtual” 

superposition band, ∑ =
=

n

i vv ii
faf

1
; the optimal selection rule of the weights is 

derived rigorously in [35]. Consequently, the problem of determining the optimal 

current, I , for a given class representative or class mean spectrum )(λp , is equivalent 

to finding a superposition band f  that provides the best approximation of )(λp . 

Mathematically, f can be interpreted as an approximation of )(λp  in the space 

spanned by }{
ivf , which minimizes the distance and at the same time maximizes the 

SNR [35]. 

 

3.3.2  Object classification problem  

The classification problem considered is that of separating multiple combinations of 

MW and LW IR spectral filters with different bandwidths and center wavelengths. For 

this problem, we used the three scenes shown in Fig. 3.10 (a)–(c). The classes 

identified for the classification problem are summarized in Table 3.3. 
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(a)

(b)

(c)  

Figure 3.10: Columns one, three, and five, a-c show DWELL FPA raw imagery acquired at 0.3, 0.7, and 
1.2 V, respectively. Columns two, four, and six, a-c, show the normalized imagery at 0.3, 0.7, and 1.2 V, 
respectively. Objects in scene; scene in row (a): filter MW1 (left) and MW2 (right); scene in row (b); 
filters MW2 (left) and LW3 (right); scene in row (c): filters MW1 (left), MW2 (center) and LW3 (right) 
[36].  
 

 

Classification Problem Identified Classes 

Scene (a) MW1, MW2 filters, metal holder and background 

Scene (b) MW2, LW3 filters, metal holder and background 

Scene (c) MW1, MW2, LW3 filters and background 

Table 3.3: Summary of identified classes for the filter classification problem [36] 

 

Two types of normalization techniques are applied to the raw digital numbers (DNs) 

that are retrieved directly from the DWELL FPA. First, at each bias voltage, pixel’s DN 

values are radiometrically corrected by a two-point nonuniformity correction (NUC) 

[37] algorithm. The NUC compensates for the spatially nonuniform response of the 

detectors within the FPA and is an integrated part of the image acquisition process. The 

two-point NUC is performed using temperatures at 22°C and 150°C. The lower 

temperature of 22°C corresponds to the lens-cap’s room temperature, which was used 

to yield the lower-temperature uniform field.  
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Next, for every radiometrically corrected pixel and its replicas at each bias voltage, the 

pixel’s value is normalized as follows:  

    

∑
=

∆

=
n

i

i

j

j

vIv

vI
vI

1

)(

)(
)(     (8) 

where Δv is the voltage step size used to increment the DWELL FPA’s bias. Equation 

(8) is equivalent to normalization by the area enclosed under the multibias response of 

each pixel in the DWELL FPA. The normalized multibias response of a pixel can then 

be written as  

    )).(),...,((I 1 nvIvI=     (9) 

This normalization minimizes the role of broadband emissivity in the discrimination 

process and emphasizes the spectral contrast. The normalized images at 0.3, 0.7, and 

1.2 V for the classification problem are shown in columns two, four, and six in Fig. 

3.10(a)–(c), respectively.  

 

We perform a supervised classification comprising of training and testing steps for the 

classification problem. To determine representative multibias signatures for each class 

listed in Table 3.3, we follow the same approach as used in [35]. Specifically, for each 

class we compute statistical mean and covariance matrix using spatially uniform 

regions that are visually associated with that class. Subsequently, Euclidean-distance 

classifier is trained by the classes’ mean multibias signatures and the covariance 

matrices [38].  

 

At the testing step, the trained classifiers are used to classify the objects in Table 3.3 

from a set of testing scenes. These scenes capture the same images as the training 

scenes but were acquired at different times. As a result, the testing scenes carry 

inherent variability in the data due to the difference in the measurement conditions 

from day-to-day and the presence of ambient and system noise. The testing images are 

normalized in the same fashion as the training images. The size of training and testing 

data set for the filter classification problem are listed in Table 3.4. 
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Classification Problem Number of Pixels in Training/Testing Sets 

Scene (a) MW1: 140/235, MW2: 140/235, metal holder: 66/161 and 
background: 300/300 

Scene (b) MW2: 154/330, LW3: 108/320, metal holder: 126/260 and 
background: 352/340 

Scene (c) MW1: 400/280, MW2: 400/280, LW3: 400/280 and 
background: 336/350 

Table 3.4: Number of pixels used in the training and testing data sets for the filter classification problem 
[36]  
3.4 Theoretical and experimental classification results 

The thematic maps for the filter classification problem using Euclidean-distance 

classifier are presented in Fig. 3.11 (a)–(c), respectively. These maps show the 

distribution of the derived classes over the spatial area captured by the DWELL FPA. 

Each map defines a partitioning of the area into sets, each including the points with 

identical class labels. In order to investigate the effect of the bias selection on the 

classification accuracy, the classification is performed for multiple combinations of 

biases.  

 

The results for the filter classification problem, specified in Table 3.3, are shown in Fig. 

3.11 (a)–(c), and Table 3.5 shows the calculated classification errors for various classes. 

The thematic maps in Fig. 3.11 (a)–(c) are obtained using four different sets of bias 

voltages: (i) one bias at 0.3 V; (ii) one bias at 0.7 V; (iii) two bias voltages at 0.6 and 

0.7 V; and (iv) all bias voltages in the range of 0.3–1.2 V.  

 

For the first bias voltage set, the Euclidean-distance classifier consistently shows good 

classification for all three scenes as shown by the thematic maps in the first column in 

Fig. 3.11 (a)-(c). This observation is confirmed by the classification errors in Table 3.5 

for this case. In contrast, for the second bias voltage set the Euclidean-distance 

classifier cannot discriminate successfully between the filters, metal holders and 

background, as shown by the thematic maps in the second column in Fig. 3.11 (a)–(c). 

This result and the classification errors in Table 3.5 show that the bias voltage at 0.7 V 

is not a good choice for these scenes. However, adding a second bias voltage at 0.6 V 

to the second set (resulting in our third bias voltage set) improves the classification as 

shown by the thematic maps in third column in Fig. 3.11 (a)–(c). Finally, the thematic 
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maps in the last column in Fig. 3.11 (a)–(c) and the classification errors in Table 3.5 

indicate almost perfect classification results for the fourth set of bias voltages, i.e., 

when all ten biases are used. In Fig. 3.11, it is also to be noted that the classifier has 

generated successful results regardless of the location of object (pixel variability) in a 

scene.  

(a)

(b)

(c)
 

Figure 3.11: Thematic maps, from left to right: bias at 0.3 V used, bias at 0.7 V used, combination of 
biases at 0.6 and 0.7 V used, and all biases in the range of 0.3–1.2 V used; (a) MW1 and MW2; (b) MW2 

and LW3; (c) MW1 , MW2 and LW3 [36]. 
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Classification Problem Bias (V) MW1 Error 

(%) 

MW2 Error 

(%) 

Metal Error 

(%) 

0.3 2 0.4 32 
0.7 63 4 70 

0.6, 0.7 15 0.8 0 

 

Scene (a) 

0.3-1.2 0.8 0 0 

Bias (V) MW1 Error 

(%) 

MW2 Error 

(%) 

Metal Error 

(%) 

0.3 0 0 5 
0.7 64 44 23 

0.6, 0.7 0.5 0 7 

 

Scene (b) 

0.3-1.2 0 0 5 

Bias (V) MW1 Error 

(%) 

MW2 Error 

(%) 

Metal Error 

(%) 

0.3 0 2.5 4 
0.7 42.75 58.5 4.5 

0.6, 0.7 1 2.7 1 

 

Scene (c) 

0.3-1.2 1.7 1.7 0 
Table 3.5: Classification errors in the filter classification problem using Euclidean-distance classifier 
[36] 

 

3.5 Conclusions 

The DWELL FPA based on the optimized structure was developed and its performance 

was compared with the first-generation DWELL FPA and the commercially available 

QWIP FPA. Radiometric characterizations had demonstrated that this new DWELL 

FPA has higher device operating temperature than the first-generation FPA and the 

QWIP FPA. In addition, this new DWELL FPA had demonstrated the bias-dependent 

spectral tunability with the calculated spectral ratios for pairs among IR spectral filters.  

 

Using this optimized DWELL FPA, we have demonstrated for the first time the MS 

classification capability of the DWELL FPA by exploiting the DWELL’s bias tunability 

along with a traditional algorithm (i.e., Euclidean distance classifier). The DWELL 

FPA performance has been validated using a classification demonstration: separation 

between three mid-IR spectral filters. Our verification studies show that, as a result of 

its bias tunability, the DWELL FPA can successfully capture spectral contrast between 

different materials, which, in turn, enables their accurate classification. The results 

from the classification analysis demonstrate that accurate classification can be 

achieved by either considering a broader range of spectral information, i.e., by using 

all bias voltages, or by using specific biases, or combination thereof. Finally, a 
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customized feature-selection algorithm that specifically addresses the abundant 

spectral overlap and noise in the DWELL bands, such as the CCFS, can additionally 

enhance the MS capability of the DWELL FPA by selecting only few optimized 

superposition bands that yield the same classification results as when using all 

DWELL FPA bands.   
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Chapter 4 

 

 

Data Compressive Paradigm for 

Multispectral Sensing using Tunable 

DWELL Mid-infrared Detectors 
 

The algorithmic spectrometer described in Chapter 2 was designed without restricting 

the number of bias-dependent photocurrents to be used in forming the superposition 

photocurrent. For practical implementation, it may be necessary to limit the number of 

applied biases used (or equivalently, the number of data acquisitions) due to hardware 

(memory and processors), cost and/or total acquisition-time constraints. The delay 

associated with acquiring a high number of photocurrents sequentially is proportional 

to the number of biases, making the method inadequate for dynamic targets. It is 

therefore critical that we extend and optimize the sensing algorithms so that only a 

minimum number of biases are used. The ability to utilize a small number of biases can 

be exploited by a smart-pixel read-out circuitry in order to enable on-chip 

implementation of the algorithm. 

 

In this chapter, we describe a generalized data-compressive MS sensing algorithm to 

substantially compress the number of necessary biases, and hence the amount of data 

to be sensed, subject to a prescribed performance level. A minimal set of biases 

identified by the algorithm enable the sensor to sense only the relevant spectral 

information for remote-sensing applications of interest.  
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4.1 Review of algorithmic spectral sensing and moving 

on to reducing the sensed data 

In this section, we review germane aspects of our original algorithmic multispectral 

sensing approach [22]. The DWELL’s spectral bands are denoted by the functions 

R1(λ),…,RK(λ), corresponding to the applied bias voltages v1,…,vK. Let us consider an 

arbitrary target of interest with unknown spectrum, p(λ), that is probed by the DWELL 

photodetector at the bias values v1,…,vK. The output of the DWELL photodetector is 

represented by a vector of bias-dependent photocurrents, I = [i1,…,iK]T; the m
th 

photocurrent, im, corresponds to the mth bias vm. Mathematically, im is expressed by  

 

       (10) 

 

where Nm denotes bias-dependent noise associated with the mth band, and the interval 

[λmin, λmax] represents the available wavelength range for all bands and objects. The 

photocurrent vector represents the bias-driven multispectral data vector of the object as 

seen by the DWELL detector operated at the prescribed bias set. Note that since the 

spectral bands of the DWELL detector are relatively broad and highly overlapping the 

bias-dependent photocurrents inherently have a high level of redundancy. As referred 

to Subsection 2.2.1, the spectral tuning algorithm calculates the weight vector wn using 

(1) and the transmittance of unknown target is reconstructed by a weighted linear 

combination with the photocurrent vector I, denoted by wn
T
I (synthesized 

photocurrent). This process is repeated for the entire tuning wavelengths of interest. 

We emphasize that the weights are calculated offline and their calculation does not 

involve any knowledge of the target’s spectrum. 

 

4.1.1 Challenges in reducing the number of required biases 

To reiterate, the reduction in the number of required biases is needed for two reasons: 

(1) to minimize the substantial redundancy in the bias-dependent photocurrents as a 

target is probed by the DWELL detector at the different biases and (2) to make the 

approach amenable to near real-time implementation by reducing the data-acquisition 

time. There are two challenges in reducing the number of require biases that this paper 

aims to surmount. Firstly, if we restrict the number of biases to a small value, there 

needs to be a viable algorithm for selecting the actual biases from an often-large 
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number of available biases. The challenge here is that the complexity of a direct search 

approach is exponential due to the combinative nature of the problem. Secondly, even 

if the first challenge is overcome and we are able to generate a small set of biases for 

each one of the narrowband (hypothetical) tuning filters r(λ;λn), we may obtain a 

different set of reduced biases for each filter. Thus, an aggregated set of biases 

(obtained by taking the union of the small number of biases for each filter) that 

guarantees good performance for all the filters may no longer be small.   

 

(a) (b) (c)(a)(a) (b)(b) (c)(c)

 
Figure 4.1: Example of three different narrowband tuning filter approximations centered at (a) 7.4 µm, 
(b) 8.8 µm and (c) 10.2 µm, the algorithm requires 21 out of 30 biases. The biases used are {-3.0, -2.8, -
2.6, -2.2, -2.0, -1.8, -1.6, -1.4, -1.2, -0.8, -0.6, -0.4, -0.2, 0.2, 0.4, 0.6, 0.8, 1.4, 1.8, 2.4, 2.6} [31].  

