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ABSTRACT 

To be used in health care, the safety and effectiveness of nanoparticles needs to be tested 

in a living organism. The objective of this project was to develop the chicken as a convenient 

animal model to examine tissue targeting of intravenously (i.v.)-injected iron oxide (IO) 

nanoparticles. In Experiment 1, different doses of IO-COOH were i.v. injected into chickens; 

blood was collected at 0, 5, 15, 30, and 60 minutes post-injection; liver, spleen, lung, and kidney 

were collected after the last blood collection. For Experiment 2, IO-COOH and IO-PEG were i.v. 

injected into chickens; blood and the organs were collected at 0, 5, 15, 30, and 60 minutes post-

injection. For both Experiments, IO concentration in blood was examined by iron test kit and 

fixed tissue sections were stained with H/E and Prussian blue stain. Portions of organs from 

Experiment 2 were frozen and used for preparation of homogenates and tissue-sections for 

immunohistochemical and/or iron-staining. For Experiment 3, the dermis of growing feathers 

(GF) was injected with mouse-IgG antigen (Ag); 6 hours later,  IO-Ab (IO-COOH conjugated 

with chicken-antibody specific for mouse IgG), IO-COOH, or IO-PEG were i.v. injected into the 

chickens; one Ag-injected GF and one uninjected GF per chicken was collected at 0, 0.1, 0.5, 1, 

2, 24, and 48 hours post-i.v.-injection; organs were collected at three and seven days post-i.v.-

injection; and tissue sections of GFs and organs were stained with Prussian blue stain. Together, 

results of Experiment 1 and Experiment 2 revealed that IO-nanoparticles were taken up quickly 

by macrophages in liver and spleen, whereby IO-PEG was taken up at lower levels and slower 

pace by phagocytic cells when compared to IO-COOH. Experiment 3 was not successful in 

demonstrating delivery of intravenously injected IO nanoparticles to antigen-injected GFs. This 

may be due to the low dose of nanoparticles injected as well as the antigen-antibody system 

used. This is the first report describing organ-distribution and uptake of i.v. injected IO 



 

nanoparticles in the chicken system, setting the stage for using the avian model to test in vivo 

targeting effectiveness of nanoparticles. 
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LITERATURE REVIEW 

1. Introduction 

Nanoparticles have been extensively studied for various biomedical applications. One 

goal of nanotechnology is to use nanoparticles for delivery of drugs and toxins to target cells, 

such as tumor cells for example. Nanoparticles possess ability to carry antibodies, nucleotide 

probes, lectins, and other molecules, allowing specific interaction between probe carrying 

nanoparticles and target molecules. Numerous studies are carried out to develop nanoparticle 

targeting strategies, including modifications that hide the particle from the immune system, allow 

it to cross the endothelial cell blood barrier, keep it intact until it enters the target tissue, or cause 

it to undergo desired changes by the time it reaches the target tissue (Koo et al., 2011; Yang et 

al., 2008; Sajja et al., 2009).  

To be used in health care, the safety and effectiveness of nanoparticles needs to be tested 

in a living organism. The skin and its living derivatives such as foot pad, ear lobes, toe web, 

wattle, and wing web have been used as valuable test-sites in both mammalian and avian species 

to examine tissue responses to a variety of materials injected into this complex tissue in living 

animals (Erf and Ramachandran, 2016). Even in human medicine, the skin is used to determine 

exposure or sensitization to antigen (e.g. tuberculin test, allergy test) (Crawford, 2017; Nickels et 

al., 2014). Intradermal injection of test-material generates a visible response that can be assessed 

based on the time course of the reaction and the presence of edema, induration, redness, and 

other visible or palpable characteristics (Chin et al., 2013). However, in animal testing 

information on cellular and molecular interactions that occur within a complex tissue is only 

available upon invasive biopsy or post-mortem sampling of the tissue, greatly reducing the 
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opportunity for monitoring events over time in the same individual (Falzarano et al., 2014; Bai et 

al., 2013; Ulbrich et al., 2011). 

For the avian model, the growing feather has been identified as a convenient skin 

derivative for in vivo testing of test-materials. In chickens, the living portion of two- to three-

week-old growing feathers is a column of pulp, which is approximately 8-10 mm in height with a 

2-3 mm diameter. The pulp consists primarily of dermal tissue bordered by an epidermal layer. It 

contains the vascular supply of the growing feather and is an immunologically active site capable 

of recruitment of leukocytes and soluble factors from the circulation (Lucas and Stettenheim, 

1972; Erf and Ramachandran, 2016).  In addition, the growing feather can easily be removed by 

pulling it from its follicle, providing a tissue biopsy that is defined in size and structure without 

surgery. In recent years, Erf and colleagues (Erf and Ramachandran, 2016; Erf et al., 2017; 

Sullivan and Erf, 2017; US Patent 8,216,551, 2012) have established the growing feather as a 

suitable and defined dermal test-site providing insight into local immune system/tissue activities 

to test-material injected into the dermis of the pulp. Both injection and collection of growing 

feathers are considered minimally invasive procedures. Multiple growing feathers can be injected 

at one time in the same individual and then they can be collected at various time points post-

injection for ex vivo analysis. Therefore, the chicken growing feathers are suitable for minimally 

invasive examination of biological activities of nanoparticles in vivo. It is likely that the feather 

injection method can also serve as a window into the effectiveness of nanoparticle targeting. If 

antigen placed into the feather pulp can attract immune components to enter the pulp tissue, it 

should also allow circulating nanoparticles coated with antigen-specific antibodies to come to the 

target site to interact with antigen.  
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The overall goal of this thesis research was to explore the suitability of the avian growing 

feather as a tissue test-site to monitor targeting of intravenously administered nanoparticles that 

are coated with antigen-specific antibody to the tissue-site where the antigen is located. In this 

model, the antibody-conjugated nanoparticle will be intravenously administered to the chicken 

and the antigen will be injected into the dermis of the chicken’s growing feathers. The antigen-

injected growing feathers will then periodically be sampled and examined for the presence of 

nanoparticles. The nanoparticle chosen for this project are iron oxide nanoparticles (10 nm), the 

target antibody is chicken IgG specific to mouse IgG, and the target antigen is mouse IgG. While 

immune activities in response to intradermal injection of growing feathers with of mouse IgG 

have previously been examined, intravenous injection of iron oxide nanoparticles in chickens has 

not. Therefore, a major part of this study is to examine the organ-distribution and circulatory 

half-life of intravenously injected iron-oxide nanoparticles in the chicken, before the targeting 

studies can be carried out. 

 

2. Nanoparticle Delivery/Targeting 

Nanoparticles can be described as nanometer size particles which are used as tiny probes 

to track the cellular machinery with minimally physical interference to cells (Taton, 2002). 

Nanoparticles can be conjugated with biological molecules which favor their interaction with 

cellular or molecular targets. A variety of biological molecules consisting of antibodies and 

biopolymers can be tagged on nanoparticles (Sinani et al., 2003). Nanoparticles demonstrate 

various structures such as sphere, rod, and platelet-like shape which can be used in biological 

systems for transportation of drug-conjugated nanoparticles to targets (Rodzinski et al., 2016). 
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Nanoparticles are used for a wide range of applications, especially for drug and gene 

delivery (Salata, 2004). For example, doxorubicin liposomes (aka Doxil) and 130 nm albumin-

bound particle formulation of paclitaxel (aka Abraxane) are nanoparticles used as delivery 

systems for small-molecule drugs that are currently available in the pharmaceutical market 

(Mitragotri et al., 2014). Doxil is being used as medication for ovarian cancer and AIDS-related 

Kaposi’s sarcoma (Barenholz, 2012). It was approved by the US Food and Drug Administration 

(FDA) in 1995 and became the first nano-drug to be sold in the USA and Europe. The Doxil 

nano-liposomes are comprised of hydrogenated soya phosphatidylcholine, cholesterol, and poly 

ethylene glycol (PEG)-modified phosphatidylethanolamine at 55:40:5 molar ratio (Abraham et 

al., 2005). This liposome design gives Doxil important advantages as a drug delivery system 

because the PEG-modified phosphatidylethanolamine increases the circulation time of Doxil and 

helps it escape the activity of the reticuloendothelial system. Additionally, an ammonium sulfate 

gradient was used as a driving force for the efficient and stable loading of doxorubicin into 

liposomes (Barenholz, 2012). Abraxane, a second-line treatment therapy for breast cancer 

patients (Von Hoff et al., 2013) is the combination of nano-scale albumin and paclitaxel 

molecules (130-nm particle formulation) (Miele et al., 2009). Paclitaxel is an extracted product 

from the bark of Taxus brevifolia which is commonly used as medication for breast, lung, and 

advanced ovarian cancers (Rowinsky and Donehower, 1995). Albumin possesses attractive 

characteristics for being a drug delivery vehicle including: (1) it is a natural carrier of 

endogenous hydrophobic molecules which can be used for reversible non-covalent loading and  

for the drug releasing process, and (2) albumin has been shown to bind to cell surface receptors 

(gp60, osteonectin), which facilitate the drug loading process to targets (Hawkins et al., 2008; 

Tiruppathi et al., 1997). 
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Recently, superparamagnetic iron oxide nanoparticles (SPIONs) have drawn attention for 

drug delivery applications. SPIONs are quickly engulfed by cells of mononuclear phagocytic 

system, especially macrophages in liver, spleen, lymph nodes and bone marrow (Clemente-

Casares and Santamaria, 2014). SPIONs can be easily generated in various size ranges such as 

very small iron oxide nanoparticles (<10 nm in diameter), ultra-small iron oxide nanoparticles 

(<50 nm in diameter), and standard iron oxide nanoparticles (50–500 nm in diameter) (Clemente-

Casares and Santamaria, 2014). In addition, due to possessing magnetic properties (Mahmoudi et 

al., 2011), SPIONs have been applied to deliver drugs to specific target sites in vivo with an 

external magnetic field for treating cancer and autoimmune diseases (Alexiou et al., 2000; 

Clemente-Casares and Santamaria, 2014). The delivery process of drugs using SPIONs is 

established by the cooperation of forces exerted by the blood flow rate and magnetic forces 

generated from an external magnetic field (Mahmoudi et al., 2011). Currently, the magnetic field 

gradient is produced by a strong permanent magnet, such as neodymium magnet – a rare earth 

magnet, positioned outside the body above the target site. Drug/SPION (biocompatible 

ferrofluid) complexes are then administrated into the body of patients via the circulatory system. 

The drug/SPION complexes are retained at the target site when the magnetic force is greater than 

the linear blood flow rates in arteries (10 cm s−1) or capillaries (0.05 cm s−1) (Pedro et al., 

2003). When the drug/SPION complexes are settled down at the target site, drugs can be released 

by enzymatic activity and/or physiological variations (pH, temperature) and then may be 

engulfed by endothelial cells at target tissues (Alexiou et al., 2000). 

