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Abstract 

Human acidic Fibroblast Growth Factor 1 (FGF-1), a member of the FGF superfamily, is a 

potent mitogen and heparin-binding protein involved in a broad spectrum of biological 

processes, including angiogenesis, cell proliferation, and wound healing. Design of hFGF-1 with 

an increased thermal stability and an enhanced cell proliferation activity is highly desired for 

wound healing applications. Herein, we have designed the variant of FGF-1 by substituting two 

important amino residues in the heparin-binding pocket. The variant was overexpressed in 

Escherichia coli and was successfully purified to homogeneity using an affinity chromatographic 

procedure. Far-UV circular dichroism spectroscopic analysis showed that the backbone 

conformation of the hFGF-1 did not alter due to the introduction of mutations in the heparin-

binding pocket. The designed hFGF-1 variant exhibited an increased resistance to limited trypsin 

digestion. Isothermal titration calorimetry study confirmed that approximately 20-fold decrease 

in heparin binding affinity (Kd ~90µM) was observed in case of the double mutant compared to 

that of the wild-type FGF1 (~5µM). Incorporation of positively charged Lys135 adjacent to the 

negatively charged E136 might have reduced the repulsive effect to heparin.  8-Anilino 

naphthalene 1-sulfonate (ANS) binding assay revealed that the introduced mutations cause a 

subtle change in the solvent-accessible non-polar surface of the protein. These results were in 

concordant with other biophysical data obtained from limited trypsin digestion, 1H 15N HSQC 

analysis. In addition, no significant change in bioactivity was observed between the mutant and 

the wild-type FGF1 proteins. This confirms that introduction of positive charge adjacent to E136 

nullified the effects of this unique mutation. 
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Introduction 

1. Broad Classification of FGFs 

Human acidic Fibroblast Growth Factor 1 (FGF-1), a member of the FGF superfamily, is a 

heparin-binding protein and powerful mitogen for various types of cells, such as hepatocytes, 

myocytes, uroepithelium cells, endothelial cells, and neural cells. FGFs are involved in a broad 

spectrum of biological processes, including angiogenesis, cell proliferation, nerve regeneration 

and embryonic development and wound healing. A total of 22 signaling molecules (FGF-1 to 14 

and FGF-16 to 23) have been recognized in humans as members of the FGFs family. These 

structurally related molecules can be categorized by gene location analysis into seven 

subfamilies: FGF-1(including orthologs of FGF-1 and 2), FGF-4 (Orthologs of FGF-4, 5, and 6), 

FGF-7 (Orthologs of FGF-3, 7, 10, and 22), FGF-8 (Orthologs of FGF-8, 17, ad 18), FGF-9 

(Orthologs of FGF-9, 16, and 20), FGF-11 (Orthologs of FGF-11, 12, 13, and 14), and the FGF-

15/ 19 (Orthologs of FGF-15/ 19, 21, and 23) subfamily (Itoh & Ornitz, 2011). This 

classification is based on their biological function and structure similarities. 120 to 30 amino 

acids make up the core region of FGFs, whereas the alteration/diversity of the N- and C-terminal 

amino acids sequence determines the specificity of the corresponding ligand (Tulin & 

Stathopoulos, 2010). The expression of these growth factors has been recognized in most tissue, 

if not all, with almost the same expression pattern but different timing and sites. For instance, 

some factors appeared only during embryonic development while others are expressed in 

embryonic cells and continue into adult tissue (FGF-3, 4, 8, 15, 17 and 19) and (FGF-1, 2, 5-7, 9-

14, 16, 18, and 20-23) respectively (Ornitz & Itoh, 2001). 
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Figure 1. FGF and FGFR families. (a) Phylogenetic analysis suggests that 22 Fgf genes can 

be arranged into seven subfamilies containing two to four members each. Branch lengths are 

proportional to the evolutionary distance between each gene. The Fgf1, Fgf4, Fgf7, Fgf8, 

and Fgf9 subfamily genes encode secreted canonical FGFs, which bind to and activate 

FGFRs with heparin/HS as a cofactor. The Fgf15/19 subfamily members encode endocrine 

FGFs, which bind to and activate FGFRs with the Klotho family protein as a cofactor. The 

Fgf11 subfamily genes encode intracellular FGFs, which are non-signaling proteins serving 

as cofactors for voltage gated sodium channels and other molecules. Adapted from ―The 

Fibroblast Growth Factor signaling pathway,‖ by D. M. Ornitz, 2015, Developmental 

Biology, 4(3), 215–266. http://doi.org/10.1002/wdev.176 Copyright 2015 by the Authors. 

WIREs Developmental Biology published by Wiley Periodicals, Inc. Adapted with 

permission. 

http://doi.org/10.1002/wdev.176
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2. General introduction about the broad functions of FGF 

FGFs are well known as multifunctional proteins as they participate in regulating many 

endocrine signaling pathways as well as various phases of the wound healing process. They are 

involved in the wound reparative process by coordinating the intracellular signaling pathways 

and promoting the migration, differentiation, and proliferation of several cell types. Re-

epithelialization, granulation tissue formation and fibroplasia, and matrix deposition are the 

remarkable stages in the proliferation phase of the healing injury that is highly mediated by 

fibroblast growth factors. Angiogenesis and formation of new capillaries and blood vessels are 

generally controlled by autocrine signaling of FGFs proteins, which are considered as potent 

angiogenesis inducers (Basilico & Moscatelli, 1992). FGFs and FGFRs have a vital role in 

developing the central nervous system during embryogenesis and adulthood in mammalian 

growth. For instance, FGF-8 is capable to regulate the boundaries, mass, and function of 

Brodmann area in the cerebral cortex region of the brain (Fukuchi-Shimogori & Grove, 2001). 

Furthermore, it has been demonstrated that the malfunction or deficiency of these factors and 

their receptors would cause birth defects, developmental complications and congenital diseases 

(Coumoul & Deng, 2003).   

3. Chemistry and structure of FGF-1 

FGFs are normally produced proteins 

and are relatively small in size, between 17 

and 34 kDa, with a length of 120 to 140 

amino acids. 28 highly conserved and six 

identical amino acid residues build up the 

core region of this protein (ten of these highly conserved residues determine the specificity of the 

Figure 2. X-ray structure of the wild-type FGF-

1. The heparin binding pocket is shown in red. 
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interaction toward the FGF receptors, and three coding exons makeup the FGF gene (Beenken & 

Mohammadi, 2009). FGF-1 is found on the top of the cell surface or within the cell matrix and it 

is usually released by the damaged cells during injury. The crystallography analysis of FGF 

proteins depicts a β trefoil fold structure containing twelve beta sheets strands organized into the 

central domain, five of these sheets form a hairpin binding structure. The beta-sheets are 

arranged in an anti-parallel direction and they are well conserved (Brych, Blaber, Logan & 

Blader, 2001). FGFs are composed of cell-surface polysaccharide, heparin sulfate proteoglycans 

(HSPGs), which is essential for the protein regulation especially in signaling transmission and 

chemical recruitment. The heparin sulfate site that is associated with the FGF protein surface and 

extracellular matrix interacts with heparin and heparan sulfate glycosaminoglycans (HSGAGs) 

(Bellosta et al. 2001). This essential step mediates the specific binding to the cell surface tyrosine 

kinase receptors and as a result activates FGFs’ biological response.  

4. Role of heparin in FGF activation 

Heparin is a naturally formed polysaccharide that releases into the blood circulation from the 

secretory granules of the white blood cell, mastocyte, during tissue injury. The average 

molecular weight of this carbohydrate molecule is 3 to 30 Kilo-Daltons (KDa) and it has a 

significant anticoagulant activity. The linear and polydisaccharide chain of heparin consist of 

repeated heterogeneous (sulfated and under-sulfated) disaccharide units. The exact composition 

of these disaccharide units are detailed in the figure below. 
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The high affinity binding of heparin towards FGFs is believed to increase the protein stability by 

increasing its resistance to proteolysis, heat, and acid as well as enhances its half-life.  In 

addition to the specificity and protective action of heparin to FGFs, it enhances the protein 

efficiency two to three magnitude orders. The previously mentioned functions clearly explain the 

dependency of FGFs on heparin in their activation and ligand-receptor complex stabilization 

(Ornitz et al., 2001).  

5. FGF-receptors Structure 

FGFs proteins mediate the biological response and trigger many signaling pathways by 

binding to their high affinity ligands, fibroblast growth factor receptors FGFRs. The high binding 

affinity of heparin or heparan sulfate proteoglycan (HSPG) toward heparin pocket located in 

FGFs’ surface will facilitate the protein/ligand interaction and as a result stimulate the protein. 

