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ABSTRACT 

Rails (Family: Rallidae) are among the least studied birds in North America, in large part due to 

their elusive nature. As a wetland-dependent species, understanding the timing of their migration 

and their habitat needs during migration is especially important since management needs to be 

timed to balance the needs of many species. I developed and verified a new distance sampling-

based nocturnal ATV spotlight survey because traditional call-broadcast surveys are not effective 

during autumn migration because of the drop off in call rate after the breeding season. These 

surveys allow us to ask point-level questions about what habitats rails select during migration 

and how it changes over time. Through these standardized surveys from 2012-2016 across 11 

public properties in Missouri, USA, I documented the migratory timing and habitat use of 

migratory rails. Sora (Porzana carolina) have a wide migratory window, beginning in early 

August and continuing through the end of October with a peak in late September. Virginia Rail 

(Rallus limicola) and Yellow Rails (Coturnicops noveboracensis) have shorter migratory 

periods, from late September through the end of October. Rails, especially Sora, migrate earlier 

than waterfowl, which can create a mismatch of habitat needs. We performed a 3 year 

experiment to examine the response of Sora and waterfowl to early autumn wetland flooding. 

Sora responded positively without a negative impact on waterfowl. I used monitoring data to 

create species distribution models to inform estimates of migratory connectivity for all three 

species using stable hydrogen isotopes. Sora and Yellow Rails were estimated to migrate 

generally north-south, with Virginia Rails coming from a wider east-west range. Through better 

understanding the migratory connectivity, timing and habitat use of rails in the autumn I provide 

a foundation to inform conservation and management of these fascinating and elusive birds. We 

provide a description of all variables used (Appendix II), GPS data of survey tracks and detection 



 
 

points (Appendix III), data sets of bird observation points, survey data, and vegetation 

information (Appendix IV), data sets of stable hydrogen isotope data (Appendix V), data sets of 

species distribution models (Appendix VI).  
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INTRODUCTION 

Rails are among the least studied birds in North America, in large part due to their elusive nature, 

but members of the family Rallidae are diverse and adapted to their environment. Rails are novel 

study organisms for a variety of questions including the evolution of flightlessness, vagrancy, 

colonization and dispersal, since rails have been found to be among the first birds to colonize 

many pacific islands and are frequently found as vagrants the world over despite their elusive 

behavior. This dissertation focuses on the migration and habits of the Sora (Porzana Carolina), 

Virginia Rail (Rallus limicola) and Yellow Rail (Coturnicops noveboracensis).  

Sora are medium sized rails which live in freshwater wetlands from the Northwest Territory to 

Nova Scotia south into Mexico. Sora are often found in dense vegetation. While Sora breeding 

ecology has been examined for decades (Mousley 1937, Billard 1948, Pospichal et al. 1954, 

Tanner and Hendrickson 1956, Horak 1970, Griese et al. 1980, Johnson and Dinsmore 1985, 

Kaufmann 1987, 1989; Reid 1989, Lor and Malecki 2006) their migration is much more poorly 

studied, especially in autumn (Kemper et al. 1966, Griese et al. 1980, Kearns et al. 1998, 

Haramis and Kearns 2007, Fournier et al. 2015) and work on the wintering grounds is all but 

absent. Sora are a game species in many states, though harvest rates are very low and likely do 

not impact populations (Raftovich et al. 2012). 

Sora and Virginia Rail habitats often overlap during the breeding season, though there are 

behavioral differences and Virginia Rails are not as generalist as Sora (Conway 1995). Most 

previous work on Virginia Rails has also been done during the breeding season, often in tandem 

with the study of Sora breeding ecology. During migration, Virginia Rails select flooded annual 

grasses with shallow water for foraging (Sayre and Rundle 1984, Fredrickson and Reid 1986). 
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Migrating Virginia Rails select a variety of water depths along with dense vegetation and seed 

producing plants (Andrews 1973, Rundle and Fredrickson 1981).  

Of the three rail species studied here, Yellow Rails are the most poorly studied throughout their 

range, with the bulk of historic work being done on their breeding grounds (Wood 1909, Terrill 

1943, Elliot et al. 1976, Grimm 1991, Robert et al. 1997, 2004; Martin 2012). In the past decade, 

work focused on at their abundance and habitat use on the Gulf Coast and in Oklahoma, which 

was recently identified as the most northerly wintering population of Yellow Rails (Tomer 1958, 

Post 2008, Butler et al. 2010, 2014; Morris 2015). The Yellow Rail population east of the Rocky 

Mountains is thought to be separate from the largely non-migratory population in the pacific 

northwest (Miller et al. 2012). In Oklahoma, migrating Yellow Rails were associated with 

Sporobolus spp (Butler et al. 2010). Otherwise their migratory habitat needs are unknown.  

This dissertation focuses on autumn migration because priority information needs established by 

the Upland Game Bird Task Force for Rails and Snipe (Case and McCool 2009). Case and 

McCool (2009) highlighted autumn migration as a time to study rails because of the reduced 

flooded area of wetlands due to precipitation patterns and moist soil management. Here I will 

focus on six questions, each its own chapter and prepared as a publication for a peer reviewed 

journal.  

1 – What is the timing of Sora autumn migration? Does that timing vary among years?  

2 – What habitats do Sora select during autumn migration? Is that habitat equally 

available across the entire migratory season?  

3 – What is the migratory connectivity of stopover and wintering rails in the Central and 

Mississippi Flyways?  
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4 – How are Sora and waterfowl impacted by early autumn flooding of wetlands? 

5 – What is the timing Virginia Rail and Yellow Rail autumn migration? What habitats 

do Virginia Rail and Yellow Rail use during that time?  

6 – Can ATV surveys at night be used as an effective method for detecting rails during 

autumn migration?  

Rails are fascinating birds which have specialized habitat requirements and use habitat that has 

been lost in large part since European Settlement. Here, I present a foundation for future 

examination of rail migration ecology to promote sound science based conservation and 

management. In addition I examine how rails select and use stopover habitat during migration to 

inform migration theory.  
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CHAPTER 1 

 

The Timing of Autumn Sora (Porzana Carolina) Migration In Missouri 

 

Auriel M.V. Fournier 

and  

Doreen C. Mengel, Edward E. Gbur, and David G. Krementz 
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ABSTRACT. --- Monitoring and conserving waterbirds in Missouri, including Sora 

(Porzana carolina), is constrained by the lack of information on migration phenology. We 

performed nocturnal distance-sampling-based ATV surveys across 11 state and federal managed 

wetlands in Missouri, USA from 2012-2015 to compare the timing of autumn Sora migration 

among years. Sora migration in Missouri began in the first week of August, on average it peaked 

on 25 September, and continued through the last week of October. We detected Sora migration 

earlier in autumn than previous work. We found the start and end of migration did not vary 

annually in three of four years. With our results, wetland managers should be able to better time 

their management for rails in Missouri. 
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INTRODUCTION 

Understanding the timing of a species’ migration is as important as knowing the species’ 

habitat needs and stopover ecology (Sheehy et al. 2011, Albanese and Davis 2015, Hostetler et 

al. 2015). Awareness regarding the time of year that habitat is needed is vital to inform habitat 

management, especially in highly ephemeral habitats such as palustrine emergent wetlands. 

Public wetlands across the central United States, including Missouri, are typically managed as 

migratory bird stopover habitat, with a focus on waterfowl; other wetland-dependent bird 

species, including Sora (Porzana carolina), also use these habitats although the timing of their 

need is less well known (Melvin and Gibbs 1994, Melvin and Gibbs 2012, Andersson et al. 

2015). The timing of autumn migration varies annually in many species and may be related to 

habitat availability, weather, and other variables (Richardson 1978, Richardson 1990, Krementz 

et al. 2012, Aagaard et al. 2015). While there is evidence that the timing of waterfowl and 

passerine migration has changed in response to climate change, there is no information available 

for Sora migration timing, which makes it difficult to predict how, or if, climate change will 

affect Sora or when habitat is needed to support multi-species management (Sokolov et al. 1999, 

Lehikoinen and Jaatinen 2011). 

Several small-scale studies have been conducted on Sora migration timing, but no 

projects have looked specifically at the timing of migration across multiple sites and years in the 

Mississippi Flyway. Missouri is centrally located in the Mississippi Flyway and is an important 

midway point of stopover habitat for migratory waterbirds (Case and McCool 2009, Soulliere et 

al. 2013). Previous small-scale studies indicate Sora migration peaks in Missouri in the last two 

weeks of September and ranges from the last week of August to the last week of October 

(Rundle and Fredrickson 1981, Clark-Schubert 2009). While Sora observations from eBird 
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(Sullivan et al. 2009) ranged from the first week of August through the last week of October in 

Missouri, these data may not be reliable to examine variation in migration phenology because of 

the low detection probability of Sora and the lack of consistent observer effort (Sullivan et al. 

2009, Conway and Gibbs 2011, Conway 2011). Our objective was to document autumn Sora 

migration phenology in Missouri using a standardized method and compare migration phenology 

differences among years. 

METHODS 

Study Area.--- We selected 11 publicly managed wetland properties across Missouri, 

USA because of their historical importance for migrating waterbirds (Fig. 1). At each property, 

we surveyed moist soil wetland impoundments (wetlands surrounded by levees with water 

control structures and dominated by smartweeds [Polygonum spp.] and millets [Echinochola 

spp.]) (sample size by region by year Table 1, further detail Appendix I). We made 

impoundments the survey unit because this is the scale at which wetland management decisions 

are made. Wetland impoundments were usually managed on a multi-year rotation using water 

level manipulation and disturbance (discing, mowing and burning) to hinder invasion by 

undesirable plants and set back succession (Rundle and Fredrickson 1981, Fredrickson and 

Taylor 1982). In 2012, Missouri experienced an extreme drought throughout the summer and 

autumn while weather conditions were more typical in 2013, 2014, and 2015 (U.S Drought 

Monitor 2015). 

Surveys.--- Fournier and Krementz (In Press) developed a method for surveying Sora 

outside of the breeding season, by driving transects at night on ATVs running parallel to a 

randomly-chosen side of each impoundment and spaced 30 m apart in a systematic pattern. 

These surveys are done under a distance sampling framework where the perpendicular distance 
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from the transect line to the point where each Sora was first detected is recorded, which allows 

for estimation of detection probability and density using hierarchical models (Fiske and Chandler 

2011, Denes et al. 2015). We conducted surveys beginning 30 minutes after sunset for two hours 

each night in 2012 and for 3 hours each night in 2013, 2014 and 2015 (Table 1).  

We began surveys each year in the northwest region of Missouri and moved clockwise 

around the state (Fig. 1). Regions were visited 3-4 times a year and each visit involved multiple 

surveys of the same impoundment by different observers. Effort varied by year because of 

changes in the number of observers, closure of some properties in preparation for hunting 

seasons and, in 2013, because of the U.S. federal government shutdown (Table 1).  

Density.---We estimated Sora density using the generalized distance sampling model of 

Chandler et al. (2011) in the R package ‘unmarked’ (R version 3.2.4, R Core Team 2015, 

unmarked version 0.11-0, Fiske and Chandler 2011). Unmarked provides an approach to fit 

biological data collected through repeated measures techniques to hierarchical models that 

estimate density while accounting for imperfect detection (Royle et al. 2004). The repeated 

transects within each survey allowed us to better estimate detection probability (MacKenzie 

2006, Chandler et al. 2011). We met the population closure assumption by estimating density for 

each impoundment during each visit separately. This resulted in three-four separate density 

estimates per impoundment each year. We truncated our observations to only include those 

within 5 meters of the line, which encompassed 96% of the detections because the small number 

of detections in the larger distance bins would add ‘little information for the estimation of the 

detection function and could complicate model fitting” (Schmidt et al 2012). 

We used the intercept-only model to estimate Sora density and detection for each 

impoundment at each survey. We treated each year’s density estimates as a function of day of the 
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year with a cubic smooth spline in R (smoothing parameter = 0.8, Fig. 2). We bootstrapped 95% 

confidence intervals around the density estimates. We estimated detection probability by 

comparing the expected value from 500 bootstrap simulations of the “getP” function within the 

‘unmarked’ package. To compare the distribution of migration among years we used a 

Kolmogorov-Smirnoff non-parametric test.  

RESULTS 

We detected 6,283 Sora during 868 hours of surveying. Detection probability on the line 

was 17% (SE=15-19). The earliest Sora we detected was 11 August 2015 (Fig. 2) and study area 

managers reported seeing Sora in 2012 and 2015 before our surveys began (personal 

communications, 2012, Craig Crisler, Missouri Department of Conservation and 2015, Cody 

Alger, U.S. Fish and Wildlife Service). We found no significant differences among years in Sora 

densities (Sora/hectare) before 31 August or after 19 October (2012 data collection ended 7 

October, Fig. 2). Densities in all years except 2014 peaked in late September, followed by a slow 

decline thereafter, whereas 2014 had no clear peak and a greater interquartile range, indicating a 

wider spread of Sora across the autumn in 2014 than during other years (Table 2). The peak in 

Sora densities in 2012 was higher than any other year. The distribution of Sora density was 

different between 2014 and 2013, and 2015 and 2013 (D=0.22, and 0.23, p-values <=0.001, 

Figure 3), but not between 2014 and 2015 (D=0.04, p=0.96, Figure 3). The differences in the 

distributions was a result of higher Sora densities in 2013 beginning around the end of August 

through the end of the first week in October as compared to the Sora densities in either 2014 or 

2015 (Figure 3). 
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DISCUSSION 

Sora migration began the week of August 10th in all years, with 2013’s shape being 

different from 2014 and 2015. The reason for the differences in the shape of migration among 

years suggests weather can play a role in shifting the distribution of migration, while at the same 

time processes like photoperiod are consistently triggering the initiation of migration (Bellrose 

1980). We did not compare 2012 with the other years because 2012 surveys ended two weeks 

earlier; however, we do note that in 2012 we had our highest peak Sora densities which may 

have been because of an exceptional drought in the state which reduced the number of flooded 

wetlands (U.S. Drought Monitor 2015).  

Knowing when a species migrates has implications for habitat management, monitoring, 

and research since the population’s needs may not be met during migration or the species could 

be missed during monitoring if those surveys are incorrectly timed. Previous research in the 

Mississippi Flyway missed the initiation of Sora migration by several weeks, which is not 

surprising since the difficulty of detecting rails can lead to the incorrect observation of the 

migration initiation (Fournier et al. 2015). Our work consistently shows migration beginning in 

early August, which is in line with eBird (Sullivan et al. 2009). This is especially important to 

consider when making wetland management decisions during autumn migration because habitat 

management will need to be timed with migration. Extreme weather events, such as flooding and 

drought are predicted to increase across Missouri with climate change. The increase in extreme 

weather will make active wetland management more challenging and understanding the needed 

timing of wetland habitat even more important. 