Iron oxide nanoparticles have many characteristics that make them popular for use in the 

biomedical field, especially because they can easily be detected in cells and tissues, which is a 

very important characteristic for the first investigation into uses of the avian test-system for 
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nanomaterial research. The Prussian blue assay is a useful staining method commonly used in 

determining the presence of iron oxide nanoparticle in tissues (Attaluri et al., 2015; Fu et al., 

2016; Jarockyte et al., 2016; Rodrigues et al., 2017; Ungureanu et al., 2015). Based on their 

ability to catalyze oxidation reactions, iron oxide nanoparticles can also be detected in tissues 

making use of their peroxidase mimicking activity in a variety of peroxidase based assay systems 

(Bhuyan et al., 2015; Chaudhari, 2012; Woo et al., 2013; Zhuang et al., 2012). Iron oxide 

nanoparticles are commercially available and have been used in a variety of toxicology and 

immunology studies. Iron oxide is also approved for use in humans by the Food and Drug 

Administration (FDA) and has been shown in in vitro and in vivo studies to have no apparent 

toxic effects and little bioactivity (Lu et al., 2010). Some reports suggested that by itself iron 

oxide nanoparticles appear to initiate pro-inflammatory macrophage activity and influence the 

activities of T cells (Lartigue et al., 2012; Shen et al., 2011). Others reported no bioactivities of 

iron oxide nanoparticles when used to label in vitro activated dendritic cells in an effort to 

monitor their activities in vivo (Tavaré et al., 2011). However, with the proper modifications, 

such as addition of polymeric structures and linking of antigen, antigen conjugated iron oxide 

nanoparticles can modulate innate immune activity and the development of adaptive immunity 

specific to antigens conjugated to their surface (Pusic et al., 2013). Moreover, iron oxide 

nanoparticles can be modified to gain stealth properties (hide from immune system components), 

prolonging their circulatory half-life, influencing their distribution, and allowing for passive and 

targeted delivery of iron oxide nanoparticles to inflamed tissues and specific targets (Mahdavi et 

al., 2013; Mahmoudi et al., 2011; Muthiah et al., 2013; Sun et al., 2010; Strehl et al., 2016; Yuan 

et al., 2012).  
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Poly-ethylene-glycol (PEG) coating of iron oxide nanoparticle is one of the common 

modifications of iron nanoparticles due to its biocompatibility, reducing their capture by the 

body's immune system components. According to Yu and colleagues, PEG coated iron oxide 

nanoparticles are less engulfed by porcine aortic endothelial cells in 3D cell culture when 

compared with dextran coated iron oxide nanoparticles, increasing the chances of delivery of 

iron oxide nanoparticles via the blood stream to the target sites (Yu et al., 2012). Similarly, in 

another in vitro study, murine macrophages (RAW 264.7 cell line) took up three times more 

dextran coated iron oxide nanoparticles than PEG coated iron oxide nanoparticles (Chen et al., 

2010). In addition, iron oxide nanoparticles are the potential candidates for drug delivery 

application because they can be modified to provide reactive sites suitable for further binding of 

drugs and biological ligands. For example, iron oxide nanoparticles could be linked to reactive 

carboxylic acid group which can be conjugated to protein, peptide and other amine containing 

molecules, allowing for specific interaction between the probe carrying nanoparticles and the 

target molecules (Pusic et al., 2013).  

In a report by Zhuang and colleagues (Zhuang et al., 2012), the bio-distribution and organ 

clearance of iron oxide magnetic nanoparticles in mice model were quantitatively analyzed in 

order to understand the in vivo behavior of the nanoparticles. For this study, a histochemical 

method for identifying intravenously administered iron oxide nanoparticles in organs was 

developed based on the peroxidase mimicking activity of the nanoparticles enabling them to 

oxidize peroxidase substrates such as 3 3'-diaminobenzidine tetrahydrochloride (DAB) to form a 

brown colored precipitate at the site of the nanoparticle presence. Prussian blue assay also was 

carried out in this study to identify the presence of the iron oxide nanoparticles in the organs 

including liver, spleen, lung, kidney, lymph node, and thymus. The results showed that the 
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nanoparticle peroxidase staining was more sensitive than the Prussian blue staining. Based on 

images of Prussian blue and Hematoxylin- and Eosin-(H/E) stained adjacent tissue sections, the 

authors concluded that the nanoparticles were taken up by types of macrophages in liver, 

alveolar macrophages in lung, and macrophage in the perifollicular areas in spleen (Zhuang et 

al., 2012). The study would have been more significant if more direct proof were provided (i.e. 

dual iron oxide- and immuno-staining) regarding the cell-types that have taken up the iron oxide 

nanoparticles.  

Rodrigues and his colleagues, in their articles, examined the number of macrophages in 

mouse liver and spleen engulfing intravenously injected iron oxide nanoparticles and reported 

that their number increased linearly depending on iron oxide dose. Iron oxide was deposited in 

all zones of the liver and in the marginal zone of the spleen, clarifying that liver and spleen were 

involved in the clearance pathways of iron oxide nanoparticles from the blood. In addition, the 

highest dose (50 mg/kg) of iron oxide was cytotoxic, but no significant effect was determined for 

the lower doses (8 mg/kg and 20 mg/kg) (Rodrigues et al., 2017). 

 

3. Chicken Growing Feather 

 In birds, the growing/regenerating feather constitutes another living part of the 

integument. In chickens, the ensheathed living portion of a growing feather is approximately 8-

10 mm in height with a 2-3 mm diameter. The living tissue of growing feathers is the pulp, 

which consists mainly of an inner dermis, which arose from the dermal papilla and consists of 

loose and pliable mesenchymal reticulum (Lucas and Stettenheim, 1972). The dermis is bordered 

by an epidermal layer, which arose from the epidermal collar of the follicle, and envelopes the 

column of dermis. The epidermis is modified at the base (3 mm of newest growth) into the 
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keratinocyte- and melanocyte-containing barb ridge. An outer connective tissue sheath surrounds 

the column of pulp and the first few millimeters of newly formed barbs. The feather pulp 

contains the vascular supply of the growing feather including a central axial artery and an 

extensive network of smaller arterioles, capillaries, small sinuses, venules and veins, as well as, 

lymphatic capillaries and vessels. The vascular system is well able to adjust the pressure and 

volume of blood flow at various levels. Additionally, the feather pulp dermis is an 

immunologically active site capable of recruitment of leukocytes from the circulation and has a 

sparse mononuclear cell presence similar to that observed in the dermis of the skin (Abdul-

Careem et al., 2008; Erf et al., 1995). Growing feathers can be easily removed from the skin 

because unlike mature feathers they are not firmly anchored in the skin, and collection of 

samples is considered minimally invasive, similar to sampling the peripheral blood. Moreover, 

using regenerating growing feathers of the same age for injection, the amount of tissue obtained 

is uniform over the time-course of a study for all treatments (Erf and Ramachandran, 2016).  

The growing feather has been developed as a skin test tissue to monitor and assess 

cellular/tissue responses to various test-materials including polypeptides, polynucleotides, 

carbohydrates, microbes, chemicals and other agents, especially nanoparticles (US patent 

8,216,551, 2012). The comparison of the leukocyte profiles in growing feathers, wattles, and 

wing web following intradermal injection of Mycobacterium butyricum showed clear similarities 

in the time-course, quantity, and type of leukocytes (T helper cells, cytotoxic lymphocytes, B 

cells, and MHC class-II positive cells) recruited from the blood to the site of M. butyricum 

injection for all three dermal test-sites. Moreover, the manipulating steps after collection of 

injected tissues, including cutting, staining, and examination of frozen tissue sections, were much 

less difficult for growing feathers than for the other tissues (Erf and Ramachandran, 2016).  
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In addition to the unique features of the growing feather dermal test-site, the chicken 

model has other characteristics that make it an important animal model for biomedical research. 

The ability to concurrently conduct repeated sampling of blood and injected growing feathers 

using minimally invasive procedure provides a powerful and unique model system for in vivo 

study of nanoparticles bioactivity. While some aspects of the immune system differ from those 

of the mammalian immune system, the soluble and cellular components of the innate and 

adaptive immune systems, as well as, their functional activities are highly similar between 

chickens and humans (including, leukocytes and soluble factors of innate immunity, antigen 

presentation, T and B lymphocyte subpopulations, effector and memory responses, 

hypersensitivities, etc.) (Davison et al., 2008; Wick et al., 2010). The chicken genome was the 

first genome of a food animal to be sequenced, providing research tools and opportunities in line 

with biomedical research; additionally, antibodies and other reagents for immunological research 

in the avian system are readily available and continue to be developed at a rapid pace. A variety 

of human diseases including spontaneous autoimmune diseases (e.g. vitiligo, Hashimoto's 

thyroiditis, and scleroderma), cancer (e.g. ovarian, lymphoma, Rous sarcoma) and infectious 

diseases are being investigated using the chicken as the animal model (Wick et al., 2006). 

Based on the above described properties of the growing feather, preliminary results from 

growing feather injections of test-materials, and the valuable characteristics of the chicken 

model, we can expect that the growing feather constitutes a complex integumental tissue suitable 

for in vivo assessment and minimally invasive monitoring of toxicity and bioactivities of 

nanoparticle in vivo, including monitoring the deliver/targeting of nanoparticles administered 

intravenously.  
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4. Objectives 

The overall objective of this study was to develop the chicken as a convenient animal 

model to examine tissue targeting of intravenously injected nanoparticles. Specifically, it was 

hypothesized that using antigen-injected growing feathers as the target tissue, arrival and 

bioactivities of antigen-specific nanoparticles injected into the blood circulation could be 

monitored by ex vivo analyses of antigen-containing growing feathers collected at various times 

after the intravenous administration antigen-specific nanoparticles.  

The proposed nanoparticle used for this project was iron oxide (10 nm), the target antigen 

was mouse IgG, and the antigen-specificity of the iron oxide nanoparticles was achieved by 

conjugating them with mouse IgG-specific chicken antibody. This nanoparticle, antigen, and 

antibody system was chosen based on ongoing studies in our laboratory. While local pro-

inflammatory activities (including vascular changes favoring recruitment of soluble factors and 

cells from blood into the tissue) of mouse IgG injected into the dermis of growing feathers was 

previously shown (Erf, personal communication; Erf et al., 2017), in vivo activities of 

intravenously injected nanoparticles have not been examined in chickens. Therefore, a major part 

of this study was first to examine the organ-distribution and circulatory half-life of intravenously 

injected iron oxide nanoparticles in the chicken, before the targeting studies could be carried out.  

In Experiment 1, the dosage, time-course of detection in the peripheral blood circulation 

and uptake from the blood into organs of intravenously injected iron oxide nanoparticles were 

examined. Different doses of iron oxide nanoparticles were intravenously injected into the wing 

veins of chickens. Blood was collected before (0), and at 5, 15, 30 and 60 min post injection. 

After the last blood collection, the chickens were euthanized for organ (spleen, liver, kidney and 

lung) collection. Iron oxide concentration in blood was then examined by commercial iron test 



 12 

kit. Collected organs were processed and tissue sections stained with H/E stain and Prussian blue 

iron stain for histological analysis.  

For Experiment 2, one dosage of two different iron oxide nanoparticles was intravenously 

injected into the wing veins of chickens. Blood and organs were collected before (0), and at 5, 

15, 30 and 60 min post injection. Iron oxide concentration in blood was then examined by 

commercial iron test kit. Processed tissues were sectioned and stained with H/E and Prussian 

blue iron stain. Frozen organs were used for preparation of homogenates, immunohistochemical 

staining, and iron staining in an effort to determine organ and cellular distribution of 

nanoparticles, as well as the type of cell involved in IO nanoparticle uptake.  

For Experiments 3, antigen (mouse IgG) was intradermally injected into the pulp of 

several growing feathers of chickens. Six hours later, iron oxide nanoparticles conjugated with 

chicken antibody specific for mouse IgG were intravenously injected into the wing veins of 

chickens. The antigen-injected growing feathers were collected before (0), and at 0.1, 0.5, 1, 2, 

24, and 48 h post-intravenous injection of nanoparticles. Birds were euthanized at 3 d and 7 d 

post intravenously injection for organ collection. Tissue sections of the collected growing 

feathers and organs were prepared and stained with Prussian blue stain for histological analysis. 
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MATERIALS AND METHODS 

1. Experimental Animals 

Chickens used in this experiment were 8- or 9-week-old females from the Light Brown 

Leghorn (LBL) line of chickens maintained by G. F. Erf at the University of Arkansas Poultry 

Farm, Division of Agriculture. On the day of hatch, each bird was tagged using numbered labels. 

Chicks were not vaccinated, and moved to a HEPA-filtered room in the Arkansas Experiment 

Station Poultry Health Laboratory in Fayetteville, Arkansas. The chicks were placed in floor 

pens on wood shavings litter, 10-12 chicks per pen, with food and water available ad libitum (Shi 

et al., 2012).  The chicks were then shown the location of food and how to drink water from the 

water nipples. Food, water, and the wellbeing of the chicks were checked every day. The pens as 

well as the animal room were dusted daily and the floor of the room washed to maintain a clean 

environment for chicks to grow. The temperature settings in the room were 36.1 oC from day 1-7, 

30 oC from day 8-14, 26 oC from day 15-21, and 23 oC from day 21 until the end of the 

experiment. Additionally, each pen was equipped with one infrared heat lamp for the first week. 