Figure 3. The structure of Heparin. Heparin’s Antithrombin III binding site and its structural 

variants. Reprinted from Heparin Science Retrieved from 

http://www.heparinscience.com/structure_heparin.html 
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The activation of specific cell-surface tyrosine kinase receptors, FGFR1, FGFR2, FGFR3, and 

FGFR4, results into activation of intracellular signaling pathways. The RAS/mitogen-activated 

protein kinase (MAPK), PI3K-AKT, and PLCγ cascades are some examples of the pathways that 

are induced by the FGF/FGFR signaling system. The physical composition of FGFR is an N-

terminal extracellular ligand-binding domain, a transmembrane domain, and a cytoplasmic 

domain (Abbass, Asa & Ezzat, 1997). The first domain consists of three immunoglobulin-like 

domains (D1, D2, and D3). The D2 and D3 components of the extracellular ligand-binding 

domain have been shown to be the minimal units essential for the ligand-receptor binding 

interaction (Olsen et al., 2004). The inhibition of the receptors’ activation in the absence of the 

protein is controlled by the acid box found between the D1 and D2 domains. When the 

FGF/HSPG compound binds to the receptor’s extracellular domain, the dimerization of two 

tyrosine kinase domains in the plasma membrane occurs. The biochemical signals of these 

adjacent kinases induce the activation and autophosphorlyation of the receptors in their 

cytoplasmic domain. The activation of these key events results into endocrine, autocrine, and 

paracrine effects on the cell and subsequently stimulates downstream signaling cascades 

(Sarabipour & Hristova, 2016). 
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6. Biomedical application of FGF 

Wound healing is a complex systematic process of repairing damaged cells and injured tissue 

layers after severe trauma. This procedure has been one of the most challenging clinical 

problems since ancient times. It has a significant advantage in protecting vital internal organs by 

developing an effective defensive barrier against aggressive pathogens’ invasion. The 

capabilities of curing the damaged part and capturing its critical functions are essential for all 

Figure 4. Complex formation between FGF, FGFR and HSPG initiates signalling The basic 

structure of an FGFR is shown on the left-hand side. FGFRs are single-pass transmembrane 

RTKs with an extracellular part composed of three Ig-like domains (I–III), and an 

intracellular part containing a split tyrosine kinase domain. The complex formed by two 

FGFs, two heparan sulfate chains and two FGFRs causes dimerization and 

transphosphorylation by the kinases on several tyrosine residues in the intracellular part of 

the FGFRs, causing activation of downstream signalling cascades. After activation, the 

complex is internalized by endocytosis and transported to lysosomes for degradation. 

Adapted from ―Fibroblast growth factors and their receptors in cancer‖ by J. Wesche, 

K.Haglund, and E. Margrethe, 2011, Haugsten Biochemical Journal, 437 (2) 199-213; DOI: 

10.1042/BJ20101603. Adapted with permission. 
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multicellular organisms. Although not all tissue and organs can function exactly as they were 

before the injury, the wound healing mechanism is considered to be conserved in all biological 

systems (Martin & Nunan, 2015). When you get injured, the wound healing process can take 

between a few minutes to more than six months depending on the wound type, chronic or acute. 

The internal bleeding of a vital organ cannot be equated to a skin scratch. In addition, there are 

different factors that can delay the healing process, such as smoking, alcohol consumption, 

infections, age, and obesity. Time is the most crucial component in this process. For example, a 

small superficial wound would heal much faster than a jagged deep wound. The treatment of 

both acute and chronic wound healing share a huge market of up to $20 billion in the United 

States alone (Sen, et al., 2009). According to recent reports from WebMed Professional, the 

treatment of chronic wound healing is expensive and also prevalent. The complete healing of 

diabetic, venous, and other types of ulcers appears to consume longer time if the traditional 

synthetic bandages are used. 

           A. Current wound healing therapy using diverse growth factors  

Platelet-Derived Growth Factor (PDGF), Transforming Growth Factor (TGF), 

Interleukins, Epidermal Growth Factor (EGF), and Fibroblast Growth Factor (FGF) are some 

examples of growth factors involved in the wound reparative process by coordinating the 

intracellular signaling pathways and promoting the cell migration, differentiation, and 

proliferation. In this section, we will concentrate on growth factors that improved healing 

efficiency in several studies conducted in animal models or in vitro. The safety and the efficacy 

of topically applied recombinant growth factors were evaluated in some research. The clinical 

trials that will be discussed include skin and diabetic ulcers, burns, and wounds developed after 

surgeries. As has been mentioned in previous sections, the first mechanism triggered during the 
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healing process is the coagulation cascade. Platelets are known as the storage pool for a massive 

number of growth factors and that is why they are highly involved in promoting the epithelial 

and internal wounds reparation. An example of platelets wound repair therapy is the autologous 

platelet-rich plasma that has been shown to stimulate the healing progression and reduce 

inflammation. Activated platelets and macrophages produce the key mediators in wound healing, 

PDGF and TGF-beta 1. The dimeric disulfide-bond growth factor PDGF progresses the 

healing process by enhancing the collagen and proteoglycan synthesis and driving inflammatory 

cells to the injury area. It is no wonder that this crucial element being the first approved topical 

application as a recombinant therapy for accelerating the healing process. On the other hand, the 

application of the topical platelet-derived growth factor on diabetic foot ulcers seems to be 

unsuitable (Christine et al., 20015). For example, the PDGF formulation (Regranex®, 

becaplermin INN) has been used to treat diabetic foot ulcers in the United States and Europe 

since 1997 and 1999, respectively (Koveker, 2000). However, in 2012, this product was 

withdrawn because of its weak benefit to risk ratio. 

The vascular endothelial growth factors (VEGFs) are responsible for maintaining the 

healing process especially during tissue hypoxia by encouraging angiogenesis and vascular 

permeability. VEGFs are capable in halting the bleeding and induce the vascular branching 

particularly during embryogenesis and to some extent in adult tissue. Preserving the 

neovascularization status in the form of providing essential nutrition by vessels’ capillaries to the 

wound site, especially in the serious clinical conditions, such as vascular diseases and diabetes, is 

critical in chronically unhealed wounds. However, this is not the typical scenario in chronically 

unhealed injuries as insufficient quantities of nutrient are supplied, therefore, failing in 

maintaining the timely and orderly sequence of the healing process. The VEGFs expression was 
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detected early after a couple of days, during the first two to five days, of a skin wound injury. 

Although there are several studies that supported the advantages of the topical application of 

VEGF therapy in improving the tissue restoration process after injuries and burns (Bao et al., 

2009), other evidence suggested that antibodies against VEGFs would decrease the amount of 

wound fluid, angiogenesis, and granulation tissue formation. In addition, it has been 

demonstrated that high levels of VEGFs in burn injuries cause further complications, including 

swelling and edema (Infanger et al., 2004). 

The tolerability of applying telbermin (the pharmaceutical name of recombinant human 

vascular endothelial growth factor rh-VEGF) topically was examined by the Hanft group in a 

study conducted in 2008. Telbermin was applied weekly three times on neuropathic foot ulcers 

of diabetic patients over a period of six weeks. The results suggested that Telbermin is well 

tolerated by the patients and compliance to use in such cases; however, more studies need to be 

conducted on Telbermin to comprehensively investigate the safety and to validate its clinical 

efficiency in humans, to test if it works. 

Epidermal growth factors (EGFs) family is another mitogen that has been extensively 

studied for the wound repairing process. These factors have their important role in wound 

closure by stimulating the collagen secretion from fibroblasts to promote the matrix degradation 

during the maturation phase. Also, it has been shown that they promote the keratinocyte and 

fibroblast proliferation as well as accelerate re-epithelialization and the wound healing in general 

(Alemdaroglu et al., 2006). In burn wounds, elevated levels of epidermal growth factor binding 

heparin (HB-EGF) and transforming growth factor alfa (TGF- a), members of the EGF family, 

were detected during the healing phases (Boo & Dagnino. 2013). The Tuyet group accomplished 

their study to evaluate the efficiency of the recombinant human epidermal growth factor (rh-
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EGF) to accelerate the healing of moderate to severe diabetic foot ulcers. This therapy was 

effectively successful in healing foot ulcers of 28 patients, as well as being safe for topical 

application. Complete healing was observed within eight weeks in 13 patients, and regardless of 

the wound severity, 84.8% of the wound was closed by week 8. 

Transforming Growth Factor -beta (TGF -β) family consists of several members, with 

isoforms having diverse functions. The normal adult healing includes collagen remodeling and 

scar formation; however, the embryo tissue repair is a more regenerative process with almost no 

scar formation. As the fetal healing seems to be the optimal healing response, studying the 

factors involved in scarless healing can provide guides for developing new treatments to 

accelerate the healing. TGF -beta 1 and 2 are known to stimulate the fibroblasts proliferation and 

the collagen production as well as promote inflammatory cells chemo-attraction. In contrast, 

their antagonist TGF –beta 3 has been detected in elevated levels in embryonic scarless wound 

healing and partially in adults’ wounds with less prone skin scarring, in the case of TGF -beta 1 

and 2 deficiencies (Finnson, Arany &Philip, 2013). TGF-beta 3 knockout mice seem to have a 

slow progression of healing with less granulation and more scar formation, which indicates the 

important role of TGF –beta 3 in restoring tissue. According to a study conducted by Branch 

group in Manchester, UK, an enhancement in cutaneous surgical scar was observed after 

applying recombinant human TGF-beta 3 therapy. Improvement in the wound closure with fewer 

scars was detected after injecting neutralizing antibodies to TGF-beta 1 and TGF-beta 2 

(MacCornick et al., 2014). On the other hand, the recent findings supported that TGF-beta 1 and 

TGFbeta 2 can negatively influence the wound contraction by slowing re-epithelization. 