The latest date we detected Sora was in line with the end of migration in Missouri 

observed by Clark-Schubert (2009), whereas eBird records from Missouri continued into 
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November. We were unable to extend our surveys beyond the end of October because of the 

initiation of waterfowl hunting seasons and chose not to initiate them earlier in August to prevent 

disrupting late nesting species. As a result, we failed to capture the true initiation and end of 

migration but our data encompass the majority of Sora migration and should be sufficient to 

inform future research and monitoring.  

When attempting to manage for a suite of wetland species consideration should be given 

to potential mismatches that may occur between the timing of species' needs and resource 

availability. Early autumn could be the most limited time of year for flooded wetlands on the 

landscape in Missouri in part because of late summer drawdowns. This combined with the 

increase in extreme weather events, particularly droughts, predicted in climate change scenarios, 

could further decrease the amount of flooded wetlands during this important time for Sora. 

Future work should look to inform decisions that incorporate the needs of Sora into the wetland 

management process.  
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Table 1. Survey start and end dates, visits per property type and sample size of wetland 

impoundments surveyed by region for each year of autumn rail surveys in Missouri, USA.  

Year Observers Start 

Date 

End 

Date 

Visits per 

Property  

Number of Impoundments 

Surveyed by Region 

    State Federal NW NC NE SE Total 

2012 4 17 Aug  7 Oct 3 3 5 7 11 17 40 

2013 4 11 Aug 27 Oct 3 4 7 10 7 15 39 

2014 2 12 Aug 22 Oct 4 4 7 6 11 9 33 

2015 2 12 Aug 23 Oct 4 4 7 6 11 9 33 

 

Table 2. Distribution of Sora densities by date in Missouri, USA. IQR is the Inner Quartile 

Range – the number of days between Quantile 1 and Quantile 3.  

Year Minimum Quantile 1 Median Quantile 3 Maximum IQR 

2012 17 Aug 13 Sept 22 Sept 27 Sept 7 Oct 14 

2013 11 Aug 14 Sept 26 Sept 3 Oct 27 Oct 19 

2014 12 Aug 5 Sept 23 Sept 5 Oct 22 Oct 30 

2015 12 Aug 14 Sept 29 Sept 3 Oct 23 Oct 19 
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Figure. 1 - Eleven study sites in Missouri USA where Sora (Porzana carolina) were surveyed 

during autumn migration in 2012-2015. 
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Figure. 2 – Smoothed splines of Sora (Porzana carolina) density from surveys across Missouri, 

USA from 2012-2015. Splines do not extrapolate beyond the survey periods, which differed 

among years. 
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Figure. 3 – Comparison of cumulative distributions of Sora (Porzana carolina) density between 

years. The first year, 2012, was not compared to other years because the survey period that year 

ended earlier than the other years. 
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Abstract 

Wetlands have been lost across the United States, especially among palustrine wetlands since 

European settlement. These remaining wetlands are very important and are managed to fulfill 

many needs. Palustrine wetland management across the central United States is often moist soil 

management which can limit the availability of flooded wetlands early in autumn migration 

because of an emphasis on water management to provide habitat for migratory waterfowl. 

Following this wetland management strategy could impact the distribution, stopover duration and 

survival of early migrating waterbirds, including rails, such as Sora (Porzana carolina). We 

conducted nocturnal surveys on 11 state and federal properties in Missouri during autumn 

migration in 2012-2016 to examine Sora habitat selection in managed palustrine wetlands. Using 

binomial mixed models we examined Sora habitat selection. We found a strong positive second 

order relationship with mean water depth and first order annual moist soil vegetation, and a 

lesser positive relationship with perennial moist soil vegetation. We also found a change in mean 

water depth across the migration season, which highlights limitations of available wetland 

habitat early in migration for Sora. These results provide an informative foundation for 

multispecies management of palustrine wetlands and future research to inform the conservation 

and management of Sora.  
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Introduction 

Wetlands have been greatly reduced across the United States since European settlement 

(Tiner 1984). Dramatic wetland loss increases the importance of remaining wetlands for 

providing habitat, mitigating flooding, cleaning water. While some wetland types have started to 

increase again, palustrine wetlands (non-tidal wetlands dominated by vegetation and having 

shallow water depths and low salinity, Cowardin et al. 1979) have continued to experience 

declines. To maintain palustrine emergent wetlands on an increasingly altered landscape which 

often disrupts natural hydrology, wetlands are often impounded. Impounded wetlands are 

managed under moist soil management regimes to promote conditions and plant communities 

that favor waterfowl habitat by mimicking natural flooding and disturbance patterns using a 

combination of soil disturbance and flooding (Fredrickson and Taylor 1982). Palustrine wetlands 

provide habitat for a wide suite of plant and animal species, including migratory waterbirds, such 

as waterfowl, shorebirds, and rails.  

Promoting habitat for migratory waterfowl is often a high priority, but can result in 

limited flooded habitat early in autumn migration - before waterfowl arrive. Moist soil wetlands 

are dried out in late summer to encourage germination of seed producing plants (Rundle and 

Fredrickson 1981). Moist soil wetlands are managed on a multiple-year rotation using water 

level manipulation and soil disturbance to reduce invasive and woody plant succession as well as 

promote vegetation structure and food resources for migratory wetland birds (Fredrickson and 

Taylor 1982; Anderson and Smith 2000; Kross et al. 2008). The timing of wetland flooding 

relative to the timing of autumn migration of non-waterfowl waterbirds significantly affects 

available habitat and could affect waterbird distribution and habitat use, which in turn could 

influence their survival and migratory stopover ecology (Reid 1989; Case and McCool 2009).  
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Sora (Porzana carolina) are rails, and are one of many migratory waterbirds, though how 

Sora use habitats during autumn migration is poorly known (Case and McCool 2009). In late 

summer, Sora are often found in shallow flooded wetlands dominated by short emergent wetland 

plants (Gries et al. 1980), particularly Echinochloa and Polygonum spp. (Meanley 1965). Sora 

forage primarily on seeds during autumn migration, and this may explain why Sora are found in 

high densities in dense moist soil vegetation in the autumn (Rundle and Sayre 1983). 

Much of the previous Sora autumn migration research has been conducted in Missouri, a 

state representative of the strictly migratory habitat (Melvin and Gibbs 2012). Previous work was 

completed on single sites and was based on opportunistic observations which found that during 

autumn migration, Sora flushed from shallow flooded (<11-14 cm) habitats dominated by annual 

wetland vegetation, including Panicum, Echinochloa and Bidens spp. (Reid 1989, Rundle & 

Frederickson 1981, Sayre & Rundle 1984). Sora have been founded in high densities around 

wetlands which were flooded during the late summer and early part of autumn migration in 

Missouri and Colorado (Gries et al. 1980, Rundle and Fredrickson 1981). In Missouri, Sora 

migration begins in early August and continues through late October, with the peak of migration 

occurring in late September while migratory waterfowl begin arriving in October and continue to 

migrate into the area throughout the following months (Fournier et al. In Press). Our objective 

was to examine Sora habitat selection during the entire span of their autumn migration, by 

surveying five years on multiple sites, under a standardized protocol, to inform wetland 

managers interested in Sora conservation and management. 
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Methods 

Study Site 

We selected 7 publicly managed wetlands across Missouri because of their active moist 

soil management and historic importance for migrating waterfowl (further detail Appendix I). At 

each property, we surveyed moist soil wetland impoundments (a wetland surrounded by a levee, 

with manual water level manipulation; 4.5-300 ha in size; mean = 26.5 ha; annual sample sizes in 

Table 1).  

Surveys 

We used the nocturnal survey method of Fournier and Krementz (In Press) and drove 

systematic nocturnal transects on ATVs spaced 30 m apart. We used a spotlight to scan for 

flushing, walking or swimming Sora and took a GPS location at the point where the individual 

was first detected. We surveyed each year from August through October (Figure 1, Table 1, 

Appendix I). We visited each region four times a year, with a few exceptions, with at least two 

surveys being completed in each impoundment during each visit (Table 1).  

Vegetation Data 

We recorded available habitat measurements at 20 randomly placed 25 m diameter plots 

in each impoundment and we resampled them on each visit. We recorded used habitat 

measurements at up to 20 points in each where Sora were observed during surveys the previous 

night. We measured water depth (cm) at the center of the plot, and 5 m from the center in the 

four cardinal directions; we used the mean value of these five measurements to characterize 

water depth in each plot. We visually estimated the percent cover of plant groups in the plot in 

the following categories: annual and perennial moist soil plants, upland plants, woody 
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vegetation, and open (non-vegetated) areas (Darrah and Krementz 2009, 2010). We also 

measured percent cover of crops and man-made structures, but these two cover types occurred so 

infrequently we did not include them in the analysis. 

Annual moist soil plants included wetland plant species that fall below the water surface 

at the end of the growing season, smartweeds (Polygonum spp.) and millets (Echinochloa spp.; 

Cowardin et al. 1979). Perennial moist soil plants include wetland plant species which stay above 

the water surface at the end of the growing season, cattail (Typha spp.) and burreed (Sparganium 

spp.). Woody vegetation was predominantly willow (Salix spp.) and buttonbush (Cephalanthus 

occidentalis). Upland vegetation was composed of a wide suite of terrestrial annual plants, 

including upland grasses, goldenrods (Solidago spp.), milkweeds (Asclepias spp.), sunflowers 

(Helianthus spp.). 

Analysis 

Based on Haramis and Kearns et al. (2007) who found stopover of 40+ days for Sora 

during autumn migration we do not believe our observations of rails among visits to be 

independent. Because of this, we are modeling habitat selection for each visit separately (so 4 

separate models). We examined habitat selection by Sora using binomial mixed models in R with 

the ‘lme4’ package (Bates et al. 2015, version 1.1-12). All analysis took place in R (R Core 

Team 2016. R Version 3.3.2).  

We included mean water depth2, annual moist soil vegetation percent cover, woody 

vegetation percent cover, open ground percent cover, upland vegetation percent cover and 

perennial moist soil vegetation percent cover as covariates with random effects of visit nested 

with year . All numeric covariates were scaled for analysis. Based on previous work (Sayre and 
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Rundle 1984, Reid 1989) and our observations in the field, where more birds were found in 

shallowly flooded wetlands and less were found in dry or deeply flooded wetlands we included a 

second order term for our mean water depth variable.  

Results 

We detected 7905 Sora during August-October 2012-2016 (per year sample size Table 1). Initial 

comparison of mean used and available data suggested some patterns (Table 2). Visit 1 models 

show differences in 2014 and 2015 compared to 2013, and negative selection for Woody 

Vegetation percent cover (Table 3, Figure 1). Visit 2 models show differences among all years 

compared to 2012, with positive selection for annual moist soil percent cover and negative 

selection for open area and perennial moist soil percent cover (Table 4, Figure 2). We also found 

a significant interaction between mean water depth and 2014 (Table 4, Figure 3). In Visit 3 we 

found significant differences between 2013, 2015, and 2016 compared to 2012 (Table 5). In visit 

3 we found positive selection for mean water depth2 and annual moist soil percent cover (Table 

5, Figure 4). In visit 3 we found negative selection for all other variables and all combinations of 

mean water depth2 and years (Table 5, Figure 4 and 5). In Visit 4 we found positive selection for 

annual moist soil percent cover, upland percent cover, and perennial moist soil percent cover 

(Table 6, Figure 6).  

Discussion 

We found the peak of Sora selection for average water depth was deeper than previous 

work (11-14 cm; Rundle and Fredrickson 1981; Fredrickson and Taylor 1982; Sayre and Rundle 

1984; Ried 1989). Our peak water depths are more similar to the breeding season (38cm +/- 

16cm, Johnson and Dinsmore 1986). Sora are often discussed as a generalist among the rails 
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(Melvin and Gibbs 2012) and we found them using water depths from dry to over 50cm in depth 

which speaks to their adaptability, especially through their ability to dive and swim under water. 

We found Sora selected for higher percent cover of annual and perennial moist soil 

vegetation, though the relationship with perennial moist soil cover is weak, which is in line with 

previous work which found Sora using dense stands of short seed producing plants in 

combination with tall dense cover (Meanley 1969, Andrews 1973, Gries et al. 1980, Rundle and 

Fredrickson 1981, Sayre and Rundle 1984, Reid 1989). While perennial emergent vegetation, 

such as cattail and bulrush were found to be important predictors of nest density during the 

breeding season (Walkinshaw 1940, Pospichal and Marshall 1954, Tanner and Henderson 1956, 

Gries et al. 1980, Johnson and Disnmore 1985, 1986, Gibbs and Melvin 1990, Gibbs 1991, 

Crowley 1994) we found stronger selection for annual moist soil plants such as smartweeds and 

annual grass than we did for perennial moist soil plants (Meanley 1965, Rundle and Sayre 1983, 

Sayre and Rundle 1984). This lack of strong selection for perennial emergents may be two fold; 

first, perennial moist soil plants are not widely available on the wetlands we surveyed, and 

second the needs of individuals are different during migration. During the breeding season plant 

structure and cover for nesting and raising young may be more important, while during migration 

plant species which provide the greatest food resources are needed. 

Frequently, the timing of management-driven wetland flooding is directed at migratory 

waterfowl (Bellrose 1980). During our first visits to wetland sites each year, in August, many 

wetlands were largely dry (Figure 3), and Sora were concentrated around available water. Gries 

et al. (1980) and Rundle and Fredrickson (1981) also found Sora congregated around flooded 

areas early in autumn migration. Sora migrate earlier in autumn than waterfowl (Sora: August - 

October, Fournier et al. In Press; waterfowl: October - January). Therefore the timing of 
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flooding, directed at providing habitat for waterfowl, may not provide abundant habitat early in 

autumn migration for Sora. When the length of time a species migrates through an area lasts 

several months, managers must consider what habitat is available for the entire period and how 

this fits in with management or conservation interventions directed at other species. Early 

flooding could have drawbacks for other species, especially if it results in changes to the 

vegetation later in the season, such as vegetation falling below the waters surface earlier in the 

year. The limited area of flooded wetlands early in migration may affect the ability of Sora to 

survive and obtain resources to continue migrating, which needs to be considered as part of 

multispecies management in palustrine wetlands during the autumn season. 

