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Abstract 

Prescribed burning is defined as the process of the planned application of fire to a 

predetermined area under specific environmental conditions in order to achieve a desired 

outcome such as land management. This project used both morphological and molecular 

methods to identify and characterize the wood-decay fungi associated with the forests of 

northwest Arkansas—Pea Ridge National Military Park, Devil’s Den State Park, and the Buffalo 

National River—through frequent visits made between February 2018 and February 2019. In 

addition, in order to assess the effects of prescribed burning, incubation chambers were used to 

compare the growth of fungi from both unburned and charred coarse woody debris collected 

from Pea Ridge National Military Park and the Buffalo National River, whereas coarse woody 

debris from Devil’s Den State Park served as control (no burning). Likewise, an effort was made 

to understand the effect of environmental conditions on fungi growth by comparing the species 

of fungi occurring in the field on coarse wood debris with those appearing under the controlled 

environment of the incubation chambers using portion of the same logs. 

Approximately 216 different taxa of wood-decay fungi were recorded using 

morphological identification followed by sequence analysis of the intertranscribed spacer region 

of fungal specimens, using the ITS1 and ITS4 primers. This constituted at least 58 different 

families with representatives of the Polyporaceae the most common. Moreover, 102 different 

genera were identified. In addition, sixty-eight different taxa were obtained from unburned 

coarse wood debris in incubation chambers, whereas only six species were recorded from burned 

coarse wood debris in incubation chambers. Ten different taxa were identified from the fruiting 

bodies collected from ten different logs, whereas nine other taxa were identified from the same 

logs after being placed in the incubation chambers with a controlled environment.  



In summary, the forests of northwest Arkansas harbor a diverse assemblage of wood-

decay fungi which were found to be affected by prescribed burning to a considerable extent. In 

addition, it was found that incubation chambers can be used successfully to allow growth of 

wood-decay fungi under controlled environmental conditions. This study can be a good resource 

for future more comprehensive studies. 



 ©2019 by Nawaf Alshammari
All Rights Reserved
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Chapter 1: Introduction 

As far back as two or even 3 billion years ago, fungi were present on the earth. Fossils in 

ancient rocks from South Africa and North America provide evidence of the presence of 

filamentous forms bacteria and blue-green algae. The oldest confidently identified fungal fossils 

are associated with aquatic or marsh plants. The oldest confidently identified fungal fossils are 

associated with aquatic or marsh plants. Many features such as the mode of obtain nutrients and 

the reproductive structure and the structure forms that were considered to classified fungi in 

separate groups of animals and plant (Johnson 2012).  

The fossils of fungi tend to be microscopic, and there are few large fruiting bodies. 

Fossils from Cretaceous amber from North France resemble the filaments of the ascomycete 

Candida. There is little information on how fossil fungi lived and how they reproduced. The 

oldest fossil fungi known thus far are the chytrid-like forms from the Late Precambrian, also 

known as the Vendian Period, found in Northern Russia (Johnson 2012). Fossil fungi found in 

Aberdeenshire, Scotland, are from the Devonian age in Rhynie chert. Early land plants formed 

symbiotic relationships with fungi at a very early stage of terrestrial evolution. Fungi older than 

the Devonian are rare. 

Miocene fossils have preserved perithecia, which are enclosed reproductive structures 

that produce spores. Such fungi may have undergone evolutionary radiation at the same time the 

land plants began to evolve (Weete 2012). This system of interdependence in the ecosystem has 

developed and now encompasses most land plants and fungi. Mycorrhizal fungi interact and 

colonize their botanical hosts in different ways. These chains of energy and nutrient exchange 

are often very complex and ecologically important. 



2 

Fungi are eukaryotic organisms that are classified under the kingdom Fungi. They are 

heterotrophs and take their food by absorbing dissolved molecules resulting from the secretion of 

digestive enzymes in their environment. There is a great diversity of fungi on our planet with 

hundreds of thousands having been described and more than that still needing to be described. 

While talking about the biomass of fungi, they are second after plants on land and compete with 

bacteria in the soil. Although most fungi are terrestrial, they can be found in every habitat 

worldwide, ranging from marine to freshwater. Fungi differ from plants mainly because of the 

presence of chitin in the cell wall rather than cellulose, and they can’t make their own food 

through photosynthesis because of the absence of chlorophyll (Ruiz-Herrera et al. 2016). 

Fungi are classified into the Chytridiomycota (chytrids), Zygomycota (bread molds), 

Ascomycota (yeasts and sac fungi), and the Basidiomycota (club fungi) based on the way they 

reproduce sexually. There are also two other groups of fungi, the Deuteromycota (fungi 

imperfecti) and the lichens, which aren’t recognized as formal taxonomic groups because of their 

polyphyletic in nature. The Deuteromycota includes those fungi that have lost sexual 

reproduction or are known to have only asexual reproduction. A lichen is not a single fungus; 

instead. It is a symbiotic association between a fungus (usually an ascomycete but rarely a 

basidiomycete) and an alga (usually a cyanobacterium or green algae). 

The fungal fruiting body has a specific design or structure that begins with microscopic 

threads called hyphae. When hyphae have obtained water and nutrients that a fungus requires for 

growth, they respond to favorable conditions of temperature and moisture by building up to form 

the mycelium, which is vegetative portion of fungi. The mycelium consists of a mass of 

branching hyphae and is capable producing one or more fruiting bodies (Sharma 1993). 
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Fungi play many vital roles in nature and their roles in terrestrial habitats are fascinating. 

Although some fungi produce toxins and are detrimental to humans and animals, there are 

various other roles of fungi that are beneficial to both nature and living beings. 

Recycling of nutrients 

In terrestrial habitats, fungi play an essential role in the decomposition of complex 

materials present in the debris of plants (cellulose and lignin) and animals (chitin and keratin). 

This leads to the liberation of nutrients to the biosphere, which serves to make them available for 

the growth of plants and enriching the nutrient condition in the soil. This process is very 

important because if plants and animal debris remains undecayed, this would pile up and the soil 

underneath wouldn’t obtain nutrient to support the growth of plants. Thus, in order to maintain 

balance in the ecosystem, fungi play a very important role. Those fungi that are involved in this 

process are called saprotrophs (Seastedt 1984).  

 Food 

Some of the fungi that can be used as food are the mushrooms and truffles. Similarly, 

yeasts which are a type of fungi, are used in the baking industry as well as in the beverage 

industry. In the baking industry, yeasts are used to help bread rise, while in beverage industry 

they are used to facilitate fermentation. Yeasts such as Saccharomyces cerevisiae (Desm.) 

Meyen and S. carlsburgiensis E.C. Hansen are some of the examples of fungi that are used in the 

beverage industry (Dupont et al. 2016).  

Medicine 

Several fungi have medicinal values as they can produce medicines such as antibiotics. 

Penicillin, an antibiotic discovered by Alexander Fleming, was derived from a fungus, 
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Penicillium notatum Westling. Similarly, another antibiotic streptomycin was derived from a soil 

actinomycete, Streptomyces griseus (Krainsky) Waksman and Henrici. (Mishra et al. 1980). 

 Symbiotic mutualism 

Fungi play a key role in agriculture and forestry as mutualistic symbionts. One of the best 

examples of this is a mycorrhizal association. A mycorrhizal association is a symbiotic 

relationship between a vascular plant and a fungus which is mutually beneficial. For instance, 

plants make food through the process of photosynthesis in the presence of chlorophyll and 

utilizing solar energy and this is supplied to the fungus. In return, the fungus supplies water and 

nutrients to the plant and thus both of them benefit. Depending upon whether the hyphae of the 

fungus penetrate the cell wall or not, they are called endomycorrhizal and ectomycorrhizal, 

respectively. Arbuscular mycorrhizal fungi are one of the examples of the forms, Similarly, there 

occurs a symbiosis between fungi such as Xylaria (ascomycetes) and ants where ants, provide 

segments of leaves for fungi which are broken down by the fungi and ants eat them. The ants 

increase the aeration and organic matter content of the soil. In addition, fungi help in the creation 

of both physical and chemical barriers between the roots and soil, and thus protecting the plants 

from soil borne microorganisms (Kumar et al. 2009). 

Mycoremediation 

Mushrooms are also known in their use as a remediation of various types of pollutants. 

They help in the bioremediation of wastes by the processes biodegradation, biosorption, and 

bioconversion through different enzymatic activities. One of the examples of a mushroom in this 

group is Pleurotus ostreatus (Jacq.) P. Kumm. Which is used for the biodegradation of plastics 

(Migliore et al. 2012).  
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In summary, many fungi play various roles in the nature that range from providing food 

to humans, recycling of various nutrients to maintain balance in an ecosystem, improving of 

agriculture and forestry through symbiotic mutualisms and removing wastes from environment 

to keep nature clean.  

 Overview of how fungi obtain their nutrition  

Like animals, fungi are heterotrophic, which means they rely on other organisms to 

obtain their carbon and energy. Biotrophs are fungi that obtain their nutrition from a living host, 

either a plant or animal, whereas necrotrophic fungi gain their nutrition from a living host but kill 

host cells to get their nutrition (Carris et al. 2012). Fungi are mostly saprotrophs, which include 

wood- decay fungi, brown-rot fungi, soft-rot fungi, and white-rot fungi based on their ability to 

degrade cellulous and lignin.  

A brown-rot fungus has the unique ability to digest cellulose without attacking lignin. 

This fungus works by breaking down the hemicellulose and cellulose that make up wood. After 

the breakdown of hemicellulose, hydrogen peroxide is released that helps in the breakdown of 

cellulose. Cellulose is rapidly digested, since hydrogen peroxide is a small molecule and 

therefore diffuses rapidly. This type of fungus is able to do this by secreting chemical enzymes 

that open up the lignin framework and a second set of enzymes that digest the cellulose. It is 

most prevalent on coniferous wood, which is typically brown and crumbly and is degraded by 

both enzymatic and non-enzymatic systems (Eastwood 2011).  

 White-rot fungi utilize the active enzymes they produce to break down the available 

lignin; this is crucial as they accelerate the chemical reactions. The enzymes are chemical in 

nature and are known for breaking the chemical bonds and assist in the process of breakdown of 

simple sugars to release carbon dioxide to the atmosphere. By doing this, these fungi are able to 
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produce their own nutrients and thus not only utilize the wood in which they are growing (Oliver 

1999). 

 In contrast, soft-rot fungi obtain their nutrition through secreting cellulose present from 

their hyphae and hence does not utilize the substrate. These fungi do not decay the wood and 

they only need the fixed nitrogen to be able to synthesize enzymes; the enzymes are responsible 

for providing them with food. They obtain the nitrogen either from the wood itself or from the 

environment (Oliver 1999). Soft-rot is a type of wood-decay including certain Ascomycetes, 

characterized by molding the wood surface by fungi of the classes Sordariomycetes, 

Dothideomycetes and Eurotiomycetes. species of Xylaria (ascomycetes causes soft-rot on dead 

plants such as tree branches or fallen trees by decomposing lignocelluloses, causing the decay of 

lignin (Boddy et al. 1995). 

 Some fungi that produce fruiting bodies on a decaying log may actually not be decaying 

the log itself. These include molds, lichens, mycorrhizae, parasitic and pathogenic fungi. 

Mycorrhizal fungi form a symbiotic relationship with plant roots through the formation of a 

network of hyphae. The hyphae draw nutrients from the soil system and stimulate plant growth. 

In addition, the symbiotic relationship accelerates root development. Ectomycorrhizal fungi 

develop on the exterior of root cells and form visible structures (Buée 2011). For instance, in 

natural environments such as forest ecosystems, ectomycorrhizal fungus form visible 

reproductive structures on the trees they colonize. On the other hand, endomycorrhizal fungi 

penetrate the plant cells and form sites for metabolic exchanges. Mycorrhizae absorb excess 

sugar deposited in the roots of the plants they colonize. Plants produce the sugar through 

photosynthesis and supply these the mycorrhizae. Therefore, the fungus is able to sporulate on 
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the logs without decaying the log itself. In addition, the fungus benefit from the 

photosynthetically fixed carbon derived from their hosts.  

Pathogens fungi are sometime associated with tree twigs. They enter the trunk through 

wounds or injury and cause a canker disease. Those pathogenic species are able to kill the 

phloem and vascular cambium in a woody host.  Parasitic fungi obtain nutrition from their host 

and may cause diseases. Very well-known examples plant parasitic fungi include  Cryphonectria 

parasitica (Murrill) P.J. Anderson & H.W. Anderson, Ceratocystis ulmi (Buisman) C. Moreau 

and Puccinia sparganiodes Ellis & Barthol. There can cause adverse environmental effects in 

forest habitats  

In conclusion, there are two major groups of fungi that are associated with dead wood. One 

members of group of fungi decay wood which take nutrients from decomposition, whereas, 

members of the other group of fungi such as molds don’t degrade wood and take nutrient from 

the moisture content and organic matter present in the surface where they are attached.  

Overview of the ascomycetes  

The largest group of fungi is the Ascomycota, and they are found in all habitats and consist 

of numerous genera and species (Wilson 1988). Members of the group have a cosmopolitan 

distribution. Similar to other fungi, the Ascomycota are heterotrophs that gain nutrients from 

dead or living organisms. This group of fungi can be used in different aspects such as baking, 

brewing, and producing wine by fermentation. Some fungi, such as Penicillium purpurogenum , 

Claviceps purpurea (Fr.) Tul. have been used to make antibiotics. Moreover, Aspergillus oryzae 

(Ahlb.) Cohn can be used in the fermentation of rice for the production of sake. Fruiting bodies 

are sometimes a cup-bowl shaped with spores-producing cells.  

http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=171207
http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=171207
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The Ascomycota are biologically and morphologically varied and known from virtually 

every ecosystem. This group is very common as parasites, pathogens, and decomposer fungi. 

Spores, produced in this group, are called asci. There are usually eight ascospores within an 

ascus (Pontecorvo et al. 1953). In addition, the asci are arranged in a hymenium on the fruiting 

body. Morphologically, the Ascomycota consist of hyphae, and their cell walls contain chitin and 

β-glucans like the Basidiomycota. In the Ascomycota, the mycelium usually consists of septate 

hyphae, when septal pores that deliver cytoplasmic continuity in the individual hyphae come 

from the septal walls.  

One kind of fungus that has perithecia (flask-shaped fruiting bodies) as the fruiting 

component are pyrenomycetes. These fungi reside as parasites on vascular plants. There is a 

significant link between ascomycetes and plants. Ascomycetes have the ability to decompose 

plant tissues. In addition, the ascomycetes have a relationship with insects such as beetles and 

social insects and some species are parasitic. Some ascomycetes generate strong toxins, which 

are relatively specific to insects. In addition, the pyrenomycetes are an important group of the 

Ascomycota. This group has been associated with numerous kind of trees. Other large examples 

of the Ascomycota are Urnula craterium, Microstoma floccosum and truffle. The members of the 

phylum Ascomycota form an ascus, which helps to preserve haploid ascospores. Some other 

fungi of the Ascomycota are parasitic. Perforated septa divided hyphae are formed by some 

ascomycetes which allow flowing of cytoplasm between cells. Both sexual and asexul 

repoductions occur in the members of the Ascomycota, where the non-perforated septa separate 

sexual reproductive organs from the vegetative hyphae.  

Conidiophores are produced by asexual reproduction which release haploid conidia. On 

contrary, special hypha from one of the sex needs to be developed for the occurrence of sexual 
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reproduction. An antheridium is produced by the “male” while the ascogonium is developed by 

the “female” strain. Reproduction occurs by combining male and female strains through 

plasmogamy instead of nuclear fusion. Each nucleus from male and female strain migrate to 

form the special acrogenous hyphae. Karyogamy occurs by fusion of the haploid ascospores’ 

nuclei. Large numbers of fruiting bodies which are termed as ascocarp are filled by asci during 

the period of sexual reproduction. Diploid nuclei give rise to haploid nuclei through a process 

called meiosis. The ascospores are then released (Coppin et al. 1997) followed by the 

germination later to form hyphae which eventually dispersed to the environment to produce new 

mycelia.  

Overview of the basidiomycetes  

The Basidiomycota, commonly known as basidiomycetes is a fungal group that produces 

large fruiting bodies like mushrooms, bracket fungi, and puffballs (Stephenson 2010). They are 

filamentous fungi consisting of hyphae and they reproduce sexually through the formation of 

spores on club-shaped cells known as basidia. However, some Basidiomycota reproduced 

asexually. The Basidiomycota is classified into three subphyla known as the Agaricomycotina, 

Pucciniomycotina, and Ustilaginomycotina. The most common basidiomycetes are agarics, 

boletes, chanterelles, polypores, puffballs, and earthstars. Other examples of the Basidiomycota 

fungi are Auricularia americana and Morganella pyriformis.  

Gilled mushrooms (agarics) are common examples of the Basidiomycota. The agarics are 

characterized by a fruiting body with the spores formed on thin, plate-like gills. The gills are 

found under cap. Boletes have a series of tubes which extend into the cap from below. In 

earthstars and puffballs, the spore-producing cells are assembled together as a mass (gleba). 

Correct identification for many agarics and boletes can be made on the basis of spore color and 
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morphology of the fruiting body included the pileus surface, margin, stripe, pore surface, tube, 

and context (Miettinen et al. 2016). 

The Basidiomycota have a positive role due to their contribution to the carbon cycle and 

decaying dead organic matter. In addition, mushrooms either cultivated or wild are good 

examples of the Basidiomycota. Mushrooms are eaten in numerous countries. Symbiotic species 

have a positive relationship with the roots of vascular plants, such as oak, in order to help plant, 

obtain mineral nutrients to complete photosynthesis; in return, they receive sugars that plant 

produces.  

On the other hand, some species of the Basidiomycota have negative impacts because 

they attack the wood in buildings and damage them, which will affect the economy for humans 

being. In addition, they can attack various organisms as pathogens, especially wheat and crops. 

Some of those that cause animal diseases are symbiotic species as well. Deadly toxins can be 

produced by some of the members of Basidiomycota.  

The Basidiomycota, a distinctive type of fungi and all its family members, are 

responsible for the production and engenderment of the majority of species larger fruiting bodies 

(Stephenson 2010). The two characteristics that distinguish the various forms of fungi within the 

species from one another are the locality of origin or placement of the spore-producing hyphae as 

well as the outer shape of the fruiting body. Gill-like structure are found underneath the cap of 

mushroom-producing Basidiomycota, and thus also referred as “gilled fungi”.  Basidia are 

located on the compacted hyphae which are known as gills. Shelf fungus are also included in the 

same group of fungi, which form small visible shelves by clinging on the sides of the trees.  

The life cycle of basidiomycetes involves an alternation of generations. The basidiospores 

are formed on the basidium (Linder 1940). Nuclei of two diverse mating strains fuse through 
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karyogamy in the basidium that produce a diploid zygote which undergoes the process of meiosis 

later. The haploid nuclei move into the forming basidiospores for the generation of monokaryotic 

hyphae and finally resulted into a primary mycelium. Secondary mycelium are formed by 

combining mycelia of two mating strains during the dikaryotic stage which contain their haploid 

nuclei. The dikaryotic stage is the dominant stage in the life cycle. The secondary mycelium 

produces a fruiting body (basidiocarp) that contains the developing basidia on the gills located 

under the cap. The basidiocarp protrudes from the ground later that resembles like a mushroom. 

(this is what we think of as a mushroom).  