The light-dark schedule was 24 h light from day 1-5 and then 15 h of light with 9 h of dark until 

day 42, and 10 h light to 14 h of dark thereafter. All protocols involving animals were approved 

by the University of Arkansas Institutional Animal Care and Use Committee (IACUC Protocol 

#15022).   

 

2. Iron Oxide Nanoparticles used in this Study 

There were three kinds of iron oxide nanoparticles used in this project, including 10 nm 

Fe2O3 with carboxylic acid groups (IO-COOH, 5 mg/mL, Ocean NanoTech, LLC, Springdale, 

Arkansas), polyethylene glycol-coated iron oxide nanoparticles (IO-PEG, 1 mg/mL, Ocean 
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NanoTech), and chicken-anti-mouse IgG antibody-coated iron oxide nanoparticles (IO-Ab, 5 

mg/mL). The conjugation of chicken-anti-mouse IgG antibodies (Rockland) to IO-COOH was 

carried out by Zystein LLC, Fayetteville, Arkansas at a ratio of 1:2.5. 

 

IO-COOH is a group of water soluble iron oxide nanoparticles with amphiphilic polymer 

coating. Their reactive group is carboxylic acid and their zeta potential is from -35 mV to -15 

mV. Their organic layers consist of a monolayer of oleic acid and a monolayer of amphiphilic 

polymer. The overall thickness of the organic layers is about 4 nm. The hydrodynamic size of the 

nanoparticles is about 8-10 nm larger than their inorganic core size measured by TEM. IO-

COOH is very stable in most buffer solutions in the pH range of 4-10. It can be conjugated to 

protein, peptide and other amine containing molecules (Ocean NanoTech, Specification Sheet).  

 

IO-PEG is a group of water soluble iron oxide nanoparticles with amphiphilic polymer 

and PEG coating. There is no linkable reactive group on the surface of nanoparticles. The zeta 

potential of IO-PEG is from -10mV to 0. The thickness of the total organic layers is about 6 nm. 

The hydrodynamic size of the nanoparticles is about 12-14 nm larger than their inorganic core 

size measured by TEM. The colloidal stability of IO-PEG is exceptionally high. It is stable in 

most buffer solutions in the pH range of 4-10 and can survive autoclaving process (121 oC for 30 

min) (Ocean NanoTech, Specification Sheet).   

  

3. Experiment 1: Intravenous Injection of Different Doses of IO-COOH  

For intravenous injection, the stock of IO-COOH nanoparticles was diluted to 4.5 mg/mL 

using endotoxin-free Dulbecco's Phosphate-buffered Saline (PBS, Sigma, Chemical Company, 
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St. Louis, MO). Different dosages of IO-COOH were intravenously injected into the left wing 

vein of 9-week-old female LBL chickens. Dosages ranged from 2.4-2.8 mg/kg (low dose; n = 3 

chickens) to 5.4-5.7 mg/kg (high dose; n = 2). Additionally, 3 chickens were injected with 0.5 

mL of PBS to serve as the vehicle injection control. 

Before injection, the chickens were weighed and the right wing vein rinsed with 70 % 

alcohol. The right wing vein was then injected with the IO-COOH nanoparticles or vehicle using 

1 mL syringes with 0.1 mL gradation and 25 gauge x 1 inch needles (BD; Becton, Dickinson, 

and Company, Franklin Lakes, NJ), respectively. For blood collection, 0.5 mL of blood was 

collected from the wing veins into heparinized 1 mL syringes with 25 x 1 needles (BD) before 

(0), and at 5, 15, 30, and 60 min post-intravenous IO-COOH injection. To avoid hematoma, 

pressure was placed on the vein after withdrawal of the needle until bleeding stopped and use of 

the left- and right-wing veins were alternated between blood samplings. The blood was then used 

for preparation of plasma.  

To examine organ distribution of i.v. injected IO-COOH, the organs including spleens, 

livers, kidneys, and lungs were collected after the last blood collection (60 min time-point). For 

organ collection, chickens were euthanized by i.v. injection of pentobarbital (Sigma Aldrich) 

solution (1 mL of 65 mg/mL) and the organs were removed. Half of each organ was put into a 

100 mL plastic specimen cup containing 40 mL of 10% formalin solution, the other half was 

wrapped in labeled aluminum foil, snap frozen in liquid nitrogen, and stored at – 80oC.   
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4. Experiment 2: Intravenous Injection of IO-COOH and IO-PEG at the Same Dose 

The dose of IO-COOH and IO-PEG injected in this experiment was 1.5 mg/chicken 

(approximately 3.3 mg/kg, n = 3 chickens). Because the stock of IO-PEG was only 1 mg/mL, 3 

mL syringes with 25 x 1 needles were used to inject the 1.5 mg in a 1.5 mL volume. Four 

chickens were injected with 1.5 mL of PBS (vehicle control). All other aspects regarding 

injection procedure were as described for Experiment 1. For Experiment 2, blood was collected 

as in Experiment 1, although no anti-coagulant was used in Experiment 2. The blood was 

allowed to coagulate for preparation of serum. Additionally, for Experiment 2, organs were 

collected and processed as described in Experiment 1, except chickens were euthanized for organ 

collection before (0) and at different times post-injection [0 (n=2), 5 (n=3), 15 (n=3), 30 (n=3), 

and 60 min (n=3)].  

 

5. Experiment 3: Delivery/Targeting of IO-Ab (IO Coated with Chicken-anti-mouse IgG 

Antibody) 

5.1. Preparation of growing feathers for injection 

In this experiment, the target antigen, mouse IgG, was injected into the dermis of 

growing feathers of 8-week-old LBL female chickens 6 h before intravenous injections of iron 

oxide nanoparticles. Growing feathers were prepared for mouse IgG/PBS injection by cutting off 

the barbs that were emerging from the sheath, leaving about 2-3 mm of sheath above the 

epidermis of the pulp column. This approach helped with the injection procedure by ensuring 

that the fully inserted needle (8 mm), and therefore the injected solution, was about half way into 

the column of the GF dermis, and the injected GFs with cut barbs were easy to identify at the 

time of collection.   
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5.2. Preparation of syringes for intradermal injection of mouse IgG into growing 

feathers 

On the day of injection, mouse IgG was diluted with PBS (Sigma, Chemical Company) to 

yield a concentration of 1 mg/mL. The mouse IgG solution or PBS  was then aseptically added to 

0.3 mL syringes with 0.01 mL gradation and 31 gauge x 8 mm needles (BD; Becton, Dickinson, 

and Company, Franklin Lakes, NJ) in a NuAir Biological Safety Cabinet (NuAir, Plymouth, 

MN). To load the syringes, which had non-detachable needles, the plunger was removed. 

Holding the syringe vertically, 220 μL of mouse IgG/PBS was added with a micropipettor to the 

back opening of the syringe. The solution was allowed to enter the syringe column until a 5 mm 

space was cleared below the top opening. The syringe was then quickly rotated 1800 to let the 

mouse IgG/PBS solutions flow in the opposite direction, towards the syringe's back opening. 

Before the mouse IgG/PBS solution was flowing out of the syringe, it was stopped by contact 

with the head of the syringe plunger, and the plunger was reinserted into the syringe. The mouse 

IgG/PBS was then pushed towards the syringe needle until a tiny bubble of liquid formed at the 

needle opening. This loading technique was very successful in avoiding air bubbles in the 

syringe. The syringes were kept at room temperature and used within 2 h of preparation (Erf et 

al., 2017). 

5.3. Injection of growing feathers with target antigen (mouse IgG) and intravenous 

injection of IO-nanoparticles 

The basic protocol for this experiment is outlined in the diagram shown in Figure 1. For 

each chicken, 14 GFs were injected with 10 μL of mouse IgG (1 mg/mL) target antigen, 7 GFs 

on each the left and right breast tract. [Based on preliminary studies, intradermal injection of 

mouse IgG at this concentration and volume into the dermis of GFs results in vascular changes 



 18 

that allow for significant recruitment of leukocyte and soluble factors from the blood to the site 

of mouse IgG injection (GF dermis) within 6 hours (Erf personal communication)]. Six hours 

after injection of the antigen into GFs, the iron oxide nanoparticles including IO-Ab (2.5 

mg/bird, n = 5), IO-COOH (2.5 mg/bird, n = 3), and IO-PEG (1.5 mg/bird, n = 2) were 

intravenously injected in a 1.5 mL volume into the left wing vein of the chickens using 3 mL 

syringes with 0.1 mL gradation and 25 x 1 needles (BD). Injected GFs and uninjected GFs were 

collected before (0 h) and at 0.1, 0.5, 1, 2, 24, 48 h post intravenous injection. Two growing 

feathers per bird were collected at each time point. One of the two GFs was cut just below the 

epidermal cap and put into a 15 mL micro-centrifuge tube containing 1 mL of 10 % buffered 

formalin solution, the other one was placed into a labeled aluminum cup, covered with Tissue 

Tek
 O.C.T. compound (Sakura Fine Tek USA, Inc, Torrance, CA, USA; VWR catalogue 

number 25608-930), snap frozen in liquid nitrogen, and stored at – 80oC. Three days and 7 days 

post intravenous injection, half of the birds from each treatment were euthanized by i.v. injection 

of pentobarbital (Sigma Aldrich) solution (1 mL of 65 mg/mL), and the organs including spleen, 

liver, kidneys, and lungs were removed. The organs were cut into 2 portions, one portion was put 

into a 100 mL plastic lidded cup containing 40 mL of 10% formalin solution, the other portion of 

all tissues was wrapped in labeled aluminum foils, snap frozen in liquid nitrogen, and stored at – 

80oC (Figure 1). 

 

6. Preparation of Plasma from the Heparinized Blood Samples 

The heparinized blood samples collected for Experiment 1 were placed into 1.5 mL tubes 

and centrifuged at 7000 x g for 3 min using a microcentrifuge. After centrifugation, the 

supernatant plasma was collected and placed into 0.6 mL labeled tubes using a 20-200 μL 
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micropipettor with yellow tips. The cell pellets also were keep for future research. All of the 

samples were stored at -20oC.  

 

7. Preparation of Serum from Blood Samples 

The blood samples contained in 1.5 mL tubes from Experiment 2 were allowed to 

coagulate for 1 h at room temperature. The coagulated blood samples were then centrifuged at 

4000 x g for 10 min using a swing bucket centrifuge. After centrifugation, the supernatant fluid 

(serum) was collected and transferred into new 1.5 mL labeled tubes using a micropipette with 

yellow tips. The pellets also were keep for future research. All of the samples were stored at -

20oC. 

 

8. Homogenization of Frozen Tissues 

The 150 mg pieces of frozen livers from Experiment 2 were cut into small pieces and 

placed into 5 mL Falcon tubes (BD) containing 1500 L assay buffer (Iron assay kit, Sigma 

Aldrich). The liver pieces were homogenized using a hand homogenizer for 5 min until there 

were no small pieces in the buffer. The homogenized solution then was transferred into 1.5 mL 

tube to be centrifuged at 13000 x g, at 4oC for 10 min. The pellet was discarded, the supernatant 

was obtained and used for iron assay. 

 

9. Determination of Iron Concentration using Iron Assay Kits 

Two commercial iron assay kits (Sigma Aldrich kit and BioChain kit) were used to 

identify concentration of iron in plasma, serum, and homogenized frozen tissues collected from 
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Experiment 1 and Experiment 2. In order to determine the IO concentration in these samples, 

experimental procedures described in Table 1 were carried out. 