We have shown Sora select for dense stands of annual moist soil plant communities in 

shallowly flooded wetlands, though the depths Sora select for are not always available to them 

during autumn migration. The timing of management actions is critical to provide suitable 

habitat when it is needed by multiple species, including rails, waterfowl, other waterbirds, 

reptiles and amphibians and many others (Rundle and Fredrickson 1981; Kross and Richter 

2016). With large scale loss of palustrine wetlands, science based management of remaining 

wetlands is of special concern. Public agencies especially are concerned about science based 

management to serve a wide suite of ecosystem services including habitat for migrating Sora. 

Here we present a solid foundation to support future management and research to better 

understand, conserve and manage Sora.   
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Table 1. Survey start and end dates for each year of autumn surveys of Sora (Porzana carolina) in Missouri, USA.  

Year Start date End date Visits per 

state 

property 

Visits per 

federal 

property 

Number of 

Impoundments 

Number 

of Sora 

detected 

Number of 

Sora 

vegetation 

points 

Number of 

available 

vegetation 

points 

2012 17 August 7 October 3 3 40 1895 900 909 

2013 11 August 27 October 3 4 39 1876 1890 624 

2014 12 August 22 October 4 4 33 1268 2268 589 

2015 12 August 23 October 4 4 33 1063 1710 522 

2016 10 August 20 October 4 4 33 1803 2124 664 

3
7
 

 



 

 
 

Table 2. Summary of available habitat mean, minimum and maximum values across and by year for wetland impoundments in 

Missouri, USA surveyed for Sora (Porzana carolina) from 2012-2016.  

Variable Year 

Mean 

Available 

SD 

Available 

Min 

Available 

Max 

Available 

Mean 

Sora 

Selected 

SD 

Sora 

Selected 

Min 

Sora 

Selected 

Max 

Sora 

Selected 

Annual Moist Soil  2012 29.0 24.2 0.0 85.0 34.2 27.9 0.0 95.0 

Vegetation (%) 2013 17.8 17.8 0.0 65.0 21.7 22.5 0.0 85.0 

 

2014 18.2 23.1 0.0 82.5 24.4 25.9 0.0 95.0 

 

2015 53.2 18.8 10.0 90.0 70.5 17.5 25.0 100.0 

 

2016 43.9 23.1 0.0 90.0 49.4 26.8 0.0 100.0 

 

all 28.2 19.1 0.0 75.0 37.0 26.6 0.0 95.0 

Mean Water Depth 2012 4.4 6.5 0.0 25.2 11.1 9.6 0.0 35.4 

(cm) 2013 3.0 5.2 0.0 20.3 1.5 3.0 0.0 12.2 

 2014 8.7 10.5 0.0 34.9 19.1 11.7 0.0 41.8 

 2015 3.8 5.5 0.0 22.0 14.9 8.9 0.0 32.6 

 2016 5.3 8.2 0.0 22.6 14.1 8.9 0.0 32.0 

 all 3.2 5.1 0.0 18.9 12.0 9.2 0.0 32.5 

3
8

 

 



 

 
 

(Table 2 Continued)          

Variable Year 

Mean 

Available 

SD 

Available 

Min 

Available 

Max 

Available 

Mean 

Sora 

Selected 

SD 

Sora 

Selected 

Min 

Sora 

Selected 

Max 

Sora 

Selected 

Open Area (%) 2012 15.6 15.5 0.0 47.5 16.0 14.4 0.0 52.5 

 

2013 3.5 7.9 0.0 40.0 7.3 10.6 0.0 35.0 

 2014 12.6 19.3 0.0 70.0 5.6 11.4 0.0 50.0 

 2015 10.6 17.6 0.0 60.0 5.9 8.5 0.0 32.5 

 2016 9.9 17.5 0.0 60.0 4.4 9.0 0.0 30.0 

 all 7.3 12.2 0.0 47.5 9.7 14.2 0.0 52.5 

Perennial Moist Soil 2012 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Vegetation (%) 2013 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

2014 0.0 0.0 0.0 0.0 24.4 25.2 0.0 80.0 

 2015 0.2 1.3 0.0 7.5 12.1 14.5 0.0 50.0 

 2016 0.0 0.0 0.0 0.0 13.0 20.6 0.0 85.0 

 all 0.0 0.0 0.0 0.0 6.2 13.9 0.0 50.0 

3
9
 

 



 

 
 

(Table 2 Continued)          

Variable Year 

Mean 

Available 

SD 

Available 

Min 

Available 

Max 

Available 

Mean 

Sora 

Selected 

SD 

Sora 

Selected 

Min 

Sora 

Selected 

Max 

Sora 

Selected 

Upland Vegetation 2012 13.0 22.6 0.0 98.5 8.0 13.7 0.0 57.5 

(%) 2013 3.4 9.2 0.0 40.0 7.1 12.8 0.0 50.0 

 

2014 11.8 23.7 0.0 95.0 14.8 19.8 0.0 65.0 

 2015 9.3 18.6 0.0 85.0 1.3 6.3 0.0 32.5 

 2016 11.8 14.3 0.0 52.5 12.9 20.8 0.0 77.5 

 all 5.7 11.6 0.0 65.0 7.2 13.6 0.0 57.5 

Woody Vegetation 2012 2.1 5.0 0.0 22.0 1.3 3.6 0.0 16.0 

(%) 2013 1.5 4.0 0.0 22.5 1.4 5.5 0.0 25.0 

 

2014 0.5 1.3 0.0 5.0 0.3 1.2 0.0 5.0 

 2015 4.0 6.5 0.0 25.0 0.7 3.0 0.0 15.0 

 2016 0.9 2.6 0.0 10.0 1.0 2.2 0.0 7.5 

 all 1.3 3.4 0.0 22.0 0.9 3.8 0.0 25.0 

4
0
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Table 3. Beta estimates from binomial mixed model of Sora (Porzana carolina) habitat selection 

in Visit 1.  

 Estimate Std. Error p-value 

(Intercept) -2.94 0.64 <0.001 

2014 -2.03 0.70 <0.001 

2015 1.19 0.42 0.01 

2016 0.25 0.44 0.57 

Mean Water Depth2 -6.05 4.69 0.20 

Annual Moist Soil % Cover 0.67 0.39 0.09 

Wood % Cover -0.69 0.33 0.04 

Open Area % Cover -0.06 0.23 0.79 

Upland % Cover 0.13 0.23 0.57 

Perennial Moist Soil % Cover 0.33 0.23 0.15 

2014 x Mean Water Depth2 6.35 4.70 0.18 

2015 x Mean Water Depth2 5.98 4.70 0.20 

2016 x Mean Water Depth2 6.63 4.70 0.16 

 

 

Table 4. Beta estimates from binomial mixed model of Sora (Porzana carolina) habitat selection 

in Visit 2. 

 Estimate Std. Error p-value 

(Intercept) -0.91 0.28 <0.001 

2013 -1.00 0.18 <0.001 

2014 -0.49 0.19 0.01 

2015 -1.25 0.22 <0.001 

2016 -1.00 0.20 <0.001 

Mean Water Depth2 0.17 0.09 0.05 

Annual Moist Soil % Cover 0.56 0.12 <0.001 

Wood % Cover -0.14 0.08 0.08 

Open Area % Cover -0.27 0.09 <0.001 

Upland % Cover -0.07 0.08 0.39 

Perennial Moist Soil % Cover 0.24 0.08 <0.001 

2013 x Mean Water Depth2 -0.56 0.30 0.06 

2014 x Mean Water Depth2 -0.22 0.10 0.03 

2015 x Mean Water Depth2 0.25 0.14 0.08 

2016 x Mean Water Depth2 -0.21 0.13 0.12 
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Table 5. Beta estimates from binomial mixed model of Sora (Porzana carolina) habitat selection 

in Visit 3. 

 Estimate Std. Error p-value 

(Intercept) 0.41 0.23 0.08 

2013 -1.97 0.17 <0.001 

2014 0.03 0.17 0.87 

2015 -1.02 0.2 <0.001 

2016 -0.48 0.16 <0.001 

Mean Water Depth2 0.53 0.07 <0.001 

Annual Moist Soil % Cover 0.26 0.09 <0.001 

Wood % Cover -0.43 0.06 <0.001 

Open Area % Cover -0.58 0.07 <0.001 

Upland % Cover -0.51 0.07 <0.001 

Perennial Moist Soil % Cover -0.33 0.07 <0.001 

2013 x Mean Water Depth2 -0.32 0.09 <0.001 

2014 x Mean Water Depth2 -0.56 0.07 <0.001 

2015 x Mean Water Depth2 -0.46 0.09 <0.001 

2016 x Mean Water Depth2 -0.38 0.09 <0.001 

 

 

Table 6. Beta estimates from binomial mixed model of Sora (Porzana carolina) habitat selection 

in Visit 4. 

 Estimate Std. Error p-value 

(Intercept) -3.48 0.41 <0.001 

2014 0.02 0.30 0.95 

2015 -0.20 0.29 0.48 

2016 -0.29 0.29 0.31 

Mean Water Depth2 0.03 0.17 0.85 

Annual Moist Soil % Cover 1.71 0.23 <0.001 

Upland % Cover 0.75 0.14 <0.001 

Perennial Moist Soil % Cover 0.89 0.13 <0.001 

Wood % Cover 0.04 0.10 0.69 

Open Area % Cover 0.36 0.13 0.01 

2014 x Mean Water Depth2 -0.08 0.17 0.64 

2015 x Mean Water Depth2 -0.19 0.18 0.31 

2016 x Mean Water Depth2 -0.05 0.18 0.80 
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Figure 1. Probability of Sora (Porzana carolina) selecting habitat variables across the range of 

available habitat from wetland impoundments surveyed during the first visit of surveys from 

2012-2016 in Missouri, USA. Shaded area represents the 95% confidence interval around the 

estimate.  
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Figure 2. Probability of Sora (Porzana carolina) selecting habitat variables across the range of 

available habitat from wetland impoundments surveyed during the second visit of surveys from 

2012-2016 in Missouri, USA. Shaded area represents the 95% confidence interval around the 

estimate.  
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Figure 3. Probability of Sora (Porzana carolina) selecting mean water depth among years during 

the second visit of surveys from 2012-2016 in Missouri, USA. Shaded area represents the 95% 

confidence interval around the estimate.  
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Figure 4. Probability of Sora (Porzana carolina) selecting habitat variables across the range of 

available habitat from wetland impoundments surveyed during the third visit of surveys from 

2012-2016 in Missouri, USA. Shaded area represents the 95% confidence interval around the 

estimate.  
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Figure 5. Probability of Sora (Porzana carolina) selecting mean water depth among years during 

the third visit of surveys from 2012-2016 in Missouri, USA. Shaded area represents the 95% 

confidence interval around the estimate.  
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Figure 6. Probability of Sora (Porzana carolina) selecting habitat variables across the range of 

available habitat from wetland impoundments surveyed during the fourth visit of surveys from 

2012-2016 in Missouri, USA. Shaded area represents the 95% confidence interval around the 

estimate.  
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Abstract 

Stable isotopes have been used to estimate migratory connectivity in many species. Estimates are 

often greatly improved when coupled with species distribution models (SDMs), which temper 

estimates in relation to the distribution of the population across space. Powerful SDMs can be 

constructed using extensive monitoring data typically collected by citizen scientists. A previous 

demonstration used extensive haphazard presence-only data from eBird, which provided large 

sample sizes, but came with challenges due to sampling bias. To avoid the challenges, we 

demonstrate the approach using SDMs based on marsh bird monitoring program data collected 

by citizen scientists and other participants following protocols specifically designed to maximize 

detections of species of interest at locations representative of larger areas of inference. We then 

used the SDMs to refine isotopic assignments of breeding areas of autumn-migrating and 

wintering Sora (Porzana carolina), Virginia Rails (Rallus limicola), and Yellow Rails 

(Coturnicops noveboracensis) based on feathers collected from individuals caught at various 

locations in the United States from Minnesota south to Louisiana and South Carolina. Sora were 

assigned to an area that included much of the western U.S. and prairie Canada, covering parts of 

the Pacific, Central, and Mississippi Flyways. Yellow Rails were assigned to a broad area along 

Hudson and James Bay in northern Manitoba and Ontario, as well as smaller parts of Quebec, 

Minnesota, Wisconsin, and Michigan, including parts of the Mississippi and Atlantic Flyways. 

Virginia Rails were from several discrete areas, including parts of Colorado, New Mexico, the 

central valley of California, and southern Saskatchewan and Manitoba in the Pacific and Central 

Flyways. Our study demonstrates extensive data from organized citizen science monitoring 

programs are especially useful for improving isotopic assignments of migratory connectivity in 

birds, which will ultimately lead to better management and conservation of species.  
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Introduction 

Determining connections among breeding, migratory stopover, and wintering areas for different 

populations of migratory birds (hereafter ‘migratory connectivity’) is critically important for 

conserving species throughout their annual cycle (Webster et al. 2002). Quantifying migratory 

connectivity informs conservation by associating populations with limiting factors which allows 

more effective management of threats, such as habitat loss and climate change, because efforts 

can be directed to the populations and parts of the annual cycle that are affected the most (Norris 

and Taylor 2006, Taylor and Norris 2010, Rushing et al. 2016). Most studies examine migratory 

connectivity between wintering and breeding areas, but connectivity with stopover habitat during 

migration is also important in understanding potential limiting factors and other characteristics of 

populations throughout the annual cycle (e.g., Hobson et al. 2015).  

There are a variety of effective methods for estimating migratory connectivity of birds including 

mark-recapture (Ryder et al. 2011), archival biologgers (Ryder et al. 2011, Salewski et al. 2013, 

Hallworth et al. 2013), collaborative radio tracking networks (Francis et al. 2016, Bird Studies 

Canada 2017b), and satellite transmitters (Krementz et al. 2011). Unfortunately, these methods 

do not work with all species. When a transmitter is too heavy relative to the weight of the species 

it is unsafe to attach the device. When a species has low site fidelity among years it becomes 

impractical to relocate and recapture individuals to retrieve the devices and the data the devices 

contain. In addition, collaborative radio-tracking networks, although extremely promising in the 

near-future for broad scale studies, are currently unavailable in key areas. In situations when the 

above approaches are ineffective, isotopes can be used because individuals need to be captured 

only once to obtain samples (e.g., feathers, toenails, blood), and no tracking devices need to be 

attached to the birds. In North America, the ratio of hydrogen isotopes (δ2H) follows a spatial 
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gradient from northwest to southeast and has been widely used to examine migratory 

connectivity of many species (Hobson and Wassenar 2008, Guillemain et al. 2014a, Butler et al. 