How is a fungus “put together” (i.e., different types of hyphae)? 

Hyphae are the strands that form the various fruiting bodies of fungi. Some types of fungi 

have more visible hyphae such as the molds. For instance, if one looks at a mold closely, they 

can see a white patch of fuzz on old food and see some of the hair-like filaments that rise from 

the surface of the food. When viewed under a microscope, most hyphae are made up of several 

cells. Hyphae are classified based on three methods. The first type of classification is based on 

consisted of septate forms. Aseptate hyphae are also known as coenocyte are non-septate and are 

associated with the zygomycetes, Mucor and other fungi. Pseudohyphae are distinct from the 

true hyphae by their growth method and relative frailty as well as lack of cytoplasmic connection 

between cells. Examples are the yeasts.  

The second classification is based on cell walls and overall form. The types include the 

generative hyphae, which are relatively undifferentiated and can produce reproductive structures. 

They normally have thin walls, however, can develop thick walls occasionally and possess 

frequent septa. The second type is the skeletal hypha, which occurs in two basic types. The 

classical type has thick walls, very long and have few septa that do not bear clamp connections. 
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The second type is the fusiform skeletal hyphae, and they are swollen centrally and often are 

exceedingly broad, thus giving the hypha a fusiform shape. Binding hyphae belong to the third 

type of classification which are thick-walled and normally branched. They possess many 

branches and thus look like deer antlers or defoliated trees. 

Classification also can be based on the refractive appearance. For instance, they can be 

described as gloeoplerous if their high refractive index gives them an oily or granular appearance 

when observed with a microscope. They may be yellow in color or clear. They also can be 

selectively colored by sulphonanillin. There are special cells called cystidia that also can be 

gloeoplerous.  

Septate hyphae 

These hyphae are divided into smaller cellular sections called septa. The septa have tiny 

holes, which allow cytoplasm, molecules, and different organelles to move from one cell to 

another. In cases of injuries to the cell, the septa can close their cell walls preventing further fluid 

loss from the rest of the filament. These hyphae are responsible for vegetative growth (Moore et 

al. 1962). 

Coenocytic hyphae 

 Coenocytic hyphae are also known as non-septate hyphae which form a long cell with many 

nuclei. These features are seen in more primitive forms of fungi. Non-septate hyphae include 

fungal members of the zygomycota. Some non-saptate fungi do have sapta at branching points. 

This prevents the tubular mass from being compromised if one hypha is broken down. These are 

hyphae in generally lack septa. Non-saptate is also known as aseptate fungi. 
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Overview of major groups of wood-decay fungi  

The main source of energy for growth and reproduction in wood-decay fungi such as 

polypores, thelophores or pyrenmycetes is represented by the components of the host cell walls 

of coarse woody debris which contain cellulose, lignin, and hemicellulose. Lignin is a class of 

complex organic polymers in plants that form important structural materials for supporting 

tissues. Cellulose is a polysaccharide that forms portions of the cell walls in most plants. On the 

other hand, hemicellulose is a simpler form of cellulose. It is a chain of matrix polysaccharides. 

There are a large number of polypores that have been described. Polypores are a group of 

fungi with many interesting features that attract numerous mycologists. Most polypores 

contribute to the degradation of woody plants. A polypore is a fungus that produce fruiting 

bodies with pores occurring on the underside of the pileus. Polypores also exhibit a number of 

other features. Unlike boletes and agarics that are fleshy and usually mushroom-shaped, 

polypores are generally woody and their fruiting bodies are called conks or bracket fungi (Volk 

2000).  

The fruiting bodies of polypores have a hard texture as compared to those of agarics and 

boletes. They grow on various woody substrates, hence greatly hastening the decomposition 

processes of wood. Moreover, unlike the other fungi that grow in wet and humid places and have 

a short lifespan, many polypores have the ability to thrive under harsh weather conditions (Volk 

2000). Polypores can thrive well in both dry and cold conditions. This adaptability feature makes 

them robust. In addition, many of them are perennial since they continue to grow and reproduce 

for an extended period of time, which can sometimes be as much as several years. There are 

numerous members of the polypore group. Polypores exhibit a large diversity of fruiting 
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structures, ranging from globular to shelf- like fruiting bodies such as those produced by 

Phellinus robiniae.  

Pyrenomycetes are prevalent in all ecosystems throughout the world as well as in all 

geographical regions. They can be found as saprobes, where they are heavily engaged in the 

decomposition of organic matter as well as nutrient cycling in the environment. Furthermore, 

their usually dark-colored fruiting bodies make them nearly invincible to untrained eyes. Their 

fruiting bodies are often minute in size, with many less than 1 mm in diameter. The 

pyrenomycetes are sometimes immersed partially or completely in living and dead plants. At 

times, they reside as superficial inhabitants of decaying plants. These fungi are generally ignored 

and overlooked by collectors due to their dull colors, since bright colored fungi are a major 

source of attraction for collectors. However, pyrenomycetes are easily unrecognized due to their 

small-sized fruiting bodies as compared to other classes of fungi (Miller and Huhndorf   2005). 

Agaric fungi are one of the most common types of fungi. Agarics usually have a fruiting 

body consisted of a pileus, stipe, and lamellae. In the agarics, the pileus (also known as the cap) 

is completely differentiated from the stipe, with the underside of the pileus having the lamellae, 

also referred as gills (Moore 1987). Gilled fungi usually have rounded to flattened caps placed at 

the top of a stalk, but some species lack stalks or have short stalks. In those species that have a 

stalk, it is usually attached either at the center of the cap or at the side of the cap (Steven 2018). 

The pileus in the agarics helps support the spore-producing part of the fungus, known as the 

hymenium. Lamellae help in dispersing spores. The pileus assumes a bowl-shape, which often 

flattens as the fungus matures. The stipe is particularly important in supporting the pileus, which 

has the hymenium responsible for the production of spores.   
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The enormous and varied group of fungi in the Ascomycota often resemble cups, saucers 

and goblets. Galliella rufa, which is an example of a cup fungus, in what the fruiting body 

opening to become a shallow cup. Urnula craterium is one of the first large fungi to appear in 

the spring.  Urnula craterium has a club-shaped form when young but opens and grows to 

become urn-shaped (Fig 1 A) (Elliott & Stephenson  2018). Xylaria hypoxylon is an example a 

pyrenomycete (Fig 1 B). The fruiting body is sparsely branched has in a shape that resembles a 

stag’s antlers. They grow on decaying hardwoods. The fruiting bodies of Xylaria hypoxylon are 

simply spotted due to their white color and found on the upper surface of woody substrates, 

either logs or branches.  

In addition, some fruiting bodies can range from single club-shaped structure to fruiting 

bodies consisted of a compound series of branches ascending from a single stalk. These fungi are 

called coral fungi. The coral fungi have an entire hymenium through the ends of upraised 

branches, with shape no pileus. (Bessette et al. 1995). Also, the Gasteromycetes have species that 

share a common feature of the spores being completely enclosed. Gasteromycetes have various 

forms such as Crucibulum leave (Fig 1 C), Cyathus striatus, and Lycoperdon pyriforme. In this 

group, the spores are produced inside the fruiting body. 

Jelly fungi have species that are either decomposers, parasitic or form symbiotic 

associations with trees. Their fruiting bodies are gelatinous and present on twigs and logs as a 

type of wood-decay fungi.  The jelly fungi have various colors like white, bright yellow, and 

brown color. The number of jelly fungi is limited in northwest Arkansas (Elliott & Stevenson  

2018), and the most popular species in this area is Exidia recisa (Fig 1 D), and Auricularia 

fuscsuccinea. In addition, the tooth fungi are group of fungi that have teeth rather than having 

pores or gills. Hericium erinaceus (Fig 1 E), has a globose to slightly cushion-shaped structure 

https://www.amazon.com/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&text=Todd+F.+Elliott&search-alias=digital-text&field-author=Todd+F.+Elliott&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&text=Todd+F.+Elliott&search-alias=digital-text&field-author=Todd+F.+Elliott&sort=relevancerank
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and appears to have spines. Likewise, Irpex lacteus (Fig 1 F), whose common name is the milk-

white fungi have white to pale cream-color and a hairy cap (Binion et al. 2008). Member of the 

family Thelophoraceae has a widespread distribution, and many species have a leathery fruting 

body with a hymenium that is soft and smooth such as in case of Stereum ostrea (Fig 1 G), 

In summary, agarics, polypores, pyrenomycetes and thelophores are among the better 

known in member of the kingdom Fungi. The polypores and some thelophores such as 

Thelophora terrestris are the widely and commonly known types of mushrooms due to their 

large size. Some act as source of food. The three are distinguishable from each other depending 

on their structure and the morphology of their fruiting bodies. The agarics, for instance, have a 

fleshy mushroom-shaped fruiting body made up of the pileus, the stipe, and the gills. The pileus 

is differentiated from the stipe, and it supports the lamellae, which allows for the production of 

spores. Finally, the polypores differ from all the other fungus species since their fruiting body is 

hardy and woody (Fig 1 H), as compared to those of the other species, which are fleshy. 

Moreover, sporulation (production of spores) or sporogenesis in polypores is through either 

pores or tubes, and the organisms primarily grow on wood surfaces.  

Decomposition process  

Wood decay is the biological process through which the two most abundant organic 

compounds on Earth, which are cellulose and lignin, are transformed to carbon dioxide and water 

with a release of energy. It is now well established fact that fungi play a vital role in the 

decomposition of wood, which is described by Rayner et al. (1988), Rilley et al. (2014), and van 

der Wal et al. (2015). Wood decomposition by fungi is an important process for the functioning 

of forest ecosystems, since it plays a significant role in the nutrient cycling and makes carbon 

and other macronutrients available to other organisms (Cornelissen et al. 2012). Fungi that cause 



17 

the decomposition of wood are called saprobic because they uptake nutrients from decaying 

organic matter. Woody substrates consist mainly of holocellulose and acid-unhydrolyzable 

residue (AUR), which is also known as acid insoluble residue, and klason lignin fraction. These 

two substances account approximately for 80-90% of the total components present in woody 

substrates and are major sources of energy available to fungi (Eriksson et al. 1990; Swift et al. 

1979). In other words, wood is composed mainly of cellulose, hemicellulose, and lignin, that 

constituent 40-50%, 25-40%, 20-35%, respectively (Stephen et al. 2003).  

Fungi that belong to the Basidiomycetes and Ascomycetes are the most important wood 

decay fungi. Wood decay fungi can also be characterized into white-rot and brown-rot fungi 

based on the appearance of the decayed wood. White-rot fungi completely degrade the cellulose, 

hemicellulose, and lignin present in wood and leave the white or off-white residue, whereas 

brown-rot fungi degrade the cellulose and hemicellulose but don’t completely degrade lignin and 

leave the appearance of residue brown. Generally, both brown and white-rot decay processes are 

restricted to basidiomycete taxa. However, certain ascomycetes such as members of Xylariaceae 

are also able to perform white-rot decay (Stephen et al. 2003). There is also another type of wood 

decay fungi which is called soft-rot fungi. These are present in wet wood and make the wood soft 

by hydrolyzing part of cellulose with no or little effect on lignin (van der Wal et al. 2015). 

Several species of ascomycetes fall under this category.  

It has been demonstrated that the rates of wood decay depend upon not only the type of 

wood rot but also with the type of fungal species, their interactions and microclimatic variations 

(Boddy 2001). In addition, fungal succession is an important factor that happens during the 

process of wood decomposition in the forest ecosystem along with wood physiochemical 

properties such as the moisture content. Sequential colonization by different fungal species with 
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varying rates of decomposition and ecological speciation occur during the wood decay process, 

and it is believed that the Basidiomycetes are the early colonizers whereas ascomycetes 

including soft-rot microfungi are the late colonizers (Fukasawa et al. 2011). Thus, the type of 

wood rot, their physio-chemical properties, the type of fungal species colonizing the wood and 

their interactions are some of the important parameters that need to be taken into account while 

describing the wood decomposition by wood decay fungi such as various type of basidiomycetes 

and ascomycetes.  

While describing the role of basidiomycetes and ascomycetes in the decomposition of an 

oak tree, we have to consider whether the oak tree that dies in the forest is young or old 

depending upon the time when it dies. A recent study reported that wood moisture content is the 

most important factor for sapwood decay in younger stumps, while in contract, fungal species 

composition and their diversity are important in older stumps (van der Wal et al. 2015). This 

study suggested that the rates of decomposition of wood by fungal species varies over time. In 

addition, variation in wood traits within the tree trunk can also affect the decomposition rate. For 

instance, oaks have clear.  

Differentiation between heartwood and sapwood to the most trees but not with birches 

(Cornelissen et al. 2012). The detailed mechanism that occurs during the process of wood decay 

still needs to be explored. Normally, the outer layer of wood (i.e., the bark) acts as protective 

layer for chemical and physical decomposition of wood; however, this barrier remains as long as 

the moisture content is constant. Once the moisture content beings to decrease, there occurs 

crack formation in the outside layer followed by subsequent entry of decomposers. Once the 

decomposers enter they start decaying of wood through both enzymatic and oxidative 

mechanisms. In general, brown rot fungi that belong to basidiomycetes produce lignocellulolytic 
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enzymes which depolymerized through oxidative mechanisms but modified lignin remains as a 

polymeric residue (Riley et al. 2014). In this type of decay, there is rapid cellulose and 

hemicellulose degradation with little or no degradation of lignin; however, gets modified. During 

the early stages of wood decay, there occurs higher rate of depolymerization of the cellulose that 

causes the wood to lose strength rapidly in comparison to the rate of wood metabolism.  

In contrast, during the white rot decay process, the fungi use hydrolasic enzyme that 

degrade cellulose gradually but lignin is completely mineralized (Stephen et al. 2003; Riley et al. 

2014). Cellulose in the white-rot decay process is mainly targeted by hydrolytic enzymes; 

however, oxidative mechanism is also involved. It has been reported that white-rot fungi usually 

have more cellulolytic genes (hydrolytic and oxidative) as compared to brown-rot fungi (Riley et 

al. 2014). Similarly, hemicellulose enzyme is used to degrade hemicellulose present in the wood 

and it is not clear whether white or brown rot fungi encode more genes of this particular enzyme. 

It was reported that high oxidation potential class II peroxidases (PODs) are involved in the 

process of lignin degradation (Kirk and Farrell 1987) in white-rot fungi, which is lacking in 

brown rot fungi.  

In summary, once the oak tree dies and the moisture content being with decreasing with 

crack formation, decomposers like basidiomycetes and ascomycetes enter inside and start 

decomposition through both enzymatic and oxidative mechanisms as described above. It was 

believed that basidiomycetes are the early colonizers, while ascomycetes are the late colonizers 

in wood decay process. Although, it was believed previously that basidiomycetes play a vital role 

in wood decay process of coarse wood like oaks; however, a recent study reported that 

ascomycetes may have significant role in wood decay process of oaks, but their abilities of 

degradation need to be explored more in the future (van der Wal et al. 2015). Moreover, it should 
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be noted that wood decomposition is not only the outcome of a single factor such as the species 

of fungi involved; instead it is the outcome of various interactions between decomposers (their 

abundance and activity) as well as both abiotic and biotic factors.  

Prescribed burning operation  

Prescribed or controlled burning relates to the protected application of fire under specific 

conditions so that land management objectives can be achieved. Controlled burning is a broadly 

used management technique in the forests (Fig. 2), but to what extent such burning can affect the 

biodiversity of wood-decay fungi is unknown. Fire is known to have an effect on the growth of 

fungi, where some species of fungi benefit from fire while other species die off. Controlled 

burning affects the community structure and abundance of individual species of wood-rotting 

fungi. The presence of controlled fire implies a large-scale destructive disturbance for fungal 

communities resulting in the partial destruction of residential fungal biomass. Fungal species 

diversity in dead trees increases with decay stage, thus a slightly decayed tree branch is 

colonized by a few common fungal species. The destructive effect of fire on basidiomycetes 

species strongly correlates to the degree of burning (Berglund 2011). The total number of species 

and average species richness decreases after the controlled burning. Actually, the more strongly 

the basidiomycetes cover the tree branch, the more strongly both the total and average species 

number is likely to decrease (Artz et al. 2009). However, controlled burning ensures that the tree 

loses part of the species and communities present in the pre-fire conditions. The presence of 

fruiting bodies prior to the controlled bodies ensures species abundance in the post fire period. 

The number of seedling inversely increases according to the fire severity (Oliver 2015). The fire 

severity affects the basidiomycetes colonization, leading to stunted growth and development in 

the charred wood. Fire denatures the species, leading to the decline in the community members. 
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Therefore, the degree of decay in the wood trunk determines the amount of colonization and the 

basidiomycetes species richness.  

In mature species, their spores may survive the controlled burning and lead to new 

generations in the post-fire period. However, if the species are not yet able to produce spores, a 

slight burning can lead to the extinction or the decrease in community members. Controlled 

burning implies that the log is allowed to burn for a short time before being the fire is put out and 

thus some species may actually escape from the fire. Moreover, the soil is home to various 

diverse living organisms, from microbes to plant roots. Axelrod and Hamilton (1981). mentioned 

that members of such living organisms usually interact with each other in numerous ways that 

allow them to maintain a connection with their environment. This connection largely manages 

tree growth and establishment. These researchers reported that controlled burning plays a key 

role in directly controlling this community; the impacted living organisms are injured or even 

killed immediately. Similarly, controlled burns also affect the organisms indirectly by shifting 

many characteristics of their above and below ground surroundings. Microorganisms that are 

associated with tree roots are also directly impacted by the fire. In the event of fires, often 

beneficial organisms that increase the trees’ ability to pick up nutrients and even increase the 

fertility of the surrounding soil also are destroyed (Schroth and Sinclair 2003). In some cases, 

diseases result from these fires. Moreover, burns also lead to a short-term decrease in the general 

populations of organisms that are present in the soil. Nonetheless, the impact cannot always be 

predicted due to the variations in the site factors and fire severity. Such organisms such as soil 

invertebrates, which are important in the progression of nutrient cycling in the soil, usually 

decline in large quantities. It has been reported that after a prescribed burning, the number of 

bacteria increase, while the number of fungi sharply decreases (Lindow 1983).  
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In addition, fungi correlate with roots to develop mycorrhizae, an association required by 

trees to sustain their growth. Since the formation of mycorrhizal is essential for the survival of 

trees, researchers have often focused on the relationship between the managed forest ecosystems 

that have been destroyed by fire (Goldammer 2012). Often, the potential for mycorrhizal to form 

in the soil declines as a result of fire, but this cannot be fully attributed to such incidents alone. 

Goldammer also refered to several studies that suggest the reduction of mycorrhiza is sometimes 

linked to their regeneration problems. Also, it might be possible that some localities are naturally 

ill-suited to regeneration, making growth and survival difficult for planted seedlings.  

After controlled burning, coarse woody debris remains on the ground (Fig. 3). 

Nonetheless, a number of researchers have come up with explanations for the woody debris that 

remains after the body of plants have burned. According to Hagan and Grove, the woody debris 

is important to many of these plants, as it acts as a nutrient reservoir (Hagan and Grove 1999). 

When observing the nutrient concentration of the woody plants after prescribed burning, 

increased levels were evident. Moreover, the charred woods have a relative high concentration of 

nutrients in comparison to unburned plants (Bond and Midgley 2001). They illustrated that 

partially-charred wood usually provides a substantial group of nutrients, as a result of the 

relatively elevated concentrations and high levels of biomass present after the controlled burning. 