 

9.1. Sigma Aldrich iron assay kit  

This is a quantitative colorimetric iron determination. Total iron including ferrous iron 

Fe2+ and ferric iron Fe3+ were measured at 593 nm. The linear iron detection range is 8-400 M 

(0.45-22.34 g/mL). The samples (plasma, serum, and homogenized tissue), iron assay buffer, 

iron probe, iron reducer, and iron standard were equilibrated to room temperature before use. A 1 

mM standard solution was generated by diluting 10 L of the 100 mM iron standard with 990 L 

of distilled water. 0, 2, 4, 6, 8, and 10 L of the 1 mM standard solution were added into wells of 

a 96 well plate to generate 0, 2, 4, 6, 8, and 10 nmole/well iron standards (1 mM = 1 mmole/L or 

1 nmole/μL). The iron assay buffer was then added to these wells to bring the volume to 100 L. 

The final concentrations of standards were 0, 0.02, 0.04, 0.06, 0.08, and 0.1 nmole/L, 

respectively. Converted into ng/L (or g/mL), the concentration of standards were 0, 1.117, 

2.234, 3.351, 4.468, and 5.585 ng/L (or g/mL), respectively. (iron atomic mass is 55.85 

ng/nmole). 

The plasma or serum samples were added to other wells of the same 96 well plate in 

triplicate, 100 L of plasma or serum per well. 5 L of iron reducer were then respectively added 

to the standard wells and sample wells. The solutions were mixed for 30 s using a shaker. The 96 

well plate was then covered with aluminum foil to protect the standards and samples from light. 

All samples were incubated for 30 min at room temperature. After incubation, 100 L of the iron 

probe was added to standard wells and sample wells. The wells were mixed for 30 s using the 

shaker. The plate was incubated for 60 min at room temperature, and then was measured at 593 
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nm wave length using a 96-well optical density (OD) plate reader. The OD values were recorded 

for analysis. 

9.2. BioChain iron assay kit  

This is a quantitative colorimetric iron determination. Total iron was measured at 590 

nm. The linear iron detection range was 27-1000 g/dL (0.27-10 g/mL) iron. The concentration 

of iron oxide in serum, homogenized tissue samples were determined using iron assay kit 

(BioChain). The 400 L of 1000 g/dL Premix was prepared by mixing 40 L of 10 mg/dL 

standard and 360 L distilled water. The standards were generated by diluting 0, 10, 20, 30, 40, 

60, 80, 100 L of Premix with 100, 90, 80, 70, 60, 40, 20, 0 L of distilled water, respectively. 

The final concentrations of standards were 0, 100, 200, 300, 400, 500, 600, 800, 1000 g/dL, 

respectively (or 0, 1, 2, 3, 4, 5, 6, 8, 10 g/mL, respectively). 

Fifty L of diluted standards and samples were added to a 96-well plate in triplicate. The 

Working Reagent was equilibrated to room temperature before use in the assay, and prepared by 

mixing 20 volumes of Reagent A, 1 volume of Reagent B and 1 volume of Reagent C. Once 

prepared, 200 L of Working Reagent was added to well containing 50 μL of standards or 

samples, and 200 L of Reagent A was added to the Sample Blank wells. The plate was tapped 

to mix the solutions. The 96-well plate was then covered with aluminum foil. All samples were 

incubated for 40 min at room temperature, and color development measured at 590 nm wave 

length using the OD plate reader. The OD values were recorded for analysis. 
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10. Preparation and Staining of Tissue Samples with Prussian Blue or Hematoxylin/Eosin 

Stain   

The formalin-fixed organ samples from Experiment 1 and 2, and the formalin-fixed 

growing feather samples from Experiment 3 were processed, paraffin embedded, sectioned (5 

µm) and stained with Prussian blue iron stain and violet red nuclear counterstain or 

Hematoxylin/Eosin (H/E) stain by David Cross at the University of Arkansas, Division of 

Agriculture Histology Service Laboratory housed in the Center of Excellence for Poultry 

Science, Fayetteville, AR.  

 

11. Examination of Prussian Blue (Iron Stain) Stained Tissue Sections of Organs Collected 

from Chickens after intravenous Injection of Iron Oxide Nanoparticles 

Two methods were used to quantify the iron staining: 

11.1. Quantification of blue staining using image analysis 

Twenty microscope fields per tissue section were examined at 400 x magnification using 

an Olympus BX50 light microscope (Olympus, Center Valley, PA) equipped with a CoolSNAP 

Pro digital camera (Media Cybernetics, Silver Springs, MD) and computer connection (Meyer 

Instruments, Houston, TX, USA). The blue color staining reflecting Prussian blue staining within 

each image (1 image per microscope field) was identified and quantified by image analysis using 

Image Pro Software. The data were expressed as % Area (blue area/image). Pictures of blue cell 

areas at 100 x and 400 x magnification were also taken using the system. 
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11.2. Quantification of blue stained cells using a bright-field microscope with an ocular 

10 mm x 10 mm grid insert (manual counting method) 

Using a bright field microscope (Olympus, Center Valley, PA), 20 randomly selected 

microscope fields per tissue section were examined and at 400 x magnification. Blue cells were 

counted with the aid of a 10 mm x 10 mm ocular grid insert with 100 subdivisions. The data 

were expressed as iron+ cell per 62500 µm2. Pictures of iron+ blue cells at 100 x and 400 x 

magnification were taken using an Olympus BX50 light microscope (Olympus, Center Valley, 

PA) equipped with a CoolSNAP Pro digital camera (Media Cybernetics, Silver Springs, MD) 

and computer connection (Meyer Instruments, Houston, TX, USA). 

 

12. Iron Staining of Frozen Tissues using the Peroxidase Mimicking Activity of Iron Oxide 

Nanoparticles 

The frozen tissues (spleen, liver, kidney, lungs) were placed in O. C. T compound 

(Sakura Fine Tek USA and O.C.T. allowed to freeze at -23oC in a cryostat. Frozen tissue sections 

were then cut for histochemical staining using the cryostat. Identification of IO nanoparticles in 

frozen tissues making use of their peroxidase mimicking activity was reported in one publication 

by Zhuang et al. (2012). However, a detailed description of methods was not included in the 

publication and attempts to correspond with the author were not successful. Hence, many 

variations of the key steps in the procedure were carried out to optimize the staining method. The 

successful staining procedure was as follows: Seven-m thick frozen sections were prepared 

using the cryostat and placed on microscope slides. The sections were incubated in 10% H2O2 (in 

100% methanol) for 20 min, and then washed 3 times with 0.01 M PBS. The sections then were 

incubated in freshly prepared 3 3'-diaminobenzidine tetrahydrochloride (DAB) substrate solution 
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in the presence of 0.3% H2O2 overnight. The slides were washed with PBS 3 times and allowed 

to dry. The tissue sections on the slides were covered with 1 drop of Aqua-Mount mounting 

medium and covered with a glass coverslip. 

 

13. Iron Staining for Frozen Tissues using HT20 Stain Kit (Sigma-Aldrich) 

For iron staining using an iron staining kit, frozen 7 μm tissue sections of spleen and liver 

tissues were prepared as described above (12.). To optimize the iron staining procedure for 

frozen tissue sections, many combinations of key steps were tested. After optimization of the 

staining procedure for frozen tissue sections, the following procedure was used: The sections 

were incubated in a 10% H2O2 methanol bath for 20 min, and then washed 3 times with PBS. 

The working solution was prepared by mixing 20 mL of Potassium Ferrocyanide Solution (HT20 

stain kit, Sigma-Aldrich) and 20 mL of Hydrochloric Acid Solution (HT20 stain kit, Sigma-

Aldrich). The sections were incubated in the working solution for 10 min, and then were rinsed 

with deionized water. The sections were then counterstained with Pararosaniline (HT20 staining 

kit, Sigma-Aldrich) for 5 min, rinsed with deionized water and rapidly dehydrated through a 

series of alcohol and clearing (Clearing Agent; Electron Microscopy Sciences, Hatfield, PA) 

solutions. The tissue sections on the microscope slides were covered with a drop of Aqua-Mount 

mounting medium and covered with a glass coverslip.  

 

14. Immunohistochemistry  

To identify the leukocytes in the frozen tissue section that may have taken up IO 

nanoparticles, frozen tissues of spleen and liver were prepared as described above. Sections were 

fixed in acetone for 6 min, then incubated in 10% horse serum in PBS for 60 min. The sections 
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then were washed with PBS 3 times and incubated in 100 L of separate primary mouse-

monoclonal antibodies (all IgG1 isotype) specific to chicken macrophages (KUL-01), B cells 

(Bu-1), or MHC class-II. An isotype-staining control (mouse IgG1 with irrelevant specificity was 

also included. All primary antibodies, including the isotype control were prepared as 1 μL in 100 

L of horse serum) for 30 min. Then, the sections were washed 3 times with PBS, and quenched 

in a 10% H2O2 methanol bath for 20 min. After that, the sections were washed with PBS and 

incubated in 100 L of secondary antibody which is biotinylated anti-mouse IgG (1 L of 

secondary antibody in 100 L of horse serum) for 30 min. The sections then were washed with 

PBS 3 times, and incubated in 100 L of ABC reagent (1A : 1B : 100 PBS; Vekta) for 30 min. 

Freshly prepared DAB in the presence of 0.3% hydrogen peroxide was added to the slides, and 

sections incubated for 7 min. The slides then were washed 5 times with PBS, counterstained with 

Methyl green nuclear stain. 

 

15. Variations of Immunohistochemistry and Prussian Blue Staining (HT20 kit) Double 

Staining Procedures for Frozen Tissue Sections 

 To determine what type of cells engulfed iron oxide nanoparticles, a staining procedure 

was developed combining the immunohistochemical and Prussian blue staining methods, 

whereby candidate cells including macrophages, B cells, and MHC class-II expressing cells were 

identified based on the brown color of the immunohistochemical staining and uptake of IO 

nanoparticles was determined by the blue color staining. To work out this double staining 

procedure modification of the individual staining procedures were required. In detail, the frozen 

sections were prepared and all the steps of immmunohistochemical staining were carried out as 

described above until the the DAB incubation step. Then, the sections were fixed in buffered 
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formalin solution for different lengths of time (0 min - no formalin fixation, 20 min, and 

overnight). After that, the sections were incubated in HT20 working solution (mixing of 

Potassium Ferrocyanide Solution and Hydrochloric Acid Solution) for 2 different time-points (10 

min and overnight), and were then counterstained with Pararosaniline, washed with PBS, 

dehydrated and preserved by 1 drop of Aqua-Mount oil and covered with a glass coverslip. 

