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Abstract 

 All cells have a reduced intracellular environment. In the presence of oxygen, the non-

specific oxidation of intracellular components leads to the production of reactive oxygen species 

(ROS) within cells leading to oxidative stress. During oxidative stress labile cofactors (e.g. Fe-S 

clusters) are lost and deleterious disulfide bonds are formed within proteins. Intracellular redox 

maintenance systems are used to direct reducing equivalents towards the repair of oxidatively-

damaged proteins. The thioredoxin system is the ubiquitous intracellular redox system, found in 

virtually all species. The canonical thioredoxin system is comprised of a NADPH-dependent 

thioredoxin reductase (TrxR) that functions to reduced thioredoxin (Trx). Although the 

thioredoxin system is well understood in many bacteria and eukaryotes, it is far less understood 

in archaea, in particular strictly anaerobic methane-producing archaea (methanogens). 

Methanogens are the only organisms capable of methane production. Biologically produced 

methane is essential for the global carbon cycle, but is also a byproduct of agriculture and 

farming of ruminants thus exacerbating the extent of anthropogenic climate change. The ability 

of methanogens to produce methane requires a large number of oxygen-sensitive 

metalloenzymes. However, methanogens can survive oxygen exposure, indicating that they 

possess intracellular redox maintenance systems. Methanogens use the deazaflavin F420 and the 

Fe-S cluster protein ferredoxin as primary electron carriers, instead of NADPH. Results 

presented here reveal that Methanosarcina acetivorans, and likely the majority of methanogens, 

use NADPH-dependent thioredoxin systems. NADPH is produced through the oxidation of the 

primary electron carriers F420 and ferredoxin. M. acetivorans contains multiple Trx homologs 

(MaTrx1-7) that serve alternative purposes within M. acetivorans. In particular, MaTrx3 and 

MaTrx6 are membraned associated where they likely function in the oxidation/reduction of 

extracellular proteins. MaTrx7 is the primary intracellular Trx, as it is the only MaTrx reduced 



 

by MaTrxR, and it is capable of reducing several hundred M. acetivorans proteins. Enzyme 

assays reveal that M. acetivorans can produce NADPH in the presence of oxygen, supporting a 

role for the NADPH system in response to oxidative stress. Overall, these results provide insight 

into the roles of a thioredoxin system in M. acetivorans, which may lead to methods to control 

methane production in methanogens.  
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Introduction 

Growth of an organism is dependent upon the ability to consume a substrate (catabolism) 

in order to conserve the necessary energy to synthesize macromolecules (anabolism). In order for 

catabolic and anabolic reactions to occur within the cell the cell must maintain a reduced 

intracellular environment, or the flow of electrons (from the most electronegative species to the 

most electropositive species) will occur independent of metabolism. For this reason, cells have 

evolved to maintain tight regulation on the redox state of the cell through the use of systems and 

compounds dedicated to serve as antioxidants. Change in the intracellular redox state inside the 

cell must be rapidly sensed by intracellular markers before oxidative damage becomes 

irreversible. Common markers for sensing redox state include having reduced cysteine residues 

among intracellular proteins and a larger proportion of reduced electron donor pools over their 

oxidized counterparts. Nearly all organisms reduce the majority of disulfides among intracellular 

proteins via the thiol redox maintenance systems such as glutaredoxin and thioredoxin systems. 

Intracellular thiol redox maintenance systems 

Many cells have evolved multiple redox maintenance systems like the thioredoxin and 

glutaredoxin systems with functional redundancy to guarantee redox homeostasis. However, 

growing evidence suggests the thioredoxin system may be ubiquitous to anaerobes and aerobes 

alike, while the Grx system appears more often in aerobic species suggesting that the thioredoxin 

system plays an important thiol redox maintenance role in all forms of life. The canonical 

thioredoxin system is comprised of a thioredoxin reductase that utilizes NADPH as the electron 

donor to reduce two internal cysteine residues that in turn can reduce the disulfide bond formed 

between two cysteines in the thioredoxin (Trx) active site motif WCGPC (Fig. 1). The 

thioredoxin system often has a single thioredoxin reductase (TrxR), and to date only two types of 
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TrxR have been observed, a low molecular weight (L-TrxR) comprised of ~35 kDa subunits and 

a high molecular weight (H-TrxR) comprised of ~55 kDa subunits [1]. Typically, the H-TrxR is 

found among higher eukaryotes, while the L-TrxR is found in archaea, bacteria, and eukaryotes. 

Whether L-TrxR or H-TrxR the mechanism of each is the same, where each subunit binds 

NADPH and oxidizes it to then move the electrons through the flavin adenine dinucleotide 

(FAD) molecule that is associated with each subunit (Fig. 1). The reduced FAD molecule can 

then pass the pair of electrons to the internal cysteine residues within the active site motif 

(CXXC) of its respective subunit. The reduced pair of cysteines in TrxR are then capable of 

reducing the cysteines within the active site of Trx (WCGPC or CXXC), and then reduced Trx 

can in turn reduce a disulfide among its target proteins (Fig. 1) [2]. Trx is a small (~12 kDa) 

protein with active site cysteine residues exposed on the protein’s surface for quick access to 

target protein disulfides. Due to the exposed nature of the active site cysteine residues Trx is 

capable of reducing a multitude of proteins ranging from biosynthetic enzymes such as 

ribonucleotide reductase to reducing inter- and intramolecular disulfide bonds generated in 

proteins as result of redox reaction or unwanted oxidation. In order to provide additional 

specificity, some organisms contain multiple Trxs with each having a subset of target proteins 

rather than a single Trx being responsible for the entire redox regulated proteome. This 

additional layer of specificity allows the cell to sense the oxidation state of various biological 

functions simultaneously, while also providing rapid reduction by decreasing the amount of 

proteins necessary for one Trx to reduce. Thus, in many organisms the thioredoxin system serves 

a critical role in redox maintenance. Trx-like proteins are also utilized at the membrane of 

periplasm of some species where they are responsible for reducing disulfide bonds in the more 

oxidizing environment outside the cytoplasm. The most common example of Trx-like proteins 
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functioning at the membrane or periplasm of some species is in cytochrome c maturation where 

binding of heme must be controlled to prevent environmental metals from coordinating with the 

cytochromes, so cytochromes are oxidized outside the cytoplasm and reduced just before heme 

insertion by Trx-like proteins. 

Among organisms using NADPH-dependent thioredoxin systems, NADP+ is often 

reduced by the pentose phosphate pathway of metabolism, and thus linking the thioredoxin 

system to anabolic pathways in the cell. As mentioned previously, many of key biosynthesis 

enzymes are reduced by Trx. For example, ribonucleotide reductase, which utilizes 

ribonucleotides to form deoxyribonucleotides needed for DNA synthesis, is reduced by the 

NADPH-dependent thioredoxin system. Synthesis of ribonucleotides begins at ribose 5-

phosphate, a product of the pentose phosphate pathway. Therefore, if central anabolism is to 

occur then there must be sufficient carbon for the pentose phosphate pathway to produce the 

NADPH needed by the thioredoxin system to catalytically reduce key biosynthesis enzymes to 

keep anabolic pathways functioning. Oxidation of anabolic enzymes or depletion of NADPH 

serves as an indicator for the cell that conditions are not suitable for anabolic growth, and 

resources are allocated to restore and repair the cell. Alternative mechanisms for obtaining 

NADPH include, but are not limited to, oxidizing alternative electron donors such as ferredoxin 

to reduce NADP+, and oxidizing carbon storage molecules such as glucose. Numerous 

prokaryotes utilize a NADPH-dependent glyceraldehyde -3-phosphate dehydrogenase (GAPDH) 

as a primary source of NADPH production in the absence of a fully functioning pentose 

phosphate pathway [3]. By having additional electron donors like ferredoxin and NADH, the cell 

can dedicate and regulate the functionality of a given metabolic pathway. NADH, for instance, is 

used for catabolic reactions and energy conservation in E. coli, and thus reducing equivalents 
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needed for catabolic reactions and energy conservation are not being competed for those needed 

in anabolic reactions. Limiting the competition for reducing equivalents also allows the cell to 

sense the current state of a given metabolic pathway, and adjust metabolism as needed.  

Other thiol redox maintenance systems similar to the NADPH-dependent thioredoxin 

system exist, for instance, photosynthetic organisms utilize the ferredoxin:thioredoxin reductase 

(FTR) to reduce Trx(s) that are specific for FTR. Electrons from ferredoxin serve to reduce the 

ferredoxin-dependent thioredoxin system in photosynthetic organisms because the primary 

electron donor pool generated during photosynthesis is reduced ferredoxin. Organisms using 

ferredoxin as an electron carrier other than phototrophs often utilize a ferredoxin-dependent 

thioredoxin system as well. The ferredoxin-dependent thioredoxin system is comprised of similar 

components to that of the NADPH-dependent thioredoxin system where a TrxR reduces Trx 

except TrxR oxidizes ferredoxin instead of NADPH. Although the ferredoxin-dependent 

thioredoxin system functions similarly to the NADPH-dependent thioredoxin system, the major 

difference is between the reductases TrxR and FTR. FTR does not utilize the prosthetic group 

FAD to move electrons from the electron donor source to the internal cysteine residues, rather 

FTR contains an FeS cluster similar to ferredoxin. By utilizing ferredoxin and FeS clusters to 

mediate electron transfer the ferredoxin-dependent thioredoxin system is coupled to phototrophic 

growth since reduced ferredoxin is only generated during phototrophic growth.  

An additional widely used thiol redox maintenance system exists, the glutaredoxin 

system. Like the thioredoxin system, the glutaredoxin system utilizes NADPH as the electron 

donor to reduce glutathione reductase (GrxR). The glutaredoxin system is comprised of GrxR 

that receives electrons from NADPH to reduce an internal FAD and ultimately glutathione, a 

small dithiol containing peptide, which in turn reduces the small protein (~12 kDa) glutaredoxin 
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(Grx) (Fig. 2). Reduced Grx can reduce a multitude of proteins, and is generally capable of 

reducing more intracellular protein than Trx [4]. In addition to Grx being capable of reducing 

more proteins than Trx, Grx systems are often found in aerobic species and not in strictly 

anaerobic species, while Trx is more ubiquitous among anaerobes and aerobes alike. In aerobes 

exploiting the use of glutaredoxin systems alongside thioredoxin systems, the two systems share 

target proteins and have a few unique target proteins. Additionally, the glutaredoxin system 

functions with an extra step that is not utilized by the thioredoxin system in which reduced 

glutathione is produced. Reduced glutathione is a small redox active dithiol peptide that is 

capable of reducing some disulfides and can also serve as a redox indicator inside the cell. When 

the levels of reduced glutathione decrease the intracellular redox state becomes more 

electropositive and the cell responds by generating more reducing equivalents needed for redox 

maintenance. The ability of glutaredoxin systems to function as a more general antioxidant in the 

cell and their predominance in aerobes suggest that the glutaredoxin system may have evolved to 

provide further redox maintenance needed when growing in the presence of oxygen.  

Methanogens and methanogenesis 

 Methanogens are prokaryotes belonging to the domain Archaea, and all species of 

methanogens are obligate anaerobes with habitats ranging from fresh and salt water sediments to 

the intestinal microflora of ruminants and humans. Methanogens are responsible for all 

biologically produced methane, and are capable of growth using CO2 as a carbon source and H2 

as an energy source or acetate or small methylated compounds (ie methanol and trimethylamine) 

as both carbon and energy sources (Fig. 3). Due to their unique metabolic pathway, methanogens 

are critical to the global carbon cycle and are also important players in global climate change 

(Fig. 4). Methanogens are estimated to be one of the earliest organisms to have evolved on earth 
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[5], thus providing a window into how early life metabolic pathways may have functioned. There 

are four classes of methanogens: Methanopyri, Methanococci, Methanobacteria, and 

Methanomicrobia. Organisms of the class Methanomicrobia are considered to be the most 

recently evolved methanogens exhibiting growth on some or all of the methanogenesis substrates 

(Fig. 3). Growth on acetate accounts for nearly two-thirds of biologically produced methane 

today. However, only some methanogens of the class Methanomicrobia, in particular members 

of the order Methanosarcinales, are capable of acetate metabolism, indicating that these recently 

evolved methanogens are the most influential in the global carbon cycle and climate change.  

Geological evidence dates the origin of life likely occurred 3.4 ± 0.3 Gyr ago and the 

earliest signs of methane production approximately 3.5 Gyr ago [5], predating oxygenic 

photosynthesis. The production of methane from CO2 is thought to have increased early earth’s 

temperature thus allowing for the evolution of oxygenic phototrophs and eventually gave rise to 

aerobes that can utilize oxygen during respiration. Methanogens in the classes Methanopyri and 

Methanococci more closely resemble the ancestral methanogens that inhabited early earth, likely 

because many of them still inhabit harsh anaerobic environments similar to early earth. Other 

methanogens inhabit areas that are exposed to oxygen much more frequently, such as the hind 

guts of ruminants, than that of methanococci species which typically live near hydrothermal 

vents deep in the ocean. Collectively methanogens are capable of representing how early earth’s 

strict anaerobes adapted to rapid climate change leading to a more oxygenated atmosphere. As 

larger quantities of oxygen were introduced into the atmosphere of earth the number of oxidative 

stress events encountered by anaerobes increased, and thus necessitated evolving methods in 

which strict anaerobes could sense and repair oxidative damage. Methanogens belonging to the 

class Methanomicrobia are some of the most aerotolerant methanogens surviving oxygen 
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exposure for up to several hours or in some cases even capable of producing methane in the 

presence of oxygen [6, 7], suggesting that higher order methanogens evolved mechanisms to 

cope with oxygen exposure.  

As discussed previously, all methanogens utilize methanogenesis for growth and 

methanogenesis can only function under strict anaerobic conditions even if some species of 

methanogens can tolerate increased oxygen exposure. Oxygen sensitivity of methanogenesis 

enzymes is attributed to many of these enzymes utilizing reduced cysteines and FeS clusters for 

catalytic activity (Fig. 3). Additionally, one of the two primary electron carriers in methanogens, 

ferredoxin, also binds a FeS cluster for function and can only be reduced by oxygen sensitive 

methanogenesis enzymes. For example, methanogens capable of growth on acetate utilize carbon 

monoxide dehydrogenase/acetyl-CoA synthase (Cdh/Acs) to oxidize acetate and generate 

reduced ferredoxin, but Cdh/Acs is a multi FeS cluster binding protein incapable of functioning 

in the presence of oxygen (Fig. 3). Thus, methanogens capable of surviving oxygen exposure 

must have oxygen sensing and repair mechanisms that can restore key methanogenesis enzyme 

functionality. In particular, methanogens with increased aerotolerance would need mechanisms 

to actively reduce oxygen, the reactive oxygen species generated by oxygen exposure, and 

mechanisms for repairing damaged proteins. However, many of the reactive oxygen species 

rapidly oxidize/damage DNA, proteins, lipids, RNA, and cofactors/coenzymes like the 

previously discussed FeS clusters that are incorporated in the majority of the key metabolic 

enzymes within methanogens. One type of reactive oxygen species that is readily formed during 

oxidative stress is hydrogen peroxide, which readily reacts with thiol compounds/containing 

proteins to generate water and oxidized compounds/proteins. Proteins containing FeS clusters 

utilize reduced cysteine residues (thiols) to coordinate FeS clusters, and thus methanogen 
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physiology by in large functions on the basis of thiols. Oxygen exposure for methanogens would 

lead to thiol oxidation and would undoubtedly necessitate mechanisms for thiol reduction if the 

organism is to survive. 

Thiol Redox Systems in Methanogens 

Systems responsible for detoxifying oxygen and the resulting reactive oxygen species 

have been examined in some methanogens, thiol redox maintenance systems have not been 

examined as extensively. Thiol redox maintenance systems like the thioredoxin system could be 

performing oxidation sensing, signaling, and repair roles in methanogens much like the role of 

the system in many other organisms. Moreover, the demand for thiol redox systems in 

methanogens is likely to be much higher since methanogens are predicted to utilize the largest 

number of FeS cluster proteins that are very oxygen sensitive and are dependent upon reduced 

cysteine residues within proteins, which could only be achieved by thiol redox systems or thiol 

based antioxidants. Methanogens use the coenzymes B and M, which are thiol containing, during 

methanogenesis and may be using them to facilitate thiol reduction in some circumstances. 

However, it is unlikely that coenzyme B and M are the primary thiol redox maintenance system 

given their critical role in central metabolism. Additionally, the more evolved methanogens 

capable of growth on multiple substrates exhibit additional metabolic constraints, for instance, 

Methanosarcina species when growing on acetate require an increase in the number of FeS 

cluster containing proteins and consequently more FeS clusters must be generated and inserted 

into these proteins. Each step of FeS cluster biosynthesis utilizes reduced thiols in proteins to 

facilitate the generation of components and the transfer of complete FeS cluster between carriers 

and target proteins. The increased demand for FeS cluster proteins during growth on acetate by 
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Methanosarcina species supports a need for additional or robust thiol redox systems capable of 

extensive maintenance. 

 While metabolic pathways and energy conservation mechanisms have been examined, 

little work has addressed redox maintenance systems in methanogens despite the apparent 

demand for thiol redox systems in metabolism and energy conservation. The work in thiol redox 

maintenance systems of methanogens focused largely on individual components of the system 

such as thioredoxin [8-10]. At the beginning of the work presented in this dissertation it was 

unclear which thiol redox maintenance systems were incorporated into methanogen physiology, 

as homologs of predicted NADPH-dependent TrxRs, ferredoxin-dependent TrxRs, and Grxs 

were all found in the genomes of various methanogens. In particular, canonical thiol redox 

maintenance systems utilize NADPH as the electron donor, however, methanogens utilize the 

electron carriers F420 and ferredoxin, suggesting methanogens might be utilizing a thiol redox 

maintenance system capable of oxidizing reduced F420 or ferredoxin. Glutaredoxin systems were 

omitted as a candidate thiol redox system in methanogens due to the lack of the ability to 

synthesize glutathione in all methanogens [11-13], and thus leaving the candidate F420 and 

ferredoxin thiol redox systems as key players in the redox maintenance of methanogens with the 

possibility of NADPH-dependent thiol redox systems being utilized. Indeed recent work 

examined the FTR encoded in Methanosarcina acetivorans (named ferredoxin:disulfide 

reductase FDR) and determined that the FDR did oxidized ferredoxin but the redox partner to 

FDR in M. acetivorans was not elucidated [14]. Recent work in Methanosarcina barkerii with 

FDR indicated that FDR reduces a thioredoxin-like protein called NrdH which is specific for 

reducing ribonucleotide reductase (NrdD) [15], suggesting that methanogens might be using a 
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ferredoxin dependent thioredoxin system in a similar fashion to that of the NADPH dependent 

thioredoxin system performs in many other organisms. 

 The electron donor F420, however, has not been observed as a direct donor to a 

thioredoxin-like system until recently during the work presented in this dissertation. The novel 

F420-dependent TrxR was identified in the more ancestral methanogen Methanocaldococcus 

jannaschii where it is specific for Trx1 [16]. Having a F420-dependent thioredoxin system 

directly ties the system into methanogen physiology, and thus allows for rapid thiol redox 

maintenance within the cell. However, there are pitfalls to F420 and ferredoxin dependent systems 

such as the thiol redox maintenance system is utilizing the primary electron donors for 

methanogenesis causing competition between metabolism/energy conservation and redox 

maintenance. 

Early studies of methanogens and methanogenesis led many researchers to hold the 

opinion that methanogens do not utilize pyridine dinucleotides like NADPH since 

methanogenesis enzymes utilize F420 and ferredoxin [17, 18]. However later work indicated that 

metabolically diverse methanogens (capable of growth on methylated compounds or acetate) 

contained NADPH dependent alcohol dehydrogenases, and thus posed the question of how 

NADP+ was being reduced [17]. Further examination found that methanogens with NADPH-

dependent alcohol dehydrogenases possessed the ability to oxidize F420H2 in order to reduce 

NADP+ through the use of the enzyme F420-dependent NADP reductase [17]. The ability to use 

reducing equivalents produced during methanogenesis to reduce NADP+ directly ties NADPH-

dependent pathways into methanogenesis, suggesting that methanogens have the capability to 

support NADPH-dependent thiol redox systems. However, the ability to reduce NADP+ from 

primary electron carriers generated during methanogenesis still limits the functionality of the 
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NADPH-dependent thioredoxin system to anaerobic growth with some activity immediately after 

oxidative stress using residual NADPH. If a thiol redox system is providing increased oxidative 

stress tolerance in any methanogen through rapid repair post-oxidation then there must be a 

source of electrons that are insensitive to oxygen. Similar to other prokaryotes studied to date, 

methanogens utilizing a NADPH-dependent thioredoxin system may have carbon storage 

molecules that can be oxidized when primary metabolism ceases (methanogenesis after oxidative 

stress) such as glycolysis pathways. 

Experimental Sections Included in this Dissertation 

 One type of thiol redox maintenance system was examined in methanogens during the 

work encompassed in this dissertation, the canonical NADPH-dependent thioredoxin system. 

The genome of model methanogen M. acetivorans encodes one homolog of a predicted NADPH-

dependent TrxR and seven predicted Trxs. This dissertation addresses the questions of 1) does 

M. acetivorans contain a functional NADPH-dependent thioredoxin system, 2) if the system can 

be integrated in the physiology of the methanogen (i.e. obtain electrons from methanogenesis), 3) 

if the complete NADPH-dependent thioredoxin system can serve as a general thiol redox 

maintenance system to oxidatively damaged proteins, 4) can NADP+ be reduced post oxidative 

stress by an endogenous source, and 5) does the NADPH-dependent thioredoxin system play a 

redox signaling role in M. acetivorans similar to other prokaryotes. 

 Chapter I- Initial characterization of the TrxR in M. acetivorans (MaTrxR) and three of 

the putative Trxs (MaTrxs). Recombinant MaTrxR was purified and the activity assessed in 

vitro. Spectrophotometric studies indicated that MaTrxR purified from E. coli could readily be 

reconstituted with FAD, the cofactor bound to all NADPH-dependent TrxRs, suggesting that 
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MaTrxR also binds FAD and that overexpression in E. coli led to an enzyme product without the 

full complement of FAD. Additionally, F420, NADH, and NADPH were examined as potential 

electron donors to MaTrxR and indeed MaTrxR is NADPH-dependent. Three of the seven 

MaTrxs were examined for disulfide reductase activity, MaTrx2, 6, and 7, and all three-exhibited 

robust disulfide reductase activity consistent with each functioning as Trxs. Insulin disulfide 

reductase and Trx-dependent oxidized glutathione reduction assays were performed using 

NADH/NADPH with MaTrxR and either MaTrx2, 6, or 7 to address which candidates are likely 

in vivo targets to MaTrxR. Of the three MaTrxs only MaTrx7 was observed to be reduced by 

MaTrxR, and thus the first complete NADPH-dependent thioredoxin system was characterized in 

a methanogen. Due to the large number of Trxs in M. acetivorans and methanogens as a whole 

(~150 Trx homologs in ~45 methanogen genomes), additional work was done to categorize the 

Trxs in methanogens by analyzing them on the basis of sequence similarity. The activity and 

reducing partner to a given Trx and its respective group or type in methanogens can be applied 

the Trx type as a whole to provide the initial probable function. This chapter was published and 

is available online. 

 Chapter II- Further characterization of the remaining Trxs in M. acetivorans was 

performed, and again MaTrx7 remained the sole reducing partner to MaTrxR. Sources of 

NADPH production were examined since the primary electron carriers in methanogenesis are 

F420 and ferredoxin. Using a supply of reduced F420 (F420H2) to M. acetivorans cell lysate, rapid 

oxidation of F420H2 was observed when NADP+ was present, supporting that NADPH could be 

generated using F420H2. Similarly, ferredoxin was assessed as an electron donor to generate 

NADPH, but was done indirectly through the activity of Cdh/Acs which produces reduced 

ferredoxin through the oxidation of carbon monoxide. Carbon monoxide was supplied to M. 
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acetivorans cell lysate along with NADP+ and compared to the activity of lysate supplied 

nitrogen instead. Production of NADPH was higher in carbon monoxide containing lysates as 

opposed to nitrogen, and thus collectively supporting that F420H2 and ferredoxin could be utilized 

to generate NADPH through the use of F420-dependent NADP+ reductase (Fno) and ferredoxin 

NADP+ reductase (Fnr) like activities. Additional work indicated that nearly all methanogens 

possess predicted NADPH-dependent TrxRs and Fno/Fnr indicating that most methanogens have 

evolved to utilize NADPH-dependent thioredoxin systems. Further work examined possible roles 

for the remaining MaTrxs that are not reducing partners to MaTrxR. MaTrx3 and MaTrx6 were 

shown to be localized to the membrane of M. acetivorans where they may play a role in 

cytochrome c maturation. MaTrx3 and MaTrx1 appear to have disulfide oxidase activity 

(generate disulfide bonds). The MaTrx3/6 pair may perform a role at the membrane similar to 

cytochrome maturation systems in other prokaryotes, where the cytochrome is oxidized 

(MaTrx3) to prevent improper metal incorporation and then reduced (MaTrx6) just before heme 

insertion. This chapter was published and is available online. 

 Chapter III- The ability of the MaTrxR-MaTrx7 system to serve as a broad thiol redox 

maintenance system to M. acetivorans was addressed. A MaTrx7 mutant was generated that 

could not completely reduce its substrates and anchored to a resin. Air oxidized M. acetivorans 

cell lysate was incubated with the reduced resin and an alkylated resin (negative control) to 

mimic post oxidative stress exposure, and the resulting proteins identified via mass spectrometry. 

Nearly 700 proteins were identified, supporting a role for the MaTrxR-MaTrx7 system as a 

broad thiol redox maintenance system. Additionally, many enzymes that have activities 

dependent upon Trx in other studies were identified as targets to MaTrx7, and thus it is likely 

that many in vivo targets were identified as well. The ability of M. acetivorans to produce 
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NADPH without additional electron donor was addressed both before and after aerobic exposure 

to determine if the MaTrxR-MaTrx7 system could function after oxidative stress. NADPH was 

produced at the same rate aerobically as anaerobically and in relatively large quantities, 

supporting that some source of oxygen insensitive electrons and the enzymes needed to utilize it 

exist in M. acetivorans. This work will be published at a future date. During this work Santiago-

Martinez et al in 2016 released a study indicating that M. acetivorans contained oxygen 

insensitive glycolysis enzymes and intermediates that could be used to generate relatively large 

quantities of NADPH. It is likely that during methanogenesis glycogen is stored and can be 

oxidized in the event of oxidative stress to serve as an electron donor for oxidative repair. 

Collectively this work supports that the MaTrxR-MaTrx7 system can serve as a broad thiol redox 

maintenance system post-oxidative stress. 

Chapter IV- This work examined one of the identified proteins from chapter III in vivo. The 

transcriptional regulator MsvR binds to DNA when internal thiols are reduced to repress 

transcription. In lieu of strong, non-physiologically relevant reductants, such as dithiothreitol, the 

MaTrxR-MaTrx7 system was used to determine if the system could reduce MsvR as observed in 

chapter III while simultaneously exhibiting a mode of redox sensing and transcriptional 

regulation in M. acetivorans. The work presented supports that the MaTrxR-MaTrx7 system can 

serve as a redox partner to MsvR. The work performed was a part of a previous graduate student 

at the University of Arkansas Fayetteville thesis, and was performed as a collaborative project 

among Ryan C. Sheehan and Addison C. McCarver. This chapter has been published and is 

available online. 
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Figures 

Figure 1 

 

Figure 1. NADPH-dependent thioredoxin system where NADPH is oxidized by thioredoxin 

reductase (TrxR) to reduce the bound FAD group and ultimately the internal cysteine residues. 