2016). One disadvantage of stable hydrogen isotopes is the resulting coarse geographic 

assignments, which can limit the level of inference, but even limited inference can inform 

conservation if it’s the only information available (Hobson and Wassenaar 2008). The 

incorporation of additional data, such as environmental variables, genetic information, band 

recovery data, and predictions from species distribution models (SDMs), can improve 

geographic assignment because populations are not equally spread over space (Royle and 

Rubenstein 2004, Hobson et al. 2013, Rushing et al. 2014, Ruegg et al. 2016). The results of 

these refinements often lead to assignments that are more informative for conservation and 

management purposes (Haig et al. 1998, Webster et al. 2002, Hobson 2005).  

Of the many options for refining isotopic assignments of migratory connectivty, SDMs show 

excellent utility. The models can be used to predict species occurrence or abundance across vast 

unsampled areas, often with reasonable precision and accuracy based on existing data (Elith and 

Leathwick 2009). This information can then be coupled with isotopic assignments to produce 

refinements in relation to species occurrence or abundance. The most powerful SDMs for this 

purpose are ones based on extensive representative datasets through space and time.  

Species abundance data at broad scales are most-easily obtained from citizen science monitoring 

programs. These programs operate by engaging volunteers and training them to follow 

standardized field survey protocols to collect reliable monitoring data. Due to the volunteer 

nature of the programs combined with widespread engagement of participants, citizen 

sciencetists often produce remarkably large sample sizes suitable for powerful SDM 

development. For instance, Fournier et al (2016) used haphazard presence-only citizen science 
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data from eBird (Sullivan et al. 2009) to refine stable isotope assignments of migratory 

connectivity in the Virginia Rail (Rallus limicola). The approach was successful and 

substaintially improved the refinment of isotopic assignments. However, the authors noted 

challenges due to potential biases caused by factors driving where and how observers conduct 

surveys. 

One way to overcome perceived bias associated with haphazard presence-only data is to use data 

collected by formal monitoring programs. In these programs, participants collect data at locations 

regardless of whether certain species were detected or not, following established protocols 

designed to maximize detections of species of interest (Conway 2011). Organized monitoring 

programs typically collect data at pre-determined randomly-chosen survey locations, making the 

data representative of entire populations. Therefore, data from organized bird monitoring 

programs is more suitable for developing SDMs to refine istopic assignments of migratory 

conenctivity. 

In this paper, we demonstrate the use the SDMs, based on data collected by citizen scientists and 

other participants in organized marsh bird monitoring programs, to refine isotopic assignments of 

Sora (Porzana carolina), Virginia Rail, and Yellow Rail (Coturnicops noveboracensis) based on 

feathers collected from individuals caught at various autumn migration and wintering locations 

in the United States ranging from Minnesota to Louisiana and South Carolina. We chose these 

three rail species, in part, because they are elusive wetland birds that breed across a wide swath 

of North America, but are poorly studied (Eddleman et al. 1988). The species are of concern 

because they stopover in highly modified landscapes where wetland loss ranges 60-90%, and 

their populations are thought to be declining, but are not clearly understood (Reid 1989, Case 

and McCool 2009, Ducks Unlimited Canada 2010, Dahl 2011). In addition, Sora and Virginia 



 

57 
 

Rail are game bird species in some jurisdictions (Tacha and Braun 1994), while the Yellow Rail 

is a species of special concern in Canada (Alvo and Robert 2009). Knowledge of migratory 

connectivity in these three rail species is only now beginning to emerge (Butler et al. 2016, 

Fournier et al. 2016), and is needed to inform conservation and management efforts. Studying 

broad scale migratory connectivity in the three species is also currently unsuitable with any of 

the methods listed above, except for isotopes. Together, these characteristics made the species 

worthy candidates with which to demonstrate the method and approach.  

Methods 

Field 

Migrating and Wintering Individuals 

Sora, Yellow Rail, and Virginia Rail were captured using dipnets from all-terrain vehicles during 

autumn migration (August- October) 2015 at 10 sites in Missouri, USA (Perkins et al. 2010). 

Sora, Virginia Rail and Yellow Rail feathers from other migratory locations (Minnesota, 

Michigan, South Carolina, Ohio, and Arkansas, USA) and wintering locations (Louisiana and 

Mississippi, USA) were collected opportunistically by hunters and researchers from August 

through December 2015 (Table S2). The first primary feather, which is grown on the breeding 

grounds (Pyle 2008) and therefore has the isotopic signature of that location (Hobson et al. 

2012a), was removed from each individual. Previously collected Yellow Rail feathers from 

another project were included to increase sample size and these feathers were collected in 

Missouri during autumn migration in 2013 and 2014. 

Breeding Individuals 

Sora, Yellow Rail and Virginia Rail were captured on foot during night using call broadcast lures 

and a dipnet in late-June and July 2015 near Foam Lake, Saskatchewan, Canada (51.6601, -
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103.5538). Captures began at dusk and ran until dawn. Similar to migrants, the first primary 

feather was removed from each individual.   

Laboratory 

Feathers were cleaned with phosphate-free detergent and 2:1 chloroform methanol solution, 

rinsed in deionized water, and dried them at 50 °C for 24 hours. A total of 0.350 mg of material 

was weighed into silver capsules (Elemental Microanalysis, part# d2302) and analyzed by 

coupled pyrolysis/isotope-ratio mass spectrometry using a thermo-chemical elemental analyzer 

(TC/EA) (Thermo Scientific) interfaced to a Thermo Scientific Delta V Plus configured through 

a CONFLO IV for automated continuous flow gas-isotope ratio mass spectrometer (CF-IRMS) at 

the Colorado Plateau Stable Isotope Laboratory at Northern Arizona University. 

Given that ~20% of the δ2H in feathers exchanges freely with ambient water vapor (Wassenaar 

& Hobson 2003), we analyzed feathers concurrently with three calibrated keratin standards 

(Keratin – SC Lot SJ (powdered) mean = –120.7 ± 1.1 ‰, expected = –121.6 ‰, n=32; CBS – 

caribou hoof (powdered) mean= –198.5 ± 1.1 ‰, expected = –197.0 ‰, n=10; KHS – Kudo horn 

(powdered) mean= –55.1 ± 1.0 ‰, expected = –54.1 ‰, n=10) to allow for future comparison 

across laboratories (Wassenaar & Hobson 2003). We report the non-exchangeable δ2H fraction 

in parts per mil (‰) normalized to the Vienna Standard Mean Ocean Water-Standard Light 

Antarctic Precipitation (VSMOW-SLAP) standard. 

Species Distribution Models  

We used count data from 7,146 100-m-radius plots surveyed largely by citizen scientists and 

other participants in Bird Studies Canada’s Great Lakes, Québec, and Prairie marsh monitoring 

programs (Bird Studies Canada 2017a; Tozer 2013, 2016) available through Nature Counts (Bird 

Studies Canada 2017c), and by observers in the North American Marsh Bird Monitoring 
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Program at various National Wildlife Refuges available from the Midwest Avian Data Center 

(Figure 1; Koch et al. 2010) to construct SDMs. These data spanned 1995-2015 and were 

collected under a slightly modified version of the Standardized North American Marsh Bird 

Monitoring Protocol (e.g., Tozer et al. 2016), which included the use of standardized call 

broadcasts of Sora, Yellow Rail, and Virginia Rail during point counts to increase detection 

probability (Conway 2011). We collapsed the dataset to include the highest count at a point 

across all the years the point was surveyed, which adjusted and controlled to a certain extent for 

potential differences in detection probability. We found this approach more attractive than the 

potential pitfalls associated with formally taking detection probability into account during 

modeling (Welsh et al. 2013, Guillera-Arroita et al. 2014b). Collapsing the data this way yielded 

929 Sora, 695 Virginia Rail, 39 Yellow Rail points where at least one individual was detected 

and 4,056 Sora, 4,290 Virginia Rail, and 4,946 Yellow Rail points were each species was not 

detected in any year. 

We created species distribution models describing Sora, Yellow Rail and Virginia Rail 

abundance using 11 raster layers (1 km2 resolution) representing land cover (Latifovic et al. 

2002), wetland presence (Lehner & Döll 2004), and bioclimatic parameters. We chose these 

layers because they likely influence precipitation, and thus stable isotope ratios across North 

America, as well as the distribution and abundance of the species we considered. We removed 

variables which were correlated (Pearson’s correlation coefficient >=75%, See Table S1). We 

constrained predictions based on isotopes from each model to each species’ summer range 

(BirdLife International & NatureServe 2015). Within each species’ summer range, our goal, 

similar to Fournier et al. (2016), was to generate a SDM with the greatest predictive accuracy 

(see details below), but not necessarily informative for inferring environmental relationships 
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(Merow, Smith and Silander 2013). We included all 11 environmental covariates in the analysis 

and used leave-one-out jackknifing to identify covariates that reduced the predictive power of the 

model, which were then removed. All modeling took place in R (R Core Team 2016, version 

3.3.2).  

Spatially explicit assignment of geographic origins 

We used the methods and code of Van Wilgenburg and Hobson 2011 to perform our spatially 

explicit isotopic assignments for each individual. Below is a summary of those methods. We 

used a likelihood-based assignment that incorporated estimates of uncertainty (Royle and 

Rubenstein 2004). Expected δ2Hfeather values were calculated by regressing raw δ2H feather 

values of sampled feathers on mean annual growing season δ2H in precipitation at the site of 

collection. This calibration was necessary to account for systematic differences between the δ2H 

of sampled feathers and δ2H in precipitation. Because we only had feathers from one breeding 

ground location, we included data from other projects in our linear regression of δ2H of flight 

feathers to mean annual growing season δ2H across North America (~37 × 37 km resolution; 

Bowen et al. 2005). This known-origin dataset included feathers from Foam Lake Saskatchewan 

(45 Sora feathers, 30 Yellow Rail Feathers and 4 Virginia Rail), and 10 Virginia Rail feathers 

from one location from Fournier et al. (2016), along with 44 King Rail feathers from Perkins 

(2007), including 13 museum specimens from 11 different localities and 31 live captured King 

Rail specimens. In total we had 133 feathers from 14 different localities (for additional detail on 

the feathers from locations outside of Saskatchewan see Appendix S1 in Fournier et al. (2016)). 

Because of small sample size for Yellow Rails in 2015, we also included feathers from autumn 

migration in 2013 and 2014. We did not find a significant difference between the median δ2H 

values in Yellow Rails among years (ANOVA F = 0.11, df = 21, p = 0.91; Figure 2), suggesting 
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that inter-annual variability in feather δ2H was unlikely to be a significant source of variation for 

our analysis so we combined annual samples. We regressed our data of known-origin feathers 

against δ2H precipitation to derive the calibration equation (δ2Hcorrected = -52.36 + 

0.83[δ2Hprecipitation]). 

For each feather we assessed the probability that any cell within the expected values was the 

origin of that individual using a normal probability density function as follows: 

𝑓(𝑦 ∗ |𝜇𝑐𝜎𝑐) = (
1

√2𝜋𝜎𝑐
) exp [−

1

2𝜋𝜎𝑐2
(𝑦 ∗ −𝜇𝑐)

2] ⁡ 

 Where 𝑓(𝑦 ∗ |𝜇𝑐𝜎𝑐)⁡represents the probability that a given cell (c) within the δ2HF isoscape 

represents a potential origin for an individual of unknown origin (y*), given the expected mean 

δ2HF for that cell (𝜇𝑐) from the calibrated δ2HF isoscape and the expected standard deviation 

(𝜎𝑐) of δ2HF between individuals growing their feathers at the same locality. To assign probable 

breeding areas to samples within a particular state, we summed the assignments from each 

feather sample in units of the number of rails with origins consistent with a given pixel and 

converted to proportions to enable comparisons with other states, which we report only in the 

supplementary material. For each individual we produced a surface of spatially explicit 

probability densities (i.e., one surface per bird in a sample). We then incorporated the prior 

probabilities from our SDM by applying Bayes’s Rule (Van Wilgenburg and Hobson 2011). To 

depict these origins across the entire sample size we assigned each feather to the base map 

individually by determining the odds that any given assigned origin was correct relative to the 

odds it was incorrect. Based on 3:1 odds that a given bird had originated from within the range 

we recorded the set of raster cells that defined the upper 75% of estimated origins and coded 

them as 1, all others as 0. We choose 3:1 odds based on Van Wilgenburg and Hobson (2011) 
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where this ratio provided a compromise between the possibility of being incorrect and the bird 

assignment geographic resolution. The results of the individual assignments were then summed 

over all individuals, by addition of the surfaces. We facilitated this step by rescaling the posterior 

probabilities (fx) relative to the maximum value within the posterior probability surface prior to 

applying the odds-ratio-based reclassification. 

We made assignments using functions within the R statistical computing environment (R Core 

Team 2016, version 3.3.2) using the ‘raster’ package (Hijmans 2016, version 2.5-8). To make 

our results even more relevant for conservation, we also visually inspected assignments to 

determine broad overlap with traditional flyways used as administrative units by migratory game 

bird managers (US Fish and Wildlife Service 2017). 

Results 

Captures 

We captured 142 southbound autumn migrating and wintering rails across the southern U.S., and 

79 breeding rails at a wetland complex in Saskatchewan, Canada. Sora comprised the bulk of 

migrant and wintering samples (88%; 117 individuals; 8 states) followed by Virginia Rails (7%; 

9 individuals; 2 states) and Yellow Rails (5%; 11 individuals; 2 states). Sora also comprised the 

bulk of breeder samples (57%; 45 individuals) followed by Yellow Rails (38%; 30 individuals) 

and Virginia Rails (5%, 4 individuals). See Table S2 for more details.  

