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Abstract  

  

Due to the ecological importance of crayfish and the increasing vulnerability of 

freshwater systems due to habitat loss, invasive species, and hydrologic alteration, understanding 

crayfish-environment relationships is crucial in the context of aquatic species conservation. I 

sought to examine the influence of hydrologic variation among intermittent and permanent 

streams on crayfish occupancy, abundance, predation risk, and potential vulnerability to invasive 

species effects. I conducted crayfish and environmental data sampling during two consecutive 

summers across 20 Ozark streams of differing permanence levels (10 intermittent, 10 

permanent). In these same streams, I conducted fish and scat surveys over the course of four 

seasons. In addition, I performed population modeling based on previously collected data to 

understand the population dynamics of three crayfish species of greatest conservation need 

(Orconectes eupunctus, Orconectes marchandi, and Cambarus hubbsi) in the Spring River 

drainage of Arkansas and Missouri and assess their risk of invasive species and drought effects. I 

determined that occupancy of all crayfish species collected in my study was related to stream 

permanence. In most cases, crayfish abundance was largely related to stream permanence rather 

than local habitat. I documented that two species of conservation concern (i.e., Orconectes 

williamsi, Orconectes meeki) appear dependent on intermittent streams. Stream permanence, 

however, did not appear to influence crayfish predation by riparian mammals in my study. 

Crayfish predation pressure by mammals appeared to be determined by season and was strongest 

in spring and summer. The prevalence of fish prey in mammalian diets appeared to be strongly 

influenced by a season by stream permanence interaction, and this may be the first study to 

document such an observation. Lastly, my population modeling procedure indicated the potential 

of the Spring River to serve as a refuge for O. eupunctus and C. hubbsi when invasion and 



drought effects are strong in the surrounding area. Conversely, the Spring River appears to serve 

as a barrier to dispersal for O. marchandi which could result in high extinction risk of the 

population under invasive species effects. This thesis adds to the knowledge of flow-ecology 

relationships and invasive species effects in the Ozark Highlands.   
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Introduction 

 

Crayfish fulfill a crucial role within the ecosystems they occur and can be considered 

keystone species (Momot 1995). In addition to accounting for a significant proportion of 

macroinvertebrate biomass (> 50% in many aquatic systems) (Momot 1995), crayfish act as 

predators (Momot 1995, Stenroth and Nyström 2003), consumers of autotrophs (Momot 1995, 

Dorn and Wojdak 2004), detritivores (Stenroth and Nyström 2003), and prey for fish (Rabeni 

1992) and terrestrial animals (Boyle et al. 2014). Additionally, crayfish function as bioprocessors 

of vegetation and carrion (Taylor et al. 2007) by converting coarse particulate organic matter to 

fine particulate organic matter that is a food resource for other organisms (Whitledge and Rabeni 

1997).  

Crayfish are among the most imperiled freshwater taxa largely due to their high levels of 

endemism (Taylor et al. 1996, Taylor et al. 2007) and taxa with restricted natural ranges are 

especially susceptible to decline (Taylor et al. 2007). Both anthropogenic and natural disturbance 

can be a cause of crayfish imperilment. Habitat loss and degradation has been identified as the 

greatest threat to global biodiversity (Ehrlich, 1988) and in freshwater systems, habitat alteration 

can arise in a number of ways. Dams, urbanization, channelization, and water withdrawal each 

contribute to the anthropogenic alteration of natural flows (Poff et al. 1997). In arid and semi-

arid regions, temporary habitat loss via natural seasonal drought can lead to the prolonged 

duration of low flows or zero-flow days.  

Recently, the natural flow regimes within the Ozark Highlands of Arkansas and Missouri 

were classified (Leasure et al. 2016). This region is characterized by seven natural flow regimes 

(Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, 

Intermittent Runoff, and Intermittent Flashy). The critical components of flow regimes (i.e., the 
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magnitude, frequency, duration, timing, and rate of change of hydrologic conditions (Richter et 

al. 1996)) are highly variable across the region. Some flow regimes (e.g., Intermittent Flashy 

streams) experience drying for 1 to 3 months per year, including complete drying in late summer. 

Whereas others (e.g., Groundwater Flashy streams) never dry completely (Leasure et al. 2016).  

Stream drying is an important mechanism that influences predator-prey relationships and 

crayfish behavior. Summer drying can lead to intermittent or isolated habitats. During drought, 

biotic interactions (e.g., competition, predation) may intensify (Hodges and Magoulick 2011) 

due to high densities of organisms restricted to a limited area. In addition, water depth has shown 

to be positively related to crayfish survival in the presence of predators. Crayfish are known to 

occupy areas with deeper depths to avoid terrestrial predation (Gelwick 2000), and crayfish 

mortality via terrestrial predation may be lower in areas of deep water relative to shallow water 

(Englund and Krupa 2000). Drying not only increases predation risk, it also elicits differential 

behavioral responses such as reduced foraging, shifts in distribution, and burrow construction 

(Gelwick 2000). Some crayfish, such as primary or secondary burrowers, are able to construct 

deep, vertical burrows to the water table during stream drying (Crandall and Buhay 2008). While 

all crayfish are capable of burrowing to some degree (e.g., by constructing small, simple burrows 

under large substrate for moisture and cool temperatures (Jones and Bergey 2007)), not all 

crayfish succeed and may suffer reductions in population densities, shifts in reproductive timing, 

and reduced body size (Taylor 1988).  

Invasive species are a major threat to ecosystem integrity and to date, there are no signs 

of a significant reduction of this pressure (Secretariat of the Convention of Biological Diversity 

2010). There is a wide body of literature that has examined relationships between invasive and 

native crayfish (e.g., Westhoff et al. 2012, Larson et al. 2009, Larson and Magoulick 2009, 
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Magoulick and DiStefano 2007, Rabalais and Magoulick 2006 (a,b)). The mechanisms by which 

a native species of crayfish becomes displaced by an invasive species have been identified as 

competition, reproductive interference or hybridization, differential predation, and disease 

transmission (Lodge et al. 2000). The establishment of many invasive crayfish is often related to 

change that creates environments that are more favorable to introduced species and unfavorable 

to native species (Holdich et al. 1997) and potentially habitat loss due to seasonal stream drying.  

In the Ozark Highlands of Arkansas and Missouri, the Spring River drainage houses three 

species of crayfish that are “Species of Greatest Conservation Need (SGCN)”:  the Mammoth 

Spring crayfish (Orconectes marchandi), the Coldwater Crayfish (Orconectes eupunctus), and 

the Hubbs’ crayfish (Cambarus hubbsi). Orconectes marchandi, and O. eupunctus, are two of 

the most geographically restricted stream crayfish and are considered imperiled in Arkansas, 

Missouri and globally, are candidates for listing by the U.S. Fish and Wildlife Service under the 

U.S. Endangered Species Act.  Populations of O. marchandi are limited to the Spring River 

drainage of southern Missouri and northern Arkansas, whereas populations of O. eupunctus are 

limited to the Eleven Point, Spring and Strawberry River drainages. In Arkansas, O. marchandi 

are mainly found in small streams in the eastern portion of the Spring River drainage, whereas O. 

eupunctus are mainly found in larger, spring-fed rivers (Flinders and Magoulick 2005).   

Native to the White, Arkansas, and Kansas river drainages, Orconectes neglectus (Ringed 

crayfish [Pfliger 1996]) has invaded portions of the Spring River drainage in southern Missouri 

and northern Arkansas (Flinders and Magoulick 2005). Currently, O. eupunctus, which was once 

abundant in the Spring River drainage has been displaced by O. neglectus. Orconectes neglectus 

is now the dominant crayfish species in portions of the West Fork Spring River and the upper 

South Fork Spring River where O. eupunctus was formerly abundant (Magoulick and DiStefano 
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2007). Orconectes eupunctus still persists in the Spring River drainage, but its abundance has 

declined in the upstream areas that O. neglectus inhabits (Flinders and Magoulick 2005).  

The mechanism of O. eupunctus displacement by O. neglectus remains unclear. It does 

not appear that O. neglectus displaces O. eupunctus by forcing them into different habitats 

(Rabalais and Magoulick 2006, a), and both juvenile (Larson and Magoulick 2009) and adult 

male (Rabalais and Magoulick 2006, b) competition did not appear to drive displacement. 

However, it is likely that the demonstrated high tolerance to drought of O. neglectus compared to 

O. eupunctus may inhibit recolonization of O. eupunctus after stream rewetting via priority 

effects (Larson et al. 2009). Nonetheless, O. neglectus has shown to be a successful invader in 

the Spring River drainage as demonstrated by the decline of O. eupunctus in its former range. In 

order to direct conservation measures of the remaining O. eupunctus in the Spring River drainage 

and the other imperiled crayfish species in the drainage (C. hubbsi, O. marchandi), it is essential 

to understand the population demography of these species in the context of a spreading invasive 

species and the probable intensified drought due to future climate change.  

Given the imperiled status and high level of endemism seen in numerous Ozark crayfish 

species, it is vital to understand the combined effects of stream permanence, predation, and the 

impacts of invasive species. While the seasonal drying of intermittent streams in this region is a 

natural process, the pressures of human water use coupled with global climate change may 

induce additional stress on the region’s sensitive aquatic biota in the future. Information gained 

from the establishment of flow-crayfish ecology relationships may provide insight into the 

importance of sustainable water use in the Ozark Highlands. Specifically in the Spring River 

drainage, where an invasive species is spreading and where two of the region’s most 

geographically-restricted stream crayfish occur (O. eupunctus and O. marchandi), we intend to 
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understand the status and threats present so that we may inform future conservation decisions. 

Findings from this research will inform conservation and management of crayfish of greatest 

conservation need in the Ozark Highlands. 
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Abstract 

 

Despite the ecological importance and often imperiled status of crayfish in freshwater 

systems, few studies have examined crayfish use of intermittent streams. Crayfish use of 

intermittent streams is especially important to understand in the face of global climate change 

which may lead to additional stress exerted on aquatic biota in the future. We examined the 

influence of stream permanence and local habitat on crayfish occupancy and species densities in 

the Ozark Highlands, USA. Sampling took place from June to July in 2014 and 2015. We used a 

quantitative kickseine method to sample crayfish presence and abundance at 20 stream sites with 

32 surveys per site in the Upper White River drainage, and associated local environmental 

variables were also measured in each year. Site occupancy and detection probabilities were 

modeled in Program PRESENCE. Multiple linear regression modeling was conducted to 

determine relationships between individual crayfish species densities and environmental 

variables. Occupancy of all crayfish species was related to stream permanence. Orconectes meeki 

was found exclusively in intermittent streams. Orconectes neglectus and Orconectes luteus had 

higher occupancy and detection probability in permanent streams than in intermittent streams 

and Orconectes williamsi was associated with intermittent streams. Estimates of detection 

probability ranged from 0.56 to 1 which is high relative to other studies that have examined 

crayfish detection probabilities. Multiple regression modeling indicated that species densities 

were largely related to stream permanence rather than local habitat, with the exception of O. 

williamsi. Individual species densities did not differ by year but total crayfish densities were 

significantly lower in 2015. Increased precipitation and discharge in 2015 likely led to lower 

crayfish densities seen during this year. Our study demonstrates that crayfish distribution and 

abundance is strongly influenced by stream permanence. Some species, including those of 
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conservation concern (i.e., O. williamsi, O. meeki), appear dependent on intermittent streams and 

managers should consider intermittent streams as an important component of freshwater 

biodiversity. 
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Introduction 

Headwater streams are vital links in maintaining ecological integrity for most watersheds 

and are the most abundant streams, comprising > 2/3 of total stream length in a river network 

(Leopold et al. 1964, Meyer et al. 2003, Freeman et al. 2007). They are responsible for 

maintaining water quality, nutrient cycling, flood mitigation, as well as providing habitat and 

food for an array of organisms (Meyer et al. 2003). Headwater streams often have an abundance 

of refuge habitats, feeding and nursery grounds, and movement corridors, making them the most 

varied of lotic habitats (Meyer et al. 2007).  Thus, headwater streams can harbor a unique 

complement of species and can be considered a major contributor to the overall biological 

diversity in riverine systems. Although headwater streams provide a wealth of ecosystem 

services and dominate the landscape, they are threatened due to the combination of legal 

uncertainty and human land and water use. Inconsistencies exist under the U.S. Clean Water Act 

that obfuscate whether headwater streams are afforded the same legal protection as larger, 

perennial streams (Nadeau and Rains 2007, USEPA and USACE 2007). Urbanization, 

agriculture, mining, and hydrologic alteration pose threats to the integrity of running water 

(Malmqvist and Rundle 2002) and headwater streams are especially susceptible due to their lack 

of legal protection and tendency to be intermittent, unnamed and unmapped. 

Many headwater streams are intermittent and are dry for significant periods (Meyer et al. 

2003) and are prevalent in both arid and semi-arid regions on every continent (Datry et al. 2014). 

Intermittent streams are vital in contributing to the biological integrity and diversity of river 

systems. The dynamics of intermittent streams regulate the persistence of, and provide spawning 

habitat for many aquatic species, including threatened species. The hydrologic variability 

inherent to intermittent streams fosters habitats that may limit use by some species, which may 
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create areas with limited predation or competitive pressure. For example, rainbow trout 

(Oncorhynchus mykiss) spawning was greater in an intermittent stream than in several 

permanently flowing tributaries in California, presumably due to a lack of brook trout in the 

intermittent reaches which may allow greater rainbow trout fry survival (Erman and Hawthorne 

1976). Flashy flow regimes in intermittent streams help scour and maintain large pools which 

serve as refuges for fish during drying events, including the threatened Arkansas darter 

(Etheostoma cragini) in southeast Colorado (Labbe and Fausch 2000). Furthermore, hydrologic 

variability leading to low flows benefits native galaxiid fish at the expense of an exotic salmonid 

(Leprieur et al. 2006). It is known that intermittent streams are capable of supporting different 

benthic communities than permanent streams (e.g., Delucchi and Peckarsky 1989, Feminella 

1996, Flinders and Magoulick 2003).  