The dithiols in TrxR can then reduce oxidized thioredoxin (Trx), and thus allowing Trx to reduce 

a wide array of target proteins. Figure adapted from Holmgren et al 2010. 

 

Figure 2 

 

Figure 2. The glutaredoxin system components where NADPH is oxidized by glutathione 

reductase (GR) to reduce bound FAD and ultimately internal cysteine residues. Thiols in GR can 

then reduce oxidized glutathione (GSSG), and reduced glutathione (GSH) can reduce 

glutaredoxin (Grx). Reduced Grx redudces a wide array of target proteins. 
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Figure 3 

 

Figure 3. Simplified diagram of the three methanogenic pathways: Acetoclastic, CO2, and 

methylotrophic pathways. Presence of FeS clusters in proteins are indicated by red boxes. 

Abreviations: Cdh/Acs, carbon monoxide dehydrogenase/acetyl-CoA synthase; Mtr, methyl-

H4MPT coenzyme M methyltransferase; Mcr, methyl-coenzyme M reductase; Hdr, CoM-S-S-

CoB heterodisulfide reductase; CoM and CoB, reduced coenzymes M and B. 
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Figure 4 

 

Figure 4. Sources of methanogen growth substrates indicating the role of methanogens in global 

carbon cycles. During anaerobic fermentation carbon dioxide (CO2), hydrogen (H2), acetate, and 

methylated compounds accumulate. Gasses like CO2 and H2 can reenter the atmosphere or 

alternatively be used by methanogens to produce methane. The solutes acetate and methylated 

compounds must be consumed by methanogens to produce methane for the carbon to reenter the 

atmosphere and complete the carbon cycle. 
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Abstract  

 The thioredoxin system, composed of thioredoxin reductase (TrxR) and thioredoxin 

(Trx), is widely distributed in nature, where it serves key roles in electron transfer and in defense 

against oxidative stress. Although recent evidence reveals Trx homologues are almost 

universally present among the methane-producing archaea (methanogens), a complete 

thioredoxin system has not been characterized from any methanogen. We examined the 

phylogeny of Trx homologues among methanogens and characterized the thioredoxin system 

from Methanosarcina acetivorans. Phylogenetic analysis of Trx homologues from methanogens 

revealed eight clades, with one clade containing Trxs broadly distributed among methanogens.  

The Methanococci and Methanobacteria each contain one additional Trx from another clade, 

respectively, whereas the Methanomicrobia contain an additional five distinct Trxs. M. 

acetivorans, a member of the Methanomicrobia, contains a single TrxR (MaTrxR) and seven Trx 

homologues (MaTrx1-7), with representatives from five of the methanogen Trx clades.  Purified 

recombinant MaTrxR had DTNB reductase and oxidase activities. The apparent Km value for 

NADPH was 115-fold lower than the apparent Km value for NADH, consistent with NADPH as 

the physiological electron donor to MaTrxR. Purified recombinant MaTrx2, MaTrx6, and 

MaTrx7 exhibited DTT- and lipoamide-dependent insulin disulfide reductase activities. 

However, only MaTrx7, which is encoded adjacent to MaTrxR, could serve as a redox partner to 

MaTrxR. These results reveal that M. acetivorans harbors at least three functional and distinct 

Trxs, and a complete thioredoxin system composed of NADPH, MaTrxR, and at least MaTrx7. 

This is the first characterization of a complete thioredoxin system from a methanogen, which 

provides a foundation to understand the system in methanogens. 
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Introduction 

Thiol-disulfide exchange reactions are universal among all living cells. The most 

ubiquitous is the thioredoxin system, composed of thioredoxin (Trx) and the partner enzyme 

thioredoxin reductase (TrxR). TrxR and Trx are found in species from all three domains of life 

and the thioredoxin system is well characterized in species from the Bacteria and Eukarya 

domains, including humans [1].  The thioredoxin system plays a primary role in cellular redox 

maintenance and reduces disulfides in certain proteins. The two basic functions of the system are 

to supply electrons to biosynthetic enzymes, including ribonucleotide reductase, methionine 

sulfoxide reductase, and sulfate reductases, and to reduce inter- and intramolecular disulfides in 

oxidized proteins. TrxR specifically catalyzes the reduction of the disulfide in oxidized Trx using 

metabolism-derived NADPH as a source of reducing equivalents. The thioredoxin system also 

serves a critical role in protection from oxidative stress in many organisms [2]. Trx can reduce 

deleterious disulfide bonds in oxidatively-damaged proteins and also serve as a reducing partner 

to peroxiredoxins, which scavenge hydrogen peroxide. In bacteria, plants, and mammals the 

thioredoxin system plays a role in the regulation of gene expression and cell signaling [3]. The 

thioredoxin system is also important to the survival of pathogens [4]. Despite the ubiquitous 

importance of Trx, the properties and role(s) of the thioredoxin system in species from the 

domain Archaea is far less understood.  

 TrxR is a member of the dimeric flavoprotein family of pyridine nucleotide disulfide 

oxidoreductases, which includes lipoamide dehydrogenase, glutathione reductase, and mercuric 

reductase. Each TrxR subunit contains a FAD molecule and a redox-active disulfide, but two 

distinct types are currently known, a low molecular weight (L-TrxR) type comprised of ~ 35 kDa 

subunits and a high molecular weight (H-TrxR) type comprised of ~55 kDa subunits [5]. Both 
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types of TrxR possess a NADPH-binding site and obtain reducing equivalents from NADPH. H-

TrxR is found primarily in higher eukaryotes and the protozoan malaria parasite, while L-TrxR is 

found in archaea, bacteria, and eukaryotes.  Trxs are small proteins (~12 kDa) that contain a 

CXXC motif, whereby the two active site cysteines are separated by two amino acid residues. 

The canonical Trx active site motif is WCGPC, which is present in well-characterized Trxs from 

Escherichia coli and yeast [1]. Many organisms possess multiple Trxs, which can have distinct 

or overlapping activities and specificities. For example, E. coli and yeast contain two and three 

Trxs, respectively [6]. However, plants contain numerous Trxs which function in all 

compartments of plant cells [7].  

 Complete NADPH-dependent thioredoxin systems have been characterized from three 

archaea, Sulfolobus solfataricus, Aeropyrum pernix K1, and Pyrococcus horikoshii [8-10]. All 

three species are hyperthermophiles, with P. horikoshii being the only anaerobe. However, the 

target proteins of each system and the importance of the system to the metabolism and oxidative 

stress response of each archaeon is largely unknown. The methane-producing archaea 

(methanogens) are strict anaerobes and are the only organisms capable of biological methane 

production. There are currently four Classes of methanogens, the Methanopyri, Methanococci, 

Methanobacteria, and Methanomicrobia [11]. Species within the Methanopyri, Methanococci, 

and Methanobacteria are only capable of producing methane by the reduction of CO2. However, 

members of the Methanosarcinales, within the Methanomicrobia, are more metabolically 

diverse, capable of methanogenesis with methylated compounds and acetate. Moreover, only 

species of the Methanosarcinales possess cytochromes and are capable of producing methane 

from acetate, which is estimated to account for two-thirds of all biologically-produced methane 

[11]. Recent evidence revealed the presence of Trx homologues within all methanogens, except 
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the single member of the Methanopyrales [12]. Thus, Trx likely serves a fundamental role in 

methanogens. Members of the Methanomicrobia are predicted to contain approximately twice as 

many Trxs as the Methanococci and Methanobacteria (~4 vs 2), which is likely a result of the 

metabolic diversity and larger genomes of the Methanomicrobia. The majority of species within 

the Methanosarcinales contain >5 Trx homologues [12]. A few Trxs have been characterized 

from methanogens, including Methanocaldococcus jannaschii and Methanothermobacter 

thermautotrophicus [13-15]. Recent evidence revealed Trx in M. jannaschii targets fundamental 

processes, including proteins involved in methanogenesis [12].  However, a complete 

thioredoxin system, in particular, a NADPH-dependent TrxR, has yet to be characterized from a 

methanogen. Moreover, none of the components of the thioredoxin system from a member of the 

Methanosarcinales have been characterized. We are particularly interested in deciphering the 

role of the thioredoxin system in the Methanosarcinales, using Methanosarcina acetivorans as a 

model system. We report here that M. acetivorans contains seven Trx homologues and a single 

TrxR homologue. Purification and characterization studies reveal that M. acetivorans contains at 

least three functional Trxs and a complete NADPH-dependent thioredoxin system.  

Materials and methods 

Phylogenetic analysis. 123 Trx amino acid sequences were obtained from GenBank using their 

accession numbers provided by Sustani et al [12] and an additional 17 Trx amino acid sequences 

were included (see Table S1). The 140 Trx amino acid sequences were aligned using MUSCLE 

[16], and columns in the alignment containing a fraction of gaps of 0.6 or greater were omitted 

using trimAl [17]. The trimmed alignment file was inputted into RAxML 7.3.1 [18] where a 

rapid bootstrap analysis was performed using 1,000 bootstrap replicates, 1,070,065 parsimony 

random seeds, and 3,535,411 rapid bootstrap random seeds.  The best scoring maximum 
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likelihood (ML) tree was obtained and bootstrap values greater than 50% were included on the 

nodes within the tree (Fig. S1). The resulting tree file from RAxML was pruned to 50 taxa using 

PAUP, and nodes with >50% support were reported (Fig. 1). 

Cloning of M. acetivorans thioredoxin system genes.  The genes encoding MaTrxR, MaTrx2, 

MaTrx6, MaTrx6ΔSp (deleted of signal peptide amino acids 1-30), and MaTrx7 (see Table 1 for 

gene designations) were PCR amplified using chromosomal DNA from M. acetivorans C2A as a 

template. All forward and reverse primers contained the restriction enzyme sites NdeI and 

BamHI respectively. Purified PCR products and the pET28a plasmid were digested with Nde1 

and BamH1 for 16 hr at 37 °C. Digested PCR products and vector were ligated using T4 DNA 

ligase for 16 hr at 16 °C. Escherichia coli DH5α cells were transformed with the ligation 

reactions and cells containing plasmid were selected on LB agar containing 100 µg/mL 

kanamycin. Plasmids containing matrxR, matrx2, matrx6, matrx6ΔSp and matrx7 were verified 

by DNA sequencing and named pDL335, pDL331, pDL333, pDL332, and pDL336 respectively. 

Purification of recombinant proteins. Proteins were expressed in E. coli Rosetta DE3 (pLacI) 

transformed with pDL335, pDL331, pDL332, pDL333, or pDL336. Each E. coli expression 

strain was grown in LB medium containing kanamycin (50 µg/mL) and chloramphenicol (17 

µg/mL) at 37°C to an OD600 of 0.5-0.7. Protein expression was induced with 500 µM isopropyl-

β-D-thiogalactopyranoside and cultures were incubated at 25°C for 16 hr. Cells were harvested 

by centrifugation and stored at -80 °C.  

For the purification of MaTrxs, cell pellets (2-4 g) were resuspended in 25-30 mL of 

buffer A (20 mM Tris-HCl, 500 mM NaCl pH 8.0) containing a few crystals of DNaseI and 

benzamidine. Cells were lysed by three passes in a French pressure cell at a minimum of 100 
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MPa. Cell lysate was centrifuged at 41,000 x g for 35 min at 4 °C. The supernatant containing 

the expressed protein was filtered (pore size, 0.45 µm) and loaded by gravity flow onto a column 

containing 5 mL of Ni2+-agarose resin (Genscript). The column was then washed with 25 ml of 

buffer A three separate times with the second wash containing 10 mM imidazole. The column 

was then incubated in Buffer A containing 50 U of thrombin at 25 °C for 16 hr. Thrombin-

cleaved protein was eluted from the column by the addition of 10 mL of buffer A. The eluate 

was passed through a 1 mL benzamidine column (GE Healthcare) to remove thrombin. The 

flowthrough was concentrated using a Vivacell concentrator (Sartorius) with a 5,000-Dalton 

molecular weight cutoff under nitrogen flow. The concentrated protein was desalted into buffer 

B (50 mM Tris-HCl, 150 mM NaCl pH 7.2) using a PD-10 column (GE Healthcare). The 

desalted protein was stored at -80 °C. 

For the purification of MaTrxR, cell lysate was prepared as described above, except that 

10% glycerol was added to buffer A. The supernatant containing the expressed protein was 

filtered (pore size, 0.45 µm) and loaded by gravity flow onto a column containing 5 mL of Ni2+-

agarose resin (Genscript). The column was washed with 25 mL of buffer A two separate times 

with the second wash containing 10 mM imidazole. Total bound protein was eluted from the 

column by two steps, first the addition of 10 mL of buffer A containing 75 mM imidazole, 

second by the addition of 10 mL of buffer A containing 150 mM imidazole. The eluates were 

combined and concentrated using a Vivacell concentrator with a 10,000-Dalton MW cutoff 

under nitrogen flow. The concentrated protein was desalted into buffer C (50 mM Tris-HCl, 150 

mM NaCl, 10% glycerol pH 7.2) using a PD-10 column and stored at -80 °C. 

Reconstitution of MaTrxR with FAD was carried out by incubation of purified MaTrxR 

in buffer C containing 1 mM dithiothreitol and a 10 molar excess of FAD at 25 °C for 1 hr. The 
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protein was desalted into buffer C using a NAP-5 column (GE Healthcare). Incorporation of 

FAD into MaTrxR was monitored by UV-visible spectroscopy and quantified based on the ratio 

of A280/A460.  

Thioredoxin reductase activity assays. The ability of NADH and NADPH to reduce the FAD 

within MaTrxR was monitored by UV-visible spectroscopy before and after incubation of 

MaTrxR in buffer B with a >10-fold molar excess of either NADH or NADPH within an 

anaerobic chamber (Coy Laboratories). Reduction of DTNB by purified MaTrxR was monitored 

by the increase in absorbance at 412 nm using either NADPH or NADH as electron donors. The 

assays were performed anaerobically in buffer B containing 0.5 µM MaTrxR and 1 mM DTNB. 

The reactions were initiated by the addition of NADPH (1-20 µM) or NADH (5-2000 µM). The 

concentration of TNB produced was calculated using ε412 =14,150 M-1 cm-1 [19]. The apparent 

kinetic constants were determined by nonlinear regression of Michaelis-Menten plots using 

Microsoft Excel with the XL_kinetics add-in. Measured activities in all assays were corrected for 

by subtracting the rates of control reactions without MaTrxR. Three independent assays were 

performed at each NADPH or NADH concentration. 

 NADH and NADPH oxidase activity of MaTrxR was measured spectrophotometrically 

by the decrease in absorbance at 340 nm in the presence of oxygen. Reactions contained 160 µM 

NADH or NADPH in buffer B. The reactions containing NADH as the electron donor contained 

1 µM MaTrxR, while the NADPH-dependent reactions contained 100 nM MaTrxR. Oxidase 

activity of MaTrxR with each reductant was calculated using ε340 =6,220 M-1 cm-1. 

The ability of MaTrxR to use F420H2 as an electron donor was examined with DTNB 

reduction assays. F420 purified from Mycobacterium smegmatis was provided as gift from Lacy 
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Daniels (Texas A&M University, Kingsville). F420 was chemically reduced to F420H2 using 

sodium borohydride as previously described [20]. Assays were performed anaerobically in buffer 

A containing 0.5 µM MaTrxR and 1 mM DTNB, and were initiated by the addition of 50 µM 

F420H2. 

Thioredoxin activity assays: Thioredoxin activity was determined by the turbidimeteric insulin 

reduction assay using DTT, lipoamide, glutathione, or coenzyme M as potential electron donors 

as described [21].  The standard assay mixture contained 100 mM potassium phosphate buffer 

(pH 7), 1 mM EDTA, 130 µM insulin, and up to 11 µM Trx. Standard assays contained 330 µM 

DTT, 660 µM glutathione or 660 µM coenzyme M, whereas lipoamide-dependent assays 

contained 50 µM lipoamide, 0.4 units of bovine lipoamide dehydrogenase (Sigma-Aldrich), and 

500 µM NADH. Reactions were initiated by the addition of either reductant. An increase in the 

absorbance at 650 nm was monitored every 0.5 min.  Activity was expressed as the ratio of the 

slope of a linear part of the turbidity curve to the lag time (reported as ΔA650/min2, 10−3), as 

described previously [22].  E. coli Trx1 (Sigma-Aldrich) was assayed for comparison. 

MaTrxR-MaTrx interaction assays. MaTrxR activity with thioredoxin substrates was assayed 

using the turbidimetric insulin reduction assay. The assays were performed anaerobically in 400 

µL containing 100 mM potassium phosphate buffer (pH 7), 1 mM EDTA, 130 µM insulin, 0.5 

µM MaTrxR, and 5 or 10 µM Trx. Reactions were initiated by the addition of either NADH (1 

mM) or NADPH (350 µM). An increase in the absorbance at 650 nm was monitored every 0.5 

min.   

 MaTrxR-MaTrx7 kinetic parameters were obtained with assays that used oxidized 

glutathione as a substrate for thioredoxin as described [23]. The assays were performed 
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anaerobically in buffer B containing 0.5 µM MaTrxR, 1 mM oxidized glutathione (Sigma 

Aldrich), and increasing amounts of MaTrx7. The reactions were initiated by the addition of 

NADPH (100 µM). Activity was monitored by the decrease in absorbance at 340 nm by the 

oxidation of NADPH (ε340=6,220 M-1 cm-1). The apparent kinetic constants were determined by 

nonlinear regression of Michaelis-Menten plots using Microsoft Excel with the XL_kinetics add-

in.  

Results 

Phylogenetic analysis of methanogen thioredoxins. Recent analysis of the sequenced genomes 

of methanogens identified 123 Trx homologues [12]. Using E. coli Trx1 (EcTrx1) and M. 

jannaschii Trx1 (MjTrx1) as BLAST queries, we found seven Trx homologues encoded in the 

genome of M. acetivorans C2A, which is two more than previously reported [12]. Because of 

this discrepancy we further searched the genomes of methanogens for additional Trxs, finding 

another 18 (Table S1).  On average one additional Trx homologue was found specifically in 

some members of the Methanomicrobia.  However, four additional Trx homologue were found 

in the genome of Methanosarcina barkeri str. Fusaro, bringing the total to 9 Trx, the most 

predicted in any methanogen. All of the sequenced Methanosarcina species contain at least 

seven Trx homologues (Table S1).  

 Phylogenetic analysis of the methanogen Trx homologues revealed a relationship 

between Trxs at the Class and Order levels. Figure 1 is a simplified version of the complete 

phylogenetic tree (Fig. S1). Based on the phylogeny, we identified at least 8 clades (A-H), 

recognizing that some of these groupings have more support than others. Clade A contains the 

largest number of Trxs, including sequences from the Methanococci, Methanobacteria, and 

Methanomicrobia. M. jannaschii Trx2, which was shown to have limited Trx activity [12], is a 
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member of clade A. Clade A also contains MTH895 from Methanothermobacter 

thermautotrophicus ΔH for which the structure has been determined [14]. Clades B and C only 

include Trxs from the Methanobacteria and Methanococci, respectively, indicating Trxs within 

these clades are distinct from other Trxs found in the Methanomicrobia.  M. jannaschii Trx1 

(MjTrx1), which has Trx activity and was shown to target fundamental processes [12, 15], is 

found in clade C. Clades D through H contain Trxs that are restricted to members of the 

Methanomicrobia. All seven Trxs of the well-supported clade D are restricted to the Order 

Methanosarcinales and are encoded by a gene that is directly upstream of the gene encoding the 

putative TrxR in each species. This gene location indicates these Trxs likely serve as a substrate 

for the corresponding TrxR. Clade E contains Trxs that have a predicted N-terminal signal 

peptide, indicating these Trxs are likely extracellular. Interestingly, many of the genes encoding 

clade E Trxs are directly upstream of a gene encoding a homolog of CcdA, which functions in 

transferring electrons to extracellular ResA, a Trx-like protein. CcdA/ResA are components of 

cytochrome c biogenesis system II [24].  Thus, clade E Trxs may play a role in cytochrome c 

maturation or in the general reduction of disulfides in extracellular proteins.  All clade F Trxs 

contain the consensus Trx active site motif (WCGPC) and are not located near genes that hint at 

a particular function or location. Clade G Trxs are distributed within the Methanomicrobia, but 

are not present in the genomes of Methanosarcina species. However, Trxs within clade H are 

primarily restricted to members of the order Methanosarcinales. Overall, it appears that the 

majority of methanogens contain a clade A Trx, but methanogens within the Methanomicrobia 

have acquired at least five different Trxs that are distinct from the additional Trxs found in the 

Methanococci and Methanobacteria.  
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Methanosarcina acetivorans thioredoxin homologues.  We have named the seven Trx 

homologues in M. acetivorans C2A MaTrx1-7 based on gene annotation number (Table 1).  

Overall, the sequence identity between the seven MaTrxs is <40%, with the exception of MaTrx4 

and MaTrx5 (~48%) and MaTrx3 and MaTrx6 (~70%). M. acetivorans contains Trx homologues 

from five of the eight identified Trx clades based on phylogeny (Fig. 1 and Table 1), with 

MaTrx4/5 and MaTrx3/6 of the same clade. Each MaTrx contains an active site CXXC-motif 

(Fig. S2) and has 30-40% overall sequence identity to EcTrx1. Of the seven MaTrxs, only 

MaTrx2 and MaTrx6 have the conventional WCGPC active site motif (Fig. S2). MaTrx1 

contains a CPYC motif, typical of glutaredoxins [1]. The genes encoding MaTrx1 and MaTrx2 

are likely monocistronic. MaTrx3 and MaTrx6 contain a putative N-terminal signal peptide, 

including a lipobox (Fig. S2) [25], indicating each is likely targeted across the membrane and 

function extracellularly. The gene encoding MaTrx6 is adjacent to ccdA encoding a membrane 

protein predicted to function in cytochrome c maturation [24]. The gene encoding MaTrx3 is 

downstream of ma3703 encoding a predicted cell surface protein. MaTrx4 and MaTrx5 are the 

smallest MaTrxs (Table 1) and have the same active site sequence (Fig. S2). The gene encoding 

MaTrx4 may be co-transcribed with ma3937 and ma3939, each encoding a hypothetical protein. 

The gene encoding MaTrx5 is likely in an operon, adjacent to maTrx4, which includes 

hypothetical proteins and a universal stress protein. MaTrx7 is encoded by a gene directly 

upstream of ma1368, encoding the only predicted TrxR in M. acetivorans. Four (MaTrx1, 

MaTrx2, MaTrx6, and MaTrx7) of the MaTrxs were detected in previous proteomic analyses 

[26-28], consistent with each having cellular function. 
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Conserved TrxR in the Methanosarcinaceae. A BLAST with the EcTrxR amino acid sequence 

revealed the majority of methanogens contain at least one protein with homology to EcTrxR, 

including conservation of the coenzyme-binding and active site residues (data not shown). 

Therefore, the majority of methanogens may contain a complete thioredoxin system, composed 

of a L-TrxR and at least one Trx. Interestingly, Methanopyrus kandleri AV19, which does not 

contain an apparent Trx [12], encodes a putative TrxR (MK1561) that contains conserved 

coenzyme-binding and active-site residues. The TrxR in M. kandleri may be linked to proteins 

other than Trx.  The TrxR in seven of the sequenced species of the Methanosarcinaceae (listed 

in Fig. S3) is encoded downstream of a clade D Trx. The Methanosarcinaceae TrxRs share 

>50% sequence identity to each other and >35% sequence identity to EcTrxR. Moreover, the 

FAD-binding, NAD(P)H-binding, and active site cysteine residues are all conserved in the 

Methanosarcinaceae TrxRs, including the only TrxR from M. acetivorans (Fig. S3 and Table 

1). These results indicate that the Methanosarcinaceae have at least one NAD(P)H-dependent 

TrxR, which likely serves as the reducing partner to at least the clade D Trx in each species. 

 

Purification and biochemical properties of recombinant MaTrxR. To examine the catalytic 

properties of MaTrxR, His-tagged recombinant MaTrxR was purified to homogeneity as 

revealed by SDS-PAGE (Fig. 2). Purified MaTrxR was slightly yellow indicative of the presence 

of flavin.  The visible absorption spectrum of purified MaTrxR revealed absorbance maxima at 

380 and 460 nm (Fig. 3A), typical for flavoproteins [29]. However, as-purified MaTrxR yielded 

an A280/A460 ratio of 13.0, higher than the ratio observed for other TrxRs, including EcTrxR [29], 

indicating recombinant MaTrxR may not have full incorporation of FAD.  To determine if as-

purified MaTrxR was specific for FAD and had full incorporation, the protein was incubated 
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with excess FAD in the presence of DTT and subsequently re-purified. FAD-reconstituted 

MaTrxR had a visible spectrum with a substantial increase in absorbance at 380 and 460 nm 

(Fig. 3A), resulting in an A280/A460 ratio of 3.3 consistent with full incorporation of FAD. FAD-

reconstituted MaTrxR was used for all subsequent analyses.  

 The majority of TrxRs are reduced by NADPH and NADH, but have a strong preference 

for NADPH [5]. Anaerobic incubation of MaTrxR with excess NADPH or NADH resulted in 

rapid reduction of the bound FAD, as revealed by the decrease in absorbance at 460 nm (Fig. 3). 

Exposure of both NADH- or NADPH-reduced MaTrxR to oxygen resulted in a rapid oxidation 

of the bound FAD and restoration of the absorbance maxima at 380 and 460 nm (data not 

shown).   Similar to TrxR from S. solfataricus [30], MaTrxR exhibited NADPH- and NADH-

dependent oxidase activity (Table 2). Although, the majority of L-TrxRs are incapable of direct 

reduction of DTNB, unlike H-TrxRs, L-TrxRs characterized from some archaea and bacteria 

have been shown to catalyze the direct reduction of DTNB [9, 31, 32]. MaTrxR also possesses 

DTNB-reductase activity with both NADPH and NADH (Table 2), similar to L-TrxRs from 

other archaea [9, 31].   

 To examine coenzyme specificity of MaTrxR, the DTNB reduction assay was used to 

determine kinetic parameters with either NADPH or NADH as the electron donor. The apparent 

Km value for NAPDH was 6.3 ± 0.5 µM, with a catalytic efficiency of 6.2 (µM-1 min-1), which 

was approximately 100 times higher than the value obtained with NADH (Table 3). The 

apparent Km value for NADPH is similar to those from other TrxRs, including EcTrxR [33]. 

DTNB reduction activity of MaTrxR with F420H2 as the electron donor was below the detection 

limit (data not shown). These results are consistent with MaTrxR as a NADPH-dependent TrxR, 

similar to TrxRs from bacteria, other archaea, and eukaryotes.  
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Purification and biochemical properties of MaTrx2, MaTrx6, and MaTrx7.  MaTrx2, 

MaTrx6, and MaTrx7 were chosen for initial biochemical characterization, because all three 

proteins have been detected in the proteome of M. acetivorans [27, 28] and MaTrx2 and MaTrx6 

each contain the consensus Trx active site (WCGPC) (Fig. S2). Although, MaTrx7 lacks the 

consensus Trx active site, it is linked to MaTrxR on the chromosome of M. acetivorans, 

indicating MaTrxR may be specific for MaTrx7. MaTrx2, MaTrx6, and MaTrx7 were expressed 

in E. coli with a thrombin-cleavable His-tag. His-tagged MaTrx2 and MaTrx7 were found in the 

soluble (cytoplasmic) fraction of E. coli, whereas full length MaTrx6 was found in the insoluble 

(membrane) fraction (data not shown), consistent with the predicted location of each MaTrx 

(Table 1). However, expression of MaTrx6 deleted of the putative signal peptide (Fig. S2), 

designated MaTrx6Δsp, resulted in MaTrx6 being found in the soluble fraction of E. coli lysate 

(data not shown). This result suggests E. coli recognizes full-length MaTrx6 as a membrane-

associated protein, consistent with MaTrx6 containing a signal peptide. MaTrx2, MaTrx6Δsp, 

and MaTrx7, each with the His-tag removed, were purified to homogeneity as revealed by SDS-

PAGE (Fig. 2).  