Despite this, the burning is also helpful to the fungi due to decreases competition for the 

resources required for the fungi (Cairney and Bastias 2007). In addition, the number of Postia 

caesia (Schrad.) P. Karst., is significantly decreased when subjected to fire (Fuhlendorf and 

Engle 2001). In a study that described the effects of controlled burning on the basidiomycetes 

present in soil, burning was found to have no effect on basidiomycete species richness; however, 

there were changes in community structure reported between burned and unburned plots. In 
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addition, (Anderson et al. 2007) reported that repeated prescribed burning alters soil 

basidiomycete communities where the effect was greater with more frequent burning.  

In summary, controlled burning affects the wood volume, quality and value of dead logs 

creating the unsuitable conditions for basidiomycetes species and thus it may reduce their 

diversity. In addition, the size and diameter of the logs also determine the effect of burning. 

Since the log is among 2 m long and the diameter is mostly among 0.5-10 cm, even the small fire 

can easily cause destroy and scarring. 
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Fig. 1: Different taxa of wood-decay fungi that vary in terms of their shapes and structures 
: A. Urnula craterium (club-shaped), B. Xylaria hypoxylon (pyrenomycetes), C. Crucibulum 

laeve (gasteromycetes), D. Exidia recisa (jelly fungi). (Photo by author). 
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Fig 1. Different taxa of wood-decay fungi that vary in terms of their shapes and structures: E. 

Hericium erinaceus (tooth fungi), F. Irpex lacteus (tooth fungi), G. Stereum ostrea (shell-

shaped), and H. Phellinus robiniae (shelf-shaped). (Photo by author). 
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Fig. 2:  Prescribed burning operation in the forests of the Buffalo National River in 2018. (Photo 

by author). 
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Fig. 3: Coarse wood debris after a prescribed burning operation. (Photo by Dr. Steve 

Stephensson). 
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Location of study areas  

This project was carried out in the Ozark Mountains of northwest Arkansas through a 

series of visits to three parks—Pea Ridge National Military Park, Devil’s Den State Park, and the 

Buffalo National River (Fig. 4). Devil’s Den State Park (35°46’32” N, and 94°14’46” W, 

elevation 454 m) is located near the border between Arkansas and Oklahoma. The park has a 

forest composition similar to that of much of northwest Arkansas and Oklahoma. Devil’s Den 

consists of about 1011 hectares (McNab and Avers 1994). Pea Ridge National Military Park 

(36°27’28” N, and 94°01’18” W, elevation 484 m) is located in northwest Arkansas near the 

Missouri border. In 1965, through an act of Congress, Pea Ridge National Military Park was 

formed to maintain the site of the Pea Ridge Battle of 1862. The Pea Ridge National Military 

Park has a total area of approximately 1740 hectares. In 1972, the Buffalo National River 

(36°10′41” N and 92°25′34” W, elevation 153 m) was designated by an act of Congress as 

America’s first national river. The Buffalo National River starts as a trickle in the Boston 

Mountains, where it flows north and eastward through the Ozark Mountains till it joins 150 miles 

with the White River at Buffalo City on the Marion-Baxter County line. The range is a 

compound of adjoining water forms, mostly lakes and variety of wetlands, like marshes and 

bogs, it similarly comprises of streams and ponds (Bradley 2005).  

Climatic conditions in the study areas 

The climate of Northwest Arkansas is hot and humid in the summer and mild in the 

winter. This climate is caused by the influence of the warm waters of the Gulf of Mexico of 

402,336 km south of Arkansas. Although the atmospheric conditions of different places in 

northwest Arkansas change depending on local landforms, the typical daily range in 

temperatures lies between 3 oC in the winter to 34 oC in the summer. The temperatures vary 
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depending on the elevation and aspect of the slopes; for instance, south-facing slopes are much 

warmer and dryer compared to slopes facing north (Burnes 2018). A significant portion of the 

geology of Arkansas is a bedrock composed of sedimentary rocks such as limestone, shale, 

sandstone, chert and dolostone as well as siltstone. Other places may have a composition of 

breccia and conglomerates, which, occur in only a few places. 

The average annual precipitation ranges from 101 to 121cm (McNab and Avers 1994). In 

addition, the area is vulnerable to extreme weather conditions such as ice storms and droughts. 

Generally, the weather follows the conditions of a humid subtropical climate. The average 

snowfall in winter is 25.4 cm, with normal January low/high temperatures of -11/-4 °C, with 100 

days below freezing. In July high temperatures range between 30 and 32oC, with an annual range 

of 40 to 50 days above 32 oC (Missouri Climate Center 2010). The growing season ranges from 

180 to 200 days.  

Vegetation of the study areas 

Vegetation influences not only the local weather but also the overall climate, which is a 

long-term observation of changes in the weather. The forests of northwest Arkansas (Figs. 5 and 

6) are dominated by a mixture of several species of oak (Quercus alba L., Q. velutina Lam., Q. 

stellata Wangenh. and Q. rubra L.) and hickory (Carya ovata [Mill.] K. Koch, C. texana 

Buckley and C. tomentosa Sarg.) [Figs. 5 and 6] (Stephenson et al.  2007). The basal area of 

trees found in the forests of Northwest Arkansas was calculated using the diameter at breast 

height (DBH) with the help of following formula: 

Basal area per tree (square feet) = 0.005454*(DBH)2, where 0.005454 is called the 

“forest constrant”, which is used to convert inches to square feet. 
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In addition, the density was measured as the number of trees per unit area (hectare). The 

information of basal area and density was used to calculate the importance value. Importance 

value is a tool used by many foresters to identify the dominant species of the particular forest. 

For the calculation of importance value to investigate the dominant species in the forest of the 

northwest Arkansas, a representative area of forest in the study was selected, where a 50 meter 

transect was placed through the middle of the area. All small trees and large trees within 5 meters 

of either side of the tape were identified and measured (diameter with a DBH tape). The values 

for relative density and relative basal area were calculated and thus used to derive an importance 

value by the following equation: 

Importance value = 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦+𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎

2
 

The importance value of small and large trees represented in the study areas are shown in 

Tables 1-4. Among small trees, dogwood and winged elm had the highest importance values in 

Devil’s Den State Park and Pea Ridge Military National Park, respectively, which indicates that 

they were well presented in the aforementioned areas. However, among large trees, white oak 

and hickory contained the highest importance values in Devil’s Den State Park and Pea Ridge 

Military National Park respectively indicating their dominance in the respective areas. 
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Table 1: Composition of the large tree stratum (≥10 cm DBH) of Devil’s Den State Park. 

Tree 
Absolute basal 

area cm2  

Relative 

basal area 

Absolute 

density 

Relative 

density 

Importance 

value 

White oak 16223 92.64 16 69.56 81.1 

Red cedar 255 1.46 3 13.04 7.25 

Red maple 170 0.97 2 8.7 4.84 

Red oak 445 2.54 1 4.35 3.45 

Hickory 419 2.39 1 4.35 3.37 
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Table 2: Composition of the large tree stratum (≥10 cm DBH) of Pea Ridge National Military 

Park. 

Tree  
Absolute basal 

area cm2 

Relative 

basal area 

Absolute 

density 

Relative 

density 

Importance 

value 

Hickory 2413 41.3 10 45.5 43.4 

Blackjack oak 1786 30.6 3 13.6 22.1 

White oak 1142 19.6 5 22.7 21.2 

Winged elm 501 8.6 4 18.2 13.4 
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Table 3: Composition of the small tree stratum (<10 cm but ≥2.5 cm DBH) of Devil’s Den 

State Park. 

Tree 
Absolute basal 

area cm2 

Relative 

basal area 

Absolute 

density 

Relative 

density 

Importance 

value 

Dogwood 122.1 43.5 6 42.86 43.22 

Red cedar 71.7 25 2 14.29 19.64 

Red maple 44.1 15.4 3 21.43 18.51 

Black cherry 31.2 10.8 1 7.14 9.01 

Persimmon 9.1 3.1 1 7.14 5.16 

Hickory 8.6 3 1 7.14 5.07 
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Table 4: Composition of the small tree stratum (<10 cm but ≥ 2.5 cm DBH) of Pea Ridge 

National Military Park. 

Tree 
Absolute 

basal area cm2 

Relative basal 

area 

Absolute 

density 

Relative 

density 

Importance 

value 

Winged elm 299 64.9 13 72.2 68.5 

Hickory 99 21.4 2 11.1 16.2 

White oak 34 7.4 1 5.6 6.5 

Blackjack oak 15 3.3 1 5.6 4.5 

Red cedar 14 3 1 5.6 4.3 
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Fig. 4: Location of study areas in northwest Arkansas: A. Devil’s Den State Park, B. Pea Ridge 

National Military Park, and C. the Buffalo National River. (Map by Dr. Carlos Rojas). 
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   Fig. 5: Typical forest community in Devil’s Den State Park. (Photo by Dr. Steve Stephenson). 
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Fig. 6: Typical forests community in Pea Ridge National Military Park. (Photo by Dr. Steve   

Stephenson). 
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Objectives of this study 

The objectives of this study were (1) to utilize advanced molecular tools and techniques 

in combination with conventional morphological methods to characterize of the wood-decay 

fungi associated with the forests of northwest Arkansas, (2) to investigate the effects of 

prescribed burning on the biodiversity of wood-decay fungi located in forests of northwest 

Arkansas, (3) to provide a body of data relating to wood-decay fungi associated with the forests 

of northwest Arkansas.  
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Chapter 2: Molecular techniques used for the identification of fungi 

Overview of fungal identification 

Morphology refers to the study of size, shape, and structure of plants, animals, and 

microorganisms and the relationships that exist with their different components. Traditionally, 

people used to identify species based on their morphology and phenotypic traits i.e. based on the 

characteristics that are visually available to them. However, over time sequencing technologies, 

they are becoming less expensive and more readily available. Certain unique molecular markers 

of organisms such as, the 16S rRNA gene in bacteria and the internal transcribed spacer (ITS) 

regions of fungal ribosomal DNA make identification of species based on DNA sequences easier 

and more cost effective.  

Morphological identification originated from comparative anatomy, and we can visually 

identify species based on the macro morphological features. Similarly, morphological taxonomy 

is the main basis of creating phylogenetic relationship between extinct species based on their 

fossils records, whereas DNA extraction is tedious and time-consuming even if possible. In 

addition, those species that are preserved in the museum, rare species which are protected 

through rare species conservation acts, and those species whose DNA samples are too difficult or 

costly to collect, morphological identification has a great value.  

In contrast, the use of morphological identification alone becomes problematics in 

different scenarios as it has many drawbacks. One of the limitations is that this method is based 

on the skills and expertise of the person. Moreover, this is based on the limited number of 

morphological characters in combination with phenotypic traits to distinguish between two 

species. For instance, in case of culture of endosymbiotic fungal strains such as endophytes and 

endolichenic fungi, which are routinely used for isolating secondary metabolites, do not always 
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sporulate in culture, thereby providing no phenotypic characters and making it difficult to 

identify by morphology. Hybridization (Hughes et al. 2013), cryptic speciation (Harrington et al. 

1999), and convergent evolution (Pontarotti 2010) can also cause morphological identification of 

species problematic. Also, it is difficult to identify organisms at lower taxonomic levels such as, 

species and strains based on morphological and phenotypic characteristics. There are few 

morphological characteristics that are common among major groups of organisms such as the 

eubacteria and eukaryotes, and thus it is always difficult for taxonomist to define one 

morphological feature versus other. Because of this, there may exist some debates among 

taxonomist for distinguishing species, latter is based on their own opinions.  

Likewise, microscopic organisms such as bacteria can’t be seen with the naked eye, and 

if we want to distinguish between two species, this require a series of biochemical and 

serological tests in addition of its morphological characteristics seen through a microscope. For 

example, if we want to distinguish between two species of Lactobacillus based on culture 

methods, we need to perform 17 different phenotypic tests which is tedious, costly, and time 

consuming. However, we can easily distinguish by using a DNA sequencing approach, which is 

inexpensive, efficient, and rapidly. In summary, although morphological identification of 

organisms has several benefits, identification of species based on the morphological and 

phenotypic traits alone can cause misleading and thus demands the incorporation of the 

molecular techniques whose merits and demerits are described below.  

As time passes, we have a better understanding in molecular genetics achieved through 

advancement in science and technology. DNA sequencing has become less expensive day by day 

and is currently used extensively by scientists across various fields. Although identification of 

species by sequencing has several benefits, there are also several disadvantages of this method. 
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Each species or individual are genetically different and thus, getting genetic information about 

different individuals or species through sequencing DNA becomes easy to distinguish between 

them. This also solves the issue of different opinions that may exist among various scientists in 

regard to define the morphological features for distinguishing species. For this method, we need 

any small amounts of material from where DNA can be isolated and sequenced. In addition, we 

can only sequence unique marker genes such as, the 16S rRNA gene in bacteria and ITS region 

in fungi for the sufficient identification to the species level by aligning sequences against freely 

available genome databases. Furthermore, we can add our own sequences to the database and 

share the information to other people. This makes this method less expensive and convenient. 

Moreover, we can pool hundreds of samples together using unique barcodes and sequence them 

in a single lane to identify hundreds of species at a time.  

However, there may also exist considerable misleading information of species 

identification through a DNA sequencing approach. For example, there may exist PCR and 

sequencing errors and by sequencing only shorter regions like ITS or 16S rRNA may not 

accurately identify species. Furthermore, identification of species by this method also depends on 

the database used. Since the database is publicly available and anyone can deposit their 

sequences, one needs to be cautious whether the database is manually curated or not. Similarly, 

by sequencing shorter regions, we may sometimes not accurately identify to the species level 

only with this approach. Sometimes, it is also difficult to extract DNA and amplify the target 

genes. Thus, there are numerous steps where errors can generate in the DNA sequence method 

that can mislead to species information. Hence, both morphology-based and DNA sequence-

based methods have their own benefits and limitations, combinations of both methods will be 

more reliable for proper identification of species as they can complement to each other.  
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Internal transcribed spacer (ITS) region for fungal identification 

 Along with the discovery of the polymerase chain reaction (PCR) and the advancement 

in DNA sequencing technologies, identification of an organisms by molecular methods is 

replacing the traditional morphology-based identification methods (Baldwin et al. 1995). 

Identification of an organism by sequencing their genetic materials is more accurate than 

identification by observation with eyes. The molecular techniques have higher resolution for 

identification of an organism and can identify up to genus and species. In Amsterdam 2011, 

mycologists have discussed several genes that could be used for fungal barcoding. They 

evaluated six DNA regions (SSU, LSU, ITS, RPB1, RPB2, MCM7) and selected the official 

fungal barcode as the ITS region (Schoch et al. 2012). The ITS region of rDNA (ribosomal 

DNA) is composed of extremely variable regions, which can be utilized for studies of taxonomic 

groups with modern diversification or even among the inhabitants.  

Amplification of the ITS region by primers ITS1 and ITS4 and the identification of fungi 

by sequencing have the highest probability of correct identification, since the majority of the 

fungal ITS region can be captured by these primers (Schoch et al. 2012). However, all 

assemblages of specimens in the present project were subjected to two methods identifications-

morphological and sequencing of the internal transcribed spacer (ITS) ribosomal DNA region 

(Fig. 7). Alternatively, researchers have been using another region based on their objectives. So, 

if an investigator is concerned with the phylogenetic location of a fungus at different levels of 

taxonomy such as family, order and class, the small subunit (nrSSU-18S) can be sequenced by 

the primer combination NS1 and NS4 (White et al. 1990). However, if the identification to be 

performed at the intermediate levels of family and genera, then we can amplify the large sub unit 

(nrLSU-26S or 28S) by means of the primer combination LROR and LR6 (Rehner et al. 1995). 
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In addition, the ITS region, also can be valued for species level of identification of fungi which is 

easily amplified and most commonly used (James et al. 2006; Porras-Alfaro et al. 2014). 

Although identification of fungi ITS is widely used method and works fine in most of the 

cases, identification by the ITS marker alone may be insufficient for certain fungal clades to 

identify at the species level, thus requiring one to sequence one or more single-copy protein-

coding genes (Raja et al. 2017). Because of the limitations of a single-marker barcoding system 

in fungi, a group of mycologists recently accomplished a study of Dikarya (Ascomycota and 

Basidiomycota) by testing >1500 species (1931 strains or specimens) for diverse ribosomal and 

single-copy protein-coding markers (Samson et al. 2014). The study claimed that a novel, high-

fidelity primer pair (EF1−1018F GAYTTCATCAAGAACATGAT and EF1−1620R 

GACGTTGAADCCRACRTTGTC) for tef-1, which is previously extensively utilized as a 

phylogenetic marker in mycology (Rehner et al. 2005) has the highest possibility to aid as a 

secondary DNA barcode, contributing superior resolution to ITS. Genes encoding the RPB1, 

RPB2, tub2/BenA, and partial calmodulin (CaM) regions are valuable for species-level 

identification in certain groups of fungi like Eurotiales, including Aspergillus and Penicillium, 

two of the most species rich genera of fungi, which are playing an important role of medicine 

and industry (Stielow et al. 2015). 

In addition, fluorescence in situ hybridizations (FISH), Padlock probe technology with 

rolling circle amplification, Whatman FTA, and DNA array technologies are some of the 

alternative methods to using ITS. Fluorescence in situ hybridisation (FISH) targets sequences of 

ribosomal RNA abundant in the cell. The technique visualizes the precise location of a particular 

RNA sequence present in the fungal cytoplasm and organelles. FISH methodology is appropriate 

for detecting the spatial distribution of growing mycelia within colonized substrata and has been 



44 
 

used for plant fungal identification (Hiijri 2009). Factors such as the sterical and electrostatical 

properties of rRNA, incubation time, and hybridisation conditions influence the efficiency of 

FISH.  

The Padlock probe technology with rolling circle amplification identifies single 

nucleotide polymorphisms (SNPs) among different genotypes. In this case, the padlock probes 

recognize adjacent sequences on the target DNA and is enabled by the helical nature of the 

double-stranded DNA (Tsui et al. 2011). The Whatman FTA technique also used in fungal 

genome identification utilizes fibrous cards pretreated with chelators and denaturants, help lyse 

and inactivate microorganisms when they are present. Therefore, the nucleic acids released after 

the lysis entangle with the fibers of the FTA matrix while the cellular debris is eliminated by 

washing the card. FTA filters are effective as they aid in the rapid preparation of PCR-grade 

fungal genomic DNA that occurs within less than an hour (Tsui et al. 2011).  

DNA array technology relies on the hybridization of amplified genome sections to 

immobilize oligonucleotides for the identification and detection of fungi (Tsui 2011). The 

technique is applicable to the detection of species in environmental samples without requiring 

isolation in culture. The oligonucleotides manually or robotically spotted on supporting 

platforms that may include a nylon membrane or a glass slide. A desirable oligonucleotide 

contains thermodynamic properties such as melting temperature, a length rangeing between 25 

and 35 mers, and has polymorphic sites close to the center. The DNA array technique is suitable 

in situations requiring the simultaneous detection of multiple plant pathogens specific to a certain 

host but covering a broad taxonomic range. In addition, another alternative fungal identification 

strategy uses automated capillary electrophoresis system based on direct sequence analysis of 

amplified rDNA. The method is rapid, sensitive, and specific since the coding regions such as 
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18S, and 28S evolve slowly thus suitable to provide a molecular basis of establishing 

phylogenetic relationships.  