Excessive amounts of TGF-beta that appear in inflammatory and infectious conditions lead to 

develop the keloid (reddish nodules that develop after minor injuries) or hypertrophic (more 
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common, easer to treat, and smaller in size compared with keloids) scarring formation (Palazzo 

et al., 2012). Another study to evaluate Avotermin, the TGF-beta 3 anti-scarring therapy, 

potential effect on surgical scars was conducted on sixty patients. Compared to the placebo, 

Avotermin significantly reduces scars’ surface area and improves the appearance (Ferguson et 

al., 2009). 

Fibroblast growth factors (FGFs), specifically FGF-1, have been used as a potential 

therapy for various cases with damaged or diseased cells that require tissue regeneration such as 

skin, nerves, blood vessels, and bone tissue. These skin wound healing proteins found in vast 

quantities around the injury site and produced by the damaged macrophages and endothelial 

cells. FGFs promote the migration of fibroblast and keratinocyte cells to the wound zone and 

accelerate the rate of angiogenesis, granulation, and epithelialization processes. Using 

immunohistochemical methods, the expression of the FGF protein was undetectable in the intact 

skin; however, it was mainly found in large amounts toward the wound center and started to 

reduce near the edges (Zheng et al., 2014). The critical function that these fibroblast growth 

factors play in the progression of the reparation stages has been demonstrated in both vitro and in 

vivo. Trafermin INN, Beifushu, Beifuxin and Beifuji are some examples of recombinant human 

FGF pharmaceutical medications that have been tested in clinical trials (Uemura T, Watanabe H 

and Uemura, 2006; Luca Spaccapelo, 2016). An improvement in deep burn wound along with 

acceleration in the healing time have been reported by Ma and his group after applying human 

recombinant FGF-1on the injured site. In another study conducted by Tsuboi and Rifkin, the 

application of bFGF (FGF-2) accelerates the regeneration of damaged tissue in a diabetic mouse. 

Shi and his group proved the role of bFGF in facilitating the healing of rat dermal wounds and 

rabbit hypertrophic scars. 
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  There are several factors that can obstruct the smooth progress through the healing phases 

of the wound to be cured, such as diabetes, infection, and poor diet. In addition to these elements 

that would delay the progression of the healing, FGF proteins are thermos-unstable. Even though 

the effective role of FGFs in tissue regeneration have been demonstrated in vitro, the fact that 

FGFs can denature at room temperature (Wilson, Groves, Jain, Park & Hamilton, 2003), makes 

the final therapeutic product ineffectual to apply topically on wounds, in vivo. Another obstacle 

that can delay the healing process is the presence of both FGF-1 and thrombin around the wound 

site at the same time. The repair process of a wound is initiated immediately after injury as 

various coagulation factors are released along with growth factors. However, the FGF1 sequence 

has a cleavage site, which can be cut by thrombin; thus disabling the FGF-1’s function (Chang, 

Alkan, Hilschmann & Braun, 1985; Naudin et al., 2015). These limitations of FGFs would 

impede their use as therapeutic applicants. 

7. Wound healing mechanism 

The wound healing restorative response is a dynamic sequence of events involving 

sophisticated interactions of intracellular and extracellular cascades. This process can be 

classified into four distinct phases including: hemostasis, inflammation, proliferation, and 

maturation. Of course the duration of these stages varies depending on wound types, affected 

regions, and whether or not the healing process is combined with other complications or negative 

factors such as diabetes or smoking. The injury remedial process is initiated by the hemostasis 

phase that works to halt the bleeding. The vasoactive modulators that are released by 

endothelium, such as epinephrine, norepinephrine, prostaglandins, and others, triggers the 

vasoconstriction of injured blood vessels to reduce the blood flow and, as a result, restricts the 

amount of blood loss. Exposed collagen and other tissue factors at the damaged subendothelium 
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layer promote the clot formation by activating the adherence of platelets to the injury site along 

with the intrinsic and extrinsic coagulation cascade. As aggregated platelets activate, platelets’ 

cytoplasmic granules release chemotactic and growth factors, such as platelet-derived growth 

factor (PDGF), thromboxane A2, and serotonin that have a role in attracting the inflammatory 

cells to the injured area, leading to the following phase (Eduardo, Isabel, Bruno, Paquita & Alan, 

2004). The family of polypeptide growth factors mainly considers as homeostatic factors because 

its significant role in tissue regeneration during injuries.  After controlling the bleeding in the 

hemostasis phase, vasodilation occurs in order to increase the vascular permeability. That 

facilitates the inflammatory cells migration to the injured site. By contributing the necessary 

immune cells, the infection and foreign debris at the wound area will be cleared out. Neutrophils 

initially attack bacteria by releasing bactericidal mediators. This is followed by the most critical 

cells in the healing process, Macrophages. 

Macrophages decontaminate the wound by the lysis of foreign organisms and 

phagocytosis of the waste. They also secrete numerous enzymes, cytokines, necrosis and growth 

factors that have a role in promoting angiogenesis and stimulating the proliferation of fibroblasts, 

the subsequent stage (Demidova-Rice, Hamblin & Herman, 2012). Re-epithelialization, 

angiogenesis, granulation tissue formation and fibroplasia, and matrix deposition are the 

remarkable stages in the proliferation phase. In order to restore the damaged basement membrane 

of the wound and connect the wound edges, epidermal growth factors promote the epithelial cells 

migration and proliferation, forming thin cell layers. As the wound periphery has been re-

epithelized, angiogenesis is contributed in developing new blood vessels that help supply the 

tissue with essential nutrients. This process is controlled by chemical signals and numerous 

molecules including basic fibroblast growth factors (bFGF), vascular endothelial growth factors 
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(VEGFs), angiogenin, the angiopoietin-1 to tumor necrosis factor alpha (TNF-alpha), and the 

transforming growth factor-β (TGF β). Excreting collagen and fibronectin by fibroblasts progress 

the formation of fibroplasia and granulation tissue at the wounded area. It is believed that 

fibroblasts provide a dynamic stability to the wound as they are important for the matrix 

deposition and maturation (Demidova-Rice, Hamblin & Herman, 2012). Collagen and fibroblasts 

have a major role in the continuous changes in the wound during the maturation and remodeling 

phase. As the collagen and fibroblasts concentration extends to the maximum abundance, the 

wound contraction reaches the ultimate tensile strength and damaged layers are repaired and 

replaced. The time frame of this stage varies from weeks to months and sometimes years 

(Valentina & Lucas, 2011) depending on the depth of the wound and the affected organ. 
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Figure 5. Comparison 

between wound healing and 

the reactive tumor 

microenvironment. Wound 

repair after tissue injury (a) 

is characterized by platelet 

aggregation, migration of 

leukocytes (neutrophils and 

macrophages) to the site of 

injury and by production of 

growth factors and 

cytokines involved in neo-

angiogenesis and cell 

proliferation (e.g., PDGF, 

VEGF, FGF, TGFβ), and in 

ECM remodeling proteases 

(e.g., MMPs, SPARC, 

Fibronectin), thereby 

promoting wound healing 

and resolution. Adapted 

from ―Tumor-Associated 

Macrophages as Incessant 

Builders and Destroyers of 

the Cancer Stroma,‖ by M. 

Liguori and G.Solinas, 

2011, Cancers, 3(4):3740-

61. Copyright 2011 by the 

authors; licensee MDPI, 

Basel, Switzerland. 

Adapted with permission. 
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A. Types of wounds 

There are numerous ways to classify wounds depending on the healing duration, wound 

origin (site and depth), and whether it is contaminated with infection or not. Acute and chronic 

wounds differ by the amount of recovery time they consume during the healing process. Acute 

wounds usually arise after surgery or trauma, such as surgical wounds and burns, and can be 

healing in the predicted recovery time, usually in weeks to a few months. Chronic wounds, in 

contrast, fail to achieve the predicted time as they take a longer timeframe throughout the healing 

stages to produce functionally integrated tissue, a period over twelve weeks (Werdin, 

Tennenhaus, Schaller & Rennekampff, 2009). Unfortunately, any wound has the potential to turn 

chronic. Lower extremity ulcers are the most common chronic wound type. Several factors can 

obstruct the smooth progress through the healing phases of the wound to be cured. Accumulation 

of coagulation factors and inflammatory mediators at the wound site can have a negative effect 

on the healing process. For instance, thrombin, a coagulation factor that induces the blood 

clotting formation, is capable of degrading the Fibroblast growth factor -1 (FGF-1) resulting in 

delaying the wound restoration (Chang, Alkan, Hilschmann & Braun, 1985; Naudin et al., 2015). 