Crayfish fulfill a crucial role in many headwater streams, contributing to ecosystem 

functioning in many ways, and often acting as keystone species (Momot 1995). They are a major 

contributor to production, accounting for > 50% of macroinvertebrate biomass in many 

freshwater ecosystems (Momot 1995). Crayfish act as predators (Momot 1995, Stenroth and 

Nyström 2003), consumers of autotrophs (Momot 1995, Dorn and Wojdak 2004), detritivores 

(Stenroth and Nyström 2003), and prey for fish (e.g., smallmouth bass) (Rabeni 1992) and 

terrestrial animals (Boyle et al. 2014). They function as bioprocessors of vegetation and carrion 

(Taylor et al. 2007) by converting coarse particulate organic matter to fine particulate organic 

matter that is a food resource for other organisms (Whitledge and Rabeni 1997). Crayfish are 

among the most imperiled freshwater taxa (Taylor et al. 1996, Taylor et al. 2007) and show a 

high level of endemism.  Thus they may be especially susceptible to the consequences of habitat 

degradation (Taylor et al. 2007).  
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Despite the importance of crayfish in streams and the vulnerability of intermittent 

streams, few studies have examined crayfish use of intermittent streams. DiStefano et al. (2009) 

found that two species of crayfish persist through stream drying by burrowing in the hyporheic 

zone and Flinders and Magoulick (2003) determined that 2 of 4 crayfish species studied occurred 

in greater densities in intermittent streams than in permanent streams. These studies indicate that 

crayfish are capable of withstanding drought by burrowing and intermittent streams may be more 

favorable to some crayfish species than permanent streams. In addition, recent distributional 

studies of Ozark crayfishes (e.g., Orconectes meeki and O. williamsi) suggested that these 

crayfish are likely to occur in many intermittent streams (Westhoff et al. 2006, DiStefano et al. 

2008, Herleth-King 2015) and intermittent streams typically may not be sampled representatively 

in surveys for rare aquatic species (DiStefano et al. 2009).  Intermittent streams are of great 

importance but are often neglected in research and monitoring.  

Many crayfish are both of great conservation concern and are often cryptic and difficult 

to detect. Despite the importance of accounting for imperfect detection to effectively model 

species distribution and abundance (MacKenzie et al. 2006), very few studies have examined 

detectability when examining crayfish species distributions. Pearl et al. (2013) compared 

detection probabilities of the introduced Orconectes neglectus and Procambarus clarkii (detected 

at 0.11 and 0.44, respectively) and the native Pacifastacus leniusculus (detected at 0.24) in the 

Pacific Northwest. Frisch et al. (2016) detected Cambarus spp. at 0.36 in the Little Tennessee 

River basin of the Southern Appalachians and found detection negatively related to pebble size. 

Understanding patterns of detectability is especially important for crayfish due to their ecological 

importance and imperilment.  
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Although seasonal stream drying in the Ozark Highlands is a natural process in 

intermittent streams, global climate change and the pressures of human water use may induce 

additional stress on the region’s crayfish in the future. The ecological importance of crayfish 

coupled with their imperiled status, indicate the need to characterize their use of intermittent 

streams to establish effective conservation and monitoring strategies. Our objectives were to 1) 

determine crayfish occupancy, detection probabilities, and species densities in intermittent versus 

permanent streams in the Ozark Highlands ecoregion and 2) examine the influence of stream 

permanence and landscape to local habitat variables on crayfish species densities.  

Methods 

Study area 

Recently, the natural flow regimes in the Ozark-Ouachita Interior Highlands of Arkansas, 

Missouri, and Oklahoma were classified (Leasure et al. 2016). Sets of flow metrics were used 

that best quantified several ecologically-important components of these natural flow regimes.  

Leasure et al. (2016) found the Ozark Highlands ecoregion included permanent groundwater-

influenced streams with relatively low hydrologic variability, as well as intermittent streams. 

Streams classified as Intermittent Flashy have small drainage areas (8 to 22 km2) and exhibit 

substantial flow variability (i.e., drying for one to three months per year), including complete 

drying in late summer. Groundwater Flashy streams were found within a range of drainage areas 

from 11 to 3,237 km2. These streams had less daily flow variability than any runoff-dominated 

streams and never experienced complete drying (Leasure et al. 2016). We used Intermittent 

Flashy streams as intermittent streams and Groundwater Flashy streams as permanent streams 

due to the contrast in their hydrologic variability and tendency to experience complete 

(intermittent) or no seasonal drying (permanent). Both flow classes are considered “flashy” 
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which is a common stream type in the Ozark Highlands ecoregion (Leasure et al. 2016) and 

refers to the rapid rates of change from one magnitude to another. Ten intermittent streams and 

ten permanent streams were selected for study (Fig. 1). Streams were candidates for selection if 

they were within a drainage area smaller than 200 km2, at least 10 km away from one another, 

and had a probability of  ≥0.50 of being in the correct hydrologic regime, as per models in 

Leasure et al. (2016). Ten streams of each level of permanence were randomly selected from the 

group of streams fitting these criteria. Accessibility and the availability of riffle habitats was 

determined in candidate streams by visiting them prior to sampling. Land use within 

subwatersheds (HUC 12) of study streams was predominantly forest, pasture, hay, and livestock 

farming (Homer et al. 2015). Natural vegetation consisted of hickory (Carya spp.) and oak 

(Quercus spp.) forest. Streambeds consisted largely of boulder, cobble, pebble, and gravel 

substrates with occasional bedrock outcroppings. All study streams had a well-defined riffle-pool 

sequence typical of Ozark streams.  

 Field sampling  

The 20 streams were each sampled in 2014 (10 June - 23 July) and 2015 (10 June - 17 

July). Four distinct riffle habitats were selected in each stream and eight 1 m2 areas were 

randomly chosen in each riffle for sampling. Crayfish were dislodged from a 1 m2 area 

(determined by a quadrat made of PVC) by thoroughly kicking and disturbing the substrate 

directly upstream of a seine net (3 mm mesh, 1.8 m l X 1.1 m h). Crayfish dislodged from the 

substrate were washed into the seine net by the water current and by pulling the seine through the 

sample area. All crayfish collected were identified to species and were released to their 

collection sites. 
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 We determined how environmental variables differed among streams of varying 

permanence and how these variables influenced crayfish abundance. Four variables (% forest 

cover, water depth, current velocity, and surface substrate size) were used in addition to stream 

permanence. Variables were selected based on previous studies that showed their importance for 

crayfish occupancy and abundance (e.g., Flinders and Magoulick 2005, Magoulick and 

DiStefano 2007, Larson and Olden 2013, Parvulescu et al. 2013, Nolen et al. 2014). Current 

velocity and depth were measured directly in front of each sampling location (32) in each stream 

using a Marsh McBirney® model 2000 flow meter (0.6-depth, ms-1). Surface substrate 

composition was estimated within each 1m2 quadrat. Percent sand (0-0.1 cm diameter), gravel 

(0.1-3 cm diameter), pebble (3-6 cm diameter), cobble (6-12 cm diameter), and boulder (>12 cm 

diameter) were visually estimated (Rabalais and Magoulick 2006). Percent forest cover was 

determined using ArcMap (ver. 10.3.1) and the National Land Cover Database 2011 (Homer et 

al. 2015). The percentage of forested land relative to all other land cover types was tabulated 

within each study subwatershed at the HUC 12 level.  

Data Analysis 

We used Principal Components Analyses (PCA) as a predictor variable reduction 

procedure. All predictor variables were log10(x+1) transformed to meet the assumptions of 

normality and homogeneity of variance. PCA was performed separately for 2014 and 2015. The 

first two principal components were used as model predictor variables for both years. Using PCA 

for variable reduction simplified our modeling structure and helped avoid autocorrelation of 

predictor variables. Large differences in the contribution of predictor variables to each principal 

component facilitated making biological interpretations. The PCA for both years yielded one 

factor with an Eigenvalue > 1. The second factor was used in both years because in both analyses 



18 
 

it had Eigenvalues close to 1 (2014: 0.94, 2015: 0.97) and we wanted to include a factor 

correlated with a local habitat variable.  

Program PRESENCE (Version 10.9, Proteus Research and Consulting Ltd., Dunedin, 

New Zealand) was used to estimate site occupancy rates (psi) and detection probabilities (p) for 

the four most common crayfish species (Orconectes luteus, O. meeki, O. neglectus and O. 

williamsi) of the seven species collected. Site occupancy and detection probabilities of O. 

williamsi were not performed for permanent streams since this species only occupied one 

permanent stream. The remaining three species (Orconectes longidigitus, O. punctimanus, and 

O. ozarkae) were found at a small proportion of sites (< 20%), were not collected in both years, 

or models did not converge, and were therefore excluded. Models to determine the influence of 

stream permanence and environmental variables on crayfish occupancy and detection often 

exhibited poor fit and overdispersion due to small sample size and complete separation among 

response variables. Therefore, site occupancy and detection probabilities for each species were 

determined using the null (constant) model by year and stream permanence. 

 We used multiple linear regression to determine relationships between crayfish species 

densities and environmental variables to further understand the influence of stream permanence 

on crayfish. Two candidate models included each of the principal components separately and one 

candidate model included both principal components as the global model. The three models were 

run separately for each year for each of the four species. Species densities were log10(x+1) 

transformed to meet the assumptions of normality and homogeneity of variance. Model selection 

was based on the small-sample size-corrected Akaike Information Criterion values (∆AICc; 

Akaike 1973, Burnham and Anderson 2002) and models were considered supported by the data 

if ∆AICc was less than 2.0 (Burnham and Anderson 2002).  Model fit was assessed with R2. In 
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addition, effect of year and stream permanence on crayfish densities, diversity, and 

environmental variables was examined using two-way ANOVA. Simpson’s Diversity was 

calculated based on all seven species collected. A false discovery rate correction was used to 

control Type I error rates (Benjamini and Hochberg 1995).  

Results 

A total of 3,830 crayfish was collected in 2014 and 1,887 were collected in 2015. There 

was no year by stream permanence interaction for any response variables examined (Table 1).  

Individual species densities differed significantly by stream permanence but did not differ by 

year (Fig. 2, Table 1). The pattern of crayfish species occurrence by stream permanence was the 

same in both years but with lower densities in 2015 (Fig. 2). Orconectes luteus and O. neglectus 

densities were significantly greater in permanent streams than in intermittent streams whereas O. 

meeki and O. williamsi densities were significantly greater in intermittent streams than in 

permanent streams (Fig. 2, Table 1). Total crayfish densities were significantly greater in 2014 

than in 2015 but did not differ by stream permanence (Fig. 2, Table 1). Simpson’s diversity did 

not differ by stream permanence or year (Table 1).  

 Summer 2014 had slightly less than average precipitation (June: 2.24 cm., July: 2.62 cm.) 

whereas summer 2015 was substantially wetter than average (June: 4.55 cm., July: 11.66 cm.) 

(NOAA 2016). Current velocities were significantly greater in 2015 than in 2014 and were 

significantly greater in permanent streams than in intermittent streams (Table 1). Depths were 

significantly greater in 2015 and in permanent streams (Table 1). Substrate size did not differ by 

year but was significantly greater in intermittent streams (Table 1). 
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Detection probability and site occupancy  

 Detection probabilities were moderate to high for all species in both stream types during 

both years (Fig. 3).  In intermittent streams, O. williamsi had the highest detection probabilities 

in both years (p ≥ 0.94) whereas O. meeki had the lowest detection probabilities in 2014 (p = 

0.70) and O. neglectus had the lowest detection in 2015 (p = 0.58) (Fig. 3). Orconectes neglectus 

and O. luteus both had high detection probabilities in permanent streams in both years (p ≥ 0.87) 

(Fig. 3). Orconectes meeki was not detected in permanent streams and detection probabilities of 

O. williamsi could not be estimated for this stream type due to model failure based on only one 

detection of this species in both years. There was a moderate positive correlation between 

crayfish density and detection probability (r = 0.54).  

Orconectes neglectus, the most commonly captured species, had the highest site 

occupancy rates in both years in permanent streams (psi = 1) and O. luteus had moderately high 

occupancy in this stream type (psi ≥ 0.60) (Fig. 3). Orconectes meeki did not occupy permanent 

streams and O. williamsi occupied only one permanent stream. All species occupied intermittent 

streams in both years but some to a greater extent. Orconectes williamsi had the highest 

occupancy in intermittent streams in 2014 (psi = 0.80) and O. meeki had the highest occupancy 

in 2015 within this stream type (psi = 0.90) (Fig. 3). Orconectes luteus had the lowest occupancy 

in intermittent streams in both years (psi = 0.20) (Fig. 3).  

Density relationships 

 The first two principal components for 2014 explained 78.3% of the variation in the 

covariate data. In 2014, intermittent streams were strongly positively correlated (0.83) with PC1 

and contributed 49.11%, and substrate size was strongly positively correlated (0.94) with PC2 
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and contributed 56.38%. In 2015, the first two factors explained 68.3% of the variance in the 

covariates. Intermittent streams were positively correlated (0.77) with PC1 and contributed 

53.92% and current velocity was strongly positively correlated (0.97) with PC2 in 2015 and 

contributed 66.44%. (Table 2).  

 Multiple regression modeling indicated that species densities were largely determined by 

PC1 rather than PC2 (Table 3).  In both years, O. luteus densities were related to PC1 (Table 3). 

Densities of O. luteus were significantly negatively related to PC1 in 2014 (coef = -0.23; SE = 

0.07; p < 0.01) and negatively related to PC1 in 2015 (coef = -0.12; SE = 0.06; p = 0.07).  