In summary, fungal identification can be done through the use of morphology, 

sequencing of the ITS region and/or sequencing of different larger or smaller ribosomal subunits 

and various protein coding genes. In addition, different sequencing independent methods such as 

fluorescent in situ hybridization and DNA array hybridization can be used as an alternative to 

ITS. 

Description the steps for fungal identification by molecular technique  

DNA extraction  

A process for effective extraction of DNA from the different fruiting bodies of fungi has 

been the matter of discussion in laboratories around the world. DNA extraction involves the 

isolation of DNA from the cell. The process begins with the separation of cells leading to the 

release of DNA due to disruption of the cell membranes. It then follows with the removal of cell 

debris to obtain purified DNA sample.  

DNA extraction using the Promega kit 

DNA was extracted from one or more representative fruiting bodies for each of the 

species collected in this project. This have been done using a DNA-Promega Extraction Protocol 

kit, (Promega Wizard, A1120, A1125, Madison, Wisconsin, United State). Small pieces of the 

fruiting bodies were collected and transferred to Eppendorf tubes (manufactured for VWR) and 

600 μl of Nuclei Lysis solution was added to the samples. Then, the samples were well ground 

up by using a pestle and small tubes. The samples were placed into a 65 °C water bath for 15-30 

min. After that, the samples were centrifuged for 3 min to obtain a supernatant from the samples. 

Then, 200 μl of protein precipitation solution was added to the supernatant of samples (Fig. 8). 
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Then, the samples were mixed well by inverting and shaking the tubes. After that, samples were 

centrifuged at a max speed for 3-8 min. A new set of Eppendorf tubes was prepared for each 

sample and 600 μl of isopropanol was added to these tubes. The supernatant was mixed and 

poured off. Then, 600 μl of 70% ethanol was added to wash the pellets. The supernatant was 

centrifuged for 1 min and then poured off. At room temperature, DNA pellets were dried for 1-2 

hours. 30 μl of TE buffer was added to resuspend the DNA (Bowden 2011). Finally, the acquired 

DNA is stored at 5°C until further analysis. 

Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) is an enzymatic reaction process where a specific 

segment of DNA is amplified to produce a large number of copies, which we called amplicons. 

This is a very powerful method developed by Mullis in 1970s (Mullis 1987). The principle 

behind PCR is mainly based on the ability of DNA polymerase to synthesize the complementary 

strand of template DNA. DNA polymerases that are used in the PCR are thermostable and thus 

can tolerate higher temperature up to 98 °C, which depends upon the types of enzymes used. 

There are different components of PCR which are described below:  

Components of PCR  

A. DNA template  

The sample containing DNA is a prerequisite component of PCR and acts as a starting 

material whose sequences of interest are amplified and produce ample number of copies of target 

sequences. Quality and purity of DNA are important for an efficient PCR. Along with the 

advancement in technologies, there are many of commercial companies such as Qiagen and 

Zymo Research which are producing DNA extraction kits to extract genomic DNA of various 

organisms from a wide range of sample types 
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B. DNA Polymerase  

DNA polymerase is an enzyme that is required to synthesize new strands of DNA from 

template DNA. The DNA polymerase used in the PCR reaction is thermostable and thus can 

tolerate high temperature. The most important thermostable polymerase is Taq polymerase, 

which was originally isolated from a thermophilic bacterium, Thermus aquaticus (Chien et al. 

1976). Although, considerable progress has been made in the development of polymerases 

having high specificity, thermostability, and fidelity, Taq polymerase still has its own value and 

has been widely used. Some of the high fidelity polymerases currently used are Q5 and Phusion 

high fidelity DNA polymerase from New England BioLabs (NEB), Ipswich, Massachusetts, and 

AccuPrime Taq DNA polymerase, high fidelity from Thermo Fisher Scientific.  

C. Primers  

Primers are short stretches of DNA/RNA sequences which are designed, based on the 

target sequences to bind with their complementary sequences in template DNA and thus act as a 

starting point for DNA synthesis. This is a very important component of PCR because DNA 

polymerase can’t synthesize DNA without primers. Since DNA polymerase can add nucleotide 

only to the pre-existing 3’-OH, it needs the primers which have a free hydroxyl group at 3’ and 

beings adding new nucleotides onwards from the primer. Thus, primers are essential for the 

initiation of PCR and help to amplify the DNA sequences of interest by binding to the 

complementary sequences of template DNA. While designing primer sets in order to amplify a 

particular region of DNA, one primer should bind in a sense/non-template (5' → 3') strand and 

another primer should bind in an antisense/template (3' → 5') strand (Lorenz 2012). Some of the 

guidelines one should follow when designing primers are the primer length, which should be 

around 15-30 nucleotides, and G-C content, which should be around 40-60%. More importantly, 
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melting temperature (Tm) should be around 45-65 °C, but the Tm difference of two primers 

shouldn’t be more than 5 °C (Lorenz 2012). 

D. Nucleotides 

Deoxynucleotide triphosphates (dNTPs) contain four basic nucleotides: (dATP, dCTP, 

dGTP, and Dttp), which are essential for synthesis of new strands of DNA, and thus act as 

building blocks for new DNA.  

Steps of PCR  

A. Initial denaturation  

The first step of PCR is the initial denaturation of template DNA. This is carried out at a 

temperature that ranges from 94 to 98 °C, with the specific temperature depending upon the 

DNA polymerase used and the G-C content of the template DNA strand (Lorenz, 2012). 

Normally, 1-3 minutes of initial denaturation is performed, and a longer time of initial 

denaturation can lead to the inactivation of DNA polymerases.  

B. Denaturation, annealing, and extension  

Following the initial denaturation, 25 to 35 cycles of a three step thermal cycle (i.e, 

denaturation, annealing, and extension) is carried out. The denaturation step denatures the 

template DNA, followed by primer annealing and extension of DNA synthesis. The temperature 

for the denaturation step is normally the same as that of the initial denaturation step. The primer 

annealing temperature is very crucial in PCR and is generally 5 °C lower than the melting 

temperature (Tm). Increasing the annealing temperature can lead to an increase in specificity; 

however, it can lead to a decrease in coverage of DNA molecules present in a sample. Thus an 

appropriate annealing temperature can be set using gradient PCR, where different annealing 

temperatures for specific primer sets can be tested. Generally, the annealing time should be 
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around 30 second to one minutes. The extension step is usually performed around 68-72 °C, but 

the time depends upon the extension capacity of the DNA polymerase and the length of the 

amplicons. The final extension of around 5-10 minutes is allowed for the synthesis of 

uncompleted amplicons, followed by termination of PCR by lowering the temperature at 4 °C.  

PCR reaction components  

Generally, the PCR is performed in either a 25 μl or 50 μl total reaction volume in a 

thermo cycler. The total reaction volume contains following reagents:  

A. PCR grade sterile water  

B. dNTPs  

In a final reaction volume, it is recommended to be each dNTP in the concentration of 0.2 

mM. A higher concentration of dNTPs can inhibit PCR.  

C. Magnesium ion (Mg2+)  

Normally, 1- 4 mM of Mg2+ is needed for a typical PCR. The magnesium ion works at 

the active site of the DNA polymerase, where it catalyzes the phosphodiester bond formation 

between primer and the dNTP.  

D. Buffer  

The buffer, whose pH is usually between 8 and 9.5, is needed to create a favorable 

chemical environment for the activity of the DNA polymerase.  

E. Primers  

In general, primer concentration should be in the range of 0.05-1μ M in a final reaction 

volume.  

F. DNA polymerase  

The final concentration of Taq DNA polymerase in a 50 μl PCR is 1.25 units (NEB).   



50 
 

Controls in the PCR reaction  

Both positive and negative controls are utmost of the important for any PCR reaction. A 

positive control is necessary in order to check whether the PCR reagents and the thermocycling 

conditions used is working or not. Normally, the positive control should amplify during PCR. 

For instance, if a positive control amplified but this doesn’t happen for other samples, it indicates 

an issues with DNA template of other samples. In other words, if the positive control didn’t 

amplify, it indicates that the concentration of PCR reagents and/or thermocycling conditions 

need to be optimized. In contrast, a negative control contains everything except template DNA 

and is needed to check if there is any contamination with in PCR reagents or not. The negative 

control shouldn’t amplify, and if amplified, it indicates there is contamination in any of the PCR 

reagents used. 

Agarose gel electrophoresis (1%) 

Electrophoresis use an applied electrical field to separate DNA molecules by their sizes. 

SYBR safe stain is non-mutagenic substance that causes minimal alteration to the DNA (Haines 

2015). The process commences with DNA amplification through the polymerase chain reaction 

(PCR), then the DNA molecules are separated according to size using an agarose gel. The 

smaller molecules wind through the matrix more easily and travel further in the well. Molecules 

possessing similar size and charge migrate an equal distance from the well, collecting into a 

band. DNA is electrophoresed on 1% agarose gels. Tris acetate EDTA (TAE), 

Tris/Borate/EDTA (TBE) and Sodium borate (SB) are the most commonly used buffers for 

agarose gel electrophoresis. TAE has the lowest buffering capacity but provides the best 

resolution for larger DNA, implying a lower voltage and more time but a better product.  
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In order to prepare the agarose gel, an appropriate amount of agarose needs to be 

dissolved in TAE buffer using a microwave for 1 min such that the agarose dissolves completely. 

Over boiling should be avoided since the buffer will evaporate and the amount of agarose will be 

altered. The agarose is then cooled to about 50 °C and stained with SYBR safe. Once the 

molecules are stained with SYBR, the bands are visualized under a blue light transilluminator or 

ultraviolet light. Care should be taken when pouring the agarose in the well to avoid bubble 

formation as it disrupts the gel. The negatively charged DNA moves towards the positively 

charged anode once electrophoresis takes place due to the phosphate backbone of the DNA. 

Clear visualization takes place when the DNA is stained with SYBR compared to when they are 

stained using ethidium bromide. The benefits of using the blue light when using SYBR over UV 

light is that blue light does not damage the eyes or skin. The blue light also has brighter light that 

is uniform in emission and provides optimal screening for the SYBR safe DNA gel stain (Fig. 9). 

Sanger DNA Sequencing 

This technique was first discovered by Frederick Sanger (Sanger et al. 1977). This 

method of DNA sequencing involves the use of DNA polymerase to chain-terminate 

dideoxynucleotides during in vitro DNA replication. The DNA of interest is first copied for a 

number of times and fragments of different length are made. The chain terminators are 

responsible for marking the ends of the fragments and allowing the sequence to be determined. 

The fragments are usually aligned based on the overlapping portions and assembled into 

sequences of larger portions of DNA and, finally, entire chromosomes (Ladouceur 2012). The 

materials needed for sequencing Sanger include a primer that acts as a starter for the polymerase 

enzyme, DNA polymerase enzyme, four DNA nucleotides (dATP, dTTP, dCTP, and Dgtp), and 

a DNA template. Dideoxy, which is a unique ingredient in Sanger sequencing, contains all four 

https://en.wikipedia.org/wiki/Frederick_Sanger
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nucleotides (ddTTP, ddGTP, ddCTP and ddATP), each with a different dye color (Ladouceur 

2012). They are similar to deoxy nucleotides except that they lack a hydroxyl group, which acts 

as a “hook" in a regular nucleotide that allows a new nucleotide to be added onto an existing 

chain.  

When a dideoxy nucleotide is added to the particular chain, no hydroxyl is available and 

therefore no further nucleotides can be added to that chain. Depending on the base (A, T, C, or 

G) that the chain end carries, the end is marked with a particular color of dye. Sanger sequencing 

works by combining the primer, the DNA polymerase, and the four DNA dideoxynucleotides 

labeled in different dyes together. The dideoxynucleotides are in smaller amounts compared to 

ordinary nucleotides. The mixture is first heated to denture the DNA template. The primer is 

allowed to bind to the template and the DNA polymerase synthesizes a new DNA strand by 

adding nucleotides to the chain until it happens to add a particular dideoxynucleotides 

(Ladouceur 2012). At that point, the chains can no longer add any other nucleotide. The process 

is repeated several times. A single dideoxynucleotides will have been added at all positions of 

the target DNA and their ends are labeled with the different dye colors. The fragments are run 

through the matrix through the process of capillary gel electrophoresis. A chromatogram is used 

to view the peaks of the different dyes. 

Finally, the sequences obtained from the latter company were cleaned up and then 

identified by doing nucleotide blast searches against the NCBI database 

(www.ncbi,nlm,nih,gov). Species level was identified at 95 % identity and above, whereas genus 

level was identified at less than 95% identity. The author of each fungal taxa was identified using 

Index Fungorum (http://www.indexfungorum.org/Names/Names.asp). 

 

 

http://www.indexfungorum.org/Names/Names.asp
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     Fig. 7: Schematic representation of the locations of the  ITS1 and ITS4 primers. (White et al. 

1990). 
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      Fig. 8: DNA extraction for species of fungi.  
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Fig. 9: Gel image showing the bands of amplicons and markers. Note:  M, Co, and the numbers 

represent the DNA ladder, negative control, and samples, respectively. (Photo by author). 
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Chapter 3: A preliminary study of wood-decay fungi in forests of northwest Arkansas 

Abstract 

The current study was conducted as an effort to characterize the wood-decay fungi 

associated with forest ecosystems in northwest Arkansas. Specimens of fungi were collected 

from three different study areas—Pea Ridge National Military Park, Devil’s Den State Park, and 

the Buffalo National River.  Furthermore, small pieces of coarse woody debris (usually dead 

branches) were collected from these study areas, returned to the laboratory and kept in plastic 

incubation chambers to which water was added. Fruiting bodies appearing in these chambers 

over a period of several months were collected and processed in the same manner as specimens 

on decaying wood obtained in the field. The internal transcribed spacer (ITS) ribosomal DNA 

region was sequenced to identify all of the specimens. A total of 214 different fungal taxa were 

recorded, the majority of which could be identified to species. Among them, 146 different fungal 

taxa were recorded as field collections, whereas 68 different fungal taxa were recorded from the 

incubation chambers. Surprisingly, the two sets of data share only two taxa in common. Also, 58 

and 102 different families and genera, respectively, were recorded. 

Key words – Basidiomycota – coarse woody debris – ITS ribosomal DNA region – Ozarks. 

Introduction 

Wood-decay fungi are those members of fungal communities which play an important 

role in the decomposition of the coarse woody debris resulting from the trees and other woody 

plants (e.g., shrubs) that occur in forest ecosystems. The decomposition of this coarse woody 

debris is a crucial procedure, because it is significant in the carbon resource of these ecosystems, 

nutrient recycling, and soil richness. For instance, several wood-decay fungi have the ability to 

destroy the lignin component of coarse woody debris (Blanchette 1991, Eriksson et al. 2012), 



57 
 

which otherwise would pile up through time. In addition, wood-decay fungi get their energy 

supplies by absorbing molecules obtained from the breakdown of the cellulose constituent of 

coarse woody debris. Likewise, some of wood-decay fungi also can be utilized as a source of 

food, nutrients and a breeding place by numerous animals (Stephenson 2010).  

Wood-decay fungi are common in the forests of Arkansas. The purpose of the current 

study was to gain more data on wood-decay fungi in three different areas in northwest 

Arkansas—Pea Ridge National Military Park, Devil’s Den State Park, and the Buffalo National 

River. The details of these study areas were described in Chapter 1.   

 Collecting and drying specimens 

As noted in chapter one, Pea Ridge National Military Park (36°27’28” N, 94°01’18” W, 

elevation 484 m), Devil’s Den State Park (35°46’32” N, 94°14’46” W, elevation 454 m), and the 

Buffalo National River (36°10′41” N 92°25′34” W, elevation 153 m) in the Ozark Mountains of 

northwest Arkansas were the three study areas. Each of the three study areas was visited several 

times during the period of February 2018 to February 2019. Fruiting bodies of wood-decay fungi 

were located using an opportunistic search method as described by Cannon & Sutton (2004). 

When fruiting bodies were observed, they were photographed in the field and then removed from 

the substrate with the aid of a knife, a small hatchet or a hand saw. Each specimen was loosely 

wrapped in aluminum foil and labeled with unique numbers (Fig 10. A, B). 

Specimens were collected from substrates with different diameters that ranged from 1 cm to 20 

cm. The length, diameter, and percent bark present were recorded for each woody substrate from 

which specimens were collected (Fig 11. A, B, C, D). 

Specimens were brought to the lab immediately after collection, dried at a temperature 

between 42-55˚C on a food dehydrator for about 48 hours (Fig 12), placed in plastic bags, and 
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deposited in the herbarium at the University of Arkansas (UARK) after being labeled with a 

unique collection number. Features of fruiting bodies can change on drying, so a number of 

primary features such as color, shape and size were recorded. In addition, very small fruiting 

bodies and some types of basidiomycetes such as jelly fungi were placed in Eppendorf tubes and 

preserved directly in the refrigerator.  

Calculation of coefficient of community 

  The species recorded from the three study areas were compared by pairwise calculation 

of the coefficient of community using the formula shown below (Mueller-Dombois & Ellenberg, 

1974). 

 Coefficient of community (CC)  = 
2𝑐

𝑎+𝑏
  

where a represents the total number of species present in the first study area or dataset being 

considered, b represents the total number of species in the second study are, and c represents the 

common species present between two study areas being considered. The value of CC ranges 

from 0 to 1, where 0 indicates no common species shared between two study areas, however, 1 

indicate all species common to both study areas.  
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Fig. 10: Collecting equipment; A. Small hatchet and a small saw, and B. Collection box. (Photo 

by author). 
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Fig.11: Measuring the size of a woody substrate (diameter and length in centimeters 

;A. Exidia recisa, B. Sarcoscypha occidentalis, C.  Trametes elegans, and C. Stereum ostrea. 

(Photo by author). 
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  Fig. 12: Food dehydrator used to dry specimens. (Photo by author). 
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Morphological description 

Identification of fungi has been historically based on the morphology of the fruiting body, 

including both macroscopic and microscopic features. Descriptions of macro morphological 

features like color, form and size of fruiting bodies are some of the most important data for the 

documentation of macrofungi. In numerous specimens of fleshy macrofungi, those features are 

missed when the specimens are dried, and so they should be described prudently beforehand 

drying. On the other hand, specimens of several macrofungi that presented on woody substrata 

are typically maintain their macro morphological structures when preserved. Therefore, the data 

recorded    among different taxa, and identification will rely on the resources obtainable.  

Morphological features of the specimens obtained from the field or incubation chambers 

were determined through the use of an AmScope stereomicroscope (Gilbertson & Ryvarden 

1986, Sotome et al. 2013) (Fig. 13). Tentative identifications were carried out based on different 

morphological features such as the size, shape and color of the fruiting body and the absence or 

presence of such structures as a distinct cap or stalk. Identifications of 384 of species were made 

with the help of information described earlier by Gilbertson & Ryvarden (1986, 1987), Bessette 

et al. (1997), Barron (1999), Binion et al. (2008) and Elliott & Stephenson (2018). This project 

has particularly focused on the external layers of the fruiting bodies cap (pileus) and stalk (stipe), 

color and the structure of the spores.  
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   Fig. 13: Identification of specimens using morphology features.  
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DNA extraction, PCR and sequencing  

DNA extraction, PCR, and sequencing were done as described earlier in the Chapter 2.  