MaTrx2, MaTrx6Δsp, and MaTrx7 were examined for disulfide reductase activity using 

the insulin reduction assay, with DTT, lipoamide, glutathione, or coenzyme M as the source of 

reducing equivalents [21]. All three purified MaTrxs exhibited both DTT- and lipoamide-

dependent insulin reduction activity (Fig. 4), but no activity was observed with glutathione or 

coenzyme M (data not shown), typical for Trxs.  However, despite both MaTrx2 and MaTrx6Δsp 

possessing the consensus Trx active site motif, the insulin reduction activity of MaTrx2 was 8-18 

fold lower than the activities determined for MaTrx6Δsp (Fig. 4, insets). The insulin reduction 

activity of MaTrx6Δsp was also approximately 2-fold higher than the activity determined for 
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MaTrx7. The DTT-dependent insulin reduction activity of EcTrx1, assayed under the same 

experimental conditions, was 785 (ΔA650/min2 × 10−3)/mg, similar to the activity obtained for 

MaTrx7, but 2-fold lower than MaTrx6Δsp (Fig. 4). These results reveal that MaTrx2, MaTrx6, 

and MaTrx7 are capable of reducing disulfides in proteins and therefore have the capacity to 

function as in vivo disulfide reductases. Also, MaTrx6 has the highest disulfide reductase activity 

of the MaTrxs examined, which could be related to MaTrx6 likely being an extracellular protein.  

 

Specificity of MaTrxR for MaTrxs. The ability of MaTrxR to serve as a direct electron donor 

to MaTrx2, MaTrx6Δsp, and MaTrx7 was examined. Initial assays examining MaTrxR-

dependent NADPH or NADH oxidation in the presence of each oxidized MaTrx as an electron 

acceptor indicated MaTrxR is specific for MaTrx7 (data not shown). The ability of MaTrxR to 

form a complete thioredoxin system with MaTrx2, MaTrx6Δsp, or MaTrx7 was tested using the 

insulin reduction assay. Of the three MaTrxs, only MaTrx7 catalyzed the reduction of insulin 

when incubated with MaTrxR and either NADPH or NADH at a concentration above the 

apparent Km for each coenzyme (Fig. 5). Neither MaTrx2 nor MaTrx6Δsp at twice the 

concentration of MaTrx7 resulted in reduction of insulin above background. It is not surprising 

that MaTrx6 is not directly reduced by MaTrxR, since MaTrx6 is probably extracellular. On the 

other hand, MaTrx2 is likely cytoplasmic, but these data revealed MaTrx2 is not a redox partner 

to MaTrxR. Interestingly, EcTrx1, at twice the concentration of MaTrx7, exhibited MaTrxR-

dependent insulin reduction activity (Fig. 5), albeit 100-fold lower than MaTrx7. The MaTrxR-

EcTrx1 activity with NADPH was 2.0 ± 0.26 (ΔA650/min2 × 10−3)/mg compared to MaTrxR-

MaTrx7 with NADPH of 223 ± 30 (ΔA650/min2 × 10−3)/mg. The DTNB reductase assay is 

commonly used to determine TrxR-Trx reaction kinetic parameters; but, since MaTrxR has 
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DTNB reductase activity, this assay could not be used to determine the MaTrxR-MaTrx7 kinetic 

parameters. However, since MaTrxR could not reduce oxidized glutathione (data not shown), the 

GHOST assay, which uses oxidized glutathione as a substrate for Trx [23], was utilized to 

determine the MaTrxR-MaTrx7 kinetic parameters (Table 3). The apparent Km value for MaTrx7 

is higher than that observed for E. coli and yeast Trxs [33, 34], but is comparable to Km values 

obtained for Trxs from other archaea [8, 9]. These results revealed that M. acetivorans contains a 

complete NADPH-dependent thioredoxin system comprised of MaTrxR and at least MaTrx7. 

For MaTrx2 and MaTrx6 to function in vivo these Trxs must be linked to a redox partner other 

than MaTrxR. 

Discussion 

Methanogens are strictly anaerobic prokaryotes that were likely present prior to the 

appearance of oxygen on earth. Methanogens are specialists, only capable of growth by 

methanogenesis, which requires unique cofactors, coenzymes, and enzymes. Methanogens lack 

glutathione [35-37], but contain small thiol-containing coenzymes, such as CoA, coenzyme M, 

and coenzyme B [11]. Moreover, the primary electron carriers in methanogens are F420 and 

ferredoxin, instead of NAD/NADP, which are used by the majority of other organisms. 

Therefore, it is plausible that methanogens may contain variant thioredoxin systems. An 

understanding of the thioredoxin system(s) in methanogens may provide insight into the 

evolution and diversification of the thioredoxin system. Recent evidence revealed MjTrx1 from 

M. jannaschii is capable of reducing disulfides in numerous oxidized M. jannaschii proteins, 

including enzymes directly involved in methanogenesis and biosynthesis [12]. This result 

indicates Trx likely played a fundamental role in cells before the rise of atmospheric oxygen 

levels. MjTrx1 is a member of methanogen Trx clade C and is distinct from Trx homologues 
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found in other methanogens (Fig. 1). The other Trx in M. jannaschii (MjTrx2) is a member of 

clade A and was shown to have limited insulin disulfide reduction activity [12], indicating it may 

not function as a true Trx. Thus, M. jannaschii and the majority of the Methanococci may have 

one primary Trx. In contrast, the Methanomicrobia contain 2-4 times as many Trxs as the 

Methanococci, all of which appear distinct from MjTrx1 (Fig. 1). For example, M. acetivorans, a 

member of the Methanomicrobia and the focus of this study contains at least five distinct Trx 

homologues. Why do some methanogens apparently have a need for additional Trxs? 

 Members of the Methanomicrobia, specifically the Methanosarcinales, are the most 

metabolically diverse methanogens, capable of hydrogenotrophic (CO2-reducing), 

methylotrophic, and aceticlastic methanogenesis [11]. Methanomicrobia typically have larger 

genomes than the Methanococci and Methanobacteria, which are restricted to hydrogenotrophic 

methanogenesis. M. acetivorans possesses the largest genome of any methanogen, and is capable 

of growing by methylotrophic and aceticlastic methanogenesis [38]. Although, M. acetivorans is 

incapable of hydrogenotrophic methanogenesis, it can conserve energy by CO-dependent 

reduction of CO2 to CH4 [27, 39]. The growth of M. acetivorans with different substrates (CO, 

methanol, and acetate) requires large-scale changes in protein and gene expression, including 

electron carriers, electron transport system components, and methanogenesis enzymes [27, 28, 

40]. Thus, M. acetivorans, and other members of the Methanomicrobia may have acquired 

additional Trxs that rely on different redox partner(s) and are specific for different targets to 

correlate with changes in electron carriers and enzymes used during growth with CO, methylated 

substrates, and acetate. For example, F420 is the primary electron carrier used during growth with 

methanol, whereas ferredoxin is the primary electron carrier during growth with acetate [41].  
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We show here that M. acetivorans contains a complete thioredoxin system comprised of 

NADPH, MaTrxR, and at least MaTrx7. MaTrx7 is a member of methanogen Trx Clade D, 

which contains Trxs only found in the Methanosarcinales. Given the gene location and lack of 

activity with MaTrx2 and MaTrx6, MaTrxR is likely specific for MaTrx7. MaTrxR-MaTrx7 may 

have been acquired from bacteria to carry out a function specific to members of the 

Methanosarcinales. Outside of the Methanosarcinales, the amino acid sequence of MaTrxR has 

highest identity to TrxR (TOL2_C00640) from Desulfobacula toluolica Tol2 (51%), an 

anaerobic sulfate-reducing bacterium [42]. Interestingly, D. toluolica Tol2 and several other 

sulfate-reducing bacteria have the same gene arrangement (trx-trxR) as in the 

Methanosarcinales. Thus, it is possible MaTrxR and MaTrx7 were acquired from sulfate-

reducing bacteria, which is consistent with the previous proposal that gene acquisition from 

anaerobic bacteria led to the evolution of the Methanomicrobia [43, 44].  Enzyme assays 

revealed MaTrxR is specific for NADPH and cannot be reduced by F420H2. NADP is not directly 

reduced by methanogenesis enzymes, signifying reducing equivalents are not directly transferred 

to MaTrxR from a methanogenesis enzyme. However, methanogens contain enzymes that could 

mediate electron transfer from F420H2 or reduced ferredoxin to NADP. F420H2:NADP 

oxidoreductase (Fno) catalyzes the reversible hydride transfer from F420H2 to NADP.  Fno 

functions to produce NADPH for biosynthesis in the majority of methanogens [45, 46], 

consistent with the primary function of Trx in most cells. The genome of M. acetivorans encodes 

one Fno (MA4235) that may be responsible for the generation of NADPH from F420H2 needed 

by MaTrxR in M. acetivorans.  Ferredoxin is reduced by carbon monoxide 

dehydrogenase/acetyl-CoA synthase with electrons supplied by the oxidation of the carbonyl 

group of acetate [47].  For MaTrxR to function in M. acetivorans during growth with acetate, 
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reduced ferredoxin would likely need to directly or indirectly supply electrons to NADP. 

Ferredoxin:NADP oxidoreductases (Fnr) are flavoenzymes that catalyze the reversible transfer of 

reducing equivalents from ferredoxin to NADP, and are common in plants and bacteria [48]. M. 

acetivorans contains a homolog of NADH-dependent reduced ferredoxin:NADP oxidoreductase 

(NfnAB), encoded by ma3786-87. In Clostridia and related anaerobic bacteria, NfnAB catalyzes 

an electron bifurcation reaction, whereby the endergonic reduction of NADP with NADH is 

coupled to the exergonic reduction of NADP with reduced ferredoxin [49]. Interestingly, among 

methanogens, NfnAB appears restricted to the Methanomicrobia [50]. However, NfnAB has not 

been characterized from a methanogen, so its precise function is not clear. Nonetheless, M. 

acetivorans would likely not use NfnAB to generate NADP with NADH, since NADH is not 

directly produced during methanogenesis. In M. acetivorans, and other Methanomicrobia, 

NfnAB may catalyze the exergonic reduction of NADP with reduced ferredoxin to supply 

MaTrxR and other NADPH-dependent biosynthetic enzymes with NADPH. 

Although only MaTrx2, MaTrx6, and MaTrx7 were tested as substrates for MaTrxR, the 

lack of activity with MaTrx2 and MaTrx6, along with the conserved trx-trxR gene arrangement 

in the Methanosarcinales, indicates MaTrx7 is likely the only Trx substrate of MaTrxR. MaTrx7 

has a unique active site (CTAC) which likely contributes to specific interactions with MaTrxR. 

Both MaTrx2 and MaTrx6 have the conventional Trx active site (CGPC), as found in EcTrx1. 

Thus, it was surprising that MaTrxR was unable to reduce MaTrx2 or MaTrx6, but could reduce 

EcTrx1, albeit not as efficiently as MaTrx7 (Fig. 5). This result suggests that interaction of TrxR 

with Trx is controlled by more than just the active site region of Trx. Indeed, examination of the 

specificity of yeast TrxR for the three yeast Trxs revealed three interaction loops within Trx [34], 

two of which are found in all MaTrxs. In particular, interaction loop 3 is more similar between 
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MaTrx7 and EcTrx1, than between MTrx7 and MaTrx2 or MaTrx6 (Fig. S2), which may explain 

why MaTrxR is able to reduce EcTrx1, but not MaTrx2 or MaTrx6. Given the differences in 

activity of MaTrxR with MaTrxs and EcTrx1, the M. acetivorans thioredoxin system could 

provide an attractive model to understand the specificity of TrxRs and Trx for redox partners.  

MjTrx1 was shown to target a large number of oxidized proteins in M. jannaschii, 

consistent with MjTrx1 as the primary, if not only Trx, in M. jannaschii [12]. However, the 

redox partner to MjTrx1 has not been identified, so it is unclear what protein(s) provides 

reducing equivalents in vivo to MjTrx1. M. jannaschii contains a TrxR homolog (Mj1356), but 

experiments by Lee et al showed that recombinant Mj1356 was incapable of reducing MjTrx1 

with NADPH [15].  However, it was not clear if the lack of reduction was due to the inability of 

MJ1356 to be reduced by NADPH or the lack of interaction with MjTrx1. Nonetheless, these 

results indicate that M. jannaschii, and possibly all Methanococci, have a thioredoxin system not 

dependent on NADPH, unlike members of the Methanomicrobia.  In M. jannaschii, the 

reduction of MjTrx1 may be directly linked to reduction by methanogenesis electron carriers 

(F420H2 or reduced ferredoxin). Similarly, the reduction of the other MaTrxs could be directly 

linked to F420H2 or reduced ferredoxin. Overall, linking the reduction of cytoplasmic Trxs in M. 

acetivorans to different electron carriers may allow M. acetivorans to control the specificity and 

activity of redox proteins within the cell under different growth conditions. Changes in MaTrx 

abundance may also provide a mechanism to modulate electron transfer during changing growth 

conditions. For example, expression of MaTrx2 was shown to be up-regulated in acetate-grown 

cells compared to methanol-grown cells of M. acetivorans [28].  

Interestingly, not all of the Trx homologues in M. acetivorans are cytoplasmic. MaTrx3 and 

MaTrx6 (clade E Trxs, Fig. 1) contain an N-terminal signal peptide (Fig. S2), indicating each is 
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likely targeted across the membrane. Clade E Trxs are only found in the Methanomicrobia, 

which contains the only methanogens that harbor cytochromes, including cytochrome c. M. 

acetivorans in particular has been shown to use a cytochrome c as part of an Rnf complex to 

facilitate transfer of electrons from ferredoxin to heterodisulfide reductase [51, 52]. However, the 

machinery responsible for cytochrome c maturation in methanogens has not been identified. The 

gene encoding MaTrx6 is adjacent to ccdA in the genome of M. acetivorans, suggesting MaTrx6 

may receive reducing equivalents from CcdA to reduce disulfides in apo-cytochrome c, similar 

to the process found in bacteria [24]. 

Conclusions 

Results from this study revealed that methanogens contain Trx homologues distributed 

within at least eight clades, with the Methanococci and Methanobacteria restricted to Trxs within 

1-2 clades, while the Methanomicrobia contain Trxs from >2 clades. The characterization of 

thioredoxin system components from M. acetivorans, provides the first insight into the role of 

the thioredoxin system in the metabolically diverse cytochrome-containing methanogens. 

Importantly, we demonstrate that M. acetivorans contains a complete NADPH-dependent 

thioredoxin system (MaTrxR-MaTrx7), providing the first experimental evidence for the 

presence of this system in methanogens. The use of a NADPH-dependent thioredoxin system 

may be specific to Methanomicrobia, but additional experimentation is needed to understand 

how widespread the NADPH-dependent system is.  M. acetivorans contains at least two Trx 

homologues not directly reduced by the only TrxR, revealing M. acetivorans has a diverse 

thioredoxin system, whereby the multiple and differentially-located Trx homologue are likely 

linked to different redox partners. The detailed understanding of the metabolism of M. 

acetivorans, combined with its genetic system, makes M. acetivorans a particularly attractive 
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model to investigate what appears to be a complex thioredoxin system network in cytochrome-

containing Methanomicrobia, when compared to cytochrome-lacking Methanococci and 

Methanobacteria. 
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Figures and Tables 

Figure 1 

Fig. 1. Phylogenetic analyses of methanogen Trx homologues. A simplified phylogenetic tree 

based on the complete tree (Fig. S1). Clades (A-H) are labelled and differently colored.  

Numbers above nodes represent maximum-likelihood bootstrap values; only values >50% are 

shown.  
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Table 1. Thioredoxin system homologues encoded in the genome of M. acetivorans C2A. 

Gene ID homologue 

designation 

Predicted location Trx 

homologue 

clade 

pI/MW 

MA1368 MaTrxR Cytoplasm - 5.8/34.0 

MA0965 MaTrx1 Cytoplasm H 4.7/15.0 

MA3212 MaTrx2 Cytoplasm F 5.1/10.4 

MA3702 MaTrx3 Extracellular/membrane E 4.7/19.6 

MA3938 MaTrx4 Cytoplasm A 5.4/8.4 

MA3942 MaTrx5 Cytoplasm A 8.5/8.7 

MA4254 MaTrx6 Extracellular/membrane E 4.2/17.7 

MA4683 MaTrx7 Cytoplasm D 5.6/9.2 

 

Table 2. MaTrxR activity with different electron donors and acceptors.  

e- donor e- acceptor Specific activity 

NADPH DTNB 0.3 ± 0.005a 

NADH DTNB 0.5 ± 0.005a 

NADPH O2 2.9 ± 0.07b 

NADH O2 0.13 ± 0.01b 

a µmol TNB min-1 mg-1 TrxR 
b µmol NAD min-1 mg-1 TrxR 

 

Table 3. Kinetic parameters of MaTrxR. 

 

substrate 

Km 

(µM) 

Kcat 

(min-1) 

Kcat/Km 

(µM-1 min-1) 

NADHa 736 ± 57 49 0.067 

NADPHa 6.3 ± 0.5 39 6.2 

MaTrx7b 86 ± 5 70.5 0.82 
aMeasured using the DTNB assay as described in materials and methods 
bMeasured using the GHOST assay with NADPH as described in materials and methods 
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Figure 2 

 

Fig. 2: SDS-PAGE analysis of recombinant proteins purified from E. coli.  The purified 

recombinant proteins (3 µg each) were separated on 15% SDS-PAGE. MW, Marker lane.  
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Figure 3 

 

Fig. 3. Spectroscopic analysis of MaTrxR. (A) UV-visible spectrum of 10 µM as-purified 

MaTrxR (gray line) and FAD-reconstituted MaTrxR (black line). Inset: magnified spectrum of 

as-purified MaTrxR. (B) Spectrum of 6.3 µM MaTrxR before (black line) and after (gray line) 

the addition of 70 µM NADPH under anaerobic conditions. (C) Spectrum of 6.3 µM MaTrxR 

before (black line) and after (gray line) the addition of 110 µM NADH under anaerobic 

conditions. All spectra were of MaTrxR in 50 mM Tris-HCl pH 7.5, 150 mM NaCl. 
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Figure 4 

 

Fig. 4. Comparison of the reduction of insulin catalyzed by MaTrxs.  (A) DTT-dependent 

activity: 9 µM MaTrx2 (triangles), 3 µM MaTrx6ΔSp (squares), and 6 µM MaTrx7 (diamonds) 

were added to 0.33 mM DTT and 0.13 mM insulin in 100 mM KPO4 pH 6.8 under anaerobic 

conditions. The complete reaction without the addition of thioredoxin was included as a negative 

control (circles). Absorbance at 650 nm at 2 min intervals is shown. The data are the mean ± SD 

of triplicate reactions and the specific activity (ΔA650/min2 × 10−3/mg) of each thioredoxin is 

shown in the inset.  (B) Lipoamide-dependent activity: 12 µM MaTrx2 (triangles), 3 µM 

MaTrx6ΔSp (squares), and 6 µM MaTrx7 (diamonds) were added to 0.33 mM NADH, 4 units 

lipoamide dehydrogenase, 0.05 mM lipoamide and 0.13 mM insulin in 100 mM KPO4 pH 6.8 

under anaerobic conditions. The complete reaction without the addition of thioredoxin was 

included as a negative control (circles). Absorbance at 650 nm at 4 min intervals is shown. The 

data are the mean ± SD of triplicate reactions and the specific activity (ΔA650/min2 × 10−3/mg) 

of thioredoxin is shown in the inset. 
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Figure 5 

 

Fig. 5. Comparison of the reduction of insulin catalyzed by the M. acetivorans thioredoxin 

system components. (A) NADPH-dependent activity: 10 µM MaTrx2, 10 µM MaTrx6ΔSp, 5 

µM MaTrx7, or 10 µM EcTrx1 were added to 0.35 mM NADPH, 1 µM MaTrxR, and 0.13 mM 

insulin in 100 mM KPO4 pH 6.8 under anaerobic conditions. The complete reaction without the 

addition of thioredoxin was included as a negative control (not shown). Absorbance at 650 nm at 

4 min intervals is shown. The data are the mean of triplicate reactions. (B) NADH-dependent 

activity: 10 µM MaTrx2, 10 µM MaTrx6ΔSp, 5 µM MaTrx7, or 10 µM EcTrx1 were added to 1 

mM NADH, 1 µM MaTrxR, and 0.13 mM insulin in 100 mM KPO4 pH 6.8 under anaerobic 

conditions. The complete reaction without the addition of thioredoxin was included as a negative 

control (not shown). Absorbance at 650 nm at 4 min intervals is shown. The data are the mean of 

triplicate reactions. 
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Table S1. Identification of additional thioredoxin homologues in the genomes of sequenced 

methanogens. 

Species Trx homolog Accession no. a ORF 

Methanosarcina acetivorans C2A NP_616305.1 
NP_618813.1 
NP_619119.1 
NP_618103.1 
NP_618809.1 
NP_618577.1 
NP_615918.1 

MA4683 (MaTrx7) 
MA3942 (MaTrx5) 
MA4254 (MaTrx6) 
MA3212 (MaTrx2 
MA3938 (MaTrx4) 
MA3702 (MaTrx3 
MA0965 (MaTrx1) 

Methanosarcina barkeri str. fusaro YP_303720.1 
YP_305814.1 
YP_305788.1 
YP_305232.1 
YP_305379.1 
YP_306068.1 
YP_304192.1 
YP_307062.1 
YP_305238.1 

Mbar_A0155 
Mbar_A2310 
Mbar_A2283 
Mbar_A1710 
Mbar_A1859 
Mbar_A2577 
Mbar_A0633 
Mbar_A3617 
Mbar_A1716 

Methanosarcina mazei Go1 NP_632761.1 
NP_632460.1 
NP_634273.1 
NP_634378.1 
NP_633015.1 
NP_634264.1 
NP_634103.1 

MM_0737 
MM_0436 
MM_2249 
MM_2354 
MM_0991 
MM_2240 
MM_2079 

Methanococcoides burtonii DSM 6242 YP_566484.1; 
YP_564870.1; 
YP_564987.1; 
YP_565635.1; 
YP_565021.1; 
YP_566957.1; 
YP_565881.1; 
YP_566314.1; 

Mbur_1851 
Mbur_0102 
Mbur_0227 
Mbur_0943 
Mbur_0264 
Mbur_2353 
Mbur_1209 
Mbur_1670 

Methanolobus psychrophilus R15 YP_006921816.1; 
YP_006923638.1; 
YP_006922441.1; 
YP_006922879.1; 
YP_006921643.1 

Mpsy_0235 
Mpsy_2064 
Mpsy_0864 
Mpsy_1303 
Mpsy_0062 

Methanohalophilus Mahii DSM 5219 YP_003542631.1; 
YP_003542351.1; 
YP_003541974.1; 
YP_003542119.1; 
YP_003543047.1 
YP_003542300.1 

Mmah_1490 
Mmah_1202 
Mmah_0806 
Mmah_0954 
Mmah_1907 
Mmah_1149 
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Table S1 continued 

Species Trx homolog Accession no. a ORF 

Methanosalsum zhilinae YP_004615470.1; 
YP_004615797.1; 
YP_004616482.1; 
YP_004615169.1 
YP_004615284.1 

Mzhil_0376 
Mzhil_0711 
Mzhil_1419 
Mzhil_0069 
Mzhil_0186 

Methanohalobium evestigatum Z-7303 YP_003725801.1; 
YP_003726675.1; 
YP_003726409.1; 
YP_003726719.1 
YP_003725836.1 

Metev_0073 
Metev_0989 
Metev_0712 
Metev_1035 
Metev_0109 

Methanocella conradii HZ254 YP_005379709.1; 
YP_005380235.1 
YP_005381598.1 

Mtc_0423 
Mtc_0960 
Mtc_2347 

Methanocella paludicola SANAE YP_003355731.1; 
YP_003357232.1; 
YP_003355094.1; 
YP_003357453.1; 
YP_003356785.1 
YP_003357331.1 

MCP_0676 
MCP_2177 
MCP_0039 
MCP_2398 
MCP_1730 
MCP_2276 

Methanosphaerula palustris E1-9c YP_002466095.1; 
YP_002467560.1 
YP_002466961.1 

Mpal_1024 
Mpal_2567 
Mpal_1934 

Methanoplanus petrolearius DSM 11571 YP_003894886.1; 
YP_003893564.1; 
YP_003895646.1 
YP_003894694.1 

Mpet_1695 
Mpet_0352 
Mpet_2464 
Mpet_1499 

Methanosaeta harundinacea 6Ac YP_005920527.1; 
YP_005920150.1; 
YP_005919905.1 
YP_005920855.1 

Mhar_1543 
Mhar_1159 
Mhar_0911 
Mhar_1875 

Methanospirillum hungatei JF-1 YP_502331.1; 
YP_503912.1; 
YP_502981.1; 
YP_504576.1 
YP_502286.1 

Mhun_0860 
Mhun_2493 
Mhun_1531 
Mhun_3175 
Mhun_0815 

aHighlighted sequences were not identified in a previous study (Susanti et al. 2014) 
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Figure S1 
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Figure S1 continued 

Fig. S1.  A phylogenetic tree based on maximum likelihood analysis of 140 Trx homologue 

sequences from sequenced methanogen genomes. Trx clades (A-H) are labelled and 

differently colored. Numbers above nodes represent maximum-likelihood bootstrap values; only 

values >50% are shown. 
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Figure S2 

MaTrx1       ------------------------------------MDENYVFEIEDATWGQQVEDSEKP 24 

MaTrx2       ---------------------------------------------------------MKP  3 

MaTrx3       MASMKKLVLLMILLAVVFFTAGCIDNNWGNSTSSELSQGISTPVKITQLEQINTSLEKGP 60 

MaTrx6       ---MNKLIIPLILLASVIFTAGCTES----PESATSAQEISVVENMTSLEQINTSVQEGP 53 

MaTrx4       ------------------------------------------------------------  0 

MaTrx5       ---------------------------------------------------------MKN  3 

MaTrx7       ----------------------------------------------------------MA  2 

EcTrx1       -------------------------------------MSDKIIHLTDDSFDTDVLKADGA 23 

ScTrx1       ----------------------------------------MVTQFKTASEFDSAIAQDKL 20 

                                                                             

 

MaTrx1       VIVMFYSPTCPYCKAMEPYFAEYAKEYRASAIFARINIIVNPWTAERYGVQGTPTFKFFC 84 

MaTrx2       MLLDFSATWCGPCRMQKPILEELEKKYGDKVEFKVVDVDENQELASKYGIHAVPTLIIQK 63 

MaTrx3       IFMRMGSKWCPDCRSMKPILEKLAVEYQGNATIAYMDVDQNPELAEYFGAKTIPDSFVIV 120 

MaTrx6       VLIKVGAEWCGPCQQMKPILSDLAAEYTGKVTVMSADIDQSPEIAAYFGIAYIPDSFVVV 113 

MaTrx4       MRIEVLGSGCAKCNKTKELAEKAVKETGVDAEIVKVED---FDKILEYGVMVTPALVIDG 57 

MaTrx5       MKIEILGTGCAKCKKTKEAIEKVLAETGKKAEVVKVEN---IETILNYGVMVTPAVVVDG 60 

MaTrx7       KVTLIHATWCTACPATRRFWKDLKTEYDFEYEEIDVENPEGQALIEKHGIVGVPTTLIDG 62 

EcTrx1       ILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFK 83 

ScTrx1       VVVDFYATWCGPCKMIAPMIEKFSEQY-PQADFYKLDVDELGDVAQKNEVSAMPTLLLFK  

                 . .  *  *        .   :   .      :                *   .   