 

To help appreciating the second challenge, consider the example were we are interested 

in approximating three spectral filters (n = 3) as shown in Fig. 4.1. Suppose that we 

have a total of 30 DWELL spectral responses corresponding to the biases in the range -

3 to 3 V in steps of 0.2 V. With an approximation-error metric for performance defined 

and specified (to be described in details in Section 4.2), we would need only eight 

biases for each tuning filter from 30 biases. Our calculations based on the results to be 

presented in Section 4.2 (the MBS approach) show that the reduced bias sets for the 

tuning filters (a), (b) and (c) are {-2.2, -1.2, -0.8, -0.2, 0.2, 0.4, 0.6, 0.8 V}, {-3.0, -2.8, 

-2.6, -1.8, -1.4, -0.6, -0.4, 1.4 V} and {-2.0, -1.6, -0.8, 0.2, 1.4, 1.8, 2.4, 2.6 V}, 

respectively. Thus, to approximate all three tuning filters with the same prescribed 

approximation error, then we would need 21 biases in total.  

 

In the following section we will provide a solution that addresses both of the 

aforementioned challenges. 
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4.2 Uniformly-accurate compressive spectral-sensing 

algorithm 

We begin by defining an extension of the spectral-tuning algorithm described in 

Subsection 2.2.1 in a generalized setting for which the set of biases and the 

hypothetical spectral filters (to be approximated by the DWELL spectral responses) are 

arbitrarily specified. Consider the collection, FDWELL= {R1,…,RK}, of the DWELL 

spectral responses corresponding to a maximal set of biases BDWELL ={v1,…,vK}; 

namely, Ri(λ) is the spectral response of the DWELL detector when voltage vi is 

applied to it. Let FMS = {f1,…,fM} be a collection of hypothetical multispectral sensing 

filters designed for specific sensing problems of interest and let b⊂{1,…,K} be the 

index set for a specified subset of biases from BDWELL. For each filter fi, 

let ∑
∈

=
bj

j

b

ji

b

i Rwf )(ˆ )(
,

)( λ be its approximation using the set of biases identified by b. In 

this approximation, the weight vector wi
(b) = [wi,1

(b), …, wi,|b|
(b)] is calculated according 

to (11) with the proviso that the matrices A and Φ Φ Φ Φ are now restricted to the set of biases 

specified by b, which we denote as A(b) and ΦΦΦΦ((((b). More precisely,  

 

 wi
(b)

=[(A(b))T
A

(b)+ Φ Φ Φ Φ
(b)+ α(A(b))T

Q
T
QA

(b)]-1[(A(b))T
fi(λ)],  i=1,…,M.      (11) 

 

(In the absence of noise (ΦΦΦΦ(b) ≡ 0), the solution in (11) is simply the projection of the 

function fi onto the linear space generated by the functions Ri, i∈b.) As a performance 

metric for approximating all the hypothetical spectral filters in FMS using the index set 

b for the specified bias collection, we define the average approximation error  

 

 

   

  (12) 

 

 

 

We finally introduce a relative error metric, P
(b), that puts eb in the context of the 

minimum error possible, e{1,…,K}, when using all K biases are used. Namely,  

 

   P
(b) = 100 X |eb – e{1, …,K}|.    (13)  
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The e{1,…,K} is the reference (minimal) error used later for benchmarking the 

performance in reduced bias sets. For a given performance level θ, our goal is to find a 

minimal subset of biases, Bmin ⊂ BDWELL with bmin ⊂{1,…,K}, for which we are 

guaranteed that )( minb
P ≤ θ. Next, we introduce two algorithms for determining Bmin. 

 

4.2.1 Bias-selection algorithms 

Two bias-selection algorithms are reported here: the Minimal-Bias-Set (MBS) 

algorithm, which gives optimal results using an exhaustive search approach, and the 

Approximate Minimal-Bias-Set (AMBS) algorithm, which offers a suboptimal solution, 

based on a greedy search approach, but offers huge computational advantage over the 

MBS algorithm. (A minimal collection of biases may not be unique.) 

 

The procedure of MBS algorithm is straightforward. It searches among all the minimal 

number of required biases q* and a corresponding q*-bias collection Bmin is identified 

by the index set bmin for which the resulting error metric )( minb
P is below the prescribed 

error threshold θ ≥P
({1,…,K}). More precisely, the exhaustive-search method for 

identifying the minimal bias subset Bmin is described through the following steps.  

 

Minimal-Bias-Set Algorithm: 

1) Initialization step: set q = 1. 

2) Calculate }…=
)()(

1

)(

MS  , ,{ qqq b

M

bb
wwW  and

)( qb
P for all }…⊂ Kbq  , {1, such that |bq|=q.  

3) Identify the bias subset *
qB  with the index set *

qb  for which
)( *

qb
P is at a minimum;   

namely,
)(

||},,,1{

* minarg q

qq

b

qbKb
q Pb

=⊂

=
K

.  

4) If θ≤
)( *

qb
P , then the minimal number of required biases, q*, is calculated set to q 

and *
qb  is set to bmin. As a result, Bmin=

*
qB . If θ>

)( *
qb

P and q < K, then increment q by 

1 and go to Step 2.  

 

Note that since { }),...,1( K
P≥θ  the algorithm described in Steps 1-4 must terminate in at 

most K steps. Also note that in general
)()( 1

*
q

*
q bb

PP +≥ , q=1,…, K-1. 
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This MBS algorithm is optimal but it is computationally feasible only when q is 

reasonably small (e.g., q = 4 and K = 30 as in the example considered in Section 4.3.) 

since the identification of each *
qb  involves 









q

K  calculations of
)( qb

P . For large q 

values the number of bias combinations to consider becomes enormous, which results 

in unrealistically large computing times. As an alternative, we can employ a greedy 

approach we referred to as AMBS, which is suboptimal, where the biases for the q+1 

are selected by augmenting the q biases from an earlier stage of the selection process 

by a single bias that is selected optimally from the remaining K-q biases. The number 

of searches for each q is therefore reduced from 








q

K
to K-q. To avoid falling in local 

minima early on in the selection process, we start the process by first performing the 

exhaustive-search bias selection process for a small q value (typically q=3 in our 

examples) and then employ the greedy approach. The AMBS algorithm in determining 

a suboptimal minimal bias subset,
min

~
B , is described through the following steps. 

 

Approximate Minimal-Bias-Set Algorithm: 

1) Initialization step: select a (small) initial value, q0, and use the exhaustive search 

method to identify the bias subset *

0qB with the index set *

0qb  for which
)( *

0qb

P is at a 

minimum. Set q = q0. If θ≤
)( *

qb
P , *

qb  is min

~
b . Then *

min

~
qBB =  and the search process 

is complete. If θ>
)( *

qb
P  then go to Step 2. 

2) Calculate
}){(

\

*

*

minarg
jb

bKj
q

q

q

Pj
U

∈

=  and define the augmented bias subset 

}{
~ **

1 qjqq BBB U=+ . Here, *\ qbK  is the set of all integers that are in K but not in *
qb . If 

θ≤+ )
~

( *
1qb

P  then set q* = q+1 and 
*

min

~~
∗=

q
bb . As a result, *

min *

~~
q

BB = , which completes 

the search process. 

3) If θ>+ )
~

( *
1qb

P  and q < K, increment q by 1 and go to Step 2.  

Note that since { }),...,1( K
P≥θ , the algorithm described in Steps 1-3 must terminate in at 

most K steps.  
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The AMBS approach falls in the more general category of matching pursuit algorithms 

reported by [39,40]. Both approaches are based upon a greedy principle and share the 

common objective of searching for a sparse solution to represent the signal based upon 

a suboptimal forward search. In both approaches, a search is made through a 

“dictionary” in an iterative fashion rather than solving the optimal approximation 

problem. However, there are two key differences in the implementation of the search 

processes used in the AMBS and that used by the matching pursuit algorithms. The 

AMBS algorithm selects the vector (or subset) from a given dictionary based upon 

minimizing the “first-order residual,” which simply corresponds to the error between 

the true signal and the projected signal. On the other hand, the matching pursuit 

algorithm chooses the vector from the set of dictionary vectors iteratively by sub-

decomposing the residual to represent the original signal, thereby considering “higher-

order residuals,” as explained in [39,40]. Another key difference is that the AMBS 

involves an important initialization step, based on exhaustive search, for finding a good 

initial value in order to avoid falling in local minima early on in the selection process. 

The greedy process then follows the initial step. 

 

4.2.2 Uniformly-accurate compressive spectral sensing 

algorithm 

The uniformly-accurate compressive spectral sensing (UCSS) algorithm is summarized 

in Fig. 4.2. There are three inputs specified by the user. The first input is the collection, 

FDWELL and the corresponding maximal set of biases BDWELL. The second input is the 

collection FMS of hypothetical multispectral sensing filters for the specific sensing 

problems of interest. The third and final input is the user-prescribed worst-case error 

threshold, θ, for the error metric P(b).  
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Figure 4.2: Illustration of the remote-sensing applications of data compressive UCSS algorithm [31] 

 

Here the threshold θ is selected such that it is achievable, namely, θ ≥ P
({1, …, K}). The 

set of indices, bmin⊂{1,…,K}, is obtained from either MBS or AMBS algorithms 

described in Subsection 4.2.1, and it defines a minimal set of biases BMS. The optimal 

collection of weight vectors corresponding to with bmin and FMS is 

}…=
)()(

1MS
minmin  , ,{ b

M

b
wwW  (here M is the number of spectral filters in FMS). Note that 

each weight vector is of length |Bmin|. In the final stage of the UCSS algorithm, the 

photocurrents from the spectrally tunable detector sensing a target at the minimal bias-

set BMS; these photocurrents are the most relevant spectral dataset for any specific 

application represented by FMS. The photocurrents are then linearly combined 

according to the subset of weight vectors from MSW , corresponding to the spectral 

filters in FMS, to yield the desired features equivalent to those that we would have 

obtained had we used a broadband detector in conjunction with the spectral filters in 

FMS. 
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4.2.3 Generalization to linear space generated by the collection 

of hypothetical multispectral sensing filters 

Suppose that we are interested in sensing using a hypothetical filter, f
~

, a linear 

superposition of individual filters in the collection FMS: ∑
=

=
M

i

ii ff
1

)()(
~

λβλ  where βi’s 

are scaling factors that are chosen to control the shape of )(
~

λf ). For example, if M = 2, 

β1 = -1 and β2 = 1, then ),()( )(
~

12 λλλ fff −= which yields the differences of the 

spectral features at λ2 and λ1. Is it possible to extend the ST algorithm to accommodate 

this scenario without the need for redoing the bias-selection optimization problem 

(Subsection 4.2.1) for the extended filter set }
~

{ fFMS ∪ ? Indeed, the linear nature of 

the sensing problem at hand dictates that the required weight vector 
)( min~ b

w  
associated with f

~
 is nothing but a linear superposition of the scaling factors of the 

individual filter elements in FMS:    ∑
=

=
M

i

b

ii

b

1

)()( minmin  ~ ww β    (14) 

 

This can be seen by simply applying the formula in (11) to the function 

∑
=

=
M

i

ii ff
1

)()(
~

λβλ  and a simplifying the result to obtain 

∑
=

−+Φ+=
M

i

i

bbbbbb

i

b
f

1

T)(1)(TT)()()(T)()( )]()A[(]QAQ)A(A)A[( ~ minminminminminminmin λαβw , 

which is simply ∑
=

M

i

b

ii

1

)( min wβ . With
)( min~ b

w available, the hypothetical filter f
~

is 

approximated by 

.     

   (15) 
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4.3 Case study on optimal bias selection 

 

4.3.1 Specification of sensing filters and their approximations by 

a minimal bias set 

We experimentally measured the bias-dependent spectral responses of the DWELL 

photodetector, FDWELL ={R1(λ),R2(λ),…,R30(λ)}, with 30 different biases corresponding 

to the bias set BDWELL ={-3, -2.8, -2.6, …, 3 V}. We also set the error threshold, θ, to 

8 %, and further specified FMS as the collection of six spectral sensing filters {f1(λ), 

f2(λ),…,f6(λ)}. Specifically, f1(λ), f2(λ) and f3 (λ) are defined as three disjoint 

hypothetical narrowband triangular sensing filters centered at 7.4 µm, 8.8 µm and 10.2 

µm, each with a full-width at half maximum of 0.5 µm. We select the filters f4(λ), f5(λ) 

and f6(λ) to be the actual transmittances of three optical filters in the ranges 7.5-10.5 

µm, 8.0-9.0 µm and 8.5-11.5 µm. For the generalization in Subsection 4.2.3, we 

specified two linearly superpositioned filters: a spectral integrator  )(
~

1 λf and a spectral 

differentiator  )(
~

2 λf . The filter  )(
~

1 λf is the sum of f1(λ), f2(λ) and f3(λ), and the filter 

 )(
~

2 λf is the difference between f2(λ) and f1(λ), as shown in the dotted lines in Fig. 4.3 

(c). The UCSS algorithm was invoked and a minimal set of four biases was obtained 

by using the MBS algorithm: BMS = {-3, -0.8, 1.0, 2.8 V} (with the corresponding set 

of indices, bmin). The corresponding collection of six weight vectors 

}…=
)(

6

)(

1MS
minmin  , ,{ bb

wwW  was also found, resulting in a relative error metric 

)( minb
P = 6.7%, which satisfies the prescribed error threshold of θ = 8%. 

Approximations of the member of FMS are shown in solid blue lines of Fig. 4.3 (a) for 

f1(λ), f2(λ) and f3 (λ), and in solid blue lines in Fig.4.3 (b) for f4(λ), f5(λ) and f6(λ). 

Since an error metric is only 6.7%, shapes of approximated FMS using minimal four 

biases are very similar to the reference (the approximated FMS using entire 30 biases) 

shown in solid red lines of Fig. 4.3. This demonstrates that the use of minimal biases 

selected by the MBS algorithm does not sacrifice performance. Also note that as 

compared to the result in Fig. 4.1 by the original ST algorithm (which uses 21 biases), 

the use of the MBS algorithm has significantly reduced the number of required biases 

down to four, resulting in a reduction by a factor of 7.5 in the required biases for 
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sensing. The weight vector  ~ min

1
)(

w
b

associated with the spectral integrator  )(
~

1 λf is 

obtained by solving (14) with MSW and the scale factors 1... 31 === ββ  
and 0... 64 === ββ . Similarly, for the spectral differentiator  )(

~
2 λf , the weight vector 

 ~ min

2
)(

w
b

is found by solving (14) with MSW  and the scale 

factors 11 −=β , 12 =β and 063 === ββ K . Approximations of  )(
~

1 λf and  )(
~

2 λf are 

shown in Fig. 4.3 (c). 