 Orconectes meeki densities were related to PC1 in 2014 (Table 3). Both the global model 

and the PC1 model were equally supported in 2015 (Table 3). Densities of O. meeki were 

significantly positively related to PC1 in 2014 (coef = 0.13; SE = 0.06; p = 0.05) and in 2015 

(coef = 0.07; SE = 0.02; p = 0.01). Based on the global model, densities were also positively 

related to PC2 in 2015 (coef = 0.04; SE = 0.02; p = 0.06).  

 The global model and the PC1 model were equally supported in 2014 for O. neglectus 

(Table 3). Densities of O. neglectus were significantly negatively related to PC1 in 2014 (coef = 

-0.13; SE = 0.05; p = 0.01) and 2015 (coef = -0.09; SE = 0.03; p < 0.01). Based on the global 

model, O. neglectus densities were positively related to PC2 in 2014, though this relationship 

was not significant (coef = 0.08; SE = 0.04; p = 0.10).  

 Orconectes williamsi densities were related to PC1 in 2014 (Table 3) and densities were 

significantly positively related to PC1 (coef = 0.22; SE = 0.09; p = 0.02). Unlike all other study 

species, the PC2 model was equally supported as the global model for the top ranked model in 

2015 (Table 3). Densities of O. williamsi were significantly negatively related to PC2 in 2015 
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(coef = -0.11; SE = 0.04; p = 0.02) but were positively related to PC1, however, this relationship 

was not significant (coef = 0.06; SE = 0.04; p = 0.13).  

Discussion 

Site occupancy of all crayfish species differed by stream permanence in both years. 

Stream permanence is known to have a significant effect on biotic communities. Most studies 

focused on determining the influence of stream permanence on aquatic invertebrates have 

studied benthic insects. Stream permanence influences insect emergence (Delucchi and 

Peckarsky 1989) and riffle permanence can affect the structure of benthic insect assemblages 

(Feminella 1996). Flinders and Magoulick (2003) demonstrated the importance of stream 

permanence for lotic crayfish and found that crayfish density and crayfish-environment 

relationships differed between intermittent and permanent streams. Unlike Flinders and 

Magoulick (2003), which detected all crayfish species within their study in both stream types 

throughout the Spring River drainage of Arkansas and Missouri, we found one species (O. 

meeki) to occupy intermittent streams exclusively and another species (O. williamsi) nearly did 

so. Two species in the Flinders and Magoulick (2003) study (O. marchandi and O. punctimanus) 

were found in significantly greater densities in intermittent streams than in permanent streams 

whereas densities of two species (Cambarus hubbsi and O. ozarkae) did not differ by stream 

type. Our study found all four species of crayfish to differ significantly by stream permanence 

(Table 1). Our findings agree with Flinders and Magoulick (2003) that stream permanence 

appears to be of great importance for crayfish occupancy and abundance. 

Individual species densities were determined by both stream permanence and local 

habitat variables. Linkages between crayfish density and local habitat variables have been 

illustrated in a number of studies (Flinders and Magoulick 2005, Westhoff et al. 2006, 
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Magoulick and DiStefano 2007, DiStefano et al. 2008, Nolen et al. 2014, Herleth-King et al. 

2015). Nolen et al. (2014) determined that landscape variables have a stronger influence on 

crayfish distributions but local habitat variables were more important in explaining crayfish 

abundances. The present study reinforces the idea that crayfish presence may be determined by 

landscape-scale variables (e.g., stream permanence) whereas crayfish abundance is more apt to 

be determined by both landscape-scale and local habitat variables.   

 Interannual variability in precipitation likely contributed to higher total crayfish densities 

in 2014 and differences in local habitat variables. More precipitation in 2015 elicited the faster 

current velocities and deeper water depths recorded during this year. Average substrate size did 

not differ between years which was expected. However, average substrate size was larger in 

intermittent streams which may be related to high annual maximum flow and high flood 

frequency seen in streams of this flow class (Leasure et al. 2016). Smaller substrate particles may 

get washed out during high flow events in intermittent streams which may explain the larger 

average substrate size in these streams. More precipitation and the increased frequency of high 

flow events in 2015 presumably led to the lower crayfish densities seen during the second year of 

the study.  

Unlike previous studies, O. williamsi densities were significantly negatively associated 

with current velocities in 2015. Westhoff et al. (2006) found that O. williamsi densities were 

positively associated with higher current velocities and Herleth-King et al. (2015) found this 

species to occur in riffles rather than pools, where current velocities are faster. While these 

previous studies suggest that O. williamsi is associated with faster current velocities this was not 

the case during the second year of our study. We did not discern a relationship between O. 

williamsi and water depth in our study, but this species is known to be positively associated with 
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shallow depths (Westhoff et al. 2006). It is possible that intensified local habitat conditions in 

2015 brought on by precipitation were too extreme and led to reduced total crayfish densities 

during that year, despite previous documentation of O. williamsi being associated with fast 

current velocities. Relationships between current velocity and depth were not revealed in our 

models for the remaining species. However, previous studies have indicated O. meeki as more of 

a habitat generalist than some of its species associates (e.g., O. williamsi; DiStefano et al. 2008) 

and O. neglectus is often observed in slower velocity pools (Westhoff et al. 2006). One possible 

explanation for the different species-environment relationships observed in our study versus 

previous studies may be because our study only focused on riffle habitats. This may explain why 

water depth was not seen as an important habitat variable in our study and the unanticipated 

negative association among O. williamsi and current velocity.  Differences in interannual 

precipitation over the course of the study may have also played a role in our observations and 

these differences can alter what we term “intermittent” and “permanent.”  

 Surprisingly, total crayfish densities did not differ by stream permanence. According to 

Resh et al. (1988), it is expected that standing crop biomass would be lower in streams that 

undergo frequent disturbance such as seasonal drying. Since streams with permanent flow tend to 

have a more stable range of physical and chemical conditions than intermittent streams (Boulton 

and Lake 1990), we anticipated that this consistency in habitat may foster greater crayfish 

densities in permanent streams however, this was not the case. Our results also do not coincide 

with Flinders and Magoulick (2003) who found greater crayfish densities in intermittent streams 

than permanent streams in the Spring River drainage of Arkansas and Missouri. It is possible that 

a difference in crayfish densities was undetected between the two stream types because the dry 

period in the intermittent streams was not intense enough to elicit negative population effects 
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during the period of study. While 2014 had slightly less precipitation in the summer months than 

average, neither year had substantial seasonal drought as is typical for this region (Magoulick 

2000, Larson et al. 2009) which supports that intermittent and permanent streams are dynamic by 

nature and are closely linked to interannual variability in precipitation. There was no difference 

detected in species diversity between the two stream types indicating intermittent streams may be 

as capable of supporting diverse and abundant crayfish populations as permanent streams. 

Unlike most studies of crayfish distribution, ours is one of the few to model crayfish 

detection probabilities and account for imperfect detection. Detection probabilities are important 

to consider when examining species distribution and without them, biased conclusions may be 

drawn (MacKenzie et al. 2006) and this may be especially important for rare and imperiled 

species. Crayfish detection probabilities were moderate to high for all species in both years 

(2014: 0.70-0.98, 2015: 0.56-1.00). These detection probabilities are high compared to the few 

previous studies that examined crayfish detection probability. In the Pacific Northwest, Pearl et 

al. (2013) detected the native Pacifastacus leniusculus at 0.24 and the invasive Orconectes 

neglectus and Procambarus clarkii at 0.11 and 0.44, respectively. In the Little Tennessee River 

basin of the Southern Appalachians, Frisch et al. (2016) detected Cambarus spp. at 0.36. Our 

crayfish detection probabilities may have been higher due to differences in stream size, species 

behavior, local habitat conditions, and sampling techniques.  

Local density affects the detection probability of most species and when the density of a 

species increases, the probability of detection often increases (Royle and Nichols 2003). We saw 

a moderate positive relationship between crayfish densities and detection probability (r = 0.54). 

Since this relationship was not strong, it is likely that our sampling method was sufficient at 

detecting crayfish even at low densities. Furthermore, detection probabilities remained high 
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during the wet summer of 2015 when depths were deeper and velocities were faster. Our 

approach appears to be effective at sampling riffle-dwelling crayfish in small streams. It is 

important to recognize that our sampling regime focused only on riffle habitats. It is known that 

some of the species we collected also occur in other habitats such as pools (O. neglectus 

[Westhoff et al. 2006], O. meeki [DiStefano et al. 2008]) which we did not sample. Therefore, 

this may confound interspecies comparisons.  

Spatial segregation by stream permanence was present across our study sites. Intermittent 

streams were clustered in the southwest portion of the study area whereas permanent streams 

were clustered in the central part of the study area (Fig. 1). The clustering of our sites occurred at 

least in part because stream permanence is determined by geographic variation in vegetative 

cover, climate, geology, topography, and river size (Poff et al. 1997). Due to this, regional 

patterns are inherent to flow classification. We intended to use additional landscape level 

variables in our models. However, all variables examined (e.g., geology, soils, elevation) were 

correlated with stream permanence. For example, intermittent streams were dominated by 

sandstone geology and were at higher elevations than permanent streams. Permanent streams 

were predominantly comprised of limestone and dolomite geology, agricultural land cover, and 

were at lower elevations. Therefore, it may be appropriate to view stream permanence as a 

surrogate for a suite of landscape variables due to the interconnected nature of hydrology and 

landscape-scale factors.  

We documented that two imperiled species of crayfish (O. meeki and O. williamsi) 

occupy intermittent streams throughout the Upper White River drainage in Arkansas and 

Missouri. This study adds to our knowledge base of crayfish use of intermittent streams and the 

importance of stream permanence for biotic assemblages. Our research confirms that small, 
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headwater streams support a diversity of organisms including those of conservation concern. 

Intermittent streams may be neglected in research and monitoring which may bias knowledge of 

aquatic species distributions and potentially affect conservation actions. Since intermittent 

streams are important for these and other imperiled crayfish such as Orconectes marchandi 

(Flinders and Magoulick 2003), they should be considered in surveys of imperiled biota. Our 

study is applicable to the current management of intermittent streams due to the ongoing 

controversy related to the U.S. Clean Water Act (Nadeau and Rains 2007, USEPA and USACE 

2007) and the types and sizes of streams afforded protection under this policy. In addition, 

predicted changes in climatic patterns will likely elicit significant low-flow periods that may lead 

to local or total extinctions of imperiled species (Humphries and Baldwin 2003) which may 

include O. meeki and O. williamsi. The effects of climate change and subsequent alterations to 

hydrologic regimes will likely have broad impacts on imperiled aquatic biota on a global scale. 

Crayfish use of intermittent streams suggests that these streams are crucial for the conservation 

of these species and the integrity of freshwater systems in the face of global climate change.  
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Variable Year Stream 

Permanence 

Year * Stream 

Permanence 

 

Orconectes luteus 

 

0.25 

 

< 0.01 

 

0.26 

Orconectes meeki 0.24 0.01 0.25 

Orconectes neglectus 0.18 < 0.01 0.17 

Orconectes williamsi 0.18 0.02 0.17 

 

Total crayfish density 

 

0.02 

 

0.81 

 

0.75 

Simpson’s Diversity 0.97 0.81 0.75 

 

Water depth (m) 

 

0.01 

 

0.02 

 

1.00 

Current velocity (m/s) < 0.01 0.02 1.00 

Substrate size 0.66 0.02 1.00 

Table 1. Effect of year and stream permanence (two-way ANOVA p-values) on crayfish 

species densities, total crayfish densities, Simpson’s Diversity, and local habitat variables. 

False discovery rate correction was used to control Type I error rates. 
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Site Covariate 

2014 

PC1 PC2 

 Contribution 

(%) 

Correlation Contribution 

(%) 

Correlation 

Intermittent streams 49.11 0.83 16.65 -0.28 

Water depth 12.43 -0.21 16.10 0.27 

Current velocity  9.47 0.16 8.09 -0.14 

Average substrate size 11.83 -0.20 56.38 0.94 

% Forested land  17.16 0.30 2.81 -0.05 

   

Site Covariate 

2015 

PC1 PC2 

 Contribution 

(%) 

Correlation Contribution 

(%) 

Correlation 

Intermittent streams 53.92 0.77 9.84 0.14 

Water depth 12.92 -0.18 14.29 -0.21 

Current velocity  6.16 0.09 66.44 0.97 

Average substrate size 11.49 0.16 3.10 0.05 

% Forested land 15.52 0.22 6.35 0.09 

Table 2. Principal Components Analyses (PCA) of five environmental covariates describing 

20 streams in 2014 and 2015 in the Upper White River drainage of Arkansas and Missouri, 

USA. Correlations between covariates and the first two PCA factors (PC1 and PC2) and the 

relative contribution of covariates to these factors are indicated. 
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Species Model AICc ∆AICc r2 p  

 

2014 

 

O. luteus PC1 13.32 0.00 0.40 < 0.01  

 

 

PC2 23.32 10.01 0.00 

 

0.79  

 

 

Global 16.43 3.11 0.40 0.01  
       

O. meeki PC1 8.24 0.00 0.20 0.05  

 

 

PC2 12.58 4.34 0.01 0.66  

 

 

Global 11.04 2.79 0.22 0.12  
       

O. neglectus PC1 -0.58 0.00 0.31 0.01  

 

 

PC2 4.91 5.49 0.09 0.21  

 

 

Global -0.54 0.04 0.41 0.01  
       

O. williamsi PC1 23.31 0.00 0.26 

 

0.02  

 

 

PC2 29.12 5.81 0.01 0.65  

 

 

Global 26.03 2.73 0.28 

 

0.06  

Table 3. Multiple linear regression model output for four crayfish species in 2014 and 2015 

in the Upper White River drainage of Arkansas and Missouri, USA. PC1 and PC2 

relationships are shown in Table 2. P-values correspond to statistical significance of models. 