Also, contamination of wounds with bacteria that releases degradation enzymes, Matrix 

Metalloproteinases as an example, can have the same harmful influence on necessary growth 

factors and fibrin (Wright, Lam, Buret, Olson & Burrell, 2002). Furthermore, tissue hypoxia can 

promote bacteria proliferation and obstruct collagen and fibroblasts production, which are critical 

for the healing process (Darby, Laverdet, Bonté & Desmoulière, 2014). Hypoxia appears in 

patients suffering from chronic illnesses, such as peripheral vascular disease (PVD), 

cardiovascular disease, and pulmonary diseases. In order to accelerate the progress of the healing 

process, these serious diseases should be controlled. The body nutrition status also can influence 
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the wound healing. The catabolic state that results from poor diet consumption reduces the 

fibroblasts formation and extends the inflammatory phase duration. Adequate nutrition with 

sufficient calories and enough proteins would help overcome the restriction of the progress 

through healing phases. The first crucial step toward effective treatment is to Highlight the 

etiology of chronic wounds, arterial perfusion and diabetes as examples, as well as other factors 

behind the slowness of the reparation process including infection and poor diet. The ability of 

distinguishing wound types and considering the reasons contributing to poor healing would 

definitely assist specialists in providing appropriate management and care for the patients. 

B. Significant: 

In the United States, the healthcare system is facing significant biomedical and 

socioeconomic burdens in treating chronic wounds and associated wound complications. This 

prevalent epidemic that affects a considerable population in the States is the most terrifying 

nightmare to public health and economy. It has been estimated that up to 6.5 million patients are 

suffering from chronic wounds in the United States alone (Sen et al., 2009). This significant 

number is subjected to a rapid increase as diabetes and obesity cases are growing quickly. With 

more than US$25 billion annual expenses of treatment for chronic wounds, healthcare costs still 

increase (Brem et al., 2007). According to the American Diabetes Association, one fourth of 

diabetic patients’ chronic wounds are in the form of ulcers including the venous leg ulcer, 

diabetic foot wound, and pressure ulcer. The annual healthcare costs spent on treating patients 

suffering from foot ulceration is $45,000 per patient (Wu, Driver, Wrobel & Armstrong, 2007). 

In 2010, the annual cost of wound care products extended to $15.3 billion and the market costs 

continued to grow as additional technologies and advanced treatments of wound management 

become available (Sen et al., 2009). The immense number of surgeries are performed each year 
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in the United States, a total of 71.5 million inpatient and outpatient surgeries in 2000 as an 

example according to the National Center for Health Statistics, maximizes the cost of the post-

surgical wound care dramatically. Of course, other emergency cases need urgent care and cost 

similarly or sometimes more, such as natural disasters, terrorism attacks, and war wounded 

soldiers. Previous statistics emphasize the demand in developing the wounds reparation care in a 

cost effective manner and investing a greater attention in wounds management in order to fit the 

healthcare system economy. 

8. Mutations which increase the stability of FGF1 

The fact that Fibroblast growth factors (FGF) have a crucial role in many biological 

processes especially in wound healing focuses the interest to use them as bio-therapeutic 

proteins. However, there are some major limitations that obstruct the application of FGF1 as 

biopharmaceuticals for treating serious diseases, such as chronic wounds and ulcers and 

gastrointestinal syndrome. FGF1 proteins, as previously mentioned, are heparin dependent; yet 

the coagulation factor—thrombin—that presents at the wound site and has ability to cleave FGF1 

binds also to heparin. In this case, FGF1 will be more susceptible to thrombin cleavage and 

become inactive.  Another problem that leads to loss of the activity in FGF1 is that this protein is 

thermounstable, which means it can be degraded easily at room temperature. In order to 

overcome these obstacles and create highly stable variants of the protein, mutations on the 

heparin binding pocket of FGF1 have been designed.  Zakrzewska and her group (2004 & 2005) 

demonstrated that substituting these specific amino acid residues (Q40P/ S47I/H93G) showed 

increase in the stability as well as mitogenic activity of FGF1 protein. Another study conducted 

by the same group confirmed that by introducing single mutation (K112N), the variant FGF1 

protein can be mitogenic active and show higher stability at the same time it is heparin 
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independent (Zakrzewska et al., 2009). One of the most interesting findings in modifying the 

FGF1 protein among those reported so far is the study conducted by Rebecca Kerr (former PhD 

student) in Dr.Kumar’s lab. She proved that substituting single amino acid in the heparin pocket 

of FGF1 (R136E) can cause the variant FGF1 to be extremely biologically active as well as 

thermostable. Also, this modified FGF1 has heparin independent mitogenic activity and higher 

proteolytic resistance against thrombin cleavage. This ideal human acidic fibroblast growth 

factor can be use as topical or injectable application for accelerating the healing process of 

chronic ulcers and wounds and improve patients’ quality of life. Kerr’s findings will be 

explained in additional detail in the results and discussion section and compared to the results of 

this study, (P135KR136E-FGF1). 

- Amino acid sequence of wtFGF-1(140) 

FNLPPGNYKKPKLLYCSNGGHFLRILPDGTVDGTRDRSDQHIQLQLSAESVGEVYIKS

TETGQYLAMDTDGLLYGSQTPNEECLFLERLEENHYNTYISKKHAEKNWFVGLKKNGS

CKRGPRTHYGQKAILFLPLPVSSD 

9. Scope of the present work 

Dr. Kumar’s group long-standing interest is to understand the structural and functional 

aspects of the FGF-1 protein, which is one of the vital growth factor involved in the various key 

cellular processes, especially in wound healing. Over the last few decades, several studies have 

focused on developing a potential therapeutic agent to benefit the wound management. For this 

purpose, engineering of growth factors and cytokines has lately gained considerable interest in 

the field of medicine. Although, there are numerous growth factors that are commercially used to 

accelerate the wound healing in today’s market, such as PDGF, TGF, EGF, FGF, the 

development of a novel cure continues to be a clinical challenge. In this research, we aim to 
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understand the role of individual residues in the heparin binding pocket region of FGF-1, create a 

heparin independent protein, increase the half-life, and biological stability of the protein. In order 

to achieve that, we designed double mutant hFGF-1 by substituting two positively charged 

residues in the heparin-binding pocket (GPRTHY) Proline (P) and Arginine (R) at position 135 

and 136 respectively, which are known to be critical for the heparin binding property of this 

protein. This mutations will reveal a clear picture about the heparin independent activity of FGF-

1 as well as overcome the burdens and challenges of wild-type FGF-1.  Our results will highlight 

the future guides in developing compatible biomaterials for topical and internal applications for 

wound healing. These novel biomaterials must achieve high efficient delivery with limited loss 

of activity. 

Methods and Materials 

The buffer that has been used with protein in all experiments is 10 mM phosphate buffer 

containing 25 mM ammonium sulfate and 137 mM NaCl (pH ~7.2). 

1. Bacterial Transformation 

The P135KR136E mutation was created using the site-directed mutagenesis technique 

(QuikChangeKit
TM

). The number of the designed mutations was amplified by PCR then 

confirmed by DNA sequencing. The BL21 (DE3) super competent Escherichia coli cell-line was 

used because of its high efficiency in transformation as well as its lack of proteolytic enzymes 

that would degrade the desired mutation. BL21 (DE3) super competent E. coli cells were placed 

on ice for 30 minutes after being inoculated with 1μL of the P135KR136E plasmid. After 30 

minutes incubation, the tube was set in 42ºC water bath for 45 seconds and then immediately 

returned to ice for 3 minutes. This heat shock helps the E. coli cells to uptake the plasmid. The 

tube was incubated in a shaker at 250 rpm for 45 minutes at 37ºC after the addition of 800μL 
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sterile lysogeny broth (LB), rich medium. After spreading 100μL of the incubated sample on the 

agar containing the antibiotic ampicillin (Amp), transformed bacterial cells were selected. Only 

bacterial cells containing the plasmid were able to grow as the plasmid has ampicillin resistant 

genes. The agar plate was incubated at 37ºC overnight (12 – 14 hours). Glycerol stocks of 

P135KR136E were prepared and stored in a -80ºC freezer. 

To generate the mutations, the following bases were substituted in the wtFGF1 sequence: 

5’TGCAAACGCGGTCCTCGGACTCACTATGGCCAG 3’ - wtFGF 

5’TGCAAACGCGGTAAAGAGACTCACTATGGCCAG 3’ – P135KR136E 

 

2. Overexpression of P135KR136E -FGF1 

The purpose of the overexpression is to produce large quantities of the P135KR136E -FGF1 

protein in order to be purified and characterized using biophysical techniques. This procedure 

was performed as a subsequent step of the small-scale expression to ensure the presence of the 

protein. A 1mL glycerol stock and 150μL of Amp were added to 150 mL of sterile autoclaved 

LB media and then the solution was incubated overnight in a shaker at 37ºC and 180rpm. The 

culture was divided into six 2L flasks containing 500mL of LB and 500μL of Amp (25mL of the 

overnight starter culture per 2L flask). The optical density of the medium was checked after 

approximately two hours incubation (in a 37ºC shaker at 250 rpm) using  UV-visible 

spectroscopy at a wavelength of 600 nm. When the bacteria reached the log phase (an OD 

between 0.4-0.6), all flasks were induced with 1mM (500μL) Isopropyl 𝛽𝛽-D-1-

thiogalactopyranoside (IPTG). This would trigger the induction Lac operon and as a result 

quicker protein expression. After four hours incubation at the same conditions, the culture was 

harvested by centrifugation at 6000 rpm for 20 minutes. The supernatant was discarded and 
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pellet was resuspended in 1xPBS pH 7.2 buffer then centrifuged again. The resultant pellets were 

stored in a -20ºC freezer for purification. 