Species Distribution Models 

All three species distribution models fit the data (Homer-Lemeshow Goodness of Fit Test, Sora 

χ2 = 4.7, df = 8, p = 0.7; Virginia Rail χ2= 4.7, df = 8, p = 0.7; Yellow Rail χ2= 4.4, df = 8 p = 

0.8). The top species distribution model for Yellow Rail contained mean temperature of driest 
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quarter (β = -0.30, SE = 0.09, p = 0.002), mean temperature of warmest quarter (β = 0.28, SE = 

0.14, p = 0.008), mean diurnal range (mean of monthly (max temp-min temp)) (β = 0.60, SE = 

0.16, p <0.001) and a significant interaction between latitude and longitude (β = 2.09, SE = 0.59, 

p <0.001). The top species distribution model for Virginia Rail contained temperature seasonality 

(β = -0.002, SE = 0.0007, p = 0.002). The top species distribution model for Sora included 

annual mean temperature (β = 0.07, SE = 0.02, p=0.003), mean temperature of the warmest 

quarter (β = -0.09, SE = 0.02, p<0.001) and temperature seasonality (β = 0.001, SE = 0.0002, p 

<0.001).  

Isotopic Assignments 

Sora were assigned to an area that included much of the western U.S. and prairie Canada, 

covering parts of the Pacific, Central, and Mississippi flyways (Figure 3). Yellow Rails were 

assigned to a broad area along Hudson and James Bay in northern Manitoba and Ontario, as well 

as smaller parts of Quebec, Minnesota, Wisconsin, and Michigan, including parts of the 

Mississippi and Atlantic flyways (Figure 3). Virginia Rails were from several discrete areas, 

including the southern part of their breeding range in parts of Colorado, New Mexico, the central 

valley of California, and southern Saskatchewan and Manitoba in the Pacific and Central flyways 

(Figure 3). Due to small sample size (Table S2), we do not include breeding ground assignments 

broken down by state, although for the interested reader we include maps of these assignments in 

the supplementary material (Figure S2, S3, S4).  

Discussion 

We demonstrated the use of SDMs to inform isotopic assignments of migratory connectivity in 

wetland birds, based on organized marsh bird monitoring program data collected by citizen 
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scientists and other participants. We found these data to be especially useful for this purpose for 

reasons related to sample size, search effort, detection probability, and ease of obtaining data, 

which we elaborate further below.  

Powerful SDMs to refine isotopic assignments of migratory connectivity should be based on 

extensive datasets through space and time. Such data are most easily obtained by researchers 

from citizen science monitoring programs. These programs normally involve careful training of 

participants to follow well-established and tested field protocols that produce reliable data. 

Citizen science programs also typically engage impressive numbers of participants to survey 

numerous locations throughout large portions of the range of occurrence of species of interest. 

These characteristics produce datasets with large sample sizes that are powerful for capturing the 

range of conditions and circumstances under which species occur, leading to better predictions 

based on SDMs for refining isotopic assignments of migratory connectivity. 

Various extensive citizen science datasets suitable for powerful bird SDM deveopment are 

freely-available to researchers, such as from the Christmas Bird Count (National Audubon 

Society 2010), eBird (Sullivan et al. 2009), Breeding Bird Survey (Link and Saur 1998, Price et 

al. 1995), breeding bird atlases (North American Ornithological Atlas Committee 2016), Project 

FeederWatch (Bird Studies Canada and Cornell Lab of Ornithology 2017), Nocturnal Owl 

Survey (Takats et al. 2001), and the North American Marsh Bird Monitoring Program (Conway 

2011). Most of these and other useful sources of data are easily obtained through the various 

information nodes of the Avian Knowledge Network (2017), such as the ones used to obtain data 

for this paper: Nature Counts (Bird Studies Canada 2017a) and Midwest Avian Data Center 

(Koch et al. 2010).  
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Some of these datasets, however, are more useful or easier to implement than others for 

developing SDMs. Like the programs that produced data for this paper, some monitoring 

programs pre-select survey locations so the points are representative of larger areas of inference, 

typically by using various randomization procedures (e.g., Johnson et al. 2009). Many of these 

programs also record data regardless of whether certain species were detected or not, following 

protocols specifically designed to maximize detections of species of interest (e.g., Conway 

2011). Such protocols include restrictions on the time of day and season, type of weather, and the 

amount of background noise that is acceptable during surveys (e.g., Tozer et al. 2016). Protocols 

also include requirements on the minimum number of visits per survey location, and the total 

duration of each survey, plus some use standardized call broadcasts to increase the probability of 

detection of especially elusive species. All of these characteristics provide more reliable 

information on the presence or absence or abundance of species of interest. These programs, 

which are dedicated to generating reliable, representative data on occurrences or counts of 

species may be the best choice, when available, for developing SDMs to refine isotopic 

assignments of migratory connectivity. 

By contrast, monitoring programs that lack the standardized restrictions and guidelines noted 

above can pose challenges for SDM development. This was shown by the additional bias-

correction analysis that Fournier et al. (2016) were required to perform during their use of SDMs 

based on eBird data to refine isotopic assignments of migratory connectivity in the Virginia Rail. 

The bias was thought to occur because there are no restrictions on where and how eBird 

participants survey for rails or other species. While this flexibility is a major advantage of eBird 

and other programs like it for numerous other applications, the lack of organized standardization 

of surveys causes challenges for SDM development (Yackulic et al 2012).  
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Our SDMs might have provided better assignment resolution if finer-scale habitat covariates, 

especially wetland cover, were available in a consistent format across Canada and the U.S. Our 

analysis might also have been improved by simultaneously considering another isotope, such as 

Sulphur (δ34S). Some rails use brackish or saline habitats during the breeding season, and this 

would be reflected in their δ34S feather signatures, potentially helping to further refine 

assignments (Hobson et al. 2012b, Butler et al. 2016). The incorporation of genetic information 

might also have been beneficial, though currently, to our knowledge, such information is not 

available for rails.  

We combined isotopic signatures of the largest sample of autumn-migrating and wintering rails 

with SDMs based on organized marsh bird monitoring data to produce the most extensive 

estimates of migratory connectivity of three rail species currently available. We found that the 

migratory connectivity of the three species included wide-ranging breeding areas, including more 

than one migratory game bird flyway in the two hunted species—results useful for improving 

conservation of these poorly-studied species—although additional work is needed to fully 

establish patterns. Extensive data from organized citizen science monitoring programs are 

especially useful for improving isotopic assignments of migratory connectivity in birds, which 

will ultimately lead to better management and conservation of species.  
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Figure 1. Locations of marsh bird monitoring program survey points used to develop species distribution models, and states 

where autumn-migrating and wintering rails were captured and sampled or isotopic analysis. 
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Figure 2 – Distribution of δ2H values of feathers from rails caught at Foam Lake, Saskatchewan, 

Canada. The horizontal line represents δ2H in precipitation from Bowen et al. (2005).  

 

  



 

 
 

Figure 3 – Cumulative assignment of breeding areas of autumn migrating and wintering Sora (Porzana carolina), Virginia 

Rails (Rallus limicola) and Yellow Rails (Corturnicops noveboracensis) based on expected δ2Hfeather values using regional 

monitoring data in a species distribution model as an informative prior. Each individual bird’s assignment surface represents 

the area where the bird is like from with 3:1 odds and then those surfaces are summed to form the cumulative assignment for 

all individuals from that species.  
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Table S1. Variables included as environmental predictors for the breeding habitat of rails. BIO variables were constructed by 

Hijmans et al. (2006) and downloaded from < http://www.worldclim.org/>. Wetland presence and type were developed and 

validated by Lehner & Döll (2004) and converted to binary presence/absence rasters. North American land cover was 

interpolated from SPOT VEGETATION satellite data (Latifovic et al. 2002).  

Model Name Description 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max temp – min temp)) 

BIO5 Max Temperature of Warmest Month 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO19 Precipitation of Coldest Quarter 

GLWD Wetland Presence 

GLC2000 Land Cover 
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Table S2. The number of individuals caught and sampled for isotopic feather analysis by species, year, and location. All birds 

in Saskatchewan were captured in June and July. All other birds were captured between August and November.  
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Total 

Sora 2015 2 6 38 6  53 10 45 2 162 

Virginia Rail 2015      8  4 1 13 

Yellow Rail 2013      4    4 

 2014        17  17 

 2015     2 5  13  13 

All Total 2 6 38 6 2 75 10 79 3 221 
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Figure S1 - Corrected δ2H of Sora (Porzana carolina), Virginia Rail (Rallus limicola) and Yellow Rail (Corturnicops 

novebrancis) as a function of location. Individuals from Saskatchewan were captured on the breeding grounds. All others were 

captured during autumn migration. 
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Figure S2 - Assignment of breeding areas of Virginia Rail (Rallus limicola). Each map depicts 

individuals captured within that particular state. 

 

Figure S3 - Assignment of breeding areas of Yellow Rail (Coturnicops noveboracensis). Each 

map depicts individuals captured within that particular state. 



 
 

 
 

Figure S4 - Assignment of breeding areas of Sora (Porzana carolina). Each map depicts individuals captured within that 

particular state. 
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Virginia and Yellow Rail Autumn Migration Phenology and Habitat Use: Summary and 

Synthesis Using Multiple Data Sets 
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Abstract. - Virginia and Yellow Rails are among the least studied birds in North 

America, with a specific lack of information about their autumn migration ecology and migratory 

habitat use. We conducted nocturnal surveys across 11 public wetlands in Missouri, USA from 

2012-2016, and compared the timing of autumn migration from our surveys with three 

opportunistic datasets: 1) eBird records, 2) building strikes, and 3) state ornithological records. 

The timing of Virginia Rail autumn migration varied between the opportunistic data and our 

surveys. Opportunistic data was bimodal, while our surveys had a single peak the second week in 

October. Yellow Rail autumn migration through Missouri peaked earlier in our surveys than 

opportunistic datasets which peaked during the second week in October. Both rails were found in 

moist soil habitats, however Virginia Rails selected perennial species more than was available, 

while Yellow Rails selected annual species. Both species showed no selection for water depth 

and used shallowly flooded wetlands. Understanding the autumn migration period and habitat 

requirements will allow wetland managers to better manage lands for autumn migrating Virginia 

and Yellow Rails.  
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INTRODUCTION 

Migration is a critical period of the annual cycle for many species, yet it is often overlooked 

because it is difficult to study, and often only represents a small portion of the year (Webster et 

al. 2002, Webster and Marra 2005). Migratory species are exposed to a wide range pressures and 

conditions throughout their annual cycle, including during migration, which makes 

understanding and conserving their habitat even more important (Hostetler et al. 2015). To 

conserve migratory species, threats and pressures that operate in all parts of their annual cycle 

must be studied, including what may limit the habitats the species uses during migration, and 

consequently affect survival (Marra et al. 2015). Study species that have low detection rates, 

such as rails, which are among the least studied birds in North America, is especially difficult 

(Conway 1995, Bookhout 2015). Among the rails of North America, the Virginia Rail (Rallus 

limicola) and Yellow Rail (Coturnicops noveboracensis) are among the least abundant, and 

consequently two of the most poorly known (Conway 1995, Bookhout 2015). An understanding 

of rails’ habitat selection during migration, including when they use those habitats, is needed 

before conservation and management efforts can be successful. Rails’ secretive behavior makes 

them challenging to survey (Nadeau et al. 2008, Conway and Nadeau 2010). As a result, 

combining multiple data sources could provide us with a better assessment of rails’ migratory 

phenology (Bond and Lavers 2015). 

 Opportunistic accounts, rather than formal surveys, provide most of the information on 

the phenology of rail autumn migration (Rundle and Fredrickson 1981, Conway 1995). Virginia 

Rail migration has been described as variable, occurring between late-August and late-October, 

peaking around 1 October (Conway 1995, Haramis and Kearns 2007). Similarly, Yellow Rails 
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has been recorded from the last week of August through the first week of November with the 

peak in late September (Bookhout 2015). Opportunistic observations are important sources of 

information but not sufficient for informing conservation decisions, especially for cryptic species 

where specific methods are needed to increase odds of detecting an individual when it is present. 

Virginia and Yellow Rails use managed wetlands [wetlands surrounded by levees and 

actively managed to promote a certain plant community and habitat conditions] as autumn 

migration stopover habitat, but our knowledge of both species is incomplete. Virginia Rail 

stopover habitat includes dense perennial moist soil plant cover, flooded with 5-10 cm of water 

(Rundle and Fredrickson 1981, Sayre and Rundle 1984, Reid 1989, Conway 1995). Yellow Rail 

habitat is less well understood, Butler et al. (2010) found Yellow Rails used sites dominated by 

perennial wetland cover, while Jacobs (2001) described Yellow Rail habitat as wet prairie and 

pastures, and Reid (1989) found Yellow Rail used shallowly flooded emergent wetlands. Our 

objectives were to document the migratory timing and habitat use of Virginia and Yellow Rails 

through the central portion of the Mississippi Flyway using a synthesis of our surveys and 

opportunistic migratory records. 

METHODS 

Migratory phenology 

We surveyed managed moist soil wetlands (Strader and Stinson 2005) in Missouri, USA 

from August-October in 2012-2016 with ATV-based surveys (Fournier and Krementz In Press, 

Appendix I). We synthesized three additional datasets with our own to characterize Virginia and 

Yellow Rail migration phenology. These additional datasets included observations collected by 
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the Audubon Society of Missouri (Fournier 2016), eBird citizen science observations (Sullivan et 

al. 2009), and published data from building strikes (Loss et al. 2014). We used observations from 

these datasets from 1 August and 30 November and 36.5 - 40.5°N in the Mississippi Flyway 

because these areas represent primarily migratory habitat for both species (Conway 1995, 

Bookhout 2015, Figure 1, Table 1). Similar data sets have been used in combination with other 

data sources to infer migration phenology of other bird species (e.g. Bond and Lavers 2015). 

Each data set used has inherent biases, in that the bluebird and eBird data represent presence 

only collected by birders, who are not evenly spread over space, or time. Building strike data 

could also be biased if it attracts or detracts rails during migration, but whether either is the case 

is not known. While we recognize these biases, they are our only source of comparison for our 

own data, which should be less biased because they are done under a standardized protocol on 

the same sites over several years. We compiled records into one data set, which we refer to from 

here on as opportunistic observations. We compared median date of migration between our 

surveys and the opportunistic observations with a Mann-Whitney test. We compared the 

distribution of observations using a Kolmogorov-Smirnoff non-parametric test. 