P-values of coefficients shown in text.  
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Species Model AICc ∆AICc r2 p  

 

2015 

 

O. luteus PC1 9.20 0.00 0.17 

 

 

 

0.07  

 

 

PC2 12.69 3.49 0.01 0.61  

 

 

Global 12.02 2.81 0.19 0.17  
       

O. meeki PC1 -29.58 1.26 0.31 0.01  

 

 

   PC2 -24.97 5.87 0.14 0.11  

 

 

Global -30.83 0.00 0.45 0.01  

O. neglectus 

 

   PC1 -25.55 0.00 0.42 <0.01  

       

    PC2 -15.20 10.35 0.03 0.47  

       

 Global -23.41 2.14 0.45 0.01  

O. williamsi 

 

PC1 -1.59 4.37 0.09 0.19  

       

 PC2 -5.95 0.00 0.27 0.02  

       

 Global -5.55 0.40 0.37 0.02  

       

 

 

       

       

       

       

       

       

       
       
       

Table 3. Cont.  



36 
 

 

 

 

 

 

 

 

 

 

       
       
       
       

       
       
       

      

      

      

      

      

Fig. 1. Study area and sample locations within the Upper White River drainage of Arkansas 

and Missouri, USA.  
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Fig. 2. Mean densities (±SE) by stream permanence of four most common crayfish 

species captured in 2014 and 2015 in 20 streams in the Upper White River drainage of 

Arkansas and Missouri, USA. 
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Fig. 3. Site occupancy (left panels) and detection probability (right panels) for all species in 

2014 (top panels) and 2015 (bottom panels) by stream permanence across 20 streams in the 

Upper White River drainage of Arkansas and Missouri, USA. Missing bars indicate species 

absence in stream type or model failure due to only one detection event (i.e., O. williamsi in 

permanent streams). 
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Abstract 

Given the importance of crayfish in stream ecosystems, gaining insight into the role of 

stream permanence in maintaining predator-prey interactions is critical. Our objectives were to 

1) determine the influence of stream permanence and season on crayfish predation and 2) assess 

the role of stream permanence and crayfish density on the presence of predators, while 

accounting for imperfect detection. We conducted surveys of crayfish density, fish presence, 

mammalian scat, and environmental variables within 10 intermittent and 10 permanent streams 

in the Ozark Highlands. We used occupancy modeling and logistic regression to assess the 

relationship between predator presence, crayfish density, and environmental variables. Stream 

permanence did not play a role in determining the relative frequency of occurrence or volume 

percentage of occurrence of crayfish prey in mammalian diets. However, season influenced the 

percent volume of crayfish found in mammal scats, and the volume percentage of crayfish prey 

was significantly greater in spring and summer compared to fall. The relative frequency and 

volume percentage of fish prey was strongly influenced by a season and stream permanence 

interaction which to our knowledge, is the first instance of this observation. Raccoons had the 

highest detection probability whereas American mink and river otter had low detection 

probabilities. River otter occupancy was positively associated with intermittent streams whereas 

centrachid, raccoon, and American mink occupancy was negatively associated with intermittent 

streams. While our study did not indicate a relationship between stream permanence and 

predation risk, future hydrologic variability associated with climate change may alter crayfish 

predation risk and could have widespread implications for aquatic biota and predator-prey 

interactions. 
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Introduction 

Crayfish fulfill a crucial role in lotic systems and can be considered both keystone species 

(Nyström et al. 1996) and ecosystem engineers (Creed and Reed 2004). They are a major 

contributor to production (Momot 1995) and act as predators (Momot 1995, Stenroth and 

Nyström 2003), consumers of autotrophs (Momot 1995, Dorn and Wojdak 2004), and 

detritivores (Stenroth and Nyström 2003). Due to their high contribution to macroinvertebrate 

biomass in many freshwater ecosystems (often >50% [Momot 1995]), crayfish serve as an 

important prey source for aquatic (Nyström et al. 2006), riparian (e.g., raccoon [Procyon lotor; 

Dorney 1954]; river otter [Lontra canadensis; Dekar et al. 2010]; American mink [Neovison 

vison; Wolff et al. 2015]), and avian predators (e.g., great blue heron [Ardea herodias; Hunt et al. 

1995]). Despite the multifunctional role of crayfish in stream ecosystems and their importance in 

lotic food webs, crayfish are among the most imperiled freshwater taxa and are often highly 

endemic (Taylor et al. 1996, Taylor et al. 2007). 

Crayfish predation risk is largely determined by habitat characteristics. Risk from aquatic 

or terrestrial predators is often related to water depth. Crayfish predation risk from aquatic 

predators (e.g., fish) is typically greater in deep water (Mather and Stein 1993, Flinders and 

Magoulick 2007, Clark et al. 2013). Deeper water may be limiting to some terrestrial predators, 

while others such as river otters are able to forage in both deep and shallow habitats due to their 

ability to dive for extended periods of time (Ben-David et al. 2000). Due to this, aquatic 

predators may show greater crayfish consumption in wet or non-drying conditions, whereas 

terrestrial predators may show greater crayfish consumption in shallow water and during periods 

of drought (Englund and Krupa 2000, Englund 1999). Predation risk is also closely linked to the 

availability of substrate and substrate particle size as these features can offer hiding cover. In a 
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crayfish tethering experiment in northern Wisconsin lakes, crayfish predation was higher in sand 

habitats compared to habitats containing cobble or macrophytes (Kershner and Lodge 1995). 

Larger substrates such as large rocks or boulders have more interstitial space and therefore 

provide crayfish with more protection from predators (Stein and Magnuson 1976) and these 

substrates may be especially important as refugia for small-bodied crayfish where predation is 

high (Clark et al. 2013). When water levels are low, protection afforded by large substrate sizes 

or submerged vegetation may be important for avoidance of predators (Wolff et al. 2016).  

Due to the importance of instream habitat for crayfish predation risk, it is likely that 

crayfish predation risk differs among streams of varying hydrologic patterns. The natural flow 

regime of streams is closely linked to physical habitat. The movement of sediment, woody 

debris, and other transportable materials by flowing water is responsible for maintaining a 

variety of features such as substrate size, channel morphology, and habitat heterogeneity (Poff et 

al. 1997). Due to the importance of habitat in determining crayfish predation risk, assessing the 

role of stream permanence and seasonality as related to crayfish predation is important in 

understanding their habitat requirements and distribution patterns. 

 Given the crucial role of crayfish in stream ecosystems coupled with their imperiled 

status, gaining insight into the role of stream permanence in maintaining predator-prey 

interactions is critical, especially in the context of global climate change. Alterations to 

precipitation regimes will likely result in more extreme hydrologic events (e.g., flooding, 

drought) (Wuebbles and Hayhoe 2004) which may alter biotic relationships. Our objectives were 

to 1) determine the influence of stream permanence and season on crayfish predation and 2) 

assess the role of stream permanence and crayfish density on the presence of aquatic and 

mammalian predators, while accounting for imperfect detection.  
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Methods 

Study Area 

The natural flow regimes in the Ozark-Ouachita Interior Highlands of Arkansas, 

Missouri, and Oklahoma were recently classified (Leasure et al. 2016). The Ozark Highlands 

ecoregion included both intermittent streams with highly variable hydrology and permanent 

groundwater-influenced streams with relatively low hydrologic variability (Leasure et al. 2016). 

Streams classified as Intermittent Flashy streams have small drainage areas (8 to 22 km2) and 

exhibit a great deal of flow variability (e.g., drying for one to three months per year), including 

typical complete drying in late summer. Groundwater Flashy streams showed a wide range of 

drainage areas (11 to 3237 km2), had less daily flow variability than runoff-dominated streams 

and never experienced complete drying (Leasure et al. 2016). We examined Intermittent Flashy 

streams as intermittent streams and Groundwater Flashy streams as permanent streams, due to 

the contrast in their hydrologic variability and tendency to experience complete seasonal drying 

(intermittent) or no seasonal drying (permanent). Both flow classes are considered “flashy” 

which is a common stream type in the Ozark Highlands ecoregion (Leasure et al. 2016) and 

refers to the rapid rates of change from one magnitude to another. Ten intermittent streams and 

ten permanent streams were selected for study (Fig. 1).  

Land use within subwatersheds (HUC 12) of study streams was predominantly forested, 

pasture, hay, and livestock farming (Homer et al. 2015). Natural vegetation consisted of hickory 

(Carya spp.) and oak (Quercus spp.) forest. Streambeds consisted largely of boulder, cobble, 

pebble, and gravel substrates with occasional bedrock outcroppings. All study streams had a 

well-defined riffle-pool sequence that is typical of Ozark streams. 
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Site Selection  

Streams were candidates for selection if they were within a drainage area smaller than 

200 km2, at least 10 km away from one another, and had a probability of ≥0.50 of being in the 

correct hydrologic regime, as given by models in Leasure et al. (2016).  We randomly selected 

10 streams of each level of permanence from the group of streams fitting these criteria. 

Accessibility and the availability of riffle habitats were determined in candidate streams by 

visiting them prior to sampling. 

Crayfish surveys  

To determine the influence of crayfish density in riffle habitats on the presence of 

predators, crayfish were sampled in the 20 streams during 2015 (10 June - 17 July). Four distinct 

riffle habitats were selected in each stream and eight 1m2 areas were randomly chosen in each 

riffle. In each sampling area, crayfish were dislodged from a 1 m2 area (determined by a quadrat 

made of PVC) by thoroughly kicking and disturbing the substrate directly upstream of a seine net 

(6 mm mesh, 1.8 m l X 1.1 m h). Crayfish dislodged from the substrate were washed into the 

seine net by the water current and by pulling the seine through the sample area. All crayfish 

collected were identified to species and were released to their collection sites. 

Abiotic variable data collection 

At each crayfish sampling location (32) in each stream, current velocity and depth were 

measured directly in front of the sampling location using a Marsh McBirney® model 2000 flow 

meter (0.6-depth, ms-1). Substrate composition was estimated at each sampling location within 

the 1m2 quadrat. Percent sand (0-0.1 cm diameter), gravel (0.1-3 cm diameter), pebble (3-6 cm 

diameter), cobble (6-12 cm diameter), and boulder (>12 cm diameter) was visually estimated 
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(Rabalais and Magoulick 2006). Percent forest cover was determined using ArcMap (ver. 10.3.1) 

and the National Land Cover Database 2011 (Homer et al. 2015). The percentage of forested 

land relative to all other land cover types was tabulated within each study subwatershed at the 

HUC 12 level. Drainage area of HUC 12 subwatersheds was determined using the National 

Hydrography Dataset Plus (USEPA and USGS 2005). 

Scat surveys 

Mammal scats were collected during summer 2015 (3 Aug – 29 Aug), fall 2015 (16 Oct – 

20 Oct), winter 2016 (29 Jan – 1 Feb), and spring 2016 (14 May – 18 May) at each site. Trained 

observers walked along both stream banks and surveyed up to 10 m from the stream edge. 

Surveys encompassed the four riffles (and pools in between and on edges) sampled for crayfish 

in summer 2015. Mink scat was identified by its twisted appearance with tapered ends, raccoon 

scat was distinguished by its tubular and smooth shape with blunt ends, and otter scat was 

identified by its irregular shape with tapered or blunt ends which is sometimes found in 

amorphous piles (Levine and Mitchell 2008). Individual scats were held in plastic bags and 

frozen until processing.  

Laboratory processing 

Each scat sample was soaked in water until prey remains were separated. Samples were 

washed through a sieve (500μ mesh) and air dried. Prey remains were sorted into eight prey 

classes (mammal, crayfish, fish, bird, insect, reptile, plant, and unknown) using a dissecting 

microscope (10 x). The unknown prey class was comprised of unidentifiable bones that may 

have belonged to birds, mammals, or reptiles. These broad prey classes were sufficient to 
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understand the importance of crayfish prey in the diets of riparian mammals. Exoskeleton 

fragments, chelae, scales, bones, teeth, fur, and feathers were used to identify prey.  

Diet metrics 

 Two diet metrics were used to assess the seasonal importance of crayfish in the diets of 

riparian mammals among permanent and intermittent streams. Relative frequency of occurrence 

of each prey class was calculated as the number of occurrences of each prey class divided by the 

total number of occurrences of identified prey (Ciucci et al. 1996). The volume percentage of 

each prey class was visually estimated to the nearest 5% as the percentage of each prey class in 

each scat (McDonald and Fuller 2005). Both metrics were used in analyses as each metric has 

pros and cons, and it has been suggested that frequency of occurrence should not be the sole 

method to assess carnivore diet (Klare et al. 2011). The frequency of occurrence metric may 

overestimate the contribution of small amounts of prey and may also overestimate less digestible 

prey and underestimate more digestible prey (Klare et al. 2011). The volume percentage metric 

has the potential to underestimate the contribution of highly digestible prey and does not account 

for variation in scat sizes (Klare et al. 2011). To minimize the biases of using a single metric, we 

used both in our analyses (Zabala and Zuberogoitia 2003). The effect of stream permanence and 

season on volume percentage and relative frequency of occurrence of each prey class was 

examined using two-way ANOVA. If ANOVA indicated a difference among groups, Tukey’s 

HSD test was used to determine which groups differed. Since multiple ANOVA’s were run, we 

used false discovery rate correction to control Type I error rates (Benjamini and Hochberg 1995). 

All analyses related to diet metrics were performed using the data from the three mammal 

species detected. 
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Aquatic predator surveys 

Snorkel surveys were conducted from 10 June - 17 July 2015 and coincided with crayfish 

sampling. Pool habitats between and on the edges of riffle habitats sampled for crayfish were 

sampled. Trained observers documented the presence of three common species of stream-

dwelling centrarchids (i.e., smallmouth bass [Micropterus dolomieu], largemouth bass, 

[Micropterus salmoides], and Ozark bass [Ambloplites constellatus]). Fish smaller than 100mm 

in length were not recorded. Since fish are gape-limited predators, small or young of year fish 

rarely consume crayfish (Roell and Orth 1993, Rabeni, 1992, Dorn and Mittelbach 1999) and 

were therefore excluded from analyses. 