3. Purification of P135KR136E -FGF1 

In order to purify the P135KR136E -FGF1 protein, the affinity chromatography separation 

method was accomplished using a heparin-Sepharose column. The bacterial pellet containing the 

P135KR136E -FGF1 protein that obtains from the previous step was resuspended in 10 mM 

phosphate buffer containing 25 mM ammonium sulfate and 10 mM NaCl at pH 7.2, and then 

cells were ruptured using ultra sonication. To separate the protein in the supernatant without 

extra contamination from the pellet, centrifugation at 19,000 rpm for 20 minutes was performed. 

The resultant clear supernatant containing P135KR136E -FGF1 was loaded to the heparin-

Sepharose column, washed with the same buffer used to resuspended the pellet, and then 

exposed to a gradient of different salt concentrations (100, 200, 300, 500, 800, and 1500 mM 

NaCl). Fractions were collected and SDS-PAGE analysis was performed for each sample to 

define the salt concentration where the protein eluted. The desired fractions (800 mM NaCl and 

1500 mM NaCl) were buffer exchanged to 100 mM NaCl and concentrated down to 5 ml using a 

10kDa MW cutoff Millipore centrifugal concentrator. After measuring the concentration of the 

pure P135KR136E -FGF1 protein using NanoDrop at A280 nm, the protein was aliquoted into 1 

ml eppendorf tubes and stored in a -80 ºC freezer for further experiments.  

4. Limited Proteolytic Trypsin Digestion 

To highlight the changes that may occur in the proteolytic degradation resistance of the FGF1 

protein after inducing the mutations (P135KR136E) compared with the wild-type FGF1, the 

limited trypsin digestion experiment was performed for both proteins, the wild type and the 

variant FGF-1, in the presence and absence of the carbohydrate, heparin. First, the appropriate 
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trypsin concentration was determined by preparing different titrations of the enzyme (0.1, 1, and 

10 mg/ml) and incubating different volumes of trypsin with the protein for the same period of 

time and under the same conditions. After selecting the desired trypsin concentration by 

examining the SDS-PAGE gel, 0.5 mgs/ml of the protein was incubated with trypsin in 37C 

water bath and 110 μl of the sample was removed from the mixture every 10 minutes for 80 

minutes. The reaction was stopped in the removed samples by adding 11ul of 10% 

trichloroacetic acid (TCA). After running SDS-PAGE for all samples, the band intensity of the 

protein was analyzed using densitometric scanning analysis to evaluate the enzyme action of the 

protein. 

5. 8-Anilinonaphthalin-1-sulfonsäure (ANS) Binding Assay 

The 8-Anilinonaphthalin-1-sulfonsäure binding 

assay was accomplished to study the folding 

mechanism and conformational changes that may 

occur in the P135KR136E -FGF1 protein compared 

with wtFGF1. The ANS compound serves as a 

fluorescent molecular probe as it binds to the 

hydrophobic regions on the surface of the protein. The protein sample was diluted to 15 μM and 

the ANS stock was prepared in a way that the addition of 1 μL from the stock to the variant FGF-

1 sample would increase the ANS concentration by 20 μM. The experiment was performed in a 

Hitachi F-2500 spectrofluorometer with 380 nm excitation wavelength and 450 to 600 nm 

emission wavelength. The relative fluorescent intensity (RFI) was recorded at 500nm, the 

wavelength at which ANS fluoresce, until the ANS final concentration became 400 μM.  This 

was done twice for the P135KR136E -FGF1 protein in presence and absence of heparin. 
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6. Thermal Denaturation 

This assay was performed on JASCO 1500 CD spectrometer to measure the thermodynamic 

and conformational stability of the variant FGF-1. The folding mechanism of the protein as a 

function of temperature was evaluated in the presence and absence of heparin. 100 μL of the 

P135KR136E -FGF1 protein sample was loaded in a 0.2 mm path-length cell with a protein 

concentration of ⁓19 μM. Both CD and fluorescence data were collected at wavelength of 

228nm after smoothing the obtained spectra. Curves were plotted by overlaying the wild type 

and variant FGF-1 values versus the temperature. The van't Hoff enthalpy (ΔH), entropy (ΔS), 

and the free energy (ΔG) of unfolding as well as the unfolding transition midpoint (TM) were 

calculated from the graphs. 

7. Chemical Denaturation 

Using JASCO 1500 CD spectrometer, a 3 ml sample with protein concentration of 12.5 

μM was prepared and loaded into 1cm path length cuvette to analyze the folding and 

unfolding properties for both the wild type and variant FGF-1 in the presence and absence of 

heparin. A stock of 8M urea concentration was used in this experiment to estimate the 

proteins’ conformational changes that were induced by the denaturant. The data was scanned 

in wavelength range of 190-250nm and scan speed of 50nm/min. Values were obtained at 

308 and 350nm after smoothing the data using the spectra analysis software. The fraction 

unfolded was calculated and plotted against the denaturant concentration.  

8. Bioactivity Assay 

This experiment was performed to evaluate the cell proliferation activity of the 

P135KR136E -FGF1 protein, in the presence and absence of heparin, compared to the wild-

type FGF-1. NIH/3T3 mouse embryonic fibroblast cells have been used in this assay with 



26 
 

specific incubation conditions. The cells were conserved in tissue culture under 37C 

temperature in presence of CO2 as well as other growth factors and antibiotics that allow the 

favorable environment for best cell growth. Protein samples were prepared with 

concentration of 1 mg/ml and 200μL volume. The turbidity of cell growth was evaluated 

using a Biotek EL808 microplate reader and the absorbance was measured at 450 nm. 

9. Isothermal Titration Calorimetry (ITC) 

To assess the changes in the binding affinity of P135KR136E -FGF1 toward heparin 

compared with the wild-type, two solutions of 0.05mM P135KR136E -FGF1 and 0.5mM 

heparin were prepared. The MicroCal ITC200 instrument and Origin software were used to 

perform the experiment and analyze the data. From the resulted Kd (dissociation constant) 

value, we were able to determine the heparin binding affinity of the P135KR136E -FGF1 

protein. 

10. Nuclear Magnetic Resonance (NMR) Spectroscopy 

1H-15N HSQC experiments were accomplished using Bruker Avance 700 mHz NMR 

spectroscopy. The three dimensional structure of the 15N isotope P135KR136E -FGF1 protein 

was studied alone as well as protein-ligand complex. The sucrose octasulfate (SOS)-mediated 

dimer experiment was conducted with 1:10 protein to SOS ratio. The concentration of the 

P135KR136E -FGF1 protein was 300μM. All experiments were performed at 298°K. 

Results and Discussion 

Optimizing fibroblast growth factors using recombinant protein technology is a critical 

strategy in accelerating wound healing and tissue regeneration. FGF1 has been the focus for 

developing tissue regeneration therapeutic agents among all other kinds of existing healing 

applications. This is because the unique capability of FGF1 can activate all the four sub-types of 
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FGFR. It is true that this universal ligand plays a critical role in various cell survival activities; 

yet it is prone to thermal denaturation and proteolytic degradation, as 50% of the protein tends to 

be completely unfolded at physiological temperature (Culajay et al., 2000; Zakrzewska et al., 

2004). Additionally, thrombin, which is the heparin binding protein and serine protease, is 

present at the same time with FGF1 and within a close proximity at the wound site. This situation 

facilitates the access of thrombin to slice FGF1 at the cleavage site at residue position R136 in 

the heparin-binding pocket (Erzurum et al., 2003; Duarte 2006). The high degradation 

susceptibility and poor stability of native FGF1 limit the use of this powerful mitogen in treating 

serious chronic wound cases.  

Heparin is known to effectively stabilize FGF1 by reducing the charge repulsions within the 

heparin-binding pocket of the folded protein; however, the exact role of this carbohydrate within 

FGF signaling is still ambiguous. It has been claimed that heparin is necessary for FGF ligand-

receptors interaction and activation (Ornitz et al., 2001; DePaz et al., 2001). On the other hand, 

several studies were conducted using site directed mutagenesis to demonstrate the heparin 

independent activation of the receptors. The identified mutations have not only stabilized the 

protein in the absence of heparin, but have also increased the mitogenic activity of the protein 

with an increase in the cellular proliferation activity (Szlachcic et al., 2009). Another study 

demonstrated that the combination of thermodynamically stabilizing mutations with these non-

heparin-binding FGF1 mutants that lose their mitogenic activity can result in complete retrieval 

of the biological activity of the protein (Zakrzewska et al., 2009). The previous findings 

conclude that heparin is not necessary to mediate the FGF1 protein signaling through its 

receptors (Arunkumar, 2002); but the debate about the role of heparin as a cofactor of FGF1 

signaling is still ongoing (Ornitz, 2015; Brown, 2013). Further studies of a charge-reversal 
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mutation at heparin binding pocket at putative thrombin cleavage site on FGF1 at position 136 

were accomplished. One of the most interesting findings of R136E mutation is that the 

substitution of only one amino acid at the heparin-binding pocket, replacing arginine with 

glutamic acid, resulted in a dramatic enhancement of the mitogenic activity and overall stability 

of the protein while the binding affinity to heparin was decreased significantly. (Data 

unpublished) 

To generalize the picture of the previous findings and gain more insight for a better 

understanding about heparin’s role in activating FGF1-receptor and downstream signaling, and 

to examine whether the observations of the charge reversal mutation at 136 are unique to this 

position can be achieved by examining the adjacent residue, P135 has been considered.  