Results   

Sequences were blasted against the NCBI database for identification of the specimens. 

Sequences were considered as identified to species at 95% sequence similarity. When there was 

a lower % sequence identify match for the present sequence, sequences were considered as 

identified only to genus. A 95% sequence similarity has been used in a number of other studies, 

although there no single cutoff value has been universally established for species identification 

across the kingdom Fungi (e.g., Raja et al. 2017). As described above, these taxa were 

taxonomically identified through both methods from morphological characters followed by 

genetic identification using the ITS sequence data. A total of 386 specimens of macrofungi were 

sequenced. Out of the 386, sequences from 118 specimens were of poor quality and thus not 

included in the analysis. Out of 268 good quality sequences, a total of 216 different taxa 

(Appendix. 1) were identified, whereas 17 sequences were reported as uncultured species (Table. 

5) and 35 sequences were duplicates of the same taxon. In addition, 148 taxa were recorded as 

field collections, whereas 68 taxa were recorded from the incubation chambers.  

At least 58 different families were identified, with representatives of the Polyporaceae, 

Mycenaceae, Marasmiaceae, Pluteaceae, Steccherinaceae, Stereaceae and Xylariaceae the most 

common. Twenty-seven taxa belong to just the Polyporaceae. Mycena was the genus represented 

by the most species (12). Also, 102 different genera were identified as well. While the emphasis 

of this study was focused to wood-decay fungi, some of the taxa identified have different 

ecological roles not related to decomposing wood. For instance, such is the situation for 

Cordyceps confragosa, which is an entomopathogenic fungus. Surprisingly, the species two sets 
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of data only shared only two species in common. These were Phlebiopsis flavidoalba and 

Schizophyllum commune.  The substrate volume (cm3) (Tables. 6) was calculated based on the 

length (cm) and diameter (cm) (Table. 7) and the bark percentage (Table. 8) for each woody 

substrate. As a result, the volume average of Merulius incarnatus, Stereum ostrea and Trametes 

elegans were (44241, 36031and 25692 cm3) respectively, for more than 10 occurrences. In 

contrast, Sarcoscypha occidentalis and Exidia recisa were recorded with the lowest volume 

averages, which were (6 and 22 cm), respectively (Fig. 14,15,16,17,18, and 19). In addition, 

Sarcoscypha occidentalis and Exidia recisa were present at an early stage (percent bark <75%) 

of decay (Fig. 20). 

The distribution of wood-decay fungi in the three study areas is shown in the Table 9. 

Species of wood-decay fungi such as Trametopsis cervina, Panellus stypticus, Stereum ostrea, 

and Trichaptum biforme occurred across all three study areas. However, species of wood-decay 

fungi such as Phanerochaete pseudosanguinea, Pluteus petasatus, and Hymenochaete 

pinnatifida were uniquely present in the Pea Ridge Military National Park, whereas 

Daedaleopsis septentrionalis, Eurotium rubrum, Mycena haematopus, and Mycena inclinata 

were uniquely present in Devil’s Den State Park. In addition, the species of wood-decay fungi 

such as Marasmiellus candidus, Rhodotus palmatus, Mycena zephirus, and Pleurotus 

pulmonarius were present only in the Buffalo National River.  

The coefficient of community (CC) indices calculated for Devil’s Den State Park (DDP) 

and the Bafflo National Rver (PRP), DDP and Pea Ridge National Military Park (BFR), and PRP 

and BFR are given in (Table. 10). These low values of CC between the study areas suggest that 

most of the species recorded from those areas were not shared in common.  

 



66 
 

Table 5: Uncultural species of wood-decay fungi. 

Taxon  ID% SGN 

Uncultured fungus. 1 99 KF800263.1 

 

Uncultured fungus. 2 100 KF800098.1 

 

Uncultured fungus. 3 100 FM999609.1 

 

Uncultured fungus. 4 100 KF800257.1 

 

Uncultured fungus. 5 100 EU625871.1 

 

Uncultured fungus. 6 100 KM104061.1 

 

Uncultured fungus. 7 99 KF800654.1 

 

Uncultured fungus. 8 100 KT923205.1 

 

Uncultured fungus. 9 100 FM999565.1 

 

Uncultured member of the Agaricales 88 FJ552954.1 

 

Uncultured fungus. 10 99 KF800254.1 

 

Uncultured Trametes.  99 MG462870.1 

 

Uncultured fungus. 11 98 FM999570.1 

 

Uncultured Polyporus.  99 KC785590.1 

 

Uncultured fungus. 12 92 HE977554.1 

 

Uncultured fungus. 13 99 MH019823.1 

 

Uncultured member of the Ascomycota 

 

99 GU256227.1 
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Table 6: Distribution of fungi in relation to the volume of the substrate. Note: for volume Large 

= (424115- 21262 cm3), Intermediate = 21262-1374 cm3, Small= 1374-210 cm3, and Very small 

= 210-3 cm3. 

Size (Volume cm3) Number of Records  

                                                                               

                                                                          Exidia recisa 

Large 0 

Intermediate 0 

Small 0 

Very small 17 

 

                                                                         Sarcoscypha occidentalis 

Large 0 

Intermediate 0 

Small 0 

Very small 6 

                                                                         Trametes elegans  

Large 4 

Intermediate 6 

Small 2 

Very small 0 
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Table 6. Contd.  

Size (Volume cm3) Number of Records 

                                                                          

                                                                     Trichaptum biforme 

Large 3 

Intermediate 6 

Small 5 

Very small 1 

                                                                         Stereum ostrea 

Large 10 

Intermediate 14 

Small 0 

Very small 0 

                                                                         Fuscoporia gilva 

Large 2 

Intermediate 13 

Small 1 

Very small 0 
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Table 7: Distribution of fungi in relation to the diameter of the substrate. Note: for volume Large 

= (424115- 21262 cm3), Intermediate = 21262-1374 cm3, Small= 1374-210 cm3, and Very small 

= 210-3 cm3. 

Size (Diameter cm) Number of Records  

                                                                               

                                                                          Exidia recisa 

Large 1 

Intermediate 0 

Small 0 

Very small 16 

 

                                                                         Sarcoscypha occidentalis 

Large 0 

Intermediate 0 

Small 0 

Very small 6 

 

                                                                         Trametes elegans 

Large 2 

Intermediate 2 

Small 5 

Very small 3 
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Table 7. Contd.  

Size (Diameter cm) Number of Records 

                                                                          

                                                                     Trichaptum biforme 

Large 1 

Intermediate 4 

Small 4 

Very small 8 

                                                                      Stereum ostrea 

Large 3 

Intermediate 5 

Small 14 

Very small 1 

                                                                         Fuscoporia gilva 

Large 0 

Intermediate 5 

Small 8 

Very small 4 
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Table 8: Distribution of species of wood-decay fungi in relation to the stage of decay of the 

woody substrates from which they were collected. 

Taxon Percentage of bark 

75-100%-

trace 

50-75%- 

trace 

50-25% 

trace 

˃25% trace No bark 

Stereum ostrea 14 7 0 0 0 

Trichaptum biforme 9 2 0 0 0 

Fuscoporia gilva 5 6 3 0 0 

Trametes elegans 6 2 1 0 0 

Sarcoscypha occidentalis 6 0 0 0 0 

Exidia recisa 9 7 0 0 0 

Phellinus stipticus 7 0 0 0 0 

Auricularia americana 5 0 0 0 0 

Morganella pyriformis 5 0 0 0 0 

Deadaleopsis confragosa 5 0 0 0 0 
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Table 9: Distribution of wood-decay fungi in the three different study areas. Note: PRP: Pea 

Ridge Military National Park; DDP: Devil’s Den State Park; PFR: The Buffalo National River. 

All three study areas Only PRP Only DDP Only PFR 

 

Trametopsis cervina  

 

Phanerochaete  

    pseudosanguinea  

 

Daedaleopsis  

     septentrionalis 

 

Marasmiellus  

     candidus 

Panellus stypticus,  Pluteus petasatus  Eurotium rubrum  Rhodotus palmatus 

Stereum ostrea  Hymenochaete   

pinnatifida  

Hericium erinaceum  Mycena zephirus 

Trichaptum biforme  Gloeoporus dichrous  Merulius incarnatus  Phaeomarasmius    

erinaceellus 

Crucibulum laeve Gymnopus erythropus Mycena haematopus  Lactarius  

rubrocinctus 

Steccherinum   

murashkinskyi 

Hydnochaete tabacina  Mycena haematopus   Pleurotus  

pulmonarius 

Lenzites betulinus Trametes conchifer  Mycena inclinata  Pluteus   

glaucotinctus 

Exidia recisa Tyromyces kmetii  Mycena leaiana Diatrype stigma  
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Table 10: Calculation the Coefficient of community (CC) indices between the three study areas.  

Note: PRP: Pea Ridge Military National Park; DDP: Devil’s Den State Park; PFR: the Buffalo 

National River. 

 

Study area 

Coefficient of community (CC)   

PRP DDP BFR 

PRP Х 0.20 0.08 

DDP 0.20 Х 0.07 

BFR 0.08 0.07 Х 
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Fig. 14: Distribution of species of fungi in relation to  volume (cm3) (A) and diameter (cm) 

(B), Note: for volume Large = 424115 to 21262, Intermediate = 21262 to 1374, Small = 1374 

to 210, and Very small = 210 to 3. Diameter Large 30 to 20, Intermediate = 19 to 10, Small = 9 

to 6, and Very small 5 to 0.5. 
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Fig. 15: Distribution of species of fungi in relation to  volume (cm3) (A) and diameter (cm) (B), 

Note: for volume Large = 424115 to 21262, Intermediate = 21262 to 1374, Small = 1374 to 210, 

and Very small = 210 to 3. Diameter Large 30 to 20, Intermediate = 19 to 10, Small = 9 to 6, and 

Very small 5 to 0.5. 
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Fig. 16: Distribution of species of fungi in relation to  volume (cm3) (A) and diameter (cm) (B), 

Note: for volume Large = 424115 to 21262, Intermediate = 21262 to 1374, Small = 1374 to 210, 

and Very small = 210 to 3. Diameter Large 30 to 20, Intermediate = 19 to 10, Small = 9 to 6, and 

Very small 5 to 0.5. 
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Fig. 17: Distribution of species of fungi in relation to  volume (cm3) (A) and diameter (cm) (B), 

Note: for volume Large = 424115 to 21262, Intermediate = 21262 to 1374, Small = 1374 to 210, 

and Very small = 210 to 3. Diameter Large 30 to 20, Intermediate = 19 to 10, Small = 9 to 6, and 

Very small 5 to 0.5. 
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Fig. 18: Distribution of species of fungi in relation to  volume (cm3) (A) and diameter (cm) (B), 

Note: for volume Large = 424115 to 21262, Intermediate = 21262 to 1374, Small = 1374 to 210, 

and Very small = 210 to 3. Diameter Large 30 to 20, Intermediate = 19 to 10, Small = 9 to 6, and 

Very small 5 to 0.5. 
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      Fig. 19: Distribution of species of fungi in relation to  volume (cm3) (A) and diameter (cm) 

(B), Note: for volume Large = 424115 to 21262, Intermediate = 21262 to 1374, Small = 1374 to 

210, and Very small = 210 to 3. Diameter Large 30 to 20, Intermediate = 19 to 10, Small = 9 to 

6, and Very small 5 to 0.5. 
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         Fig. 20: Distribution of wood-decay fungi in relation to the percentage of bark. 
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      Fig. 20. Distribution of wood-decay fungi in relation to the percentage of bark.  
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         Fig 20. Distribution of wood-decay fungi in relation to the percentage of bark.  
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Discussion  

Although studies of the wood-decay fungi have been performed in different areas 

throughout the world (e.g., Leiniger et al. 1997, Alemu 2013, Lyngdoh & Dkhar 2014, Bhutia 

2016), the one described herein seemingly represents the first such effort in the forests of 

northwest Arkansas. Certainly, I am not aware of any similar studies anywhere in the Ozark 

physographic province, which encompasses northern Arkansas and the southern half of Missouri 

while also extending westward into northern Oklahoma and southeast Kansas. Therefore, the 

preliminary data obtained in this chapter (Fig. 21) will set the stage for future more 

comprehensive studies. The total number of 216 taxa obtained obviously indicates that the 

species richness of the assemblage of wood-decay fungi in the general study is high. Some of the 

taxa documented including, Mycena haematopus, Panellus stipticus, Pleurotus ostreatus, 

Schizophyllum commune, and Stereum complicatum are some of the most common and pervasive 

wood-decay fungi. On the other hand, some of the taxa had sequences that did not match 

anything in the GenBank database. This would indicate that they are either rare (i.e., have been 

identified but not yet sequenced) or are possibly new to science. The most surprising result of the 

current study is that the set of taxa documented as field collections and the set of taxa detailed 

from the incubation chambers shared only two species in common. The field collections of 

fruiting bodies and the portions of coarse woody debris deposited in the incubation chambers 

were obtained at several times of the year during the period of February 2018 to February 2019. 

Furthermore, the portions of coarse woody debris tended to be parts of branches, while the 

majority of fruiting bodies found as field assemblages occurred on logs. Despite the variation 

that wood-decay fungi display with respect to some characteristics of their biology (Worrall et al. 

1997), it is hard to understand how this would account for such a significant difference, 
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particularly since taxa such as Mycena haematopus were documented only in incubation 

chambers in the current study but normally fruit on large logs in northwest Arkansas 

(Stephenson, personal observation). Obviously, the conditions within an incubation chamber 

differ to those present in the field, and this may be a reason accounting for the observed 

differences. Nonetheless, it appears exceedingly unlikely that these variations would exist as 

further data from the three study areas become available.  

The current study showed that the number of incubation chambers yielding fruiting 

bodies of fungi was relatively high (56%), and since the chambers were observed on a regular 

basis, the fruiting bodies could be collected when they were still in excellent condition. This is of 

great advantage, since it enables identification to be easier and increases the chances of 

extracting good quality DNA. 

Because of the lack of appropriate surveys, the fungal biota (all groups) of northwest 

Arkansas and neighboring areas of the Ozarks is not well-documented (Swartz 1933).  There are 

no earlier records from these regions for a number of the taxa recorded in Appendix 1, based on 

the limited body of data presently available (e.g., Discover Life [www.discoverlife.com] and 

GBIF [www.gbif.org]). It is expected that further more comprehensive studies will generate 

numerous additional records. 
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Fig. 21: Different species of wood-decay fungi collected from the field; A. Gloeoporus dichrous, 

B.  Pluteus petasatus, C. Trametes elegans, D. Morganella pyriformis. (Photo by author). 
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Fig. 21: Different species of wood-decay fungi collected from the field: E. Auricularia 

americana, F. Microstoma floccosum, G. Pluteus longistriatus, H. Coprinellus radians. (Photo 

by author). 
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Fig. 21: Different species of wood-decay fungi collected from the field: I. Marasmiellus    

candidus, J. Daedaleopsis confragosa, K. Rhodotus palmatus, and L. Pleurotus ostreatus. (Photo 

by author). 
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Chapter 4: Effect of prescribed burning on wood-decay fungi in the forests of northwest 

Arkansas 

Abstract 

This study was carried out to investigate the effect of prescribed burning on wood-decay 

fungi by comparing the taxa collected from three different study areas these were a burned and 

an unburned area of (1) Pea Ridge National Military Park (PRNMP) (2) the Buffalo National 

River (BFR), (3) unburned area of Devil’s Den State Park (DDSP, control).  In addition, small 

pieces of coarse woody debris (CWD) were collected from both burned and unburned areas of 

PRNMP and BFR, placed in incubation chambers and kept moist. Fruiting bodies appearing in 

these chambers were observed and collected over the course of twelve months. All specimens 

from both unburned and charred coarse woody debris were identified through sequencing of the 

internal transcribed spacer (ITS) ribosomal DNA region. A total of 101 taxa were recorded. The 

different species from both incubation chambers (charred wood and unburned wood) were 68 

species, while 8 sequences matched with the same taxa. In addition, 62 of the specimens from 

incubation chamber samples were recorded from unburned coarse woody debris, while only six 

species were present on charred coarse woody debris (CWD). Eight species were present in more 

than one chambers (Table 11). As a result of this effort, the number of species of wood decay 

fungi was reduced on charred (CWD) compared with unburned (CWD). 

Key Words -- ITS ribosomal DNA region--Ozark -- Buffalo River -- prescribed burning 

-- wood decay fungi. 

Introduction  

Coarse woody debris (CWD) consists of woody substance derived from tree branches, 

trunks and roots in different stage of decay. The accumulation of (CWD) can occur based on 
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some factors such as weather conditions, animal and disease efficiency, forests composition and 

prescribed burning intervals. Also, CWD can occur either for several years or for a short period 

of time depending on the forest ecosystem type (Harmon et al. 1986; Harvey et al. 1987). The 

decomposition of CWD releases many nutrients such as sulfur, nitrogen and phosphorus. 

Particularly, at the end of the decomposition process, CWD has a high concentration of those 

nutrient (Larsen et al. 1982).  

Controlled burning is a management techniques used to decrease fuel load and to return a 

disturbance regime to landscapes which historically had of fire.  Theoretically, the organisms 

that occur in the area burned are subjected to the direct effect of prescribed burning. For instance, 

plants, can be killed when the aboveground portions are burned.  Large species of animals can 

avoid the fire, but many small once cannot.  However, the purpose of this study was to examine 

the effect of prescribed burning on fungal growth, especially on wood-decay fungi. 

  Moreover, prescribed burning has indirect impacts on wood-decay fungi through its 

impact on wood. The compositional changes happening through the charring of cellulose, lignin, 

and wood have been considered in earlier studies (e.g., Shafizadeh et al. 1982). In addition, 

Fourier Transform Infrared (FTIR) and C Nuclear Magnetic Resonance (NMR) techniques have 

been used to confirm the change in wood composition and structure of pine (Rutherford et al. 

2005).  Studies have indicated that, the hemicellulose and cellulose start to break down at 250 ºC 

and by 400 ºC have lost most of their weight, whereas, lignin undergoes additional regular 

weight loss between 200ºC to 720ºC (Williams et al. 1996). Also, the surface area is a significant 

parameter to measure because a absorption and ion exchange attributes of charcoal are 

immediately linked to surface area. In addition, the formation of pores in charcoal is not well 

studied. Nonetheless, it has been connected to increased temperature and the period of heating. 
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An example of some data from another study are presented in (Table 12) (Shafizadeh, et al. 

1982).  

Methods and Materials 

Wood-decay fungi are common in the forests of Arkansas. The objective of the present 

study was to obtain data on the fungi associated coarse woody debris in three different areas in 

northwest Arkansas. Those three study areas were Pea Ridge National Military Park, the Buffalo 

National River and Devil’s Den State Park (PRNMP, BFR and DDSP), which were described in 

the introduction.  

 Sample collection 

Samples of coarse woody debris (CWD) were collected from various localities, including 

the burned and unburned areas of Pea Ridge Military National Park and the Buffalo National 

River, from February 2018 to February 2019. Also, samples of coarse woody debris from Devil’s 

Den State Park were collected as a control in the present study. The samples were labeled with 

special reference numbers and then divided into four portions. Two pieces were collected from 

each of the four larger pieces, both before and after the prescribed burning took place (Fig. 22. 