Variable Reduction 

To simplify our modeling procedure and avoid correlation among predictor variables, 

Principal Components Analysis (PCA) was used as a predictor variable reduction procedure. All 

predictor variables were log10(x+1) transformed to meet the assumptions of normality and 

homogeneity of variance. The first two principal components were used as model predictor 

variables for both years. Large differences in the contribution of predictor variables to each 

principal component facilitated making biological interpretations. The first and second factors of 

the PCA had Eigenvalues > 1.  

Mammal occupancy 

Program PRESENCE (Version 10.9, Proteus Research and Consulting Ltd., Dunedin, 

New Zealand) was used to estimate occupancy rates (the proportion of area occupied in each 

site; psi) and detection probabilities (p) for the three riparian mammals detected throughout the 

study. Four models were run for each species of mammal and for all mammals combined. Two 
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models included each principal component separately as the occupancy parameter, one model 

included both principal components as the occupancy parameters (global model), and one model 

had a constant occupancy parameter (null model). Model selection was based on the small-

sample size-corrected Akaike Information Criterion values (∆AICc; Akaike 1973, Burnham and 

Anderson 2002) and models were considered supported by the data if ∆AICc was less than 2.0 

(Burnham and Anderson 2002). We anticipated that precipitation may play a role in our ability to 

detect mammal scats, therefore three detection covariates (i.e., Julian date, amount of 

precipitation within the last seven days, and the number of days since last precipitation event ≥2 

inches) were examined. None of the detection covariates performed better than the null 

(constant) model for detection.  Therefore, detection was modeled as a constant throughout the 

modeling procedure. Two models for American mink and one model for river otter did not 

converge presumably due to our limited detection of these species and complete separation 

among response variables. For these reasons, we could not obtain a reliable estimate for site 

occupancy of these species. Site occupancy estimates for raccoon and all mammals combined 

and detection probabilities for all species were based on the most supported model. 

Fish presence 

Logistic regression modeling was used to determine the relationship between the 

presence of fish predators and site-level variables. Two candidate models included each of the 

principal components separately and one candidate model included both principal components as 

the global model. The three models were once for all fish predators and sizes (>100mm) 

combined. The Chi-Square Goodness for Fit Test and McFadden’s R2 were calculated to assess 

model fit of the global model. 
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Results 

Mammal diet 

 There was no stream permanence by season interaction for relative frequency of 

occurrence metrics for any prey type except fish (Table 1). Individually, stream permanence and 

season did not play a role in influencing the relative frequency of any prey type (Table 1, Fig. 2). 

For the volume percentage metric, fish were the only prey item influenced by the stream 

permanence by season interaction (Table 1). Percent volume of fish prey was 100% (fish were 

the only prey type found) in winter in permanent streams but contributed very little during other 

seasons (<2%) (Fig. 3). During all seasons except winter, percent volume of crayfish prey was 

highest, ranging from 46-78% in permanent streams (Fig. 3). All remaining prey classes 

contributed little volume with the exception of mammal prey in fall (35%) in permanent streams 

(Fig. 3). In intermittent streams, percent volume of fish prey was <2% during winter and was low 

during all other seasons (Fig. 3). Crayfish prey had the highest percent volume in all seasons (40-

71%) except fall which was dominated by mammal (31%), fish (23%), and plants (21%). (Fig. 

3). Stream permanence did not play a role in influencing percent volume of all prey types other 

than fish (Table 1, Fig. 2). 

The percent volume of crayfish prey was influenced by season (Table 1, Figs. 2 & 3). 

The volume percentage of crayfish prey was significantly greater in spring (p=0.02) and summer 

(p < 0.01) compared to fall but no significant differences were detected between winter and other 

seasons (Fig. 3). Relative frequency of occurrence of crayfish prey exhibited a similar pattern 

and was greater in spring and summer compared to fall (Fig. 2), though this relationship was not 
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significant (Table 1). With the exception of fish, the consumption of all prey types were not 

influenced by season for either metric (Table 1).  

Occupancy models 

The first two principal components explained 62% of the variation in the covariate data. 

Intermittent streams were strongly positively correlated (0.81) with PC1 and contributed 35.53%. 

Percent forested land was also strongly positively correlated (0.96) with PC1 and contributed 

42.11%. Crayfish density was strongly positively correlated (0.99) with PC2 and contributed 

70.21% (Table 2).  

For all mammals combined, the null, global, and PC1 models were equally supported 

(Table 3). Occupancy of all mammals was positively related to PC1 (coef=2.05; SE=4.74; 95% 

CI=-7.24–11.34) and negatively related to PC2 (coef=-0.31; SE=0.88; 95% CI=-2.03–1.41), but 

the relationships were not significant. The global model fit the data well (Chi-square p=0.47) 

with no overdispersion (c-hat=0.66). 

The null, global, and PC2 models were equally supported for raccoon (Table 3). Raccoon 

occupancy was negatively related to PC1 (coef=-2.07; SE=1.41; 95% CI=-0.69–4.83) and PC2 

(coef=-2.34; SE=1.50; 95% CI=-5.28–0.60), but neither of these relationships were significant. 

The global model fit the data well (Chi-square p=0.41) and there was no overdispersion (c-

hat=0.81). 

Only two of the four models converged for American mink. The PC2 model was 

supported more than the global model (Table 3). American mink occupancy was negatively 

related to PC2 (coef=-1.71; SE=0.33; 95% CI=-2.36–-1.06) and this relationship was significant. 
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The global model fit the data well (Chi-square p=0.30) and there was minimal overdispersion (c-

hat=1.16). 

Three of the four models converged for river otter. The null, PC1, and PC2 models were 

equally supported (Table 3). River otter occupancy was positively related to PC1 (coef=1.69; 

SE=1.52; 95% CI=-1.30–4.67) and PC2 (coef=1.51; SE=4.83; 95% CI=-7.96–10.98), but these 

relationships were not significant. Since the global model did not converge, model fit was 

assessed based on the PC1 and PC2 models. These models fit the data well (PC1 Chi-square 

p=0.37; PC2 Chi-square p=0.43) and there was minimal overdispersion (PC1 c-hat=1.33; PC2 c-

hat=1.29). 

Occupancy and detection 

 Raccoons were the most commonly detected mammal species and had the highest naïve 

and site occupancy rates (naïve occupancy=0.55; psi=0.64; SE=0.14; CI=0.35–-0.85). While 

occupancy rates could not be modeled reliably for American mink and river otter, their naïve 

occupancy rates were 0.50, and 0.10, respectively. For all mammals species combined, naïve 

occupancy was 0.75 and modeled site occupancy was 0.84 (SE=0.12; CI=0.48–0.97). Raccoon 

also had the highest detection probability (p=0.39; SE=0.09; CI=0.24–0.57). American mink and 

river otter had low detection probability (mink: p=0.15; SE=0.04; CI=0.09–0.24; otter: p=0.03; 

SE=0.02; CI=0.01–0.10). The detection probability of all mammals was 0.43 (SE=0.08; 

CI=0.30–0.58). 

Fish presence 

 Presence of fish of the Micropterus and Ambloplites genera (i.e., smallmouth bass 

[Micropterus dolomieu], largemouth bass [Micropterus salmoides], and Ozark bass [Ambloplites 
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constellatus]) greater than 100mm in length were negatively related to PC1 (coef=-0.91; 

SE=0.53; CI=-0.91–0.13) and positively related to PC2 (coef=-0.19; SE=0.47; CI=-0.19–0.73), 

but these relationships were not significant. The model fit of the global model was acceptable 

(X2=0.14) but little variance was explained by the global model (13%). 

Discussion 

The volume percentage and relative frequency of crayfish prey in mammalian diets did 

not differ in permanent streams compared to intermittent streams. Other studies that have 

indicated that crayfish predation in deeper depths is dominated by aquatic predators rather than 

terrestrial predators (Mather and Stein 1993, Flinders and Magoulick 2007, Clark et al. 2013). In 

our study, riffle depth was deeper in permanent streams than in intermittent streams, therefore, 

we expected crayfish consumption by mammals to be lower in permanent streams than in 

intermittent streams due to the probable difficulty for mammals to access crayfish in deep water. 

Some terrestrial predators such as river otter are known to dive for extended periods of time and 

can therefore access prey in both shallow and deep habitats (Ben-David et al. 2000). However, 

due to the small number of scats collected from river otter throughout the study, this explanation 

may not be the reason we saw more intense crayfish predation in permanent streams.  

Both the relative frequency and volume percentage of fish prey found in mammal diets 

was strongly influenced by the interaction of stream permanence and season. In permanent 

streams, fish were the dominant prey item by volume during winter but comprised very little 

prey volume in other seasons in permanent streams. Percent volume of fish in intermittent 

streams was not the dominant prey type in any season. Since some stream-dwelling crayfish are 

known to seek refuge among rocks and mud during winter to escape the threat of freezing (Aiken 

1968), and several other prey classes are likely less active (i.e., reptiles, mammals, and insects) 



53 
 

or not in bloom (plants) during winter, it is reasonable that fish were the dominant prey type by 

percent volume in winter. However, this effect was only seen in permanent streams. One 

possible explanation for this result is that fish may be less available as prey in intermittent 

streams due to low winter flows. While we did not measure environmental variables (e.g., water 

depth, current velocity) during winter, it is known that Intermittent Flashy streams tend to have a 

higher frequency of no-flow days and low-flow spells and a lower baseflow index than 

Groundwater Flashy streams (Leasure et al. 2016). Since there was no precipitation over the 

winter sampling period for mammal scats (NOAA 2017), and some fish have been documented 

to be intolerant of low-flow conditions (e.g., low maximum water depth and slow average 

velocity) (Birnbaum et al. 2007), it is possible that low winter flows led to lower fish densities in 

intermittent streams than in permanent streams, making them a more accessible prey item in 

permanent streams during winter. To our knowledge, ours is the first study to examine the 

influence of a season by stream permanence interaction on aquatic prey and future studies should 

examine this interaction over a broader spatial scale to determine whether this relationship is 

generalizable.  

Season influenced the volume percentage of crayfish prey in mammal scats. Crayfish 

predation was highest in spring and summer relative to winter and fall which is in alignment with 

findings from previous studies. Dekar et al. (2010) found that the frequency of occurrence of 

crayfish in river otter scats was highest in summer and lowest in winter. Crayfish have also been 

documented as the dominant component of American mink diet in summer (Wolff et al. 2015). 

Seasonal variation in the prevalence of crayfish as a prey source for terrestrial and aquatic 

predators may be especially pronounced in the Ozark Highlands where many streams are 

intermittent and experience prolonged drought during the summer months. It is known that 
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aquatic organisms (e.g., crayfish) can become exposed to harsh biotic and abiotic conditions 

including increased vulnerability to predation (Magoulick and Kobza 2003). Therefore, we 

anticipated greater crayfish predation by mammals during summer when water depths were 

likely lowest and crayfish were at their most vulnerable. However, this does not explain why we 

saw high crayfish predation during spring when flows are typically highest and depths are 

deepest. In addition to water depth, seasonal variation in water temperature may play a role in the 

accessibility of crayfish prey. Aiken (1968) documented that adult Orconectes virilis move to 

deeper water in colder months and while they did not appear to burrow, they were found to seek 

protection between mud and rocks to escape the threat of freezing. During colder seasons, it is 

possible that the tendency for crayfish to seek refuge among mud and rocks may make them less 

apt to be captured by terrestrial predators which may in part explain the higher prevalence of 

crayfish in the diets of mammals during the spring and summer we observed.  

 Occupancy of mammalian predators was related to stream permanence, forested land, and 

crayfish density. The occurrence of semi-aquatic predators is often linked to seasonal prey 

availability (e.g., fish, crayfish) which can be tied to landscape characteristics. The abundance of 

fishes that may serve as prey for mammals is often higher in areas of woody debris (Angermeier 

and Karr 1984) which is closely linked to riparian woodland cover (Jeffress et al. 2011). River 

otter occupancy was positively associated with intermittent streams and forested land. 

Occupancy of river otter has been linked to forested land in previous studies. In Kansas, river 

otter occupancy was shown to increase with the proportion of woodland cover (Shardlow 2005). 

The occupancy of American mink and raccoon was negatively associated with intermittent 

streams and forested land. It is unsurprising that raccoons were negatively associated with 

forested land due to their ability to thrive in human-dominated landscapes (Prange et al. 2004) 
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Site occupancy of American mink has been shown to be negatively associated with urbanization 

(Wolff et al. 2015), and human disturbance (Racey and Euler 1983, Brzeziński et al. 2012) 

however, none of our study streams were set in urban areas. In our study, the watersheds with a 

low proportion of forested land were mainly comprised of farmland or pasture with relatively 

little human influence. Since the intermittent streams and forested land covariates were highly 

correlated (Table 2), we are unable to discern to whether mammal occupancy is driven by stream 

permanence or land cover.  

American mink and raccoon occupancy was negatively associated with summer crayfish 

densities in riffles. It is likely that American mink select sites based on high prey concentrations 

(Wolff et al. 2015) and this may be possible for other predators such as raccoon, so this result 

was surprising. One potential reason for this observation could be that crayfish densities were 

reduced by the presence of American mink and raccoon and subsequent predation pressure. It is 

also important to recognize that our crayfish sampling regime focused only on riffle habitats. 

Future studies related to crayfish consumption should include crayfish sampling from a variety 

of habitats.  

Accounting for imperfect detection is important when modeling species distribution and 

abundance (MacKenzie et al. 2006). In our study, detection probabilities of raccoon were 

moderate whereas American mink and river otter had low detectability. Jeffress et al. (2011b) 

detected river otter by scat and tracks and detection probabilities varied by substrate type but 

ranged from 0.18 (snow) to 0.60 (mud) which is higher than our detection probability for river 

otter. While none of the detection covariates we examined were better at describing mammal 

occupancy than the null models, Wolff et al. (2015) found that the observer and the amount of 

rainfall for seven days prior to surveying was most effective at modeling the detection 
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probability of American mink and Kowalski et al. (2015) found that raccoon detectability was 

greatest in areas of high road and trail densities. It is important to acknowledge that our detection 

probabilities for American mink and river otter were low compared to other studies and in order 

to more effectively determine the presence of semi-aquatic mammals, it would likely be 

advantageous to utilize multiple tracking methods (e.g., tracks, scats, observation) rather than 

scat samples alone. 