Habitat selection 

We collected habitat data at 5 random plots for every one plot where a Virginia or Yellow 

Rail was detected during our standardized surveys. The random plots were within the same 

impoundment where the Virginia or Yellow Rail was detected. We used a ratio of 5 to 1 

available to used points because this is considered adequate to reduce bias and ensure 

convergence of parameter estimates (Northrup et al. 2013). In each 25 m-diameter plot, we 

recorded the mean of five water depths (cm) measured at the center of each plot and 5 m from 
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the center in each cardinal direction. We visually estimated the percent cover of annual moist soil 

plants, perennial moist soil plants, and upland vegetation in the plot (Darrah and Krementz 2010, 

2011). Annual moist soil plants include species that fall below the water surface at the end of the 

growing season such as annual smartweeds (Polygonum spp.) and millets (Echinochloa spp.; 

Cowardin et al. 1979). Perennial moist soil plant species persist above the water surface at the 

end of the growing season, and include perennial smartweeds (Polygonum spp.), bulrush 

(Scirpus spp.) and cattails (Typha spp) (Cowardin et al. 1979). We measured these variables 

because they have been found to be important to migrating rails (Rundle and Fredrickson 1981, 

Sayre and Rundle 1984, Reid 1989, Conway 1995, Butler et al. 2010, Bookhout 2015). 

We had too few detections for distance sampling or occupancy modelling to be effective 

for Virginia and Yellow Rails, so we used counts of individuals. While this approach does not 

take into account detection probability we simply do not have sufficient data to do so. We 

analyzed the differences in habitat variables between used and available points for each species 

separately using resource selection functions in the R package ‘ResourceSelection’ (Lele et al. 

2016, version 0.2-6, R Core Team 2016, version 3.3.1), which followed the functions described 

in Lele and Keim (2006) and Lele (2009). For Virginia Rails, we included annual moist soil 

vegetation, perennial moist soil vegetation and average water depth in our model. For Yellow 

Rails, we included the same covariates as Virginia Rail as well as upland vegetation because 

Yellow Rails are often characterized as a wet prairie species (Jacobs 2001). We assessed model 

fit using the Hosmer and Lemeshow goodness of fit test (Hosmer and Lemeshow 2013).  
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RESULTS 

Migratory phenology 

 We detected 114 Virginia Rails during 1049 hours of surveying from 2012-2016 (range: 

16 August-23 October). Opportunistic observations of Virginia Rails occurred between 1 

August-26 November (n=284, Table 1). Our observations overlapped with the Birds of North 

America account but have a slightly wider window of migration (Conway 1995, Figure 2). The 

mediate date of opportunistic observations of Virginia Rails during autumn were different than 

our surveys (Mann Whitney, W = 12692, p<0.001) as the opportunistic observations suggested 

that there were two peaks during migration as compared to our single peak (Figure 2). The 

distribution of opportunistic observations of Virginia Rails were different than our surveys 

(Kolmogrov-Smirnoff Test, D = 0.37, p<0.001).  

We detected 77 Yellow Rails during 1049 hours of surveying from 2012-2016 (range: 22 

August-23 October). Yellow Rails were reported in opportunistic observations between 27 

August 27 and 6 November (n=74, Table 1). Our surveys and the opportunistic observations 

were coincident with the Birds of North America account range of migration (Bookhout 2015, 

Figure 2). Our surveys and the opportunistic detections mediate date were different (W = 3808.5, 

p<0.001) as our surveys peaked earlier. The distribution of opportunistic observations of Yellow 

Rails were different than our surveys (Kolmogrov-Smirnoff Test, D = 0.35, p<0.001). 

Habitat selection 

Virginia Rails selected sites with greater perennial moist soil vegetation cover than were 

available whereas Virginia Rails did not select sites with water depths or percent annual moist 
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soil vegetation cover different than available (Table 2, Supplementary Table S1, Fig 3). Yellow 

Rails selected sites with greater annual moist soil vegetation than were available whereas Yellow 

Rails did not select sites with water depths different or percent cover of upland or perennial 

moist soil vegetation than were available (Table 2, Supplementary Table S1, Fig 3). The Virginia 

Rail model fit the data (χ2 = 7.336, df = 8, p = 0.50) as did the Yellow Rail model (χ2 = 11.2, df = 

8, p = 0.19). 

DISCUSSION 

Our survey results for Virginia Rail showed a singular later peak when compared to the 

two peaked wider distribution of opportunistic records. Virginia Rails’ migration was over a 

shorter period than Sora and Virginia Rails were less abundant (~8000 Sora and 97 Virginia 

Rails during concurrent surveys (Fournier et al. In Press)). These differences in abundance led us 

to speculate as to the effectiveness of our survey method at detecting Virginia Rails. Haramis and 

Kearns (2007) found walk-in traps captured ~10% as many Virginia Rails as Sora, and 

hypothesized traps were positioned where the mean water level was too deep for Virginia Rails. 

We surveyed wetlands that spanned from dry to 50 cm water depth, so we doubt water depth 

influenced our ability to detect Virginia Rails. We assessed this concern using radio-tagged Sora, 

and found that marked Sora did not run away from the approaching ATV (Fournier and 

Krementz In Press) but future work is needed to understand the behavioral reaction of Virginia 

Rails to approaching ATVs at night using radio-marked birds. Because there are no formal 

population estimates for Virginia Rails and Sora we are unable to further infer differences 

between species abundances in our counts.  
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Our survey results for Yellow Rails showed an earlier peak in migration than 

opportunistic records, though the range of both were in line with the published literature 

(Bookhout 2015). Yellow Rails have broad migratory period, which is shorter than Sora 

(Fournier et al. In Press). We observed many fewer individual Yellow Rails than Sora, though 

again the lack of formal population estimates limits our comparisons of these counts estimates 

for either species and additional work is needed to understand how Yellow Rails react to our 

survey method. More importantly both Yellow and Virginia Rails are migrating earlier than 

some waterfowl species, suggesting traditional waterfowl management may not cover their 

needs.  

We found Virginia Rails selected for perennial moist soil plant habitat, including 

perennial Polygonum and Eleocharis spp, which is in line with previous work (Reid 1989). 

Virginia Rail water depth selection has varied in previous work, with median values ranging 

from 2.4 to 19cm (Rundle and Fredrickson 1981, Sayre and Rundle 1984, Reid 1989). We did 

not find Virginia Rails select for water depths different than was available, but available water 

depths were similar to the range of values found in previous work since water availability within 

the surveyed impoundments was shallow.  

We found Yellow Rails in shallowly flooded stands of annual moist soil plants, which 

may differ from previous work since perennial moist soil plants were less abundant within the 

wetlands we surveyed. Previous work found Yellow Rails in shallowly flooded (~4cm, range 0-

11cm) wetlands with high percent cover of perennial moist soil plants such as Panicum and 

Cyperus spp (Reid 1989, Butler et al. 2010). Overall our results are similar to previous work 

which characterized Yellow Rails habitat as shallowly flooded densely vegetated wetlands and 
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wet prairies, the results just differ in the plant community making up the dense vegetation 

(Robert et al. 1997, 2004, Jacobs 2001). Rundle and Fredrickson (1981) suggested “rails 

probably selected habitat because of water conditions and vegetation structure rather than species 

composition” which would support these findings as well.  

Understanding species’ habitat selection during autumn migration is vital to 

understanding how migration impacts demography (Sheehy et al. 2011, Hostetler et al. 2015). 

Future work should consider the landscape around each wetland, and wetland isolation on the 

landscape as these have been important during the breeding season for rails and during migration 

for shorebirds (Brown and Dinsmore 1986, Albanese and Davis 2015). This study provides 

missing information that can be used to implement direct conservation and management actions, 

namely the active flooding of wetlands, in a way that maximizes the benefit to migratory 

waterbirds, including rails. While closely related species are often described as having similar 

characteristics, we show here that these two rails have different migratory timing and habitat 

needs than Sora. Understanding these differences is vital to the conservation and management of 

all rails as well as their wetland communities.   
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Table 1 – Sample sizes from opportunistic data sources used to characterize Virginia Rail 

(Rallus limicola) and Yellow Rail (Coturnicops noveboracensis) migration in Missouri, USA. 

The Bluebird is the journal of the Audubon Society of Missouri. eBird is a citizen science 

database of birding checklists. Building Strikes are records of either species from building strike 

monitoring programs.  

Data Source Yellow Rail Virginia Rail Citation Years 

Represented 

The Bluebird 20 20 (Fournier 2016) 1963-2016 

eBird 53 261 (Sullivan et al. 2009) 2000-2015 

Building Strikes 1 3 (Loss et al. 2014) 1973-2010 
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Table 2 – Beta estimates and p-values from resource selection functions to explain habitat 

selection of Virginia Rail (Rallus limicola) and Yellow Rail (Coturnicops noveboracensis) 

during migration in Missouri, USA.  

 

Species Variable β Estimate Standard 

Error 

P-value 

Virginia Rail Annual Moist Soil Vegetation 0.008 .004 0.08 

 Perennial Moist Soil Vegetation 0.01 0.006 <0.001 

 Mean Water Depth 0.008 0.01 0.44 

Yellow Rail Annual Moist Soil Vegetation 0.02 0.005 <0.001 

 Perennial Moist Soil Vegetation 0.006 0.01 0.65 

 Mean Water Depth -0.02 0.01 0.08 

 Upland Vegetation 0.01 0.007 0.06 
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Fig. 1 – Area of the Mississippi Flyway (light grey) where opportunistic observations of Yellow 

Rail (Coturnicops noveboracensis) and Virginia Rail (Rallus limicola) during autumn migration 

were collected (white).  
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Fig. 2 – Distribution of observations of Yellow Rail (Coturnicops noveboracensis) and Virginia 

Rail (Rallus limicola) during autumn migration comparing our data, opportunistic data points 

and the range reported in Birds of North America.  
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Fig. 3 – Distribution of used vs available habitat variables for Yellow Rail (Coturnicops 

noveboracensis) and Virginia Rail (Rallus limicola) during autumn migration in Missouri, USA



 
 

 

 

Supplementary Table S1 – Habitat Used vs Available Data Summary Data 

Category Species Minimum 

First 

Quantile Median 

Third 

Quantile Maximum 

Average Water Depth (cm) Available 0.0 0.0 0.0 16.0 69.4 

       

 

Yellow Rail 0.0 0.0 3.2 9.9 34.8 

Annual Moist Soil Vegetation (% cover) Available 0.0 0.0 30.0 60.0 100.0 

 

Virginia Rail 0.0 13.8 37.5 76.3 100.0 

 

Yellow Rail 0.0 40.0 62.5 84.3 100.0 

Perennial Moist Soil Vegetation (% 

cover) Available 0.0 0.0 0.0 0.0 100.0 

 

Virginia Rail 0.0 0.0 0.0 23.5 100.0 

 

Yellow Rail 0.0 0.0 0.0 0.0 60.0 

Upland (% cover) Available 0.0 0.0 0.0 20.0 100.0 

 

Yellow Rail 0.0 0.0 2.5 30.0 80.0 
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ABSTRACT 

Rails (Family: Rallidae) are among the most difficult birds to detect.  Although methods have 

been developed to optimize detection during the breeding season, there is no current suitable 

survey method for the non-breeding season. Low detection of rails and lack of suitable methods 

limits monitoring efforts and examination of important questions related to rail conservation and 

habitat management during the non-breeding season. We present a new survey method along 

with suggestions for its effective use in moist-soil wetlands. We conducted nocturnal surveys 

during the autumn to detect sora (Porzana carolina) using hierarchical generalized distance 

sampling along transects that we traveled while riding all-terrain vehicles at night. We evaluated 

assumptions of our survey method by examining the response by radio-marked sora to survey 

vehicles and comparing survey counts between surveys on the same night. These surveys 

produced sora density estimates with error that can be used to address conservation and 

management questions such as habitat use and migratory timing.  
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INTRODUCTION 

The elusive habits of rails (Family: Rallidae), namely that they are small in body size, rarely 

vocalize during the nonbreeding season, and live in dense vegetation, make them difficult birds 

to detect (Nadeau et al. 2008, Conway and Nadeau 2010, Conway 2011, Conway and Gibbs 

2011). Extensive work has been done to optimize survey methods for rails during the breeding 

season by maximing detection using a broadcast call to elicit a response at the time of day when 

call rates are thought to be greatest (Conway 2011). The effectiveness of this protocol has never 

been reported for autumn migration, but is likely not effective because of the decrease in rail call 

rate after the breeding season (Conway et al. 1993).  

Developing monitoring methods for rails outside of the breeding season is important 

because migration can be a time of high mortality and physiological stress (Newton 2006, 

Hostetler et al. 2015, Marra et al. 2015). While walk-in traps can capture many individuals for 

the purposes of monitoring, walk-in traps are not appropriate for addressing questions about 

habitat use because the broadcast call used in the traps may draw rails out of the habitat they 

originally selected (Kearns et al. 1998, Fournier et al. 2015). To address the absence of a method 

that would allow for the examination of habitat and conservation questions during the non-

breeding season, we built upon the work of Perkins et al. (2010) who compared rail capture 

techniques among All-Terrain Vehicles (ATVs), airboats, and traps.  Use of ATVs was most 

effective for capturing rails in shallow water moist-soil wetlands, such as those in the mid-

latitude states of the central United States (Perkins et al. 2010). Because Perkins et al. (2010) 

found ATVs were effective for capturing rails (1.8 rails per hr of ATV operation) in shallow 

(<50 cm) water situations, we speculated that using ATVs would be an effective platform for 

developing a nonbreeding survey for rails. We designed our survey method using ATVs under a 
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hierarchical distance sampling framework, where distance from the transect line was recorded to 

account for detection probability and allowed us to estimate density using hierarchical models 

(Fiske and Chandler 2011, Sillett et al. 2012, Denes et al. 2015).  We tested a nocturnal ATV 

flushing survey for autumn migrating rails. We focused our analysis on sora (Porzana carolina) 

because they were the most frequently detected species at our sites (>95% of detections), but we 

also detected small numbers of Virginia rail (Rallus limicola), yellow rail (Coturnicops 

noveboracensis) and king rail (R. elegans).  

STUDY AREA 

We developed this protocol on public managed wetland properties across Missouri, USA, 

including 7 Missouri Department of Conservation’s Conservation Areas and 4 U.S. Fish and 

Wildlife Service’s National Wildlife Refuges. At each property, we surveyed moist-soil wetland 

impoundments (wetlands surrounded by levees with water control structures) (n of 

impoundments, 2012 = 40, 2013 = 39, 2014 = 33, 2015 = 33; Supplementary Table 1). We 

selected impoundments as the survey unit because they were the scale at which wetland 

management decisions are made. Moist-soil wetland impoundments were managed on a multi-

year rotation (~1-3 year) using water-level manipulation and disturbance (discing, mowing and 

burning) to reduce invasion by undesirable plant species and set back succession (Rundle and 

Fredrickson 1981, Fredrickson and Taylor 1982). We only examined this method in moist-soil 

wetlands dominated by palustrine emergent vegetation. These wetlands rarely had vegetation >2 

m and with the exception of borrow ditches rarely had large areas of water deeper than 50 cm.  