 

MaTrx1       HGKPVWEQVGQIYPSILGNAIRDMIQYGEECIRKTTPVGQDITGYV---------- 

MaTrx2       DGTEVKRFMGVTQGSILAAELDKLL------------------------------- 

MaTrx3       DIENGTYVYMQKNGKISTDRNQARIIGLSGDSEDDENVFERVLNFALLQQGNNISQ 

MaTrx6       GFENGEYVYMQEDGNVTTDRFQARVLGVR-----DKQVYEELLERAVLYYENK--- 

MaTrx4       DVKIAGKVPSVEDIKKWITK------------------------------------ 

MaTrx5       EVKLAGKVPDEKEIRKWVE------------------------------------- 

MaTrx7       EPAFTGLPKKADAIARITRR------------------------------------ 

EcTrx1       NGEVAATKVGALSKGQLKEFLDANLA------------------------------ 

ScTrx1       NGKEVAKVVGANPAAIKQAIAANA-------------------------------- 

 

Fig. S2. Amino acid sequence alignment of MaTrxs with Trx from E. coli (EcTrx1) and S. 

cerevisiae (ScTrx1). Invariant residues are indicated by an asterisk. The active site is highlighted 

in yellow and the putative signal peptide of MaTrx3 and MaTrx6 is highlighted in green. The 

box denotes the flexible loop region 3 identified as critical for interaction with TrxR (Oliveira et 

al. 2010).  
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Figure S3 

EcTrxR          MGTTKHSKLLILGSGPAGYTAAVYAARANLQPVLITGMEKGGQLTTTTEVENWPGDPNDL 60 

MaTrxR          ----NMYDLIIIGGGPAGLAAGIYAVRFGLDTLVLEKSEISGQISMSDIVENYPGFPS-I 55 

MM2353          -----MYDLIIIGGGPAGLTAGIYAVRYGLDTLILERNEISGQISMADIVENYPGFPS-I 54 

MbarA2898       -----MYDLIIIGGGPAGLAAGIYAVRSGLNTLILERSEISGQIALSDIVENYPGFPA-I 54 

Mmah1201        -----MYDLIILGAGPAGVTAAIYAVRYGLDTLLVDKDSMSGLISTAKTVENYTGFPS-I 54 

Mbur0101        ----MVYDLIIIGGGPGGLSAGIYAVRYGLNTLVLEKGFVSGQISTTGDVENYPGFPS-I 55 

Mpsy0863        ---MIMYDLIIVGAGPAGLAAGIYAARYGLETLVLEQSAVPGQISVANVIENYPGFVS-T 56 

Mzhil0710       -----MHDLIIVGAGAAGLSAGIYGSRYGLDTLVLEKNEINSQIALVDRVENYPGFAS-I 54 

Metev0711       -----MNDLIIIGGGPAGIAAGIYAVRYGLDTYLLERTAIGGQISSSQEVENYPGFSS-I 54 

                       .*:*:*.*..* :*.:*. * .*:. ::      . ::    :**:.*      

 

EcTrxR          TGPLLMERMHEHATKFETEIIFDHINKVDLQNRPFRLNGDN-GEYTCDALIIATGASARY 119 

MaTrxR          SGLELMEKYRTHAQEVGVKTKITEVLSVRTEGAKKIVSTDS-GDLEAKTLIIATGANPKH 114  

MM2353          SGLELMERFRTHAQEVGVKTTITEVLSVRSEGTKKIITTDS-GDLEAKAVIIATGANPKH 113 

MbarA2898       SGLELMEKYKAHAQAVGVETKITEVLSVRAEGEKKIISTDS-GDLESIAVIVATGANPKH 113 

Mmah1201        GGMELMEKFLDHAEKAGVTSKVMEIKSVTEEGDDFIVSSSE-EELKSKSLIVATGSSPRE 113 

Mbur0101        GGMELMDKFAEHAKAAGVVVEDRDVLEVRSEGDMKIVHTSE-GDIEASSVIIATGAEPKH 114 

Mpsy0863        SGKELMARFREHALANGITIKKADVRKVEDAAGKKIVFTHE-EELHALAVIIATGANPQL 115 

Mzhil0710       SGMELIKKIEDHAKAMGIDINYSNVRNVIIDNDRKIVQTEN-EELQAKSIIIASGAKPQK 113 

Metev0711       NGMELMNTFKAHAESIGVPIENKGVTGVRPEDDKIVLSTDENVDIEAKAVIIATGAKPRK 114 

                 *  *:     **           :  *        :   .  :  . ::*:*:*:..:  

 

EcTrxR          LGLPSEEAFKGRGVSACATCDGFFYRNQKVAVIGGGNTAVEEALYLSNIASEVHLIHRRD 179 

MaTrxR          LGVPGEKEFISKGVSYCAICDGPFFKNKTVVVVGGGNSAVTDALLLSKVAQNVYLIHRRD 174 

MM2353          LGVPGEKELISKGVSYCAICDGPFFRNKIVAVVGGGNSAVTDALFLSKVAQKVYLVHRRD 173 

MbarA2898       LNVPGEKEFISKGVSYCAICDGPFFKNKTVVVVGGGNSAVTDALLLSKIARKVYLIHRRE 173 

Mmah1201        LDVPGEKDFLGRGISYCATCDGPFFSGKEVAVIGGGESAVTDAIFISDIASKVYVVHRRD 173 

Mbur0101        LGIPGEEEFRGKGVSYCATCDGPFFSGRNVIVVGGGESAITDALILSDMAASVCVVHRRD 174 

Mpsy0863        LGVPGEKELLGKGVSYCATCDAAFFADQEVLVIGGGESAVTDALILSGIASKVYVVHRRD 175 

Mzhil0710       LDVPGEIKFTGKGVSYCATCDGPFFKKRNVAVIGGGNSAVAEALVLSGIADNVYVVHRRN 173 

Metev0711       LGIPGEDTYYGRGVSYCATCDAPFYKERDVIVVGGGNTAISDALILSNVANKVYQVHRRD 174 

                *.:*.*    .:*:* ** **. *:  : * *:***::*: :*: :* :* .*  :***: 

 

EcTrxR          GFRAEKILIKRLMDKVENGNIILHTNRTLEEVTGDQMG---VTGVRLRDTQNSDNIESLD 237 

MaTrxR          RLKAAKVLQDRALATP---NIEFILNTLVQEIAGSREGVKKVEKVILQDLN-SKESRELS 231 

MM2353          HLKAARVLQDRVDGTP---NIELILNSHVLEIVGTREGIKKVEKIILEDVN-SRETRELS 230 

MbarA2898       QLRAVKVLQDRVFATP---NIEFIFNAQILEIMGSSGGVRRVEKIRFKDLK-SEEQRELA 230 

Mmah1201        KLRASQILQDRAFDRP---NIEFVWDSVVDAIEGKD----VVESLQIHNVI-TEETKKIP 226 

Mbur0101        ELRASKILQDRAFARS---NIEFLWGTTLEEIVGDS----VVREAVIRDIN-AAEVCRVP 227 

Mpsy0863        SLRACKVLQQRAFMKE---NIEFIWDTVVEEIAGED----AVEKVMMRNVK-TQERIEKN 228 

Mzhil0710       ELRAETILQNRAFATE---NIEFICDSVVEQIKGNN----KVEQIVVRNII-TGKVEEIP 226 

Metev0711       ELRASKVLEDRARSRD---NIEFLWDTVLEEVKGNN----FVESALLRDLN-TNELSEIS 227 

                 ::*  :* .*        ** :  .  :  : *       *    ..:   : :      

 

EcTrxR          VAGLFVAIGHSPNTAIFEGQLELENGYIKVQSGIHGNATQTSIPGVFAAGDVMDHIYRQA 297 

MaTrxR          TNGVFIYVGIQPNTEFVNVEKNNEG------FIITNRWMETSEKGIYAAGDCRDTPIWQL 285 

MM2353          TNGVFIYVGIHPNTEFVDVEKDEGG------FIKTDRWMETSEKGIYAAGDCRDTPIWQL 284 

MbarA2898       TDGVFIYVGIHPNTEIIDVDKDDEG------FITTDRFLETSKKGIYAVGDCRDTPIWQL 284 

Mmah1201        VNGAFIYIGLNPNTDFVNVKKNDKG------FIITDESMATSARGIFAAGDCRQSPLYQV 280 

Mbur0101        IDGVFVYVGVKPSTGFVDVDKDKYG------FIITNERMECSEKGVFAVGDCRNAILRQV 281 

Mpsy0863        VEGVFIYVGINPNTGIVELNKNGKG------FIVTNERMETSVKGIYAAGDCRVSPLWQV 282 

Mzhil0710       VNGVFIYVGIKPNTDFIDVAKTEDG------FIVTDNDMQSSVEGIYAAGDCRTTPLRQV 280 

Metev0711       IDGVFIYVGIDPNTDLIDVEKDESG------FIITNEFMETSVEGIYAAGDCRKSPLWQV 281 

                  * *: :*  *.* :.:      .          ..    *  *::*.**       *  

EcTrxR          ITSAGTGCMAALDAERYLDGLADAK- 321 

MaTrxR          VAAVRDGAIAATAANEYIESLK---- 306 

MM2353          VTAVRDGAIAATAAYEYIEKIR---- 305 

MbarA2898       VAAVRDGALAATAANVYIESIKKETT 309 

Mmah1201        ITAASDGAIAAYSAFKYIEGI----- 300 

Mbur0101        VTAASDGAIAAFEAYNYVSSLERSGK 306 

Mpsy0863        VTAVADGAVAAISAQEYVTDLKLMR- 306 

Mzhil0710       ITAVGDGAIAAYYANNYVKGI----- 300 

Metev0711       ITAASDGAIAAAKAYEYIRNKG---- 302 

                :::.  *.:**  *  *:         

 



61 

 

Figure S3 continued 

Fig. S3. Amino acid sequence alignment of TrxRs from Methanosarcinaceae with TrxR 

from E. coli (EcTrx1). Invariant residues are indicated by an asterisk. The active site is 

indicated by the red line, with the active site cysteines in red. The FAD binding regions are 

indicated by the black lines and the NADPH binding region is indicated by the blue line.  
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Abstract 

The thioredoxin system plays a central role in the intracellular redox maintenance in the 

majority of cells. The canonical system is comprised of an NADPH-dependent thioredoxin 

reductase (TrxR) that reduces the disulfide reductase thioredoxin (Trx). Although Trx is encoded 

in almost all sequenced genomes of methanogens, its incorporation into their unique physiology 

is not well understood. Methanosarcina acetivorans contains a single TrxR (MaTrxR) and seven 

Trx (MaTrx1-7) homologs. We previously showed that MaTrxR and at least MaTrx7 comprise a 

functional NADPH-dependent thioredoxin system. Here, we report the characterization of all 

seven recombinant MaTrxs. MaTrx1, MaTrx3, MaTrx4, and MaTrx5 lack appreciable disulfide 

reductase activity, unlike previously characterized MaTrx2, MaTrx6, and MaTrx7. Enzyme 

assays demonstrated that of the MaTrxs, only the reduction of disulfide-containing MaTrx7 is 

linked to the oxidation of reduced coenzymes. NADPH is shown to be supplied to the MaTrxR-

MaTrx7 system through the oxidation of the primary methanogen electron carriers F420H2 and 

ferredoxin, indicating it serves as a primary intracellular reducing system in M. acetivorans. 

Bioinformatic analyses also indicate that the majority of methanogens likely utilize a NADPH-

dependent thioredoxin system. The remaining MaTrxs may have specialized functions. MaTrx1 

and MaTrx3 exhibited thiol oxidase activity. MaTrx3 and MaTrx6 are targeted to the membrane 

of M. acetivorans and likely function in the formation and the reduction of disulfides in 

membrane and/or extracellular proteins, respectively. This work provides insight into the 

incorporation of Trx into the metabolism of methanogens, and reveals that methanogens contain 

Trx homologs with alternative properties and activities. 
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Introduction 

The strictly anaerobic methane-producing archaea (methanogens) are the only cellular organisms 

capable of biological methane production (methanogenesis), an important step in the global carbon 

cycle [1, 2]. Methanogens are ubiquitous microbes, found in diverse environments, ranging from 

the human gastrointestinal tract to the Antarctic [2, 3]. No matter the environment, significant 

methane production by methanogens only occurs under strictly anaerobic conditions due to the 

requirement of a large number of redox-sensitive enzymes, coenzymes, and cofactors for 

methanogenesis [4]. Thus, methanogens require an intracellular electron transfer system(s) to 

maintain a reduced intracellular environment. Although the enzymes and factors involved in 

energy-conserving electron transfer reactions during methanogenesis have been fairly well-

characterized [2, 4, 5], the enzymes and factors involved in intracellular electron transfer for redox 

maintenance, biosynthesis, and protection from oxidative stress are less understood. 

 Thiol-disulfide oxidoreductases play a central role in the intracellular redox maintenance 

of cells. In particular, the vast majority of cells rely on thioredoxin (Trx), a small (~12 kDa) thiol-

disulfide oxidoreductase, to maintain a reduced intracellular environment [6]. The canonical 

thioredoxin system is comprised of a thioredoxin reductase (TrxR), which uses reducing 

equivalents from NADPH, generated from metabolism, to reduce the active site cysteines within 

a CXXC motif of Trx. Trx primarily catalyzes the reduction of disulfides, but can also provide 

reductant for other enzymes. As such, Trxs are typically capable of reducing disulfides in a diverse 

number of proteins and are involved in physiological processes, in addition to general redox 

maintenance and protection during oxidative stress [7]. For example, Trx provides reducing 

equivalents to biosynthetic enzymes, such as ribonucleotide reductase [7].  There are a number of 

more complex and specialized Trx-related systems. In particular, many cells also contain 
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glutaredoxin (Grx), in addition to Trx. Grx is structurally and functionally similar to Trx, but 

receives reducing equivalents from glutathione that is reduced by a NADPH-dependent glutathione 

reductase [8]. However, the glutaredoxin system is primarily found in aerobes and is typically not 

present in strict anaerobes [8].  Methanogens do not contain glutathione, indicating the lack of a 

functional glutaredoxin system [9-11]. Recent evidence showed that Trx homologs are present in 

almost every sequenced methanogen genome, indicating Trx is likely the primary thiol-disulfide 

oxidoreductase involved in redox maintenance in methanogens [12, 13]. Indeed, Trx was shown 

to target a large number of proteins, including those involved in methanogenesis, in the 

methanogen Methanocaldococcus jannaschii [13]. Yet, how Trx is assimilated into the metabolism 

of methanogens, in particular the enzyme(s) and coenzyme(s) involved in providing reducing 

equivalents to Trx, is less understood. Importantly, NADPH is not directly generated by 

methanogenesis. Instead, reduced coenzyme F420H2, a 5’- deazaflavin derivative, and reduced 

ferredoxin are produced during methanogenesis [2, 4]. Methanogens may therefore directly use 

F420H2 and/or reduced ferredoxin to provide reducing equivalents to Trx or alternatively generate 

NADPH from the oxidation of F420H2 and ferredoxin. 

 Previous work by our group has demonstrated that the methanogen, Methanosarcina 

acetivorans, contains seven Trx homologs (MaTrx1-7) and a single TrxR (MaTrxR). Recombinant 

MaTrx2, MaTrx6, and MaTrx7 have catalytic disulfide reductase activity, and recombinant 

MaTrxR is specific for NADPH as an electron donor [12]. Of the three characterized MaTrxs, only 

MaTrx7 was reduced by MaTrxR, indicating M. acetivorans possesses a canonical Trx system 

comprised of NADPH, MaTrxR, and at least MaTrx7. Here, we report the characterization of all 

seven MaTrxs, including reduction by MaTrxR, analyses of electron donors, and alternative 

activities. Results support that the NADPH-dependent thioredoxin system, comprised of MaTrxR-
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MaTrx7, is likely the general intracellular reducing system in M. acetivorans. Bioinformatic 

analyses indicate that the majority of methanogens contain a NADPH-dependent TrxR, suggesting 

that the canonical Trx system is used by the majority of extant methanogens, with the exception 

of some Methanococci, including M. jannaschii. The remaining MaTrxs likely have specialized 

functions, including two (MaTrx3 and MaTrx6) that are associated with the membrane of M. 

acetivorans.   

Materials and Methods 

Cloning of M. acetivorans Trx homolog genes: The genes encoding MA_RS05020 (MaTrx1), 

MA_RS19290 (MaTrx3), MaTrx3ΔSp (deleted of signal peptide amino acids 1-34), 

MA_RS20550 (MaTrx4), and MA_RS20570 (MaTrx5) were cloned into the E. coli expression 

vector pET28a as previously described for MaTrx2, MaTrx6, MaTrx6Δsp, and MaTrx7 [12]. 

Plasmids containing matrx1, matrx3, matrx3ΔSp, matrx4, and matrx5 were verified by DNA 

sequencing and named pDL342, pDL343, pDL344, pDL345, and pDL346, respectively. 

 

Purification of recombinant proteins: Proteins were expressed in E. coli Rosetta DE3 (pLacI) 

transformed with pDL342, pDL343, pDL344, pDL345, or pDL346. Each E. coli expression strain 

was grown in Luria broth medium and protein expression induced with 500 μM isopropyl-β-D-

thiogalactopyranoside (IPTG) at OD600 of 0.5-0.7. The induced cultures were incubated at 25 °C 

for 16 hrs. The cells were harvested, and recombinant protein purified as described previously 

[12]. Purified recombinant protein was stored in buffer A (50 mM TRIS, 150 mM NaCl pH 7.2) 

at -80 °C. 
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Generation of oxidized and reduced MaTrxs: MaTrxs were incubated anaerobically at 25 °C 

for 20 min in buffer A containing either a 10:1 molar excess of H2O2 or DTT, to generate oxidized 

MaTrx (MaTrxox) and reduced MaTrx (MaTrxred), respectively. After incubation, residual H2O2 or 

DTT was removed by buffer exchange with a NAP-5 column (GE Healthcare). The number of 

thiols were quantified in each MaTrx sample using 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). 

The standard assay contained 175 µM DTNB in buffer A and MaTrx (5-60 µM). After 15 min of 

anaerobic incubation, the absorbance at 412 nm was used to calculate the thiol concentration using 

ε412= 14,150 m-1 cm-1 [14]. MaTrxox samples were analyzed by non-reducing 15 % SDS-PAGE for 

the presence of oligomers due to the formation of intermolecular disulfides.  

 

Enzyme activity assays with M. acetivorans cell-free lysate: M. acetivorans was grown in high-

salt (HS) medium supplemented with 125 mM methanol and 0.025 % Na2S (w/v) to an OD600 of 

0.75 [15]. Unless stated otherwise, all subsequent manipulations were done inside an anaerobic 

chamber (COY laboratories). Cells were harvested by centrifugation for 10 min at 16,000 x g and 

10 °C. The cell pellet was resuspended in buffer A supplemented with protease inhibitors (1 mM 

benzamidine and 1 mM PMSF). Cell suspensions were stored at -80 °C in anaerobic vials. Cell 

suspensions were thawed on ice and sonicated to lyse cells. Cell lysate was clarified by 

centrifugation at 16,000 x g for 10 min at 10 °C and the soluble fraction stored at -80 °C in 

anaerobic vials.  

 F420H2:NADP oxidoreductase (Fno) activity in M. acetivorans cell lysate was determined 

by measuring the NADP-dependent oxidation of F420H2.  F420, provided by Dr. Lacy Daniels 

(Texas A&M University, Kingsville, TX, USA), was chemically reduced to F420H2 using sodium 

borohydride as previously described [16]. Fno activity assays were performed in buffer A 
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containing M. acetivorans lysate (100 µg total protein) and 70 µM F420H2. After equilibration, 

reactions were initiated by the addition of 1 mM NADP or an equivalent volume of buffer A as a 

control. The oxidation of F420H2 was monitored at 420 nm for 10 min. The rate of F420H2 oxidation 

was determined using ε420 = 40,000 m-1 cm-1 [17]. 

 To test for the presence of a functional ferredoxin:NADP reductase (Fnr), CO-dependent 

reduction of NADP by M. acetivorans was assayed. Lysate was prepared from acetate-grown cells 

as described above. To exclude the possibility of F420 mediating electron transfer between 

ferredoxin and NADP [18], low molecular weight compounds were removed from the lysate by 

two consecutive 6-fold concentration and dilution steps using buffer A with a 10 kDa MW 

Nanosep spin column (Pall Corporation). Cell lysate was pre-incubated with either CO or N2 by 

transferring lysate to a 2 mL serum vial and flushing the headspace with CO or N2 for 2 mins, 

followed by incubation on ice for 30 min. Assays were performed in a sealed quartz cuvette 

containing 400 µL of buffer A with a headspace of either N2 or CO. Lysate (100 µg) was added to 

the cuvettes and reactions were initiated by the addition of 500 µM NADP to each sealed cuvette. 

The amount of NADPH produced over time was determined using ε340 = 6,220 m-1 cm-1. 

  MaTrxox-dependent oxidation of NADH, NADPH, and F420H2 by M. acetivorans cell 

lysate was measured spectrophotometrically by monitoring the change in absorbance at 340 nm 

for NAD(P)H or 420 nm  for F420H2. Assays were performed under anaerobic conditions in 

cuvettes containing 300 µg cell lysate, 70-100 µM MaTrx1-7ox, and either 100 µM NAD(P)H or 

70 µM F420H2 in buffer A (total volume of 100 µL). Assay mixtures were incubated in the absence 

of MaTrxox until a stable baseline was obtained, then reactions were initiated by the addition of 

MaTrxox. The amount of NAD(P)H or F420H2 consumed over time was determined using ε340 = 

6,220 m-1 cm-1 and ε420 = 40,000 m-1 cm-1, respectively. 
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MaTrx activity assays. Disulfide reductase activity of each MaTrx was measured with DTT as 

an electron donor and insulin as the substrate as previously described [12]. Specific activity is 

reported as ΔA650 · min -2 × 10 -3 after subtraction of the background rate of insulin reduction by 

DTT alone. 

 Disulfide isomerase and thiol oxidase activity of MaTrxs was determined using bovine 

pancreatic RNaseA (Amresco) as a substrate. Reduced RNaseA (rRNasA) was specifically used 

as the substrate to measure thiol oxidase activity, and was generated similar to as previously 

described [19], except that 20 mg of RNaseA was brought into an anaerobic chamber and dissolved 

in 2 mL of 6 M guanidine HCl, 2 mM EDTA, 50 mM TRIS-HCl (pH 9.0), and 0.2 M DTT. After 

2 hrs of incubation, the rRNaseA was buffer-exchanged into buffer A using a PD-10 column (GE 

Healthcare) and stored in sealed vials at -80 °C. Scrambled RNaseA (scRNaseA) was used as the 

substrate to measure disulfide isomerase activity and was generated as described previously [20]. 

The in vitro refolding of rRNaseA and scRNaseA to generate active RNaseA was performed as 

described [19]. Briefly, refolding buffer contained 5 µM rRNaseA or scRNaseA, 1 mM glutathione 

(GSH), and 1.11 mM oxidized glutathione (GSSG) yielding a redox potential of -150 mV based 

on the Nernst equation. Escherichia coli DsbA was used as a positive control and was provided as 

a gift from Dr. James Bardwell (University of Michigan, Ann Arbor, Michigan). RNase refolding 

assays contained 20 µM DsbA or MaTrx1-7.  All refolding assays were performed in triplicate for 

3 min at 15 °C and RNaseA activity after incubation with DsbA or MaTrx1-7 was compared to 

activity recovered in refolding buffer alone to account for non-enzymatic disulfide formation or 

rearrangement due to GSH/GSSG. RNaseA activity was determined by monitoring the amount of 

RNA degraded over time using the methylene blue assay as previously described [21]. The RNA 

substrate was prepared by dissolving 100 mg of Torula yeast RNA (Sigma) in 10 mL of anaerobic 
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0.1 M MOPS-HCL (pH 7.5), 2 mM EDTA (buffer B). Preparation of methylene blue binding 

buffer was done by adding 1 mg of methylene blue to 100 mL of anaerobic buffer B and the 

absorbance at 688 nm adjusted to 0.5 ± 0.02 with buffer B. A standard curve of methylene blue 

bound to RNA was generated using a range of 0-1000 µg of RNA, and the absorbance at 688 nm 

was determined. The excel kinetics modeling add-in was used to obtain the maximum absorbance 

change (Vmax) and the concentration of RNA needed to obtain ½ Vmax (Km). The Michealis-Menten 

equation was used to calculate the concentration of RNA (S) at a given absorbance (V). 

 

Generation of M. acetivorans strains expressing FLAG-tagged MaTrx3 or MaTrx6 for 

localization analysis. PCR was used to amplify matrx3, maTrx3ΔSp, matrx6, and maTrx6ΔSp. 

Each forward primer contained a 5’ NdeI site and each reverse primer encoded a C-terminal FLAG 

tag followed by a HindIII site. The PCR product was digested with NdeI and HindIII and ligated 

with similarly digested pJK027A [22]. The resulting plasmids containing matrx3-FLAG, 

maTrx3ΔSp-FLAG, matrx6-FLAG, and maTrx6ΔSp-FLAG were named pDL350, pDL353, 

pDL348, and pDL349 respectively. M. acetivorans strain WWM73 was transformed with pDL350, 

pDL353, pDL348, and pDL349 as described previously [23]. Successful integration of the plasmid 

into the chromosome of each strain was determined as described [22], and the resulting strains 

were named DJL80 (MaTrx6-FLAG), DJL81 (MaTrx6ΔSp-FLAG), DJL82 (MaTrx3-FLAG), and 

DJL83 (MaTrx6ΔSp-FLAG). These strains allow for the tetracycline-inducible chromosomal 

expression of each MaTrx-FLAG.  

 

Immunodetection of FLAG-tagged MaTrx3 and MaTrx6 in membrane and soluble fractions 

of M. acetivorans strains. Cultures of strains DJL80-83 were grown in HS medium (100 ml) 
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supplemented with 125 mM methanol and 0.025 % Na2S (w/v). Tetracycline (100 µg/ml) was 

added where indicated to induce expression of the MaTrx-FLAG in each strain. The cells were 

harvested by centrifugation when the OD600 reached 0.5-0.75. Pelleted cells were resuspended in 

a volume of buffer A containing 1 mM benzamidine and 1 mM PMSF, and normalized based on 

OD600. Cell suspensions were stored in microfuge tubes at -80 °C. 

Methanogen cell membrane and soluble (cytoplasmic) fractions were separated in a manner 

similar to that described previously [24]. Frozen cells of strains DJL80-83 were lysed by five 

freeze/thaw cycles. After lysis, 10 units of RQ1 DNase 1 (Promega) was added to each tube and 

incubated at 37 °C for 25 min, followed by centrifugation at 10,500 x g for 5 min at 10 °C. The 

supernatant was removed and centrifuged a second time. The supernatant (soluble fraction) was 

removed and membranes were pelleted by centrifugation at 70,000 x g for 1 hr at 10 °C in 1.5 mL 

safe-lock Eppendorf tubes. The pellet (membrane fraction) was washed in 500 µL of 25 mM TRIS 

(pH 7.5). Both the membrane fraction and the soluble fraction were separately centrifuged a second 

time at 70,000 x g for 1 hr at 10 °C to further remove contaminating proteins from each fraction. 