Fish presence was not significantly associated with stream permanence, forested land, or 

crayfish density in riffle habitats. Larger centrarchids are known to use deep habitats with slow 

velocities (Lobb and Orth 1991), and while smaller centrarchids utilize shallow habitats (Lobb 

and Orth 1991), they were not the focus of our study due to their inability to consume larger 

crayfish and were not documented. Since permanent streams had significantly deeper depths than 

intermittent streams in our study, we expected fish presence to be highest in permanent streams, 

but this was not the case. We also anticipated a possible relationship between fish presence and 

crayfish density. Since larger fish (which were the focus of our study) are not restricted by gape 

size and are capable of consuming both juvenile and adult crayfish, we expected a negative 

association between fish presence and crayfish density since crayfish densities could become 

depleted by fish predation. To gain a better understanding of these relationships, future studies 

should implement more frequent fish surveys and crayfish sampling from pool habitats. 

 Our occupancy modeling often displayed little separation among models and most 

relationships between predator occupancy and environmental covariates were insignificant. 

While general trends between predator occupancy, stream permanence, forested land, and 

crayfish density were discerned, it is possible that these factors are not the most important in 

driving predator occupancy. It may be advantageous to incorporate a more comprehensive suite 
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of landscape-level variables that may better explain predator occupancy, since our study only 

included six (three landscape, three local) variables. We intended to use additional landscape 

level variables in our models. However, all variables examined (e.g., geology, soils, elevation) 

were correlated with stream permanence. This is somewhat unsurprising since hydrology is 

determined by landscape scale variation such as vegetative cover, climate, geology, and 

topography (Poff et al. 1997). It may be appropriate to view stream permanence as a surrogate 

for a suite of landscape variables due to the interconnected nature of hydrology and landscape-

scale factors. In addition, surveys for mammalian predators were only conducted once per season 

and fish surveys were only conducted once in summer, more frequent surveys may reinforce our 

findings. 

It is also important to recognize the caveats associated with the diet metrics used. Since 

the frequency of occurrence metric may overestimate less digestible prey (Klare et al. 2011), it is 

possible that this metric’s caveats may skew our ability to truly identify the role of stream 

permanence in determining predation of crayfish. Since both the relative frequency of occurrence 

and volume percentage metrics of crayfish prey were not significantly different by stream 

permanence, we must interpret these results with caution. 

Our study demonstrates the importance of stream permanence in facilitating predator-

prey interactions. In the face of global change, models have indicated that much of North 

American will likely experience an increased frequency of summer drought and more intense 

precipitation events which will lead to increased flooding (Wuebbles and Hayhoe 2004). Such 

precipitation changes are likely to lead to greater temporal fluctuations in flow regimes of 

streams and may lead to variation in water depths (Wuebbles and Hayhoe 2004) outside of the 

range that native organisms are adapted to. In addition, the projected intense low-flow periods 
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may lead to local or total extinctions of aquatic biota (Humphries and Baldwin 2003). Such 

hydrologic variability may alter crayfish predation risk and could have widespread implications 

for aquatic biota and predator-prey interactions.  
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Tables and Figures 

 

 
 

  

Variable 
Stream 

Permanence 
Season 

Stream 

Permanence * 

Season 

    
Relative Frequency  
 

   
Crayfish 0.21 0.14 0.85 

Mammal 0.90 0.28 0.85 

Fish 0.46 0.64 0.04 

Insect 0.90 0.76 0.85 

Bird 0.90 0.64 0.28 

Reptile 0.84 0.64 0.85 

Plant 0.84 0.64 0.85 

    

Volume Percentage    

    

Crayfish 0.42 0.02 0.80 

Mammal 0.99 0.28 0.89 

Fish 0.74 0.18 < 0.01 

Insect 0.99 0.69 0.80 

Bird 0.99 0.69 0.74 

Reptile 0.86 0.69 0.89 

Plant 0.86 0.69 0.80 

    

    

    

    

Table 1. Effect of stream permanence and season (two-way ANOVA p-values) on volume 

percentage and relative frequency of occurrence of eight prey classes. False discovery rate 

correction was used to control Type I error rates. 
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Site Covariate PC1  PC2 

 Contribution (%) Correlation  Contribution (%) Correlation 

 

Intermittent streams 35.53 0.81  12.77 -0.18 

 

Crayfish Density 3.95 -0.09  70.21 0.99 

 

Water Depth 8.33 -0.19  8.51 -0.12 

 

Current Velocity 6.14 -0.14  4.96 0.07 

 

Drainage Area (km2) 3.95 -0.09  2.84 -0.04 

 

% Forested Land 42.11 0.96  0.71 0.01 

Table 2. Principal Components Analyses (PCA) of six environmental covariates describing 20 

streams in the Upper White River drainage of Arkansas and Missouri, USA. Correlations 

between covariates and the first two PCA factors (PC1 and PC2) and the relative contribution 

of covariates to these factors is indicated. Eigenvalue for PC1 = 1.56, PC2 = 1.12. 
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Model by species ∆AICc wi 

All mammals   
psi(.), p(.) 0.00 0.37 

psi(PC1, PC2), p(.) 0.08 0.35 

psi(PC1), p(.) 1.34 0.19 

psi(PC2), p(.) 2.66 0.10 

   
Raccoon - Procyon lotor   
psi(.), p(.) 0.00 0.41 

psi(PC2), p(.) 0.54 0.31 

psi(PC1, PC2),p(.) 1.70 0.17 

psi(PC1), p(.) 2.62 0.11 

   
American mink - Neovison vison   
psi(PC2), p(.) 0.29 0.35 

psi(PC1, PC2), p(.) 3.46 0.07 

   
River otter - Lontra canadensis   
psi(.), p(.) 0 0.49 

psi(PC1), p(.) 0.8 0.33 

psi(PC2), p(.) 1.95 0.18 

Table 3. Models of site occupancy (psi) and detection probability (p) for three species of 

mammals individually and combined. Parameters were fixed (.) or allowed to vary with 

PCA factors (PC1 and PC2) derived from six site covariates. Models that converged out 

of the total set of four are included.  
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Fig. 1. Study area and sample locations within the Upper White River drainage of Arkansas 

and Missouri, USA. 
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Fig. 2. Relative frequency of occurrence of eight prey classes in the diet of riparian 

mammals (raccoon, American mink, otter) in permanent (top) and intermittent (bottom) 

streams. Error bars represent standard errors.  
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Fig. 3. Volume percentage of occurrence of eight prey classes in the diet of riparian mammals 

(raccoon, American mink, otter) in permanent (top) and intermittent (bottom) streams. Error 

bars represent standard errors. 



69 
 

Modeling effects of crayfish invasion and drought on crayfish population dynamics 

 

Allyson N. Yarra1 and Daniel D. Magoulick2 

 

1Arkansas Cooperative Fish and Wildlife Research Unit, Department of Biological Sciences, 

University of Arkansas, Fayetteville, AR 72701 USA. ayarra@email.uark.edu 

 

2U.S. Geological Survey, Arkansas Cooperative Fish and Wildlife Research Unit, Department of 

Biological Sciences, University Arkansas, Fayetteville, AR 72701 USA. danmag@uark.edu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

Abstract 

In addition to being narrow-ranged endemics, three crayfish species of conservation 

concern (Orconectes eupunctus, Orconectes marchandi, Cambarus hubbsi) in the Spring River 

drainage of Arkansas and Missouri are facing invasive species effects by the recently introduced 

Orconectes neglectus. Our objectives were to model the population dynamics of these imperiled 

species, assess how these populations may be affected under increased invasion effects and 

intensified drought, and determine the potential of the Spring River to serve as a refuge from 

invasion and drought effects. RAMAS-Metapop was used to construct stage-based demographic 

models. Field data was used to determine locations of populations and obtain estimates of initial 

abundances and carrying capacities. Terminal extinction risk, median time to quasi-extinction, 

and metapopulation occupancy were used to assess population viability under different scenarios. 

Models indicated that the Spring River has potential to act as a refuge for O. eupunctus and C. 

hubbsi and allowed the populations to persist even when invasion and drought effects were 

extreme in the adjacent South Fork of the Spring River. Conversely, the Spring River acting as a 

barrier to dispersal for O. marchandi led to reduced quasi-extinction times and the greatest 

extinction risk under most invasion scenarios. Cambarus hubbsi appears to be highly susceptible 

to decline if vital rates are reduced due to simulated drought since they have low reproductive 

potential and mature slowly. Better estimates of stage specific survival and fecundity coupled 

with an increased understanding of the mechanisms of displacement by O. neglectus could 

reinforce our findings. Limiting the spread of invasive species, maintaining natural habitat and 

hydrologic regimes, and gaining insight into life histories and demographic parameters will 

increase our ability to conserve endemic crayfish in the Ozark Highlands.  
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Introduction 

Crayfish fulfill a crucial role in aquatic ecosystems and often act as keystone species 

(Momot 1995). They are a major contributor to production and account for > 50% of 

macroinvertebrate biomass in many freshwater ecosystems (Momot 1995). Crayfish act as 

predators (Momot 1995, Stenroth and Nyström 2003), consumers of autotrophs (Momot 1995, 

Dorn and Wojdak 2004), detritivores (Stenroth and Nyström 2003), and prey for fish (e.g., 

smallmouth bass) (Rabeni 1992) and terrestrial animals (Boyle et al. 2014). They function as 

bioprocessors of vegetation and carrion (Taylor et al. 2007) by converting coarse particulate 

organic matter to fine particulate organic matter that is a food resource for other organisms 

(Whitledge and Rabeni 1997).  

Despite the importance of crayfish in aquatic systems, they are among the most imperiled 

freshwater taxa (Taylor et al. 1996, Taylor et al. 2007) and show high levels of endemism. At 

least 382 species of crayfish inhabit North America (Crandall and Buhay 2008) and nearly half 

(48%) of these species are possibly extinct, endangered, threatened, or vulnerable (Taylor et al. 

2007). Due to this degree of imperilment, crayfish are expected to experience high extinction 

rates (Ricciardi and Rasmussen 1999). In addition, a deficit in basic information related to 

crayfish life history, range, and species associations exists for most species (Taylor et al. 1996, 

Lodge et al. 2000).  

Within the Spring River drainage of north-central Arkansas and south-central Missouri, 

there are three species of crayfish that are of conservation concern: Orconectes eupunctus 

(coldwater crayfish), Orconectes marchandi (Mammoth Spring crayfish), and Cambarus hubbsi 

(Hubbs’ crayfish). Orconectes eupunctus is considered critically imperiled in the state of 

Missouri and globally imperiled (S1, G2; Missouri Natural Heritage Database 2017) and it is 
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estimated that fewer than 10,000 individuals of O. eupunctus exist (DiStefano et al. 2010). 

O.marchandi is considered critically imperiled/imperiled in Missouri and imperiled globally 

(S1/S2, G2; Missouri Natural Heritage Database 2017). Both O. eupunctus and O. marchandi are 

being considered for listing under the U.S. Endangered Species Act.  

While considered stable and not in need of conservation attention by Taylor et al. (2007), 

it has been suggested that the conservation of C. hubbsi should be prioritized due to its limited 

range within the Ozark Highlands and contribution to regional taxonomic diversity (Pflieger 

1996, Crandall 1998). In addition, this species may be categorized as a K life-history strategist 

based on its documented slower growth and lower reproductive potential compared to 

Orconectes species (Larson and Magoulick 2011). These factors may increase the susceptibility 

of C. hubbsi to environmental impacts and invasive species (Larson and Magoulick 2011).  

 In addition to these native species being imperiled and having narrow ranges, an invasive 

species, Orconectes neglectus (ringed crayfish), now occurs in high numbers in portions of the 

Spring River drainage (Flinders and Magoulick 2005). Native to the White, Arkansas, and 

Kansas river drainages of the central United States, it is known that O. neglectus was introduced 

into the Spring River drainage between 1984 and 1998 (Magoulick and DiStefano 2007). 

Previous research indicates that O. neglectus has become established throughout the West Fork 

of the Spring River and into portions of the South Fork Spring River (Magoulick and DiStefano 

2007) and it appears to have replaced some native species of crayfish that were formerly 

abundant in this area. Although O. eupunctus and C. hubbsi made up a substantial proportion of 

the crayfish community in the West Fork of the Spring River during 1984 (Pflieger, unpubl. 

data), studies found no O. eupunctus and C. hubbsi in the West Fork of the Spring River during 

collections in 1998 and 1999 (Flinders and Magoulick 2005, Magoulick and DiStefano 2007), 
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suggesting that one or both species were extirpated by O. neglectus, which now dominates this 

area. Since O. neglectus has the potential to expand its distribution through the entirety of the 

Spring River drainage, further displacement of native, endemic crayfish may occur in the future. 

 Understanding the potential consequences of an advancing invasive species is critical in 

the context of native crayfish conservation in the Spring River drainage. Since additional 

stressors including habitat loss and fragmentation and intensified drought due to the impacts of 

climate change may exacerbate invasive species effects, it important to understand the 

population dynamics of native crayfish and their vulnerability to future environmental change 

and invasion. Our objectives were to 1) model the population dynamics of imperiled crayfish of 

the Spring River drainage, 2) assess how these populations may be affected under different 

scenarios including invasive species impacts and intensified drought, and 3) determine the 

potential for the Spring River to serve as a refuge from invasion and drought effects.  