A previous study that used P135K to investigate the role of introducing a positively charged 

residue in the neighboring position of R136 indicated that the loss of proline significantly 

increases the susceptibility of the mutant protein to the proteolytic degradation with almost 80% 

of the protein digested after the first 10 minutes of trypsin exposure. The fluorescence data from 

the ANS binding assay revealed that the mutant FGF’s hydrophobic regions were exposed more 

as the introduced mutation lead to greater influence on tertiary structure, which made the protein 

more flexible. A possible explanation for this is the increase in the protein’s flexibility that 

resulted from replacing proline, which is known to effect the structural rigidity of the protein. 

The thermal stability data indicated that the protein tends to be less stable and the reduction of 

the heparin binding affinity was due to the introduction of a positive charge residue. In 

conclusion, the introduction of lysine near to R136 altered the thermodynamic balance and 

decreased the overall stability of the variant protein (Data unpublished). With respect to these 

preliminary studies, P135ER136E mutation has been rationally designed. This study has been 
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designed to evaluate the hypothesis that introduction of positive charge, in a close vicinity to 

R136E, adjacent to the negative charge will nullify the stabilizing effects of R136E.  

 

Overexpression and Purification of P135KR136E -FGF1 and wild type FGF-1 

The transformed bacterial cells containing the P135KR136E -FGF1 protein were 

overexpressed in LB medium (after ensuring the presence of the protein using the small-scale 

expression technique) according to the protocol that has been detailed in the Materials and 

Methods section. The corresponding band matching the size of the control protein in the SDS-

PAGE gel determined the success of the expression.  

 

 

 

 

Figure 6: the SDS-PAGE analysis of P135KR136E -FGF1 and wild type FGF-1’s 

small scale expression. The black box indicates the corresponding band of the desired 

protein with a molecular weight of 16 KDa (confirms the presence of the protein). 

Lane 1 represents the uninduced sample of wild type FGF-1. Lane 2 is the induced 

sample of wild type FGF-1. Lane 3 is the supernatant of wild type FGF-1. . Lane 4 is 

the pellet of wild type FGF-1. Lane 5 is the positive control (wtFGF-1). Lane 4 is the 

uninduced sample of P135KR136E -FGF1. Lane 5 is the induced sample of 

P135KR136E -FGF1. Lane 8 is the supernatant of P135KR136E -FGF1. Lane 9 is the 

pellet of P135KR136E -FGF1.  
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In order to biophysically characterize the P135KR136E -FGF1 protein and compare the 

alternation that may occur after introducing the mutations in these specific sites with the wild 

type, both proteins have been purified using the affinity chromatography method. Pure proteins 

have been isolated from a heparin-Sepharose column by increasing the salt gradient 

concentrations. For the variant FGF-1, concentrations were 100 mM NaCl, 300 mM NaCl, 500 

mM NaCl, 800 mM NaCl, and 1500 mM NaCl. For the wild type FGF-1 protein, 300 mM NaCl, 

800 mM NaCl and 1500 mM NaCl were used as the method is well standard. All collected 

fractions were analyzed using SDS-PAGE technique.  Both the wild type and the variant FGF-1 

eluted at high salt concentration of 800 mM NaCl and 1500 mM NaCl,. At this high 

concentration of salt, the electrostatic interactions between the protein and the heparin-Sepharose 

resin are broken down, which causes the disassembling of the bound FGF-1 from the column. 

This result suggested that the introduced mutations did not significantly change the heparin 

pocket surface of FGF-1 in the way that conserved the property of binding affinity toward 

Figure 7: the SDS-PAGE analysis of P135KR136E -FGF1 and wild type FGF-1 

overexpression. The black box indicates the corresponding band of the desired protein with 

a molecular weight of 16 KDa (confirms the presence of the protein). Lane 1 represents the 

uninduced sample of wild type FGF-1. Lane 2 is the induced sample of wild type FGF-1. 

Lane 3 is Lysosome. Lane 4 is the uninduced sample of P135KR136E -FGF1. Lane 5 is the 

induced sample of P135KR136E -FGF1   
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heparin. As the majority of the double mutant FGF1 eluted at lower salt concentration (800 mM), 

the high heparin binding property of the protein could be slightly decreased compared with the 

wild type.  

 

 

 

 

 

 

Figure 9: the SDS-PAGE analysis of P135KR136E -FGF1 purification using heparin- 

Sepharose column. The black box indicates the corresponding band of the desired protein with 

a molecular weight of 16 KDa (confirms the presence of the protein). Lane 1: supernatant. 

Lane 2: pellet. Lane 3: flow-through of the loaded sample. Lane 4 :100 mM NaCl. Lane 5: 300 

mM NaCl. Lane 6: 500 mM NaCl. Lane 7: 800 mM NaCl. Lane 8: 1500 mM NaCl. Lane 9: 

urea wash to clean the rasin.  The bands in lane 7 and 8 indicated by the black arrows at 25 

KDa and 46 KDa position could be either a P135KR136E dimer or a TCA artifact. 

Figure 8: the SDS-PAGE analysis of wild type -FGF1 purification using heparin- 

Sepharose column. The black box indicates the corresponding band of the desired 

protein with a molecular weight of 16 KDa (confirms the presence of the protein). 

Lane 1: pellet. Lane 2: supernatant. Lane 3: flow-through of the loaded sample. Lane 

4 :300 mM NaCl. Lane 5: 800 mM NaCl. Lane 6: 1500 mM NaCl. Lane 7: urea wash 

to clean the rasin. Lane 8: protein marker.  The bands in lane 5 and 6 indicated by the 

black arrows at 46 KDa position could be a TCA artifact 
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After confirming the fractions that contain the protein of interest which are not 

contaminated, in this context both 800 mM NaCl and 1500 mM NaCl fractions were combined 

and buffer exchanged. Using a 10kDa MW cutoff Millipore centrifugal concentrator, a total of 

25 ml of P135KR136E –FGF1 and 20 ml of wild type FGF-1 were reduced to 5 ml. The final 

concentrations of the wild type and the variant FGF-1 were 3.5 and 3 mg/ml, respectively.  

 

 

 

 

 

Biophysical Characterization of P135KR136E FGF-1 

 Assessment of the surface hydrophobicity of P135KR136E mutant 

ANS binding assay was performed to measure the variations in the surface 

hydrophobicity of P135KR136E FGF-1 compared with the wild type. The intensity of the 

fluorescence emission of the bound ANS molecules is directly proportional to the exposed 

hydrophobic residues on the protein surface and as a result reveals the flexibility and the folding 

mechanism of the protein. The increase in the ANS fluorescence indicates that the hydrophobic 

surface of the protein is being more accessible, as the hydrophobic residues are naturally buried 

in the protein core. By comparing the saturation curve in the absence of heparin in figure 11, we 

can see that the wild type and the mutant protein follow almost the same pattern with a little 

Figure 10: the SDS-PAGE analysis of P135KR136E -FGF1 and wild type FGF-1 post 

concentration. The black box indicates the corresponding band of the desired protein 

with a molecular weight of 16 KDa (confirms the presence of the protein). Lane 1: 

concentrated sample of wild type FGF-1. Lane 2: protein marker (Lysosome). Lane 3: 

concentrated sample of P135KR136E -FGF1. 
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increase in the fluorescence in the case of the variant FGF-1. This means the structural 

confirmation and folding mechanism is nearly the same in both proteins as they are packed in a 

similar fashion. Additionally, no significant changes have been noticed when heparin was added 

to the protein, as shown in figure 12. The minor increase in the saturation curve of P135KR136E 

suggests that the introduction of the positively charged residue—lysine—at position 135 slightly 

influences tertiary structure of the protein, which causes the protein to be more relaxed and 

increases the exposure of hydrophobic regions in the surface of P135KR136E FGF-1 protein.  

 

 

 

 

 

 

Figure 12: ANS titration of wild type FGF-1 and P135KR136E FGF-1 in the presence of Heparin 

Figure 11: ANS titration of wild type FGF-1 and P135KR136E FGF-1 in the absence of Heparin 
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 Determination of the heparin binding of P135KR136E mutant 

In order to detect the thermodynamic interactions and quantitatively determine changes in the 

binding affinity of the variant protein toward heparin, Isothermal Titration Calorimetry (ITC) 

technique was used. The dissociation constant (Kd) of heparin toward the P135KR136E FGF-1 

was measured and compared with the wild type. Lower Kd values indicate stronger binding 

interactions between the molecule (variant FGF-1 protein) and the ligand (Heparin) whereas 

higher values mean weaker interactions and less binding affinity. These values highlight the 

changes in the binding affinity of the heparin to the protein that could occur as a result of 

introducing the desired mutations. The Isothermogram in figure 13 shows the titration of heparin 

versus FGF1-P135KR136E. Almost 20-fold decrease in binding affinity of the P135KR136E 

FGF-1 toward heparin (Kd ~90µM) was observed in case of the double mutant compared to 

wtFGF1 (~5µM). 
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Figure 13: Isothermograms of the wild type FGF-1 (left) and P135KR136E FGF-1 (right) 

representing their interactions to heparin. The dissociation constants (Kd) values of both 

proteins were calculated with Kd of ~90µM for the double mutant and ~5µM for the wild 

type FGF1. The bottom panel shows the best-fit of the raw data. 
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 This can be explained as the incorporation of positively charged Lys135 adjacent to the 

negatively charged E136 might have a repulsion effect, which eventually led to the reduction of 

the heparin binding affinity of the variant protein.  