  



 

111 

 

METHODS 

Surveys 

Before nightly surveys, we scouted impoundments to identify any potential hazards (deep water, 

downed trees). We started in a random corner of the impoundment and drove transects running 

parallel to the impoundment side and spaced 30 m apart (this width was to prevent double 

counting and based on our observed flushing behavior of sora) to cover the entire impoundment 

in a standardized fashion. We only counted rails on parallel transects, not on short drives 

between transects (Fig. 1). We slowly drove ATVs (<3 km/hr) with the driver standing to allow 

for maximum distance observation in front of the ATV. When a rail was detected, the surveyor 

took a global position system (GPS) point at the location where the rail was first detected and 

recorded the perpendicular distance from the point to the transect line to the nearest m. A 

handlebar-mounted GPS unit recorded the track driven to record distance for each survey. This 

also allowed for the observer to navigate around hazard points (recorded on the GPS during 

scouting earlier in the day) during surveys. We used the ATV’s headlights, a handheld spotlight, 

and a strong headlamp for maximum illumination. 

We surveyed for 3 hr each night, beginning 30 min after sunset. We chose nocturnal 

surveys because based on the work of Perkins et al. (2010) and our observations that sora readily 

flushed at night when approached on ATVs, but not during the day. The 3-hr time block was 

divided into 2 1.5-hr survey periods. Observers switched impoundments in the second survey 

period allowing for 2 surveys in each impoundment on the same night by 2 different observers. 

We incorporated the 2 survey periods by switching observers to investigate observer bias and 

increase opportunities to observe rarer rail species. We did not survey when it was raining more 

than a light drizzle, fog prevented us from seeing >20 m, or under high wind conditions. Each 
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impoundment was surveyed every 2.5 weeks from August 10 - October 23 2013-2015. Doing so 

allowed us to survey wetlands throughout the state and examine changes in sora density across 

time and habitats.  

Verification 

We investigated how sora behaved in response to ATVs by deploying very-high-frequency 

(VHF) transmitters on 20 sora at 5 sites across Missouri.  We captured sora at night using a hand 

net and attached a transmitter on the synsacrum using a modified thigh harness (Rappole and 

Tipton 1991). Using VHF transmitters to track individual bird behavior allowed us to test the 

concern that sora were being pushed away from the transect line, which would violate the 

assumption that individuals are detected before they move.  

We practiced locating transmitters in the wetland and found that from a distance of 30 m, 

we could locate them within 4 m. We allowed the marked rails to wear the transmitter for 48 hr; 

then after sunset, 2 people triangulated the rail’s location from 30 m away while the rail was 

approached by an ATV. We did our best to direct the ATV to pass as close to the marked sora as 

possible. We recorded the distance each marked bird moved when approached by the ATV and 

whether or not the observer on the ATV detected the sora. After the experiment, we recaptured 

the marked sora and removed the transmitter. All work was completed under Special Use 

Permits from Missouri Department of Conservation and U.S. Fish and Wildlife Service, along 

with IACUC proposals #13044 and #15023 from the University of Arkansas and Federal Bird 

Banding Permit #23002. 

To examine survey repeatability, we compared effort-corrected counts (sora/hr of survey) 

in first and second surveys of the night using a 2x2 crossover design with impoundment and time 
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period as the 2 variables and observer crossed between them (Quinn and Keough 2011). Based 

on our field observations of sora behavior, we do not believe there were any carryover effects. 

We assessed the difference between the 2 nightly surveys using a Mann-Whitney test because 

effort-corrected counts were not normally distributed.  

Density 

We estimated sora density using the generalized distance sampling model of Chandler et al. 

(2011) in the R package ‘unmarked’ function gdistsamp() using a hazard key function (R version 

3.2.3, ‘unmarked’ version 0.11-0, Fiske and Chandler 2011, R Core Team 2015). We observed 

from 0-130 individuals in a night of surveys in a single impoundment, with a mean of 26 (SE = 

0.59). ‘Unmarked’ provides an approach where count data from replicate visits are examined in 

n-mixture models that estimate density while relaxing the assumption of traditional distance 

sampling such that we do not assume probability of detection on the line to be 1 and detection 

probability is estimated for each distance bin of our input data (Royle 2004a, b; Chandler et al. 

2011). 

To estimate sora density in a wetland impoundment over repeated surveys in a distance-

sampling framework, we had to assume geographic closure (no emigration or immigration). We 

met the closure assumption within each impoundment by estimating density separately for each 

night and impoundment. We had 4 separate density estimates per impoundment, per year; one for 

each of the 4 nights we surveyed there in that year. We used the 2 survey occasions each night to 

estimate detection probability.  Two survey occasions is less than the typical 3-5 used in many n-

mixture models. However, Royle (2004b) and Ross et al. (2016a,b) found that 2 repeat surveys 

were sufficient to estimate detection probability. To assess differences in the detection among 

observers (2012 had 4 observers, J, L, M, and AMVF; 2013 had 4 observers, N, D, M and 
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AMVF; 2014 had 2 observers, N and AMVF; 2015 had 2 observers, H and AMVF), we 

compared the null model for density and detection to a model using observer as a covariate to 

explain detection. We did not consider any variables to predict availability in our model. Based 

on the model with the lowest Akaike’s Information Criterion (AIC), we used that covariate for 

detection in our model to estimate density. We evaluated the goodness of fit of the global model 

(the model with all density covariates included) by calculating the chi-squared statistic for the 

observed data and comparing it to expected values in 500 simulations of parametric 

bootstrapping in the parboot() function in Program R (Kery et al. 2005).  To estimate density, we 

included several habitat covariates in the hierarchical distance sampling models, but because we 

focused on describing the sampling method not habitat relationships, we will not detail those 

habitat relationships here. We estimated sora density using the top-ranked model. 

RESULTS 

We detected 6,010 sora during 1229.20 of surveying across August-October 2013-2016. We also 

detected 30 yellow rails, 64 Virginia rails and 1 king rail. In addition to rails we observed other 

species including waterfowl (Family Anatidae), sparrows (Family Emberizidae), wrens (Family 

Troglodytidae), meadowlarks (Sturnella spp.), shorebirds (including frequent sightings of 

Wilson’s snipe ([Gallinago delicata] and American woodcock [Scolopax minor]), and raccoons 

(Procyon lotor). Although we did not record other detected animals, we believe that our survey 

method could be used for other species. The number of detections of nonsora rails (yellow, 

Virginia and king) were too low to estimate density under a distance sampling framework, 

although other analysis approaches, such as occupancy modeling, could possibly be used.  

Based on our experience across the 4 years, vegetation in these disturbed wetlands 

quickly (within 2 days) recovered from our ATV survey activity.  The track of the ATV was not 
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visible when we returned 2 weeks later.  We found 80% of radiotagged sora did not move in 

response to the ATV; the other 20% moved <10 m. Of those that did not move, all were located 

within 5 m of the transect line after the ATV passed, none were on the transect line; however, 

none of the radio-marked sora were detected by the observer on the ATV. Because we monitored 

the radiotagged sora, we know that they did not flush. Sora with transmitters were readily able to 

fly, and did so when approached on foot for recapture. Incidentally, we noted that sora responded 

differently to being approached on foot versus on the ATV. When approached on foot they 

would run away from the person and then fly long distances (>50 m) several times before being 

captured. When approached on the ATV, we could get within ~3 m without the bird moving, 

possibly because of the ‘background noise’ of the ATV engine (Diefenbach et al. 2003, Olinde et 

al. 2000).  

The global model adequately fit the data and was the top model (χ2 = 5181, P = 0.95). 

Sora detected during surveys rarely flew more than 10 m when flushed by an ATV. We never 

detected a sora flushing >13 m from the transect line. Because 96% of our detections occurred 

<5 m from the line, we truncated our data to include only those detections. This truncation and 

our observations of sora behavior minimized double-counting. In 2015, we recorded whether 

individuals were first observed flushing or on the ground and 51% were detected flushing while 

49% were first detected on the ground, often walking in front of the ATV. They then flew when 

the ATV approached them. The exception to this was if the sora was swimming.  

There was no difference in the number of sora detected between the 2 surveys conducted 

by 2 different observers in the same impoundment on the same night (W104 = 1479.5, P = 0.62). 

Average detection probability of an individual, assuming it was available to be detected, in the 

first transect bin was 0.17 (Fig. 2). We did not include observer as a covariate for detection 
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because the model with observer as a covariate received no support (>300 ∆AIC from the top 

ranked model). Estimates of density derived from hierarchical distance sampling models 

incorporating habitat covariates to explain sora density produced estimates from 1 (1.4 - 2.1 95% 

CI) to 18 (16.6 - 19.8) sora per ha (Table 1). 

DISCUSSION 

Rails are elusive, yet to answer questions about the effects of management on rails, we require an 

understanding of how detection might affect the observation process because the probability of 

detecting an individual, assuming that it is present, is not the same in all circumstances or for all 

species (Conway 1995, Thompson 2002). The National Marshbird Monitoring Protocol was 

designed to optimize detection probability during the breeding season, because detection is so 

low for many rails and other marshbirds (Conway 2011). Many factors can affect wetland bird 

detection, including ambient temperature, wind speed, cloud cover, moon phase, and observer 

and often these factors go untested in new survey methods (Anderson 2001, Conway and Gibbs 

2011, Bolenbaugh et al. 2011, Budd and Krementz 2011, Glisson et al. 2015). When working 

with rails that are difficult to detect, understanding how individuals react to the survey 

methodology and estimating detection probability is important. 

Data from ATV-based nocturnal surveys in a hierarchical distance sampling framework 

allowed us to estimate detection probability, while incorporating variables to explain density into 

a model that can then be used in a predictive manner to understand how density changes with 

habitat or management (Royle 2004a,b; Royle et al. 2004). Our model estimated detection 

probability at 17%, which illustrates the challenge of working with rails. This low detection was 

reinforced by our lack of detections during our mock surveys. While we have detected thousands 

of sora over 4 years, these detections represent a small percentage of sora using palustrine 
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wetlands during autumn migration. The generalized distance sampling framework offered in 

‘unmarked’ allowed us to relax the assumption of perfect detection on the transect line that is 

common in traditional distance sampling and still estimate density based on our 2-occasion 

surveys (Royle 2004b, Chandler et al. 2011). 

One question raised about this survey method centers on the potential for disturbance to 

the wetland vegetation. In our sampling scheme, we did not return to the same impoundment for 

at least 2 weeks, which gave the vegetation time to recover. Use of this method on a more 

frequently basis would be inappropriate because the vegetation would not have time to recover 

and use of this method during the breeding season would be unwise because of disturbance of 

nests and nesting species. Butler et al. (2014) used ATVs on the Gulf of Mexico coast during the 

winter to capture rails. This method has the potential to be effective on the wintering grounds as 

well because it will not damage nests.  

Running ATVs through wetlands is disruptive to birds and vegetation, but it allows 

researchers to address questions relating habitat and management to density that cannot be 

answered in an occupancy framework. Because of the large number of sora in these wetlands, 

occupancy modeling would not be sufficient because naïve occupancy is so large, it would not be 

able to inform what habitat has greater densities of sora and what habitat is only being used by a 

few individuals. By surveying sora within a framework that accounts for detection probability 

and allows for the estimation of density in relation to habitat, we can answer questions about 

how sora density differs in relation to management and habitat conditions to inform future 

management. Additional questions related to the stopover duration of individuals would also be 

informative to better understand the habitat requirements of these species during migration, but 

this survey methodology cannot address those questions because individuals are not identifiable.  
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It was unclear whether our detection rate of non-sora rails (Virginia, yellow, king) 

corresponded to their true prevalence on the landscape, or if other factors (e.g., behavioral 

response to the ATV, such moving away from the ATV) were influencing our ability to detect 

them. ATV-based surveys have been used to locate these species (Perkins et al. 2010), but for 

some unknown reason, our approach did not work well for non-sora rails during autumn. We 

were unable to find any examples of nocturnal distance sampling surveys for birds, likely 

because most birds can be better surveyed at other times of day or with other methods.  

Herein, we have shown that our ATV-based survey method can be used to detect large 

numbers of sora during the autumn in a repeatable way. Working in wetlands at night can be 

hazardous and caution should always be used. Time should be spent before each survey 

identifying and mapping potential hazards in wetland impoundments. We recommend working in 

pairs for safety and convenience in the event that ATVs become stuck or break down. We 

recommend using a manual, drive-shaft driven, light weight ATV to reduce the chances of 

getting stuck and minimize overheating and mechanical issues that arise from driving ATVs 

through mud and water. These surveys can be conducted in water depths up to 50 cm, though 

ATVs can handle deeper water. The addition of an air intake snorkel may also be appropriate 

when working in wetlands with deeper water levels.  