(a)

)(1 λf )(2 λf )(3 λf

(b)

)(4 λf )(5 λf )(6 λf

(c)

)(
~

1 λf )(
~

2 λf

(a)

)(1 λf )(2 λf )(3 λf

(b)

)(4 λf )(5 λf )(6 λf

(c)

)(
~

1 λf )(
~

2 λf

 
Figure 4.3: The MBS algorithm is used to approximate the specified spectral-filter collection FMS: (a) 
f1(λ), f2(λ) and f3 (λ) are hypothetical narrowband triangular sensing filters and (b) f4(λ), f5(λ) and f6(λ) 
are spectral matched filters using only minimal four biases BMS out of K = 30 biases, BDWELL. The 
successful approximations using minimal four biases are shown in blue, which corresponds to the error 

metric
)( minb

P = 6.7% as compared to the approximations using all 30 biases shown in red. The 
approximations (in blue) of two superposition filters, the spectral integrator )(

~
1 λf and the spectral 

differentiator )(
~

2 λf , are shown in (c) along with the approximations using all 30 biases in red [31]. 
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Performance of the AMBS algorithm for FMS: 

In this subsection, we evaluate the performance of the AMBS algorithm for 

approximating the specified collection FMS. The results from the AMBS are also 

compared to those of the MBS. For evaluation purposes, we applied the AMBS 

algorithm to three different cases by specifying three different error thresholds: (i) 

θ = 8%, (ii) θ = 6% and (iii) θ = 5%. Results for all three cases are given in Tables 4.1, 

4.2 and 4.3, respectively. We observed that the minimal bias set identified by the 

AMBS algorithm does not exactly match that obtained by the MBS algorithm in all 

three cases. However, the error metrics
)( min,AMBSB

P (7.1%, 5.4% and 4.6%) for the AMBS 

are all within 0.5% of 
)( min,MBSB

P (6.7%, 5.1% and 4.4%) for the MBS, demonstrating 

almost identical performance. Also note that for all three cases, the search time by the 

AMBS algorithm is faster than the MBS algorithm. Particularly, in case (iii), the search 

time by the AMBS algorithm is 69 times faster than the MBS algorithm. Thus, the 

AMBS algorithm can be a good alternative to the MBS algorithm since it can generate 

comparable results with less computational effort. 
 

Minimal bias set (V) BMS, MBS = {-3, -0.8, 1, 2.8} 
Minimal error metric (%) )( min,MBSB

P = 6.7 

MBS 
 

Bias search time (sec) 233.4 
Minimal bias set (V) BMS, AMBS = {-3, -1.4 , 1.4 , 2.8} 

Minimal error metric (%) )( min, AMBSB
P = 7.1 

Bias search time (sec) 62.1 

AMBS 
 

Improvement factor in time 233.4/62.1 = 3.8 
Table 4.1: Summary of results for case (i) comparing between MBS and AMBS algorithms for the 
approximations of FMS [31]. 
 

Minimal bias set (V) BMS, MBS = {-3, -1.4, -0.8, 1, 2.8} 
Minimal error metric (%) )( min,MBSB

P = 5.1 

MBS 
 

Bias search time (sec) 1323.5 
Minimal bias set (V) BMS, AMBS = {-3, -1.4 , -0.4 , 1.4 , 2.8} 

Minimal error metric (%) )( min, AMBSB
P = 5.4 

Bias search time (sec) 56.7 

AMBS 
 

Improvement factor in time 1323.5/56.7 = 23.4 
Table 4.2: Summary of results for case (ii) [31] 

 

Minimal bias set (V) BMS, MBS ={ -3, -1.4, -0.8, 0.8, 2.2, 3} 
Minimal error metric (%) )( min,MBSB

P = 4.4 

MBS 
 

Bias search time (sec) 4008.5 
Minimal bias set (V) BMS, AMBS = {-3, -1.4 , -0.4 , 1 , 1.4 , 2.8} 

Minimal error metric (%) )( min, AMBSB
P = 4.6 

Bias search time (sec) 57.9 

AMBS 
 

Improvement factor in time 4008.5/57.9 =  69.2 
Table 4.3: Summary of results for case (iii) [31]. 
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4.3.2 Flexibility in the minimal bias selection 

In Subsection 4.3.1 we identified a minimal set of four biases. However, we have seen 

some level of tolerance to these bias values with a minimal penalty in performance. In 

this subsection we generate four groups of biases that offer a more flexible 

specification of the minimal set of required biases. In particular, an alternative minimal 

set of biases can be obtained by selecting a bias from each group of biases.  

 

To introduce flexibility in the bias selection, we allowed the MBS algorithm to find the 

top-twenty ranked bias sets instead of single minimal bias set BMS. The tolerance in the 

error metric is set to 0.2% as compared to the original error metric of %7.6)( min =b
P . 

With this procedure, we generated 10 biases in total (there are at most 80 biases that 

can be generated but many of these where duplicates). We can then list all these 10 

biases and identify four groups. The significance of each bias out of the 10 biases is 

determined by the number of times it is selected by the top-twenty bias sets. The 

significance of the 10 biases is illustrated by the histogram shown in Fig. 4.4. By visual 

inspection, four different bias groups G1, G2, G3, and G4, are identified and listed in 

Table 4.4. Note that the originally selected optimal biases are members of these groups, 

as identified by thick text in Table 4.4. 

 
Figure 4.4: The histogram illustrates the significance of each bias member in the set of 10 biases. By 
visual inspection, we identified four distinct bias groups [31]. 
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Bias group  Identified member 
G1 {-3 V} 
G2 {-1.4, -1.2, -1, -0.8 V} 
G3 {0.8, 1.0 V} 
G4 {2.6, 2.8, 3 V} 

Table 4.4: Identified members in four bias groups for approximating the specified filter collection FMS. 
Values in thick text are those selected by the MBS bias-selection algorithm [31]. 

 

Our ability to identify the populated bias group, for example G4, is attributable to the 

similarity in the DWELL’s spectral responses at these three biases and their 

comparable SNRs. The corresponding spectral responses are compared in Fig. 4.5, 

showing the similarity among them. It is interesting to note that the collections of 

biases, {-2.8, -2.6, -2.4, -2.2, -2, -1.8, -1.6 V}, {-0.6,-0.4, -0.2, 0.2, 0.4, 0.6 V} and 

{1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4 V} are never selected due to the fact they have little 

overlap with the members of FMS as well as their relatively low SNRs. We have 

verified that the SNRs for the bias collection {-2.8, -2.6, -2.4, -2.2, -2, -1.8 V} are 

much lower (< 80) than those for -3 V (> 300), which explains why -3 V is always 

selected while its neighboring biases are not selected. Moreover, the biases -0.2, 0.2, 

0.4, and 0.6 V are never selected because their SNRs (< 10) are the lowest among all 

the biases. 

 

Figure 4.5: Similarity of the DWELL’s spectral responses at 2.6, 2.8 and 3 V [31]. 

 

The histograms in Fig. 4.6 further show the contribution of each bias component in the 

group for cases (ii) and (iii) in Subsection 4.3.1 compared to case (i) as shown in Fig. 

4.4. In Figs. 4.6 (b) and (c), we find five and six bias groups for cases (ii) and (iii) 

respectively. Also in Fig. 4.6, we observed that the group 2 in case (i) is divided into 

two groups (i.e., groups 2 and 3) in case (ii). Likewise, the group 5 in case (ii) is split 
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into groups 5 and 6 in case (iii). These are certainly expected results since the MBS 

bias-selection algorithm offers more bias groups as we move from case (i) to (iii). It 

means that the user can select biases in a broader range as more groups become 

available. 

 
Figure 4.6. Histograms demonstrating the contribution of each bias member in a group for case (i), (ii) 
and (iii) shown in (a), (b) and (c) respectively. Shaded areas point out the trends that group 2 in case (i) 
is split to two groups (groups 2 and 3) in case (ii) and group 5 in case (ii) is split into two groups (groups 
5 and 6) in case (iii). 
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Figure 4.7. Histogram showing six selected biases (solid bar) by the AMBS algorithm. Shaded regions 
correspond to six bias groups selected by the MBS algorithm. Since these all six biases are within 
groups, two bias-selection algorithms are consistent in performance. 

 

4.4 Experimental results on spectrometry and 

classification 

In order to experimentally demonstrate the multispectral sensing capability of the 

UCSS algorithm, we have applied the collection, FMS, of filters described in 

Subsection 4.3.1 to two common remote-sensing applications. The first application is 

spectrometry, termed algorithmic spectrometry here. It aims to reconstruct samples of 

the spectra of any unknown target of interest at prescribed tuning wavelengths without 

the use of any physical dispersive elements or optics. This is done by means of forming 

a weighted linear superposition of the bias-dependent photocurrents, measured by the 

DWELL detector, according to a predetermined set of weights obtained from the UCSS 

algorithm. The measured photocurrents are obtained by probing the unknown target by 

the DWELL detector using a minimal bias set provided by the MBS algorithm. The 

result of this weighted-superposition process is a set of “superposition photocurrents” 

that represent samples of the transmittance at desired tuning wavelengths. In addition 

to sampling the spectrum of the unknown target, we can also extract more general 

spectral features, such as an spectral average over multiple wavelengths or slope of the 

spectrum at specified wavelengths, by performing weighted superposition using other 

predetermined weights (also from the UCSS algorithm) applied to the same bias-

dependent photocurrent.  
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The second application is the classification of a probed unknown object as that having 

one of multiple known transmittance spectra (the spectra are selected from the 

members of FMS), based on the concept of algorithmic spectral matched filtering. The 

idea of spectral matched filtering is to use multiple weight vectors (as many as the 

number of candidate transmittance spectra) obtained from the UCSS algorithm that can 

be used by a “classifier” to perform a weighted linear superposition of the measured 

bias-dependent photocurrents. The measured photocurrents in this case results from 

probing the unknown target whose transmittance spectrum is any one of multiple 

possible spectra. The result is a set of extracted “superposition features,” which the 

classifier further converts to the “label” of the unknown object (label of its spectrum). 

Details of the experimental procedure and results for these two remote-sensing 

applications are given next. 

 

4.4.1 Experimental results on target spectrometry 

Three spectral filters, f1(λ), f2(λ) and f3(λ) (members of FMS), are selected to sample  

the transmittance of the unknown target centered at λ1=7.4 µm, λ2=8.8 µm and λ3=10.2 

µm. The unknown target was selected as the spectral filter in the range 7.5-9.5 µm, 

whose transmittance spectrum is shown in Fig. 4.8, solid red line.  

 

Figure 4.8: Three spectral filters, f1(λ), f2(λ) and f3 (λ) in the filter collection FMS are used to sample the 
unknown target, whose transmittance is shown in red. For reference, the ideal triangular spectral filters 
are also shown in dashed line. Approximated filters in blue line were obtained by the UCSS algorithm 
using minimum four biases -3.0, -0.8, 1.0, 2.8 V selected by the MBS algorithm [31]. 

 

We measured the photocurrent vector, Ispec, as the DWELL photodetector sequentially 

probed the unknown filter target using the minimal set of four biases {-3.0, -0.8, 1.0, 

2.8 V} selected by the MBS algorithm as described in Section 4.3. For comparison, the 

photocurrent measurement was also repeated for the following auxiliary bias sets: the 

best-five bias set {-3, -1.4, -0.8, 1, 2.8 V}, the best-six bias set {-3, -1.4, -0.8, 0.8, 2.2, 

3 V} and the complete bias set consisting of all 30 biases. Note that in the best-five and 
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best-six bias set cases the biases were selected using the MBS algorithm described in 

Section 4.2 by constraining the number of biases to 5 and 6, respectively. Specifically, 

the measured specI is linearly combined with each weight vector, yielding a 

superposition photocurrent spec

)(
)ˆ min I(w

Tb

iiI = , where i = 1,2, 3. As referred to [28], 

this superposition photocurrent iÎ , termed “experimental reconstruction” best 

approximates the transmittance of unknown target that we would have obtained if we 

look at the same target through the ideal triangular spectral filter. Recall that in 

Subsection 4.3.1, the UCSS algorithm generated three weight vectors: 

)(

3

)(

2

)(

1
minminmin   and  , bbb

www corresponding to fi(λ), i=1, 2 and 3.  

 

The experimental reconstructions using minimal four biases are shown in Fig. 4.9 (blue 

circle) and represent the sampled transmittances of target at λ1, λ2 and λ3. We also 

generated the estimated transmittances resulting from sampling the true target 

transmittance by ideal triangular filters centered at λ1, λ2 and λ3, shown in Fig. 4.9 (red 

square), and used them as a reference for accurate comparison. Results show that both 

the reconstruction and the reference at λ1 and λ3 are close to zero. These values are 

consistent with the true target transmittance shown in Fig. 4.8 (red) since λ1 and λ3 

correspond to the stopband where the transmittance is zero. At λ2= 8.8 µm, the 

reconstructed transmittance is within 30% error as compared to the corresponding 

reference (0.123 and 0.171 in Table 4.5). Also for a comparison, the true target 

transmittance at 8.8 µm in Fig. 4.8 (red) is 0.381, which is the ground truth. Note that 

the ultimate goal of our algorithmic sensing approach is to estimate this true 

transmittance in the best way possible; the use of the narrowest “triangular filter” is 

just a one way for achieving this goal. 
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Figure 4.9: Experimentally reconstructed transmittances (blue circle) at 7.4 µm, 8.8 µm and 10.2 µm 
extracted by the UCSS algorithm using minimum four biases -3.0, -0.8, 1.0, 2.8 V selected by the MBS 
algorithm were obtained. Results are compared to the sampled transmittances by the ideal triangular 
spectral filters (red square) considered as the reference [31]. 