Similarly, the single mutation R136E showed almost 15-fold decrease in the binding 

affinity toward the heparin analog sucrose octasulfate (SOS), and 5-fold decrease in the heparin 

binding affinity (Kd 72µM and 16.72µM respectively) compared to wtFGF1. These results, 

shown in figure 14, indicate that the single mutation R136E is capable of showing heparin 

independent mitogenic activity. Overall, the introduction of a positive charge at position 136 

near to R136E seems to have a similar effect on the heparin binding affinity of the protein as the 

single mutant R136E. 

 

 

 

 

 

 

Figure 14: Isothermograms of the R136E mutant titrated with SOS (left) and heparin (right). 

The dissociation constants (Kd) values were calculated with Kd of ~72.4µM for the mutant with 

SOS and 16.72µM when R136E titrated with heparin. 
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 Evaluation of the stability of P135KR136E 

Trypsin digestion experiment was performed to assess the changes, which may follow the 

introduction of mutations, in the protein stability against the proteases cleavage. In order to 

evaluate the stability of the tertiary conformation and intrinsic structure of the desired protein as 

well as the degradation resistance toward proteases, an enzyme with more uniform proteolytic 

activity over time has to be used. That is why we chose Trypsin in this experiment. Trypsin 

cleaves the basic residues (Lysine and Arginine) at the carboxyl end. Both the variant and the 

wild type proteins were subjected to limited trypsin digestion in the presence and absence of 

heparin. All SDS-PAGE gels were analyzed using the densitometric scanning.  

By comparing the data, we can see that both the wild type and the variant FGF-1 are fairly 

stable when they bind to heparin. This emphasizes the role of heparin in protecting FGF-1 from 

the proteolytic degradation by installing the folding confirmation of the protein. Although wild 

type FGF-1 in the absence of heparin was less stable and more suitable to trypsin degradation 

compared to when it is bound to heparin (20% of the protein was cleaved by the enzyme after 25 

minutes), over 60% of the variant protein was digested by trypsin after the same period of 

exposure in the absence of heparin. This highlights the fact that the variant FGF-1 is at twice the 

risk of being digested by trypsin compared with the wild type as the binding affinity of the 

double mutant toward heparin decreased.  
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On the other hand, the effect of trypsin on the R135E mutant in the absence of heparin was 

extremely limited with less than 10% of the protein digested by the enzyme after a total of 85 

minutes of exposure (Figure 17). The high stability of the R135E mutant might be due to a 

change in the protein confirmation that would limit the access of trypsin. Although the single 

mutation (R135E) is heparin independent, it has high resistance against the proteolytic cleavage. 
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Figure 15: SDS-PAGE gels of the limited trypsin digestion samples of the wild type and 

P135KR136E FGF-1 in the presence and absence of heparin. The bands with a molecular weight of 

23.3 KDa in the first row correspond to the enzyme, trypsin, whereas the bands on the second row 

pointed with the arrow represents the desired protein with a molecular weight of 16 KDa. Lane 1 is 

the zero sample before the addition of the enzyme. Each following lane (lanes 2-9) represent the 5 

minute intervals samples from the trypsin digestion reaction that collected and halted by adding 

trichloroacetic acid (TCA). Lane-1: time-zero sample, Lane-2: 5 minutes, Lane-3: 10 minutes, 

Lane-4: 15 minutes, Lane-5: 20 minutes, Lane-6: 25 minutes, Lane-7: 30 minutes, Lane-8: 35 

minutes, Lane-9: 40 minutes. 

Figure 16: Densitometric scan of the undigested wild type and P135KR136E FGF-1 over 

time in the presence and absence of heparin after trypsin treatment. The green line represents 

the wild type FGF-1 in the presence of heparin. The blue line is the wild type FGF-1 in the 

absence of heparin. The yellow line is the P135KR136E FGF-1 in the presence of heparin. 

The red line is P135KR136E FGF-1 in the absence of heparin. 



38 
 

Taken altogether, introduction of positively charged residue P135K causes the protein core to 

be not firmly packed, and as a result the protein folding formation tends to be less stable, which 

leaves lysine and arginine residues more exposed to trypsin. The previous findings indicate that 

the increase in the proteolytic resistance of the protein upon the introduction of the single mutant 

R136E has been reversed by P135K. The enhancement of the structural flexibility of the double 

mutant is consistent with the obtained data from ITC as well as the ANS experiment. 

 

 

 Studying the effect of the introduced mutations on the secondary structure of FGF-1 

Circular dichroism (CD) is a decent technique to determine the secondary structure of the 

protein and examining the protein’s conformational stability under different stressors, such as 

high temperatures and strong chemical denaturants. As FGF1 has only one Tryptophan (W121) 

that located in a close vicinity of the introduced mutation, intrinsic fluorescence is an ideal probe 

to monitor changes occurring in the secondry structure. This aromatic residue located in the 

proximity of P135 will provide information on the local changes resulted by the introduction of 

mutation. To compare the changes that may occur upon introducing the mutations on the 

secondary structure of the protein, the CD spectra of the wild type and P135KR136E FGF-1 was 

Figure 17: Densitometric scan of the undigested wild type, R136K, and R136E FGF-1 over 

time in the absence of heparin after trypsin treatment.  



39 
 

collected in the presence and absence of heparin using far-UV Circular Dichroism (CD). The β –

trefoil motif of both proteins in the presence and absence of heparin represent by two positive 

peaks from approximately 190-210 nm and 240-220nm (figure 18). As has been indicated from 

the graph, there are no significant alternations in the secondary structure of the variant protein 

compared to that of the wild type. Therefore, P135KR136E mutations did not affect the 

secondary structure and the antiparallel beta sheets’ formation of the protein stayed intact. 

 

 

 Determination of the stability of P135KR136E mutant 

 

In the chemical denaturation assay, 8 M urea was the denaturant of choice. Both proteins, the 

wild type and P135KR136E FGF-1, were exposed to different titrations of urea in the presence 

and absence of heparin to assess the stability as well as folding and unfolding behavior of the 

protein. In figure 19, both proteins behave similarly with almost the same pattern. The overall 

trend of the curves indicates that there are no significant changes in the stability of the protein 

upon the introduced mutations with milting concentration of 1.8M compared to that of the wild 

Figure 18: Far UV Cirrcular Dichromism spectra of the wild type and P135KR136E FGF-1 

protein in the presence and absence of heparin.   



40 
 

type, 1.75M. However, as the variant protein bound to heparin less tightly than the wild type, the 

stability of P135KR136E FGF-1 protein increased in the presence of heparin but only by 0.8M.  

 

 

 

 

In the presence of heparin, 50% of the wild type protein needed the double amount of the 

urea (Cm= 3.5M) to be in the unfolded state compared with the wild type in the absence of 

heparin. These results indicate the important role of heparin in stabilizing the protein. We can 

Figure 20: The chemical denaturation data of the wild type and P135KR136E FGF-1 in the 

presence of heparin using Cirrcular Dichromism. 

Figure 19: The chemical denaturation data of the wild type and P135KR136E FGF-1 in the 

absence of heparin using Cirrcular Dichromism. 
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conclude that the introduced mutations did not affect the overall stability of FGF-1 protein 

compared with the wild type but slightly decreased the high binding affinity of the protein 

toward heparin.  

 

The fact that the introduced mutation is located in the heparin-binding pocket and heparin 

stabilizes the native protein by increasing the thermal denaturation resistance; it was reasonable 

to hypothesize that the substitution of two positively charged residues would increase the 

repulsion forces between heparin and the variant protein. This eventually decrease the heparin 

binding affinity and increase the possibility of making the protein heparin independent.  

The analysis of the thermal stability data in of the wtFGF1 and double mutant FGF1 in the 

absence of heparin indicates there is no change in thermal stability of the variant protein (Tm = 

46°C). In the presence of heparin, the double mutant exhibition a lower thermal stability level 

(Tm = 47°C) compared to the wild type (Tm = 55°C). These results suggest that the introduction 

of charge reversal mutations did not change the overall thermal stability of the protein but 

decrease the binding affinity toward heparin. 
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The thermal denaturation data of the single mutant (R136E) in the absence of heparin showed 

increase in the thermal stability of the protein by 6°C with a Tm of 56.1°C compared with the 

Figure 21: Thermal denaturation data of the wild type and P135KR136E FGF-1 in the 

absence of heparin using Cirrcular Dichromism 

Figure 22: Thermal denaturation data of the wild type and P135KR136E FGF-1 in the presence 

of heparin using Cirrcular Dichromism 
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wild type FGF1(49.3°C), as shown in figure 23. These results indicate that the thermal stability 

of the R136E mutant is heparin independent. 