 

16. Statistical Analyses 

The experimental unit was the individual chicken. All statistical analyses were carried out 

using Sigma Plot 13 Statistical Software (Systat Software, Inc., San Jose, CA 95110). For 

Experiments 1, Pearson Correlation Analysis was conducted to determine the relationship 

between dosage of IO-COOH injected i.v. and amount (% Area) of iron staining in spleen and 

livers collected 60 min post IO-COOH injection. Similarly, for Experiment 2, Pearson 

Correlation analysis was used to compare the iron staining data obtained by image analysis 

(%Area) and manual counting of iron stained cells (# blue cells/62500 μm2) in liver and spleen 

sections. One-way ANOVA followed by Fisher's LSD multiple mean comparisons was used to 

determine the effect of time post i.v. injection of IO nanoparticles on IO-nanoparticle uptake by 

liver and spleen. For all analyses, correlations and differences with P-values ≤ 0.05 were 

considered significant.  
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Figure 1. Summary of the protocol to study delivery/targeting of intravenously injected iron 

oxide (IO)-nanoparticles (NP) to the dermis of growing feathers (GF) injected with the target 

antigen (Ag; mouse IgG) in 8-week-old female Light-brown Leghorn (LBL) chickens. The 

dermis of 14 growing feather (GF) was injected with 10 μL of mouse IgG (1 mg/mL) target 

antigen. Six hours later, IO-Ab (IO conjugated with chicken antibody specific for mouse IgG,  

2.5 mg /bird), IO-COOH (2.5 mg /bird), or IO-PEG (1.5 mg/bird) were intravenously injected 

into the wing veins of chickens. One Ag-injected GF and one uninjected GF per bird were 

collected before (0 h), and at 0.1, 0.5, 1, 2, 24, and 48 h post-intravenous injection; organs were 

collected at 3 d and 7 d post intravenous injection. Tissue sections of the collected GFs and 

organs were prepared and stained with Prussian blue stain. 
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Table 1. Experimental procedures to determine iron concentration in plasma, serum and 

homogenized tissue samples 

 

Experimental procedures Iron assay kit used 

 

1. Determine iron concentration in IO-plasma samples 

prepared by adding IO directly to plasma 1) 

   

2. Determine iron concentration in IO-plasma samples 

prepared from whole blood spiked directly with IO before 

plasma preparation blood 2) 

 

3. Determine iron concentration in plasma samples of IO 

injected chickens from Experiment 1 

 

4. Determine iron concentration in IO-serum samples 

prepared by adding IO directly to serum 1) 

 

5. Determine iron concentration in IO-serum samples 

prepared from whole blood spiked directly with IO  

before coagulation and serum isolation blood 2) 

 

6. Determine iron concentration in IO-serum samples 

prepared from whole blood spiked directly with IO  

before coagulation and serum isolation blood 2)  

 

7. Determine iron concentration in serum samples of IO 

injected chickens from Experiment 2 

 

8. Determine iron concentration of homogenized tissue 

samples collected from IO injected chickens from 

Experiment 2  

 

Sigma Aldrich 

 

 

Sigma Aldrich 

 

 

 

Sigma Aldrich 

 

 

Sigma Aldrich 

 

 

Sigma Aldrich 

 

 

 

BioChain 

 

 

 

Sigma Aldrich 

       

 

Sigma Aldrich, 

BioChain 

   

 
1) Two mL of heparinized/non-heparinized whole blood was collected from 9-week-old Light-

brown Leghorn female. Blood was spun to get plasma/serum. Plasma/serum was then diluted 

with PBS at ratio of 1:4. 4.46 μL of 5 mg/mL IO (22.3 μg IO) was added into 995.54 μL of 

diluted plasma/serum to make 1 mL of IO-added plasma/serum (22.3 μg IO/mL). The IO-added 

plasma/serum was then serially diluted using doubling dilutions (1/2, 1/4, 1/8, 1/16, 1/32 and 

1/64) to yield plasma/serum concentrations of IO of 11.5, 5.575, 2.188, 1.394, 0.697, and 0.348 

μg/mL, respectively. No IO was added to the undiluted (0) plasma/serum samples. Iron 

concentrations of all IO-plasma/IO-serum samples were determined using iron assay kit (Sigma 

Aldrich). 
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2) Two mL of heparinized/non-heparinized whole blood was collected from a 9-week-old Light-

brown Leghorn female. Forty μL of 5 mg/mL IO was added right away to the blood to make 100 

μg/mL IO-added whole blood. The IO-added whole blood was spun to isolate IO-plasma/IO-

serum collected. The IO-plasma/IO-serum was then serially diluted with PBS using doubling 

dilutions (1, 1/2, 1/4, 1/8, 1/16, 1/32 and 1/64) to yield serum concentrations of IO of 100, 50, 

25, 12, 6.25, 3.125, and 1.563 μg/mL, respectively. The iron concentrations of all IO-plasma/IO-

serum samples were determined using iron assay kit (Sigma Aldrich). 
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RESULTS 

1. Iron Concentration in Plasma, Serum and Homogenized Tissue Samples Collected in 

Experiment 1 and 2 

Heparinized blood or whole blood without an anti-coagulant was centrifuged to collect 

plasma or serum. Frozen tissues were homogenized and centrifuged to collect supernatant fluid. 

The iron concentration of plasma, serum, or the supernates were determined using two 

commercial iron assay kits (Sigma Aldrich kit and BioChain kit). Results were summarized in 

Table 2. 

Iron determination in plasma samples was not successful with the Sigma Aldrich kit. OD 

values of plasma samples were either outside of the limits of the standard curve (were above the 

limits and no differences among dilutions), or there were no differences between iron level in 

plasma samples post IO-injection and 0-time plasma samples (Table 2). 

When IO was directly added to serum (IO-added serum) and serial dilutions of the IO-

added serum were prepared for analysis, there were not differences in IO concentrations detected 

using the Sigma Aldrich iron assay kit (Table 2 and Table 3). When IO was added to whole 

blood, then serum isolated and serially diluted, relative amount of added IO was detected, but 

concentrations detected in IO-serum samples were much lower than predicted based on IO-added 

to the whole blood (Table 2 and Table 4). For serum samples prepared from Experiment 2, the 

standard curve describing the relationship between absorbance unit and iron concentration 

(nmole), was determined by equation y = 0.1512x + 0.0047 with a high R2 value (R2= 0.99782) 

(Figure 2); but iron level in samples post IO injection were not different from 0-time samples. 

Any effort to determine iron content serum samples with the BioChain kit (Table 2) was 

unsuccessful.  



 31 

Iron concentrations of supernatant collected from homogenized PBS- and IO-injected 

tissue samples were not different (Table 2). 

 

2. Examination of Prussian Blue (Iron Stain) Stained Tissue Sections of Organs Collected 

from Chickens that were Intravenously Injected with Iron Oxide Nanoparticles 

The formalin-fixed tissue samples were paraffin-embedded; sections were prepared and 

stained with Prussian blue iron stain. Sections were observed under a light microscope system, 

and pictures were taken at 100 x and 400 x magnification. While lung and kidney showed no 

iron-stained cells (blue cells) (Figure 3), liver and spleen showed many iron-stain cells in the 

sections (Figure 4). At 400 x magnification, individual blue cells could be identified in the liver 

sections; whereas, individual blue cells overlapped in marginal zones of the spleen sections 

(Figure 5). 

 

2.1. Experiment 1: Dose effect on spleen and liver uptake of i.v. injected IO-COOH 

Prussian blue staining in tissue sections were quantified at 400 x magnification by image 

analysis. For spleens, the relationship between the area of blue staining (% Area) in spleens 

collected 60-min post-i.v. injection of IO-COOH and the dose of the IO nanoparticles injected 

was found to be determined by a liner equation y = 1.8578 x – 0.188 with high R2 value (R2 = 

0.9144), and very low P-value (P = 0.000202). IO-stained cells (% Area) increased when 

intravenously injected IO concentration increased, ranging from 3.003  0.211 % Area stained to 

8.194  0.915 % Area stained with IO dose of 1.5 and 4.5 mg respectively (Figure 6). For the 

liver, the relationship was determined by equation y = 0.0785 x + 1.9314 with low R2 value (R2 = 

0.0466), and no significant relationship between dose of IO injected and blue staining was found 
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for liver tissue (P = 0.216). % Area fluctuated between 1.400 and 2.836 when IO dose increased 

from 1.5 to 4.5 mg (Figure 6). 

 

2.2. Experiment 2: Comparison of spleen and liver uptake of IO-COOH and IO-PEG 

administered i.v. at the same dose  

Prussian blue staining in liver and spleen tissue sections were quantified at 400 x 

magnification by two methods including image analysis and manual counting method. 

2.2.1. Image analysis method 

Compared to uninjected tissues (0.087  0.052), % Area of iron positive staining in 

spleen sections from IO-COOH injected chickens increased greatly to 3.197  0.496 at 5 min, 

remained near this level at 15, 30, and 60 min post-injection (to 3.816  0.247, 3.034  0.240 and 

3.003  0.211, respectively) (Figure 7). % Area of iron positive staining in liver sections 

increased within 30 min (from 0.427  0.262 at 0 min to 1.720  0.449 at 30 min), and still 

remained near this level for 60 min (2.120  0.169) (Figure 7). 

In spleens from IO-PEG injected chickens, the % Area of iron positive staining increased 

very slightly within 15 min (from 0.087  0.052 at 0 min to 0.274  0.065 at 15 min), remained 

at this level at 30 min (0.217  0.064), and increased further by 60 min (0.517  0.133) (Figure 

6). % Area of iron positive staining in liver tissue only marginally increased by 30 min (0.427 

0.262 at 0 time to 0.917  0.254), but reached significantly higher levels by 60 min (1.862  

0.135) (Figure 7). 

Side-by-side comparison of iron staining (% Area) following IO-COOH compared to IO-

PEG injection, suggests that uptake of IO-PEG was delayed and lower in both spleen and liver. 
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By 60 min, the % Area of iron positive staining in the spleen of IO-PEG injected chickens was 

approximately 8 times lower (0.517  0.133) than in chickens injected with IO-COOH (4.287  

0.903) (Figure 7). There were no differences in the % Area of iron positive staining in liver 

sections from IO-PEG and IO-COOH injected chickens collected 60 min post-injection (1.862  

0.135 vs 2.120  0.169, respectively), although % area staining was lower for IO-PEG at earlier 

time-points. (Figure 7). 

2.2.2. Manual counting method 

For IO-COOH injection, counting iron stained blue cells in spleen was not determined 

because individual blue cells overlapped and were not clearly outlined for individual cell 

counting. However, the number of iron containing liver cells in IO-COOH injected birds could 

be easily identified and counted. The number of iron positive liver cells (# per 62500 μm2) in 

liver sections from IO-COOH injected chickens increased greatly within 5 min (from 6.675  

1.676 at 0-time to 33.283 ± 2.887 at 5 min), remained near this level for 30 minutes, then 

increased further (34.983  3.020 at 30 min to 46.867  1.048 at 60 min) (Figure 8). 

For IO-PEG injection, the number of iron positive spleen cells increased greatly within 5 

minutes post-injection (from 0.050 ± 0.050 pre-injection to 1.483 ± 0.233 at 5 min), increased 

further to 2.383 ± 0.913 at 15 minutes, remained near this level at 30 min (1.850  1.050) and 

increased again to 8.383  0.017 by 60 min (Figure 8). Compared to the number of blue-stained 

cells in livers collected before IO-PEG injection (6.675  1.676), the number of iron-containing 

cells in livers from chickens injected with IO-PEG did not increase until 30 min (17.250 ± 

7.556), and this level was not different from the number of iron-positive cells at 60 min (33.633 

 11.181) (Figure 8). 
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With this Counting method, the number of iron positive liver cells in IO-PEG injection 

also was lower than number of iron positive liver cells following i.v. injection of IO-COOH 

nanoparticles (Figure 8). 

In addition, the comparison of data obtained using image analysis (% Area) and manual 

counting (cells/62500 m2) was analyzed by Pearson Correlation Test (Figure 9). For spleens 

from IO-PEG injected birds the correlation between the iron staining data obtained using the two 

different methods was determined by a liner equation y = 12.563x – 0.1342 with R2 = 0.6696, 

and very low P-value (P = 0.000182). Similarly, for livers from IO-PEG injected chickens, the 

correlation between iron staining data obtained using the two methods was determined by a liner 

equation y = 16.925x + 1.7456 with R2 = 0.6422, and very low P-value (P = 0.000190). For 

livers from chickens injected with IO-COOH, the correlation between iron staining data obtained 

using the two methods was determined by a liner equation y = 18.93x + 9.1857 with R2 = 

0.6614, and very low P-value (P = 0.000128). Using iron staining data for livers from all iron 

oxide nanoparticle injected chickens, (i.e. injected with wither IO-COOH or IO-PEG), the 

correlation between the data obtained using the two different methods was determined by a liner 

equation y = 19.908x + 4.0876 with R2 = 0.64, and very low P-value (P = 0.000000324). (Figure 

9).  

 

3. Iron Staining for Frozen Tissues using Peroxidase Mimicking Activity of Iron Oxide 

Nanoparticles  

Frozen tissue sections were prepared and incubated in H2O2 and DAB, respectively. Iron 

positive cells (brown color cells) were determined at 400 x magnification. As expected, there 

were no brown cells in lung and kidney. In liver sections of IO-COOH injected chickens, many 
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iron positive (brown) cells, similar in location and appearance to those observed in fixed 

Prussian blue stained liver sections could be observed (Figure 10a and Figure 5b). There were 

many brown particles in the cytoplasm of the liver cells (Figure 10a). There were no brown cells 

in liver sections of PBS injected chickens (Figure 10b). Conducting iron staining using the 

peroxidase mimicking activity of iron oxide nanoparticles was not successful for spleen sections, 

where due to high background staining, individual iron containing cells could not be identified 

(data not shown). 