The supernatant was removed from the centrifuged soluble fractions and was used as the final 

soluble fraction for each strain. The pellet from each centrifuged membrane fraction was 

resuspended in a small volume of 25 mM TRIS, 8 M urea (pH 7.5), then diluted to 150 µL with 

25 mM TRIS (pH 7.5) and was used as the final membrane fraction for each strain. Total protein 

was quantified for all fractions using the Bradford assay with BSA as a standard. For detection of 

each MaTrx-FLAG by Western blot, identical amounts of protein for the membrane fractions and 

soluble fractions of strains DJL80/DJL81 and DJL82/DJL83 were analyzed by 15% SDS-PAGE. 

Protein was transferred to a PVDF membrane and Western blotting was performed using standard 

protocols using an α-FLAG tag primary antibody (Rockland Immunochemicals), and a HRP-
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conjugated secondary antibody (Promega). An enhanced chemiluminescent substrate (Thermo 

Scientific) was used for detection. 

 

Determination of the cytochrome c content of membrane fractions. M. acetivorans strains 

DJL80-83 were grown with methanol to late log phase, cells harvested, and membrane fractions 

generated as described above. The production of the previously detected 25 kDa cyt c in M. 

acetivorans [25] was quantified by SDS-PAGE analysis followed by densitometry of bands in 

heme-stained gels similar to described [26]. Loaded samples (26 µg) were normalized based on 

total protein. SDS-PAGE analysis was carried out on 15% polyacrylamide gels run at 90 V at 10 

°C. Gels were stained for covalently bound heme using o-diansidine as previously described [27]. 

Due to observed differences is staining efficiencies between gels, the cytochrome c content of 

membrane fractions from each strain grown under non-inducing and inducing conditions was 

compared in a single gel. Each gel was loaded with duplicate samples of membrane fractions 

generated from two independent cultures for each condition (total samples = 4). Gels were imaged 

using a UMAX Powerlook 2100XL tri-linear CCD scanner at 400 dpi. Intensity of the band 

corresponding to the 25 kDa cyt c was determined using ImageJ. Using the method described by 

Gassmann et al [28], only the central 30% of the band was used to calculate intensity. For 

comparison, the intensity of cyt c determined in membrane fractions of each non-induced culture 

was set to 100 arbitrary units.     

Results 

Analysis of MaTrx disulfide reductase activity and reduction by MaTrxR. Recombinant 

MaTrx1, MaTrx3Δsp, MaTrx4, and MaTrx5 were each purified to homogeneity as described for 

recombinant MaTrx2, MaTrx6Δsp, and MaTrx7 [12]. Each MaTrx was assayed for disulfide 
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reductase activity with insulin as a substrate. Unlike MaTrx2, MaTrx6Δsp, and MaTrx7, none of 

the additional MaTrxs exhibited significant insulin disulfide reductase activity (Fig. 1). Although 

MaTrx3Δsp exhibited low activity, it is likely not physiologically relevant when compared to the 

activities of MaTrx2, MaTrx6Δsp, and MaTrx7. 

Using insulin disulfide reduction assays, MaTrxR was previously shown to reduce 

MaTrx7, but not MaTrx2 or MaTrx6Δsp [12]. The lack of insulin disulfide reduction by MaTrx1, 

MaTrx3Δsp, MaTrx4, and MaTrx5 occludes using the insulin reduction assay. Thus, MaTrxs with 

active site disulfides were generated to test as substrates for MaTrxR. H2O2 was used to generate 

MaTrxs with oxidized active site cysteines (MaTrxox). With the exception of MaTrx1, the number 

of thiols per monomer for each MaTrxox was close to zero (Table 1), consistent with complete 

thiol oxidation. MaTrx1 contains four cysteines, unlike the other MaTrxs, and the data indicate 

that at least two of these cysteines cannot be oxidized by H2O2. This is possibly due to these 

cysteines being inaccessible (i.e. buried in the protein) to H2O2. Importantly, non-reducing SDS-

PAGE of each MaTrxox showed each protein was monomeric (Fig. 2), consistent with the presence 

of intramolecular active site disulfides after oxidation with H2O2. If intermolecular disulfides were 

formed during oxidation with H2O2 then higher molecular weight species (e.g. dimers) would have 

been observed by non-reducing SDS-PAGE. Moreover, similar levels of disulfide reductase 

activity were observed with MaTrx2ox, MaTrx6Δspox, and MaTrx7ox compared to non-oxidized 

samples (data not shown), indicating that the proteins were not damaged beyond active site 

oxidation by incubation with H2O2. Incubation of each MaTrx with DTT resulted in an increase in 

the number of thiols detected (Table 1), revealing each protein contains cysteines capable of thiol-

disulfide exchange. Each MaTrxox was then tested for reduction by MaTrxR. Only the addition of 

MaTrx7ox to MaTrxR resulted in significant NADPH oxidation (Table 1). These results suggest 
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that MaTrx3Δsp, MaTrx4, and MaTrx5 are capable of thiol-disulfide exchange, but are likely not 

disulfide reductases. Moreover, MaTrxR is specific for MaTrx7 and is incapable of reducing any 

of the additional MaTrxs.   

 

Examination of the ability of NADH, NADPH, and F420H2 to supply electrons for the 

reduction of MaTrxs.  Of the seven MaTrxs, only MaTrx7ox was reduced by MaTrxR, indicating 

that if the other MaTrxs function as specific disulfide reductases, they must have a different redox 

partner(s) and/or electron donor(s). Thus, to test for the presence of enzymes that mediate the 

oxidation of the electron carriers NADH, NADPH, or F420H2 and reduction of the disulfide in 

MaTrxsox, oxidation assays with cell lysates were performed.  Only the addition of MaTrx7ox to 

M. acetivorans cell lysate resulted in the statistically significant oxidation of both NADPH (331 ± 

18 pmol min-1 mg-1) and F420H2 (138 ± 12 pmol min-1 mg-1). All assays with other oxidized MaTrxs 

did not result in activity that was statistically significant above the background. The addition of 

MaTrx7red to cell lysate also did not result in the significant oxidation of either NADPH or F420H2, 

confirming oxidation of both electron donors was due to the reduction of the disulfide in MaTrx7ox.  

These data indicate that reduction of the other MaTrxs is not linked to the oxidation of NADH, 

NADPH, or F420H2. Since both NADPH and F420H2 were oxidized by the addition of MaTrx7ox to 

cell lysate, it is possible that MaTrx7ox is reduced by an unknown enzyme that directly oxidizes 

F420H2. More likely, the oxidation of F420H2 to generate NADPH needed by MaTrxR, is mediated 

by the Fno homolog (MA_RS22115) encoded in the genome of M. acetivorans. The addition of 

recombinant MaTrxR to cell lysate resulted in a five-fold increase in the rate of MaTrx7ox-

dependent F420H2 oxidation (787 ± 60 pmol min-1 mg-1), consistent with the transfer of reducing 

equivalents from F420H2 to MaTrx7ox involving MaTrxR and therefore NADPH.  Overall, these 
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results confirm the in vivo reduction of MaTrx7ox is dependent on MaTrxR, and link the production 

of NADPH to the oxidation of F420H2, through the activity of Fno, presumably the product of the 

MA_RS22115 gene.  

 

M. acetivorans can generate NADPH for MaTrxR from the activities of Fno and Fnr.  The 

results from the incubation of MaTrx7ox with cell lysates indicate that NADPH is produced by the 

oxidation of F420H2, consistent with the activity of Fno. To confirm M. acetivorans contains a 

functional Fno, cell lysates were examined for NADP-dependent F420H2 oxidation. Lysate from 

M. acetivorans cells exhibited NADP-dependent F420H2 oxidation at a rate of 6.8 ± 1 nmol min-1 

mg-1, revealing the presence of a functional Fno. During growth of M. acetivorans with acetate 

and CO, ferredoxin is the primary electron carrier [1, 29]. Thus, M. acetivorans would likely need 

to generate NADPH for MaTrxR from the oxidation of ferredoxin. MA_RS19715-19720 in the 

genome of M. acetivorans encodes a homolog of a two subunit Fnr, similar to NfnAB from 

Clostridia [30]. CO-dependent reduction of NADP by cell lysates, as described in the methods, 

was used to examine for the presence of Fnr activity in M. acetivorans.  Carbon monoxide 

dehydrogenase (CODH) from Methanosarcina oxidizes CO to CO2 with the concomitant reduction 

of ferredoxin [31, 32]. An approximately three-fold higher rate of NADP reduction was observed 

when M. acetivorans cell lysates were provided CO compared to N2 as a control (Fig. 3). These 

results reveal that M. acetivorans can generate NADPH by the oxidation of F420H2 or reduced 

ferredoxin. 

 

The majority of sequenced methanogens encode NADPH-dependent TrxR, Fno, and Fnr.  To 

assess the prevalence of a NADPH-dependent thioredoxin system in methanogens, we analyzed 
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sequenced methanogen genomes currently available in the NCBI database for the presence of 

TrxR, Fno, and Fnr. Using MaTrxR as a BLAST search query, a TrxR homolog with >30 % 

identity and >70% coverage was found in 64 of the 75 analyzed methanogen genomes (83%). 

Table S1 shows the prevalence of TrxR among methanogens at the genus level. We next assessed 

the electron donor preference of the methanogen TrxR homologs by aligning the active site region 

of the 64 sequences (Fig. S1) and examining them for the presence of the NADPH-binding motifs 

GXGXXA [33] and VXXXHRRRDXXRA, an arginine-rich sequence found in E. coli TrxR [34].  

Characterized archaeal, bacterial, and eukaryotic TrxRs that have the consensus GXGXXA motif 

can accept reducing equivalents from NADPH [35-39]. However, the TrxR from the archaeon 

Thermoplasma acidophilum lacks the consensus GXGXXA motif and cannot accept reducing 

equivalents from NADPH even though it can reduce T. acidophilum Trx [34]. The physiological 

electron donor to T. acidophilum TrxR is unknown. Thus, conservation of the GXGXXA motif 

appears critical to the ability of TrxR to use NADPH as an electron donor. The GXGXXA motif 

is present in 55 of the 64 methanogen TrxR homologs (86%) (Fig. S1), indicating the majority of 

methanogens contain a NADPH-dependent TrxR.  However, the GXGXXA motif is not conserved 

in TrxR homologs from certain Methanococci. Thus, NADPH is likely not the electron donor to 

TrxR in a small subset of the methanogens. 

 Using M. acetivorans MA_RS22115 (Fno), a BLAST search of methanogen genomes 

revealed that all TrxR-containing methanogens encode a homolog of Fno (Table S1).  Likewise, 

using M. acetivorans MA_RS19715 (Fnr), a BLAST search  of methanogen genomes revealed 

that all TrxR-containing methanogens, with the exception of species of the genera 

Methanothermus and Methermicoccous, encode a homolog of Fnr (Table S1). These results 
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suggest all methanogens have the ability to direct reducing equivalents generated from 

methanogenesis (F420H2 and reduced ferredoxin) to a NADPH-dependent thioredoxin system.  

 

MaTrx1 and MaTrx3 have thiol oxidase activity similar to E. coli DsbA. A number of Trx-

like proteins are involved in activities other than disulfide reduction, including protein disulfide 

isomerase and disulfide-forming (thiol oxidase) activities [40]. For example, DsbA is a Trx-like 

protein found in the periplasm of E. coli that is capable of both rearranging (disulfide 

isomerization) and forming disulfides by the oxidation of thiols in proteins [41]. Thus, since four 

of the seven MaTrxs lack insulin disulfide reductase activity, but appear capable of thiol-disulfide 

exchange, the MaTrxs were tested for disulfide isomerase and thiol oxidase activities using RNase 

as a substrate. RNase requires disulfides in the correct configuration for activity; thus, RNase with 

incorrect disulfides (scrambled) and RNase with thiols (reduced) can be used as substrates to 

measure the disulfide isomerase and thiol oxidase activities, respectively [19].  In comparison to 

E. coli DsbA, which was included as a positive control, none of the MaTrxs exhibited statistically 

significant disulfide isomerase activity with scrambled RNase above the control level determined 

with buffered GSH/GSSG alone (Fig. 4A).  However, both MaTrx1 and MaTrx3Δsp showed 

statistically significant thiol oxidase activity with reduced RNase, with the activity of MaTrx3Δsp 

comparable to that of DsbA (Fig. 4b). These results reveal that MaTrx1 and MaTrx3 are thiol-

disulfide oxidoreductases, but likely serve as thiol oxidases to form disulfides rather than reduce 

disulfides, similar to DsbA. The enzymatic activities of MaTrx4 and MaTrx5 are unknown.  

 

MaTrx3 and MaTrx6 contain a signal peptide that localizes each protein to the membrane 

of M. acetivorans.  Both MaTrx3 and MaTrx6 contain an N-terminal signal peptide predicted to 
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target each protein across the membrane of M. acetivorans [12]. Consistent with this prediction, 

expression of recombinant MaTrx3 and MaTrx6 in E. coli results in accumulation of each protein 

primarily in the insoluble fraction, whereas expression of recombinant MaTrx3Δsp and 

MaTrx6Δsp are found in the soluble fraction of E. coli lysates (data not shown). To examine the 

importance of the signal peptide to the localization of MaTrx3 and MaTrx6 directly in M. 

acetivorans, strains were generated capable of expressing MaTrx3, MATrx3Δsp, MaTrx6, or 

MaTrx6Δsp with a C-terminal FLAG tag (MaTrx-FLAG) to allow immunodetection by Western 

Blot. Strain DJL80 contains MaTrx6-FLAG, strain DJL81 contains MaTrx6Δsp-FLAG, strain 

DJL82 contains MaTrx3-FLAG, and strain DJL83 contains MaTrx3Δsp-FLAG. Growth of each 

strain under inducing conditions (+ tetracycline) did not alter growth rate or yield, but led to the 

immunodetection of a protein consistent with the predicted molecular weight of each MaTrx-

FLAG that was absent in cells grown under non-inducing conditions (data not shown). These data 

indicate that each MaTrx-FLAG is expressed and does not alter the general growth of each strain. 

Therefore, lysate from induced cells of each strain was separated by centrifugation into soluble 

and membrane fractions, followed by Western blot analysis using anti-FLAG antibodies. 

MaTrx6Δsp-FLAG was only detected in the soluble fraction of DJL81 cells, whereas MaTrx6-

FLAG was detected in both the membrane and soluble fractions of DJL80 cells (Fig. 5A). 

Similarly, MaTrx3Δsp-FLAG was only detected in the soluble fraction of DJL83 cells, whereas 

MaTrx3-FLAG was detected in both the membrane and soluble fractions of DJL82 cells (Fig. 5B). 

These results demonstrate that the N-terminal signal peptide of MaTrx6 and MaTrx3 directs each 

protein to the membrane of M. acetivorans. This is the first evidence of membrane-localized Trx 

homologs in a methanogen.  
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Expression of FLAG-tagged MaTrx3 and MaTrx6 alters the level of cytochrome c in M. 

acetivorans. Among methanogens, homologs of MaTrx3 and MaTrx6 are restricted to the 

Methanomicrobia [12], the only methanogens that contain cytochromes, including cytochrome c 

[2]. In other organisms, extracellular and membrane-associated Trx-like proteins serve key roles 

in the maturation of cytochrome c, which has heme covalently attached to thiols of cysteines 

typically within a CXXCH motif [26, 42]. Thus, to provide initial insight into the potential for 

MaTrx3 and MaTrx6 to play a similar role in M. acetivorans, the effect of the increased expression 

of FLAG-tagged MaTrx3 and MaTrx6 on the level of cytochrome c was examined in M. 

acetivorans strains DJL80-83. The genome of M. acetivorans encodes three predicted cytochrome 

c proteins, two of which have been experimentally detected [25]. A 25 kDa cytochrome c is 

produced during growth with methanol or acetate and a 55 kDa cytochrome c is produced only 

during growth with acetate [25]. The effect of the expression of FLAG-tagged MaTrx3 and 

MaTrx6 on the level of the 25 kDa cytochrome c in methanol-grown cells was determined by 

densitometry of bands in heme-stained SDS-PAGE gels. Gels were loaded with the membrane 

fraction of cells grown under conditions that do not induce (- tetracycline) or induce (+ 

tetracycline) expression of each FLAG-tagged MaTrx.  A similar level of cytochrome c was 

detected in the membrane fractions from induced and non-induced cells of strains DJL81 and 

DJL83 (Table 2), which express MaTrx6Δsp-FLAG or MaTrx3Δsp-FLAG in the cytoplasm, 

respectively. In contrast, the membrane fraction of induced DJL80 cells that express MaTrx6-

FLAG, shown to localize to the membrane (Fig. 5), contain approximately 50% less cytochrome 

c than non-induced cells of DJL80. Furthermore, the membrane fraction of induced cells of DJL82 

that express MaTrx3-FLAG, also shown to localize to the membrane (Fig. 5), contain 

approximately 50% more cytochrome c than non-induced DJL82 cells. Thus, the expression of 
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membrane-localized MaTrx3-FLAG and MaTrx6-FLAG alters the level of the heme-containing 

25 kDa cytochrome c in M. acetivorans. However, altered cytochrome c content as a result of 

indirect effects, such as changes in membrane protein content due to the presence of MaTrx3-

FLAG and MaTrx6-FLAG, cannot be ruled out. Though, it is important to note that expression of 

MaTrx6-FLAG had an opposite effect on the level of cytochrome c (decreased), compared to 

expression of MaTrx3-FLAG, which resulted in an increase in cytochrome c. This difference 

indicates that the catalytic activities of MaTrx6 (disulfide reductase) and MaTrx3 (thiol oxidase) 

may play a role in the altered cytochrome c levels. 

Discussion 

The majority of sequenced methanogens encode a TrxR homolog, and all methanogens, with the 

exception of Methanopyrus kandleri, contain at least one Trx homolog, underscoring the 

importance of the thioredoxin system to methanogen physiology [12, 13]. Among methanogens, 

Methanosarcina species encode the highest number of Trx homologs (six to eight), yet typically 

encode a single TrxR homolog [12]. Results from the biochemical characterization of MaTrxR 

and MaTrx1-7 in this study confirm that NADPH-dependent MaTrxR is specific for MaTrx7 [12] 

and reveal that the remaining MaTrxs have distinct properties, and thus likely different functions. 

The model shown in Fig. 6 illustrates the proposed role(s) of the MaTrxs in M. acetivorans. 

MaTrx7 appears to be the primary intracellular reducing Trx in M. acetivorans. MaTrx7 is the only 

MaTrx reduced by MaTrxR, and experiments with cell lysates support the in vivo reduction of 

MaTrx7 by MaTrxR.  Reducing equivalents can be provided during methanogenesis with all 

growth substrates used by M. acetivorans through Fno and/or Fnr activities (Fig. 6), supporting 

the assimilation of a NADPH-dependent thioredoxin system into the physiology of M. acetivorans. 

The proteins targeted for reduction by MaTrx7 in M. acetivorans are largely unknown.  However, 
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MaTrx7 was shown to reduce the disulfides in the redox-sensitive transcription repressor MsvR, 

which activates DNA binding [43]. Moreover, recent results from a MaTrx7 pull-down experiment 

reveal that MaTrx7 is capable of reducing disulfides in several hundred M. acetivorans proteins 

(unpublished results), consistent with MaTrx7 serving as general disulfide reductase. Thus, the 

NADPH-dependent MaTrxR-MaTrx7 system likely serves as a general reducing system in M. 

acetivorans.  

Results from comparative bioinformatic analyses also indicate that the TrxR homolog in 

the majority of methanogens, with the exception of a subset of Methanococci, is likely specific for 

NADPH. Thus, a NADPH-dependent thioredoxin system is likely used by the majority of 

methanogens. One potential benefit to using NADPH to directly reduce TrxR, instead of the 

primary methanogenesis electron carriers F420 or ferredoxin, is to provide specificity and minimize 

competition for reducing equivalents needed for energy conservation. This separation of electron 

donors is similar to that used by the vast majority of cells, which use NADH for catabolism and 

NADPH for anabolism. However, some species from deeper methanogen lineages (e.g. M. 

jannaschii) may use F420H2 or ferredoxin directly to reduce Trx, as these methanogens lack the 

conserved NADPH binding site in the encoded TrxR homolog. Indeed, during review of this 

manuscript it was demonstrated that F420H2 serves as the electron donor to M. jannaschii TrxR, 

which in turn reduces functional Trx1 [44].   

 Recent evidence has also revealed that methanogens contain additional Trx-related proteins 

that function in intracellular redox physiology. In M. acetivorans, ferredoxin:disulfide reductase 

(Fdr), a protein homologous to ferredoxin:thioredoxin reductase (Ftr) from plants, can reduce 

protein disulfides with reducing equivalents provided directly from ferredoxin [45]. In the same 

study, Fdr was shown to be incapable of reducing MaTrx2, the only intracellular MaTrx other than 



83 

 

MaTrx7 with disulfide reductase activity. More recently, Fdr from Methanosarcina barkeri was 

shown to be specific for NrdH, a Trx-like protein, that reduces the active-site disulfide in the 

unusual anaerobic ribonucleotide reductase NrdD found in some methanogens [46]. The Fdr-NrdH 

system is not ubiquitous in methanogens, and appears to be an intracellular reducing system that 

is specific for a subtype of anaerobic ribonucleotide reductase restricted to methanogens from the 

orders Methanomicrobiales and Methanosarcinales [46]. In addition, the genome of some 

methanogens encode Grx-like proteins, even though methanogens lack glutathione. A Grx-like 

protein from M. acetivorans was named methanoredoxin (Mrx) based on the ability to use 

coenzyme M, as well as glutathione, as a direct source of reductant [47].  Coenzyme M is a low 

molecular weight thiol found in all methanogens where it is directly involved in methanogenesis 

[2]. However, Mrx homologs are only found in roughly 50% of methanogen species with 

sequenced genomes [47], indicating disulfide reduction by Mrx may also serve a more specialized, 

rather than general function. The disulfide-containing targets of Mrx have not been identified. It is 

common for organisms to have more than one intracellular reducing system. For example, E. coli 

contains both Trx and Grx [8]. This appears true of at least some methanogens as well, in particular 

members of Methanosarcinales. Nonetheless, despite the unique physiology of methanogens, one 

that relies heavily on ferredoxin and coenzyme F420 as electron carriers, rather than NAD(P), the 

accumulated results indicate that the majority of methanogens likely use a canonical NADPH-

dependent thioredoxin system.   

 In addition to a canonical thioredoxin system comprised of MaTrxR-MaTrx7, M. 

acetivorans contains four additional intracellular Trx homologs. MaTrx1 is unique among the 

MaTrxs as it contains two additional cysteines [12] and an active site motif (CPYC) similar to Grx 

[8]. Also, unlike the other MaTrxs, not all of the cysteines in MaTrx1 were capable of thiol-
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disulfide exchange. MaTrx1 also lacked disulfide reductase activity, instead having low, but 

detectable, thiol oxidase activity. These results indicate that MaTrx1 is possibly an intracellular 

disulfide-forming enzyme (Fig. 6), but the importance of such an activity to methanogens is 

unclear.  MaTrx2 has disulfide reductase activity but is not reduced by MaTrxR, and experiments 

with cell lysates did not link the reduction of disulfide-containing MaTrx2 to the oxidation of 

NADH, NADPH, or F420H2. Thus, the redox partner(s) to MaTrx2 is unknown (Fig. 6). MaTrx2 

homologs appear restricted to Methanosarcina [12] and may have a specialized function in these 

methanogens. MaTrx4 and MaTrx5 are similar to one another and have the same CAKC active 

site motif [12]. Although the cysteines of both proteins could be oxidized and reduced, consistent 

with thiol-disulfide exchange activity, neither protein exhibited disulfide reductase, disulfide 

isomerase, or thiol oxidase activities.  Thus, the function and role(s) of MaTrx4 and MaTrx5 are 

also unclear and may be unrelated to known Trx functions.  

Results from the expression of FLAG-tagged MaTrx3 and MaTrx6 demonstrate that the 

N-terminal signal sequence targets both proteins to the membrane of M. acetivorans, providing the 

first experimental evidence that methanogens possess membrane-associated Trx proteins. The 

signal peptide is also likely retained, as evidenced by the presence of full-length product detected 

by Western analysis in membrane fractions (Fig. 5). Thus, the N-terminal sequence of both 

MaTrx3 and MaTrx6 likely serves to anchor each protein to the membrane, most likely on the 

extracellular surface.  Although, MaTrx3 and MaTrx6 are homologous proteins and are within the 

same methanogen Trx clade [12], they are clearly not functionally equivalent. Experimental results 

support each protein is capable of thiol-disulfide exchange; however, MaTrx6 is a disulfide 

reductase, whereas MaTrx3 is a thiol oxidase. The cellular location and activities indicate MaTrx3 

and MaTrx6 function in the formation and reduction of disulfides in membrane and/or extracellular 
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proteins, respectively. M. acetivorans contains several membrane-associated and extracellular 

proteins with cysteines that are required for growth. For example, there are multiple CXXCH 

motifs in the 55 kDa cytochrome c  encoded by MA_RS03460 that is involved in electron transfer 

by the Rnf complex that is required for growth of M. acetivorans with acetate [48]. In bacteria and 

eukaryotes extracellular thiol oxidases and disulfide reductases are documented to oxidize and 

reduce the CXXCH cysteines in apo-cytochrome c to stabilize and prepare the protein for heme 

insertion [26, 42, 49]. The involvement of these enzymes in the maturation of cytochrome c in 

methanogens has not been demonstrated. However, the altered levels of cytochrome c in the 

membranes of M. acetivorans as a result of the expression of FLAG-tagged MaTrx3 and MaTrx6 

provides indirect evidence that MaTrx3 and MaTrx6 may play a role in the steps leading to heme 

insertion in apo-cytochrome c in this methanogen.  

For MaTrx3 and MaTrx6 to function at the membrane of M. acetivorans, a membrane-

associated redox partner(s) would be required to serve as an electron donor to MaTrx6 and an 

electron acceptor to MaTrx3. One probable redox partner to MaTrx6 is MA_RS22215, which 

encodes a homolog of CcdA. MaTrx6 is encoded upstream, and possibly co-transcribed, with 

MA_RS22215. This gene arrangement is conserved in all Methanosarcinales [12]. In bacteria, 

CcdA functions to transfer reducing equivalents from intracellular Trx across the membrane to 

support the catalytic disulfide reductase activity of an extracellular Trx homolog. For example, in 

Bacillus subtilis CcdA provides reductant to membrane-anchored ResA, a Trx homolog that is 

responsible for reducing the CXXCH disulfide in apo-cytochrome c [50]. Thus, it seems 

reasonable to propose that the CcdA homolog in M. acetivorans serves a similar role, supplying 

reductant to MaTrx6 from MaTrx7, the primary intracellular Trx (Fig. 6).  For redox partners to 

MaTrx3, there are no obvious candidates encoded in the genome. A few systems have been 
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characterized that use a thiol oxidase to catalyze the specific formation of disulfides in extracellular 

and/or periplasmic proteins.  For example, DsbA is a Trx homolog that oxidizes thiols to disulfides 

in proteins, including the CXXCH motif of apo-cytochrome c, to increase protein stability in the 

periplasm of E. coli [26]. DsbA is re-oxidized by the cytoplasmic membrane protein DsbB, which 

then transfers electrons to the membrane-bound quinone pool [51]. The genome of M. acetivorans 

lacks genes for homologs of proteins known to serve a redox partners to extracellular thiol 

oxidases, such as DsbB. Determining the importance of MaTrx3 and MaTrx6 to the physiology of 

M. acetivorans, including the identification of redox partners and target proteins, will require 

additional experimentation and is currently underway.  