 

Results from the other bias selections (best-five and best-six bias sets) by the MBS 

algorithm are also shown in Table 4.5. Here, we observed that the reconstructions at 

7.4 µm and 10.2 µm are close to zero for all bias selections. At 8.8 µm, the 

reconstructions for all bias selections are within 8%. Thus, the use of minimal four 

biases does not sacrifice the performance of UCSS algorithm in successfully extracting 

the narrowband feature.   
 

Number of selected biases Experimental 
reconstruction Min. 4 biases  Best-5 

biases 
Best-6 
biases 

All 30 biases 
Transmittance 

sampled by 
ideal triangle 

 at 7.4 µm 0.02 0.021 0.021 0.021 0.001 

 at 8.8 µm 0.123 0.126 0.128 0.133 0.171 

at 10.2 µm 0.007 0.007 0.008 0.008 0.001 
 
Table 4.5: Comparison of experimental reconstruction of the transmittance at three wavelengths using 
the minimal four biases by the MBS algorithm and the associated reconstruction errors to those using 
other bias selections by the MBS algorithm (best-5 biases, best-6 biases and all 30 biases) [31]. 

 

Note that in Table 4.5 we find the error between the experimental reconstruction and 

the ideal reconstruction (using ideal triangular filters) starts to increase at some point 

as more biases are used. As we explained in our prior work [22], this observation is not 

contradictory to the optimality of the algorithm since sets of weights determined in the 

spectral tuning algorithm do not guarantee minimizing the error between the actual 

target spectrum and the reconstruction. Instead, what these weights do guarantee is that 

the error between the ideal triangular tuning filter and the approximate triangular 

tuning filter is minimized. Indeed, the error in the synthesized triangular filters do 
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decrease monotonically in the number of biases used, achieving a minimum error when 

all 30 biases are used. Note that the quality of the reconstructed transmittance not only 

depends on the quality of approximation of the triangular filter but also on actual 

transmittance (its variation as a function wavelength within the passband of the 

triangular filter). We also suspect that for the case of reconstructing spectral content at 

λ3 =10.2 µm, when the algorithm uses all 30 biases, those biases beyond the fifth bias 

selected have weak signal content and their inclusion simply adds more noise to the 

estimate, hence increasing the reconstruction error. 

 

Moving onto the superposition filter case (as described in Subsection 4.3.1), the UCSS 

algorithm found two weight vectors,  ~ min

1
)(

w
b and  ~ min

2
)(

w
b

, that approximated the 

spectral integrator  )(
~

1 λf and the spectral differentiator )(
~

2 λf , respectively. Each 

weight vector is linearly combined with specI , obtaining the reconstructed spectral 

features spec

)( )~~̂
min Iw(I Tb

ii = . Recall that for  )(
~

1 λf , 1

~̂
I  approximately represents the 

sum of reconstructed transmittances at λ1, λ 2 and λ 3, as illustrated in Fig. 4.10 (a). The 

average of reconstructed transmittances can be obtained after dividing 1

~̂
I  by the 

number of center wavelengths (i.e., dividing by 3). In the case of )(
~

2 λf , 2

~̂
I represents 

the difference in the transmittance values at λ1 and λ2, as shown in Fig. 4.10 (b). As a 

result, the slope of the transmittance curve can be approximated by dividing 2

~̂
I  by λ2- 

λ1. 
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(a)

(b)

(a)(a)

(b)(b)

Figure 4.10: Applications of two linearly superpositioned filters (i.e., (a) the spectral 

integrator  )(
~

1 λf and (b) the spectral differentiator  )(
~

2 λf ) to the spectrometry problem of unknown 

filter target. Approximations )(
~̂

1 λf  and )(
~̂

2 λf  can extract the spectral average and slope of unknown 

target, respectively [31]. 

 

The experimentally extracted values of the averaged transmittance values (captured 

by )(
~̂

1 λf ) and the approximated slope of transmittance (captured by )(
~̂

2 λf ) are listed in 

Table 4.6. The experimental reconstructions are compared to the values obtained by 

using ideal spectral integrator and differentiator (shown in dotted line of Fig. 4.3 (c)). 

For )(
~̂

1 λf , the estimate of the averaged transmittance is within 14% error as compared 

to the ideal value (i.e., 0.058 in Table 4.6). For )(
~̂

2 λf , the estimated slope is within 

40% error as compared to the reference (i.e., 0.121 in Table 4.6). In addition, we 
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observed that the use of the minimal four biases by the MBS algorithm yields 

consistent results with less than 9% error as compared to values for the other (larger) 

bias selections  

 

Number of selected biases Experimental  
reconstruction 

Min. 4 biases Best-5 
biases 

Best-6 
biases 

All 30 biases 

Ideal value 

 Averaged 
transmittance 

0.05 0.052 0.052 0.054 0.058 

Slope of 
transmittance 

0.073 
 

0.075 
 

0.076 
 

0.08 
 

0.121 

Table 4.6: Experimentally extracted averaged transmittance captured by )(
~̂

1 λf and slope of transmittance 

captured by )(
~̂

2 λf  for different bias selections: minimum four biases, best-five biases, best-six biases 

and all 30 biases. Results are compared to the reference values obtained by using the ideal spectral 
integrator and differentiator [31]. 

 

4.4.2 Experimental results on target classification 

Here, the target spectral filters comprising the classes of spectra are selected as f4(λ) 

f5(λ) and f6(λ) (7.5-10.5 µm, 8.0-9.0 µm and 8.5-11.5 µm). The photocurrent vector 

classI was measured as the DWELL photodetector was exposed to radiation transmitted 

through three target filters, f4(λ), f5(λ) and f6(λ) using the same bias sets used in the 

spectrometry problem of Subsection 4.4.1. For each filter, photocurrent measurements 

were repeated at least 20 times and averaged to minimize the temporal variability of 

DWELL photodetector. Recall that the use of the three weight vectors, 

)(

6

)(

5

)(

4
minminmin    and  , bbb

www in Subsection 4.3.1 had resulted in optimal matching of the 

reconstructed transmittances to the actual transmittances f4(λ), f5(λ) and f6(λ). We 

denoted the corresponding reconstructed matched filters as )(ˆ , )(ˆ
54 λλ ff and )(ˆ

6 λf . 

For the classification problem, each matched filter is labeled with a specific class 

number: Class-1 corresponding to f4(λ), Class-2 corresponding to f5(λ), and Class-3 

corresponding to f6(λ). In the classifier, 
)(

6

)(

5

)(

4
minminmin    and  , bbb

www  are linearly combined 

with the incoming test data, classI , resulting in three synthesized features: 

class

)(

41 )( min Iw
Tb

F = , class
)(

52 )( min Iw
Tb

F =  and class

)(

63 )( min Iw
Tb

F = . We denote the 
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feature vector formed by these synthesized features by ),,( 321 FFF=F . Finally, the 

classifier assigns this F  to class 
*i  whose feature value, *

i
F , is the highest among 

the three features; more precisely, i
i

Fi
}3,2,1{

* maxarg
∈

= .  

 

With the minimal four-bias set used, the results show that the classifier has correctly 

assigned all three test data ( classI ) to their respective classes, as shown in Fig. 4.11. In 

our experimental demonstration, our classifier yielded 100% accuracy. This perfect 

classification was obtained owing to the fact that the three target spectral filters were 

reasonably separable. However, if targets are not separable to begin with (i.e., if the 

extracted features from multiple targets are similar), then we would expect the 

accuracy of classifier to be reduced. 

Figure 4.11: Classification results for identifying three experimental test data, Iclass. The classifier has 
successfully assigned the data to Class-1 (see (a)), the data to Class-2 (see (b)), and the data to Class-3 
(see (c)) [31]. 

 

When we use the best-five biases (gray bars in Fig. 4.12), the best-six biases (blue bars 

in Fig. 4.12) and all 30 biases (green bars in Fig. 4.12), we also obtain 100% accuracy. 

This implies that the use of the minimal four biases in the classification problem 

produced equivalent performance as compared to the result using all the 30 biases. 

(a) (b) (c) 
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Figure 4.12: Comparison of classification results for minimal four biases (white) to other bias selections: 
best-five biases (gray), best-six biases (blue) and all 30 biases (green) for identifying the three 
experimental test data, Iclass to (a) Class-1, (b) Class-2 and (c) Class-3. Note that the use of minimum 
four biases obtained by the MBS algorithm in the UCSS algorithm achieved almost identical result 
compared to the case using all 30 biases [31]. 

 

It is important to mention, that we have observed that the temporal variation of the test 

data affects the outcome of the classifier if insufficient number of photocurrent 

measurements is available. For example, over 30% classification error was obtained 

when we used only 9 photocurrent measurements (per class and averaged). However, 

when we use 10 or more photocurrent measurements, the classification error was 

highly improved; for example, with 16 or more photocurrents measurements, 100% 

classification was achieved. 

 

 

 

 

 

 

 

 

 

(c) (b) (a) 
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4.5 Conclusions 

We developed a novel data compressive spectral sensing algorithm in conjunction with 

the bias-dependent spectrally tunable DWELL photodetector that identifies and 

employs a minimal set of required biases subject to a specified performance level. The 

identification of a minimal bias set enables the detector to sense only the most relevant 

and least noisy bias-dependent spectral bands for specific sensing applications. 

Moreover, the minimal bias set provides a uniformly accurate solution across the 

collection of specified spectral sensing filters, which captures the corresponding 

multispectral features for remote-sensing applications of interest. We implemented the 

algorithm to approximate the collection of six spectral sensing filters and the algorithm 

identified the minimal set of only four biases for successful approximation of the filter 

collection. By sensing using the DWELL at these four biases only, we successfully 

performed two remote-sensing applications that utilize the six spectral sensing filters; 

these applications were spectrometry of unknown filter target and the classification of 

three filter targets. In the spectrometry problem, we were able to successfully 

reconstruct three samples of the transmittance of an unknown test target. In addition, 

we are able to reconstruct the average of the transmittance across three wavelengths 

and the slope of the transmittance spectrum at a given wavelength. For the 

classification problem, we were able to use the DWELL measurement using the four 

applied biases to successfully classify three spectral filters selected from the collection 

of six spectral filters.  

 

It is to be noted that in essence, what our approach is capable of doing is to synthesis 

the effect of an arbitrary optical filter by solely using the optoelectronic properties of 

the DWELL. The ability to do so successfully gives optical filtering a fresh perspective. 

Our approach can potentially be used beyond the DWELL sensor; it can be applicable 

to traditional multi-color infrared detectors, especially if there is overlap in the spectral 

bands. For example, our approach can potentially be applied to quantum-well detectors 

which already demonstrated voltage tunable multicolor detection reported in [41]. 

From a device perspective, this work helps us understand rigorously the reach of the 

spectral diversity of the DWELL device. 

 

We wish to point out that the MBS and AMBS algorithms can be further enhanced by 

introducing an extra preliminary stage that eliminates insignificant spectral bands, 

based on certain SNR requirement, before applying either the MBS or AMBS 
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algorithms. This can be achieved by building such de-selection process in the metrics 

used by the MBS and AMBS algorithms. 

 

Finally, effort is underway to implement this new data-compressive DWELL-based 

sensing paradigm in a focal-plane-array (FPA) platform using a novel custom-designed 

readout integrated circuit, which can directly output spectral signatures or object 

classes in near real-time spectral sensing. In Chapters 5 and 6 we take this work to the 

next level by investigating a sensitivity of data-compressive sensing algorithm and 

developing a continuous time-varying biasing approach under an acquisition time 

constraint for hardware (FPA) implementation.  
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Chapter 5 

 

 

Sensitivity Analysis of Generalized Data 

Compressive Multispectral Sensing 

Algorithm  
 

Recently, the “smart” pixel readout integrated circuit (ROIC) has been developed by 

incorporating the signal and image processing algorithms to extract and process the 

captured data in real time. Traditional ROICs [42] were mainly simple interfaces 

between the FPA and the image capture and processing hardware. Hence, the smart-

pixel FPA can be more versatile than its predecessors through the implementation of 

various programmable modes of operation. The research group at MIT Lincoln 

Laboratory has developed new Digital-pixel FPA ROICs [43] with the on-chip 

processing capability, which can implement non-uniformity correction, image 

stabilization and more. Recently, Prof. Zarkesh-ha and colleagues at the UNM have 

proposed a reconfigurable and intelligent ROIC (iROIC) [44] with a low cost and a 

small volume for low electrical power consumption, as shown in Fig. 5.1 (a). The 

iROIC can offer variable or adaptive biasing to electrically-tunable DWELL FPA at 

pixel level with a large bipolar bias swing (in a range of +/- 5V). In addition, the iROIC 

provides the arithmetic capability at pixel level through a programmable analog 

function unit as shown in Fig. 5.1 (b). Specifically, the analog function unit allows the 

computation of weighted sum between the pixel’s analog outputs (the photocurrents) 

and a set of analog coefficients (a set of prescribed weights). Our main objective is to 

implement the compressive spectral sensing algorithm (the UCSS algorithm described 

in Chapter 4) on the UNM’s iROIC for real time target detection and classification.   