A, B and C). The collected samples were brought to the laboratory and incubated in plastic 

chambers measuring 30 cm by 12 cm by 6 cm. A small amount of water was added to each 

chamber (Fig. 23). The samples were observed for one year and water was added to ensure that 

the samples remained moist.  When fruiting bodies were observed then were photographed then 

removed from the coarse woody debris (CWD). Fruiting bodies were placed in a plastic 

collecting box with numerous compartments and then stored. While in the laboratory, the 

specimens were labeled using special numbers and then dried and stored for further work as 

described in Chapter 3. The morphological characteristics of the specimens collected in the field 



91 
 

or obtained in the incubation champers were determined with the aid of an AmScope 

stereomicroscope, as was described in Chapter 3. 

DNA Extraction, PCR and Sequencing 

DNA Extraction, PCR, and Sequencing were carried out as described in Chapter 2. 

Results 

For identification of specimens, sequences were blasted against the NCBI database with a 

blast option to identify the taxon involved. At 95% sequence identity, sequences were considered 

as identified to species when there was a match with an existing sequence; at a lower % sequence 

identify, sequence were considered as identified only to genus. A total of 80 taxa (Table 13) were 

recorded, the majority of which could be identified to the species level. A result, 101 taxa were 

collected from incubation chambers. while only 80 were identified from both unburned and 

charred chambers. Samples of unburned coarse woody debris totaled 62, while only six species 

were collected from charred coarse woody debris (Fig. 24). The taxa collected belong to 34 

different families, with representatives of the Polyporaceae, Mycenaceae, Marasmiaceae, 

Omphalotaceae and Xylariaceae the most common. The  Marasmiaceae was the most diverse 

family with eight different species, with six taxa in the Polyporaceae . Also, Mycena and 

Gymnopus were the most common genera. In addition, Gymnopus luxurians and Panus 

conchatus were present in more than one chamber, while Gymnopus sp. and Mycena sp. were 

present several times in more than one chamber. In addition, Trichoderma viride was reported 

mostly of all 12 unburned incubation chambers. 

 

 

 

 

http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=92916&Fields=All
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1381348483
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1381348483
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Table 11: Number of taxa of fungi recorded from the incubation chambers. Note: N.S: Number 

of specimens and N.T: Number of different taxa. 

Study area N.S N.T 

Devil’s Den State Park (Control) 34 30 

Pea Ridge National Military Park (Unburned area)  33 27 

Pea Ridge National Military Park (Charred wood) 7 5 

Buffalo National River (Unburned area) 24 17 

Buffalo National River (Charred wood) 3 1 

Total 101 80 
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Table 12: The percentage char remaining from cellulose for several heating periods. Data from 

Shafizadeh et al. (1982). 

Time/ hrs 250 ºC 300 ºC 350 ºC 400 ºC 500 ºC 

1 93.6 33.3 27.8 22.3 -- 

8 44.1 30.7 23.5 -- -- 

24 35.5 27.2 18.9 7.8 -- 
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Fig. 22: Stages in the collection of coarse woody debris. A. Wood divided into four pieces, B. 

Two pieces were prepared for each chamber for prescribed burning, and C. Coarse woody debris 

conducted for prescribed burning. (Photo by author). 
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Fig. 23: Two pieces were placed in each incubation chamber. A: Coarse woody debris incubated 

before burning and B: Coarse woody debris incubated after burning. (Photo by author). 
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Discussion  

For fungal communities, controlled burning is commonly referred to as a large-scale 

destructive disturbance (Zak 1991), which results in devastation of the fungal biomass (Pugh and 

Body 1988). Although few studies have previously investigated the effects of prescribed burning 

on wood-decay fungi, there is very limited information regarding its effects on wood-decay 

fungi, especially of forests in the northwest Arkansas. This information in the chapter evaluates 

the relationship between prescribed burning and wood-decay fungi growth. Field data indicated 

that the number of wood-decay fungi was very high in unburned as compared to charred coarse 

woody debris. There was a clear variation in the number of wood-decay fungi between unburned 

and charred coarse woody debris (Fig. 24). In addition, there was decrease in diversity of fungal 

species in charred coarse woody debris as compared to the unburned coarse woody debris in both 

areas of Pea Ridge Military National Park and the Buffalo National River. 

 Species of wood-decay fungi are affected by controlled burning. Some species were 

growing in less decayed trees before the fire. For example, five species each of Gymnopus and 

Marasmius were recorded only on unburned coarse woody debris after incubated from both areas 

of Pea Ridge Military National Park and the Buffalo National River (Fig. 25). They were absent 

after the fire as represented by the charred coarse woody debris. On the other hand,  

Perenniporia ohiensis, Mycena aurantiomarginata and Blastobotrys sp., were present after the 

prescribed burning. They were absent before the fire, however, and grew on charred wood in the 

incubation chambers, suggesting the fact that fire can provide optimum conditions for certain 

fungal species to grow. 

  Some species were represented in the incubation chambers on coarse wood debris both 

before and after prescribed burning, such as Polyporus tuberaster and Panus conchatus. 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_237784369
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Polypores in particular appeared in later stage in their fruiting body production after prescribed 

burning, and it is possible that they will produce more species in the study area over time. In 

addition, prescribed burning can kill the mycelia or reduce the inoculum possibility of numerous 

fungi by consuming dead woody substances and via creation of harsh environmental conditions 

(Parmeter 1977). Naturally, prescribed burning reduces the number of species that were present 

before burning took place (Zak 1991). 

The data supports the idea that it is mostly effect of prescribed burning on growth of 

species of fungi, which suffer after the disturbance created by controlled burning (Table. 12). In 

this chapter, the influence of prescribed burning was so severe that the species richness 

decreased considerably for both charred incubation chambers in both areas (Pea Ridge Military 

Park and the Buffalo National River). In addition, the number of species decreased rather 

appreciably in charred incubation chambers, which explains evidence of the effect of prescribed 

burning on the populations of fungi.  
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Fig. 24: Variation in the number of wood-decay fungi between unburned and charred coarse 

woody debris. Note: PRP, Pea Ridge Military National Park; DDP, Devil’s Den State Park; PFR, 

the Buffalo National River. 
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Fig. 25: Selected species of wood-decay fungi documented from the incubation chambers. 

 A. Xylaria hypoxylon, B. Polyporus tuberaster, C. Trichaptum fuscoviolaceum, and D. Mycena 

leaiana. (Photo by author). 
 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 13: Taxa of wood-decay fungi recorded from incubation chambers. Note: CCD = Devil’s 

Den State Park, CBBF = Buffalo River burned, CUBF = Buffalo River Unburned, CUP = Pea 

Ridge Unburned, and CBP = Pea Ridge burned.  

Taxon                                      CDD                CUBF           CBBF           CUPR          CBPR 

  Agaricus pinsitus  Х    

 Blastobotrys. sp. 1  Х    

 Clitocybe subditopoda  Х     

 Clitopilus hobsonii  Х Х    

 Coprinus alnivorus  Х     

  Cordyceps confragosa  Х    

 Cryptococcus yokohamensis  Х     

 Diatrype stigma   Х    

  Eichleriella sp. 1   Х   

 Galiella rufa  Х     

 Gymnopus biformis    Х  

 Gymnopus dryophilus     Х  

 Gymnopus earleae     Х  

Gymnopus junquilleus     Х  

Gymnopus luxurians  Х   Х  

Hyphodontia tropica     Х  

Hypholoma sp. 1     Х 

Lachnum virgineum   Х    

 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_242253916
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_626449267
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Table 13. Contd.  

Taxon                                      CDD                CUBF           CBBF           CUPR               CBPR 

 Marasmiellus juniperinus  Х     

Marasmius cohaerens     Х  

Marasmius graminicola     Х  

Marasmius pulcherripes  Х     

Mariannaea sp. 1 Х     

Merulius incarnatus  Х     

Mycena acicula     Х  

Mycena aurantiomarginata      Х 

Mycena haematopus  Х     

Mycena polygramma  Х     

Mycena sp. 1 Х Х  Х  

Mycena thymicola  Х     

Mycetinis opacus   Х    

Nectria mariannaeae   Х    

Panus conchatus  Х Х    

Panus lecomtei     Х  

Panus neostrigosus     Х  

Perenniporia ohiensis   Х    

Pezizomycetes sp. 1 Х     

Physalacria bambusae    Х  

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_584300037
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_344333341
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_237784369
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Table 13. Contd. 

Taxon                                   CDD                CUBF           CBBF           CUPR                CBPR 

Physisporinus vitreus    Х  

Pleurotus floridanus     Х  

Pleurotus ostreatus     Х  

Pluteus romellii  Х     

Pluteus sp.  Х    

Pluteus thomsonii     Х  

Polyporus tuberaster  Х   Х Х 

Resupinatus alboniger  Х Х    

Resupinatus applicatus  Х     

Rhizopus oryzae  Х     

Rigidoporus pouzarii  Х    

Rigidoporus sp. 1 Х     

Schizophyllum commune  Х     

Schizophyllum radiatum  Х    

Schizopora sp. 1    Х  

Scutellinia crinite     Х  

Scutellinia sp. 1    Х  

Simocybe sp. 1 Х     

Simplicillium lanosoniveum  Х     

Stereum sanguinolentum  Х     

Stereum sp. 1 Х     

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1332983267
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_738911295
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_218454063
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Table 13. Contd. 

Taxon                             CDD                CUBF           CBBF           CUPR                CBPR 

Trametopsis cervina Х     

Trametopsis sp. 1 Х     

Trichaptum sp. 1 

fuscoviolaceum 

 Х    

Trichoderma gamsii    Х  

Trichoderma sp. 1     Х 

Trichoderma viride      Х 

Trogia sp. 1  Х    

Truncospora ohiensis  Х   Х  

Truncospora sp. 1    Х  

Xylaria cornu-damae     Х  

Xylaria sp. 1    Х  

Xylaria sp. 2    Х  

 

 

 

 

 

 

 

  

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1283314702


104 
 

Chapter 5: Impact of controlled environmental conditions the diversity of species of fungi 

in the forest of Northwest Arkansas  

Abstract 

Since moisture and temperature affect the growth of fungi, describing the environmental 

conditions favorable for fungal growth might be useful in order to investigate the variations in 

the assemblage present in the different habitats environmental conditions. that occur with 

different weathers.  Species of fungi that occur on the coarse woody debris in the field might not 

represent the same to appear when the coarse woody debris is placed in incubation chambers 

under controlled environmental conditions. For this purpose, a total of ten fungal specimens and 

their representative coarse woody debris were collected from the Devil’s Den State Park of 

northwest Arkansas. The coarse wood debris were incubated in chambers for two months until 

fruiting bodies appeared. All specimens from both the field and incubation chambers were 

identified by sequencing the internal transcribed spacer (ITS) ribosomal DNA region. Ten 

specimens from the field were identified as ten different fungal species. From incubation 

chambers, altogether nine fungal species were identified from seven coarse woody debris 

because none of the fungal species grew in three of the coarse wood debris, while two species 

grew in another. Interestingly, all the nine species identified from the incubation chambers were 

totally different as compared to that of field. The results of this preliminary study suggest that 

environmental conditions affect the growth of fungal species.  

 

Key words: Coarse woody debris—Environmental condition--Internal transcribed spacer (ITS) 

ribosomal DNA region—Devil’s Den State Park of Northwest Arkansas.  
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Introduction 

The most important factor that will impact fungal growth is water along temperature and 

the availability of nutrient (Vacher et al. 2010). In addition, fungal abundance and richness were 

obviously influenced by weather, showing large variation between habitats. Weather parameters 

can vary extremely in differences of the fungal abundance and richness of the habitat. However, 

both temperature and moisture were important for the determination of the fungal abundance and 

richness of the habitats (Djurle et al. 1996).  It is broadly assumed that for decay fungi to develop 

successfully in wood, the moisture content should be about 28% to 30% moisture content 

(Griffin 1977). 20% moisture content provides a margin of safety against fungal decay. In my 

chapter three, surprisingly, from both groups of data among 146 obtained from field collections 

and 68 taxa recorded from the incubation chambers, two species only common taxon were 

recorded. This is the most reasons led me to do this study. However, the previous study in 

chapter three expect some reasons that were field collections of  coarse woody debris placed in 

the incubation chamber and the field were collected at different times of the year, Inaddition, the 

pieces of coarse woody debris tended to be portions of branches, whereas the fruiting bodies 

acquired as field collections typically occurred on logs. However, in this chapter , the species 

were  collected from the same subsrates either (logs or branches , etc) , also, species were 

collected in short time (two months ) to overcome the previous anticipated reasons.  

          In the incubation chambers, the environment conditions were controlled and created a 

favorable condition such as suitable temperature which was between 25-30 ⁰C and high humid 

environmental condition and the availability of nutrients which may enhance fungal growths. 

Whereas, there was no controlled on the environment conditions in the field. The weather wasn’t 

steady, instead, was either increasing or decreasing with time. What we expected that, the 
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suitable environmental conditions can present a new species that are not existed in the field. 

However, this is only hypothesis that may or may not be true. In the future work, I have to 

collect more logs and consequently more data to confirm the previous results.  

Methods and Materials 

         Altogether ten fungal fruiting bodies generated on respective ten small coarse woody debris 

were collected with a unique reference number from the forest of Devil’s Den State Park of 

Northwest. In addition, the same ten small coarse woody debris from where fruiting bodies 

collected were brought to the lab and incubated in the chamber with moisture (Fig. 26 and 27). 

The incubated coarse wood debris were monitored each day for two months until fruiting bodies 

appeared. All the procedures for collection, incubation, morphological and molecular 

identification were same as described in the Chapter 2 and 3.  

Results 

           The different species of fungi identified from the field and incubation chambers are 

summarized in the Table 14. All the fungal species that were recovered from the field were total 

different as compared to those from incubation chambers (Table 14) & (Fig. 28) A total of 9 

species were identified from incubation chambers. In addition, Inocybaceae family were 

common in incubation chambers with presented two species of Simocybe.  

Discussion  

 The environmental condition and climate change are playing a vital role of fungi growth 

and fungi presence in the habitats. Suitable temperature, availability of moisture and nutrients are 

good factors to promote fungal presence. Thus, those fungi vary significantly when grew on 

artificial environmental conditions (Stevens & Hall 1901). The fungal species identified from the 

field were completely different as compared to those identified from the incubation chamber. 
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The environmental conditions are different in field than in the incubation chamber and thus, this 

might be responsible for favoring the growth of different fungal species in the field and 

incubation chambers. Nevertheless, it seems exceedingly unlikely that these differences would 

persist as additional data from the two study areas become available. 
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Fig. 26: Representation pieces of coarse woody debris of the same species collected from the 

field.          (Photo by author). 
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 Fig. 27: Coarse woody debris placed in the incubation chambers. (Photo by author). 
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Table 14: Species of fungi recovered from the field and the incubation chambers. 

Field  Incubation  chambers 

Pleurotus pulmonarius  Clitocybe subditopoda  

Panellus stipticus   Mariannaea sp. 1 

Schizophyllum commune  (1) Phlebiopsis flavidoalba  

(2) Xylaria hypoxylon  

Lycoperdon pyriforme  Coprinus alnivorus  

Hypoxylon crocopeplum  

Sterum ostrea 

Trametes conchifer  

 

Morganella pyriformis 

                                           

Simocybe serrulata  

Rigidoporus sp. 1 

(1) Trametopsis sp. 1 

(2) Trametopsis cervina 

 

 

Coprinus alnivorus 

 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1515196773
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Fig. 28: Two different species of fungi from the same substrate (log); A. Schizophyllum  

commune (field), and B. Xylaria hypoxylon (incubation chamber). (Photo by author). 
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Chapter 6: Conclusions  

There is very little real data regarding the fungal composition and diversity in the forests 

of northwest Arkansas. In this study, the characterization of wood-decay fungi was carried out 

successfully for the first time in the forests of northwest Arkansas, using both morphological and 

molecular identification methods. Approximately 216 different taxa with 58 different families 

and 102 different genera of wood-decay fungi were recorded from the forests of northwest 

Arkansas which support a rich diversity of wood-decay fungi. Polyporaceae and Mycenaceae 

were recorded as the most common families, whereas Stereum ostrea and Exidia recisa were the 

most common species of wood decay fungi in these study areas.  

In addition, incubation chamber was used to study the effects of prescribed burning on 

wood-decay fungi, which is a routine practice in the forests of northwest Arkansas. Sixty-eight 

different taxa were obtained from unburned coarse wood debris in incubation chambers, whereas 

only six species were recorded from burned coarse wood debris in incubation chambers, which 

indicate that the prescribed burning can affect the composition and diversity of wood-decay 

fungi. Prescribed burning reduced the number of the taxa. Likewise, this study reported that 

incubation chambers can be used successful to allow fungal growth under controlled 

environmental conditions. This can help make studies of prescribed burning more feasible.  

Furthermore, the distribution of different species of wood-decay fungi depended on the 

size of logs and the percentage of bark present on the logs. For instance, wood-decay fungi such 

as Stereum ostrea were present mostly on large and intermediate logs size at an early stage of 

decay, whereas wood-decay fungi such as Sarcoscypha occidentalis were present on very small 

logs size at an early of decay. This difference in distribution may reflect the variability in terms 

of their ecological roles.  
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Interesting, the species of wood-decay fungi that were present on the logs in the field 

didn’t match those species of fungi appeared in incubation chambers from the same logs, 

suggesting the vital role of environmental conditions for their growth.  

In summary, the overall findings of this study suggest that the forests of northwest 

Arkansas harbor a rich diversity of wood-decay fungi. The reduced number of wood-decay 

fungal taxa from burned coarse particles suggest that the prescribed burning can have significant 

impact on their composition. In addition, incubation chambers can be used successfully to allow 

growth of wood-decay fungi under controlled environmental conditions. Both size of logs and 

their bark percentage affect the distribution of wood-decay fungi suggesting their diverse 

ecological roles. The results from this project can be a good resource for the future more 

comprehensive studies.  
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Appendix  

Appendix 1. 

The identification of wood-decay fungal taxon was carried out by using BLASTN program of 

NCBI. Taxonomic classification was performed based on the sequence identity, where those 

sequence reads that matched ≥ 95% identity were assigned at the species level and those that 

matched < 95% were assigned to the genus level. Altogether, 216 different species of wood-

decay fungi were reported from the forests of northwest Arkansas including those from the 

incubation chambers. These species were found belong 58 different families and 102 different 

genera of wood-decay fungi as shown in the following table.  
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Appendix 1. Taxa of wood-decay fungi recorded from northwest Arkansas. Note: %ID = 

percent sequence identity and SGB = sequence in GenBank. 

Taxon Family ID% SGB 

Acanthophysium sp. Stereaceae 91 NR_159629.1        

Agaricus pinsitus Fr. Agaricaceae 96 MH861223.1 

Amanita sp. 1 Amanitaceae  99 KX348046.1 

Antrodia serialis (Fr.) Donk Fomitopsidaceae  99 KC585304.1 

Auricularia americana Parmasto & I.  

Parmasto 

Auriculaceae  99 JX065166.1 

Blastobotrys nivea  Klopotek Trichomonascaceae  86 FM178345.1  

Blastobotrys  sp. 1 Trichomonascaceae 86 FM178345.1 

Bolbitius bisporus E.F. Malysheva Bolbitiaceae  99 NR153611.1 

Bolbitius sp. 1 Bolbitiaceae 89 JX968249.1                                    

Byssomerulius incarnates (Schwein.)   