Conclusions 

 The results presented here reveal that M. acetivorans contains seven Trx homologs with 

different functional properties and cellular locations. NADPH-dependent MaTrxR is specific for 

MaTrx7, and MaTrxR-MaTrx7 likely comprise the general intracellular reducing system in M. 

acetivorans. Reducing equivalents are provided to the MaTrxR-MaTrx7 system through the 

oxidation of the primary methanogen electron carriers, F420H2 and ferredoxin. Bioinformatic 

analyses indicate that the majority of methanogens also likely use a NADPH-dependent 

thioredoxin system. MaTrx3 and MaTrx6 are localized to the membrane of M. acetivorans, and 

function to generate or reduce membrane and/or extracellular proteins, respectively. The 

physiological function(s) of MaTrx1, MaTrx2, MaTrx4, and MaTrx5 are unclear, and will 

require additional experimentation to elucidate what roles these Trx homologs serve in the 

physiology of M. acetivorans. 
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Figures and Tables 

Figure 1. 

Fig. 1. Insulin disulfide reductase activity of MaTrxs. Assays were performed in anaerobic 

buffer containing DTT (1 mM) alone or with: MaTrx1 (20 µM), MaTrx2 (10 µM), MaTrx3 (20 

µM), MaTrx4 (20 µM), MaTrx5 (20 µM), MaTrx6 (5 µM), MaTrx7 (5 µM). 
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Table 1. MaTrx thiol-disulfide exchange ability and specificity of MaTrxR. 

 

 

 

 

 

aThiols per MaTrx monomer after incubation with H2O2 as determined by the DTNB assay. 
bThiols per MaTrx monomer after incubation with DTT as determined by the DTNB assay. 
cnmol NADPH oxidized min-1 mg-1 oxidized MaTrx. 

BDL: below detection limit.  

ND: not determined 

 

 

 

 

 

 

 

 

 

 

MaTrx 
Total 

cysteines 
MaTrxox  
Thiolsa 

MaTrxred Thiolsb NADPH oxidationc 
(MaTrxR + MaTrxox) 

MaTrx1 4 3.20 ± 0.35 4.58 ± 0.3 BDL 

MaTrx2 2 0.05 ± 0.02 1.66 ± 0.77 ND 

MaTrx3Δsp 2 0.05 ± 0.03 2.04 ± 0.31 BDL 

MaTrx4 2 0.06 ± 0.14 1.04 ± 0.07 20 ± 2 

MaTrx5 2 0.11 ± 0.03 1.83 ± 0.17 BDL 

MaTrx6Δsp 2 0.21 ± 0.05 1.14 ± 0.31 ND 

MaTrx7 2 0.13 ± 0.04 1.4 ± 0.08 829 ± 134 
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Figure 2 

Fig. 2. Non-reducing SDS-PAGE of H2O2-oxidized MaTrxs. Each MaTrxox (10 µg) was 

separated by 15% SDS-PAGE in the absence of a reducing agent. 
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Figure 3 

Fig. 3. CO-dependent reduction of NADP by M. acetivorans cell lysate. Assays were 

performed in sealed anaerobic cuvettes containing lysate (100 µg), NADP (0.5 mM), and a 

headspace of either N2 or CO. Data points are the mean (± SD) of triplicate assays. 
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Figure 4 

Fig. 4. Analysis of disulfide isomerase and disulfide-forming activities of MaTrxs using 

scrambled and reduced RNase. (A) RNase activity of disulfide-scrambled RNase after 

incubation in GSH/GSSG redox buffer alone (control), with DsbA, or with the indicated MaTrx. 

(B) RNase activity of reduced RNase after incubation in GSH/GSSG redox buffer alone (control), 

with DsbA, or with the indicated MaTrx. Data points are the mean (± SD) of triplicate assays. **P 

≤ 0.002 (t-test). 
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Figure 5 

Fig. 5. Western blot analysis of fractionated cell lysates from M. acetivorans strains 

expressing FLAG-tagged MaTrx3 and MaTrx6.  (A) Western blot analysis using anti-FLAG 

antibodies of membrane (M) and soluble (S) fractions of DJL80 cells containing MaTrx6-FLAG 

(18.8 kDa) and DJL81 cells containing MaTrx6Δsp-FLAG (15.8 kDa). Total protein in samples: 

M-7.5 µg, S-50 µg. (B) Western blot analysis using anti-FLAG antibodies of membrane (M) and 

soluble (S) fractions of DJL82 cells containing MaTrx3-FLAG (20.3 kDa) and DJL83 cells 

containing MaTrx3Δsp-FLAG (16.7 kDa). Total protein in samples: M-5 µg, S-35µg. 
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Table 2. The effect of the expression of FLAG-tagged MaTrx3 and MaTrx6 on the levels of 

the 25 kDa cytochrome c in membrane fractions of methanol grown M. acetivorans. 

Strain Tetracycline Level of cyt ca 

DJL80 (MaTrx6-FLAG) - 100 ± 10 

 + 57 ± 16* 

DJL81 (MaTrx6Δsp-FLAG) - 100 ± 13 

 + 123 ± 37 

DJL82 (MaTrx3-FLAG) - 100 ± 25 

 + 170 ± 18* 

DJL83 (MaTrx3Δsp-FLAG) - 100 ± 30 

 + 138 ± 13 
aThe levels of cyt c were determined by densitometry of heme-stained SDS-PAGE gels. Gels 

were loaded with replicate samples of normalized membranes purified from two independent 

cultures. The amount of cyt c produced in non-induced cells (- tetracycline) is set to 100 arbitrary 

units. 

*Significantly different from the level of cyt c in non-induced cells (-tetracycline), P ≤ 0.05 (t-

test). 
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Figure 6 

Fig. 6. Model showing the location and proposed function(s) of MaTrxs in M. acetivorans. 

Solid lines indicate detected activities and dashed lines indicate putative activities. Question 

marks denote unknown or proposed protein(s) or factor(s). MaTrx7 was previously shown to 

reduce disulfides in oxidized MsvR, activating binding of DNA.  Fdo: oxidized ferredoxin, Fdr: 

reduced ferredoxin, Fnr: ferredoxin:NADP oxidoreductase, Fno: F420H2:NADP oxidoreductase. 
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Table S1. Prevalence of selected intracellular reducing components encoded in methanogen 

genomes. 

Genus TrxR Fno Fnr 

Methanopyrus + + + 

Methanococcus + + + 

Methanothermococcus + + + 

Methanocaldococcus + + + 

Methanotorris + + + 

Methanobacterium + + + 

Methanobrevibacter + + + 

Methanosphaera + + + 

Methanothermobacter + + + 

Methanothermus + + - 

Methanolinea + + + 

Methanomicrobium - + + 

Methanoculleus + + + 

Methanofollis + + + 

Methanolacinia + + + 

Methanoplanus + + + 

Methanocorpusculum + + + 

Methanospirillum + + + 

Methanosarcina + + + 

Methanococcoides + + + 

Methanohalobium + + + 

Methanohalophilus + + + 

Methanolobus + + + 

Methanosalsum + + + 

Methanomethylovorans + + + 

Methanosaeta + + + 

Methermicoccus + + - 

Methanocella + + + 

Methanomassiliicoccales + + + 

A plus sign (+) indicates one or more species within a genus encode a homolog (>30 % identity 

and >70% coverage to M. acetivorans TrxR, Fno, and Fnr). 

A dash (-) indicates the absence of an encoded homolog from all species within a genus. 
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Figure S1 
 

E.coli_AJF76266.1              GRGVSACATCDGF--FYRNQKVAVIGGGNTAVEEALYLSNIASEVHLIHRRDGFRAEK(+) 

S.cerevisiae_AAB64789.1        QKGISACAVCDGAVPIFRNKPLAVIGGGDSACEEAQFLTKYGSKVFMLVRKDHLRAST(+) 

M.bavaricum_WP_042698071.1     GKGVAICTVCDGP--LYKDKVVGILGGGNTAVDMAIELSDIASTIHLIVR-SQLKADK 

M.labreanum_WP_011833868.1     GKGVAICTTCDGP--LYKNKVVGILGGGNTAVDMAIELSDIASKIHLIVR-SKLKADK 

M.arvoryzae_WP_012034618.1     NRGVSYCTTCDGP--LFADMDVAVVGGANAAAESVLEMTHYATKVYMIVR-STLKADQ 

M.paludicola_WP_012899372.1    NRGVSYCPTCDGP--LFSGMDVAVIGGGNAAAEAVLDLIPLATKVYLVVR-STLKADK 

M.conradii_WP_014406803.1      NRGVSYCATCDGP--LFAGMDVAVVGGGNSAAEAVLDIINMVSKVYLVVR-STLKADK 

M.marisnigri_WP_048063894.1    GKGISVCAICDAP--LYRDKPVAVVGGGNAALQTAIEMTKFASSVTLIAR-RDLRCDE 

M.bourgensis_WP_014865992.1    GRGVSVCSTCDGP--LFRARPVAVVGGGNAAIQTAIEMARIASSVALVVR-STLKCDE 

M.limicola_WP_048146446.1      GRGISICSTCDGP--LFRDKIVTVVGGGNYALTTAIEMSKIAKEVNLIVR-SKIRADE 

M.petrolearia_WP_048130870.1   GHGISICSTCDGP--LFRDKIVTIVGGGNYAVTTAIEMSKLATHVNLIVR-SKIRADE 

M.paynteri_WP_048149369.1      GHGISICSTCDGP--LFRNKIVTIIGGGNYAVTTAIEMSKLAKHVNLIVR-SKIRADE 

M.hungatei_WP_048068117.1      GRGLSVCATCDGP--IFKEKVVGVVGGGNSALTTALEMSGIAKEVHLIVR-SSIRADA 

M.liminatans_WP_004040620.1    GRGVSVCSTCDGP--LFKGKDVAVVGGGNSAVITAIEMGKIARSVHLIVR-STIRADP 

M.formicica_WP_015284113.1     GRGISICSTCDGP--LYKGKKIAVVGGGNSAVQTAIEMSRIALSVNLIVR-SSIRADP 

M.boonei_6A8_ABS54608          GRGLSICSTCDGP--LFKDKKIAVVGGGNSALQTAVEMSSIASSVSLLVR-STIKADP 

M.palustris_E19C_ACL15780.1    GRGLSVCTTCDGP--LFKDKKIAIVGGGNAAVQTAIEMSRIASSVSLIVR-ADLKADP 

M.tarda_WP_042689672           GRGLSVCSTCDGP--LFRDKVVAVVGGGNSALQTAIEMSKIAREVHLVVR-STIKADP 

M.voltae_WP_013180053.1        GKGVGYCVMCDAF--FFKDRHVLVIGRNTPAAMAAYNLRDIAKKITIITDKNEIKVVE 

M.vannielii_WP_011971966.1     GKGVCYCVMCDAF--FFINKEVIVLGRGTSAIMAAYNLKDIVKKITIVTDRPNLKAVE 

M.maripaludis_WP_013999418.1   GKGVCYCVMCDAF--FFLNKEVIVLGRGTSAIMAAYNLKDIAKKITIVTDRSELKAVE 

M.igneus_WP_013798844.1        GRGVSYCTTCDAF--FYLKKDVIVVGRDTPAVMSAINLKDIANKIYLITDKANIKVAE 

M.formicicus_WP_007044342.1    GKGVSYCTTCDAF--FYLKKDVIVVGRDTPGVMSAINLKDIANKIYLITDKDKIKVAE 

M.infernus_WP_013099833.1      GKGVSYCTMCDAF--FYLNKDVIVFGRDTPAVMSAINLKDIAKKIILITDKSDLKVAE 

M.villosus_WP_026152912.1      GKGVSYCTMCDAF--FYLNKDVIVLGRDTPAIMSAINLKDIAKRVILITDKKELKAAE 

M.fervens_WP_015792073.1       GKGVSYCTMCDAF--FYLNREVIVIGRDTPAIMSAINLKDIAKKVILITDKSELKAAE 

M.jannaschii_WP_010871060.1    GRGISYCTMCDAF--FYLNKEVIVIGRDTPAIMSAINLKDIAKKVIVITDKSELKAAE 

M.vulcanius_WP_015733468.1     GRGVSYCTMCDAF--FYLNKDVIVIGRDTPAVMSAINLKDIAKKIILITDKQELKVAE 

M.aeolicus_WP_011973481.1      GKGVSYCATCDAF--FYVGKEVIVVGKGTPAVMSALNLKDIVKKVILITEEPEIKAAE 

M.thermolitho_WP_026182944.1   GKGVSYCTMCDAF--FYLNKEVIVVGKGTPAVMSALNLKDIVKKVTIVTEKSELKATE 

M.okinawensis_AEH07436         GRGVSYCTTCDAF--FYLNKEVIVIGRGTPAVMSALNLKDIAKKVTIITDKPELRAAE 

M.concilii_YP_004383912.1      ARGVSYCVHCDGA--LFRNKSVALVGYGNGAARAILYLANIASRVHLISPKEKLVAEP 

M.harundinacea_YP_005919239.1  TRGVSYCAYCDGA--LFRNKTVAVIGYGNGAARAVLYLAGLCARVHLLNVREDLVAEA 

M.thermophila_WP_011696325.1   TRGLSYCVYCDGA--LFRDRTTAVVGYGNGAARALLYLSNICSRVHLLCPRERLVAEA 

M.kandleri_WP_011019929.1      GRGVSYCAICDGP--AFQNRIVAIVGSGTHAANTALFLSEIAERVYVITPDGKLESPD 

S.solfataricus_CAC86033        GRGISYCSVCDAP--LFKNRVVAVIGGGDSALEGAEILSSYSTKVYLIHRRDTFKGQQ(+)   

T.maritima_NP_228678.1         GKGVSYCATCDGY--LFAGKDVIVVGGGDSACDESIFLSNIVNKITMIQLLETLTAAK(+) 

M.shengliensis_WP_042686133.1  GRGVSYCATCDGF--FFVDRKVLVVGGGNSALTEAIYLSGIARKVYIAHRRDRFRGER 

M.nitroreducens_KCZ70341       GRGVSYCATCDGF--FFRDKVVVVVGGGDSAITEAIFLTKMAKKVIIVHRRDKLRAEK 

M.zhilinae_WP_013898016.1      GKGVSYCATCDGP--FFKKRNVAVIGGGNSAVAEALVLSGIADNVYVVHRRNELRAET 

M.mahii_WP_013037647.1         GRGISYCATCDGP--FFSGKEVAVIGGGESAVTDAIFISDIASKVYVVHRRDKLRASQ 

M.evestigatum_WP_013194180.1   GRGVSYCATCDAP--FYKERDVIVVGGGNTAISDALILSNVANKVYQVHRRDELRASK 

M.mazei_WP_011034277.1         SKGVSYCAICDGP--FFRNKIVAVVGGGNSAVTDALFLSKVAQKVYLVHRRDHLKAAR 

M.soligelidi_WP_048051063.1    SKGVSYCAICDGP--FFRNKIVAVVGGGNSAVTDALFLSKVAQKVYLVHRRDHLKAVR 

M.horonobensis_WP_048141102.1  SKGVSYCAICDGP--FFKNKTVVVIGGGNSAVTDALFLSKIAQKVYLVHRRDHLRAAK 

M.lacustris_WP_048124990.1     SKGVSYCAICDGP--FFKNKTVVVVGGGNSAVADALLLSKIAQKVYLVHRRDCLRAAK 

M.acetivorans_NP_616304.1      SKGVSYCAICDGP--FFKNKTVVVVGGGNSAVTDALLLSKVAQNVYLIHRRDRLKAAK(+) 

M.siciliae_WP_048171735.1      SKGVSYCAICDGP--FFKNKTVVVVGGGNSAVTDALLLSKVAQKVYLVHRRDRLKAAK 

M.barkeri_WP_048105963.1       SKGVSYCATCDGP--FFRNKTVVVVGGGNTAINEAILLSKIARKVYLIHRRDRLRAAK 

M.thermophila_WP_048166743.1   SKGVSYCATCDGP--FFKNKTVVIVGGGNSAVTDALFLSKIARKVYLIHRRDQLRAAK 

M.hollandica_WP_015324339.1    GKGVSYCATCDAP--FYKGKTVMVIGGGESALTDALILSNIVKKVYIVHRRDKLRASM 

M.methylutens_WP_048204940.1   GKGVSYCATCDGP--FFKGKNVLVVGGGESAITDSLILSDLAASVCVVHRRDELRASK 

M.burtonii_WP_011498283.1      GKGVSYCATCDGP--FFSGRNVIVVGGGESAITDALILSDMAASVCVVHRRDELRASK 

M.tindarius_WP_023845979.1     TKGVSYCATCDGP--FYSGLNVIVVGGGESAVTDALILSDIAEKVYVVHRRDELRACS 

M.psychrophilus_WP_048147460.1 GKGVSYCATCDAA--FFADQEVLVIGGGESAVTDALILSGIASKVYVVHRRDSLRACK 

T.acidophilum_CAC12113.1       GKGTSYCSTCDGY--LFKGKRVVTIGGGNSGAIAAISMSEYVKNVTIIEYMPKYMCEN#(-) 

P.horikoshii_WP_048053388      GRGVSYCATCDGP--LFVGKEVIVVGGGNTALQEALYLHSIGVKVTLVHRRDKFRADK (+) 

M.stadtmanae_WP_011406983.1    GRGVSYCAVCDGT--FFVKKEVLVIGGGNSAVTEALYLNRIGVKCSLVHRRDKLRCDS 

M.paludis_WP_013824744.1       GKGISYCSICDGM--FFRGKEVLVVGGGNSAAEHALHLNDIGCKVKMVHRRDELRAQK 

M.lacus_WP_013646010.1         GRGISYCSICDGM--LFKGRDVVVVGGGNSAAEHALHLNDIGVNVKLIHRRGELRAQK 

M.wolinii_WP_042708580.1       GKGVSYCATCDGM--FFKGKDILVVGGGNTAAIDAIYLKDLGCNVTLVHRRDRLRCQK 

M.boviskoreani_WP_040681931.1  GRGVSYCATCDGM--FFKGKDIAIVGGGNTAVTNALYLNDLGCNVTLIHRRDALRCEK 

M.formicicum_WP_048073032.1    GRGVSYCATCDGP--LFKEKSVVVVGGGNAAVQEAIYLNDLDCDVTIIHRRDELRAEK 

M.fervidus_WP_013413587.1      GRGVSYCAICDGP--LYINKNILVVGGGNSAVQEAIYLKSIGCKVKLVHRRNKLRAEK 

M.ruminantium_WP_012956224.1   GRGVAYCATCDGM--FFIDRTVLMVGGGNSAAQEALYLKNLGCNVKLVHRRDQLRCEH 

M.smithii_WP_019264231.1       GKGVSYCATCDGL--FFKDKDVIMIGGGNSALQEAIFLDNVGCNVTIIHRRDRLRAQQ 

M.arboriphilus_WP_042704143.1  GLGVSYCATCDGL--LYKDKDILMIGGGNSALQEAIFLHNVGCNVTIVHRRDKFRAEK 

 

CXXC GXGXXA VXXXHRRDXXRA 
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Figure S1 cont. 

M.marburgensis_WP_013295913.1  GRGVCYCATCDGP--LYRGRKVLMVGGGNSAAQEAVFLKNIGCDVSIVHRRDELRADR 

M.thermautotro_WP_048060886.1  GRGVCYCATCDGP--LYKGRKVLMVGGGNSAAQEAVFLKNIGCDVSIVHRRDELRADK 

M.intestinalis_WP_020449568.1  GKGVSYCASCDAG--FYKNKIVGVVGDGSEAGESAVLLSKYASNVYWISSGR---SVS 

Fig. S1. Amino acid alignment of the active site region of methanogen TrxR homologs with 

characterized TrxR from bacteria, eukaryotes, and other archaea. BLASTP searches for 

putative TrxR in methanogens were performed using MaTrxR as a query against available 

sequenced methanogen genomes (NCBI). The highest scoring protein (>30 % identity and >70 

% coverage) for each species was included and aligned with selected non-methanogen TrxR 

sequences using Clustal Omega. Only the region encompassing the active site cysteine motif 

(CXXC) and NADPH binding site motifs are shown. Non-archaeal sequences are colored black. 

Non-methanogen archaeal sequences are colored blue. Methanogen sequences that contain the 

GXGXXA motif are colored orange. Methanogen sequences lacking the GXGXXA motif are 

colored green. Non-methanogen sequences lacking the GXGXXA motif are indicated by a # 

sign. Based on previous studies (references 34-39), sequences that encode TrxR capable or 

incapable of using NADPH are indicated by (+) and (-) signs, respectively. 
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Abstract 

The cytoplasm of cells from all organisms, including aerobes, is highly reduced. Thus, all 

cells require an intracellular system to maintain redox homeostasis. The vast majority of extant 

cells from all three domains of life use the thioredoxin system. Thioredoxin (Trx) is a small 

protein with a Cys-XX-Cys active site that reduces cysteine disulfides of target proteins. Trx can 

influence the structure/activity of proteins, serve as an electron source for enzymes, and repair 

oxidatively damaged proteins. The canonical Trx is reduced by thioredoxin reductase that is 

NADPH-dependent. However, strictly anaerobic methane producing archaea (methanogens) do 

not directly generate NAD(P)H during methanogenesis, instead the deazaflavin F420 and 

ferredoxin are directly reduced. The thioredoxin system of model methanogen Methanosarcina 

acetivorans has been determined to be a NADPH-dependent system comprised of MaTrxR and 

MaTrx7 that obtain NADPH from the oxidation of the primary reducing equivalents F420 and 

ferredoxin to reduce NADP+ [1, 2]. Moreover, our work has shown that many methanogens 

likely employ the use of a NADPH-dependent thioredoxin system rather than the F420 dependent 

thioredoxin system found in methanogens belonging to the class Methanococci [2, 3]. However, 

it still remains unclear the role(s) of a NADPH-dependent thioredoxin system in the physiology 

of methanogens. The work shown here addresses elucidating candidate target proteins to MaTrx7 

through the use of Trx affinity chromatography, where aerobically exposed M. acetivorans cell 

lysate was supplied to a single cysteine residue mutant form of MaTrx7 bound to resin. The 

proteins that bound to the MaTrx7 resin were sequenced using mass spectrometry, and in total 

over 700 proteins were identified, including many proteins involved in methanogenesis. M. 

acetivorans cell lysate was capable of reducing NADP+ after exposure to oxygen without 

supplication of additional exogenous electron donor, supporting that M. acetivorans possesses 
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electron donor pools that are oxygen insensitive. Cumulatively, the work supports that the 

MaTrxR-MaTrx7 system can serve as a general redox maintenance system after oxygen 

exposure, and thus would allow for the repair of methanogenesis enzymes needed to resume 

growth.  
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Introduction 

Intracellular thiol redox maintenance systems are critical to all forms of life, as they are 

responsible for catalytic reduction of many enzymatic pathways such as biosynthesis and for 

reductive repair of unwanted disulfide bonds. One type of thiol redox maintenance system, the 

thioredoxin system, is ubiquitous to aerobes and anaerobes alike. The thioredoxin system is 

comprised of a thioredoxin reductase (TrxR) that oxidizes NADPH to reduce one or more Trxs. 

Reduced Trx functions to reduce a multitude of proteins that can be dependent upon Trx or 

proteins that have had damaging disulfide bonds formed as a result of oxidation. While NADH is 

also generated in many cells utilizing the NADPH-dependent thioredoxin system, these cells 

reserve NADH for catabolic processes and energy conservation, thus allowing the cell to 

determine the state of catabolism/energy conservation while regulating anabolism/redox state. 

The redox state of the cell is kept low during normal growth by keeping excess reductants 

available and proteins reduced, thus the levels of intracellular NADPH exceed that of the 

oxidized form NADP+, allowing the thioredoxin system to readily access NADPH needed for the 

reduction of target proteins [4]. During events of oxidative stress, the levels of intracellular 

NADP+ increase and signal to the cell to the cell to increase the levels of key enzymes for 

NADPH production [5]. Many of these NADPH generating enzymes are targets for the 

thioredoxin system, indicating that Trx plays a direct regulatory role in the levels of NADPH in 

the cell and ultimately the intracellular redox state [6].  

Although a multitude of eukaryotic and prokaryotic thioredoxin systems have been 

studied extensively, there remains a gap in how the thioredoxin system functions in the strictly 

anaerobic, methane producing archaea (methanogens). Indeed, strict anaerobes live in a more 

reduced environment than aerobes, but the need for redox maintenance systems are equally 
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important as many of these organisms contain a greater proportion of redox sensitive enzymes, 

coenzymes, and cofactors that are in lower abundance in aerobes due to the increase of 

encounters with oxygen and reactive oxygen species. Thiol redox systems like the thioredoxin 

system may be of increased demand in methanogens because they are estimated to utilize more 

FeS clusters, which are coordinated by reduced cysteine residues, than other prokaryotes [7]. 

Recent evidence indicates that the thioredoxin system components are ubiquitous to 

methanogens with homologs of TrxR and multiple Trxs encoded in the genomes of nearly all 

methanogens, but the source of electrons for methanogen thioredoxin systems remained unclear 

[1, 8]. Methanogens do not utilize NADPH as the primary electron donor during central carbon 

metabolism (methanogenesis), but rather coenzyme F420 and the small FeS containing protein 

ferredoxin. Recent work has shown the thioredoxin system from the deeply rooted 

hyperthermophillic methanogen Methanocaldococcus jannaschii and other Methanococci 

species contain F420-dependent TrxRs [3]. MjTrxR reduces MjTrx1 that is then capable of 

reducing a multitude of proteins involved in methanogenesis, replication, and the oxidative stress 

response, suggesting that the M. jannaschii thioredoxin system is necessary for redox 

homeostasis [8]. The F420-dependent thioredoxin system in M. jannaschii is directly integrated 

into the physiology by utilizing one of the primary electron carriers generated during 

methanogenesis, thus allowing the M. jannaschii thioredoxin system to function and respond 

based on the state of methanogenesis. The reduction of F420 is primarily produced during 

methanogenesis by F420-reducing hydrogenases, but also to a lesser extent by H2-dependent 

methylenetetrahydromethanopterin dehydrogenase (Hmd) and F420H2-dependent 

methylenetetrahydromethanopterin dehydrogenase (Mtd) by means of an alternative pathway 

using methanogenesis intermediates [9]. The utilization of F420 dependent thioredoxin systems in 
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Methanococci allows for redox regulation that functions similarly to NADPH/NADP+ where the 

cell can determine the redox state based on the amount of reduced F420. Moreover, utilizing F420 

instead of reduced Fd is likely due to Fd being used for energy conservation similar to NADH in 

E. coli. However, in the event of oxidative stress the rate of methanogenesis is dramatically 

reduced or even halted [10], thus the M. jannaschii thioredoxin system is limited to thiol redox 

maintenance when oxidative stress is minimal to none due to the lack of sufficient F420 

production.  

Methanosarcina species, however, utilize a F420 dependent dehydrogenase that helps to 

generate an ion gradient for energy conservation, and thus a F420 dependent thioredoxin system 

would funnel electrons away from energy conservation to be used for reductive biosynthesis and 

repair ultimately causing unregulated overlap between the two pathways. Some Methanosarcina 

species are also capable of utilizing a wider range of substrates from methylated compounds to 

acetate fermentation, which accounts for the majority of biologically produced methane. An 

increase in growth substrate utilization necessitates increased regulation over electron donor 

pools. For instance, reduced Fd is hypothesized to be the primary electron carrier during acetate 

growth while F420 serves as the primary carrier during methylotrophic growth, and thus a thiol 

redox maintenance system relying solely upon reduced F420 would be hindered during growth on 

acetate. Evidence from the recently evolved mesophilic methanogen Methanosarcina 

acetivorans supports that a NADPH dependent thioredoxin system exists in methanogens, and is 

likely the predominant system among all methanogens except Methanococci species [1, 2]. 