 

Preliminary test results with the iROIC prototype showed a noise level around 10 mV, 

which results in restricting the number of bits to represent weights to be maximum 9 

bits for the digital-to-analog conversion in the analog function unit. If 10-bit 
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representation is used, the last bit corresponds to around 9.8 mV, which is less than the 

10 mV noise floor. As a result, this last bit simply becomes a noise-dominant bit and is 

of no use for further processing. More bits are wasted as we use 11 bits or higher. Also 

in the design of analog function unit, as a larger number of bits is used, the required 

area for the transistors is increased immensely, for example, the required area for n bits 

is 2n-1A, where A is the area for n = 1. Thus, the use of 10 bits or more results in a high 

cost and large power dissipation ROIC. 

 

In order to implement the UCSS algorithm on the iROIC, we need to verify the 

sensitivity of algorithm weights against the bit-number representation by addressing 

two following questions: (1) can we successfully perform the UCSS algorithm with 

weights represented in 9 bits or less? and (2) what is the minimum number of bits 

required? This chapter addresses these two questions by demonstrating the algorithm 

through two MS sensing applications. 
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Figure 5.1: (a) Block diagram of the entire architecture of iROIC. The programmable analog block 
within iROIC is shown in yellow. (b) Functions of the analog block: weighted superposition of 
photocurrent inputs (in1, in2 and in3) with weights (w1, w2 and w3) and classification among three 
weighted superpositions [44]. 
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5.1 Sensitivity of algorithm weights against bit-number 

representation 
The sensitivity of UCSS algorithm against the bit representation was validated for 

target spectrometry and classification problems. For a spectrometry problem, we 

considered two LWIR targets: a broadband filter centered at 9.0 µm as shown in Fig. 

5.2 (black dotted line) and a narrowband filter centered at 8.5 µm as shown in Fig. 5.3 

(black dotted line). According to the experiment procedure in Subsection 4.4.1, two 

photocurrent vectors (I1 and I2) were measured by the DWELL photodetector using 

minimal four biases (i.e. {-3.0, -0.8, 1.0, 2.8 V}). With photocurrent vectors, the 

spectrum-reconstruction procedure of UCSS algorithm (i.e. ni,Î = wn
T
Ii at λn and i=1,2) 

as described in Subsection 4.4.1 was followed to reconstruct transmittances of both 

targets. The reconstructed targets are shown in Figs 5.2 (solid blue line) and 5.3 (solid 

blue line).  

 

To identify the minimum number of bits for acceptable target reconstruction, the 

weight vector wn were converted to six different bit-number representations (i.e. from 

6 to 12 bits). Since wn consists of positive and negative numbers, the signed number 

representation is required to encode negative numbers. A range of signed numbers is 

defined by -2N-1 to (2 N-1-1) for N-bit integer. The bit-number representation process is 

described as follows. First, the minimum weight wmin,n within wn is identified. Second, 

we compute a scaling factor by taking a ratio (i.e. -2N-1/wmin,n) if wmin,n is negative or a 

ratio (i.e., (2N-1-1)/wmin,n) if wmin,n is positive. Finally, wn is normalized by the scaling 

factor and is then quantized, denoted by wN,n for N-bit integer. We obtained wN,n for N 

= 6, 8, 9, 10, 11, 12 bits. 

 

With wN,n, targets were reconstructed as shown in Figs 5.2 (solid red lines) and 5.3 

(solid red lines). By visual inspection, results show that for 6-bit representation, 

reconstructions in Figs 5.2 (a) and 5.3 (a) were poor as compared to those obtained 

with wn (i.e. Figs 5.2 (solid blue line) and 5.3 (solid blue line)). This is due to a large 

weight error between w6,n and wn. For 8-bit or higher, good reconstructions as shown 

in Figs 5.2 (b-f) and 5.3 (b-f) were obtained as a result of significant reduction in the 

weight error. To accurately quantify the weight error, we computed the relative error e 

between the original reconstruction )(λf  by wn (solid blue line in Figs 5.2 and 5.3) and 
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the reconstruction )(ˆ λf  by wN,n (solid red line in Figs 5.2 and 5.3) defined by the 

following formula,                     ( )
.

)(

)(ˆ)(

100
max

min

max

min

2

2

∫

∫ −

×=
λ

λ

λ

λ

λλ

λλλ

df

dff

e                      (17) 

Calculated errors for all six bit-number representations are tabulated in Table 5.1. We 

confirmed that using w6,n (6-bit representation), poor reconstructions were observed 

having over 50% error. With w8,n (8-bit representation), the error was significantly 

reduced down to less than 30%. Thus, we demonstrated the UCSS algorithm using 

minimum 8 bits can successfully reconstruct the transmittance of target on the iROIC. 

Next, we use minimum 8 bits to represent weight vectors for classifying three matched 

filter targets. 

 
e (%) Experimental 

reconstruction 6 bit 8 bit 9 bit 10 bit 11 bit 12 bit 
(a) Broadband filter 50.9 22.6 11.2  6.4  4.2  2.2 
(b) Narrowband filter 64.4 28.3 12.8  8.6  5.5  3.1 

 
Table 5.1: Relative error (e) between the original reconstruction )(λf by wn and the reconstruction 

)(ˆ λf by wN,n for six different bit-number representations. 
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Figure 5.2: Experimental reconstructions (solid red lines) of the broadband filter target using the UCSS 
algorithm with minimal four biases (out of 30) and weights represented in (a) 6-bit integer, (b) 8-bit 
integer, (c) 9-bit integer, (d) 10-bit integer, (e) 11-bit integer and (f) 12-bit integer. Dotted black lines 
represent the actual filter transmittance and solid blue lines represent the reconstructed filter 
transmittance using original weights wn without bit-number representation. 

 

 

 

 



 85 

 
Figure 5.3: Experimental reconstructions (solid red lines) of the narrowband filter target using the UCSS 
algorithm with minimal four biases (out of 30) and weights represented in (a) 6-bit integer, (b) 8-bit 
integer, (c) 9-bit integer, (d) 10-bit integer, (e) 11-bit integer and (f) 12-bit integer. Dotted black lines 
represent the actual filter transmittance and solid blue lines represent the reconstructed filter 
transmittance using original weights wn without bit-number representation. 

We selected the same problem of classifying three spectral matched filters, f4(λ) f5(λ) 

and f6(λ) using minimal four biases {-3.0, -0.8, 1.0, 2.8 V} as demonstrated in 

Subsection 4.4.2. Also recall that )(

6

)(

5

)(

4
minminmin    and  ,

bbb
www  were the corresponding 

weight vectors, which successfully approximated the transmittances of matched filter 

targets. To test the sensitivity of classification weights against the bit-number 

representation, )(

6

)(

5

)(

4
minminmin    and  ,

bbb
www  are now represented in 8-bit integer denoted by 

w4, w5 and w6 as shown in Table 5.2.  
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Original weight 
vectors 

Weight vectors  
in 8-bit integer  

)(

4
minb

w = [0.294 
        -2.084 
         0.601 
         0.191] 

w4 = [15 
-109 
32 

10] 

)(
5

minb
w = [0.462 

        -1.203 
        -0.095 
        -0.152] w5 = [24 

-63 
-5 
-8] 

)(

6
minb

w = [0.218 

         0.055 
        -2.438 
         0.456] w6 = [11 

3 
-128 

24] 

 
Table 5.2: (Left) original weight vectors obtained by the UCSS algorithm with minimal four biases for 
approximating three matched filters f4(λ) f5(λ) and f6(λ) and (Right) weight vectors in 8-bit 
representation. 

 

w4, w5 and w6 are linearly combined with the test data (the pixel output) in the 

classifier, extracting a feature vector. The classifier then assigns a feature vector to a 

respective class by finding the largest feature. Results in Fig. 5.4 demonstrate that the 

classifier with 8-bit weights has correctly assigned all three incoming test data to 

respective classes. 

(a) (b) (c)
 

Figure 5.4: Classified outputs for three experimental test data. The classifier has correctly assigned the 
data to Class-1 (shown in (a)), the data to Class-2 (shown in (b)), and the data to Class-3 (shown in (c)). 
Results demonstrate that the UCSS algorithm using minimum 8 bits can successfully perform matched 
filter-based classification on the iROIC. 
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5.2 Conclusions 

To implement the algorithm on the iROIC, we identified the minimum number of bits, 

by applying our compressive spectral sensing algorithm for object spectrometry and 

classification problems with varying weights in six different bit-number 

representations (from 6 to 12 bits). By simulation, we successfully reconstructed 

transmittances of two filter objects and correctly classified three experimental test 

objects with a minimum 8 bits. The minimum 8 bits satisfies the design requirement of 

iROIC, which is constrained to use 9 bits or less. 

 

Recently, we have found that the analog unit on the iROIC can be further simplified by 

eliminating the multiplication and superposition processes of our spectral tuning 

algorithm. This can be achieved by generalizing the algorithm to find a continuous 

time-varying bias waveform, which can also be a solution for a specific MS sensing 

application. Traditionally, the emissivity of an object was reconstructed by performing 

the weighted superposition of photocurrents by the spectral tuning algorithm using 

discrete set of static biases. Unlike the traditional approach, a continuous time-varying 

biasing approach reconstructs the object’s emissivity by accumulating the photocurrent 

of an object based on a prescribed bias waveform without requiring data-processing 

steps associated with weights. In the next chapter, we report the generalized spectral 

tuning algorithm for a continuous-time biasing approach and validate this new 

algorithm for object spectrometry and classification problems and results are compared 

to the conventional spectral tuning algorithm. 
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Chapter 6 

 

 

Continuous Time-varying Biasing 

Approach for Spectrally Tunable 

Infrared Detectors 
  

In the algorithmic spectral tuning approach, demonstrated earlier in Chapters 2 and 4, 

the reconstruction of an object’s emissivity at an arbitrarily specified spectral-sensing 

window of interest in the long-wave infrared region was achieved by forming an off-

sensor weighted superposition of the bias-dependent photocurrents of a DWELL 

photodetector. In this approach, the acquisition time was held constant for each of the 

applied biases. Here, a generalization of this approach is introduced that duplicates the 

capabilities of the algorithmic spectral-tuning approach by applying a continuously 

varying bias-voltage function, designed for each spectral-sensing window of interest, 

over a fixed acquisition time without the need to perform a weighted superposition. This 

generalization is particularly relevant to the on-sensor implementation of the 

algorithmic spectral tuning approach in DWELL FPAs, where the photocurrent 

integration time is governed by the frame rate and on-sensor processing is undesirable. 

The continuous-time biasing can be easily implemented in the readout circuit of the 

FPA. The approach is validated by means of simulations, in the context of spectrometry 

and object classification, using real experimental data for the DWELL’s bias-dependent 

spectral response, photocurrent, and SNR. 
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6.1 Motivation of the continuous time-varying biasing 

approach 

As demonstrated in Chapter 2, the DWELL photodetector developed by our group 

offers electrically controlled spectrally tunable responses in the mid-IR region as shown 

in Fig. 6.1. (We will use the spectral data of this device throughout this chapter as we 

demonstrate the sensing algorithms to be developed.) Specifically, a single DWELL 

photodetector can perform the task of a multispectral (MS) IR detector by changing its 

bias voltage without requiring optical-filter wheels. The DWELL’s spectral tunability, 

as it stands, however, is not sufficient to provide the high resolutions required by many 

spectral-sensing problems. 
 

 
Figure 6.1: Bias-tunable spectral responses of the DWELL photodetector at 60K device temperature by 
varying applied biases in the range from -3 to 3 V [31].  

 

To extend the MS capability of the DWELL photodetector, the DWELL’s bias-

controlled spectral tunability was substantially enhanced by means of a post-processing 

technique, termed here as the spectral tuning (ST) algorithm [21,22,24]. The extended 

MS capabilities demonstrated by the ST algorithm include high-resolution, narrowband 

spectral filtering, as well as object spectrometry and classification [28,31]. We 

emphasize that none of these capabilities involved the use of spectral filters. The 

underlying principle of the ST algorithm is to sense an object with the DWELL 

photodetector sequentially at prescribed bias voltages, yielding a set of bias-dependent 

photocurrents. Then, the ST algorithm performs a linear superposition of photocurrents 

with a set of weights to reconstruct the emissivity of an object at a given wavelength. 

Each set of weights is designed by the ST algorithm for a specific spectral filter of 

interest. For each spectral filter of interest, the so-called superposition photocurrent best 

approximates the ideal photocurrent that would have been obtained while using a 

combination of a broadband detector and the desired spectral filter. To date, the ST 

algorithm has been developed and demonstrated using a discrete set of static biases. The 

three data-processing steps involved include the calculation of weights corresponding to 
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each spectral tuning filter, multiplication of weights with sensed photocurrents and the 

superposition of the weighted photocurrents to yield the superposition photocurrent. 

 

In this chapter we develop the concept for novel implementation of the ST algorithm 

within the readout circuit (ROIC) of a DWELL-based FPA without resorting to 

multiplying photocurrents by or performing photocurrent additions algebraically. 

Motivated by the electronics of a trans-impedance amplified based ROIC, works, 

namely by feeding the photocurrent at each bias into an integrating capacitor that yields 

an integrated photocurrent (charge) for each integration time [46-48], the idea here is to 

absorb both the multiplications (by weights) and additions of the ST algorithm in the 

photocurrent integration process by appropriately adjusting the bias of the DWELL 

continuously in sync within the integration time. For example, if we have only two 

photocurrents, corresponding to two bias levels va and vb, with infinite SNRs, 

multiplying the first and second by the weights 1 and 5, respectively, and summing up 

the two can be done in one step via the integration of the first photocurrent over a 

certain duration followed by the integration of the second photocurrent over five times 

the integration time of the first one while keeping the total integration time fixed. In this 

simple example the bias is held constant at level va for one unit of time and then 

changed to level vb for five units of time, as the photocurrent is integrated seamlessly 

over the acquisition time. To achieve this effect for more general superposition schemes 

while incorporating the effects of signal-to-noise, we will need to generalize the ST 

algorithm to allow for continuous, time-varying biases within a fixed integration time. 