 

4. Immunohistochemical and Prussian Blue Staining (HT20 kit) of Frozen Tissues Sections 

Liver and spleen frozen sections were stained by combinations of variations of 

immunohistochemical and Prussian blue staining. Formalin fixing (0 min, 20 min, overnight) 

was combined with staining by the HT20 working solution (10 min, overnight). The results were 

described in Table 5. Specifically, for liver sections, the combination of 20 min formalin fixing 

and overnight staining in HT20 working solution resulted in the most effective (+++++) iron 

staining. The combination of no formalin fixing and 10 min staining with the HT20 working 

solution was the least effective iron-staining (+). The other combination showed intermediate 

effective iron staining (levels at ++ or +++; Table 5). After optimizing dual immunostaining for 

leukocyte markers and iron staining with the HT20 kit, examination of dual stained liver sections 

from IO-COOH injected chickens confirmed that the iron-stain (blue color) was located in 

macrophages and MHC-II positive cells (brown color) (Figure 11 and Figure 12). Tissue sections 

stained using the isotype control antibodies in combination with iron-staining revealed only iron-

containing blue cells, and no brown staining, confirming that there was no non-specific binding 
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of the cell-specific antibodies used to identify macrophages, MHC-II+ cells, and B cells (all 

mouse IgG1 monoclonal antibodies) (Figure 13). 

 

For spleen, iron-staining of frozen tissue section using the HT20 kit was most effective 

using a combination of no formalin fixing and overnight incubation in HT20 working solution 

(++++). The other combinations tested were much less effective (+, ++) (Table 5). For spleen 

sections from IO-COOH injected chickens, iron-stain (blue color) was also located in what 

appeared to be marginal zone, MHC-II positive macrophages (brown color) (Figure 14 and 

Figure 15), but not in B cells (Bu-1+) that are also known to be MHC-II positive (Figure 16). It 

should be noted that for the spleen the immunohistochemical staining for macrophages in 

combination with Prussian blue staining was not clearly interpretable as the cells stained very red 

(Figure 14) instead of showing clear brown and blue staining. However, based on location, H/E 

staining, individual iron or KUL-01 staining, and MHC class II staining, the iron stained cells in 

the spleen appear to be macrophages. Spleen tissue sections stained using the isotype control 

antibodies in combination with iron-staining revealed only iron-containing blue cells, and no 

brown staining, confirming that there was no non-specific binding of the cell-specific antibodies 

used to identify macrophages, MHC-II+ cells, and B cells (all mouse IgG1 monoclonal 

antibodies) (Figure 17). 

 

5. Experiment 3: Iron Oxide Nanoparticle Delivery/Targeting Study 

Microscopic evaluation of Prussian blue stained sections prepared from formalin fixed 

growing feathers (GFs) that were intradermally injected with mouse IgG antigen 6 hours before 

intravenous injection of iron oxide nanoparticles, revealed no accumulation of iron in the dermis 
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of mouse IgG injected GFs at any of the time time-points examined (before and at 0.1, 0.5, 1, 2, 

24 and 48 h post i.v. injection of IO nanoparticles). Although, based on H/E staining of GFs, 

mouse IgG induced leukocyte recruitment to the dermis in injected GFs, a process that was 

indicative of vascular changes that should allow nanoparticles to leave the blood and enter the 

inflamed tissue. The lack of iron staining in the GF tissue sections was independent of the type of 

IO nanoparticle injected i.v.; i.e. IO-conjugated with chicken anti-mouse IgG antibody, IO-

COOH or IO-PEG. Iron staining of spleens and livers collected from the chickens 3 or 7 days 

post-i.v. injection of IO nanoparticles revealed presence of iron staining in the marginal zone 

areas of the spleen as well as in liver cells (data not shown). 
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Table 2. Iron concentration in plasma, serum, and homogenized tissue samples  

Samples 
Iron assay 

kit used 

Concentration of iron 

determined 

 

1. IO-plasma samples prepared by adding IO-

NP directly to plasma 1) 

 

 

2. IO-plasma samples prepared from whole 

blood spiked directly with IO-NP before 

plasma preparation 2) 

 

 

3. Plasma samples of IO-NP injected chickens 

from Experiment 1 

 

 

4. IO-serum samples prepared by adding IO-

NP directly to serum 1) 

 

 

5. IO-serum samples prepared from whole 

blood spiked directly with IO-NP before 

coagulation and serum isolation 2) 

 

6. IO-serum samples prepared from whole 

blood spiked directly with IO-NP before 

coagulation and serum isolation blood 2) 

 

7. Serum samples of IO-NP injected chickens 

from Experiment 2 

 

 

 

8. Homogenized tissue samples collected from 

IO-NP injected chickens from  

Experiment 2 

 

Sigma Aldrich 

 

 

 

Sigma Aldrich 

 

 

 

 

Sigma Aldrich 

 

 

 

Sigma Aldrich 

 

 

 

Sigma Aldrich 

 

 

 

BioChain 

 

 

 

Sigma Aldrich 

 

 

 

 

Sigma Aldrich, 

BioChain 

 

OD values were out of the 

standard curve, plasma may 

affect the OD values 

 

OD values were out of the 

standard curve, plasma may 

affect the OD values 

 

 

Iron level in samples post IO-

NP injection were not different 

from 0-time samples 

 

The added IO-NP was not 

detected and no dilution curve 

(Table 3) 

 

Relative amount of added IO-

NP was detected but at very low 

levels (Table 4) 

 

Not detected 

 

 

 

Standard curve worked well 

(Figure 2), iron level in samples 

post IO-NP injection were not 

different from 0-time samples 

 

Iron concentrations of PBS and 

injected samples were not 

different 

   

 
1) Two mL of heparinized/non-heparinized whole blood was collected from a 9-week-old Light-

brown Leghorn female. Blood was spun to get plasma/serum. Plasma/serum was then diluted 

with PBS at ratio of 1:4. 4.46 μL of 5 mg/mL IO-COOH (22.3 μg IO) was added into 995.54 μL 

of diluted plasma/serum to make 1 mL of IO-added plasma/serum (22.3 μg IO/mL). The IO-

added plasma/serum was then serially diluted using doubling dilutions (1/2, 1/4, 1/8, 1/16, 1/32 

and 1/64) to yield plasma/serum concentrations of IO of 11.5, 5.575, 2.188, 1.394, 0.697, and 
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0.348 μg/mL, respectively. No IO nanoparticles (NP) were added to the undiluted (0) serum 

samples. IO concentration of all IO-plasma/IO-serum samples were determined using iron assay 

kit (Sigma Aldrich). 

2) Two mL of heparinized/non-heparinized whole blood was collected from a 9-week-old Light-

brown Leghorn female. Forty μL of 5 mg/mL IO-COOH was added right away to the blood to 

make 100 μg/mL IO-added whole blood. The IO-added whole blood was spun to isolate IO-

plasma/IO-serum collected. The IO-plasma/IO-serum was then serially diluted with PBS using 

doubling dilutions (1, 1/2, 1/4, 1/8, 1/16, 1/32 and 1/64) to yield serum concentrations of IO-NP 

of 100, 50, 25, 12, 6.25, 3.125, and 1.563 μg/mL, respectively. IO concentration of all IO-

plasma/IO-serum samples were determined using iron assay kit (Sigma Aldrich). 
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Table 3. Concentration of iron detected in serum samples to which IO nanoparticles were added 

prior to serial dilution (IO-added serum) 1) 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

1) Two mL of blood was collected from a 9-week-old Light-brown Leghorn female. Blood was 

allowed to coagulate, samples were centrifuged, and serum collected. Serum was then diluted 

with PBS at ratio of 1:4. 4.46 μL of 5 mg/mL IO-COOH nanoparticles (22.3 μg IO) was added 

into 995 μL of diluted serum to make 1 mL of IO-added serum (22.3 μg IO/mL). The IO-added 

serum was then serially diluted using doubling dilutions (1/2, 1/4, 1/8, 1/16, 1/32 and 1/64) to 

yield serum concentrations of IO of 11.5, 5.575, 2.188, 1.394, 0.697, and 0.348 μg/mL, 

respectively. No IO was added to the undiluted (0) serum samples. IO concentration of all IO-

serum samples were determined using iron assay kit (Sigma Aldrich). 

 

IO-serum 

samples 

 

Known 

concentration of IO 

in IO-serum samples 

C (μg/mL) 

 

Concentration of IO 

detected by using 

iron assay kit 

C (μg/mL) 

 

0 0.174 1.225 

1/64 0.348 1.370 

1/32 0.697 1.291 

1/16 1.394 1.350 

1/8 2.788 1.330 

1/4 5.575 1.416 

1/2 11.15 1.370 
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Table 4. Concentration of iron detected in serum samples prepared from whole blood to which a 

known amount of IO nanoparticles was added prior to serum isolation1) 

 

 

 

IO-serum 

samples 

 

Known concentration 

of IO-NP in IO-serum 

samples 

C (μg/mL) 

 

Concentration of IO 

detected by using 

iron assay kit 

C (μg/mL) 
 

1/64 1.563 0.002 

1/32 3.125 0.068 

1/16 6.25 0.260 

1/8 12.5 0.577 

1/4 25 0.815 

1/2 50 1.145 

1 100 1.787 

 

 

 
1) Two mL of whole blood was collected from a 9-week-old Light-brown Leghorn female. Forty 

μL of 5 mg/mL IO-COOH was added right away to the blood to make 100 μg/mL IO-added 

whole blood. The IO-added whole blood was allowed to coagulate, samples were centrifuged, 

and IO-serum collected. The IO-serum was then serially diluted with PBS using doubling 

dilutions (1, 1/2, 1/4, 1/8, 1/16, 1/32 and 1/64) to yield serum iron concentrations of of 100, 50, 

25, 12, 6.25, 3.125, and 1.563 μg/mL, respectively. IO concentration of all IO-serum samples 

were determined using iron assay kit (Sigma Aldrich). 
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Figure 2. Standard curve obtained for the Sigma-Aldrich iron assay test kit. The 1 mM standard 

solution was generated by diluting 10 µL of the 100 mM iron standard with 990 µL of distilled 

water. 0, 2, 4, 6, 8, and 10 µL of the 1 mM standard solution were added into wells of a 96 well 

plate to generate 0, 2, 4, 6, 8, and 10 nmole/well iron standards, respectively. The iron assay 

buffer was then added to these wells to bring the volume to 100 µL. Five µL of iron reducer was 

then added to each of the wells containing standard amounts of iron. The final concentration of 

standards were 0, 1.117, 2.234, 3.351, 4.468, and 5.585 g/mL, respectively. The plate was 

incubated for 30 min at room temperature. After incubation, 100 µL of the iron probe was added 

to each of well. The plate was incubated for 60 min at room temperature, and color development 

(optical density; OD) was measured at 593 nm wave length. The OD values were recorded and 

analyzed using Microsoft Excel software. 
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Figure 3. Prussian blue stained kidney (a) and lung (b) tissue sections collected from chickens 

that were intravenously injected with iron oxide (IO) nanoparticles. Nine-week-old Light-brown 

Leghorn females were intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg). 

Chickens were euthanized at 60 min post intravenous injection by injection of pentobarbital 

solution and the organs were removed. Tissues were formalin-fixed, paraffin-embedded; 

sectioned (5 µm), and sections stained with Prussian blue stain. Pictures were taken at 400 x 

magnification using an Olympus BX50 light microscope equipped with a CoolSNAP Pro digital 

camera.  

 a 

 b 

200 µm 

200 µm 
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Figure 4. Prussian blue stained spleen (a) and liver (b) tissue sections collected from chickens 

that were intravenously injected with iron oxide nanoparticles. Nine-week-old Light-brown 

Leghorn females were intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg). 