Methanogens may have evolved multiple redox systems like the NADPH dependent thioredoxin 

system, the Ferredoxin thioredoxin system, and the methanoredoxin system when the earth 

became oxygenated as a response to an increase in the number of oxidative stress events [11, 12]. 
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Generating NADPH as a secondary electron carrier would effectively provide additional means 

of regulation in the cell between redox maintenance and energy conservation pathways, and 

indeed reduction of NADP+ can be accomplished in nearly all methanogens by oxidizing the 

primary reducing equivalents generated during methanogenesis by utilizing of F420:NADP+ 

oxidoreductase (Fno) and Ferredoxin:NADP+ reductase (Fnr) [2]. Oxidizing both Fd and F420 to 

produce NADPH effectively couples the NADPH dependent thioredoxin system to central 

carbon metabolism of methanogens. Additionally, most of the enzymes responsible for reducing 

Fd and F420 are oxygen sensitive, and utilizing a secondary electron donor would allow to oxidize 

a different source of electrons using enzymes that may be oxygen insensitive. Despite the 

apparent advantages of utilizing a secondary electron carrier for redox maintenance, the role(s) 

of the NADPH-dependent thioredoxin system in methanogens remains to be elucidated. The 

focus of the work presented here is to assess whether the M. acetivorans thioredoxin system 

could serve as a general thiol redox maintenance system in M. acetivorans and if the production 

of NADPH is limited to anaerobic conditions.  

Materials and Methods 

Cloning, overexpression, and purification of MaTrx7C15S: MA_RS07110 (MA4683) was 

cloned into pET28a as reported previously [1] and the resulting plasmid named pDL336. Site 

directed mutagenesis was performed on pDL336 using the Quickchange II kit (Agilent) to 

change the codon for the amino acid 15, the resolving cysteine residue [13], to encode for serine 

(MaTrx7C15S) using the primer sequences 5'-tcacgctacctggagcacggcatgtcc-3' and 5'-

ggacatgccgtgctccaggtagcgtga-3' as the forward and reverse primers respectively. The resulting 

plasmid encoding MaTrx7C15S was sequence verified and named pDL341. pDL341 was 

transformed into Rossetta DE3 Escherichia coli cells for overexpression and purification as 
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previously reported [1]. MaTrx7C15S was purified to >95% homogeneity by SDS PAGE, and 

stored in 50 mM TRIS 150 mM NaCl pH 7.2 (buffer A) at -80 °C. Protein concentrations were 

determined using the Bradford assay with BSA as a standard.  

Binding MaTrx7C15S to cyanogen bromide agarose: A total of 0.14 g dry weight of 

cyanogen bromide activated agarose (GE Healthcare) was prepared for binding per the 

manufacturer’s protocol yielding 0.5 mL of rehydrated agarose. 1.25 mg of MaTrx7C15S diluted 

in 750 µL of 0.1 M NaHCO3 0.5 M NaCl at pH 8.3 (coupling buffer) was used to resuspend the 

previously prepared cyanogen bromide agarose and nutated for 2hrs in a 2 mL Eppendorf tube at 

RT. Once bound, the MaTrx7C15S coupled agarose was transferred to a chromatography column 

and residual MaTrx7C15S washed from the agarose using 5 column volumes of coupling buffer. 

To block any remaining uncoupled agarose the columns were washed with 2 column volumes of 

0.1 M TRIS at pH 8. The columns were then prepared for storage per the manufacturer’s 

protocol and stored overnight at 4° C in buffer A for use the following morning. 

Growth and generation of M. acetivorans cell free lysate: M. acetivorans was grown in 300 

mL of high-salt (HS) medium supplemented with 125 mM methanol and 0.025 % Na2S (w/v) to 

an OD600 of 0.5 [14]. Cells were harvested by centrifugation for 10 min at 8,600 x g and 4 °C. 

The cell pellet was resuspended in 2 mL of anaerobic buffer A supplemented with protease 

inhibitors (1 mM benzamidine and 1 mM PMSF). Cell suspensions were stored at -80 °C in 

anaerobic vials. The cells were lysed using 5 cycles of freezing at -80° C and thawing to 30° C in 

a warm water bath, and then 10 units of DNase I were added to the vial using a Hamilton syringe 

and then incubated at 37 °C for 1 hr. M. acetivorans lysate was then clarified by centrifugation at 

16,000 x g for 10 min at RT and the soluble fraction stored at -80 °C in anaerobic vials at a 

concentration of 8.4 mg · mL-1. 
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Purification of M. acetivorans target proteins to MaTrx7C15S using reduced and alkylated 

MaTrx7C15S resin: 1mL of MaTrx7C15S resin was allocated into two 0.5 mL chromatography 

columns. Unless stated otherwise, all subsequent manipulations were done inside an anaerobic 

chamber (COY laboratories).  Both columns were washed with 5 column volumes (CV) of 

anaerobic buffer A, and then reduced 4 CV of 100 mM dithiothreitol (DTT) in buffer A, 

allowing 2 CV to fully enter the agarose bed before incubation for 20 min at RT in the dark. 

After reduction, one MaTrx7C15S bound column was acetylated using iodoacetamide (IAA) to 

serve as the negative control. Alkylation was accomplished by washing the column with 5 

column volumes of 20 mM TRIS 500 mM NaCl at pH 8 (buffer B) to increase the pH. Then the 

column was treated with 5 CV of 10 mM IAA in buffer B and incubated for 30 min at RT in the 

dark followed by washing with 5 column volumes of buffer A. Both columns remained in buffer 

A until incubation with M. acetivorans lysate.   

 M. acetivorans lysate was oxidized by exposure to atmospheric oxygen for 2hr at RT and 

mixed gently using a pipettor every 30 min to distribute air. 900 µL of oxidized M. acetivorans 

lysate was added to the reduced MaTrx7C15S column and the IAA MaTrx7C15S control column 

after allowing buffer A to completely flow through the columns leaving 400 µL of lysate atop of 

the resin. The lysate and resin was mixed and the slurry removed to a 2 mL Eppendorf tube, 

which was then nutated for 30 min at RT. After incubation of the MaTrx7C15S resin with lysate 

the slurry was added back to their respective columns and repacked onto the column by allowing 

the lysate to flow through. Columns were washed with 6 CV of 50 mM TRIS 1M NaCl pH 7.2, 3 

mL of 50 mM TRIS 2M NaCl pH 7.2, and finally with buffer A. To elute thiol bound proteins, 2 

CV of buffer A supplemented with 100 mM DTT was added to each column and 1 CV entered 

the resin bed before the flow was stopped for a 20 min incubation at RT in the dark. DTT eluted 
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proteins were collected from each column for Qubit protein determination and SDS PAGE 

analysis. A total of 350 µL of the remaining DTT eluate from the columns were lyophilized and 

resuspended in 40 µL of buffer A. 13 µL of each concentrated eluate was loaded onto a freshly 

prepared 4-20% gradient SDS PAGE gel, the gel fixed with 40 % methanol and 10 % acetic acid 

in water after running, and ultimately stained with the blue silver Coomassie staining protocol 

[15], and the bands excised as depicted in figure 1 for LC-MS/MS analysis. The sample numbers 

from column A in S1 that correspond to the numbers depicted in Fig. 1 were used to validate the 

size of the identified proteins based on the location in the gel using the molecular weight marker 

and the predicted molecular weight in S1. Excisions of bands from the IAA MaTrx7C15S gel 

lane were not shown in Fig. 1, but were documented and utilized to validate identified proteins in 

the same way. All identified proteins exhibiting a molecular weight outside of the range of their 

respective gel slice were removed from S1. 

LC-MS/MS analysis, database search, and data parsing: In-gel digestion and liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) analysis with an Orbitrap Velos mass 

spectrometer (Thermo, San Jose, CA) in the Proteomic Facility at the University of Arkansas for 

Medical Sciences (Little Rock, AR) was performed as described previously [16]. Mascot 

(Version 2.5.1; Matrix Science, Boston, MA) was used to search against the UniProt/SwissProt 

database for M. acetivorans (April, 2015; 4468 entries) using LC-MS/MS data. The parameters 

for database searching were: (i) 2.0 ppm mass error tolerance for MS and 0.5 Da for MS/MS, (ii) 

a maximum of 2 missed cleavages, (iii) fixed modification of carbamidomethylation of cysteine 

residues, and (iv) variable modifications of acetylation at peptide N terminus and oxidation of 

methionine residues. Search results were further processed by Scaffold software (version 4.4.5; 

Proteome Software, Portland, OR) for viewing protein and peptide identification information. In 
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the Scaffold analysis, protein identification probability with at least two peptides was set to 99%, 

and the peptide identification probability was set to 90%. Multiple identifications of a single 

protein were removed from S1 and the representative proteins with the highest unique peptides, 

unique spectrum, and total spectrum counts remained for further comparison against the 

identified proteins the IAA MaTrx7C15S gel lane in Fig. 1. Proteins identified in the IAA 

MaTrx7C15S gel lane were omitted from S1 if the total unique peptides, unique spectrum, and 

spectrum counts were higher than those identified in the MaTrx7C15S gel lane.  

Measuring intrinsic NADP+ reduction and CODH activity of M. acetivorans cell lysate: 

Cells were grown in MeOH to an OD at 600 nm of 0.574 and harvested as previously mentioned. 

The cell lysate was generated anaerobically via sonication using 5 pulses at 5 seconds each with 

a 3 min rest on ice in between pulses. Soluble lysate was fractionated by centrifugation 16,000 x 

g for 10 min at RT. The resulting lysate was stored in anaerobic vials at -80 °C. At the time of 

the assay, the lysate was removed anaerobically from the vial and split into two 1.5 mL 

Eppendorf tubes and a protein determination was performed using the Qubit assay. One tube of 

lysate remained anaerobic at RT, while the other exposed to atmospheric oxygen for 1 hr at RT. 

Both aliquots of lysate were mixed by gentle pipetting after 30 min. NADP+ reduction assays 

were performed using 300 µg of lysate with 1 mM NADP+ in buffer A at a total of 100 µL. 

Reactions were initiated with the addition of NADP+. The amount of NADPH produced over 

time was determined using ε340 = 6,220 m-1 cm-1 for each treatment in triplicate. CODH 

reduction assays were performed using methyl viologen (MV) as a surrogate electron acceptor 

for ferredoxin. Cell lysate was pre-incubated with CO by transferring lysate to a 2 mL serum vial 

and flushing the headspace with CO for 2 mins, followed by incubation on ice for 30 min. 

Assays were performed in a sealed quartz cuvette containing a total of 400 µL using buffer A as 
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a diluent with a headspace of CO. Lysate (100 µg) was added to the cuvettes and reactions were 

initiated by the addition of 8 mM MV and the reaction monitored at 603 nm over time. The 

amount of MV reduced over time was determined using ε603 = 11,300 m-1 cm-1 [17]. 

Results and Discussion 

Intrinsic NADPH production of aerobically exposed M. acetivorans cell lysate: To date, the 

ability of M. acetivorans to produce NADPH after oxidation had not been assessed. While 

determining whether the molecular mechanisms in M. acetivorans possessed the ability to 

produce NADPH after exposure to oxygen, it was observed that NADP+ could be reduced at a 

relatively large quantity albeit a slow rate (fig. 2a) without a supply of reduced F420 and Fd. 

Moreover, the activity was not drastically altered even after 1 hr exposure to atmospheric oxygen 

(fig. 2a), supporting the ability to reduce NADP+ post oxidative stress. However, the reduction of 

methyl viologen, a surrogate for Fd, through the oxidation of carbon monoxide (carbon 

monoxide dehydrogenase activity) had completely ceased after exposure to oxygen (fig. 2b), 

indicating that reduced Fd generated during central metabolism is not the source of electrons for 

reducing NADP+ post oxidation. During methanogenesis the enzymes methylene-H4MPT 

reductase (Mtr) and F420 -dependent methylene-H4MPT dehydrogenase are responsible for 

reducing F420 (fig. 3). Mtr in M. acetivorans may be capable of producing the reduced F420 

needed by Fno to reduce NADP+ since Mtr from Methanobacterium thermoautotrophicum is 

functional after exposure to oxygen [18]. However, the substrate methyl-CoM used by Mtr to 

reduce F420 would be in limited supply as the enzyme methanol-5-

hydroxybenzimidazolylcobamide methyltransferase (Mta), which is responsible for the 

production of the substrate methyl CoM for Mtr, has been shown to be sensitive to oxygen in 

Methanosarcina barkeri [19]. Ultimately the amount of NADPH produced both anaerobically 
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and aerobically exposed lysates suggests that it is unlikely that methanogenesis intermediates 

alone provide the electrons needed since many of these enzymes are oxygen sensitive. Rather, it 

is likely that M. acetivorans has an alternative carbon source that can be oxidized in the event of 

oxidative stress to produce NADPH for the M. acetivorans thioredoxin system. Recent work 

investigated the concentrations of metabolites within the glycogen synthesis/degredation 

pathway of M. acetivorans, and indicated that many of these enzymes are not sensitive to oxygen 

[20]. In particular, the NADP+ dependent enzyme glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) was shown to be oxygen insensitive and the levels of glyceraldehyde 3-phosphate 

(G3P) during mid log phase growth (similar to the NADPH production study shown in fig. 2a) 

were high enough to supply the majority of the NADPH produced in this study (1.6 nmol mg-1 of 

protein of G3P) [20]. The remaining NADPH produced in this study could be attributed to 

dihydroxyacetone phosphate and fructose 1,6 bisphosphate that can be readily converted to G3P 

through the oxygen insensitive activity of triosephosphate isomerase and aldolase respectively 

(Fig 2). Cumulatively, the data suggests that M. acetivorans uses central carbon metabolism to 

provide NADPH to the M. acetivorans system during anaerobic growth and can utilize the 

carbon intermediates from glycogen synthesis/degradation to repair oxidative damage (fig. 4). 

Such a distinction between the sources of carbon for the production of reducing equivalents is 

not likely to be observed in Methanococci species as they appear to utilize F420 dependent 

thioredoxin systems that overlap with central carbon metabolism, and could explain why species 

like those belonging to the order Methanosarcinales are more aerotolerant than the more 

ancestral members of the class Methanococci. 

Purification of MaTrx7C15S and binding to CNBr resin: MaTrx7C15S was purified to 

homogeneity at comparable levels to that of wild type MaTrx7 when each are expressed in E. 
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coli. Mutating the resolving cysteine residue (C15) to serine was verified by DNA sequencing of 

the plasmid, which was further supported by the result that MaTrx7C15S had approximately 45-

fold less disulfide reductase activity base on a DTT dependent insulin assay (data not shown). 

MaTrx7C15S successfully bound to CNBr as MaTrx7C15S was undetectable in the flow through 

of the buffer solution post incubation with resin.  

Determination of potential MaTrx7 repair/target proteins: In an effort to best simulate 

oxidative stress in the environment, M. acetivorans cell lysate was oxidized using atmospheric 

oxygen, rather than chemical oxidants like H2O2. Many of the enzymes and proteins in 

methanogens contain FeS clusters or other oxygen sensitive metals that when oxidized propagate 

the formation of peroxides and radicals per the Fenton reaction, and thus rapid disulfide bonds 

can be formed by exposing lysate to oxygen. Following the incubation of oxidized lysate with 

MaTrx7C15S resin, each column was washed with up to 2 M NaCl until no further proteins were 

eluted (verified visually on SDS-PAGE gel not shown), thereby removing the majority of 

ionically bound proteins. The effective removal of ionically bound proteins was corroborated 

when the sequence data indicated that only 46 of the 711 potential MaTrx7 targets did not 

contain any cysteine residues (table S1). 

Alkylation of the attacking cysteine residue was performed in lieu of binding and 

generating the MaTrx7C12S/C15S double mutant, since heterologous over-expression of two 

different proteins could lead to variations between samples. Alkylation of reduced MaTrx7C15S 

resin effectively blocked the remaining cysteine residue from targeting M. acetivorans proteins 

as the DTT eluate from the negative column only yielded approximately 16.4 µg as opposed to 

the 129.6 µg of total protein observed from the reduced MaTrx7C15S resin. The resulting DTT 

eluate containing thiol mediated target proteins was analyzed and sequenced for both the 



119 

 

negative and experimental columns, which contained a total protein count of 238 and 736 

respectively (table S1) after removing duplicates. Despite the total protein of the being 

approximately 8-fold less protein in the negative control eluate than the experimental eluate, the 

LC-MS/MS analysis was still able to detect one third of the proteins determined in the LC-

MS/MS analysis for the experimental sample due to the instrument’s high sensitivity. The most 

likely explanation for the detection of nearly a third of the total potential targets within the 

negative sample is that the alkylation of the reduced MaTrx7C15S resin did not alkylate 100 % 

of the resin, but rather a majority of the resin given the effective 8-fold reduction of total protein. 

The residual reduced MaTrx7C15S resin would be capable of reducing the same proteins as the 

non-alkylated MaTrx7C15S resin, so a threshold for the identification of MaTrx7 targets was set 

for the experimental sample (outlined in the methods section) where any protein with a signal 

weaker than the negative control was omitted leaving 711 potential target proteins for MaTrx7 

(table S1). 

While Trx affinity chromatography remains still to be one of the most effective 

methodologies for purifying Trx targets, the methodology does pose several limitations as 

discussed in length [21]. Particularly, non-specific disulfide bond reduction by the extremely 

reactive cysteinyl residue in Trx makes it difficult to elucidate in vivo targets dependent upon 

Trx as opposed to oxidatively damaged proteins undergoing reduction. However, the limitations 

of Trx affinity chromatography are advantageous in this study as the approach allows for high 

throughput analysis of all the possible proteins that may be repaired by the M. acetivorans 

thioredoxin system after an oxidative stress event. Secondly, any previously identified in vivo 

targets to Trx from other organisms that are observed in this study will likely be in vivo targets 

proteins in M. acetivorans, thus outlining possible specific in vivo thiol targets to MaTrx7 for 
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future studies. Together, the identification of potential repair and target proteins in M. 

acetivorans support the M. acetivorans thioredoxin system’s role as a general oxidative stress 

repair and redox maintenance system.  

Similar to identified targets of Trx in other species, many proteins are involved in 

methanogenesis and glycogen synthesis/degradation were identified [22], supporting that the 

MaTrx system can repair and possibly thiol redox regulate central carbon metabolism in the 

event of oxidative stress (Fig. 2). Furthermore, some of the proteins involved in methanogenesis 

and glycogen synthesis/degradation have been shown in other organisms to have an activity 

bolstered or regulated by Trx (Fig. 2). In addition to the role of Trx in central metabolism there 

were oxidative stress response and repair proteins, FeS cluster biogenesis, and replication 

proteins identified, further supporting the role of the M. acetivorans thioredoxin system in 

general thiol redox maintenance (table 1).  

Methanogenesis and energy conservation: The majority of enzymes involved in 

methanogenesis are extremely oxidant sensitive due to the presence of FeS clusters thereby 

stopping the production of primary reducing equivalents (F420 and Fd) during oxidative stress 

events. The M. acetivorans thioredoxin system could function post oxidative stress to repair 

central carbon metabolism since it depends upon NADPH, which was shown to be effectively 

produced even after oxidative stress (fig. 4a). The role of M. acetivorans thioredoxin system in 

methanogenesis repair is supported by MaTrx7 reduction of every methanogenesis enzyme 

involved in methyl substrate and acetate substrate growth.  

The M. acetivorans thioredoxin system also functions in the repair and potentially even 

regulates energy conservation enzymes such as Hdr, Fpo, and ATP synthase. In plants, the Trx 
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system can alter the activity of ATP synthase by reducing a pair of exposed cysteine residues 

[23]. Therefore, it is plausible that the M. acetivorans thioredoxin system plays a repair role of 

oxygen sensitive enzymes like Hdr and Fpo to regenerate the ion gradient needed for energy 

conservation while also a regulatory role of one or more of these enzymes during growth to 

modulate ATP levels inside the cell similar to the thioredoxin system in plants [24].  

FeS cluster biogenesis: The FeS biogenesis system in M. acetivorans is comprised of a 

putative cysteine desulfurase (IscS2) and iron sulfur cluster scaffolding proteins (IscU1, 2, 

SufB1, 2, SufC1, 2). The sulfur group of cysteine is removed and retained by IscS2 thereby 

making alanine. The scaffolding proteins then obtain Fe and coordinate the assembly of the 

cluster. Assembled clusters then are relayed from the scaffolding proteins to carriers and target 

proteins. All of the required FeS cluster proteins are utilizing cysteine residues to facilitate 

reaction and relay, and the cysteines must be reduced to coordinate the necessary components. 

Therefore, it is conceivable that the M. acetivorans thioredoxin system could play a role in the 

reduction of cysteine residues for FeS cluster transfer and assembly, especially since several FeS 

cluster biogenesis proteins have been identified as targets of Trx in Arabidopsis thaliana [25]. 

FeS cluster biogenesis systems would be necessary post-oxidative stress, and the ability of the M. 

acetivorans thioredoxin system to obtain reducing equivalents for the reductive repair of FeS 

cluster containing proteins could be the critical step towards the assembly of FeS clusters and 

ultimately the activity of the effected enzymes.  

Oxidative stress response: Several well-known oxidative stress response and repair proteins 

were identified as potential targets, of which three have an activity determined to be dependent 

upon Trx. Methanogen-specific transcriptional regulator MsvR from M. acetivorans for instance 

is theorized to be a part of the oxidative stress response by binding DNA when reduced by either 
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DTT or M. acetivorans thioredoxin system in vitro thereby preventing transcription of certain 

genes that remain to be elucidated [26]. The MsvR homolog from Methanothermobacter 

thermautotrophicus is responsible for the regulation of an oxidative stress operon, and it is likely 

the MsvR from M. acetivorans performs a similar function [27]. After an oxidative stress event 

occurs a thiol redox system alone would not be sufficient as more specific repair processes 

would be needed such as the repair of methionine sulfoxides and peroxides generated from the 

oxidation of metals. Methionine sulfoxide reductase (Msr) is an in vivo target of Trx in many 

organisms [6, 28, 29]. Msr uses Trx to catalytically reduce methionine sulfoxides to methionine 

thereby mitigating the potential oxidative damage caused by sulfoxides in the cell. Peroxides 

generated during oxidative stress can be reduced by peroxiredoxins (Prx) to H2O. Prx is 

generally reduced by a Trx or dithiol compound such as glutathione, but due to the absence of 

glutathione in methanogens Trx remains the likely electron donor to Prx. Collectively, MaTrx7 

could play a central role in the oxidative stress response and repair similar to most organisms 

studied to date.  

Replication and translation: The ability of a redox maintenance system to tightly regulate 

metabolism is indeed critical to the growth of the organism, but regulation of replication and 

translation activities post oxidation in the cell would prevent using energy and resources during 

oxidative stress events that prohibit growth. Potential target proteins of replication and 

translation functions were identified. Interestingly only the sliding clamp subunit of DNA 

polymerase was identified which contains two cysteine residues. DNA polymerase is only 

functional as a complex, so the identification of only one subunit in the dataset suggests that the 

other subunits were disassociated due to either oxidation during the treatment of the lysate or 

washing with the column with high salt pre-elution. It is likely that MaTrx7 is performing a 
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specific regulatory or repair role the sliding clamp subunit of DNA polymerase. Similar 

mechanisms have been observed in the Bacteriophage T7 polymerase, which has been shown to 

have an activity regulated by Trx by the interaction with a Trx binding domain (TBD) near the 

thumb of the sliding clamp [30].  

The previously studied RNA polymerase (RNAP) in M. acetivorans was identified as a target 

of MaTrx7. RNAP has been determined to be an oxygen labile enzyme losing the FeS clusters in 

domain 3 of subunit D post oxidation thereby altering the interaction of DL with the remaining 

subunits or with transcription factors [31]. The resulting changes in RNAP may change the 

transcription profile or limit the activity of RNAP in an oxidized environment. After the loss of 

FeS clusters in RNAP it is likely disulfide bonds were formed preventing the repair of the 

enzyme, and thus MaTrx7 may serve a role in RNAP repair. One example of redox sensing could 

be to have RNAP change the transcriptome when RNAP is oxidized; an activity that cannot be 

reversed until the redox state of the cell is brought back towards homeostasis by an increase in 

reduced MaTrx7. 

Conclusions 

 The data obtained to date suggests the M. acetivorans thioredoxin system is the primary 

thiol redox maintenance system that functions to repair oxidatively sensitive enzymes while also 

reducing a set of specific target proteins similar to the thioredoxin systems of many anaerobes 

and aerobes observed today. The M. acetivorans thioredoxin system utilizes the secondary 

electron carrier NADPH that can be produced through the oxidation of the primary electron 

carriers that are generated during methanogenesis (anaerobic growth). As a result of oxidative 

stress the ability to reduce/repair the cell from primary electron carriers alone is insufficient, 

during which M. acetivorans is capable of generating NADPH from an oxygen insensitive 
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alternative carbon source. Glycogen synthesis/degradation intermediates generated during 

methanogenesis are the most probable sources of carbon to be oxidized as they are readily 

available, abundant, and the enzymes responsible for their oxidation are insensitive to oxygen. 

Since the majority of methanogens contain TrxR that appear to bind NADPH, it is likely that 

methanogens evolved the NADPH dependent thioredoxin system and the ability to generate the 

secondary electron carrier NADPH aerobically as a response to the increase in the number of 

oxidative stress events.  
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Figures and Tables 

Figure 1 

 

Figure 1. SDS-PAGE gradient gel of M. acetivorans proteins eluted with DTT from resin 

containing A) iodoacetamide-treated MaTrx7C15S and B) MaTrx7C15S. MW: molecular weight 

marker (kDa). Numbered brackets denote individual gel slices that were analyzed. 
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Figure 2 

 

Figure 2. Comparison of the effect of oxygen exposure on the intrinsic NADP-reductase activity 

(A) and CODH activity (B) of cell lysate from methanol grown M. acetivorans   Cell lysate was 

maintained anaerobic or was exposed to air for one hour then made anaerobic again. NADP-

reductase and CODH activities were measured using NADP and methyl viologen (MV) 

respectively, as described in Methods. Each data point is the mean of triplicate assays and error 

bars show standard deviation. 
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Figure 3 
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Figure 3 continued 

Figure 3. Model of central metabolism of M. acetivorans and the corresponding proteins 

identified in the MaTrx7C15S eluate. Enzymes in blue denote enzymes identified in the 

MaTrx7C15S eluate (Fig. 1). An underline denotes this enzyme was identified in other studies as 

a target of Trx in another organism(s). An asterisk denotes the activity of the enzyme from other 

organisms has been shown to be regulated or dependent upon Trx or thiol-containing 

compounds. Corresponding references for enzymes are indicated in table 1. Abbreviations: ADP-

PFK1, ADP-dependent phosphofructokinase 1;  ALDO, fructose 1,6-bisphosphate aldolase; 

ATPase, ATP synthase; CODH/ACS, acetyl-CoA decarbonylase/synthase; ENO, enolase; Fd, 

ferredoxin; Fmd and Fwd, molybdenum-  and tungsten- dependent formylmethanofuran 

dehydrogenase; Fpo, F420 dehydrogenase; FruBPase, Fructose 1,6-bisphosphotase; Ftr, 

formylmethanofuran-H4MPT; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Hdr, 

heterodisulfide reductase; Mch, methenyl-H4MPT cyclohydrolase; Mcr, methyl-coenzyme M 

reductase; Mer, methylene-H4MPT reductase; Mta, methanol-5-

hydroxybenzimidazolylcobamide methyltransferase; Mtd, F420 -dependent methylene-H4MPT 

dehydrogenase; Mtr, methyl-H4MPT coenzyme M methyltransferase; Pfor, pyruvate-ferredoxin 

oxidoreductase; PGAM, 3-phosphoglycerate mutase; PGK, 3-phosphoglycerate kinase; PPDK, 

pyruvate phosphate dikinase; Pyk, pyruvate kinase; Tpi, triosephosphate isomerase. 
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Figure 4 
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Figure 4 continued 

Figure 4. Proposed models depicting the role of MaTrx7 during anaerobic growth and the 

pathways inhibited by oxygen/oxidative stress (purple lightning symbols) with possible pathways 

used to generate NADPH for reduction of MaTrx7. Proteins in blue are potential MaTrx7 targets. 

