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Abstract 

With anthropogenic alteration of landscapes increasing world-wide, managed forests are 

increasingly important as providers of ecosystem services including habitat for numerous 

wildlife species. It is crucial to maintain a balance between timber production and conservation 

of biodiversity on managed landscapes. Salamander populations can play key roles in the 

function and diversity of temperate forest ecosystems. Several studies have reported negative 

effects of forestry on terrestrial plethodontid salamanders, but less research has focused on 

stream-dwelling species, evaluated mechanisms driving observed shifts in abundance, or 

described the dynamics of populations residing in managed forests. Using a Before-After-

Control-Impact design, we examined the effects of clearcut timber harvesting on a stream-

dwelling salamander endemic to the Ouachita Mountains, Desmognathus brimleyorum. We 

specifically focused on two possible mechanisms of salamander abundance shifts, survival and 

movement. We conducted a capture-mark-recapture (CMR) study at three streams within 

intensely managed pine forests in west-central Arkansas from May 2014-October 2016. The pine 

stands surrounding two of the streams were harvested following state Best Management 

Practices (BMPs) (leaving a 28-42 m wide forested stream buffer) in January 2015 and 2016, 

respectively. We also explored effects of seasonal, site, and age variation on the capture 

probability, recapture probability, temporary emigration, abundance, and apparent survival of D. 

brimleyorum with robust design CMR models. Overall, our models provided evidence for 

seasonal and temporal variation in salamander survival and abundance, but little evidence for 

strong immediate effects of timber harvesting. However, there was increased salamander 

movement at the sites where harvesting occurred.  The results of this study will help inform 



management decisions aimed at conserving biodiversity and ecosystem integrity in landscapes 

managed for timber production.   
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Introduction 

Due to rapidly increasing human populations, much of the world’s natural landscapes 

have been altered to meet human needs (Foley et al. 2005), and remaining reserves of unaltered 

land are often insufficient to preserve biodiversity (Westman 1990; Wilcove 1989). Forests 

managed for timber production, being relatively similar to unaltered landscapes, may be 

managed for both biodiversity and product, augmenting natural biodiversity reverses (Hansen 

1991; Harris 1984). Managed forests have become a dominant form of land use in the United 

States, with over 32 million acres of pine plantations in the southeastern United States (Fox et al. 

2007). These large tracts of pine forest have ecological value (see Ninan and Inone 2013) and 

can alleviate the pressures of urban and agricultural development for many wildlife populations. 

However, managed forests differ in many ways from historic forest types and are subject to 

disturbances such as clearcutting, thinning, mechanical site preparation, and chemical treatment 

which, in turn, shape vegetation characteristics and wildlife populations residing in these timber 

stands and the ecosystem services they provide. With a clear understanding of wildlife 

population dynamics in plantations managed for timber, we can maximize the value of managed 

forests as wildlife habitat.   

Salamanders are often proposed as indicators of ecosystem health for disturbed habitats 

such as managed timber forests (Southerland et al. 2004). Salamanders are particularly sensitive 

to environmental stressors due to their complex life histories and cutaneous respiration that make 

them vulnerable to pollutants and microhabitat changes (Vitt et al. 1990). Salamanders also have 

a substantial impact on ecosystem function (Davic and Welsh 2004). In many systems, 

salamander biomass exceeds all other vertebrate groups (Vitt et al. 1990), thus providing a vital 

energy resource to predators (Burton and Likens 1975). Salamanders are also predators 
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themselves, exerting top-down controls on invertebrate primary consumers, and potentially 

indirectly affecting decomposition rates of leaf litter and carbon storage (Best and Welsh 2014; 

Wissinger et al. 1998; Wyman 1998). Lastly, the life history patterns of many salamander 

species facilitate the transfer of matter and energy between aquatic and terrestrial habitats (Davic 

and Welsh 2004). While stream salamanders are directly affected by changes in water quality 

and are often abundant in headwater systems (Southerland et al. 2004), the effects of 

anthropogenic stressors on stream-associated salamander species and their role in aquatic 

ecosystems are understudied.  

Numerous studies investigating the effects of clearcut timber harvest on salamander 

species have observed declines in salamander abundance post-harvest with potentially long 

recovery periods (Connette and Semlitsch 2013; Kroll 2009; Petranka et al. 1994; Tilghman et al. 

2012). Relatively few studies have examined possible mechanisms, such as changes in survival, 

reproduction, growth, or movement, that drive these declines (but see Connette et al. 2015; 

Semlitsch et al. 2009). Furthermore, limited conclusions about salamander populations in 

managed forests can be gleaned because abundance estimates were generally based on raw count 

data without accounting for factors that influence detection probability (Mazerolle et al. 2007; 

Schmidt 2004). Bailey et al. (2004) recommends the use of robust design capture-mark-recapture 

(CMR) models to investigate parameters affecting detection probability and generate less biased 

estimates of salamander abundance and survival. Similarly, Maigret et al. (2014) proposed the 

use of Before-After-Control-Impact (BACI) experimental designs to assuage variation due to site 

dissimilarities in studies examining the effects of timber harvest on stream salamanders. As the 

name implies, BACI studies use both before and after data at impacted sites, allowing those sites 

to be compared over time and to control sites (McDonald et al. 2000). 
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In this thesis, I present two manuscripts focused on the population biology of 

Desmognathus brimleyorum, a common, but understudied, stream-associated salamander 

endemic to the Ouachita Mountains of west-central Arkansas, in intensively managed pine 

forests. In the first manuscript, I used a BACI design to examine effects of timber harvest on 

salamander relative abundance. I also evaluated two mechanisms potentially driving changes in 

relative salamander abundance: apparent survival and movement. In the second manuscript, I 

used robust design CMR models to explore the effects of seasonal, site, and age variation on 

estimates of D. brimleyorum capture and recapture probability, temporary emigration, 

abundance, and apparent survival. This is the first study to rigorously describe stream 

salamander populations in forests managed for timber production using robust design methods. 

Understanding population vital rate and life history parameters in managed forests may help 

inform future assessment, monitoring, and conservation of stream-associated salamander 

populations. 
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Abstract 

With anthropogenic alteration of landscapes increasing world-wide, managed forests are 

increasingly important as providers of ecosystem services and wildlife habitat. Therefore, it is 

crucial to maintain a balance between timber production and biodiversity conservation. Several 

studies have suggested negative effects of forestry on terrestrial plethodontid salamanders, but 

fewer have focused on stream-dwelling species or evaluated mechanisms driving observed shifts 

in abundance (e.g., mortality vs. movement). Using a Before-After-Control-Impact design, we 

examined the effects of clearcut timber harvesting on a stream-dwelling salamander endemic to 

the Ouachita Mountains, Desmognathus brimleyorum. We conducted a capture-mark-recapture 

study at three streams within intensely managed pine forests in west-central Arkansas from May 

2014-October 2016. The pine stands surrounding two of the streams were harvested (leaving a 

28-42 m wide forested buffer) in January 2015 and 2016, respectively. The third stream served 

as a control site and remained unharvested. We estimated salamander survival and movement 

over the course of two years and compared rates of change between the harvested and control 

streams. Overall, our models show seasonal and temporal variation in salamander survival and 

abundance, but little evidence for strong immediate effects of timber harvesting. However, there 

was increased salamander movement at the sites where harvesting occurred.  Our results suggest 

that streamside buffers of at least 28 m are an effective method for minimizing effects of forestry 

activities on stream-dwelling salamanders. The results of this study will help inform 

management decisions aimed at conserving biodiversity and ecosystem integrity in landscapes 

managed for timber production.   
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Introduction 

 Forests intensively managed for timber production have become a pervasive land cover in 

many parts of the world, including the southern United States. There are currently over 32 

million acres of pine plantations in the southeastern United States (Fox et al. 2007), accounting 

for almost half the of the world’s industrial timber plantations (Allen et al. 2005). These large 

tracts of pine forest have ecological value (see Ninan and Inone 2013) and alleviate the pressures 

of urban and agricultural development for many wildlife populations. However, it is necessary to 

understand how major periodic forestry disturbances (e.g. clearcutting, thinning, and site 

preparation) affect wildlife populations using managed stands and the ecosystem services these 

populations provide. With a clear understanding of mechanisms driving relationships between 

forestry practices and wildlife population dynamics we can maximize the value of managed 

forests as wildlife habitat. 

 Most of the pine forests in the southern United States are the result of even-aged timber 

management, where an entire stand is harvested and/or planted at the same time producing 

forests where most trees are the same age. Even-aged management practices (such as 

clearcutting) cause considerable physical changes to forest ecosystems including reduced canopy 

cover, increased soil and water temperatures, nutrient loss, sedimentation, and soil compaction 

(Borman et al. 1968; Brooks and Kyker-Snowman 2008; Keenan and Kimmins 1993). These 

alterations in abiotic conditions can influence wildlife population dynamics. For example, 

reduced canopy cover, soil compaction, and increased temperatures may cause dehydration in 

many animal species, reducing the survival of those species within the harvested stand. Mobile 

species may leave a disturbed area in search of another stand that better meets their physiological 

and life history needs.   
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In sustainable forest management, the success of a few indicator species (usually chosen 

for their sensitivity or ecological influence) are often used to assess how these physical changes 

are affecting overall ecosystem function and biodiversity (Wiens et al. 2008). Salamanders are 

often proposed as such indicator species because they are particularly sensitive to environmental 

stressors due to their complex life histories and cutaneous respiration (Southerland et al. 2004; 

Vitt et al. 1990). Salamanders also have a substantial impact on ecosystem function (Davic and 

Welsh 2004). In many systems, salamander biomass exceeds all other vertebrate groups (Vitt et 

al. 1990), thus providing a vital energy resource to predators (Burton and Likens 1975). 