The introduction of positively charged residue in the vicinity of R136E dramatically reduces 

the overall stability of the variant protein with 10°C collapse in the thermal resistance. This 

drastic drop in stability level of the variant protein compared with the single mutant R136E 

strongly support our hypothesis. 

 

 

 Effect of P135KR136E mutation on the structure of FGF1 

To further investigating the structural changes upon the introduced mutation and understand 

the consequences of this mutation on the conformational alterations of the variant protein, 

multidimensional NMR experiments were performed. The heteronuclear single quantum 

coherence (HSQC) spectra of the P135KR136E-FGF1 in the presence and absence of sucrose 

octasulfate (SOS) were acquired in order to obtain the tertiary structure of the protein in a high 

resolution. In the two-dimensional 1H-15N HSQC spectrum, each crosspeak represents an amino 

acid residue and this considers as a finger-print of the protein’s backbone conformation. The 

HSQC spectrum of the P135KR136E-FGF1 overlaid with wtFGF1 and P135KR136E-

Figure 23: The thermal denaturation data (DSC profiles) of wild type, R136K & R136E forms 

of FGF-1 in the absence of heparin 
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FGF1+SOS to calculate the chemical shift perturbation for each residue. This result will provide 

information about the backbone structural changes at the atomic level, which eventually explains 

the effect of the introduced mutation on the global structure of the protein.  

 

 

The special position of P135 is located on a loop that links two beta strands 11 and 12. This 

loop makes up the heparin binding region in addition to two loops. The position of P135 reflects 

its importance as its located at the middle of three positively charged amino acids; two of them 

known to be critical heparin binding residues (R133 and R136) in addition to K119. The analysis 

of the HSQC overlay of P135KR136E with wtFGF along with the perturbation plot (figure 24 

and 25 respectively) reveal that the introduction of two charged amino acids causes a minor shift 

only for one residue outside the heparin-binding pocket—Lue 87—which is located in the C-

terminal in a close vicinity of the introduced mutation. The distance between the introduced 

double mutant and the affected residue increased by 2.2 Å compared with the wtFGF, which is 

Figure 24: Overlay of 1H 15N HSQC spectra of wild type and P135KR136E FGF1 spectra 



45 
 

6.2 Å. As Lue 87 is located 8.4 angstroms away from P135KR136E explains the increase in the 

flexibility of the variant protein. The overall conformation of the protein is still intact and there is 

no significant alternation in the global structure upon the introduced mutation. 

 

  

Figure 26: Overlay of 1H 15N HSQC spectra of wild type FGF1 and P135KR136E-FGF1+SOS  

Figure 25: The chemical shift perturbation plot of wild type FGF1/ P135KR136E-FGF1 
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More significant shift with additional residues affected observed from the overlay of the 

HSQC spectra of P135KR136E with the double mutant with SOS (figure 26 and 27). The 

number of the peaks in the spectrum represents the number of the amide bonds in the protein. 

The pecks in the HSQC spectra are well dispersed, which means that the protein is well 

structured, and look almost as the wild type with some peak shifts. The shift in Lue 87 (figure 

27) presents as a consequence of the introduced mutation; however, other peaks shift that caused 

minor conformation changes occurs when the protein binds to SOS. The location of most 

perturbed residues (T137, Y139, G140, E118 and K132) is neighboring the introduced mutation 

on the heparin binding pocket. That can be concluded as the introduction of the double mutant 

did not grisly change the general conformation of the protein but it did change the local structure 

at the site of mutation. 

 

 

 

 

 

 

 

Figure 27: The chemical shift perturbation plot of P135KR136E-FGF1/ P135KR136E-FGF1SOS 
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 Effect of the P135KR136E mutation on the cell proliferation activity of FGF1 

This experiment was performed to evaluate the changes in the cell proliferation activity of 

the protein after introducing the mutations compared to the wild type using different protein 

concentrations. The overall trend of both proteins is similar, and they act almost the same in the 

presence and absence of heparin. An increase in the cell production (⁓20,000 cells) in both 

proteins was detected when heparin bound to FGF-1 (figure 28).  P135KR136E FGF-1 tends to 

be more biologically active with a slight rise in cell proliferation compared to that of wild type. 

 

 

 In the case of R136E mutant, the mitogenic activity increased approximately two fold 

compared to the wtFGF-1 and other mutants (figure 29). This signifies that charge reversal 

especially using glutamic acid in place of arginine at position 136 might actually enhance the 

overall stability of the FGF-1 molecule. With respect to the proliferation activity of the wild type 

and double mutant P135KR136E FGF1, R136 showed a considerable increase in the cell division 

activity with 15,000 cells. Taken altogether with the ITC data, the decrease in the heparin 

binding affinity toward heparin for the single (R136E) and double (P135KR136E) mutant does 

Figure 28: the bioactivity assay of the wild type and P135KR136E FGF-1 in the presence and 

absence of heparin with different protein concentrations. 
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not seem to affect the cell proliferation activity of both proteins. This indicates both proteins 

regain heparin independent mitogenic activity. 

 

 

 

 

 

 

 

 

Conclusion and Future Work 

  The data from this study evidently validated our hypothesis. In a previous study, the R136E 

mutant has overcome the low biological stability limitation of the native FGF by increasing the 

thermal and proteolytic resistance as well as the bioactivity. Additionally, the protein showed 

heparin independent mitogenic activity, which contributes in enhancing the overall stability of 

the molecule. These findings had to be evaluated to determine whether they are unique to 

position (R136) and if the effects of this single mutation can be voided by feeding a positive 

charge in a close vicinity. The introduction of lysine in place of proline did not seem to have a 

profound effect on the stability of the protein as the stabilizing effect provided by the 

neighboring amino acid—glutamate—was nullified. However, the decrease in the binding 

affinity toward heparin tended to be similar to R136E. Another positive consequence that has 

been demonstrated in this study is that although other prolines in FGF1 protein play an important 

role in the overall biological activity and structure of the protein, at least P135 is not essentially 

Figure 29: Mitogenic Activity assay of wtFGF-1 and its mutants. 
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responsible for this part, as it does not have a huge role. Furthermore, as there is a conservation 

of these residues among other family members of the protein, these kinds of mutations might 

have a similar effect, which lead to a heparin independent property of this molecule. A 

comparable trend can be observed even in FGF2 protein, which is one of the well-studied 

prototypical growth factors and has huge implications in the biomedical research. 

Additionally, introduction of these kinds of mutations benefit in terms of understanding the 

tertiary structure because the perturbation that occurs in the residues can facilitate the 

understanding of local changes. For instance, the aromatic residue, tryptophan, which is an ideal 

probe to perform various intrinsic fluorescent based experiments, seems to be more solvent 

exposed as has been observed by the intrinsic fluorescence and NMR data. In the case of wild 

type and R136E mutant, the quantum fluorescence that emits from tryptophan is quenched by the 

positively neighboring amino acids which results in only 308 nm peak; however, substituting 

proline by lysine leads to project this aromatic residue toward the surface and expose it to more 

solvent. The resulted peaks at 208 and 320 nm in the florescence data as well as the change of 

the Tryptophan position in the PyMol structural viewer after introducing the double mutation 

compared with the wild type confirms the previous findings. The understanding of these local 

changes occurring around the environment of tryptophan can be extrapolated to other groups of 

proteins, as tryptophan of FGF is well conserved in all FGF group members. 

Since 1980s, proteins have been predominantly occupied the majority of pharmaceuticals 

with around 200 marketed products including therapeutics, diagnostics, and vaccines (walsh, 

2010). Advanced protein design techniques and recombinant protein technology have been used 

to generate novel therapeutic agents by engineering different types of proteins. This molecular 

evolution should be rational and knowledge based in order to modify the desired protein by 
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targeting its limitations and overcome the challenges. Our study is opening avenues for better 

understanding structure-activity relationships of FGFs allowing systematic generation of novel 

proteins with entirely modified properties to be applicable as topical and injectable treatments for 

various chronic wounds and ulcers. In fact, unless we have a comprehensive understanding of the 

protein’s structure-activity relationship, we cannot develop the next generation of advanced 

therapeutic. Such studies are going to benefit as a whole in advancing the field of the protein 

engineering. 

In regard the future work, the Hydrogen Deuterium Exchange (HDX) experiment can be 

accomplished for the double mutant in order to understand the role of individual residue in the 

overall stability of the molecule. In addition, further studies based on this research findings are 

more likely to be performed toward improving the properties of the native FGF1. Charge-

reversal mutations in the vicinity of R136E will be explored to enhance the bioactivity of FGF 

with respect of the neighboring residues without compromising the stability. This can be 

accomplished through performing molecular dynamics stimulation studies of the neighboring 

amino acids in the vicinity in order to develop a more knowledge-based approach. Subsequently, 

the site directed mutagenesis technique would be used to design the desired variant that will be 

more efficient in terms of both activity and stability.  
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