Gilb. 

Meruliaceae  99 MF773635.1 

Ceraceomyces. sp. 1 Amylocorticiaceae 93 MH863804.1 

Ceriporiopsis sp. 1 Phanerochaetaceae 85 NR_154636.1 

Cladosporium cladosporioides (Fresen.) 

G.A. de Vries 

Davidiellaceae 100 MF476049.1 

Clitocybe subditopoda Peck Tricholomataceae 99 KM453734.1 

Clitopilus hobsonii (Berk.) P.D. Orton Entolomataceae  99 FJ770395.1 

Coprinellus radians (Fr.) Vilgalys, 

Hopple & Jacq. Johnson 

Psathyrellaceae 100 KJ714004.1 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_744435226
https://en.wikipedia.org/wiki/Amanitaceae
https://www.ncbi.nlm.nih.gov/nucleotide/KX348046.1?report=genbank&log$=nucltop&blast_rank=2&RID=PHGUMUT8014
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_242253916
http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=453898&Fields=All
https://www.ncbi.nlm.nih.gov/nucleotide/FM178345.1?report=genbank&log$=nucltop&blast_rank=2&RID=PHJGVEJ2015
https://www.ncbi.nlm.nih.gov/nucleotide/JX968249.1?report=genbank&log$=nucltop&blast_rank=1&RID=3XCWZ2CC014


125 
 

Appendix 1. Contd. 

Taxon Family ID% SGB 

Coprinellus sp.  Psathyrellaceae  99 KX611630.1 

  Coprinus alnivorus Bogar                             Coprinaceae                  95        MK169326.1 

Cordyceps confragosa (Mains) G.H. 

Sung, J.M. Sung, Hywel-Jones & 

Spatafora 

Clavicipitaceae  99 KT372853.1 

Crepidotus applanatus (Pers.) P. Kumm. Cortinariaceae 96 KF879614.1 

Crepidotus sp. 1 Crepidotaceae  94 MF161223.1 

Crucibulum laeve (Huds.) Kambly Nidulariaceae  98 DQ071701.2 

Cryptococcus yokohamensis Alshahni, 

Satoh & Makimura 

Tremellaceae  97 HM222928.1 

Cyathus annulatus H.J. Brodie Agaricaceae  97 NR_119588.1  

Cyathus renweii T.X. Zhou & R.L. Zhao Agaricaceae  96 NR_119589.1  

Daedaleopsis confragosa   (Bolton) J. 

Schröt. 

Polyporaceae 96 MF773633.1 

Daedaleopsis septentrionalis (P. 

Karst.)Niemela 

Polyporaceae  99 HG973499.1 

Daedaleopsis sinensis (Lloyd) Y.C. Dai Polyporaceae 99 FJ627256.1 

Daedaleopsis tricolor (Bull.) Bondartsev   

& Singer 

Polyporaceae 100 KY235366.1 

Diatrype stigma (Hoffm.) Fr. Diatrypaceae 99 JX515706.1 

Eichleriella sp. 1 Exidiaceae  97 MH349728.1 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_626451154
http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=58983&Fields=All
https://www.ncbi.nlm.nih.gov/nucleotide/NR_119588.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHF8BV09015
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_626451829
http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=58983&Fields=All
https://www.ncbi.nlm.nih.gov/nucleotide/NR_119589.1?report=genbank&log$=nucltop&blast_rank=2&RID=PHFXAVHU015
https://gd.eppo.int/taxon/1EXIDF
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Entoloma platyphylloides (Romagn.) 

Largent 

Entolomataceae  94 JF908003.1  

Eurotium rubrum Jos. König, Spieck. & 

W. Bremer 

Trichocomaceae 100 EU001331.1 

Eurotium tuberculatum Z.T. Qi & Z.M. 

Sun 

Aspergillaceae, 99 HE615134.1 

Exidia recisa (Ditmar) Fr. Auriculariaceae  99 LC098751.1 

Exidia sp. 1 Auriculariaceae  99 MF161299.1 

Fuscoporia gilva (Schwein.) T. Wagner &   Hymenochaetaceae      100      KU139196.1 

 M. Fisch 

Galiella rufa (Schwein.) Nannf. & Korf Sarcosomataceae  99 AF485073.1 

Ganoderma sp. 1 Ganodermataceae  99 AF255100.1 

Gloeoporus dichrous (Fr.) Bres. Meruliaceae 100 JQ673109.1 

Grammothele sp. 1 Polyporaceae 90 NR_158484.1 

Gymnopus biformis (Peck) Halling Omphalotaceae  99 KJ416250.1 

Gymnopus dichrous (Berk. & M.A. 

Curtis) Halling  

Marasmiaceae 99 KY242498.1 

Gymnopus dryophilus (Bull.) Murrill Omphalotaceae  99 DQ449974.1 

Gymnopus earleae Murrill Marasmiaceae  99 DQ449994.1 

Gymnopus erythropus (Pers.) Antonín, 

Halling & Noordel. 

 95 KY950460.1 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_344332962
http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=92808&Fields=All
https://www.ncbi.nlm.nih.gov/nucleotide/JF908003.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHEAP6CP015
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_597518080
https://en.wikipedia.org/wiki/Omphalotaceae
https://www.ncbi.nlm.nih.gov/nucleotide/KJ416250.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHC6UMVF015
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Gymnopus foliiphilus R.H. Petersen Omphalotaceae 100 KY026721.1 

Gymnopus gibbosus (Corner) A.W. 

Wilson, Desjardin & E. Horak 

Omphalotaceae 96 KP012713.1 

Gymnopus junquilleus R.H. Petersen & 

J.L. Mata 

Omphalotaceae 99 KF007938  

Gymnopus luxurians (Peck) Murrill Marasmiaceae  99 AY256709.1  

Gymnopus sp. 1 Omphalotaceae 81 MK532854.1 

Gymnopus spongiosus (Berk. & M.A. 

Curtis) Halling 

Marasmiaceae 99 KY026687.1  

Gymnopus subnudus (Ellis ex Peck) 

Halling 

Marasmiaceae  99 KY026667.1 

Hericium erinaceus (Bull.) Pers. Hericiaceae  99 AY534583.1 

Heterobasidion araucariae  P.K. 

Buchanan 

Bondarzewiaceae 97 MH268104.1 

Hohenbuehelia angustata (Berk.) Singer      Pleurotaceae 100       MG383816.1 

Hohenbuehelia petaloides (Bull.) 

Schulzer 

Pleurotaceae 99 GQ142023.1 

Hydnochaete tabacina (Berk. & M.A. 

Curtis ex Fr.) Ryvarden 

Hymenochaetaceae  97 JQ279562.1 

Hymenochaete pinnatifida Burt Hymenochaetaceae 100 KU975472.1 

Hyphodermella rosae (Bres.) Nakasone  Phanerochaetaceae 100 KT962555 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_626449267
https://unite.ut.ee/bl_forw.php?id=445822
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1121068095
https://www.ncbi.nlm.nih.gov/nucleotide/KY026687.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHJ4GCDS014
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Hyphodontia tropica Sheng H. Wu Hymenochaetaceae 99 MH114755.1 

Hypholoma sp. 1 Strophariacea 89 KY950514.1 

Hypocrea peltata Berk. Hypocreaceae  100 AB742524.1  

Hypoxylon crocopeplum Berk. & M.A. 

Curtis 

Xylariaceae  99 KU683962.1 

Infundibulicybe gibba (Pers.) Harmaja Tricholomataceae  99 MG663274.1 

Irpex lacteus (Fr.) Fr. Steccherinaceae  99 KT272411.1 

Lachnum virgineum (Batsch) P. Karst. Hyaloscyphaceae  99 AB481268.1 

Lactarius purpureocastaneus X.H. 

Wang 

Russulaceae 96 MF508965.1  

Lactarius rubrocinctus Fr. Russulaceae 96 KF432977.1 

Lentinellus castoreus (Fr.) Kühner & 

Maire 

Auriscalpiaceae 100 MH211871.1 

Lentinellus sp. 1 Auriscalpiaceae  82 MH211871.1                                   

Lentinellus sp.  2 Auriscalpiaceae 100 AY513169.1 

Lenzites betulinus (L.) Fr. Polyporaceae 100 KY313640.1 

Lepiota  phaeosticta Morgan. Agaricaceae 99 GU903307.1 

 Lepiota sp. 1                                                  Agaricaceae               94 MH212044.1 

Leucoagaricus americanus (Peck) 

Vellinga 

Agaricaceae 99 MF773593.1 

Lycoperdon pyriforme Schaeff. Agaricaceae 100 MF161171.1 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_449748403
http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=92878&Fields=All
https://www.ncbi.nlm.nih.gov/nucleotide/AB742524.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHCGNTSA014
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1300661823
https://www.ncbi.nlm.nih.gov/nucleotide/MF508965.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHGCFYDC014
https://en.wikipedia.org/wiki/Auriscalpiaceae
https://www.ncbi.nlm.nih.gov/nucleotide/MH211871.1?report=genbank&log$=nucltop&blast_rank=1&RID=3XCJNU91014
https://www.ncbi.nlm.nih.gov/nucleotide/MH212044.1?report=genbank&log$=nucltop&blast_rank=1&RID=3XAS5GSK014
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Marasmiellus juniperinus Murrill Marasmiaceae  99 NR_119582.1 

Marasmiellus rhizomorphigenus  

Antonín, Ryoo & H.D. Shin 

Omphalotaceae  98 LT716051.1  

Marasmiellus sp. 1 Meruliaceae 89 MH856003.1 

Marasmius cohaerens  (Pers.) Cooke & 

Quél. 

Marasmiaceae 99 KF774176.1  

Marasmius graminicola Speg. Marasmiaceae  95 FJ917619.1  

Marasmius oreades (Bolton) Fr. Marasmiaceae 90 JN943604.1  

Marasmius pulcherripes Peck Marasmiaceae   98 FJ917615.1  

Marasmius rotula (Scop.) Fr. Marasmiaceae 100 KC176355.1 

Marasmius sp. 1 Marasmiaceae 94 DQ182506.1 

Mariannaea sp. 1 Nectriaceae 71 NR_148078.1 

Merulius incarnatus Schwein. Meruliaceae 98 MF773635.1 

Microstoma floccosum (Sacc.) Raitv. Sarcoscyphaceae  99 AF026309.1 

Morganella pyriformis  (Schaeff.) 

Kreisel & D. Krüger.                                                 

 Agaricaceae  96 LT635437.1                                               

Mycena acicula (Schaeff.) P. Kumm. Mycenaceae 99 JF908384.1  

Mycena amicta (Fr.) Quél. Mycenaceae  99 DQ490645.1 

Mycena aurantiomarginata (Fr.) Quél. Mycenaceae  99 JF908479.1  

Mycena haematopus (Pers.) P. Kumm.  Mycenaceae 100 MF686517.1 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_315436727
http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=433061&Fields=All
https://www.ncbi.nlm.nih.gov/nucleotide/LT716051.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHEHB77A015
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_584300037
https://www.ncbi.nlm.nih.gov/nucleotide/KF774176.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHD6996R015
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_361050820
https://www.ncbi.nlm.nih.gov/nucleotide/JN943604.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHDDSS7H015
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1104678110
https://www.mushroomexpert.com/taxonomy.html#agaricaceae
https://www.ncbi.nlm.nih.gov/nucleotide/LT635437.1?report=genbank&log$=nucltop&blast_rank=4&RID=3XBWUCCU015
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_344333341
https://www.ncbi.nlm.nih.gov/nucleotide/JF908384.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHCUEBPA015
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Mycena inclinata (Fr.) Quél.                        Mycenaceae                  99        DQ490645.1 

Mycena leaiana (Berk.) Sacc. Mycenaceae  99 JF908376.1 

Mycena niveipes (Murrill) Murrill Mycenaceae  95 MG748570.1 

Mycena polygramma (Bull.) Gray Mycenaceae  96 FJ917615.1  

Mycena sp. 1 Mycenaceae 83 KJ206984.1 

Mycena sp. 2 Mycenaceae 87 MK290378.1 

Mycena thymicola Velen. Mycenaceae 97 JF908483.1 

Mycena zephirus (Fr.) P. Kumm. Mycenaceae 99 MF437003.1 

Mycetinis opacus (Berk. & M.A. Curtis) 

A.W. Wilson & Desjardin 

Marasmiaceae 99 KY696767.1  

Mycorrhaphium adustum (Schwein.) 

Maas Geest. 

Steccherinaceae 100 JN710573.1 

Nectria mariannaeae Samuels & Seifert Nectriaceae  99 GU586835.1 

Neofavolus alveolaris (DC.) Sotome & 

T. Hatt. 

Polyporaceae  99 KP283508.1 

Neofavolus sp. 1 Polyporaceae  100 MH979293.1 

Neofavolus sp. 2 Polyporaceae  95 KP283507.1  

Nigroporus vinosus (Berk.) Murrill Steccherinaceae 100 JX109857.1 

Panellus sp. 1 Mycenaceae 93 MK399806.1 

Panellus stipticus (Bull.) P. Karst. Mycenaceae  99 AB863032.1 

Panus conchatus (Bull.) Fr. Panaceae 100 MH016880.1 

https://www.ncbi.nlm.nih.gov/nucleotide/KY696767.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHAN7MUN015
https://www.ncbi.nlm.nih.gov/nucleotide/MH979293.1?report=genbank&log$=nucltop&blast_rank=1&RID=41UFNUZD01R
https://www.ncbi.nlm.nih.gov/nucleotide/KP283507.1?report=genbank&log$=nucltop&blast_rank=6&RID=41US7AJB01R
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Panus lecomtei (Fr.) Corner Polyporaceae  99 KP135329.1 

Panus neostrigosus Drechsler-Santos & 

Wartchow 

Polyporaceae 99 KU761235.1 

 Panus rudis Fr.                                               Polyporaceae             99          KU863048.1       

Perenniporia ohiensis (Berk.) Ryvarden Polyporaceae  97 FJ411096.1  

Pezizomycetes sp. 1 Pezizomycetes 99 JQ761597.1 

Pezizomycetes sp. 2 Pezizomycetes 99 JQ761310.1 

Phaeomarasmius erinaceellus (Peck) 

Singer 

Inocybaceae 99 MG773816.1 

Phanerochaete pseudosanguinea 

Floudas & Hibbett 

Phanerochaetaceae 100 KP135097.1 

Phanerochaete sordida  (P. Karst.) J. 

Erikss. & Ryvarden 

Phanerochaetaceae  97 MF476014.1                       

Phanerochaete sp. 1 Phanerochaetaceae 86 MF399407.1 

Phellinus robiniae (Murrill) A. Ames Hymenochaetaceae 100 KX065962.1 

Phlebia tremellosa (Schrad.) Nakasone 

& Burds. 

Meruliaceae 100 KJ668481.1 

Phlebiopsis flavidoalba (Cooke) Hjortstam Phanerochaetaceae  97 KX065956.1  

Pholiota polychroa (Berk.) A.H. Sm. & 

H.J. Brodie 

Strophariaceae  99 MG735317.1 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_237784369
https://en.wikipedia.org/wiki/Polyporaceae
https://www.ncbi.nlm.nih.gov/nucleotide/FJ411096.1?report=genbank&log$=nucltop&blast_rank=2&RID=3XB8595J014
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1393194421
https://en.wikipedia.org/wiki/Phanerochaetaceae
https://www.ncbi.nlm.nih.gov/nucleotide/MF476014.1?report=genbank&log$=nucltop&blast_rank=1&RID=3XE35M39014
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1317839447
https://www.mushroomexpert.com/strophariaceae.html
https://www.ncbi.nlm.nih.gov/nucleotide/MG735317.1?report=genbank&log$=nucltop&blast_rank=2&RID=3X57J49N014
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Pholiotina aeruginosa (Romagn.) M.M. 

Moser 

Bolbitiaceae  97 KF515918.1 

Physalacria sp. 1 Physalacriaceae 87 DQ097367.1 

Physisporinus vitreus  (Pers.) P. Karst. Meripilaceae 99 KF800254.1 

Pleurotus dryinus (Pers.) P. Kumm. Pleurotaceae 98 MH211881.1 

Pleurotus floridanus Singer Bolbitiaceae 100 MG819742.1 

Pleurotus ostreatus (Jacq. ex Fr.) P. 

Kumm. 

Pleurotaceae 99 MH395969.1 

Pleurotus pulmonarius (Fr.) Quél. Pleurotaceae 100 MK346233.1 

Pleurotus sapidus Sacc. Pleurotaceae 100 KY962449.1 

Pleurotus sp. 1 Pleurotaceae 100 MH546137.1 

 Pluteus cervinus (Schaeff.) P. Kumm.         Pleurotaceae                 99        KF306014.1 

Pluteus chrysophlebius (Berk. & M.A. 

Curtis) Sacc. 

Pleurotaceae  99 HM562125.1 

Pluteus glaucotinctus E. Horak Pluteaceae 95 MH211860.1 

Pluteus hispidulus (Fr.) Gillet Pluteaceae  89 KM983696.1  

Pluteus hongoi Singer Pleurotaceae  95 KY346856.1 

Pluteus longistriatus (Peck) Peck Pluteaceae  99 MH211936.1 

Pluteus pellitus (Pers.) P. Kumm. Pluteaceae 99 MH211659.1  

Pluteus petasatus (Fr.) Gillet Pluteaceae 100 KJ009707.1 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1332983267
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1150598449
http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=93034&Fields=All
https://www.ncbi.nlm.nih.gov/nucleotide/KM983696.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHESBUAN014
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1377699339
https://www.ncbi.nlm.nih.gov/nucleotide/MH211659.1?report=genbank&log$=nucltop&blast_rank=4&RID=PHHDCH2S015
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Pluteus romellii (Britzelm.) Sacc. Pluteaceae  99 KM983699.1  

Pluteus sp. 1 Pluteaceae 91 KM983694.1 

Pluteus thomsonii sensu Singer Pluteaceae  98 KX216328.1  

Polyporus sp. 1  Polyporaceae 100 AB746931.1  

Polyporus sp. 2 Polyporaceae 100 KU324794.1 

Polyporus tuberaster (Jacq. ex Pers.) Fr. Polyporaceae 97 KJ668474.1 

Polyporus varius (Pers.) Fr. Polyporaceae 99 FM999672.1  

Psathyrella sp.  1 Psathyrellaceae  94 KC992949.1 

Pseudochaete tabacina (Sowerby) T. 

Wagner & M. Fisch. 

Hymenochaetaceae  98 KJ140591.1 

Resupinatus alboniger (Pat.) Singer Pleurotaceae  99 KU355368.1  

Resupinatus applicatus (Batsch) Gray Tricholomataceae  99 KU355368.1  

Rhizomarasmius pyrrhocephalus (Berk.) 