Salamanders are also predators themselves, and have been suggested to exert top-down control 

on invertebrate prey, indirectly affecting decomposition rates and carbon storage (Wyman 1998). 

Lastly, the life history patterns of many salamander species facilitate the transfer of matter and 

energy between aquatic and terrestrial habitats (Davic and Welsh 2004). While stream 

salamanders are directly affected by changes in water quality and are often abundant in 

headwater systems (Southerland et al. 2004), the effects of anthropogenic stressors on stream-

associated salamander species and their role in aquatic ecosystems are understudied.  

 Numerous studies investigating the effect of clearcut timber harvest on fully terrestrial 

salamander species (e.g., Plethodon spp.) have observed declines in salamander abundance post-

harvest with potentially long recovery periods (Connette and Semlitsch 2013; deMaynadier and 

Hunter 1995; Petranka et al. 1994; Tilghman et al. 2012). Relatively few studies have examined 

possible mechanisms, such as changes in survival, reproduction, growth, or movement, that drive 

these declines (but see Connette et al.2015; Semlitsch et al. 2009). The observed effects of 

clearcutting on stream-associated salamanders are more variable. For example, Pollett et al. 

(2010) found that timber harvest had a negative impact on Rhyacotriton cascadae abundance but 
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a positive impact on Dicamptodon spp. abundance. This disparity is likely a result of variation 

between stream sites (especially the presence and size of riparian buffers) and the life histories of 

studied species (Bury and Corn 1988; Jackson et al. 2007; Peterman and Semlitsch 2009; Perkins 

and Hunter 2006). Maigret et al. (2014) proposed the use of Before-After-Control-Impact 

(BACI) experimental designs to assuage variation due to site dissimilarities in studies examining 

the effects of timber harvest on stream salamanders. As the name implies, BACI studies use both 

before and after data at impacted sites, allowing those sites to be compared over time and to 

control sites (McDonald et al. 2000).      

In this study, we conducted a capture-mark recapture (CMR) study, using a BACI design, 

to assesses the effect of clearcut timber harvesting on Desmognathus brimleyorum, a common 

stream-associated salamander endemic to the Ouachita Mountains of west-central Arkansas. 

Specifically, we monitored three streams in managed timber stands (one control and two before-

after sites) from May 2014-October 2016 and examined changes in 1) relative abundance 2) 

apparent survival, and 3) movement along the stream channel associated with a harvesting event. 

By estimating vital rates, in addition to relative abundance, we evaluated possible mechanisms 

for changes in salamander abundance resulting from timber harvest. Based on previous studies of 

salamanders and timber harvest, we hypothesized that relative abundance of Desmognathus 

salamanders would be lower after a harvesting event and that this reduction would coincide with 

either a reduction in survival or an increase in movement. Both possible effects (reduced 

apparent survival and increased movement) would cause decreased numbers of individuals 

captured during stream surveys either through direct mortality or emigration out of the study 

area. 
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Methods 

Sampling Design 

 We implemented a BACI design at three headwater streams on timber holdings in the 

Ouachita Mountains of west-central Arkansas to assess the effects of timber harvesting on 

stream-dwelling salamander populations (Fig. 1). Specifically, we conducted intensive capture-

mark-recapture of salamanders at one reference (unharvested) site and two before-after sites 

(hereafter referred to as “Control”, “BA1”, and “BA2”), that were clear-cut harvested during the 

study. We conducted salamander surveys at each site in March, June, and October from June 

2014 until October 2016 for the Control and BA1 sites and from March 2015 until October 2016 

for the BA2 site. During each sampling month, each stream was surveyed on three nights, 

approximately one week apart. Timber harvesting occurred at BA1 in January 2015 and at BA2 

in January 2016 (Fig. 1). 

Study Sites 

We selected sites based on similar stream size, morphology, and silvicultural history.  All 

three sites were 1st order, headwater streams located within 16 km of each other in the Little 

Missouri Watershed in northeast Howard County, Arkansas, USA at elevations from 190-300 m 

above sea level (Fig. 1). Each study stream drained a small watershed (0.41-1.15 km2) within an 

even-aged, mature (29-35 years old) loblolly pine (Pinus taeda) stand. Each stream also had a 

streamside management zone (SMZ) serving as a riparian buffer, ranging between 28-50 m wide 

(total width including stream). The forested area within the SMZ is retained during harvesting 

events and not controlled for overstory species. The SMZ at the Control and BA2 sites were 

dominated by oak (Quercus spp.) and hickory (Carya spp.) in the overstory and cedar (Juniperus 
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virginana) and holly (Ilex opaca) in the understory. The SMZ of the BA1 site was dominated by 

loblolly pine in the overstory and holly, musclewood (Carpinus caroliniana) and hophornbeam 

(Ostrya virginiana) in the understory. At each site, we delineated a 200 m stream transect for 

salamander sampling. At the BA1 site, this transect spanned the stand boundary (100 m in clear-

cut, 100 m downstream in the adjacent unharvested 12 yr-old stand), allowing us to assess 

movement out of the harvested section. The BA1 and BA2 stands were clear-cut in Jan 2015 and 

Jan 2016, leaving behind a 28 m and a 42 m SMZ, respectively. A number of large pine trees 

were removed from the SMZ during the harvesting of the BA1 site (this practice is permissible 

under Arkansas Best Management Practices) (Arkansas Forestry Commission 2002).  

Survey Methods 

 Each night-time sampling event consisted of a thorough visual search of the streambed 

for the length of each transect. Surveys were not time-constrained, but rather were continued 

until the entire 200 m transect had been thoroughly searched (average effort was 10.6 

person·hours per sampling event). We carefully turned rocks and other cover objects to detect 

salamanders and captured them using dip nets. We placed each salamander in a separate 

container that corresponded to a flag placed in the stream marking the capture location of each 

individual. We excluded larval Desmognathus and other salamander species from capture. The 

following day we processed captured salamanders by recording body metrics (mass, total length, 

snout-vent length (SVL), external parasite count, and any other distinguishing features) and 

marking each new individual with a unique identification mark using subcutaneous injection of 

visible implant elastomer (VIE; Northwest Marine Technologies, Shaw Island, WA; Grant 

2008). We anesthetized each salamander prior to processing by placing them in a solution of 1 g 

Orajel® (Del Pharmaceuticals, Uniondale, New York, USA; Cecala et al. 2007) per liter of 
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conditioned tap water. Any recently metamorphosed individuals (less than a year since 

metamorphosis, 45 mm SVL or under) were labeled as juveniles. We identified first-year 

animals based on the average growth rate of known metamorphs and an obvious break in body 

size distributions, creating a first-year growth threshold of 45 mm SVL. Individuals > 45 mm 

SVL at time of capture were considered adults. We generally returned all salamanders to their 

exact capture location within 2 days after capture, but occasionally salamanders were held up to 

5 days to avoid releasing them into a flooded stream during high flow events. Upon release, we 

measured each salamander’s capture location to the nearest 1 cm along the 200 m transect using 

a laser distance meter (Fluke 414D Laser Distance Meter, Fluke® Corporation, Everett, 

Washington, USA).  

Data Analysis 

 We assessed our CMR data using open population models because our primary parameter 

of interest was survival. However, open population models do not allow for comprehensive 

evaluation of factors influencing detection and thus do not provide reliable estimates of 

abundance. As an alternative to model-generated estimates of abundance, we used count data to 

compare salamander relative abundance over time. Specifically, we assessed the effect of timber 

harvesting on salamander abundance by comparing the number of unique individuals captured at 

each site during each sampling season (spring, summer, and fall for each year). We accounted for 

potential confounding factors affecting our count-based abundance estimates: 1) excluding 

recaptures within the same season, and 2) comparing estimates across years within seasons and 

sites. We then estimated salamander survival between sampling seasons at each site using open 

Cormack-Jolly-Seber (CJS), full-likelihood models in Program MARK 6.0 (White and Burnham 

1999). For our CJS models, we collapsed encounter histories within the same sampling season, 
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yielding 8 samples each for the Control and BA1 sites, and 6 samples for the BA2 site. We 

structured CJS models in MARK by varying capture probability (p) and apparent survival (φ) 

over different time intervals. First, keeping φ constant, we evaluated models where p was held 

constant, varied fully by time, varied by season (but held constant across years), and varied by 

winter (winter p (Nov-Mar) different from the rest of the year). Once we determined the best 

parameterization for p, we included that parameterization in subsequent models examining 

variation in survival. For each site, we evaluated models that represented relevant patterns of 

temporal variation in survival: 1) ‘Constant’: φ held constant across all time intervals for each 

site; 2) ‘Time Variation’: φ allowed to vary fully over time (i.e., different for each interval); 3) 

‘Winter Variation’: φ held constant across spring/summer (Apr-Jun) and summer/fall intervals 