As a result of the generalization, the algorithm will yield, for each desired spectral filter, 

a time-varying bias waveform. 

 

Since the sign of weights can be positive or negative, two waveforms are generally 

obtained that together span the integration time: a “positive” waveform corresponding 

to the positive weights and a “negative” waveform corresponding to the negative 

weights. The integrated photocurrent corresponding to the “positive” waveform is added 

to the negative of the integrated photocurrent corresponding to the “negative” waveform, 

yielding the subtracted photocurrent. With this approach, the superposition photocurrent 

representing the spectral measurement is directly extracted from the ROIC [43,44] as 

the ROIC can be configured to apply the positive and negative bias waveforms 

sequentially at the two integrated photocurrents at each detector in the FPA. This 

chapter will focus on the algorithmic aspects of the proposed ST technique. 
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6.2 Review of the spectral tuning algorithm and 

application to object spectrometry and classification 

In this section, we begin by reviewing germane aspects of the ST algorithm drawing 

freely from Chapters 2 and 4. As you may find, the ST algorithm had been reviewed 

earlier in Chapters 2 and 4. However it is important to review its concept and 

applications again in this chapter since we will further generalize the algorithm to 

perform a new continuous time-varying biasing. We consider an object of interest, f, 

whose emissivity in the LWIR region is denoted by e(λ). Suppose that a DWELL 

photodetector is used to probe the object illuminated by a blackbody at the bias voltages, 

v1,…, vm, yielding a set of bias-dependent photocurrents, I1,…, Im. In principle, the 

photocurrent Ik corresponding to the k
th bias can be expressed as an inner product 

between the emissivity of an object and each one of the DWELL’s spectral responses 

with the bias-dependent noise [22,31,35] 

         

 (18)      

 

where Rk(λ) is the spectral response of DWELL at the kth bias in the wavelength interval 

[λmin, λmax], and Nk is the noise associated with Rk(λ). 

 

We specify the transmittance of a desired tuning filter r(λ;λn) that would be used to 

estimate e(λ) at the tuning wavelength λn. For r(λ;λn), the ST algorithm [22,28] 

calculates a weight vector, wn = [w1,…,wm] using (1) in Chapter 2, which is linearly 

combined with the spectral responses R1,…,Rm, yielding the algorithmic tuning filter 

);(ˆ nλr λ . The weights are derived so that the algorithmic tuning filter );(ˆ nλr λ best 

approximates the hypothetical tuning filter r(λ;λn) in the sense of minimizing the 

wavelength-integrated mean squared error. Then, the weight vector wn is linearly 

synthesized with the photocurrents, I1,…, Im, yielding the superposition photocurrent Î  

as expressed by  

    

       (19) 

 

The superposition photocurrent, Î , is usually computed with positive and negative signs 

since weights in wn can be either positive or negative. It reconstructs the ideal 

photocurrent that we would have captured by the DWELL photodetector looking at the 
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.Î
1
∑

=

=
m

i

ii Iw



 92 

object through the tuning filter r(λ;λn). It is to be noted that if the width of the filter 

r(λ;λn) is sufficiently narrow, then the ST algorithm reconstructs the emissivity of an 

object at λn without utilizing any physical spectral filters. 

 

To demonstrate the ST algorithm, we will show two representative MS sensing 

examples: (1) spectrometry of LWIR filter object and (2) statistical classification of 

LWIR filter object based on the spectral matched filtering [31]. 

 

For the spectrometry example, we considered a triangular narrowband tuning filter as 

r(λ;λn) with 0.5 µm width and λn = 8.8 µm to sample the emissivity of LWIR filter 

object, e(λ), at λn as illustrated in Fig. 6.2. Using (1) in Chapter 2, we calculated wn for 

the algorithmic tuning filter );(ˆ nλr λ using minimal four biases, {-3.0, −0.8, 1.0, 2.8 V}, 

selected by the Minimal-Bias-Set (MBS) algorithm [31]. The MBS algorithm is the bias 

selection algorithm based on an exhaustive search approach, which identifies a minimal 

set of biases required for multiple sensing applications of interest. The search process of 

MBS algorithm is described in Subsection 4.2.1 of Chapter 4. The algorithmic tuning 

filter );(ˆ nλr λ  is shown in Fig. 6.2 (solid black). We also simulated photocurrents, I1,…, I4, 

for these four biases using (18) with actual noise values available from the DWELL’s 

SNRs. The reconstructed sample );(ˆ nλe λ  was then obtained by forming a linear 

superposition between wn and photocurrents (I1,…, I4) according to (19). We also 

generated the estimated emissivity, e(λ;λn), resulting from sampling e(λ) by r(λ;λn), 

which is used as a reference measurement for the ST algorithm. The reconstructed 

emissivity );(ˆ nλe λ by the ST algorithm is 0.134 and as compared to the benchmark 

value (e(λ;λn) = 0.171), );(ˆ nλe λ is within 22% error.  
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Figure 6.2: Desired triangular narrowband tuning filter, r(λ;λn) with λn = 8.8 µm, whose transmittance is 
shown by the dashed line. Transmittance of algorithmic tuning filter, );(ˆ nλr λ , as shown in solid black 

line, was obtained by the ST algorithm [22,28] using the minimal set of four biases, {-3.0, −0.8, 1.0, 2.8 
V} identified by the MBS selection algorithm reported in [31]. The algorithmic tuning filter );(ˆ nλr λ is 

implemented via post processing (without using any physical spectral filters) to reconstruct sample of the 
emissivity of an object (in red) at λn = 8.8 µm.   

 

For the classification example, we selected three actual spectral filters, r1(λ;λ1), r2(λ;λ2) 

and r3(λ;λ3) with centers at λ1 = 9 µm, λ2 =8.5 µm and λ3 = 10 µm as shown in Fig. 6.3 

(dashed line), as objects that need to be classified once each one of them is probed by 

the DWELL detectors using a set of prescribed biases. The classification is based on the 

spectral matched filtering technique, which uses multiple weight vectors (as many as the 

number of spectral matched filters considered) obtained from the ST algorithm to 

initialize a classifier. The classifier then performs a weighted linear superposition of the 

bias-dependent photocurrents, yielding superposition features. Based on the extracted 

features, the classifier labels the object of interest. In this example, we selected r1(λ;λ1) 

as the test object of interest to be classified. The classification process is described as 

follows.                

 

Using (1) in Chapter 2, while using the same bias set as before, {-3.0, −0.8, 1.0, 2.8 V}, 

we obtained the corresponding three weight vectors, w1, w2 and w3, which yield the 

approximated spectral filters, );(ˆ 1λλr , );(ˆ 2λλr  and );(ˆ 3λλr , that are optimally matched 

to r1(λ;λ1), r2(λ;λ2) and r3(λ;λ3), respectively. The approximated filters );(ˆ 1λλr , 

);(ˆ 2λλr  and );(ˆ 3λλr  are termed algorithmic spectral matched filters to be used to 

classify the test filter object, r1(λ;λ1). Transmittances of three spectral matched filters 

are shown in Fig. 3 (solid black line). 
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Figure 6.3: Transmittances of three spectral matched filters [31], );(ˆ 1λλr  (left), );(ˆ 2λλr  (middle) and 

);(ˆ 3λλr  (right) in solid black line were obtained by the ST algorithm using same minimal set of four 

biases, {-3.0, −0.8, 1.0, 2.8 V}. Transmittances of actual spectral filters, r1(λ;λ1), r2(λ;λ2) and r3(λ;λ3) are 
shown in dashed line. These three matched filters are used to classify the filter object, r1(λ;λ1).  

 

We simulated the photocurrent vector, Iclass= [I1,…, I4], with (18) just as the DWELL 

photodetector probed the emissivity transmitted through the test filter object, r1(λ;λ1) 

using the biases, {-3.0, −0.8, 1.0, 2.8 V}. We considered Iclass as the test data to classify. 

For the classification, we labeled three matched filters, );(ˆ 1λλr , );(ˆ 2λλr  and 

);(ˆ 3λλr with Class 1, Class 2 and Class 3 respectively. Based on (19), w1, w2 and w3 

were linearly combined with Iclass, extracting three synthesized features, 

0.519)( class11 == Iw T
F , 0.428)( class22 == Iw T

F  and 0.457)( class33 == Iw T
F .  

The feature vector was formed by F = [F1, F2 ,F3] = [0.519, 0.428, 0.457] as shown in 

Fig. 6.4. Based upon the following classification rule, i
i

Fi
}3,2,1{

* maxarg
∈

=  reported in [31], 

the classifier assigned this F to Class 1 since the feature value F1 was the highest among 

the three features. As a result, the classifier has successfully classified the test data Iclass 

by assigning it to Class 1. 
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Figure 6.4: Feature vector F for classifying the simulated test data, Iclass. Based on F, the classifier has 
correctly assigned Iclass to Class 1.   
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6.3 Generalized spectral tuning algorithm 

In this section, we describe the generalized spectral tuning (GST) algorithm to achieve a 

continuous time-varying biasing with acquisition time constraint. Our solution to the 

generalization is based upon a discrete-time approximation of the continuous-time 

problem.   

 

Any continuous time-varying function can be approximated by a piecewise-constant 

function with jumps occurring at fixed time increments; an example is shown in Fig. 

6.5. 

 
Figure 6.5: Approximation of a continuous time-varying biasing waveform (solid black line) by the 
discretization (blue shaded region) with a constant interval ∆t within the total integration time α.  
 

For an arbitrary bias function V(t), t∈[0,α], let IV(t) represent the dynamic photocurrent 

of the DWELL when it is driven by the bias function V. Now consider a desired 

spectral filter f that we can approximate with a superposition spectral filer according to 

the bias set B(f)= {B1(f),…, Bk(f)}, each applied for a duration ∆t, such that  

           )(ˆ
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= ,        (20) 

where wi and )()( λfBi
R are the weight and the spectral response of DWELL at Bi(f). 

Based on this continuous-time approximation, the superposition photocurrent Î  in 

(19) can be reinterpreted as the integration of weighted photocurrents over α. As such, 

(19) can be cast as 

 

       (21) 

 

where the piece-wise constant weight function wf(t) and piece-wise constant 

, )()( Î
0

)(B dttItw ff∫=
α
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photocurrent )t()(B fI  are defined as wf(t) = wi and )()(B tI f = Ii  for (i-1)Ti-1 ≤ t ≤ iTi , 

with ∆t =  iTi - (i-1)Ti-1 , i = 1,…, k.  

 

Motivated by the form of (21), we can further extend (21) to find Î  without 

performing multiplications and superpositions with wf(t) as expressed by  

 

                              (22)       

          

where )(B̂ f  is a bias function designed so that it absorbs the factor, wf(t) in 

(21). The idea is to embed the multiplication and superposition processes in the 

photocurrent integration by properly adjusting the integration time ∆t within α instead 

of scaling each photocurrent with wf(t). A key task is now to find )(B̂ f .  

 

The question is then should we simply scale ∆t with the corresponding weight in order 

to blend the weight information into the integration time? The answer is no. As shown 

in (1), the weights are calculated by the ST algorithm using the detector’s SNRs. It is 

to be noted that the SNR is proportional to the integration time of the detector [22], so, 

for instance, if ∆t is reduced according to some weight factor, so does the SNR of the 

integrated photocurrent. The new SNR, if lower than the old value, could result in the 

error in reconstructing the emissivity of an object. We next provide a solution to )(B̂ f . 

 

We begin by normalizing entire set of weights {wi} by their absolute minimum, 

.
||min
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=              (23) 

Then each ∆t is scaled by the absolute normalized weight |ˆ| iw  denoted by twb ii ∆= |ˆ| , 

where i = 1,…, k and k is the number of bias-time intervals (or bias slots). This weight 

normalization guarantees each bi to be equal to or greater than ∆t so that the SNR 

corresponds to bi will not be reduced. In addition, bi indicates that the important bias has 

a longer bias-time interval than the weak bias. The total integration time, τ(∆t), is then 

calculated using the following equation 

,)( Î
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α
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which is greater than ∆t. As a result, a continuous time-varying biasing waveform  

)(B̂ f  with adjusted integration time is obtained as illustrated in Fig. 6.6. It is to be 

emphasized that )(B̂ f  is obtained without using any knowledge from the target in a 

scene (source independent). The weights absorbed in )(B̂ f  guarantee the optimal 

approximation of a desired spectral filter f.  

 

Figure 6.6: Illustration of a continuous time-varying biasing waveform )(B̂ f  (blue shaded region) 

obtained by the GST algorithm using the adjusted integration time bi within the total integration time 
τ(∆t). 

    

As we mentioned before, the sign of the weights can be either positive or 

negative, so two types of waveforms for integrating photocurrents, )(
)(B̂

tI
f

, are 

obtained: (1) a negative waveform corresponding to negative sign of weights and (2) a 

positive waveform corresponding to positive sign of weights. In order to find Î , we 

subtract the integrated photocurrent corresponding to the negative waveform from the 

integrated photocurrent corresponding to the positive waveform, mimicking the 

superposition of the probed photocurrents as in (19). 

 

The challenge here is that τ(∆t) may exceed the given total integration time α and the 

question is how do we adjust τ(∆t) so that τ(∆t) ≤ α ? To address this challenge, we 

further optimize the GST algorithm. 
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Recall that ∆t is an arbitrary integration time for each bias (bias-time interval) and α  is 

the desired integration time. As defined in (24), τ(∆t) is the integration time combined 

with weights, which it is assumed to be continuous. However, τ(∆t) may not be 

monotonic. In fact, there is a critical ∆t, call it t* such that τ(t*) = α , illustrated in Fig. 

6.7. Ideally, t* is the solution to τ(∆t) = ∆t.  

 

Figure 6.7: Illustration of non-monotonic τ(∆t) as a function of ∆t for finding a critical point t*, which 
satisfies τ(t*) = α.  
 