Chickens were euthanized at 60 min post intravenous injection by injection of pentobarbital 

solution and the organs were removed. Tissues were formalin-fixed, paraffin-embedded; sections 

(5 µm) were prepared and stained with Prussian blue iron stain (blue cells). Pictures were taken 

at 100 x magnification using an Olympus BX50 light microscope equipped with a CoolSNAP 

Pro digital camera. 
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Figure 5. Prussian blue stained spleen (a) and liver (b) tissue sections collected from chickens 

that were intravenously injected with iron oxide (IO) nanoparticles. Nine-week-old Light-brown 

Leghorn females were intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg). 

Chickens were euthanized at 60 min post intravenous injection by injection of pentobarbital 

solution and the organs were removed. Tissues were formalin-fixed, paraffin-embedded; 

sectioned (5 µm) and sections stained with Prussian blue iron stain (blue cells). Pictures were 

taken at 400 x magnification using an Olympus BX50 light microscope equipped with a 

CoolSNAP Pro digital camera. 
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Figure 6. Relationship between percentage of iron-stained cells in spleen and liver of chickens 

injected intravenously with iron oxide nanoparticles. Nine-week-old Light-brown Leghorn 

females were intravenously injected with various doses of IO-COOH (IO) nanoparticles (1.5, 

1.68, 1.84, 2.25, or 4.5 mg) or PBS. Chickens were euthanized at 60 min post intravenous 

injection by injection of pentobarbital solution and the organs were removed. Tissues were 

formalin-fixed, paraffin-embedded; sectioned (5 µm) and sections stained with Prussian blue 

iron stain. Blue staining in sections was quantified as % Area (blue area/field; 20 fields per 

section) by image analysis (Image Pro software) at 400 x magnification using an Olympus BX50 

light microscope equipped with a CoolSNAP Pro digital camera, and computer connection. Data 

were analyzed using Pearson Correlation Test, Sigma Plot 13 Statistical Software. For spleen, P-

value was 0.000202, correlation coefficient was 0.956. For liver, P-value was 0.216, and 

correlation coefficient was 0.607.  
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Figure 7. Extent (% Area) of iron positive staining in spleen and liver sections at various time 

points post intravenous injection of iron oxide nanoparticles. Nine-week-old Light-brown 

Leghorn females were intravenously injected with IO-COOH (IO) or IO-PEG nanoparticles 

(dose of 3.3 mg/kg). Chickens were euthanized at 0, 5, 15, 30, and 60 min post intravenous 

injection by injection of pentobarbital solution and the organs were removed. Tissues were 

formalin-fixed, paraffin-embedded; sectioned (5 µm), and sections stained with Prussian blue 

iron stain. Blue staining in spleen and liver sections was quantified as % Area (blue area/field, 20 

fields per section) by image analysis (Image Pro software) at 400x magnification using an 

Olympus BX50 light microscope equipped with a CoolSNAP Pro digital camera, and computer 

connection. Data shown are mean ± SEM (n=3 for IO or IO-PEG injection per time-point, and 

n=4 for PBS injection). Following one-way ANOVA, Fisher's LSD multiple means comparison 

test was used to determine differences between time-points. a-c: means without a common letter 

is different (P <0.05). 
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Figure 8. Number of iron positive cells per 62500 μm2 tissue area in spleen and liver of chickens 

that were intravenously injected with iron oxide nanoparticles. Nine-week-old Light-brown 

Leghorn females were intravenously injected with IO-COOH (IO) or IO-PEG nanoparticles 

(dose of 3.3 mg/kg) and PBS. Chickens were euthanized at 0, 5, 15, 30, and 60 min post 

intravenous injection by injection of pentobarbital solution and the organs were removed. 

Tissues were formalin-fixed, paraffin-embedded; sectioned (5 µm), and sections stained with 

Prussian blue iron stain. Stained sections were examined by bright-field microscopy and cells 

quantified by counting the number of blue cells per 62500 µm2 (#62500 µm2) at 400 x 

magnification with the aid of an ocular grid insert (10 mm x 10 mm). Sections were scanned to 

confirm IO nanoparticle presence (blue cells), and number of blue stained cells counted in 20 

areas (62500 μm2/area). Data shown are mean ± SEM (n=3 for IO-COOH or IO-PEG injection, 

and n=4 for PBS injection). Following one-way ANOVA, Fisher's LSD multiple means 

comparison test was used to determine differences between time-points. a-c: means without a 

common letter are different (P <0.05). 

Note: Counting blue cells in spleen from IO-injected birds was not reliable because individual 

blue cells overlapped and were not as clearly outlined as in the liver. 
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Figure 9. Comparison between image analysis and manual count. Nine-week-old Light-brown 

Leghorn females were intravenously injected with IO-COOH (IO) or IO-PEG nanoparticles 

(dose of 3.3 mg/kg) and PBS. Chickens were euthanized at 0, 5, 15, 30, and 60 min post 

intravenous injection, and the organs were removed. Tissues were formalin-fixed, paraffin-

embedded; sectioned (5 µm), and sections stained with Prussian blue iron stain. Stained sections 

were examined by image analysis and a manual counting method at 400 x magnification. For 

Image analysis, blue staining was quantified as % Area (blue area/field, 20 fields per section) 

using Image Pro software and a light microscope equipped with a CoolSNAP Pro digital camera. 

For the manual count, the number of blue cells per 62500 µm2 (#62500 µm2/field, 20 fields per 

section) were counted using a bright-field microscopy with the aid of an ocular grid insert (10 

mm x 10 mm). Data were analyzed using Pearson Correlation Test, Sigma Plot 13 Statistical 

Software. P-values of ≤0.05 are considered significant.  
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Figure 10. Identification of iron nanoparticle presence in cells of frozen liver tissue sections 

using the peroxidase mimicking activity of iron oxide (IO) nanoparticles. (a) IO injected (b) 

PBS. Nine-week-old Light-brown Leghorn females were intravenously injected with IO-COOH 

nanoparticles (dose of 3.3 mg/kg) or PBS. The sample sections shown were prepared from livers 

collected 30 min post intravenous IO/PBS injection. The 7 m frozen sections were prepared 

using a cryostat. The sections were incubated in 10% H2O2 in methanol for 20 min, and in DAB 

substrate solution overnight. The slides were washed with PBS, sections covered with Aqua-

Mount mounting medium and a glass coverslip. Sections were scanned to confirm iron oxide 

nanoparticle presence (brown cells), and pictures were taken at 400 x magnification using a light 

microscope system.  

 a 

 b 
50 µm 

50 µm 
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Table 5. Combinations of immunohistochemical (brown stain) and Prussian blue iron staining 

(HT20 kit) methods tested to optimize dual staining for frozen tissue sections 1) 

 

Combinations 

Time fixed 

in formalin 

(min) 

 Time incubated in HT20 

working solution  

(min) 

Blue color in brown cells 

(L: liver, S: spleen) 

(+: effective level) 

 

1 

 

 

0 

 

10 

 

L: + 

S: + 

 

2 0 overnight L: + + + 

S: + + + + 

3 20 10 L: + + + 

S: + 

4 20 overnight L: + + + + + 

S: + + 

5 overnight 10 

 

L: + + + 

S: + 

6 overnight overnight L: + + + 

S: + 

 

1) Nine-week-old Light-brown Leghorn females were intravenously injected with IO-COOH 

nanoparticles (dose of 3.3 mg/kg). Organs were collected 60 min post intravenous injection, snap 

frozen with liquid nitrogen. Frozen sections of liver and spleen were prepared and all the steps of 

immmunohistochemical staining were carried including the DAB incubation step. The sections 

were then fixed in buffered formalin solution for different lengths of time (0 min - no formalin 

fixation, 20 min, and overnight). After that, the sections were incubated in HT20 working 

solution (mixing of Potassium Ferrocyanide Solution and Hydrochloric Acid Solution) for 2 

different time-points (10 min and overnight), and were then counterstained with Pararosaniline, 

washed with PBS, dehydrated, and covered with a glass coverslip. 
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Figure 11. Iron and macrophage double staining in frozen liver tissue sections from chickens 

injected intravenously with iron oxide (IO) nanoparticles. A 9-week-old Light-brown Leghorn 

female was intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg). Organs 

were collected 60 min post-intravenous injection. Frozen liver sections (7 µm) were prepared 

and stained using indirect immunohistochemistry with chicken macrophage specific antibody 

(KUL-01) in combination with Prussian blue staining. Sections were scanned to confirm iron 

positive cells (blue) which were also positive for the macrophage marker (brown). Pictures were 

taken at 400 x magnification using a light microscope equipped with a digital camera.  

  

50 µm 
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Figure 12. Iron oxide and MHC class II double staining in frozen liver tissue sections from 

chickens injected intravenously with iron oxide nanoparticles. A 9-week-old Light-brown 

Leghorn female was intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg. 

Organs were collected 60 min post-intravenous injection. Frozen liver sections (7 µm) were 

prepared and stained using indirect immunohistochemistry with chicken MHC class II specific 

antibody in combination with Prussian blue staining. Sections were scanned to confirm iron 

positive cells (blue) which were also positive for the MHC class II marker (brown). Pictures 

were taken at 400 x magnification using a light microscope equipped with a digital camera.  
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Figure 13. Iron oxide and isotype control double staining in frozen liver tissue sections from 

chickens injected intravenously with iron oxide nanoparticles. A 9-week-old Light-brown 

Leghorn female was intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg). 

Organs were collected 60 min post-intravenous injection. Frozen liver sections (7 µm) were 

prepared and stained using indirect immunohistochemistry with isotype control (mouse IgG1) 

antibodies in combination with Prussian blue staining. Sections were scanned to confirm iron 

positive cells and absence of non-specific binding of the cell-specific antibodies (all IgG1) used 

to identify macrophages, MHC-II+ cells, and B cells (no brown staining). Pictures were taken at 

400 x magnification using a light microscope equipped with a digital camera.  
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Figure 14. Iron oxide and macrophage double staining in frozen spleen tissue sections from 

chickens injected intravenously with iron oxide nanoparticles. A 9-week-old Light-brown 

Leghorn female was intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg). 

Organs were collected 60 min post-intravenous injection. Frozen spleen sections (7 µm) were 

prepared and stained using indirect immunohistochemistry with chicken macrophage specific 

antibody (KUL-01) in combination with Prussian blue staining. Double staining was not clearly 

interpretable with spleen sections. Pictures were taken at 400 x magnification using a light 

microscope equipped with a digital camera.  

  

50 µm 
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Figure 15. Iron oxide and MHC class II double staining in frozen spleen tissue sections from 

chickens injected intravenously with iron oxide nanoparticles. A 9-week-old Light-brown 

Leghorn female was intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg). 

Organs were collected 60 min post-intravenous injection. Frozen spleen sections (7 µm) were 

prepared and stained using indirect immunohistochemistry with chicken MHC class II specific 

antibody in combination with Prussian blue staining. Sections were scanned to confirm iron 

positive cells which were also positive for the MHC class II marker. Pictures were taken at 400 x 

magnification using a light microscope equipped with a digital camera.  
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Figure 16. Iron oxide and Bu-1 (B cells) double staining in frozen spleen tissue sections from 

chickens injected intravenously with iron oxide nanoparticles. A 9-week-old Light-brown 

Leghorn female was intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg). 

Organs were collected 60 min post-intravenous injection. Frozen spleen sections (7 µm) were 

prepared and stained using indirect immunohistochemistry with chicken Bu-1 specific antibody 

in combination with Prussian blue staining. Pictures were taken at 400 x magnification using a 

light microscope equipped with a digital camera.  

  

50 µm 
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Figure 17. Iron oxide and isotype control double staining in frozen spleen tissue sections from 

chickens injected intravenously with iron oxide nanoparticles. A 9-week-old Light-brown 

Leghorn female was intravenously injected with IO-COOH nanoparticles (dose of 3.3 mg/kg). 