(Jul-Oct), but allowed to differ over winter (Nov-Mar); 3) ‘Seasonal Variation’: φ different 

among seasons, but held constant across years; 4) ‘Harvest Variation’ (only for Before/After 

sites): φ in pre-harvest intervals allowed to differ from all post-harvest intervals. Model selection 

was based on Akaike Information Criterion (AIC; Akaike 1974) adjusted for small samples sizes 

(AICc; Burnham and Anderson 2002). We evaluated the goodness-of-fit of the most 

parameterized model at each site using the median ĉ method and subsequently adjusted AICc 

values to account for overdispersion of our data (QAICc) (White and Burnham 1999). We 

ranked QAICc weights to determine the strength of evidence for each model and assumed 

models with higher weights and lower QAIC values were better able to explain variation in data 

without over-parametrizing. To account for model selection uncertainty, we used model 

averaging to generate p and φ estimates that were weighted by the support of each model 

(Burnham and Anderson 2002).   
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 We used the location history of individuals to assess salamander movement in two ways: 

1) we compared net movement over the harvesting interval between sites and 2) we compared 

the mean distance traveled per movement event before and after timber harvest between sites. To 

determine how timber harvest affects net salamander movement, we subtracted the first known 

location of each individual after timber harvest from the last known location before timber 

harvest at each before-after site. For a direct time comparison, net movement at the Control site 

was calculated around each of the before-after sites’ harvesting events. We calculated mean 

distance traveled per movement of each individual by summing the absolute value of all their 

movements in a specified time period and then dividing by the number of movement events 

during that time. For the BA1 site, we calculated before harvest mean movement distance using 

location data from Jun 2014-Oct 2014 and after harvest mean distance using data from Mar 

2015-Jun 2015, thus using data from the six sampling nights immediately before and after 

harvest. For the BA2 site, the before and after time intervals ranged from Mar 2015-Oct 2015 

and Mar 2016-Oct 2016 respectively (9 sampling nights before and after). We calculated mean 

distance per movement at the Control site for all four time intervals for direct temporal 

comparison. We performed robust ANOVAs in R version 3.3.3 (R Core Team 2017) using the 

raov function of the Rfit package (Kloke and Mckean. 2012) to examine the effects of time 

(before vs. after harvest), site (control vs. before-after site), and the interaction of time and site 

on mean distance moved per individual, which was not normally distributed. The functions in the 

Rfit package are used to calculate rank-based estimators (nonparametric, robust alternatives to 

least squares estimators) (Kloke and Mckean. 2012). The raov function is a rank-based analysis 

for the main effects (time and site) and their interactions using an algorithm described in 

Hocking (1985). 
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Results 

Relative Abundance 

At the Control Site, we had 1,987 captures of D. brimleyorum over 8 seasonal samples 

(24 sampling nights), representing 1,030 individual salamanders. At the BA1 site, we had 659 

captures of D. brimleyorum over 8 seasonal samples, representing 361 individual salamanders. 

At the BA2 site, we had 1,894 captures of D. brimleyorum over 6 seasonal samples (18 sampling 

nights), representing 1,062 individuals. All three sites had a similar proportion of recaptured 

individuals (43-48%). At all three sites, capture rates were lowest in the spring (March) and 

highest in the summer (July). In general, the number of adult individuals increased over the 

three-year study at all sites (Fig. 2). Numbers of juveniles (recruitment) were more variable, and 

were highest in 2014 at the control site and in 2015 at both before-after sites. At the before-after 

sites, there was no obvious reduction in salamander captures following harvesting of the 

surrounding stand. In fact, captures of adults at the BA1 site increased substantially following 

harvest in 2015 and 2016 (Fig. 2b), and capture rates were similar to, or greater than, pre-harvest 

capture rates at the BA2 site following harvest in 2016 (Fig. 2c). However, relatively few newly 

metamorphosed juvenile salamanders were captured at the BA1 site in 2016, 1.5 years after 

harvesting (Fig. 2b).  

Capture Probability 

CJS analysis of capture/recapture data for both the Control and BA2 sites favored models 

where individual capture probability (p) was fully time varying (Table 1). For the BA1 site, 

model selection favored a model where capture probability differed between the winter period 

and was the rest of the year. Individual capture probabilities at the Control Site and BA2 site 
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were variable (16-52%), but were always lowest during the winter (Nov-Mar) sampling periods. 

Additionally, p estimates at the Control and BA2 were consistently higher in 2016 (averaging 

47% from April-Oct) than 2015 (averaging 31% from April-Oct). Individual capture 

probabilities at the BA1 site were estimated as 19% (CI 13-27%) during the winter sampling 

period and 38% (CI 30-46%) during the rest of the year.   

Apparent Survival 

A model where apparent survival (φ) was fully time-varying was favored at the Control 

Site (Table 1). This model generated φ estimates ranging from 49-97% with apparent survival 

being lowest between the first and second (49%) and between the fifth and sixth (60%) sampling 

intervals and relatively high (mean 82.5%) over all other intervals (Fig. 3). A harvest-varying 

model was favored at the BA1 site (φ before harvesting is different from φ after harvesting) 

(Table 1). Under this model, survival was estimated to be 29% (CI 16-49%) between pre-harvest 

intervals (July-Oct 2014) and 73% (CI 67-79%) between post-harvest intervals (Fig. 3). Model 

selection for the BA2 site showed equivocal support for models that represented constant, 

winter-varying, and harvest-varying survival (ΔQAICc < 2; Table 1); with the constant φ model 

yielding a survival estimate of 69% (CI 65-73%). Parameter estimates from the fully time-

varying model support this pattern: survival was relatively uniform throughout the study with no 

indication of a change in survival following harvest. 

Movement 

We examined movement of recaptured salamanders at our three CMR sites to assess the 

influence of timber harvest on the direction and magnitude of salamander movement (Fig. 4, 5). 

In general, individuals had a net movement <20 m and exhibited a slight upstream movement 
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bias. A few individuals, however, moved relatively large distances— up to 164 m. More 

specifically, 35% of individuals at the control site had a net movement less than or equal to 4 m 

over each of the intervals we examined (Fig. 4a, c). The before-after sites, however, showed a 

higher proportion of individuals (90% and 81%, respectively) with net movements greater than 4 

m between pre-harvest and post-harvest surveys.  There also was a slight downstream movement 

bias at the BA2 site, but there was no evidence of downstream movement out of the harvested 

area (Fig. 4d).  

Overall, the mean distance an individual traveled per movement event increased at both 

experimental sites following timber harvest (Fig. 5). We observed a post-harvest increase in 

mean distance traveled per movement of 108% and 29% at BA1 and BA2, respectively. For 

BA1, a significant increase in movement following harvest relative to the same time interval at 

the control was reflected in a significant site x time interaction (F=9.753, df=1, p=0.002). 

Although BA2 also exhibited a trend for increased movement following harvest, only a site 

effect on movement was significant (F=16.91, df=1, p=0.000).  

Discussion 

 Contrary to our hypotheses, timber harvest did not have an immediate negative effect on 

relative abundance or apparent survival of D. brimleyorum at either of our before-after sites. 

Variation in relative abundance among sites appeared to be highly seasonal (lowest in the spring, 

highest in the summer, and moderate in the fall). This pattern is best explained by the capture 

probability estimates produced in the top CJS models (where capture probability was lowest in 

the winter). Low capture probability in winter was likely driven by temporary emigration of 

individuals into habitats where they are not available for capture, such as subterranean retreats. 

Many Desmognathus salamanders are less active and move below the stream surface during 
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cooler and dryer months (Ashton 1975; Orser and Shure 1975; Petranka 1998). In their thorough 

examination of D. brimleyorum population parameters using robust design analysis of this 

dataset, Halloran et al. (2018, in prep.) found that conditional capture probability was generally 

constant over time and that seasonal variation in salamander captures was driven by relatively 

high rates of temporary emigration in winter. While relative abundance of juveniles varied 

annually, the relative abundance of adult individuals within a given season increased over time at 

all sites. This change in relative abundance may be driven by favorable environmental 

conditions. Indeed, all three years (2014-2016) of our study were considered wet years for this 

region, receiving 10.82 cm, 38.05 cm, and 15.32 cm of precipitation over the annual average 

(137.34 cm), respectively (NOAA weather station in Newhope, AR).  

 Apparent survival at all three sites remained remarkably constant throughout the study, 

although there was some variation over time at the Control site. A CJS model with a timber 

harvesting effect on survival was only supported at the BA1 site, and that model suggested that 

survival was greater post-harvest than in the Jul-Oct 2014 pre-harvest interval. High survival 

post-harvest could reflect a change in food availability. Aquatic macroinvertebrate abundance 

may increase post-harvest as a result of reduced canopy cover and increased detrital input 

(Jackson et al. 2007; Kiffney et al. 2004; Murphy et al. 1981; Rempel and Carter 1986). 