As an approximation, t* can be solved by satisfying      },)()1(:sup{* αταε ≤∆≤−∆= ttt              (25) 

where ε is the tolerance of α, usually ε = 0.02 gives good results.  

 

The computational procedure to search t* is described as follows.  

1)  The normalized weight iŵ  is obtained by using (23) and then each ∆t is scaled by 

|ˆ| iw , yielding a weighted bias time bi. 
2)  With bi available from Step 1, τ(∆t) is calculated by using (24) and if τ(∆t) = α, the 

search is complete with t* =   ∆t and the corresponding biasing waveform is obtained. 

Otherwise, go to the next step.  

3)  Set ∆t =  ∆t/2 and tt ∆= 2~ .  

4)  Recalculate iŵ and bi.  

5)  Compute τ(∆t): if τ(∆t) > α , then go back to Step 3; if τ(∆t) satisfies (25), then 

t
* = ∆t. Otherwise, set 2/)~( ttt +∆=∆  and go back to Step 4. 
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6.4 Simulation results on spectrometry and 

classification 

For validation, we applied the GST algorithm for the same MS sensing problems as 

demonstrated for the ST algorithm in Section 6.2. For the spectrometry problem, the 

continuous time-varying bias waveform, which consists of negative and positive 

waveforms, was obtained by the GST algorithm as shown in Fig. 6.8. According to 

these two waveforms, we integrated two photocurrents. The progression curves for 

integrating photocurrents corresponding to negative and positive waveforms are shown 

in Fig. 6.9. The integrated photocurrent for negative waveform, negÎ , is 0.472 and the 

integrated photocurrent for positive waveform, posÎ , is 0.619. To reconstruct the 

emissivity of an object at 8.8 µm, we simply subtracted negÎ  from posÎ , yielding 

=−= negpos ÎÎÎ 0.147. By comparison, this reconstructed emissivity (0.147) by the GST 

algorithm is closer to the ground truth (0.171 shown in Table 6.1) than the value (0.134 

shown in Table 6.1) obtained by the ST algorithm in Section 6.2. Thus, the GST 

algorithm performs better than the original ST algorithm in successfully extracting the 

narrowband spectral feature. Specifically for this problem, the GST algorithm 

reconstructed the emissivity of an object with a 14% of error rather than the ST 

algorithm, which achieved a 21% error for the same reconstruction. 

 
 
Figure 6.8: Continuous time-varying biasing waveform obtained by the GST algorithm for the 
spectrometry problem. This bias waveform consists of negative waveform (shown in red) and positive 
waveform (shown in blue), which are used to integrate photocurrents. Inset shows the negative and 
positive signs of weights over the integration time. 
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Figure 6.9: Integrated photocurrents, negÎ  and posÎ , based on negative waveform (left) and positive 

waveform (right). Subtraction of negÎ  from posÎ  gives a reconstruction of the emissivity of an object 

sampled at 8.8 µm using the spectral filter.  

 

Methods Reconstructed 
sample of 
emissivity ST algorithm GST algorithm 

True value 
(Sampled transmittance by  

ideal triangle) 

at 8.8 µm 0.134 0.147 0.171 

 
Table 6.1: Comparison of reconstructed emissivity at 8.8 µm between the conventional ST algorithm and 
the GST algorithm. Results are also compared to the true value of the emissivity. 

  

For the classification problem, three bias waveforms were computed by the GST 

algorithm as shown in Fig. 6.10. Each bias waveform includes negative (Fig. 6.10 (red)) 

and positive (Fig. 6.10 (blue)) waveforms that were used to successfully design each 

algorithmic matched filter as shown in Fig. 6.11. Three algorithmic matched filters were 

then labeled with the appropriate class number (Class 1, Class 2 and Class 3). 
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Figure 6.10: Three bias waveforms each including negative (in red) and positive (in blue) waveforms for 
three algorithmic matched filters, (a) );(ˆ 1λλr , (b) );(ˆ 2λλr and (c) );(ˆ 3λλr . Inset shows the negative and 

positive signs of weights over the integration time. 
 

(c)  

(b) 

(a) 
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Figure 6.11: Transmittances of three algorithmic spectral matched filters, );(ˆ 1λλr (left), 

);(ˆ 2λλr (middle) and );(ˆ 3λλr  (right) in solid black line were obtained by the GST algorithm using 

the bias waveforms as shown in Fig. 6.10. Actual filter transmittances, r1(λ;λ1) (left), r2(λ;λ2) (middle) 
and r3(λ;λ3) (right) are shown in dashed line. 

 

Based on the bias waveforms shown in Fig. 6.10, the curves showing the integration of 

photocurrents were obtained. Each curve represents the process of continuously 

probing the test filter object, r1(λ;λ1) with the DWELL photodetector controlled by the 

bias waveforms in Fig. 6.10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Integrated photocurrents,  class neg,Î (from red curve) and  class pos,Î (from blue curve) for (a) 

Class 1, (b) Class 2 and (c) Class 3 based on the bias waveforms as shown in Fig. 6.10. 

 

 

(a) (b) (c) 
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From the curves shown in Fig. 6.12 (a), the integrated photocurrents for negative and 

positive bias waveforms, 1 class neg,Î and 1 class pos,Î , are 0.99 and 1.515 for Class 1, 

respectively. For Class 2, the integrated photocurrents, 2 class neg,Î  and 2 class pos,Î , are 

3.164 and 3.563 obtained from Fig. 6.12 (b). For Class 3, the integrated photocurrents, 

3 class neg,Î  and 3 class pos,Î  are 2.064 and 2.504 obtained from Fig. 6.12 (c). To perform the 

feature extraction for each class, we subtracted the integrated photocurrent 

corresponding to negative waveform from the one corresponding to positive waveform, 

in the same way as we did for the spectrometry example, yielding three features (F1 = 

1 class neg,1 class pos, ÎÎ − = 0.525, F2 = 2 class neg,2 class pos, ÎÎ − = 0.399, F3 = 3 class neg,3 class pos, ÎÎ − = 

0.44). These three features then form a feature vector F (F=[F1, F2, F3]). According to 

the classification rule, i
i

Fi
}3,2,1{

* maxarg
∈

=  as mentioned in Section 6.2, the classifier 

assigned F to Class 1 since feature value (F1) in F is the largest among three features. 

Thus, the classifier correctly identified the test filter object, r1(λ;λ1) by assigning it to 

Class 1. The plot for the feature vector F is shown in Fig. 6.13 (blue). By comparison 

with the reference, the classification results shown in Fig. 6.13 demonstrate that 

classifiers by both algorithms have correctly assigned the test object to Class 1 based 

on extracted feature vectors.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.13: Classification results for the GST algorithm (blue) compared to the conventional ST 
algorithm (white) for identifying the test filter object, r1(λ;λ1). Results show that the classifier has 
successfully classified the test object to Class 1 using both algorithms. 
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6.5 Conclusions 

We have generalized the spectral tuning algorithm to yield a continuous time-varying 

bias waveform, which enables the detector to extract the most relevant spectral feature 

for a specific multispectral sensing application in a limited integration time. As a result 

of generalization, the algorithm extracts the feature by integrating the photocurrent 

with appropriately adjusted biases based on a prescribed bias waveform instead of 

forming a weighted superposition of photocurrents. It is to be emphasized that the 

impact of generalization is to significantly simplify the conventional spectral tuning 

algorithm by absorbing its data-processing steps such as multiplications and 

superpositions in the photocurrent integration process, making the algorithm available 

for hardware implementation. In addition, the reduction of data-processing steps can 

greatly simplify the design of required multispectral sensing system such as the ROIC 

of the FPA system, which, in turn, would reduce the required cost of a system.  

 

We successfully validated the algorithm by means of simulation for two multispectral 

sensing problems: the spectrometry of a target spectral filter and the classification 

among three LWIR filter targets based on algorithmic spectral matched filters. Results 

were comparable to the reference obtained by the conventional spectral tuning 

algorithm. The next step is to implement our generalized spectral tuning algorithm on 

the actual hardware system (the reconfigurable ROIC-based FPA) to demonstrate 

multispectral spectrometry and classification applications in real time. 
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Summary of Dissertation  

The electrical tunability of DWELL has been exploited through post-processing 

algorithms enabling target spectrometry and spectral matched filtering for material 

classification, without using any physical spectral filters. Algorithms provide the 

functionality of spectral filtering with spectral resolutions well beyond the limits 

offered by the normal operation of the DWELL detector.  

 

In this dissertation, the DWELL-based algorithmic spectrometer (DAS) based on 

the concept of algorithmic spectral tuning was demonstrated experimentally for the 

first time. The DAS was implemented in three steps. First, the DWELL detector probed 

an unknown object of interest sequentially at different applied biases, yielding the set 

of bias-dependent photocurrents. Second, the set of photocurrents was linearly 

combined with the pre-calculated weights for the specific tuning wavelength. Such 

synthesized photocurrent is the reconstructed transmittance of object at that 

wavelength. Last, the second step was repeated for the entire tuning wavelength range 

of interest to obtain the continuous transmittance waveform of unknown object without 

using any physical spectrometer. The DAS successfully reconstructed the 

transmittances of various LWIR filter targets and was further investigated for the SNR, 

the DWELL’s operating temperature, and the diversity of available operating biases. 

The DAS was also successfully demonstrated by an other collaborating research group. 

The DAS can be potentially applied to traditional multi-color infrared detectors (e.g., 

quantum-well detectors), especially if there is overlap in the spectral bands.   

 

The spectral tuning algorithm was further extended to perform the data-

compressive spectral sensing by identifying a minimal set of required biases subject to 

a prescribed performance level. This minimal bias set is a uniformly-accurate solution 

across arbitrarily specified spectral sensing problems beyond spectrometry, including 

spectral matched filtering and slope sensing. As a result, the detector can sense the 

object of interest using only the most relevant spectral responses for multiple sensing 

applications. The algorithm was implemented to approximate the collection of six 

different spectral filters and identified the minimal set of only four biases out of 30 

available DWELL biases. The use of minimal four biases successfully approximated 

all six spectral filters. For demonstration, the algorithm with these four biases was 

applied to two remote-sensing problems: (1) spectrometry of unknown filter target and 

(2) classification of three matched filter targets. Successful results were obtained for 
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both problems using only four biases.  

 

Finally, the spectral tuning algorithm was generalized to offer a continuous time-

varying biasing, which mimics the multispectral capabilities of the conventional 

algorithmic spectral tuning without performing a weighted superposition of the 

DWELL’s bias-dependent photocurrents. As a result of generalization, the process of 

spectral tuning algorithm was greatly simplified by absorbing the required data-

processing steps (multiplications and superpositions associated with weights) in the 

photocurrent integration process using a continuous time-varying bias function under 

the integration time constraint. This generalization is particularly relevant to the 

algorithm implementation on the hardware (FPA) system, where the photocurrent 

integration time and the bias voltage are controlled by the readout circuit.  
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Future Works 

 

 

1. Implementation of algorithmic sensing modalities to a 

programmable ROIC 

The intelligent read-out integrated circuit (iROIC) [44] is capable of the pixel-level 

bias control as well as the data computation in the programmable analog function 

blocks. The main objective is to perform the spectral sensing modalities within iROIC. 

Sensing modalities are the algorithmic parallel spectrometer (APS) and the algorithmic 

parallel matched filtering (APMF). The APS consists of the bias-tunable FPA 

hybridized with the iROIC, programmed to perform in parallel the operation of data-

compressive algorithmic spectrometry. The idea of APS is illustrated in Fig. 1. 

Consider that templates are placed in uniform regions consisting of the same type of 

target in a scene. Within each template, the iROIC applies different bias in the 

prescribed minimum bias set (by the compressive spectral sensing algorithm) to each 

pixel, generating the minimum set of photocurrents. In this way, we can extract out the 

most relevant spatial and spectral information of target of interest simultaneously 

within a single frame. Then the processor within iROIC can compute in parallel a 

weighted superposition of the photocurrents obtained from the spectral bands 

(controlled by the minimal bias set), generating the amplitude of the spectrogram of the 

target probed for a specific tuning wavelength. Then it is repeated for the entire 

wavelength range of interest to obtain the complete spectral profile of the target. The 

second modality, APMF consists of the iROIC programmed to perform in parallel the 

matched filtering with the prescribed minimal bias set for spectral classification. The 

main idea is to perform the classification with just two frames. One frame is for 

training and activating the classifier and the other frame is for classifying the incoming 

test data with the trained classifier. For both modalities, performing algorithm at the 

pixel level and within the iROIC can potentially enable fast and high-performance 

processing, thereby extracting the compressed and important spectral feature directly. 
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Figure 1: Idea of the algorithmic parallel spectrometer (APS). As the iROIC hybridized FPA probes a 
scene, the spectrogram of different regions of interest can be produced directly as an output of the device. 
The templates shown represent different groups of pixels; each group sees a region consisting of a 
uniform target. 
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2. Application of algorithmic sensing modalities on the 

plasmonic and tunable DWELL detector 

Recently, our group had demonstrated for the first time a plasmon integrated DWELL 

FPA (SP-FPA) [45] using near field spectrally-resonant coupling of the surface 

plasmon-polaritons (SPPs) with mid-IR absorption in the quantum dots. The entire 

structure consists of a 2-D periodic hole array (as a SP structure) coupled on top of a 

DWELL absorber structure. 

 

This structure showed improvement in spectral response at all the plasmonic 

resonances used on the FPA, as shown in Figure 2 (a) and (b). Figure 2 (a) shows the 

spectral response of SP-FPA (blue) and the spectral response of FPA (black), while 

Figure 2 (b) shows the difference plot between the spectral responses of SP-FPA and 

FPA. Figures 2 (d)-(g) show the visual demonstration of the resonant enhancement 

with a series of visual images.  