R.H. Petersen 

Psathyrellaceae  99 DQ097369.1 

 Rhizopus oryzae Went & Prins. Geerl.          Mucoraceae                  99         FJ478087.1 

Rhodocollybia badiialba (Murrill) 

Lennox 

Omphalotaceae 98 EU486446.1 

Rhodotus sp. 1 Physalacriaceae 92 MG748585.1 

Rigidoporus pouzarii Vampola & Vlasák Meripilaceae 98 JQ733558.1 

Rigidoporus sp. 1 Meripilaceae 98 MG845229.1 

 

http://www.mushroomexpert.com/taxonomy.html#pluteaceae
https://www.ncbi.nlm.nih.gov/nucleotide/KX216328.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHB3E1TU014
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_406362727
https://www.ncbi.nlm.nih.gov/nucleotide/AB746931.1?report=genbank&log$=nucltop&blast_rank=2&RID=PHH3WXV6014
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1384891964
https://www.ncbi.nlm.nih.gov/nucleotide/FM999672.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHFRFUHT015
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Russula pectinatoides Peck Russulaceae 99 MH211829.1 

Sarcoscypha korfiana F.A. Harr. Sarcoscyphaceae 96 AF026308.2 

Sarcoscypha occidentalis (Schwein.) 

Sacc. 

Sarcoscyphaceae 100 MF992165.1  

Schizophyllum commune Fr. Schizophyllaceae  99 EU853847.1 

Schizophyllum radiatum Fr. Schizophyllaceae 100 LT217545.1 

Schizopora ovispora (Corner) Hjortstam 

& Ryvarden 

Schizoporaceae 100 KX857803.1 

Scutellinia crinite (Bull.) Lambotte. Pyronemataceae  99 AY220797.1  

Scutellinia sp. 1 Pyronemataceae 97 MF230412.1 

Simocybe serrulata (Murrill) Singer Inocybaceae  99 MF153085.1 

Simocybe sp. 1 Inocybaceae 94 KT715796.1 

Simplicillium lanosoniveum (J.F.H. 

Beyma) Zare & W. Gams 

Cordycipitaceae 100 AB758126.1 

Skeletocutis nivea (Jungh.) Jean Keller Polyporaceae 95 KJ140762.1 

Spongipellis pachyodon (Pers.) Kotl. & 

Pouzar 

Hapalopilaceae 100 KP135302.1 

Steccherinum bourdotii Saliba & A. 

David 

Steccherinaceae  99 KY948818.1 

 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1245840968
https://www.ncbi.nlm.nih.gov/nucleotide/MF992165.1?report=genbank&log$=nucltop&blast_rank=1&RID=PHFH6HN2015
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Steccherinum laeticolor (Berk. & M.A. 

Curtis) Banker 

Steccherinaceae  99 KY948823.1 

Steccherinum murashkinskyi (Burt) Maas     Steccherinaceae           99       FJ798705.1    

Geest. 

Stereum complicatum (Fr.) Fr. Stereaceae  99 KU559368.1 

Stereum hirsutum (Willd.) Pers. Stereaceae 99 MH211730.1 

Stereum ostrea (Blume & T. Nees) Fr. Stereaceae 100 KU559366.1 

Stereum sanguinolentum (Alb. & 

Schwein.) Fr. 

Stereaceae  99 AY089730.1 

Stereum sp. 1 Stereaceae 100 MK397027.1 

Stereum sp. 2 Stereaceae 99 MH268105.1 

Stereum sp. 3 Stereaceae 100 KJ832051.1 

Stereum sp. 4 Stereaceae  99 KR135365.1 

Stereum sp. 5 Stereaceae  99 KJ831876.1 

Stereum sp. 6 Stereaceae 99 KJ831881.1  

Stereum sp. 7 Stereaceae 100 MH268105.1 

Tetrapyrgos nigripes (Fr.) E. Horak Marasmiaceae   99 DQ449942.1 

Theleporus sp. 1 Grammotheleaceae 91 NR_119985.1 

Tomentella sp. 1 Thelephoraceae 99 EU625920.1 

Trametes conchifer (Schwein.) Pilát Polyporaceae 100 JN164988.1 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_673938484
https://www.ncbi.nlm.nih.gov/nucleotide/KJ831881.1?report=genbank&log$=nucltop&blast_rank=3&RID=PHJ01G8G015
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Trametes hirsute (Wulfen) Lloyd Polyporaceae 100 GQ280373.1 

Trametes versicolor (L.) Lloyd Polyporaceae 100 MG554226.1 

Trametes villosa (Sw.) Kreisel 

Trametes elegans (Spreng.) Fr. 

Polyporaceae 

Polyporaceae 

 99 

100 

JN164970.1 

MF773623.1 

Trametopsis cervina (Schwein.) 

Tomšovský 

Polyporaceae 100 MG663240.1 

 Trametopsis sp. 1                                          Hapalopilaceae            86         MG663240.1 

Trichaptum biforme (Fr.) Ryvarden 

Trichaptum fuscoviolaceum (Ehrenb.) 

Ryvarden 

Polyporaceae (?) 

Polyporaceae 

100 

96 

MF773616.1 

MF381026.1 

Trichoderma gamsii Samuels & Druzhin. Hypocreaceae 100 KX009501.1 

Trichoderma sp. 1 Hypocreaceae  99 AB872440.1 

Trichoderma viride Pers. Hypocreaceae  99 KM458804.1 

Trogia furcata Corner Marasmiaceae 93 MF100962.1 

Truncospora ohiensis (Berk.) Pilát Polyporaceae  98 KT695324.1 

Truncospora sp. 1 Polyporaceae 99 KP768411.1 

Tylopilus felleus (Bull.) P. Karst. Boletaceae 98 GQ166904.1 

Tylopilus rubrobrunneus Mazzer &  

A.H. Sm. 

Boletaceae 98 GQ166869.1 

Tyromyces galactinus (Berk.) 

Bondartsev 

Polyporaceae 100 KY948829.1 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1283314702
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Tyromyces kmetii (Bres.) Bondartsev & 

Singer 

Polyporaceae  99 KF698747.1 

Urnula craterium (Schwein.) Fr. Sarcosomataceae  99 EU834222.1  

Xeromphalina kauffmanii A.H. Sm. Mycenaceae  99 MG663296.1 

Xylaria cornu-damae (Schwein.) Berk. Xylariaceae 99 AF163031.1 

Xylaria heliscus  (Mont.) J.D. Rogers & 

Y.M. Ju 

Xylariaceae  99 JQ761642.1 

Xylaria hypoxylon (L.) Grev. Xylariaceae 100 U47841 

Xylaria sp. 1 Xylariaceae 98 JQ761015.1 

Xylaria sp. 2 Xylariaceae  99 KU683962.1 
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Appendix 2. 

The most abundant species of wood decay fungi in the forests of northwest Arkansas are 

summarized below. This appendix also describes how those fungi distributed according to the 

size of logs and the percentage of bark present. Logs sizes were divided into very small (5-0.5 

cm), small (9-6 cm), intermediate (19-10 cm), and large (30-20 cm). Likewise, depending upon 

the percentage of bark present, the stage of wood decomposition was divided into either early 

(50-100%) or late stage (<50%- trace). The worldwide distribution of these fungi in addition of 

their morphological features were also described.  
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Stereum ostrea 

Scientific name:   Stereum ostrea (Blume & T. Nees) Fr. 

Common name: false turkey-tail and golden curtain crust 

Phylum:   Basidiomycota 

Order:   Russulales 

Family: Stereaceae 

Stereum ostrea was recorded the most times with 24 records. It was represented by a total 

of 10 records on large logs and 14 records on intermediate- sized logs (diameters 10-30 cm) 

which were in an early stage of decay (percent bark >75). This species is a thelephora and thus 

has a smooth hymenium. The cap is characterized by zones of brown, orange and red colors and 

is relatively large (usually 5-7 cm across) (Fig. 29). It was recorded from all three study areas but 

only as a field collection. Stereum ostrea is known from scattered localities throughout the world 

and appears to be particularly common in eastern North America. Atotal of 11 different species 

in the genus Stereum were collected and identified from forests in northwest Arkansas. In 

addition, this species was the most common  in Pea Ridge Military Park of both unburned aand 

burned area.  
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             Fig. 29: Fruiting bodies of Stereum ostrea (Photo by auother). 
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Exidia recisa 

Scientific name:   Exidia recisa (Ditmar) Fr. 

Common name: willow brain or amber jelly roll 

Phylum: Basidiomycota  

Order: Auriculariales – 

Family: Auriculariaceae 

Fruiting bodies of Exidia recisa was recorded 17 times. Exidia recisa tended to occur on 

very small logs (diameter 0.5-5 cm) but at an early stage of decay (percent bark >75). Exidia 

recisa was typically recorded on twigs and small branches, more rarely on larger logs. This 

species is a jelly fungus. Fruiting bodies of Exidia recisa form orange-brown or amber structure 

and are relatively large (Fig. 30) (usually around 1-4 cm across), the fruiting bodies are often 

shallowly conical at an early age then become lax and droopy over time. Exidia recisa is 

common in North America and Central America, Europe, and northern Asia. In addition, Exidia 

recisa was found to widespread in the unburned forests of northwest Arkansas based on this 

study.  
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             Fig. 30: Fruiting bodies of Exidia recisa (Photo by auother). 
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Phellinus gilvus 

Scientific name: (Schwein.) T. Wagner & M. Fisch 

Common names:   Mustard yellow polypore 

Phylum:   Basidiomycota 

Order:   Hymenochaetales  

Family:   Hymenochaetaceae 

Phellinus gilvus previously, known as Fuscoporia gilva, was recorded 16 times. Fruiting 

bodies tended to occur on intermediate sized to large logs size (diameters 10-30 cm) which were 

in an early stage of decay (percent bark >75), and were rarely present on small logs size 

(diameter 5-10 cm). Fruiting bodies are hemispherical in shape, approximately 1-3 cm across and 

are brown with a mustard yellow margin with no stipe (Fig. 31). Fuscoporia gilva is mostly 

found on large logs of hardwood trees. Phellinus gilvus is common in North America's forests. In 

addition, this species was very common in the unburned forests of northwest Arkansas.  
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              Fig. 31: Fruiting bodies of Phellinus gilvus (Photo by auother). 
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Trichaptum biforme 

Scientific name: Trichaptum biforme (Fr.) Ryvarden 

 Common names:   Violet-toothed polypore 

Phylum:   Basidiomycota 

Order:  Polyporales 

Family: Polyporaceae 

 Trichaptum biforme, was recorded 15 times, it occurred in abundant on the same logs. 

Trichaptum biforme was found in overlapping clusters on logs as well as small dead twigs. In 

addition, was usual to find a small tree quite covered by Trichaptum biforme. Fruiting bodies 

tended to occur on all log sizes from large, intermediate, and small (diameters 5-30 cm) which 

were at an early stage of decay (percent bark >75). Fruiting bodies were very colorful when 

young. In addition, the cap is characterized as having a folded-over edge but commonly exists as 

a semicircular to fan-shaped structure, and is relatively large (1–4 cm across) (Fig. 32), in 

addition, the cap is thin to hairy and gray, with a purplish marginal color. Trichaptum biforme 

present in Europe, North America and Central America. In addition, this species was very 

common in all the three study area in forests of northwest Arkansas. Also, this species was 

collected from both unburned and burned frests of northwest Arkansas.  
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           Fig. 32: Fruiting bodies of Trichaptum biforme (Photo by auother). 
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Trametes elegans 

Scientific name: Trametes elegans (Spreng.) Fr. 

Phylum:   Basidiomycota 

Order:  Polyporales 

Family:   Polyporaceae 

Trametes elegans is a common polypore, was recorded 15 times. Fruiting bodies tended 

to occur on all log sizes from large, intermediate, and small to very small (diameters 5-30 cm), 

which were at an early stage of decay (percent bark >75). In addition, they were rarely presented 

at a late stage of decay (percent bark >50). Fruiting bodies of Trametes elegans are quite large 

(approximately 6-8 cm across), fleshy or corky in texture and white to creamy in color (Fig. 33). 

In addition, the cap is kidney, semicircular, or irregularly bracket-shaped, and a smooth surface. 

This species is found in several regions throughout eastern North America, Japan, Australia, and 

New Zealand. In addition, this species was reported in both burned and unburned forests of 

Northwest Arkansas.  
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              Fig. 33: Fruiting bodies of Trametes elegans (Photo by auother). 
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Sarcoscypha occidentalis 

Scientific name: Sarcoscypha occidentalis (Schwein.) Sacc. 

Common names:   Stalked scarlet cup 

Phylum:   Ascomycota 

Order:  Pezizales 

Family:   Sarcoscyphaceae 

Sarcoscypha occidentalis was found 6 times alwas on small >2 cm diameter. Fruiting 

bodies tended to occur on small to very small, which pieces of wood were at an early stage of 

decay (percent bark >75). The cap is small in size (approximately 1-2 cm), saucer to cup shaped, 

scarlet red in color and has a smooth surface (Fig. 34). This species has a small stipe that is 

usually less than 3 cm in length. Sarcoscypha occidentalis is found at higher elevations in 

Central America and in several regions of  North America (east of the Rocky Mountains), Japan 

and Taiwan. Also, this species was reported in the burned forests of northewest Arkansas.  
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           Fig. 34: Fruiting bodies of Sarcoscypha occidentalis (Photo by auother). 
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Morganella pyriformis 

Scientific name: Morganella pyriformis  (Schaeff.) Kreisel & D. Krüger.                                                 

 Common names:   Pear-shaped puffball. 

Phylum:   Basidiomycota 

Order:  Agaricales 

Family:  Agaricaceae 

Morganella pyriformis, was recorded 5 times. Fruiting bodies tended to occur on larger, 

intermediate sized logs (diameters 10-30 cm), which were at an early stage of decay (percent 

bark >75). This species was commonly abundant on large logs of forests in northwest Arkansas. 

Fruiting bodies have an inverted pear-shape and are large (approximately 2–4 cm across). They 

are dry, covered by white the spines when young and spines usually disappear with time (Fig. 

35). The color ranges from white to yellowish brown. This species is common throughout in 

North America.  Morganella pyriformis was very common in the unburned forests of northwest 

Arkansas.  
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             Fig. 35: Fruiting bodies of Morganella pyriformis (Photo by auother). 
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Schizophyllum commune 

Scientific name: Schizophyllum commune Fr. 

 Common names:   Common split gill. 

Phylum:   Basidiomycota 

Order:  Agaricales 

Family:   Schizophyllaceae 

Schizophyllum commune was one of the most common fungi in both field and incubation 

chambers, being recorded 2 and 3 times, respectively, from an incubation chambers and in the 

field. Fruiting bodies tended to occur on larger, intermediate sized to small logs (diameter 2-10 

cm), which were at an early stage of decay (percent bark >75). Fruiting bodies are commonly 

irregular, fan or shell-shaped, that lack stipes and are attached to the dead wood (Fig. 36). The 

cap is dry, has gills, a hairy surface, is whitish to grayish in color, and is rather large (around 1-5 

cm across). Schizophyllum commune can be seen on a wide range of log sizes in the forests of 

northwest Arkansas. Also, the species is found in several regions such as Africa, Asia, Europe, 

the Americas and Australasia.  
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    Fig. 36: Fruiting bodies of Schizophyllum commune (Photo by auother). 
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Panellus stipticus 

Scientific name: Panellus stipticus (Bull.) P. Karst. 

 Common names:   Bitter oyster. 

Phylum:   Basidiomycota 

Order:  Agaricales 

Family:   Mycenaceae 

Panellus stipticus, was recorded 7 times. Fruiting bodies tended to occur on larger to 

intermediate sized logs (10-30 cm diameter), which were at an early stage of decay (percent bark 

>75). The cap is large (approximately 1-4 cm across), kidney or convex to roughly flat in shape 

with gills underneath. The color of the fruiting bodies ranges from yellowish-orange to buff, 

cinnamon, or brown (Fig. 37). This species has a small stipe and is common and found in 

Australia, Europe, Asia, and North America. Also, this species was found in the unburned forests 

of northwest Arkansas. 
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   Fig. 37: Fruiting bodies of Panellus stipticus (Photo by auother). 

 

 

 

 

 

 

 

 

 



157 
 

Daedaleopsis confragosa 

Scientific name: Daedaleopsis confragosa (Bolton) J. Schröt. 

 Common names:   Thin-maze flat polypore. 

Phylum:   Basidiomycota 

Order:  Polyporales 

Family:   Polyporaceae 

Daedaleopsis confragosa was recorded 5 times. Fruiting bodies tended to occur on large, 

intermediate sized, small logs (diameter 5-30 cm), which were in an early stage of decay (percent 

bark >75). The fruiting bodies are fan to semicircular or bracket like in shape, and are around (5-

15 cm across). The cap contains zones of color that range from white to brown and bears a pore 

surface that bruises reddish in color (Fig. 38). Daedaleopsis confragosa is very common in 

Europe and Asia. Four species in the genus Daedaleopsis were collected and identified from the 

unburnrd forests of northwest Arkansas (Appendix. 1). 
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    Fig. 38: Fruiting body of Daedaleopsis confragosa (Photo by auother). 
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Phellinus robiniae 

Scientific name: Phellinus robiniae (Murrill) A. Ames 

 Common names:   Cracked cap polypore. 

Phylum:   Basidiomycota 

Order:  Hymenochaetales 

Family:   Hymenochaetaceae 

Phellinus robiniae was recorded 5 times. Fruiting bodies tended to occur on large logs 

(diameters 20-30 cm), which were in an early stage of decay (percent bark >75). Phellinus 

robiniae is commonly found on the large of trees that are living or dead. Fruiting bodies are 

tough and perennial. The cap is semicircular, kidney, or irregularly bracket-shaped, which 

become convex to more hoof-shaped over time (Fig. 39). The cap is quite large (10-30 cm 

across).  The color ranges from brown to dark brown or black. This species is found in Australia. 

Also, this species was reported several times in the unburned forests of northwest Arkansas.  
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Fig. 39: Fruiting body of Phellinus robiniae (Photo by auother). 
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Auricularia americana 

Scientific name: Auricularia americana Parmasto & I. Parmasto 

Common names:   jelly ear 

Phylum:   Basidiomycota 

Order:  Auriculariales 

Family:   Auriculariaceae 

Auricularia americana was recorded 5 times. Fruiting bodies tended to occur on large 

and intermediate sized logs (diameters 10-30 cm), which were in an early stage of decay (percent 

bark >75). This species is a jelly fungi and thus has a gelatinous-rubbery fruiting body that 

becomes hard when dry (Fig. 40). Auricularia americana is large (2–5 cm across), ear-shaped, 

wavy, irregular, sometimes oval, cup-shaped, elliptical, or fan-shaped.  The color ranges from 

brown to reddish brown or black. Auricularia americana is well distributed throughout the world 

and is common in North American, Europe, and Asia. This specie was found in the unburned 

forests of northwest Arkansas. 
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             Fig. 40: Fruiting bodies of Auricularia Americana (Photo by auother). 
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Trametopsis cervina 

Scientific name: Trametopsis cervina (Schwein.) Tomšovský 

 Common names:    

Phylum:  Basidiomycota 

Order:  Polyporales 

Family:  Polyporaceae 

Trametopsis cervina was recorded 5 times.  Fruiting bodies tended to occur on large, 

intermediate sized and small logs (diameter 5-30cm), which were at an early stage of decay 

(percent bark >75). The fruiting body is honeycombed and white to pale orange in color. The cap 

surface has tooth-like structure. The cap is large (approximately 3-9 cm across), hairy, usually 

cream to white with some orange edges, and turns dark brown over time (Fig. 41). The fungus 

also is common in Europe. Also, Trametopsis cervina was common species in the forests of 

northwest Arkansas.  
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 Fig. 41: Fruiting bodies of Trametopsis cervina (Photo by Dr. Steve Stephenson). 

 

 

 

 

 

 

 

 

 

 