Increased macroinvertebrate abundance may alleviate competition for food resources and/or 

individual territories, thus increasing salamander survival, as aquatic macroinvertebrates make 

up a substantial portion of D. brimleyorum diets (Means, 2005). However, it should be noted that 

apparent survival was also low during the Jul-Oct 2014 interval at the Control site. This suggests 

that high survival after 2014 at the BA1 site may be partially attributable to favorable climatic 

conditions in those years. 
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Annually consistent relative abundance and survival estimates contradict the conclusions 

of most studies investigating the effects of timber harvest on salamanders, many of which 

suggest a negative effect of clearcutting (Crawford and Semlitsch 2008; Perkins and Hunter 

2006; Tilghmen et al. 2012, etc.). For example, Petranka et al. (1993) and Reichenbach and 

Sattler (2007) observed considerable reductions in terrestrial plethodontid salamander abundance 

immediately following a clearcut event. However, as Kroll (2009) shows in his review of studies 

from the Pacific Northwest, studies focused on stream-associated species have had variable 

results. For example, Jackson et al. (2007) found that clearcutting had no effect on torrent 

salamanders (Rhyacotriton spp.) and Pollet et al. (2010) and Bury and Corn (1988) found that 

giant salamander (Dicamptodon spp.) abundance increased in areas that experienced timber 

harvest. Furthermore, Connette and Semlitsch (2013) suggest that stream-breeding salamanders 

(Desmognathus ocoee and Eurycea wilderae) are able to recover from a harvesting event faster 

than their terrestrial-breeding counterparts. 

Much of the variability in studies focused on responses of stream-associated salamanders 

to forestry is a reflection of the range of management practices employed around streams located 

within commercially harvested timber stands. For example, streamside management zones 

(SMZs, also referred to as stream buffers) are often designated to preserve stream water quality 

while the surrounding area is harvested.  However, the size of SMZs and the activities 

permissible within them (such as road crossings and selective timber extraction) are variable 

from stream to stream and region to region. As SMZs have become a common forest 

management practice and are now required by law in some states, the number of studies 

investigating the influence of these buffers on stream-associated salamanders has increased 

(Maigret et al. 2014; Perkins and Hunter 2006; Stoddard and Hayes 2005). Most of these studies 
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agree that riparian buffers are an effective way to reduce the negative impacts of harvesting on 

salamanders (but see Pollett et al. (2010) with respect to Dicamptodon spp.), although the 

minimum effective buffer size is still debated. For example, Peterman and Semlitsch (2009) 

concluded that 18 m wide SMZs were ineffectual at preserving larval salamander abundance 

while larval abundance in streams with 60 m wide SMZs did not differ significantly from uncut 

reference sites. Vesely and McComb (2002) suggest that SMZ greater than 40 m wide are needed 

to maintain salamander abundance. Arkansas Best Management Practices for water quality 

protection recommend SMZs of 20-50 m (dependent on bank slope class) for non-ephemeral 

streams (Arkansas Forestry Commission 2002). The SMZ widths in this study ranged from 28-50 

m which are common sizes for streams in timberlands in the Ouachita Mountain region. SMZs of 

this size are perhaps large enough that the abundance and survival of a strongly aquatic species 

such as D. brimleyorum would be largely unaffected by timber harvesting events. Further 

investigation is needed to determine if smaller SMZs can maintain D. brimleyorum populations 

and make threshold width recommendations. Additionally, we are unable to make conclusions 

about the SMZ requirements of other stream salamander species, as their tolerance to disturbance 

and riparian habitat requirements may differ from D. brimleyorum.  

Although we did not detect an effect of harvesting on either relative abundance or 

apparent survival, salamander movement patterns changed during the harvesting event. 

Throughout the study, salamanders at the control site exhibited behavior consistent with 

observed movement patterns in undisturbed streams: small movements, with a slight upstream 

bias (Barthalmus and Bellis 1972; Grant et al. 2010). Meanwhile, salamanders at both before-

after sites showed an increase in movement distance in both directions after harvesting events. 

This result differs from that of Chelgren and Adams (2017) who found that in-stream movement 
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of Dicamptodon tenebrosus had an inverse relationship with timber harvest intensity. While no 

other studies have assessed in-stream movement, Johnston and Frid (2002) and Peterman et al. 

(2011) found no significant changes in the terrestrial movement patterns of stream salamanders 

when a 40-60 m SMZ was retained. One possible mechanism behind increased in-stream 

movement is increased water velocity during storm events as a consequence of a harvested 

watershed. Segev and Blaustein (2014) found that greater movements of Salamandra 

infraimmaculata were associated with increasing water velocity. While clearcut watersheds in 

the Ouachita Mountain region have increased annual water yields over unharvested watersheds, 

significant differences in stormflow or peakflow conditions have not been recorded for this 

region (Miller et al. 1988; Stednick 1996). Our results indicate that substantial changes to in-

stream salamander dispersal may occur, even when a 28-42 m SMZ is retained around the 

stream. Further investigation is necessary to determine if these altered movement patterns will 

have a lasting effect on salamander body condition, reproductive success, and survival. Increased 

dispersal may expose individuals to higher energetic costs and more frequent territorial disputes, 

indirectly affecting long-term survival and/or reproduction (Keen and Reed 1985; Schmidt et al. 

2007).  

Although we didn’t detect a harvesting effect on abundance or survival 1-2 years post-

harvest, we cannot rule out the possibility of a time lagged response. For example, altered 

movement patterns could potentially drive a lagged reduction in salamander survival, where 

salamander survival is stable immediately following a harvesting event, but then decreases 

overtime due to secondary factors. Guzy et al. (2018, in prep.) observed that stream salamander 

abundance is lowest in stands 5-10 years post-harvest, suggesting that time-lagged effects on 

survival or recruitment may occur in our study system. In this study, we observed decreased 
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abundance of newly metamorphosed individuals at the BA1 site in 2016. The salamanders that 

metamorphosed at the BA1 site in 2016 are the first cohort to hatch after the harvesting event. 

Thus, if the harvesting event affected reproductive potential or egg survival, reductions in 

juvenile recruitment would not be apparent for at least a year (depending on the season of 

harvesting). Further population monitoring is needed to determine if time-lagged effects will 

occur at these sites. 

The timing of harvest events may also influence the magnitude of response in stream 

salamander vital rates. At both before-after sites, harvesting occurred in January, when D. 

brimleyorum adults are relatively inactive and after their eggs have hatched in the fall (Means 

2005). Furthermore, harvesting at our sites occurred during years with relatively high spring and 

summer precipitation. Further research is necessary to determine if salamanders are adversely 

affected if harvesting occurs when they are highly active (April-November) and/or their 

resources and mobility are limited by drought conditions. Lastly, the timing and frequency of 

future logging-related disturbances (site preparation, thinning, harvest, etc.) will likely influence 

salamander population recovery and persistence.   

We found that SMZs of 28 m or larger effectively avoided negative effects of timber 

harvest on D. brimleyorum relative abundance and apparent survival up to 2 years post-harvest, 

when mechanical timber removal occurred in the winter months. Timber harvesting changed the 

movement patterns of juvenile and adult D. brimleyorum in the stream, but it is unclear if this 

will have long-term ramifications. We recommend long-term salamander population monitoring 

in the SMZs of harvested timber stands to evaluate the mechanisms of possible time-lagged 

responses and longstanding population viability. However, we cautiously suggest that, provided 
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with adequate SMZs, intensely managed forests can support viable, dense populations of stream 

salamanders.  
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Figures and Tables 

Table 1. Model selection results for Cormack-Jolly-Seber analysis of capture-recapture data for 

D. brimleyorum at three sites. Models were constructed by varying capture/recapture probability 

(p) and survival (φ) by time (t), season, winter, or harvest (“.” refers to parameters held constant).  

Models are listed in decreasing order of support using Quasi-Akaike Information Criterion, 

corrected for small sample size and data overdispersion (QAICc). 

 

Model QAICc ΔQAICc Model Weight K 

Control Site 
    

φ(t), p(t) 2683.531 0 0.943 13 

φ(season), p(t)  2689.809 6.278 0.041 10 

φ(.), p(t) 2692.381 8.851 0.012 8 

φ(winter), p(t) 2694.003 10.472 0.005 9 

φ(.), p(season) 2707.827 24.297 0.000 4 

φ(.), p(winter) 2720.897 37.366 0.000 3 

BA1 Site 
    

φ(harvest), p(winter) 817.874 0 0.946 4 

φ(t), p(winter)  824.499 6.625 0.034 9 

φ(.), p(winter) 829.910 12.035 0.002 3 

φ(winter), p(winter) 831.603 13.729 0.001 4 

φ(.), p(season) 831.841 13.967 0.001 4 

φ(season), p(winter) 833.597 15.723 0.000 5 

φ(.), p(t) 838.008 20.134 0.000 8 

BA2 Site     

φ(.), p(t) 1501.104 0 0.456 6 

φ(winter), p(t)  1502.771 1.667 0.198 7 

φ(harvest), p(t) 1502.999 1.895 0.177 7 

φ(season), p(t) 1504.173 3.069 0.098 8 

φ(t), p(t) 1505.715 4.611 0.045 9 

φ(.), p(season) 1507.139 6.035 0.022 4 

φ(.), p(winter) 1511.065 9.961 0.003 3 

QAICc= Quasi-Akaike Information Criteria, corrected for sample size and over-dispersion; Δ QAICc = difference in 