Underlined proteins are Trx targets that have been identified in other organisms, and proteins 

with asterisks have been shown to have an activity regulated or dependent upon Trx or thiol 

containing compounds. Dashed red boxes indicate FeS cluster containing proteins. 

Corresponding references have been indicated in table 1. Abbreviations: CODH/ACS, acetyl-

CoA decarbonylase/synthase; Fdox and Fdr, oxidized and reduced ferredoxin; Fno, F420H2: 

NADP+ oxidoreductase; Fnr, ferredoxin NADP+ oxidoreductase; GAPDH, glyceraldehyde 3-

phosphate dehydrogenase; IscS, cysteine desulfurase; MdrA, Methanosarcina disulfide 

reductase; Msr, methionine sulfoxide reductase; MsvR, redox-sensing transcriptional regulator; 

Prx, peroxiredoxin. 
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Table 1 

 

 

 

 

 

Biological 
function 

Locus tag 
(Cysteine 

count) 

Protein name References 

ATP synthesis    

 MA_4158 (5) 
MA_4159 (1) 
MA_4156 (0) 
MA_4155 (1) 
MA_4157 (0) 

*V-type ATP synthase α chain, β chain, subunit C, 
subunit E, subunit F 

6,8,22,29 

Fe-S cluster 
biogenesis 

   

 MA_0236 (4) Cysteine lyase  

 MA_2718 (4) *Cysteine desulfurase IscS2 29 

 MA_0807 (3) IscU1 29 

 MA_2717 (4) IscU2 29 

 MA_0936 (5) SufB1  

 MA_4407 (4) SufB2  

 MA_0937 (3) SufC1  

 MA_4406 (6) SufC2  

Metabolic 
processes 

   

 MA_0072 (11) *Anaerobic ribonucleotide-triphosphate reductase 6 

 MA_4218 (13) Archaeal glutamate synthase [NADPH]  22 

 MA_2720 (2) Cysteine synthase  22 

 MA_4235 (4) F420H2-dependent NADP+ reductase  

 MA_3786 (7) Ferredoxin NADP+ reductase  22 

 MA_3344 (6) *Fructose 1,6-bisphosphotase  24,22 

 MA_3345 (5) *Glyceraldehyde-3-phosphate dehydrogenase 2  6,24,25 

 MA_2690 (8) Phosphoenolpyruvate carboxylase  6 

 MA_3592 (1) Phosphoglycerate kinase 2  6,8 

 MA_0608 (12) Pyruvate phosphate dikinase  22 

 MA_0032 (4) 
MA_0031 (7) 
MA_0033 (9) 
MA_0034 (0) 

*Pyruvate:ferredoxin oxidoreductase subunit α, β, δ, γ 8 

 MA_4607 (4) Triosephosphate isomerase  6,8 
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Table 1 continued 

 

Biological 
function 

Locus tag 
(Cysteine 

count) 

Protein name References 

Methanogenesis    

 MA_3733 (3) 5,10-methylenetetrahydromethanopterin reductase 8 

 MA_1016 (29) 
MA_3860 (28) 
MA_4399 (28) 
MA_1014 (7) 
MA_3862 (7) 
MA_1012 (2) 
MA_3864 (2) 
MA_1015 (0) 
MA_3861 (0) 
MA_1011 (6) 
MA_3865 (6) 

Carbon monoxide dehydrogenase/acetyl-CoA synthase 
α1, α2, α3, β1, β2, δ1, ε1, ε2,  γ   

8 

 MA_2868 (37) 
MA_4237 (15) 
MA_4236 (10) 

CoB--CoM heterodisulfide reductase 1 subunit A, B, C  

 MA_0688 (18) CoB--CoM heterodisulfide reductase 2 subunit D  

 MA_4430 (5) *F420-dependent methylenetetrahydromethanopterin 
dehydrogenase  

8 

 MA_0683 (9) Ferredoxinc  

 MA_0010 (4) Formylmethanofuran-tetrahydromethanopterin 
formyltransferase 

8 

 MA_0455 (15) 
MA_0456 (3) 
MA_4392 (12) 

Methanol-5-hydroxybenzimidazolylcobamide 
methyltransferase isozyme 1, 2 MtaB,C 

 

 MA_1710 (8) Methenyltetrahydromethanopterin cyclohydrolase 8 

 MA_4546 (7) 
MA_4550 (5) 
MA_4549 (1) 
MA_4548 (4) 
MA_4547 (2) 

Methyl coenzyme M reductase, subunit α,  β, C,  D, γ 8 

 MA_4379 (6) Methylcobamide:CoM methyltransferase isozyme M  

 MA_0306 (7) 
MA_0309 (14) 
MA_0307 (3) 
MA_0308 (4) 
MA_0304 (6) 
MA_0305 (33) 

Molybdenum-dependent Formylmethanofuran 
dehydrogenase, subunits A,B, C, D, E, F 

 

 MA_0272 (3) 
MA_0270 (0) 
MA_0269 (3) 

Tetrahydromethanopterin S-methyltransferase subunit A, 
G, H  

8 

 MA_0834 (9) 
MA_0832 (5) 
MA_0835 (3) 

Tungsten-dependent  Formylmethanofuran 
dehydrogenase, subunits B, C, D 

8 
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Table 1 continued 

 

Table 1. A condensed list of MaTrx7 potential target proteins based on the S1 file. The proteins 

have been grouped by biological functions, and the protein names with an asterisks preceding the 

name have been found to have an activity that is regulated or modulated by Trx or sulfide 

containing compounds. Corresponding references are listed in the right most column. 

 

 

Biological 
function 

Locus tag 
(Cysteine 

count) 

Protein name Reference
s 

Oxidative stress 
response and 
repair 

   

 MA_3736 (4) *Methanosarcina disulfide reductase MdrA  

 MA_1458 (10) *MsvR 26 

 MA_1431 (2) 
MA_0449 (5) 

*Peptide methionine sulfoxide reductase MsrA, B  6,26,27 

 MA_4103 (4) *Peroxiredoxin  8,25 

 MA_1368 (3) *Thioredoxin reductase (NADPH) 22 

 MA_3212 (2) *Thioredoxin MaTrx2 22 

Replication, 
translation, 
transcription, 
and post 
transcriptional 
modification 

   

 MA_1478 (1) *DnaK  

 MA_1263 (13) 
MA_1264 (7) 
MA_1265 (4) 
MA_1111 (13) 
MA_1266 (0) 
MA_0721 (1) 
MA_0598 (4) 
MA_4672 (4) 

DNA-directed RNA polymerase subunit A, B, B', D, H, L, N, 
P 

8,22 

 MA_0110 (2) DNA polymerase sliding clamp  

Sulfur 
metabolism 

   

 MA_0685 (6) *Sulfite reductase 22 
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Abstract 

The production of biogas (methane) by anaerobic digestion is an important facet to 

renewable energy, but is subject to instability due to the sensitivity of strictly anaerobic 

methanogenic archaea (methanogens) to environmental perturbations, such as oxygen.  An 

understanding of the oxidant-sensing mechanisms used by methanogens may lead to the 

development of more oxidant tolerant (i.e. stable) methanogen strains. MsvR is a redox-sensitive 

transcriptional regulator that is found exclusively in methanogens. We show here that oxidation 

of MsvR from Methanosarcina acetivorans (MaMsvR) with hydrogen peroxide oxidizes 

cysteine thiols, which inactivates MaMsvR binding to its own promoter (PmsvR). Incubation of 

oxidized MaMsvR with the M. acetivorans thioredoxin system (NADPH, MaTrxR, and MaTrx7) 

results in reduction of the cysteines back to thiols and activation of PmsvR binding. These data 

confirm that cysteines are critical for the thiol-disulfide regulation of PmsvR binding by MaMsvR 

and support a role for the M. acetivorans thioredoxin system in the in vivo activation of 

MaMsvR. The results support the feasibility of using MaMsvR and PmsvR, along with the 

Methanosarcina genetic system, to design methanogen strains with oxidant-regulated gene 

expression systems, which may aid in stabilizing anaerobic digestion.  

 

 

 

 

Introduction 

 Methane-producing archaea (methanogens) are strict anaerobes that are the rate-limiting 

step in biogas production [1]. Members of the genus Methanosarcina are particularly important 
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in biogas production, due to their ability to produce methane with multiple substrates, including 

CO2, methylated compounds (ex. methanol), and acetate, where all other methanogens are 

restricted to hydrogenotrophic (H2 + CO2) methanogenesis [2]. Environmental perturbations can 

significantly impact the ability of methanogens to produce methane. For example, many 

methanogenesis enzymes are oxygen sensitive resulting in a loss of energy conservation and 

methane production upon exposure to oxygen [3]. The partial reduction of oxygen by 

flavoenzymes and metalloenzymes results in the production of reactive oxygen species (ROS), 

including superoxide (O2
-) and hydrogen peroxide (H2O2), which target many macromolecules 

within cells [4]. For example, O2
- and H2O2 oxidize Fe-S cluster containing enzymes and thiols 

of cysteine residues in proteins, causing Fe-S cluster degradation and formation of deleterious 

disulfides, which leads to loss of metabolism [5]. For anaerobes, such as methanogens, to 

overcome oxygen exposure requires mechanisms to decrease the production of ROS and/or 

actively remove ROS, as well as repair oxidatively-damaged proteins. Indeed, many 

methanogens can survive oxygen exposure; however, methane production is severely inhibited 

[6-9]. In particular, members of the Methanosarcinales appear to be some of the most 

aerotolerant methanogens [8], which is likely due to a large number of putative antioxidant and 

repair proteins encoded in the genomes of sequenced Methanosarcinales.[10-13] However, 

information on the mechanisms used by methanogens, including the Methanosarcinales, to sense 

and respond to oxygen (oxidative stress) is limited. An understanding of the oxidant-sensing 

mechanism used by Methanosarcina sp., along with their robust genetic system [14], may lead to 

the development of strains with increased oxidant tolerance. 

 Many cells use the formation of disulfides in proteins to monitor the cellular redox state 

and the presence of deleterious ROS.  For example, OxyR is a transcriptional regulator found in 
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Escherichia coli and other bacteria that is used to monitor the presence of H2O2 [15]. Redox-

sensing thiols of cysteine residues in OxyR are oxidized in the presence of H2O2, resulting in 

OxyR activation which increases the expression of H2O2 scavengers, Fe-S cluster repair 

enzymes, and thiol redox buffer systems. Once H2O2 levels have been reduced, OxyR is 

inactivated by the reduction of the disulfides by glutaredoxin 1, with reductant supplied by 

glutathione/glutathione reductase and NADPH [16]. H2O2-sensing transcriptional regulators have 

also been identified in eukaryotes [17]. Recent evidence has revealed the presence of a redox-

sensing transcriptional regulator (MsvR) in methanogens. In Methanothermobacter 

thermautotrophicus, MsvR regulates expression of F420H2 oxidase (FpaA) by redox-sensitive 

binding to the promoter region of fpaA [18]. MsvR also regulates its own expression in M. 

thermautotrophicus. MsvR functions as a negative regulator to repress expression of fpaA and 

msvR under reducing conditions. Oxidation of MsvR results in the induction of fpaA and msvR. 

More recently, MsvR from Methanosarcina acetivorans (MaMsvR), a member of the 

Methanosarcinales, was shown to bind to its own promoter (PmsvR) only under reducing 

conditions [19].  Formation of disulfide(s) within the C-terminal V4R effector domain of 

MaMsvR were shown to abrogate binding of MaMsvR to the PmsvR promoter region.  For 

MaMsvR to function as a redox-sensing transcriptional regulator, PmsvR binding by MaMsvR 

would need to be restored by disulfide reduction to reset the system once oxygen/ROS is 

removed. Reduction of MaMsvR disulfides and activation of PmsvR binding can be accomplished 

in vitro by the addition of the disulfide-reducing agent dithiothreitol (DTT); however, the 

physiological reducing system is unknown. In the majority of organisms, disulfide reduction is 

mediated by thioredoxin and/or glutaredoxin systems [20]. 
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 Methanogens lack glutathione and therefore likely do not possess functional glutaredoxin 

systems [21, 22]. However, recent evidence indicates the majority of methanogens contain 

thioredoxins (Trx) [23, 24], which are small (~12 kDa) proteins that possess a CXXC active site 

motif necessary for disulfide oxidoreductase activity [20]. In the canonical system, Trx receives 

reducing equivalents from thioredoxin reductase (TrxR) with NADPH as the electron donor.  

Thus, the thioredoxin system could serve as the MsvR disulfide reducing system. M. acetivorans 

contains seven putative Trx homologs (MaTrx1-7) and a single TrxR homolog (MaTrxR). 

Recent evidence revealed that M. acetivorans contains at least three functional Trxs (MaTrx2, 

MaTrx6, and Matrx7) and a complete NADPH-dependent thioredoxin system comprised of 

MaTrxR and MaTrx7 [23]. We show herein that the M. acetivorans NADPH-dependent 

thioredoxin system can reduce disulfides in oxidized MaMsvR and restore PmsvR -binding 

activity, indicating that the thioredoxin system is the physiological MaMsvR disulfide reducing 

system. Thus, it may be feasible to use PmsvR along with the Methanosarcina genetic system to 

design Methanosarcina strains with oxidant-responsive genes, which may increase the stability 

of biomethanation.  

Materials and Methods 

Protein purification and manipulation. Recombinant MaTrxR and MaTrx7 were expressed in 

E. coli and purified to homogeneity as previously described [23]. Strep-tagged MaMsvR was 

expressed in E. coli and purified to homogeneity as previously described [19]. H2O2-oxidized 

MaMsvR (MaMsvRox) was prepared by incubation of MaMsvR with 100-fold molar excess of 

H2O2 in buffer A (20 mM Tris pH 8, 15 mM MgCl2, 120 mM KCl, 12.5 μg/mL heparin, 10% 

glycerol) for 30 mins. Residual H2O2 was removed by buffer exchange into buffer A using a 

NAP5 column (GE Healthcare). DTT-reduced samples of MaMsvR were prepared by incubating 
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100 μM MaMsvRox in buffer A containing 10 mM DTT for 20 min at room temperature. 

Residual DTT was removed using a NAP5 column. The ability of the thioredoxin system to 

reduce MaMsvRox was assayed by incubation of 10 μM MaMsvRox with 1 mM NADPH, 0.5 μM 

MaTrxR, and 2.5 μM MaTrx7 for 1 hour at 37 °C in buffer A.  Protein concentrations were 

determined by both the Bradford assay and using fluorescence with a Qubit protein assay 

following the manufacturer’s instructions (Invitrogen).  

Electrophoretic mobility shift assay (EMSA). Complimentary 50-bp oligonucleotides 

containing PmsvR were synthesized (Integrated DNA technologies) and annealed to generate the 

PmsvR DNA probe used in all EMSAs [19] . DNA-binding reactions were prepared by incubating 

100 nM PmsvR with 8 μM MaMsvR in buffer A for 20 min at 37oC. Binding reactions were loaded 

onto a pre-run 6% polyacrylamide gel in 0.5X TBE buffer and electrophoresed for 75 min at 75 

V at 10 °C. Gels were stained using SYBR gold (Life Technologies) and visualized using a Gel-

Doc XR+ system (Bio-Rad Technologies). 

Quantitation of thiols in MaMsvR. Aliquots of MaMsvR-containing samples used in EMSAs 

were analyzed for total thiol content using DTNB [25]. MaMsvR was denatured and thiols 

quantified by the addition of 10 µL of MaMsvR-containing sample to 90 µL of 6M guanidine-

HCl in 100 mM KPO4, pH 7.8 containing 175 µM DTNB.   Samples were incubated 

anaerobically for 15 min at room temperature and the absorbance at 412 nm was recorded. The 

number of thiols per MaMsvR monomer was calculated based on the concentration of TNB 

using ε412 =13,700 M-1 cm-1 [25]. All samples were analyzed in triplicate. The background 

amount of thiols contributed by the denatured thioredoxin system was determined in samples 

containing NADPH, MaTrxR, and MaTrx7, but without MaMsvR. 
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Results and Discussion 

Reduction of MaMsvR disulfides and activation of MaMsvR DNA-binding by thioredoxin. 

MaMsvR contains ten cysteine residues, with two located in the DNA-binding domain, four in 

the V4R domain, and the remaining four located in the linker domain [19] . The cysteines within 

the V4R domain (C206, C225, C232, and C240) are postulated to function in redox-sensing, 

whereby thiol-disulfide exchange causes conformation changes which alter the ability of 

MaMsvR to bind an inverted repeat sequence motif (TTCGN7-9CGAA) upstream of PmsvR. Three 

of the residues (C206, C232, and C240) are conserved in all MsvR homologs [18]. Specifically, 

C206 was shown to be critical for redox-sensitive binding of MaMsvR to PmsvR, because a 

MaMsvR C206A variant was able to bind to PmsvR under non-reducing conditions, whereas the 

wild-type MaMsvR is unable [19]. Previous results also revealed C225 was not involved in 

redox-sensing, while C232 and C240 impact MsvR binding to PmsvR, but the precise role of these 

cysteines is unclear. Thus, C206 is likely, and C232/C240 are possibly, involved in thiol-

disulfide formation which serves to control DNA-binding by MaMsvR.  

 EMSA and thiol quantitation experiments were used to examine the role of thiol-disulfide 

exchange in controlling DNA binding by MaMsvR. First, MaMsvR was incubated with 100-fold 

molar excess of H2O2 to generate H2O2-oxidized MaMsvR (MaMsvRox). Quantitation of the thiol 

content of MaMsvRox under denaturing conditions revealed that four of the cysteines were not 

oxidized by H2O2 (Table 1), indicating some cysteines are inaccessible to H2O2, and likely do 

not participate in redox-sensing. Importantly, MaMsvRox was incapable of binding to the PmsvR 

region as revealed by the lack of shift when examined by EMSA (Fig. 1, lane 2). This result 

indicates that oxidation of the thiols of six cysteine residues is sufficient to inactive MaMsvR 

DNA binding. The subsequent treatment of MaMsvRox with DTT resulted in detection of 
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approximately nine thiols (Table 1), consistent with the total number of cysteines present in 

MaMsvR. Moreover, incubation of MaMsvRox with DTT restored binding to PmsvR (Fig. 1, lane 

3). This result is consistent with H2O2 causing the oxidation of six thiols to disulfides, which 

causes reversible inactivation MaMsvR binding to PmsvR. The remaining four thiols are likely 

buried within the folded protein and are inaccessible to H2O2 or DTT, and therefore do not 

participate in thiol-disulfide exchange. 

 Similar experiments were performed to determine if the M. acetivorans thioredoxin 

system could also activate DNA-binding of MaMsvRox. Incubation of MaMsvRox with NADPH, 

MaTrxR, and MaTrx7 (complete thioredoxin system) activated binding of MaMsvRox to PmsvR 

(Fig. 1, lane 6). The complete thioredoxin system alone did not cause a shift of PmsvR in the 

EMSA (Fig. 1, lane 4) and NADPH/MaTrxR in the absence of MaTrx7 also failed to activate 

binding of MaMsvRox to PmsvR (Fig. 1, lane 5). Moreover, incubation of MaMsvRox with the 

complete thioredoxin system resulted in the detection of ten thiols (Table 1), consistent with all 

the H2O2-generated disulfides in MaMsvR being surface exposed and accessible to reduction by 

MaTrx7. Taken together these results demonstrate that the M. acetivorans NADPH-dependent 

thioredoxin system can activate PmsvR binding in oxidized MaMsvR and that MaTrx7 is required 

for the reduction of disulfides in oxidized MaMsvR.  The reduction of MaMsvR by MaTrx7 is 

the first evidence of thioredoxin playing a role in the regulation of the activity of a transcription 

regulator in a methanogen. The activation of MaMsvR DNA binding by MaTrx7 also integrates 

PmsvR regulation by MsvR into the physiology of M. acetivorans, which supports the future use of 

PmsvR in engineering oxidant-responsive gene expression strains. For example, we have 

previously demonstrated that increased expression of catalase protects M. acetivorans from H2O2 

[26]. 
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Proposed model of MaMsvR regulation in M. acetivorans. Based on results from previous 

studies [18, 19] and herein, we propose the following model (Fig. 2) for the regulation of the 

PmsvR binding activity of MaMsvR by thiol-disulfide exchange involving the thioredoxin system. 

Exposure of M. acetivorans to oxidants (ex. H2O2) results in oxidation of critical cysteines in 

MaMsvR to disulfides. Based on previous studies, C206 plays a crucial role, likely forming an 

intermolecular disulfide between MaMsvR monomers [19]. However, under the conditions tested 

here, at least six cysteines are involved in H2O2-induced disulfide formation, which may generate 

three intra-molecular, six inter-molecular, or some combination of intra/inter-molecular 

disulfides. Nonetheless, the formation of disulfides likely causes a conformational change in 

MaMsvR, such that MaMsvR is no longer able to bind PmsvR, which allows for RNAP to bind and 

transcription to proceed.  Removal of oxidant and/or an influx of electron donor would allow for 

the reduction of MaMsvR disulfides by MaTrx7, with reducing equivalents supplied by MaTrxR 

and NADPH. The in vitro results presented here demonstrate that MaTrx7 can specifically 

reduce disulfides in MaMsvR, but we cannot rule out that the additional MaTrxs or other 

proteins also participate in the in vivo reduction of disulfides in MaMsvR and may do so under 

different conditions. However, the target specificity and the redox partner(s) of the other MaTrxs 

is currently unknown [23]. The data presented here link the regulation of MaMsvR to the redox 

status of M. acetivorans and the availability of reducing equivalents (e.g. NADPH). The results 

also reveal that methanogens have oxidant sensing systems which are integrated into metabolism 

in a manner similar to systems identified in bacteria and eukaryotes. Ultimately, due to the 

thioredoxin-dependent reversible PmsvR binding by MaMsvR it may be feasible to engineer strains 

with oxidant-inducible genes (e.g. catalase) using PmsvR in an effort to generate oxidant tolerant 

strains without an increased energy demand that would come from constitutive gene expression.  
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Figures and Tables 

Figure 1 

 

Fig. 1. Activation of MaMsvR PmsvR binding by the M. acetivorans thioredoxin system. 

EMSA performed with PmsvR and the addition of the indicated components as described in 

materials and methods.   
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Figure 2 

 

Fig. 2. Proposed model of MaMsvR activation by the NADPH-dependent MaTrxR-MaTrx7 

thioredoxin system in M. acetivorans. H2O2 causes the oxidation of thiols (SH) to disulfides 

which inactivates MaMsvR DNA binding, allowing transcription by RNAP. MaTrx7 receives 

reducing equivalents from NADPH/MaTrxR to reduce the disulfides to thiols and restore 

MaMsvR DNA binding. 

 

Table 1. Quantitation of MaMsvR thiols. 

Samplea Thiols 

MaMsvRox 4.0 ± 0.6 

MaMsvRox + DTT 9.0 ± 1.5 

MaMsvRox + NADPH/MaTrxR 4.8 ± 0.1 

MaMsvRox + NADPH/MaTrxR/MaTrx7 9.9 ± 1.0 

asamples were processed and thiols quantified using DTNB as described in the Materials and 

Methods 
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Conclusions 

 The study of methanogen physiology has become increasingly important as greenhouse 

gasses rise and encourage global climate change. Furthermore, as the human population on earth 

grows the need for additional sources of fuel to power human infrastructure increases, in 

particular sources of fuel that burn more cleanly than fossil fuels. The study of methanogen 

physiology offers insight into possible mechanisms for increasing the production of biologically 

sourced fuels (biofuels), while simultaneously providing insight into possible methods to 

regulate methanogenesis and ultimately part of global climate change. Although the primary 

molecular pathway responsible for contributing to global climate change, methanogenesis, has 

been the target of study for nearly three decades, secondary contributors such as increases in 

oxygen tolerance among methanogens have not been studied so extensively. Since nearly two 

thirds of biologically produced methane originates from acetate, a substrate that can only be used 

by some methanogens belonging to the class Methanomicrobia that are among the most 

aerotolerant species of methanogens, it is conceivable that the mechanisms behind oxygen 

detoxification and repair play a critical role in the ability of these methanogens to effectively 

grow. Members of Methanomicrobia inhabit environments ranging from the hind gut of 

ruminants to deep anoxic marine environments, so the frequency in which these organisms 

experience oxidative stress varies depending upon the proximity to aerobic environments. 

Effective growth on acetate could be limited by the ability to remove oxygen and repair 

oxidative damage, and thus the study of these pathways could elucidate methods for limiting 

growth of these methanogens in areas where the habitat is anthropogenic (i.e. cattle farms and 

rice paddy fields) in order to ultimately mitigate anthropogenic greenhouse gas production.  
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 The bulk of methanogen physiology relies on FeS clusters in proteins, which are 

cooridinated by reduced cysteine residues. FeS clusters are sensitive to oxygen, and since the 

metabolism of all methanogens are based on functional FeS clusters then there would need to be 

a system that could obtain electrons post-oxidative stress for the purporse of reducing disulfides 

left begind after the oxidation of FeS clusters. The NADPH-dependent thioredoxin system is 

ubiquitous and performs a critical role of maintaining reduced disulfides. Since methanogens use 

reduced ferredoxin and F420 as electron carriers genereated by methanogenesis, they would need 

a mechanism for generating NADPH during methanogenesis and in the absence of 

methanogenesis (oxidative stress) if the NADPH-dependent thioredoxin system is to play a role 

in oxidative stress repair. 

The work presented in this dissertation examined the role of a NADPH-dependent 

thioredoxin system in the model methanogen M. acetivorans. M. acetivorans is capable of 

growth on all methanogenesis substrates, and thus serves as an excellent model for the 

examination of the role of a thiol redox pathway in oxidative stress repair. The study of the 

NADPH-dependent thioredoxin system in M. acetivorans was examined in four parts: 1) the 

presence of thioredoxin system components in methanogens and initial characterization of the 

NADPH-dependent thioredoxin system in M. acetivorans 2) additional characterization of the 

remaining thioredoxins and examination of NADPH-dependent thioredoxin reductases in 

methanogens 3) assessing the ability of the NADPH-dependent thioredoxin system to serve as a 

broad thiol redox repair system in M. acetivorans 4) the ability of the NADPH-dependent 

thioredoxin system to perform a redox regulatory role by modulating the activity of the 

transcriptional regulator MsvR. The work performed in M. acetivorans can be applied to 

methanogens as a whole, and has been in some aspects of this dissertation supporting that 



156 

 

methanogens appear to predominantly utilize NADPH-dependent thioredoxin systems. NADPH-

dependent thioredoxin systems appear absent in more ancestral methanogens suggesting that this 

system may have evolved within methanogens. NADPH production and broad reduction of M. 

acetivorans proteins by MaTrx7 post-oxidation supports that the system can function post-

oxidative stress. Cumulatively, the work presented in this dissertation supports that the primary 

thiol redox maintenance system in methanogens is the canonical NADPH-dependent thioredoxin 

system observed in many previously studied organisms. The knowledge gained in this study can 

provide a foundation for a means to better manage methanogen growth in unwanted 

environments such as cattle farms, or in environments where effective growth has historically 

been the limiting factor behind successful fermentation vessels for biofuel production. 

Furthermore, insight into the evolution of thiol redox maintenance systems from early, anaerobic 

earth to the more oxidizing environment inhabited today would further the understanding of the 

evolution of life.  
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