Methods 

Study Area 

The Spring River drainage in north-central Arkansas and south central Missouri (36°N 

91°W) is located in the Salem Plateau physiographic region of the Ozark Plateau (Fig. 1). The 

underlying bedrock consists predominantly of permeable dolomites, cherts, and limestone, 

leading to a Karst topography (Adamski et al. 1995). No major urban areas are within the 

drainage and land use is predominantly pasture for livestock and forest comprised mainly of oak 

(Quercus spp.) and hickory (Carya spp.). Streambeds consist largely of boulder, cobble, pebble, 

and gravel substrates with occasional bedrock outcroppings and study streams generally contain 

well-defined riffle-pool sequences typical of Ozark streams. 



74 
 

Field Surveys 

Multiple sampling events occurred to determine the distribution of several crayfish 

species throughout the Spring River drainage. Sites along the South Fork, West Fork, Spring 

River, and several tributaries within the drainage were surveyed both in 1998-1999 and 2010-

2011 (Flinders and Magoulick 2005, Nolen et al. 2014). Crayfish were collected using a 

quantitative kick-net method in which crayfish were dislodged from a 1m2 area by kicking and 

disturbing the substrate directly upstream of a 1.5 x 1.0 m seine net (mesh size = 3mm) (Mather 

and Stein 1993). In 1998 and 1999, three to five replicate 1m2 kick-net samples were collected in 

each of riffle, run, pool, backwater, and vegetation habitats at each site. In 2010 and 2011, three 

replicate 1m2 kick-net samples were collected in riffle and run habitats. In each sample, sex, and 

carapace length (to the nearest 0.1mm) were recorded for all individuals and densities of all 

crayfish species were documented. These data allowed us to determine stage class structure, 

locations of extant populations of the species of interest, and estimate initial abundances of each 

species among populations for our modeling procedure.  

Model Overview 

 RAMAS-Metapop (Applied Biomathematics, Setauket, New York, USA) was used to 

construct a demographic model of the three imperiled crayfish species in the Spring River 

drainage. RAMAS-Metapop is a valid and sufficiently accurate tool for assessing and managing 

imperiled species (Brook et al. 2000). For each of the three species, models consisted of three 

demographic stages: juveniles, young adults, and old adults. Environmental stochasticity was 

incorporated into the models by randomly sampling mean survival and fecundity from the stage 

matrix and standard deviations from the standard deviation matrix within the program (Akçakaya 

1991). Ceiling type density dependence was incorporated into the model by estimating the 
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carrying capacity of each subpopulation. Since not directly measured, estimates of carrying 

capacity were based on the area of a habitat unit or “subpopulation” (i.e., riffle or run) and the 

average densities of each species found per 1m2 during sampling. Since only females were 

modeled, we defined carrying capacity as the approximate number of females that would occur 

in a habitat unit. A spatial component of the models was incorporated by inputting the relative 

position of each subpopulation as X and Y coordinates. Dispersal was based on a distance-

function matrix in which dispersal between subpopulations decreased with increasing distance. 

In order to determine the median time to quasi-extinction, we based our extinction threshold on 

effective population size estimates from Gouin et al. (2011) for Austropotamobius pallipes, an 

endangered European freshwater crayfish, since we were unable to find published data related to 

extinction thresholds of Orconectes species. For A. pallipes, estimates of effective population 

size were variable but ≤ 150 in most populations examined (Gouin et al 2011). Therefore, the 

effective population size used in our models was 150. All models were run for 1,000 iterations 

over 100 years. We used terminal extinction risk, median time to quasi-extinction (in years), and 

metapopulation occupancy to assess population viability. 

Model Parameterization 

 Fecundity estimates for each crayfish species were based on published literature (Flinders 

and Magoulick 2005, Larson and Magoulick 2008, Larson and Magoulick 2011) (Table 1). Since 

the published fecundity data did not explicitly incorporate stage or age and since larger crayfish 

are expected to be more fecund (Kirkpatrick 1984) we assumed young adult crayfish to be 50% 

less fecund than old adult crayfish. We used age-based survival estimates from Hein et al. (2006) 

that were based on Orconectes rusticus (Table 1). Since Cambarus hubbsi is characterized as 

having a different life history than Orconectes species (Larson and Magoulick 2011), we chose 
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to use a slightly higher juvenile survival rate for Cambarus hubbsi (Table 1). Without modifying 

the juvenile survival rate of C. hubbsi, the models showed the metapopulation to go extinct 

quickly under baseline conditions which we felt was unrealistic. This was likely due to the low 

reproductive potential of C. hubbsi (Larson and Magoulick 2011).  

Baseline Scenario 

 Our modeling procedure included different scenarios. The baseline scenario represented 

no further spread of O. neglectus throughout the Spring River drainage. The parameters used for 

fecundity and survival were the values found in the literature (Table 1) and carrying capacity for 

each subpopulation was that of a natural carrying capacity without any invasion effects. Baseline 

carrying capacities were based on abundance estimates for each species within subpopulations 

(O. eupunctus and C. hubbsi: K=55, O. marchandi: K=110). This baseline scenario was used to 

compare relative changes in population viability with invasion and drought.  

Invasion and Drought Scenarios 

 To simulate the potential impacts of increased spread of O. neglectus, carrying capacities 

for the focal species were reduced due to the presence of O. neglectus. Since the extent to which 

O. neglectus invasion will reduce carrying capacities in each subpopulation is unknown and the 

mechanisms of displacement by O. neglectus have not been documented with certainty, invasion 

effects on each metapopulation were modeled over a range of carrying capacities at the 

subpopulation level at 20%, 40%, 60%, and 80% reductions to baseline carrying capacities. We 

simulated potential effects of drought on crayfish population dynamics by reducing vital rates 

(fecundity and survival) of the focal species. We chose to reduce vital rates because drought has 

been linked to reductions in mean body size which is likely to decrease reproductive output and 
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increase predation risk (Taylor 1988), thereby reducing fecundity and increasing mortality. This 

scenario was modeled over a range of reductions in baseline vital rates (5%, 10%, and 15% 

reductions). Since drought has been suggested to play a role in exacerbating invasive species 

effects (Larson et al. 2009), we included a scenario in which invasion and drought were additive. 

This scenario was run over a range of reduced carrying capacities and vital rates: 20% reduction 

in K and 5% reduction in vital rates, 40% reduction in K and 10% reduction in vital rates, and 

60% reduction in K and 15% reduction in vital rates 

The Spring River as a refuge 

 We also modeled the potential for the Spring River to serve as a refuge for O. eupunctus 

and C. hubbsi. The Spring River is a large, spring-fed river and invasive species effects by O. 

neglectus remain undetected.  Based on previous research (Larson et al. 2009), we hypothesized 

that the Spring River may act as a refuge for O. eupunctus and C. hubbsi and invasive species 

and drought effects may be relaxed in this area. To model the Spring River as a potential refuge, 

we included a scenario in which carrying capacities and vital rates were reduced in the South 

Fork subpopulation (60% reduction in K, 15% reduction in vital rates) but were left at baseline 

levels in the Spring River subpopulation. Since O. marchandi prefers lower order streams and 

does not occur in the South Fork or Spring River but in their tributaries (Flinders and Magoulick 

2005), O. marchandi was excluded from this scenario.  

Parameter Validation 

 To assess the accuracy of our parameters and modeling process, we conducted a 

preliminary analysis for a subpopulation of O. eupunctus in an upper reach of the West Fork. 

This subpopulation had high densities of O. eupunctus (3.48 individuals m-2) in 1999 (Flinders 
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and Magoulick 2005) but upon revisiting this site in 2015, O. eupunctus had been extirpated and 

O. neglectus occurred in high densities (Magoulick et al., unpubl. data). Therefore, when using 

the abundance of O. eupunctus in 1999, we estimated this subpopulation to go extinct in our 

model within approximately 15 years. This subpopulation was modeled to have a median quasi-

extinction time of 10.3 years when carrying capacities were reduced by 90% in the 

subpopulation due to the hypothetical presence of O. neglectus. Since in our model, this 

subpopulation went extinct within the timeframe we observed the true extirpation of O. 

eupunctus from this area, we proceeded to use these baseline parameter estimates throughout the 

remainder of our modeling procedure.  

Sensitivity Analysis 

 To determine the sensitivity of model parameters, each parameter was varied by ±25% of 

the baseline estimate while holding all other parameters constant (Akçakaya 2000). Terminal 

extinction risk was used to measure the effect of each parameter and absolute values of low 

estimates were subtracted from absolute values of high estimates. Sensitivity analyses were 

conducted for each of the three focal species.  

Results 

O. eupunctus 

The baseline scenario for O. eupunctus resulted in a terminal extinction risk of nearly 

zero (0.002). After 100 years, the cumulative probability of quasi-extinction was less than 0.01. 

All 12 subpopulations were expected to remain occupied over 100 years.  

Reductions in carrying capacity due to the presence of O. neglectus led to an increased 

terminal extinction risk at all levels of reduction (Fig. 2) and a reduction in median time to quasi-
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extinction (Fig. 3) after a 40% reduction in carrying capacity. 3 of the 12 subpopulations would 

remain occupied after 100 years when carrying capacities are reduced by 80%. 

For O. eupunctus, reduced vital rates due to drought led to an increased terminal 

extinction risk (Fig. 2) and a reduction in median time to quasi-extinction (Fig. 3) once vital rates 

were reduced by 10%. It would take 65 years for less than one subpopulation to remain occupied.  

If the additive effects of invasion and drought led to reduced carrying capacities and vital 

rates, terminal extinction risk would increase (Fig. 2) and median time to quasi-extinction would 

decrease (Fig. 3) for O. eupunctus. Less than one subpopulation would remain occupied under 

the most severe reductions in carrying capacities and vital rates after 42 years.  

With an extreme invasion and drought scenario occurring in the South Fork 

subpopulation (60% reduction in K, 15% reduction in vital rates) but not in the Spring River, the 

chance of terminal extinction was low (extinction risk=0.06) (Fig. 4) and over 100 years, the 

cumulative probability of quasi-extinction was 0.16. Of the 12 subpopulations, 7 were expected 

to remain occupied over 100 years and all 7 remaining subpopulations were those occurring in 

the Spring River. 

O. marchandi 

The baseline scenario for O. marchandi resulted in a terminal extinction risk of zero. 

After 100 years, the cumulative probability of quasi-extinction was zero. Of the 16 

subpopulations, 8 were expected to remain occupied over 100 years.  

A reduction in carrying capacity due to the presence of O. neglectus led to an increased 

terminal extinction risk (Fig. 2) and a reduction in median time to quasi-extinction (Fig. 3). 

Times ranged from 47-83 years for less than one subpopulation expected to remain occupied.  
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Reductions in vital rates due to the influence of drought led to an increased terminal 

extinction risk (Fig. 2) and a reduction in median time to quasi-extinction (Fig. 3) once vital rates 

were reduced by 10%. Times ranged from 48-77 years for less than one subpopulation to remain 

occupied. 

For O. marchandi, the additive effects of invasion and drought led to an increased 

terminal extinction risk (Fig. 2) and a reduction in median time to quasi-extinction (Fig. 3). It 

would take 31-60 years for less than one subpopulation to remain occupied under the additive 

effects scenario.  

C. hubbsi 

For C. hubbsi, the baseline scenario resulted in a terminal extinction risk of 0.003. After 

100 years, the cumulative probability of quasi-extinction was 0.03. 13 of the 14 subpopulations 

were expected to remain occupied over 100 years.  

Reductions in the carrying capacity of C. hubbsi due to O. neglectus invasion led to an 

increased terminal extinction risk (Fig. 2) and a reduction in median time to quasi-extinction 

(Fig. 3). Under the most severe reduction in carrying capacity (80%), one subpopulation was 

expected to remain occupied after 100 years.  

Reduced vital rates due to drought led to an increased terminal extinction risk (Fig. 2) and 

a reduction in median time to quasi-extinction (Fig. 3) for C. hubbsi. It would take 46-75 years 

for less than one subpopulation to remain occupied.  

The additive effects of invasion and drought led to an increased terminal extinction risk 

(Fig. 2) and a reduction in median time to quasi-extinction (Fig. 3). It would take 37-90 years for 

less than one subpopulation to remain occupied under the additive effects scenario. 
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 An extreme invasion and drought scenario (60% reduction in K, 15% reduction in vital 

rates) occurring in the South Fork and baseline vital rates and carrying capacities in the Spring 

River would lead to a terminal extinction risk of 0.30 (Fig. 4) and a median time to quasi-

extinction of  93 years. Of the 14 subpopulations, 6 were expected to remain occupied over 100 

years and the 6 remaining subpopulations only occurred in the Spring River. 

Sensitivity Analyses 

 Sensitivity analyses indicated that juvenile survivorship was the most sensitive parameter 

in the models for all species (Fig. 5). No other parameters were sensitive for O. eupunctus and O. 

marchandi but adult 1 survivorship, adult 2 fecundity, and adult 1 fecundity were close to being 

sensitive in the C. hubbsi models (Fig. 5).  

Discussion 

Our models indicated that the Spring River has the potential to serve as a refuge for O. 

eupunctus and C. hubbsi even when invasion and drought effects are strong in the South Fork. 

Our model predicted that none of the South Fork subpopulations of O. eupunctus and C. hubbsi 

would remain occupied over 100 years but several of the Spring River subpopulations would 

remain extant. Despite the modeled loss of O. eupunctus and C. hubbsi in the South Fork, the 

population as a whole was expected to persist with a low risk of extinction. It is probable that O. 

neglectus will reach the Spring River eventually, but whether they become established in a large 

river is uncertain. O. neglectus has been shown to be negatively associated with water depth in 

large rivers (Flinders and Magoulick 2005). Since both O. eupunctus and C. hubbsi have been 

demonstrated to have positive associations with current velocity and large O. eupunctus are 

known to be positively associated with water depth (Flinders and Magoulick 2005), it is possible 
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that the habitat present in the Spring River is more favorable to O. eupunctus and C. hubbsi than 

O. neglectus.  

 While the Spring River has the potential to aid in the persistence of O. eupunctus and C. 

hubbsi, it appears to serve as a barrier to dispersal for O. marchandi (Flinders and Magoulick 

2005), which, as a result, appeared to be highly susceptible to invasion impacts. O. marchandi 

was expected to experience quasi-extinction within about 70 years under a 20% reduction in 

carrying capacity due to invasion. Of the three species, O. marchandi has the highest 

reproductive potential but its subpopulations are spatially isolated so that movement between 

subpopulations is unlikely. For our modeling procedure, we hypothesized that dispersal of O. 

marchandi between subpopulations was negligible based on the distance between subpopulations 

and the documented limited dispersal capabilities of Ozark crayfish species (e.g., Orconectes 

hylas can advance upstream at a rate of 128 m/year in its invasive range [DiStefano and 

Westhoff 2011]). Currently, the extent of gene flow between subpopulations of O. marchandi in 

the Spring River drainage is being examined (Magoulick et al. unpubl. data) and this information 

will be incorporated into future models of O. marchandi population dynamics.  