QAICc relative to the top model; K = Number of parameters in the model. 
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Figure 1. Map of study sites and timeline of timber harvest and sampling schedule. All three sites 

are in the Little Missouri Watershed in northeast Howard County, Arkansas, USA. The 

watershed of each stream is outlined in grey. Approximate SMZs around each stream (thin black 

lines) are shaded in grey. 200 m stream transects where salamanders were sampled are bolded 

and enclosed in a dashed box. For the before-after sites, the harvested section of the watershed is 

outlined in black.   
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Figure 2. Number of individual D. brimleyorum captured by seasonal sampling interval at the 

three CMR sites in the Ouachita Mountain region of Arkansas, USA, grouped by season. Dotted 

bars indicate post-harvest intervals at the before-after Sites. *Only the harvested half of BA1 Site 

was surveyed in summer 2014. 
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Figure 3. Model-averaged apparent survival by sampling interval at the three sites in the 

Ouachita Mountain region of Arkansas, USA using Cormack-Jolly-Seber models. Hatched bars 

indicate post-harvest intervals at the before-after Sites.  Error bars represent 95% confidence 

intervals. Because of low captures rates in the spring, the survival rate at the Control Site for the 

second Apr-Jun interval is nonsensical, but is likely high. 
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Figure 4. Net movement of individual adult and juvenile D. brimleyorum within three streams in 

the Ouachita Mountain region of Arkansas, USA, over time intervals during which harvesting 

occurred at the before-after sites. Movement distances for before-after sites (b & d) were 

calculated by subtracting the first known location after timber harvest from the last known 

location before the harvesting event. Movement distances for salamanders at the control site (a & 

c) over the same time intervals are provided for comparison. Negative distance measures indicate 

downstream movement. 
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Figure 5. Average individual D. brimleyorum mean distance traveled per movement event (+/-1 

standard error) pre- and post-timber harvest for three streams in the Ouachita Mountain region of 

Arkansas, USA. For comparison, before and after distances at the control site were calculated 

using the same time intervals as the experimental sites even though no harvesting occurred. 
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Abstract 

Salamander populations can play a key role in the function and diversity of temperate forest 

ecosystems. However, the population parameters of salamanders residing in forests managed for 

timber production are generally unknown. We conducted a capture-mark-recapture (CMR) study 

at three streams within intensely managed pine forests in the Ouachita Mountain region of 

Arkansas from March 2015-October 2016. Specifically, we used robust design CMR models to 

explore the effects of seasonal, site, and age-class variation on the capture probability, recapture 

probability, temporary emigration, abundance, and apparent survival of a stream salamander, 

Desmognathus brimleyorum. We found evidence of significant seasonal variation in temporary 

emigration rates, which were lowest in late spring and highest in the winter months. Our 

estimates of mean salamander density (1.31 individuals/m2, adjusted to account for temporary 

emigration and conditional capture probability) and apparent survival (46%) were comparable to 

those of other Desmognathus species. This suggests that streams in forests managed for even-

aged timber production can support viable, dense populations of salamanders comparable to 

those in protected forests. Understanding the dynamics of such populations may help inform 

future assessment, monitoring, and conservation of stream-associated salamanders. 

Introduction 

 Due to rapidly increasing human populations, much of the world’s natural landscapes 

have been altered to meet human needs (Foley et al. 2005), and remaining reserves of unaltered 

land are often insufficient to preserve biodiversity (Westman 1990; Wilcove 1989). Forests 

managed for timber production, with similarities to unaltered landscapes, may be managed for 

both biodiversity and production of commodities, augmenting natural biodiversity reserves 

(Hansen 1991; Harris 1984). Managed forests have become a dominant form of land use in the 
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United States, with over 32 million acres of pine plantations in the southeastern United States 

(Fox et al. 2007). These large tracts of pine forest have ecological value (see Ninan and Inone 

2013) and can alleviate the pressures of urban and agricultural development for many wildlife 

populations. However, managed forests differ in many ways from historic forest types and are 

subject to disturbances such as clearcutting, thinning, mechanical site preparation, and chemical 

treatments to control competing vegetation. Although many studies have investigated the 

immediate impact of these disturbances on wildlife abundance, few studies have described the 

population biology of wildlife species residing in intensively managed forests, which limits our 

ability to understand and predict changes in response to novel disturbances. With a clear 

understanding of wildlife population dynamics in plantations managed for timber, we can 

maximize the value of managed forests as wildlife habitat.   

 Salamanders are important contributors to biodiversity in forested habitats and have 

substantial impact on ecosystem function (Davic and Welsh 2004). In many forested systems, 

salamander biomass exceeds all other vertebrate groups (Vitt et al. 1990), thus providing a vital 

energy resource to higher trophic levels (Burton and Likens 1975). For example, Davic and 

Welsh (2004) recorded salamander densities of up to 14.7 individuals/m2 (9.75 g/m2) in a North 

Carolina stream. Salamanders are also important macroinvertebrate predators, and may exert top-

down controls on primary consumers, with potential indirect effects on macroinvertebrate 

diversity and decomposition rates (Best and Welsh 2014; Wissinger et al. 1998; Wyman 1998). 

Lastly, the life history patterns of many salamander species facilitate the transfer of matter and 

energy between aquatic and terrestrial habitats (Davic and Welsh 2004). Most of the studies 

evaluating the functional role and abundance of salamanders have focused on relatively 

undisturbed forest habitats. Little is known about the roles and abundance of salamanders in 
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managed systems. Furthermore, the abundance and ecological function of stream-breeding 

salamanders are understudied compared to their terrestrial- and pond-breeding counterparts.  

 Most studies that have examined salamanders in managed forests focus on effects of 

forestry, lending little insight into the characteristics of salamander populations in managed 

landscapes or their variation over space and time (see reviews Kroll 2009; Tilghman et al. 2012). 

Limited conclusions about salamander population dynamics in managed forests can be gleaned 

from these impact studies because abundance estimates were generally based on raw count data 

without thoroughly accounting for factors that influenced detection probability (Mazerolle et al. 

2007; Schmidt 2004). Salamanders spend most of their time under cover objects or in 

underground refugia, inaccessible to researchers (Bailey et al. 2004b). Because of their cryptic 

and elusive nature, surface counts of salamanders are often small and variable and may not be 

representative of overall abundance or trends in abundance over time (Smith and Petranka 2000). 

Furthermore, the surface activity of many salamanders is highly dependent on season or climatic 

conditions, making surface counts temporally variable (Hyde and Simons 2001; Petranka 1998).      

 Capture-Mark-Recapture (CMR) methods (where individuals are captured, marked, 

released alive, and then recaptured on a later survey) are often used to estimate population 

parameters because many CMR analytical models allow for the estimation of capture probability, 

reducing bias in abundance and vital rate estimates (Schmidt 2004). Robust design (Pollock 

1982; Kendall et al. 1997) is a particularly useful CMR approach because it allows for the 

estimation of both temporary emigration (the probability that an individual is alive but 

temporarily unavailable for capture, i.e. outside the sampled area) and conditional capture 

probability (the probability that an individual will be captured given that it is available for 

capture) (Bailey et al. 2004b). This is accomplished by nesting frequent secondary sampling 
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periods where population closure is assumed within widely spaced primary sampling periods 

where the population is considered open (Kendall et al. 1997). Accounting for temporary 

emigration allows for more confident, unbiased abundance and survival estimates and increased 

insight into life history processes (Mazorolle et al. 2007). For example, Bailey et al. (2004b) 

estimated that nearly 90% of Plethodonid salamanders were unavailable for capture at any given 

time. Without accounting for temporary emigration, any abundance estimates for the 

salamanders in Bailey et al. (2004b)’s system would be exaggerated while survival rates may be 

underestimated.    

 In this study, we employed robust design CMR methods to describe the population 

biology of Desmognathus brimleyorum, a common, but understudied, stream-associated 

salamander endemic to the Ouachita Mountains of west-central Arkansas, in intensively 

managed pine forests. We conducted intensive CMR surveys of D. brimleyorum at three 

headwater streams over two years. Using robust design CMR models, we explored the effects of 

season, site, and age on estimates of D. brimleyorum capture and recapture probability, 

temporary emigration, abundance, and apparent survival.  We hypothesized that survival and 

temporary emigration would vary by season because salamander surface activity, and thus 

presumed mortality risk, is usually seasonal. We also hypothesized capture probability and 

temporary emigration would vary among sites, as availability of refugia is likely site-dependent 

(assuming salamanders utilizing refugia are unavailable for capture or more difficult to capture). 

Finally, we hypothesized that abundance would be site-varying as resource availability, and thus 

salamander carrying capacity, is site-dependent. This is the first study to rigorously describe 

stream salamander populations in forests managed for timber production using robust design 

methods. Understanding the dynamics of such population parameters in managed forests may 
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help inform future assessment, monitoring, and conservation of stream-associated salamander 

populations.   