Surveying for rails during the non-breeding season is challenging. Our survey method 

would likely be less effective in vegetation that is taller than a standing observer because it will 

obstruct the ability of the observer to detect rails.  While this survey method could be used 

through the night, we found after 3 hr, fatigue reduced observer attention. This method provides 

researchers and managers with a tool to produce reliable density estimates of sora during the 

non-breeding season to address important management and conservation questions.   
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Table 1 – Impoundment specific estimates of sora density (sora/ha) based on the habitat covariate hierarchical distance 

sampling model for 2015 in Missouri, USA. (visit 1 = 10 August – 30 August, visit 2 = 31 August – 21 September, visit 3 = 20 

September – 8 October, visit 4 = 9 October – 25 October). Cons. Area = Conservation Area.  
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Duck Creek Unit A 14 13.8 14.9 12.8 14.3 15.4 13.2 13.2 15.1 11.5 13.3 14.4 12.3 

Conservation Unit A 18 
   

8.1 8.8 7.6 13.5 15.1 12 14.1 15.3 13.1 

Area Unit A 22 
         

5.4 5.9 5 

B.K Leach Kings Tract 2 5.2 5.7 4.8 6.8 7.3 6.3 5.8 6.2 5.3 9.1 9.9 8.5 

Conservation Kings Tract 5 7 7.5 6.5 9.9 10.7 9.2 10.8 11.6 10 9.2 9.9 8.5 

Area Kings Tract 6 
   

5.6 6.1 5.1 
      

 
Kings Tract 9 7.6 8.3 7 5.6 6.1 5.2 

      

Swan Lake m10 14.6 15.9 13.5 13.2 14.3 12.2 7 7.7 6.5 7 7.7 6.5 

National Wildlife  m11 6.6 7.2 6.1 9.9 10.6 9.2 13.6 14.7 12.5 13.1 14.2 12.2 

Refuge m13 3.9 4.3 3.5 4.5 4.9 4.1 8.4 9.1 7.7 8 8.7 7.4 

Otter Slough 21 7.4 8 6.9 8.2 8.8 7.6 7 7.5 6.5 8.5 9.1 7.9 

Cons. Area 23       5.6 6.2 5.1 7.1 7.7 6.4 
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Fountain Grove pool2 6.4 6.9 5.9 12.4 13.4 11.4 
   

12.1 13 11.2 

Cons. Area Pool 2 walk In 6.6 7.1 6 6.3 6.8 5.8 7 7.5 6.4 13.3 14.3 12.3 

Ten Mile Pond Pool C 6.3 6.8 5.8 7.8 8.4 7.2 6.3 6.8 5.8 10.3 11.1 9.6 

Cons. Area Pool E 16.3 17.8 14.9 15.8 17.3 14.5 19.8 21.8 18 13.8 15 12.6 

 
Pool I 

   
5.9 6.4 5.4 

   
8.5 9.1 7.9 

Nodaway Valley rail 6.3 6.8 5.8 11.7 12.7 10.9 7.2 7.8 6.7 12.6 13.6 11.6 

Cons.Area sanctuary 5.9 6.4 5.4 8.9 9.5 8.3 10.3 11.1 9.6 12.7 13.7 11.8 

Squaw Creek Snow Goose B 
   

5.7 6.2 5.3 12.7 13.8 11.7 12 13 11.2 

National Wildlife 

Refuge 

Snow Goose D 6.3 6.8 5.8 6.3 6.8 5.8 13.9 15.1 12.8 10.6 11.5 9.9 

Ted Shanks 2a 5.6 6.1 5.1 5.6 6.1 5.1 6.8 7.4 6.3 9.3 10 8.6 

Cons.Area 4a 4.9 5.4 4.5 4.9 5.4 4.5 
     

 

 6a 6.1 6.6 5.6 6.1 6.6 5.6 13.4 14.5 12.4 13.5 14.6 12.5 

  8a 5.6 6.1 5.1 6.4 6.9 6 11.9 13.2 10.8 11.9 13.2 10.8 
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Figure 1 - Example of a Survey Transect (line) and observed Sora (dots) in a wetland 

impoundment at Swan Lake National Wildlife Refuge, Missouri, USA 

 

 

Figure 2 - Relationship between distance from the transect line and average probability of 

detecting an individual assuming the individual is available to be detected   
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CONCLUSION 

To manage migratory bird populations in an effective way, decisions need to be based on an 

understanding of the drivers of that species population, and migration is an often overlooked 

time of year. Before the advent of many new technological tools for studying migratory birds 

studying migration on anything but the small scale was very difficult. The constant challenges of 

studying migration, coupled with the elusive nature of rails, has left their migration largely 

understudied which limits our ability to assess how migration may impact their populations and 

how current management could be improved to better suit rails and other species at the same 

time. In this dissertation, I have presented a foundation for understanding the migration ecology 

of three rail species to promote sound, science-based, conservation and management of them and 

their habitats.  

Rails are difficult to detect because of their elusive behavior, including infrequent vocalization 

and spending most of their time in dense vegetation while also rarely flying. Although methods 

have been developed to optimize detection during the breeding season, there was no survey 

method for the non-breeding season. Low detection of rails and lack of suitable methods limits 

monitoring efforts and examination of important questions related to rail conservation and 

habitat management during the non-breeding season. I created and verified a new survey method 

along with suggestions for its effective use in moist-soil wetlands. I conducted nocturnal surveys 

during the autumn to detect Sora (Porzana carolina) using hierarchical generalized distance 

sampling along transects that I traveled while riding all-terrain vehicles at night. I evaluated 

assumptions of our survey method by examining the response by radio-marked Sora to survey 

vehicles and comparing survey counts between surveys on the same night. These surveys 
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produced Sora density estimates that can be used to address conservation and management 

questions, such as habitat use and migratory timing.  

Understanding what habitat is needed during migration by rails required us to tackle two 

questions simultaneously, when are rails migrating, and what habitats are rails using. I found 

Sora migration in Missouri began in the first week of August, on average it peaked on 25 

September, and continued through the last week of October. I detected Sora migration earlier in 

autumn than previous work. I found the start and end of migration did not vary annually in three 

of four years. In addition I found a strong positive second order relationship between the 

presence of Sora at a point and with mean water depth and first order annual moist soil 

vegetation, and a lesser first order positive relationship with perennial moist soil vegetation. I 

also found a change in mean water depth across the migration season, which highlights 

limitations of available wetland habitat early in migration for Sora. These results provide an 

informative foundation for multispecies management of palustrine wetlands and future research 

to inform the conservation and management of Sora.  

Based on these results, I hypothesized if wetlands were flooded earlier in autumn migration I 

would observe more Sora. Our initial observations supported this but could have been 

confounded by other variables, such as the surrounding landscape, so I designed an experiment 

to explicitly test two flooding treatments. Rails are not the only birds using these habitats, 

waterfowl are also of interest and I looked at the impacts of two flooding treatments, one early in 

the migration, one later on rails and waterfowl. Initially I planned this to be a 2x2 crossover, but 

because of factors, such as extreme flooding, outside of my control many of the treatments were 

confounded and so I extended the experiment to a third year and assigned treatments post hoc 

using quantitative rules. Taking into account the random effect of visit, I found a positive effect 
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of early flooding on Sora count across all years. Waterfowl were counted weekly from October 

till January, and I looked at change in maximum count every two weeks and did not find a 

negative impact of the early flooding treatment, which had been hypothesized because the earlier 

flooding could have negatively impacted the vegetation community. To manage wetlands to fill 

the wide suite of wildlife, plant, ecosystem service, and human (recreational and cultural needs) I 

need science based management that allows us to make informed decisions about the 

consequences of management, especially in the face of additional challenges like climate change.  

While I detected fewer Virginia and Yellow Rails than Sora during this project, I were still able 

to ask some interesting questions about them and their stopover ecology. I compared our survey 

data to the timing of autumn migration from three opportunistic datasets: 1) eBird records, 2) 

building strikes, and 3) state ornithological records. The timing of Virginia Rail autumn 

migration varied between the opportunistic data and our surveys. Opportunistic data had two 

peaks, while our surveys had a single peak the second week in October. Yellow Rail autumn 

migration through Missouri peaked earlier in our surveys than opportunistic datasets, which 

peaked during the second week in October. Both rail species were found in moist soil habitats, 

however Virginia Rails selected perennial species more than was available, while Yellow Rails 

selected annual species. Both species showed no selection for water depth and used shallowly 

flooded wetlands. Understanding the autumn migration period and habitat requirements will 

allow wetland managers to better manage lands for autumn migrating Virginia and Yellow Rails. 

When a species’ needs during migration, are discussed the focus is often on the individual 

stopovers, but those stopover locations and events are part of the larger annual cycle of a species 

and that larger context, also needs to be considered. When the connections between parts of a 

migratory animal’s annual cycle we are discussed their migratory connectivity, or how 
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connected, or not connected, a given part of the breeding range is with a given part of the 

wintering range are typically the primary focus. What is often missing from conversations about 

migratory connectivity is the role of migratory stopover locations. Including stopover locations is 

valuable for informing management and conservation, and when using stable isotopes to quantify 

connectivity, the incorporation of additional information can help. I used data from marsh bird 

monitoring programs to create species distribution models for Sora (Porzana carolina), Virginia 

Rail (Rallus limicola), and Yellow Rail (Coturnicops noveboracensis). I then used the species 

distribution models to refine assignments of breeding areas of autumn-migrating and wintering 

birds based on isotope analysis of feathers collected at various locations across the southern 

United States. Sora were assigned to an area that included the central part of the U.S. and the 

central portion of southern Canada, covering parts of the Mississippi, Central and Pacific 

migratory flyways. Yellow Rails were assigned from James Bay through northern Manitoba, 

through Ontario and southern Quebec and down into northern Minnesota, Wisconsin and 

Michigan. Virginia Rails were primarily from several discrete areas, including the southern part 

of their breeding range in Colorado, and New Mexico, the central valley of California, and 

southern Saskatchewan and Manitoba. Monitoring data could be used to improve the isotopic 

assignment of a wide suite of birds, which in turn contributes to better management and 

conservation of those species.  

Rails are often spoken of as one homogenous group, largely because in the past all species have 

been studied in tandem and also because each individual species is so poorly studied discussing 

the nuance between species is difficult. While some of the things documented in this dissertation 

are not particularly surprising, I have tried to provide some of that nuance, showing the 

differences between Sora, Yellow Rail and Virginia Rail migration timing, and their habitat 
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selection during autumn migration. The harder I look at rails, the more intriguing behavior I have 

found, the more questions I am left with. In this project, I observed novel behaviors, including 

documenting Sora diving and swimming under water on video and the earliest autumn migrating 

yellow rail, and highest number of yellow rails in one day during autumn migration, in Missouri. 

The challenge of studying these birds, and their wetlands has been rewarding, rails are 

fascinating, frustrating, intriguing and endearing little birds about which I am grateful to have 

learned slightly more than the little we knew before.  

 

 



 

 
 

APPENDIX I  

Table 1 - Impoundments Surveyed from 2012-2016. The first time an impoundment is mentioned the latitude, longitude of the 

center of the impoundment is given.  

Property Year Region Wetland Impoundments 

Nodaway Valley 

Conservation Area 

2012 northwest Sanctuary (40.093070, -95.047479),  

Ash Grove (40.085344, -95.047671) 

 
2013 

 
Sanctuary, Ash Grove 

 
2014, 2015, 2016 

 
Sanctuary, Ash Grove, Rail Marsh (40.100918, -95.052288) 

Squaw Creek National 

Wildlife Refuge 

2012 
 

Snow Goose B (40.090428, -95.265754), North Mallard 

(40.102608, -95.278374), North Pintail (40.090984, -95.271568) 

 
2013 

 
Snow Goose B, C (40.085930, -95.264500), D (40.081784, -

95.264433) & E (40.078820, -95.263299), North Mallard 

 
2014, 2015, 2016 

 
Snow Goose B & D, MSU 2 (40.104765, -95.237954) and 3 

(40.100912, -95.236862) 

Fountain Grove 

Conservation Area 

2012 north 

central 

Pool 2 (39.701420, -93.312018), Pool 3 (39.693605, -93.296458), 

Boardwalk (39.734499, -93.347640) 

    

1
3
4
 



 

 
 

(Appendix 1 Table 1 Cont.)  

Property Year Region Wetland Impoundments 

 
2013 

 
Pool 1 (39.707164, -93.330787) & 2, Pool 2 Walk-in (39.692044, 

-93.313637), Pool 3 Walk-in (39.690647, -93.303875) 

 
2014, 2015, 2016 

 
Pool 2, Pool 2 Walk-in, Pool 3 Walk-in 

Swan Lake National 

Wildlife Refuge 

2012 
 

M4 (39.613125, -93.204565), M5 (39.614682, -93.199878), M10 

(39.592252, -93.194279), M11 (39.592024, -93.189795) 

 
2013 

 
M3 (39.614832, -93.196389), M4, M5, M10, M11, M14 

(39.612200, -93.211902) 

 
2014, 2015, 2016 

 
M10, M11, M13 

Ted Shanks 

Conservation Area 

2012 northeast 4a (39.541458, -91.162459), 11a (39.525066, -91.140947), Nose 

Slough (39.512751, -91.118386) 

 
2013 

 
Nose Slough 

    

B.K. Leach 

Conservation Area 

2012 
 

Bittern Basin 1 (39.207272, -90.767368), 2 (39.198068, -

90.771326), & 3 9 39.200561, -90.762914), Kings Tract 2 

(39.144996, -90.728693) & 6 (39.134015, -90.738947) 

1
3
5
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Property Year Region Wetland Impoundments 

 
2013 

 
Bittern Basin 1, 2, & 3, Kings Tract 2 & 6 

 
2014, 2015, 2016 

 
Kings Tract 2, 5 (39.133427, -90.733879), 6, & 9 (39.141516, -

90.743086) 

Clarence Cannon 

National Wildlife 

Refuge 

2012 
 

MSU 1 (39.258810, -90.783929), 2 (39.264733, -90.785253) & 7 

(39.272534, -90.797022) 

 
2013 

 
MSU 7 

 
2014, 2015, 2016 

 
MSU 1, 2, & 12 (39.261315, -90.776206) 

Duck Creek 

Conservation Area 

2012 southeast Unit A 13 (37.060825, -90.118003), 14 (37.061443, -90.123525), 

15 (37.054538, -90.122279), 18 (37.056687, -90.129754), 20 

(37.060556, -90.128913), & 21 (37.061818, -90.134228), ditch 

(37.059858, -90.126318) 

 
2013 

 
Unit A 11 (37.054806, -90.118070), 13, 14, 15, 16 (37.052252, -

90.129720), 18, 20, ditch 

1
3

6
 



 

 
 

(Appendix 1 Table 1 Cont.)  

Property Year Region Wetland Impoundments 

 
2014, 2015, 2016 

 
Unit A 14, 18, 20, 22 (37.057224, -90.137459) 

Otter Slough 

Conservation Area 

2012 
 

21 9 36.690744, -90.131168), 25 (36.702304, -90.127952), R3 

(36.695699, -90.119714), R4/5 (36.699405, -90.111673), R7 

(36.690704, -90.120517), R8 (36.692557, -90.115546), R9 

(36.691951, -90.108107) 

 
2013 

 
21, 25, R4/5, R7 

 
2014, 2015, 2016 

 
21, 23 (36.696303, -90.130061) 

Mingo National 

Wildlife Refuge 

2012  2w (37.013013, -90.127367), 2 (37.004314, -90.122802) & 3 

(37.009989, -90.122180) 

 
2013 

 
2w, 2 & 3 

Ten Mile Pond 

Conservation Area 

2014, 2015, 2016  Pool C (36.713699, -89.340489), E (36.706395, -89.335239) and 

I (36.740863, -89.330972) 

    

 

1
3
7
 