 Based on our models, if O. neglectus reaches the smaller order streams where O. 

marchandi occurs, the effects could be drastic due to the spatial isolation of these 

subpopulations. Under the invasion scenarios, O. marchandi had the highest terminal extinction 

risk of the three species examined with the exception of C. hubbsi under the 20% reduction in 

carrying capacity scenario. However, reductions in vital rates due to drought had relatively minor 

effects on O. marchandi until reductions were substantial (>10%). The additive effects scenarios 

greatly affected the extinction risk of O. marchandi even under the most mild invasion and 

drought scenario. Our models indicate that potential reduced carrying capacities of O. marchandi 
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due to O. neglectus invasion could severely limit the persistence of O. marchandi, but that 

reductions in vital rates due to drought would be less severe unless combined with invasion 

effects, presumably due to the high reproductive potential of O. marchandi.    

 Of the three species examined, C. hubbsi appeared to be the most susceptible to decline 

when vital rates were reduced due to simulated drought. Baseline fecundities were low for C. 

hubbsi and drastically limited the persistence of this species when they were reduced. Terminal 

extinction risk was highest for C. hubbsi and time to quasi-extinction was shortest even at mild 

reductions in vital rates. The additive effects of invasion and drought had a severe effect on C. 

hubbsi and this species had the most rapid time to quasi extinction under all three of the additive 

effects scenarios. Reducing carrying capacities due to invasion had an intermediate yet 

pronounced effect on the extinction risk of C. hubbsi compared to O. eupunctus and O. 

marchandi but invasion had the strongest effect on the time to extinction for C. hubbsi.  

 Under invasion impacts, O. eupunctus had the lowest terminal extinction risk and longest 

time to quasi-extinction compared to C. hubbsi and O. marchandi. Orconectes eupunctus was not 

expected to experience quasi-extinction within 100 years until carrying capacities were reduced 

by 60%. With reductions in vital rates, O. eupunctus was intermediately affected and the additive 

effects scenarios led to a rapid time to quasi-extinction and high extinction risk when severe. 

Orconectes eupunctus has an intermediate baseline fecundity of the three species examined and 

dispersal between the South Fork and Spring River subpopulations of O. eupunctus is more 

likely than dispersal of O. marchandi due to distance, which may explain why invasion and 

drought impacts were not as severe for this species. 

  Sensitivity analyses indicated that juvenile survival is the most sensitive parameter in the 

models of the three species. This suggests that uncertainty in our predictions can be reduced if 
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better estimates of this parameter can be obtained for the species of interest. One weakness of 

our modeling procedure is that we did not have stage or age based survival estimates for our 

focal species and had to base our estimates on different, yet related, species. In addition, the 

estimates of fecundity we acquired from the literature were not age based which caused us to 

estimate the difference in fecundity between age one adults and age two adults. Our study was 

limited in the sense that the data collected for these species was not collected with the intention 

of conducting stage-structured population modeling. Future efforts to monitor the population 

status of these species should incorporate age specific survival and fecundity.  

While our models suggest that the spread of O. neglectus to the tributaries of the Spring 

River could be detrimental to the persistence of O. marchandi, it is unknown whether O. 

neglectus would negatively affect or displace O. marchandi. However, since O. neglectus has 

shown no distribution or density relationship with stream size and has been found within streams 

of varying orders (i.e., intermittent headwaters of the West Fork, the main channel of the West 

Fork, and the South Fork [Flinders and Magoulick 2005]), this suggests that O. neglectus could 

persist in the lower order streams O. marchandi inhabits. Furthermore, O. marchandi has been 

associated with slower moving, shallow water with gravel, pebble, and cobble substrates and 

since both small and large O. neglectus have been documented to be negatively associated with 

water depth (Flinders and Magoulick 2005), this also suggests that O. neglectus may be capable 

of persisting in the same habitat and streams occupied by O. marchandi. Orconectes marchandi 

has been documented to occur in higher densities in intermittent streams than in permanent 

streams in the Spring River drainage (Flinders and Magoulick 2003) and is likely able to endure 

low-flow or drought conditions, but to date, the drought tolerance of O. marchandi has not been 

directly examined. If O. marchandi is as capable of withstanding drought as O. neglectus 
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(Larson et al. 2009), it is possible that O. marchandi displacement by O. neglectus may be less 

probable or less severe. In order to more adequately predict the likelihood of invasion effects on 

O. marchandi, potential mechanisms of displacement by O. neglectus and drought tolerance 

should be examined.  

Determining the true mechanism of displacement of native crayfish by O. neglectus 

would increase the accuracy of our predictions. Invasive crayfish have been demonstrated to 

negatively impact native crayfish in several ways such as through disease transmission 

(Alderman et al. 1990), reproductive interference and hybridization (Butler and Stein 1985, Perry 

et al. 2001), interspecific competition (Hill and Lodge 1994, Gherardi and Cioni 2004), and 

habitat displacement with subsequent predation by fish (DiDonato and Lodge 1993, Garvey et al. 

1994). Despite numerous research efforts, the mechanism of O. eupunctus displacement by O. 

neglectus remains unclear. It does not appear that O. neglectus displaces O. eupunctus by forcing 

them into different habitats (Rabalais and Magoulick 2006, a), and both juvenile (Larson and 

Magoulick 2009) and adult male (Rabalais and Magoulick 2006, b) competition did not appear to 

drive displacement. It has been demonstrated that O. neglectus is far more tolerant to desiccation 

than O. eupunctus and that this resistance to drying could inhibit recolonization by O. eupunctus 

when flow resumes through priority effects (Larson et al. 2009). This research suggests that 

drought and invasion may act cooperatively in the spread of O. neglectus, and it has been 

suggested that other potential mechanisms (e.g., differential predation, reproductive interference) 

should be examined (Larson and Magoulick 2009). To date, the capability to withstand drought 

has not been studied for C. hubbsi or O. marchandi, but due to the limited reproductive potential 

and slow growth of C. hubbsi and the isolation of O. marchandi subpopulations, understanding 

drying effects and potential mechanisms of displacement of these species is crucial.  
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 While our modeling procedure did not allow for the direct modeling of invasive-native 

species interactions, water level and drought has been shown to change these interactions in 

other population models. In their stage-structured models of invasive crayfish (Orconectes 

rusticus) and native sunfishes (Lepomis spp.) in northern Wisconsin lakes, Hansen et al. (2013) 

demonstrated that drought reduced crayfish recruitment that allowed the native sunfish to 

dominate. In our study, the opposite result was seen in that additive effects of drought and 

invasion decreased the chance of persistence of native crayfish. This difference may have been 

related to the Hansen et al. (2013) study occurring in lakes and with both fish and crayfish 

whereas our models were based in streams and with crayfish only. Future modeling efforts of the 

Spring River drainage crayfish could include multi-species models to better investigate invasive-

native crayfish interactions.  

The effects of drought on crayfish is understudied in the context of population modeling 

and more is known about amphibians. Cayuela et al. (2016) used a stochastic matrix population 

model to simulate the effects of drought on an endangered toad (Bombina variegata) in southern 

France. Models indicated that severe drought had a negative impact on fecundity and survival at 

various ontogenetic stages and that drought frequency negatively influenced the population 

growth rate. Other studies have indicated adult survival to be positively correlated with rainfall 

(Rana sylvatica: wood frog [Berven 1990]) and that survival in breeding ponds of Ambystoma 

tigrinum tigrinum (eastern tiger salamander) tends to be higher in years of high or average 

precipitation (Church et al. 2007). Despite the lack of studies related to how drought may 

facilitate changes in crayfish demographic parameters, it is possible that drought may elicit 

similar responses as in other semi aquatic species (e.g., amphibians).  
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Our modeling procedure demonstrates the potential importance of the Spring River as a 

refuge for O. eupunctus and C. hubbsi from invasion and drought effects. The spread of O. 

neglectus to the lower order tributaries of the Spring River where O. marchandi occurs could 

result in a rapid decline of O. marchandi due to the isolation of these subpopulations. While it is 

possible that O. neglectus will reach the Spring River and its tributaries over time, efforts should 

be made to prevent the further spread of O. neglectus by restricting human-mediated movement 

of this species for bait, which has been implicated as a potential vector of alien crayfish 

establishment (Lodge et al. 2000, DiStefano et al. 2009). Since abiotic disturbance, such as 

drought, is potentially important in native species displacement and may be capable of reducing 

crayfish vital rates, the maintenance and restoration of natural habitat and disturbance regimes 

may be crucial to conserve native species.  Obtaining reliable estimates of demographic 

parameters, gaining insight into mechanisms of displacement, and limiting the further spread of 

invasive species will increase our ability to conserve endemic crayfish. 
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Tables and Figures 

 

 

 

Species Parameter Estimate Source 

Orconectes eupunctus Survival   

 Juvenile 0.02 Estimates based on Hein et al. 2006 

 Adult 1 0.58  

 Adult 2 0.11  

    

 Fecundity   

 Adult 1 30 Estimates based on Larson and Magoulick 2008 

 Adult 2 54  

    

Orconectes marchandi Survival   

 Juvenile 0.02 Estimates based on Hein et al. 2006 

 Adult 1 0.58  

 Adult 2 0.11  

    

 Fecundity   

 Adult 1 30 Estimates based on Flinders and Magoulick 2005 

 Adult 2 60  

    

Cambarus hubbsi Survival   

 Juvenile 0.03 Estimates based on Hein et al. 2006 

 Adult 1 0.58  

 Adult 2 0.11  

    

 Fecundity   

 Adult 1 17 Estimates based on Larson and Magoulick 2011 

 Adult 2 33  
 

 

 

 

 

 

Table 1. Baseline model parameter estimates for each species and stage. 
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Figure 1. Study area in the Spring River drainage of Arkansas and Missouri with sampling 

locations of O. eupunctus, C. hubbsi, and O. marchandi. Sampling locations were used as 

subpopulations for the modeling procedure in RAMAS-Metapop. 
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Figure 2. Terminal extinction risks for all species under reduced carrying capacities due to 

invasion (top), reduced vital rates due to drought (middle) and the additive effect of drought 

and invasion (bottom). Additive effects scenario 1: 20% reduction in K, 5% reduction in vital 

rates, scenario 2: 40% reduction in K, 10% reduction in vital rates, scenario 3: 60% reduction 

in K, 15% reduction in vital rates. Error bars indicate 95% confidence intervals. 
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Figure 3. Median time to quasi-extinction for all species under reduced carrying capacities 

due to invasion (top), reduced vital rates due to drought (middle) and the additive effect of 

drought and invasion (bottom). Additive effects scenario 1: 20% reduction in K, 5% reduction 

in vital rates, scenario 2: 40% reduction in K, 10% reduction in vital rates, scenario 3: 60% 

reduction in K, 15% reduction in vital rates. No estimate for O. eupunctus under 20% and 

40% reduction in carrying capacity and O. marchandi and O. eupunctus under 5% reduction 

in vital rates since quasi-extinction not predicted within 100 years. Error bars indicate 95% 

confidence intervals. 
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Figure 4. Terminal extinction risk for C. hubbsi and O. eupunctus with extreme invasion and 

drought effects under Spring River refuge scenario and additive effects scenario (no refuge). 

Error bars indicate 95% confidence intervals. 
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Figure 5. Sensitivity analysis derived from differences in terminal extinction risk between 

high and low parameter values for each species. 
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Conclusion 

 

 Our research reinforces the importance of stream permanence in determining species 

distributions, abundances, and biotic interactions. Due to our documentation of the importance of 

intermittent streams for two imperiled crayfish (O. meeki and O. williamsi), our research 

confirms that even small streams are capable of supporting a diverse array of organisms, 

including those of conservation concern. In addition, our research is pertinent to the ongoing 

legal uncertainty related to the U.S. Clean Water Act and the types and sizes of streams protected 

under this policy. Especially in the context of global climate change which is expected to alter 

hydrologic regimes, we encourage an awareness of intermittent streams in the development of 

future conservation strategies.  

 While we did not discern a relationship between crayfish predation risk and stream 

permanence, it is possible that predation-hydrology relationships may become clearer under 

increased hydrologic variability due to climate change. Such temporal fluctuations in flow 

regimes may create disturbance regimes and habitat characteristics that are outside of the range 

that native organisms are adapted to, and as a result, biotic interactions may change. Therefore, 

we recommend continued monitoring of predator-prey relationships in the context of hydrology.  

 Our modeling procedure demonstrated the potential increased effects of invasive species 

and drought in the Spring River drainage. This modeling procedure indicated the potential rapid 

decline of C. hubbsi due to drought on account of their low reproductive potential. The potential 

vulnerability of O. marchandi to invasion effects was also displayed and was likely amplified by 

the limited connectivity of subpopulations. Our study also indicated the potential of the Spring 

River to serve as a refuge from invasion and drought effects for O. eupunctus and C. hubbsi. This 

work also suggested the importance of obtaining accurate estimates of demographic parameters 
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of these species and future efforts should be made to ensure the collection of age specific 

survival and fecundity estimates when planning for future conservation.  
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