Methods 

Study Sites 

 We conducted intensive capture-mark-recapture (CMR) sampling at three headwater 

streams on intensively managed pine landscapes on the Athens Plateau (Woods et al. 2004), the 

southern foothills of the Ouachita Mountains in west-central Arkansas (hereafter referred to as 

sites 1, 2, and 3). We selected sites based on similar stream size, morphology, and timber 

management history. All three sites were first order, headwater streams located within 16 km of 

each other in the Little Missouri Watershed in northeast Howard County, Arkansas, USA. Each 

study stream drained a small watershed (0.41-1.15 km2) within a mature even-aged (29-35 years 

at the start of our study), loblolly pine (Pinus taeda) plantation. Each site had similar timber 

management history with the stand being harvested approximately every 35 years. The stands 

surrounding sites 1 and 2 were harvested during our 2-year study while the mature stand at site 3 

remained intact. A concurrent study found that the harvesting events at sites 1 and 2 had minimal 

effects on the stream salamander survival and relative abundance (Halloran et al. 2018, in prep.), 

so we did not explicitly examine the effects of timber harvest on demographic parameters in this 

study. Each stream had a 28-50 m wide streamside management zone (SMZ) buffer (total width 

including stream: site 1- 28 m, site 2- 42 m, site 3- 50 m). The forested area within the SMZ was 

retained during harvesting events. The SMZ at site 2 and 3 were dominated by oak (Quercus 

spp.) and hickory (Carya spp.) in the overstory and cedar (Juniperus virginana) and holly (Ilex 

opaca) in the understory. The SMZ of site 1 was dominated by loblolly pine in the overstory and 

holly, musclewood (Carpinus caroliniana) and hophornbeam (Ostrya virginiana) in the 



42 
 

understory. At each site, we delineated a 200 m stream transect for the CMR sampling area. The 

elevation along transects ranged from 190-300 m above sea level. 

Salamander Sampling 

We sampled salamanders under a robust design framework where sampling events were 

clustered through the length of the study (Fig. 1). We surveyed each stream one night a week for 

three weeks (secondary periods) in March, June, and October (primary periods) from March 

2015 through October 2016. We assumed populations were closed to birth/death and permanent 

immigration/emigration between secondary periods (weeks) and were open to gains and losses of 

individuals between primary periods (seasons). This allowed us to estimate abundance within 

primary periods and apparent survival between primary periods.  

Each night-time sampling event consisted of a thorough visual search of the streambed 

for the length of each transect. The average number of observers was 2.5 with an average effort 

of 10.6 person·hours per sampling event. We carefully turned rocks and other cover objects to 

uncover salamanders and captured them using dip nets.  We placed each salamander in a separate 

container that corresponded to a flag placed in the stream marking the capture location of each 

individual. We excluded larval Desmognathus and other salamander species from capture.  The 

following day, we recorded body metrics [mass, total length, snout-vent length (SVL), and any 

other distinguishing features] and uniquely marked each individual with subcutaneous injection 

of visible implant elastomer (VIE; Northwest Marine Technologies, Shaw Island, WA; Grant 

2010). Any recently metamorphosed individuals (< 1 year since metamorphosis, ≤45 mm SVL) 

were considered juveniles. We identified first-year animals based on the average growth rate of 

known metamorphs and an obvious break in body size distributions, creating a first-year growth 

threshold of 45 mm SVL. Individuals > 45 mm SVL at time of capture were considered adults. 



43 
 

We generally returned all salamanders to their exact capture location within 2 days after capture, 

but occasionally held them up to 5 days to avoid releasing them into a flooded stream. 

Data Analysis  

 We assessed D. brimleyorum population parameters using full-likelihood, robust design 

models in Program MARK 6.0 (White and Burnham 1999). To avoid small sample sizes, we 

combined capture data across all three sites into a single encounter history and included site as a 

covariate in model selection. We structured models by systematically varying conditional capture 

probability (p), conditional recapture probability (c), temporary emigration (γ), apparent survival 

(φ), and individuals not encountered (f0), in that order. To avoid over-parameterization, we held 

p and c constant within each primary sample, thus assuming p and c were constant across weeks, 

but could vary across seasons. More general models with fully time-varying p and c are possible, 

but generally failed to converge. First, we created two constant models where p=c and p≠c to test 

behavioral responses to capture. Then, while holding other parameters constant, we evaluated 

models where p varied by primary period (t) and site. Once we determined the best 

parameterization for p, we included that parameterization in subsequent models that sequentially 

allowed c, γ, φ, and f0 to vary by t and site. When parameterizing γ, we created models that 

varied in type of temporary emigration as well as time and site effects. Specifically, we created 

models with no temporary emigration (γ’=1, γ”=0), random temporary emigration (γ’=γ”), and 

Markovian temporary emigration (γ’k=γ’k-1, γ”k=γ”k-1) where: 1) γ’ is the probability of being 

unavailable for capture in a primary sampling session given that the individual is alive and 

wasn’t available for capture in the previous sampling session, 2) γ” is the probability of being 

unavailable for capture in a primary sampling session given that the individual was alive and was 

available for capture in the previous session, and 3) k is the primary sampling occasion (Kendall 
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et al. 1997). We based model selection on Akaike Information Criterion (AIC; Akaike 1973) 

adjusted for small samples size (AICc; Burnham and Anderson 2002). We also explored seasonal 

and annual variation of population parameters, but excluded these models from our final model 

selection due to lack of support. To account for model selection uncertainty, we used model 

averaging to generate estimates that were weighted by the support of each model (Burnham and 

Anderson 2002). We calculated superpopulation size (Nsuper, the total number of individuals 

including those unavailable for capture) for each primary sampling session by dividing the 

estimated abundance of available individuals (N̂) by the ratio of available individuals (1-γ) 

(Bailey et al. 2004b). 

 Once our initial model selection was completed, we completed a separate analysis to 

evaluate variation among salamander age classes (juvenile vs. adult) in p, c, γ, and φ. Age was 

not included in our original model set due to the large number of alternative models required to 

test every parameter permutation of time, site, type of temporary emigration, and age. Instead, 

we began our age-analysis with a model that included time effects where they were supported in 

our primary model selection (all parameters except p), but did not consider site effects (to avoid 

overparameterization). Next, we systematically applied age-effects to each population parameter. 

We parameterized age models by assigning each individual a cohort covariate (“2015”, “2016”, 

and “Adult”). Cohort names referred to the year in which each individual metamorphosed, if 

known. We could not determine age of individuals over 45 mm SVL at first encounter and thus, 

we labeled those individuals as “Adults” collectively. When creating models with age-varying 

parameters, we allowed individuals less than a year since metamorphosis to differ from adults 

and older cohorts, which were set equal. All juvenile cohort parameter rates were fixed to 0 until 

the time interval when those individuals metamorphosed and were recruited into the sampled 
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population. No juvenile parameters were estimated during all April-June primary intervals and 

March secondary intervals because, by that time, all metamorphosed individuals were greater 

than 1 year old and their size class can no longer be differentiated from adults.  

Results 

 We captured 3,858 salamanders representing 2,111 individuals over 54 nights from 

March 2015-October 2016. At all three sites, capture rates were highest during the summer 

primary sample and lowest during the spring primary sample. Captures were highest at site 2 

(n=1,896), followed by site 3 (n=1,415), and site 1 (n=547). Model selection indicated the model 

that allowed φ to vary by time and site, γ was random and varied by time, p varied by site, c 

varied by time, and f0 varied by time and site had the strongest support [φ(t,site), γ(random,t), 

p(site), c(t), f0(t,site), model weight= 0.741, Table 1]. 

Capture and Recapture Probability 

  A constant model that allowed for a behavioral response to capture (p≠c) was supported 

over a constant model without a behavioral response (p=c) (ΔAICc=4.049, Table 1). A model 

where p varied by site but was constant over time was most supported.  However, the effect of 

site on p was weak, as indicated by nearly equivocal support for the second ranked model where 

p was constant across sites (ΔAICc=2.099, model weight=0.259). Model averaged p was 

estimated as 12.4% (CI 9.6%-15.9%) at site 1, 11.9% (CI 9.9%-14.1%) at site 2, and 14.3% (CI 

11.7%-17.4%) at site 3 (Fig. 2a). A site effect on c was not supported, although c varied over 

time. Model averaged c increased steadily from 15.3% (CI 10.9%-20.9%) in March 2015, to 

30.9% (CI 27.6%-34.4%) in Jun 2016, before dropping to 23% (19.7%-26.6%) in October 2016 

(Fig. 2b). 
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Temporary Emigration 

 Our null model where no individuals are unavailable for capture was not supported 

(ΔAICc=20.954, model weight=0.000). Our top model included random temporary emigration 

that varied across primary samples. Estimates of γ were highly seasonal, with all individuals 

available for capture (γ =0) during the April-June primary intervals, moderate γ (12.6-17.1%) in 

the July-October interval, and high γ (38.3%) during the winter (November-March) (Fig. 3a). 

Abundance 

 Surface population (N̂, or the abundance of individuals available for capture) ranged from 

a minimum of 60 (CI 35-86) within the stream transect at site 1 in Mar 2015 to a maximum of 

1207 (CI 994-1419) at site 2 in Jun 2016 (Fig. 3b). Estimates of N̂ showed strong seasonal 

variation, with highest salamander abundance in during the June sampling session and lowest 

abundance during the March sampling session. Examination of the superpopulation size 

estimates (Nsuper, calculated from N̂ and γ) revealed that much of the seasonal change in N̂ is due 

to high γ rates in the winter primary intervals (Fig.3c).  Superpopulation size estimates yield an 

average salamander density of 1.46 salamanders per m of stream at site 1, 5.14 salamanders/m at 

site 2, and 3.21 salamanders/m at site 3 (averaging 1.31 individuals per m2 across all sites 

assuming an average stream width of 2.5 m). 