 

Plasmonic FPA

FPA

(1.0) resonance

at 6.1 µµµµm

(1.1) resonance

at 4.3 µµµµm

3.99 µm 4.54 µm

5.95 µm 6.83 µm

Plasmonic FPA

FPA

(1.0) resonance

at 6.1 µµµµm

(1.1) resonance

at 4.3 µµµµm

3.99 µm 4.54 µm

5.95 µm 6.83 µm

 
Figure 2: (a) Spectral responses of the non-SP and SP sections of the array. (b) Difference in spectral 
response showing the experimentally observed peaks at the (1,1) and (1,0) resonances. (c) 
Representative image of the blackbody source seen through the open slot in the filter wheel. Blackbody 

images (d) below the (1,1) resonance at λ = 3.99 µm, (e) near the (1,1) resonance at λ = 4.54 µm, (f) 
close to the (1,0) resonance at λ = 5.95 µm and (g) above the (1,0) resonance at λ = 6.83 µm [45]. 
 

The plasmonic resonance as well as the bias-dependent spectral tunability of DWELL 

has not been explored in our group as yet. The essential concept is that pixels with 
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different plasmonic structures as well as applying different biases can be operated as 

different detectors. Target spectral reconstruction using a DWELL FPA alone is 

insufficient for a target with very sharp spectral features. The combined use of both 

plasmonic resonance and bias-tunability can potentially produce spectral responses 

with higher SNRs, better resolution, and more spectral diversity than just the DWELL 

FPA alone, resulting in improved synthetic spectral filter reconstruction. Potential 

applications are gas and effluent discharge identification that require very high 

resolution spectrometry as illustrated in Fig. 3. The idea is to perform the spectral 

sensing modalities (algorithmic spectrometer and spectral matched filter) using the 

plasmonic DWELL detector to achieve very high resolution MS/HS sensing.  

 

Figure 3: Potential application of the plasmonic DWELL detector with the spectral sensing modalities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 111 

References 
 

[1] A. Rogalski, ‘‘Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for 

long wavelength focal plane arrays,’’ Infrared Phys. Technol., Vol. 40, pp. 279–294, 1999. 

[2] A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys., Vol. 

93, pp. 4355-4391, 2003. 

[3] T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W-Y. Jang, Y. 

D. Sharma and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE Journal of 

Selected Topics in Quantum Electronics, Vol. 14, pp. 1150-1161, 2008 (Invited). 

[4] N. Streibl, U. Nolscher, J. Jahns, and S. Walker, “Array generation with lenslet arrays,” Appl. Opt., 

Vol. 30, pp. 2739-2742, 1991. 

[5] C. A. Musca, J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. K. M. B. D. Silva., J. 

M. Dell, L. Faraone, P. Mitra, J. D. Beck, M. R. Skokan, and J. E. Robinson, “Monolithic 

integration of an infrared photon detector with a MEMS-based tunable filter,” IEEE Elec. Dev. Lett., 

Vol. 26, pp. 888–890, 2005. 

[6] N. Gupta, R. Dahmani, and S. Choy, “Acousto-optic tunable filter based visible- to near-infrared 

spectropolarimetric imager,” Opt. Eng., Vol. 41, pp. 1033-1038, 2002. 

[7] Yu. G. Sidorov, S. A. Dvoretsky, M. V. Yakushev, N. N. Mikhailov, V. S. Varavin and V. I. Liberman, 

“Peculiarities of the MBE growth physics and technology of narrow-gap II-VI compounds,” Thin 

Solid Films, Vol. 306, Issue 2, pp. 253, Sep., 1997. 

[8] J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” Journal of 

Applied Physics, Vol. 91, No. 7, Apr., 2002. 

[9] D. Tezcan, S. Eminoglu and T. Akin, “A Low-Cost Uncooled Infrared Microbolometer Detector in 

Standard CMOS Technology,” IEEE T. Elec. Dev., Vol. 50, pp. 494-502, 2003. 

[10]  D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. 

Phys., Vol. 62, pp. 2545-2548, 1987. 

[11]  H. S. Kim, E. Plis, J. B. Rodriguez, G. D. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, J. 

Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, and M. Sundaram, "Mid-IR 

focal plane array based on type-II InAs/GaSb strain layer superlattice detector with 

nBn design” Appl. Phys. Lett. 92, 183502, 2008. 

[12]  B. F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys., Vol. 74, pp. R1-R81, 1993. 

[13]  K. W. Berryman, S. A. Lyon and M. Segev, “Mid-infrared photoconductivity in InAs quantum 

dots,” Appl. Phys. Lett., Vol. 70, pp. 1861-1863, 1997. 

[14]  S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. 

M. Mumolo, S. A. Keo, S. Krishna, Y.-C. Chang, and C. A. Shott, “640 X 512 Pixels Long-



 112 

Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane 

Array,” IEEE Journal of Quantum Electronics, Vol. 43, pp. 230-237, 2007.  

[15]  J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-

GaAs quantum-dot inter-subband detectors,” IEEE J. Quantum Electron., Vol. 35, pp. 936–942, 

1999. 

[16]  J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” Journal 

of Applied Physics, Vol. 91, No. 7, Apr., 2002. 

[17]  M. R. Matthews, R. J. Steed, M. D. Frogley, C. C. Phillips, R. S. Attaluri, and S. Krishna, 

“Transient photoconductivity measurements of carrier lifetimes in an InAs/In0.15Ga0.85As dots-in-a-

well detector,” Appl. Phys. Lett., Vol. 90, pp. 103519 - 103519-3, 2007. 

[18]  D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. 

Burrus, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark 

Effect,” Physical Review Letters., Vol. 53, pp. 2173–2176, Nov. 1984. 

[19]  P. Aivaliotis, N. Vukmirovic, E. A. Zibik, J. W. Cockburn, D. Indjin, P. Harrison, C. Groves, J. P. R. 

David, M. Hopkinson, and L. R. Wilson, “Stark shift of the spectral response in quantum dots-in-a-

well infrared photodetectors,” Journal of Physics D, Vol. 40, pp. 5537-5540, 2007.  

[20]  S. Krishna, “InAs/InGaAs quantum dots in a well photodetectors,” J. Phys. D (Appl. Phys.), Vol. 

38, pp. 2142–2150, 2005. 

[21]  Ü. Sakoğlu, J. S. Tyo, M. M. Hayat, S. Raghavan and S. Krishna, "Spectrally Adaptive Infrared 

Photodetectors Using Bias-Tunable Quantum Dots," Journal of the Optical Society of America B, 

Vol. 21, pp. 7-17, 2004. 

[22]  Ü. Sakoğlu, M. M. Hayat, J. S. Tyo, P. Dowd, S. Annamalai, K. T. Posani, and S. Krishna, “A 

statistical method for adaptive sensing using detectors with spectrally overlapping bands,” Applied 

Optics, Vol. 45, pp. 7224–7234, Oct. 2006. 

[23]  S. Krishna, M. M. Hayat, J. S. Tyo, Ü. Sakoğlu and S. Raghavan “Spectrally Adaptive Quantum 

Dots In A Well Detector”, US Patent 7,217,951, 2007. 

[24]  Ü. Sakoğlu, “Signal-processing strategies for spectral tuning and chromatic nonuniformity 

correction for quantum-dot IR sensors," Ph.D. Dissertation, Univ. New Mexico, Albuquerque, 2006. 

[25]  Z. Wang, Ü. Sakoğlu, S. Annamalai, N.-R. Weisse-Bernstein, P. Dowd, J. S. Tyo, M. M. Hayat, and 

S. Krishna, “Real-time implementation of spectral matched filtering algorithms using adaptive focal 

plane array technology,” in Imaging Spectrometry, Proc. SPIE, Vol. 5546, pp. 73–83, 2004. 

[26]  Ü. Sakoğlu, Z. Wang, M. M. Hayat, J. S. Tyo, S. Annamalai, P. Dowd, and S. Krishna, “Quantum 

dot detectors for infrared sensing: bias-controlled spectral tuning and matched filtering,” in 

Nanosensing: Materials and Devices, Proc. SPIE, Vol. 5593, pp. 396–407, 2004. 

[27]  W-Y. Jang, B. Paskaleva, M. M. Hayat and S. Krishna, “Spectrally Adaptive Nanoscale Quantum 

Dot Sensors,” Wiley Handbook of Science and Technology for Homeland Security, 2009. 



 113 

[28]  W-Y. Jang, M. M. Hayat, J. S. Tyo, R. S. Attaluri, T. E. Vandervelde, Y. D. Sharma, R. Shenoi, A. 

Stintz, E. R. Cantwell, S. C. Bender, S. J. Lee, S. K. Noh and S. Krishna, “Demonstration of Bias-

Controlled Algorithmic Tuning of  Quantum Dots in a Well (DWELL) MidIR Detectors,” IEEE 

Journal of Quantum Electronics, Vol. 45, pp. 674-683, 2009. 

[29]  S. Krishna, M. M. Hayat, J. S. Tyo and W-Y. Jang, “Infrared Retina,” US Patent 8,071,945 B2, 

2011.   

[30]  P. Vines, C. H. Tan, J. P. R. David, R. S. Attaluri, T. E. Vandervelde, S. Krishna, W-Y. Jang and M. 

M. Hayat, “Versatile Spectral Imaging With an Algorithm-Based Spectrometer Using Highly 

Tuneable Quantum Dot Infrared Photodetectors,” IEEE Journal of Quantum Electronics, Vol.47, pp. 

190-197, 2011. 

[31]  W-Y. Jang, M. M. Hayat, S.E. Godoy, S. C. Bender, P. Zarkesh-ha and S. Krishna, “Data 

compressive paradigm for generalized multispectral sensing using tunable DWELL mid-infrared 

detectors,” Optics Express, Vol. 19, pp. 19454-19472, 2011. 

[32]  P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. Englewood Cliffs, NJ: Prentice 

Hall, 1996. 

[33]  J. Andrews, W.-Y. Jang, J. E. Pezoa, Y. D. Sharma, S. J. Lee, S. K. Noh, M. M. Hayat, S. Restaino, 

S. W. Teare, and S. Krishna, “Demonstration of a bias tunable quantum dots-in-a-well focal plane 

array,” Infrared Phys. Technol., Vol. 52, pp. 380–384, 2009. 

[34]  J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W-Y. Jang, T. E. Vandervelde, J. S. 

Brown, A. Reisinger, M. Sundaram, S. Krishna and L. Lester, “Comparison of Quantum Dots-in-a 

Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long Wave Infrared,” IEEE 

Transactions on Electron Devices, Vol. 58, pp. 2022-2027, 2011. 

[35]  B. S. Paskaleva, M. M. Hayat, Z. Wang, J. S. Tyo, and S. Krishna, “Canonical correlation feature 

selection for sensors with overlapping bands: Theory and application,” IEEE Trans. Geosci. Remote 

Sens., Vol. 46, pp. 3346–3358, 2008. 

[36]  B. S. Paskaleva, W-Y. Jang, S. C. Bender, Y. D. Sharma, S. Krishna and M. M. Hayat, 

“Multispectral Classification with Bias-tunable Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE 

Sensors Journal, Vol. 11, pp. 1342-1351, 2011. 

[37]  A. Milton, F. Barone, and M. Kruer, “Influence of nonuniformity on infrared focal plane array 

performance,” Opt. Eng. (Bellingham), Vol. 24, pp. 855–862, 1985. 

[38]  R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York: Wiley, 2000. 

[39]  S. F. Cotter, B. D. Rao, Kjersti Engan, and K. Kreutz-Delgado, “Sparse Solutions to Linear Inverse 

Problems with Multiple Measurement Vectors,” IEEE Trans. Signal Process. Vol. 53, pp. 2477–

2488, 2005. 

[40]  G. Davis, S. Mallat, and M. Avellandeda, “Adaptive greedy approximations,” Constr. Approx., Vol. 

13, pp. 57–98, 1997. 



 114 

[41]  A. Majumdar, K. K. Choi, J. L. Reno, L. P. Rokhinson, and D. C. Tsui, “Two-color quantum-well 

infrared photodetector with voltage tunable peaks,” Appl. Phys. Lett. Vol. 80, pp. 707–709, 2002. 

[42]  Hsieh, et al., IEEE Trans. on Circuits and Sys. for Video Proc., 7(4), 594-605, 1997.  

[43]  M. G. Brown, J. Baker, C. Colonero, J. Costa, T. Gardner, M. Kelly, K. Schultz, B. Tyrrell and J. 

Wey, “Digital-pixel Focal Plane Array Development,” Proc. of SPIE, Vol. 7608, pp. 76082H-1-

76082H-10, 2010. 

[44]  P. Zarkesh-Ha, W-Y. Jang, P. Nguyen, A. Khoshakhlagh and J. Xu, “A Reconfigurable ROIC for 

Integrated Infrared Spectral Sensing,” the 23
rd 

Annual Meeting of the IEEE Photonics Society 

Volume, pp. 714-715, 2010.  

[45]  S. J. Lee, Z. Ku, A. Barve, J. Montoya, W-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. 

Krishna and S. K. Noh, “A Monolithically Integrated Plasmonic Infrared Quantum Dot Camera,” 

Nature Communications, 2, 286, 2011. 

[46]  T. Yasuda et al., “Adaptive-Integration-Time Image Sensor With Real-Time Reconstruction 

Function,” IEEE Trans. Elect. Dev., Vol. 50, pp. 111-120, 2003. 

[47]  T. Ogi et al., “Smart image sensor for wide dynamic range by variable integration time,” IEEE 

Conf. on Multisensor Fusion and Integration for Intelligent Systems, pp. 179-184, 2003. 

[48]  T. Hamamoto et al., “A Computational Image Sensor with Adaptive Pixel-Based Integration 

Time,” IEEE J. Solid-State Circuits, Vol. 36, pp. 580-585, 2001. 