Apparent Survival        

 A model where φ varied by time and site was supported. There were no clear seasonal or 

site patterns in the φ estimates, although φ estimates at site 1 were the most variable (45.7%-

93.7%) (Fig. 4). Estimates of φ ranged from 57.3% to 92.4% at site 2 and 65.8% to100% at site 
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3. Average apparent survival per primary period was 77% across all sites. This extrapolates to an 

annual survival rate of approximately 46%. 

Age Effects 

    Models that incorporated age and time effects for c, γ, and φ were favored over models 

that applied age and time effects separately, although variation among juveniles and adults for 

most parameters was not strong. A model with age-varying p was favored over constant p, 

although p estimates for juveniles were not significantly different from p estimates for adults 

(Fig. 5a). Estimates of c were generally higher for juveniles (mean 27.1%) than adults (mean 

21.3%) in intervals where both ages were present (Fig. 5b). However, adult γ values (mean 

32.9%) were consistently higher than juvenile γ (mean 25.1%) estimates, although this was also 

not significant (Fig. 5d). Although the estimates of φ differed by age class and time interval, no 

clear pattern was apparent (Fig. 5c).  

Discussion 

 Salamanders play a key role in the ecosystem function and diversity of temperate forest 

systems. However, salamanders are often cryptic, making it difficult to accurately estimate 

demographic parameters. In this study, we used intensive mark-recapture to examine three 

populations of a little studied stream salamander, D. brimleyorum, residing in forests managed 

for timber production. Our model selections supported time-varying conditional recapture 

probability (c) and temporary emigration (γ). Conditional capture probability (p) was constant 

over time but varied by site. Lastly, survival (φ) and surface abundance (N̂) varied by both time 

and location.      
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 Our models yielded an average D. brimleyorum density of 3.27 individuals per m of 

stream (approximately 1.31 individuals per m2), across all sites and seasons and adjusted for 

temporary emigration. This density estimate is comparable to within-stream salamander densities 

reported in less disturbed Appalachian forests (Table 2). Salamander density at site 2 was nearly 

four times greater than density at site 1, suggesting that salamander density is highly dependent 

on local environmental conditions and may vary substantially between locations. Across all three 

sites, salamander density was lowest in March (mean 0.96 per m2) and highest in June (mean 

1.53 per m2). One possible explanation for this pattern is the seasonal timing of salamander 

recruitment. Larval D. brimleyorum typically metamorphose in May, bolstering summer density 

(Means 2005). Adult and juvenile individuals then die or permanently emigrate throughout the 

year producing the lowest salamander density in spring, immediately before the next recruitment 

event.  

 Our Desmognathus density estimates suggest that streams in managed forests can support 

populations similar in size to those in relatively undisturbed habitats. This underscores the value 

of managed forests for providing wildlife habitat for stream-associated amphibians. Furthermore, 

we observed Eurycea multiplicata in the stream and Plethodon glutinosis, Plethodon serratus, 

Pethodon caddoensis, Ambystoma maculatum, and Hemidactylium scutatum in the surrounding 

riparian area, providing further evidence that managed forests can support a diverse salamander 

community. Our study streams are surrounded by delineated SMZs (28-50 m wide) that are not 

harvested with the rest of the timber stand to protect water quality, which is standard practice 

under Arkansas Forestry Best Management Practices (Arkansas Forestry Commission 2002). 

Many studies report the negative effects of timber harvest on salamanders residing in harvested 
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areas (see reviews Kroll 2009; Tilghman et al. 2012), thus the value of managed forests may be 

reduced if these riparian buffers are not present. 

 Our study also revealed variation in detection and vital rate parameters that are important 

for accurate assessment of salamander populations in managed forests in the future. Our p 

estimates (averaging 12.9%) were lower than those recorded in other studies examining 

Plethodonid salamander populations using robust design. Bailey et al. (2004b), Bunderman and 

Liedgold (2012), and Price et al. (2012b) report average p estimates near 30%. Bailey et al. 

(2004b) noted different p values between species groups and Bailey et al. (2004c) observed that 

p was influenced by local vegetation and elevation. Therefore, differences in life history and site 

conditions may account for our lower p estimates. We also observed site variation in p, further 

supporting the theory that p is dependent on local conditions. Both Bailey et al. (2004b) and 

Price et al. (2012b) observed temporal variation in p, although both studies had more sampling 

events per year and were thus more likely to detect seasonal variations in p. 

 While our p estimates were relatively low, our c estimates (averaging 22.2%) were 

substantially higher compared to other robust design salamander studies [Bailey et al. (2004a) 

reports a mean of 7%, Buderman and Liedgold (2012) reports a mean of 4%, Price et al. (2012b) 

reports a mean of 8%]. These studies suggested that comparatively low recapture probability in 

Plethodonid salamanders was due to a negative behavioral response to being captured and 

handled. In contrast, we observed that the probability of recapture was always higher than the 

probability of initial capture. As we captured individuals by hand without the use of bait or traps, 

we think a trap-happy response, where an individual actively seeks recapture, is unlikely. It is 

possible that c is influenced by time of previous release. For example, there may be an 

adjustment period after release where individuals are more likely to be moving near the surface 
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of the stream (perhaps searching for their prior refuges) and, thus, more obvious to researchers, 

when the stream is resampled 4-7 days later. 

 Similar to other studies on plethodonid salamanders (Bailey et al. 2004c; Bunderman and 

Liedgold 2012; and Price et al. 2012b), our model selection favors γ estimates that are random 

(independent of previous availability) and temporally varying. This suggests that the availability 

of individual salamanders is strongly dependent on season and environmental conditions. 

Salamanders can remain in refugia (unavailable for capture) for extended periods, only emerging 

when weather conditions are favorable (Ashton 1975; Petranka 1998). In our study, estimated γ 

was close to zero in the spring (Apr-Jun), suggesting that this is a time of high surface activity. 

This result is congruent with Price et al. (2012b), where γ rates for D. fuscus were lowest in May 

and June. This also suggests that N̂ estimates made during these months would be close to Nsuper, 

possibly negating the need for accounting for γ in the spring of a given year when generating 

point population estimates. Meanwhile, our γ estimates were highest during the winter (Nov-

Mar) when salamander activity is assumed to be the lowest. The seasonal nature of our γ 

estimates support the conclusions of other studies: failure to account for temporary emigration 

(particularity during some seasons) can result in misleading conclusions about abundance or 

change in abundance over time (Bailey et al. 2004b; Mazorolle et al. 2007). 

 While temporal variation of γ was supported, our γ estimates (mean 13.6%) were 

considerably lower than other studies. Bailey et al. (2004c) reports a mean γ of 87% and Price et 

al. (2012b) reports a mean of 73%. Our relatively small γ estimates may be due to favorable 

climate conditions during the years of our study. For example, all three years (2014-2016) of our 

study were considered wet years for this region, receiving 10.82 cm, 38.05 cm, and 15.32 cm of 

precipitation over the annual norm respectively (NOAA weather station in Newhope, AR). Price 
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et al. (2012a) found that γ rates were twice as high in drought conditions, suggesting salamander 

modify behaviors in response to environmental conditions. Another possible explanation for our 

small γ estimates is that the habitats (loose rock substrate and relatively few embedded cover 

objects) of our streams are more amenable to thorough searching than those in other studies.  

 Our model selection favored models where φ varied by site and primary interval, 

however estimated φ were consistently high across all sites and seasons, averaging 77% per 

primary interval (46% mean annual survival). This is the first rigorous estimate of post-

metamorphic D. brimleyorum survival. In his study, Organ (1961) reports annual survival rates 

ranging from 11%-57% for five species of Desmognathus (D. quadramaculatus, D. monticola, 

D. fuscus, D. ochrophaeus, D. wrighti). Danstedt (1975), Price et al. (2012a), and Price et al. 

(2012b) report D. fuscus annual survival rates of 23.8%-42.6%, 24.7%-69.4%, and 3.6%-21.6% 

respectively. Our φ estimates are within the range of those reported for other Desmognathus 

species, although they are comparatively high. Similar to our analysis, Price et al. (2012b) found 

strong support for site-specific φ. Desmognathus brimleyorum maintained high survival rates 

following clearcut harvesting of the forest stands surrounding two streams, suggesting that 

streamside buffers provide adequate habitat to support population maintenance for this species 

(Halloran et al. 2018, in prep.). 

 We found little support for the effect of age class (juvenile vs. adult) on any of our 

demographic parameters, as evidenced by overlapping confidence intervals and inconsistent 

trends. In contrast to our results, Danstodt (1975) reports a significant difference in annual 

survival rate between D. fuscus individuals under 3 years of age (8.4%-13.9%) and individuals 

over 2 years of age (23.8%-42.6%), although his study included larval individuals in the under 3 

years age class. Similarly, Bunderman and Liegold (2012) found evidence that γ varies with age 
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class in P. cinereus (two classes: juvenile- <35 mm SVL, adult- >35 mm SVL). However, 

Bunderman and Liegold (2012) found no evidence for an age class effect on encounter 

probability. In contrast, Peterman et al. (2008)’s model selection for D. quadramaculatus favored 

constant capture probability for individuals under 70 mm SVL and temporally and spatially 

variable capture probability for individuals over 70 mm SVL. Based on our observations, D. 

brimleyorum grow rapidly and reach sexually maturity within 2-3 years after hatching; whereas 

many other large-bodied Desmognathus species require 3-7 years to reach sexual maturity 

(Petranka 1998). It is possible that the lack of a prominent age effect on these parameters is 

driven by the rapid growth of D. brimelyorum at our sites. More data and finer age classes with a 

stringent identification protocol are needed to fully evaluate the effects of age on the parameters 

estimated in this study. 

 In this study, we characterized three stream salamander populations in intensively 

managed timberlands. Our estimates of salamander density and survival were comparable to 

estimates reported for other Desmognathus species in relatively undisturbed forests. This 

suggests that streams in forests managed for even-aged timber production are able to support 

viable, dense populations of salamanders. These populations are likely having a substantial effect 

on ecosystem function in managed forests, including the energetic support of other species of 

wildlife. While our estimates of temporary emigration were lower than previous salamander 

studies, we observed strong seasonal variation, underscoring the need to account for both 

temporary emigration and factors influencing conditional capture probability when investigating 

demographic parameters of stream salamanders.   
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Figures and Tables 

 

Figure 1. Robust design annual sampling schedule at three sites. One rotation represents one 

calendar year. Population is considered closed (dark gray) between secondary samples 

(approximately one week apart) and open (light gray) between primary samples (at least two 

months apart).  
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Table 1. Model selection results for robust design analysis of capture-recapture data for D. brimleyorum at three forested 

stream sites. Models were constructed by varying capture probability (p), recapture probability (c), survival (φ), temporary 

emigration (γ), and number of individuals not encountered (f0) by time (t) and site (“.” refers to parameters held constant).  

Models are listed in decreasing order of support using Akaike Information Criterion, corrected for small sample size (AICc). 

Model AICc ΔAICc Model Weight K 

φ(t,site), γ(random,t), p(site), c(t), f0(t,site) -11936.364 0 0.741 46 

φ(t,site), γ(random,t), p(.), c(t), f0(t,site) -11934.265 2.099 0.259 44 

φ(t,site), γ(markovian,t,site), p(site), c(t), f0(t,site) -11919.311 17.053 0.000 60 

φ(t,site), γ(no movement), p(site), c(t), f0(t,site) -11915.410 20.954 0.000 42 

φ(t,site), γ(random,.), p(site), c(t), f0(t,site) -11913.365 22.999 0.000 43 

φ(t,site), γ(random,site), p(site), c(t), f0(t,site) -11909.270 27.095 0.000 45 

φ(t,site), γ(random,t,site), p(site), c(t), f0(t,site) -11896.331 40.033 0.000 53 

φ(t,site), γ(markovian,t,site), p(site), c(t), f0(.) -11545.513 390.851 0.000 41 

φ(site), γ(markovian,t,site), p(site), c(t), f0(.) -11542.072 394.293 0.000 40 

φ(t), γ(markovian,t,site), p(site), c(t), f0(.) -11540.605 395.759 0.000 41 

φ(.), γ(markovian,t,site), p(site), c(t), f0(.) -11539.750 396.614 0.000 38 

φ(.), γ(random,t,site), p(site), c(t), f0(.) -11536.339 400.025 0.000 26 

φ(.), γ(markovian,t), p(site), c(t), f0(.) -11511.411 424.954 0.000 20 

φ(.), γ(random,t), p(site), c(t), f0(.) -11511.161 425.204 0.000 16 

φ(.), γ(random,site), p(site), c(t), f0(.) -11442.588 493.777 0.000 14 

φ(.), γ(random,.), p(site), c(t), f0(.) -11400.883 535.482 0.000 12 

φ(.), γ(random,.), p(site), c(t,site), f0(.) -11398.435 537.929 0.000 24 

φ(.), γ(no movement), p(site), c(t), f0(.) -11379.601 556.764 0.000 11 

φ(.), γ(random,.), p(site), c(.), f0(.) -11370.950 565.415 0.000 7 

φ(.), γ(random,.), p(site), c(site), f0(.) -11367.054 569.311 0.000 9 

φ(.), γ(random,.), p(t,site), c(.), f0(.) -11193.656 742.708 0.000 21 

φ(.), γ(random,.), p(.), c(.), f0(.) -11142.672 793.692 0.000 5 

φ(.), γ(random,.), p=c(.), f0(.) -11138.624 797.741 0.000 4 

φ(.), γ(random,.), p(t), c(.), f0(.) -11028.632 907.733 0.000 9 

AICc=Akaike Information Criteria, corrected for sample size and over-dispersion; ΔAICc = difference in AICc relative to the top model; K = Number of 

parameters in the model. 
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Figure 2. Model-averaged conditional a) capture probability and b) recapture probability by 

sampling interval at the three sites using robust design models. Error bars represent 95% 

confidence intervals.  
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Figure 3. Model-averaged estimates of a) temporary emigration (γ), b) surface population (N̂), c) 

super population (Nsuper) of D. brimleyorum by sampling interval at the three sites using robust 

design models. Error bars represent 95% confidence intervals. 
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Figure 4. Model-averaged estimates of apparent survival of D. brimleyorum by sampling interval 

at the three sites using robust design models. Error bars represent 95% confidence intervals. 

Because of low capture rates in the spring, the survival rate at site 3 for the second Apr-Jun 

interval is nonsensical, but is likely high. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Apr-Jun Jul-Oct Nov-Mar Apr-Jun Jul-Oct

A
p

p
ar

en
t 

Su
rv

iv
al

 (
φ
)

Site 3 Site 1 Site 2



  

 
 

6
2
 

 

 

Figure 5. Estimates of a) conditional capture probability, b) conditional recapture probability, c) apparent survival, and d) 

temporary emigration for juvenile (less than one year post metamorphsis) and adult groups by sampling interval at all sites 

using robust design models. Error bars represent 95% confidence intervals. 
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Table 2. Summary of published density estimates for Desmognathus salamanders. 

Citation Species Methods Locality Habitat Type Density 

(m-2) 

Bush et al. 2017 D. monticola Closed-capture 

CMR 

Benton Co., AR Spring-fed 

stream 

14.5* 

Camp & Lee 1996 D. quadramaculatus Jolly-Seber CMR  Habersham Co., GA+ Spring-fed 

stream 

1.41 

Crawford & Peterman 2013 D. monticola,  

D. ocoee,  

D. quadramaculatus 

Jolly-Seber CMR  Macon Co., NC+ Wet rock face 14.69 

Davic & Welsh 2004 D. quadramaculatus - Macon Co., NC+ Spring-fed 

stream 

1.73 

Hall 1977 D. fuscus,  

D. ochrophaeus 

Jolly CMR Tioga Co., PA+ Stream and 

surrounding 

seeps 

1.9 

Huheey & Brandon 1973 D. ochrophaeus Lincoln-Petersen, 

Jolly, and 

Schnable CMR 

Macon Co., NC+ Wet rock face 3.0-

19.0 

Peterman et al. 2008  D. quadramaculatus Closed-capture 

CMR 

Macon Co., NC+ Spring-fed 

stream 

1.13 

Petranka & Murray 2001 D. carolinensis Removal 

sampling 

Buncombe Co., NC Riparian old 

growth forest 

1.07 

Petranka & Murray 2001 D. wrighti Removal 

sampling 

Buncombe Co., NC Riparian old 

growth forest 

0.67 

Spight 1967 D. fuscus Count-based Orange Co., NC Spring-fed 

stream 

1.42 

Tilley 1980 D. ochrophaeus Jolly-Seber CMR Macon Co., NC+ Wet rock face 5.8-6.9 

This study D. brimleyorum Robust Design 

CMR 

Howard Co., AR Stream, runoff-

fed 

1.31 

* Introduced population, may not reflect density in natural range; +Public land (National or State Parks/Forests)  
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Appendix  
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Conclusion 

This thesis presents two studies that investigate the population biology of a stream 

salamander endemic to the Ouachita Mountain region of Arkansas, Desmognathus brimleyorum. 

The objective of the first study was to examine the effects of timber harvest on D. brimleyorum 

populations and investigate possible mechanisms driving harvest-related abundance change. We 

found that SMZs of 28 m or larger effectively avoided negative effects of timber harvest on D. 

brimleyorum relative abundance and apparent survival up to 2 years post-harvest, when 

mechanical timber removal occurred in the winter months. However, timber harvesting changed 

the movement patterns of D. brimleyorum in the stream and it is unclear if these changes will 

have long-term ramifications. We recommend long-term salamander population monitoring in 

the SMZs of harvested timber stands to evaluate the mechanisms of possible time-lagged 

responses and longstanding population viability. 

 The objective of the second study was to estimate vital rate and capture probability 

parameters of D. brimleyorum in managed forests, specifically assessing seasonal, site, and age 

variation in estimates of capture probability and recapture probability, temporary emigration, 

abundance, and apparent survival. Our estimates of salamander density and survival varied by 

season and site and were comparable to estimates reported for other Desmognathus species in 

relatively undisturbed forests. This suggests that streams in forests managed for timber 

production are able to support viable, dense populations of salamanders. These populations are 

likely having a substantial effect on ecosystem function in managed forests, including the 

energetic support of other species of wildlife. While our estimates of temporary emigration were 

lower than pervious salamander studies, we saw a distinct pattern of seasonal variation, 
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underscoring the need to account for both temporary emigration and conditional capture 

probability when investigating demographic parameters of stream salamanders.   
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