Organs were collected 60 min post-intravenous injection. Frozen spleen sections (7 µm) were 

prepared and stained using indirect immunohistochemistry with isotype control antibodies 

(mouse IgG1) in combination with Prussian blue staining. Sections were scanned to confirm iron 

positive cells and no non-specific binding of the cell-specific (mouse IgG1) antibodies used to 

identify macrophages, MHC-II+ cells, and B cells (no brown staining). Pictures were taken at 

400 x magnification using a light microscope equipped with a digital camera.  

 

 

 
 

  

50 µm 
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DISCUSSION 

Iron oxide (IO) nanoparticles are popular materials for use in the biomedical field. To be 

used in health care, the safety and effectiveness of nanoparticles needs to be tested in a living 

organism. For this project we used the chicken as the animal model to examine in vivo activities 

of nanoparticles, with focus on targeting/delivery of intravenously injected IO nanoparticles. The 

chicken model has advantages over other non-human animal models such as the mouse, 

including opportunity for easy blood sampling as well as the unique feature which is repeat, 

minimally invasive access to a complex dermal tissue in the form of growing feathers (Erf and 

Ramachandran, 2016). Before the targeting studies involving growing feathers as the target 

tissue could be carried out, a major part of this study was to examine the organ-distribution and 

circulatory half-life of intravenously injected iron oxide nanoparticles in the chicken. 

Determination of the presence of iron oxide nanoparticles in blood and organs at different time 

points post intravenous injection of nanoparticles provided the first insight into the in vivo 

behavior of the nanoparticles in the chicken system. 

Iron concentration in plasma, serum, and homogenized tissues were first examined using 

two different commercial iron assay kits. Although the standard curves of both kits worked very 

well, iron concentration in plasma, serum, and homogenized tissue samples post IO injection 

were not different from pre-injection or PBS injected samples. Even when IO was added directly 

into plasma, serum, or whole blood, iron concentrations in plasma and serum samples collected 

were not detected or detected at much low levels than predicted. These results may be due to the 

test-kits not working with chicken serum and plasma samples, the iron oxide nanoparticles were 

removed from the blood within 5 minutes (the first time-point the blood was samples after i.v. 
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injection of IO nanoparticles), or the iron oxide nanoparticles were removed from the 

plasma/serum during the separation of the plasma/serum from the cell portion of the whole 

blood. The blood half-life of iron oxide nanoparticles depends on many factors including the 

type of animal injected, the type of iron oxide nanoparticles used, and doses of injected iron 

oxide nanoparticles (Arami et al., 2015). While there is no report about blood half-life of iron 

oxide nanoparticles in the avian system, many reports showed the blood half-life in rodents and 

humans. The blood half-life of different iron oxide nanoparticles ranges from several minutes to 

several days in rodents and from 1 hour to 24 hours in humans (Weissleder et al., 1990; Yang et 

al., 2011; Taupitz et al., 2004; McLachlan et al., 1994). Citric acid-coated super paramagnetic 

iron oxide nanoparticles were rapidly cleared from circulation in the rat model, with a half-life of 

about 14.06 min (Trincu et al., 2015). In our study it is also likely that we did not get the assay 

system to work properly, despite many attempts to optimize the assays. This conclusion is based 

on observations when liver homogenates known to have taken up IO nanoparticles (based on 

histology) were prepared and the iron was still not successfully detected using the assay kits. 

More research is needed to find a procedure and experimental approach that will better determine 

the circulatory half-life of IO nanoparticles injected i.v. in chickens.     

The other approach used in this study was to examine the presence of iron oxide 

nanoparticles, specifically IO-COOH and IO-PEG, in organs (liver, spleen, kidney, and lung) 

before (0) and at 5, 15, 30, and 60 min post i.v. injection. At each time-point, formalin-fixed 

tissue samples were paraffin-embedded and sections were prepared and stained with Prussian 

blue iron stain. Sections were observed under a light microscope system, and pictures were taken 

at 100 x and 400 x magnification. While lung and kidney showed no iron-stained cells (blue 

cells) (Figure 3), liver and spleen showed many iron-stained cells in the sections (Figure 4).  
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Further examination of Prussian blue stained tissue sections showed iron staining (% 

Area) increased in spleen sections when the amount of intravenously injected IO increased (P < 

0.05) (Figure 7). This is consistent with a demonstration that number of macrophages in mouse 

liver and spleen taking up IO nanoparticles linearly increased depending on the dose of IO 

nanoparticles injected (Rodrigues et al., 2017). However, in chickens, the correlation between 

dosage of IO nanoparticles injected intravenously and iron staining in the liver was not 

significant for the small range of doses tested. When compared to IO-COOH injection, IO-PEG 

injection using the same dosage of nanoparticles showed significantly lower % Area of iron 

staining and number of iron-positive cells at each time point post injection (Figure 7 and 8). By 

60 min, % Area of iron staining in spleen sections from chickens injected with IO-PEG was 

approximately 8 times less than the % Area observed in spleen following intravenous IO-COOH 

injection (Figure 7). For the liver, however, iron staining (% Area and number of iron+ cells) in 

IO-PEG injected chickens was similar to that in IO-COOH injected chickens at the 60 min time 

point, although iron staining in IO-PEG injected chickens was much lower at earlier points than 

observed with IO-COOH injection (Figure 7 and 8). These results demonstrated that uptake of  

IO-PEG nanoparticles in chickens was slower in liver and spleen, and occurred at lower levels in 

the spleen, than uptake of IO-COOH nanoparticles. This observation is in line with the goals of 

PEG modification of iron oxide nanoparticles, specifically to reduce their capture by the body’s 

immune system components and to extend their circulatory half-life (Yu et al., 2012; Chen et al, 

2010).  

For intravenously administered nanoparticles, the surface charge of nanoparticles is one 

of the factors affecting bio-distribution and clearance (Melancon et al., 2009). IO nanoparticles 

used in this study were IO-COOH nanoparticles which had reactive carboxylic groups on the 
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surface with negative charges; whereas, IO-PEG nanoparticles were iron oxide nanoparticles 

coated with poly-ethylene-glycol (PEG) with no linkable reactive group. Charged nanoparticles 

are easily cleared from the blood because they are quickly absorbed by serum proteins onto their 

surface, that tag them for removal by the mononuclear phagocytic system inside the liver and 

spleen (Lynch and Dawson, 2008). Deng and colleagues, in their article, declared that both 

negatively and positively charged gold nanoparticles had a wide range of proteins bound to their 

surface with high affinity, while the neutral nanoparticles had a very little bound proteins (Deng 

et al., 2013). On the other hand, some reports showed that the addition of PEG to the surface of 

nanoparticles increased the blood half-life of the nanoparticles regardless of surface charge (Gref 

et al., 2000; Owens and Peppas, 2006; Zhang et al., 2009). These above reports are in agreement 

with the results of IO-COOH and IO-PEG injection in the chicken system. 

When the IO nanoparticle organ uptake data obtained by image analysis (% Area of iron 

staining) and by manual counting of iron positive cells were compared, highly significant 

correlations were found, revealing consistent results obtained by both methods (Figure 9). While 

counting of cells was more time consuming, it may be the more sensitive method in detecting IO 

nanoparticle uptake. For example, a significant increase in the number of iron-positive cells in 

livers from IO-PEG injected chickens was already observed at 30 minutes post i.v. injection, 

while image analysis did not find a significant increase in iron-staining until the 60 minute time 

point. On the other hand, if there are a lot of overlapping cells, as in the case for spleen from IO-

COOH injected birds, the cell counting method was not possible, and the image analysis 

quantified the iron staining much more effectively (Figure 7 and 8). 
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In addition to the Prussian blue iron staining method, the peroxidase mimicking activity 

of iron oxide nanoparticles was also used to detect iron oxide nanoparticles in frozen tissue 

sections. This staining revealed elongated and spread-out cells that contained brown precipitant 

from DAB oxidation in livers from chickens injected with IO-COOH. There were many brown 

particles in the cytoplasm of the liver cells (Figure 10a) while there were no brown stained 

cells in liver sections of PBS injected chickens (Figure 10b). This result is consistent with the 

result of Prussian blue staining and previous report (Zhuang et al., 2012), confirming that this 

staining method can also identify cells that have taken up iron oxide nanoparticles and that iron 

oxide nanoparticles possess intrinsic peroxidase mimicking activity; i.e. iron oxide nanoparticles 

catalyze the oxidation of the peroxidase substrate DAB in the presence of H2O2 to produce a 

brown color. This poses a great potential for novel applications of iron oxide nanoparticles in 

different fields, especially biomedicine for construction of diagnostic kits and enzyme 

immunoassays (Wei and Wang, 2013; Hamid and Khalil, 2009). Moreover, the staining using 

peroxidase mimicking activity was suggested to be a better and more sensitive method than 

Prussian blue (Zhuang et al., 2012). The endogenous ferric iron in tissue usually affects Prussian 

blue results (Poss and Tonegawa, 1997) while this iron exhibits very little peroxidase activity 

(Gao et al., 2007). However, it should be noted that we were not able to identify iron-positive 

cells in spleen using this method. It appears that for this organ, where nanoparticles accumulate 

in cells within the marginal zone surrounding the white pulp lymphoid areas, this staining 

method may need to be further modified for the avian model. 

In order to identify the cells in liver and spleen that have taken up the IO nanoparticles, 

we combined immunohistochemical staining with antibodies specific for chicken macrophages, 

MHC class II molecules and B cells, with Prussian blue staining of iron. The monoclonal 
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antibodies used to identify the leukocyte markers, do however not work with formalin fixed 

tissues. Therefore, we needed to work out Prussian blue staining on frozen tissue sections and 

design a staining procedure where the additional fixation step needed for Prussian blue staining 

would not interfere with the immunohistochemical staining. This was successfully achieved and 

revealed MHC class II+ macrophages (presumably Kupffer cells) in the liver as the cells that 

take up iron-oxide nanoparticles (Figure 11-13).  This staining approach was again not as 

successful for spleen tissue sections, especially with the macrophage-specific antibody (Figure 

14), although the iron staining in combination with the isotype control monoclonal antibodies 

clearly showed iron staining and the absence of non-specific binding of the monoclonal 

antibodies (Figure 17). In spleen, the dual staining with MHC class II specific monoclonal 

antibody and Prussian blue staining was more successful, revealing iron staining associated with 

MHC class II staining (Figure 15). Because B cells, which are located in follicles adjacent to the 

marginal zone are also MHC class II positive, double staining with antibody for B cells was also 

conducted. As seen in Figure 16, B cells do not appear to take up IO nanoparticles based on the 

presence of iron staining between, not in, B cells. Although for spleen, further modification of 

the staining procedures are needed to identify macrophages (e.g. immunofluorescent staining), 

based on Prussian blue staining, H/E staining, morphology and location of the iron positive cells 

within the spleen, the iron positive cells appear to be marginal zone macrophages. In fact, spleen 

and liver are two large units of the mononuclear phagocytic system (MPS) which include 

primarily monocytes and macrophages, both of which express MHC class-II molecules on their 

surface in addition to the KUL-01 macrophage marker. The observation that iron oxide 

nanoparticles were taken up rapidly by macrophages in the spleen and liver is in agreement with 

Zhuang et al. (2012) who reported that iron oxide nanoparticles were taken up mainly by liver 
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macrophages and macrophages in the perifollicular areas in spleen. Although this conclusion by 

Zhuang et al. was based on adjacent sections stained with different stains, i.e. one with iron stain 

the other with H/E stain, and not dual staining on the same sections. Chicken lung and kidney 

displayed no iron staining at all time points examined for both IO nanoparticle groups. This 

agrees with previous findings of minimal nanoparticle deposition in these organs (Tate et al., 

2009). 

Having the first insight into in vivo behavior of the IO nanoparticles in the chicken, set 

the stage for the targeting/delivery study using the growing feather as the target tissue for 

intravenously injected IO nanoparticles. In this model, the mouse IgG antigen was injected into 

the pulp of the chicken’s growing feathers 6 hours before intravenous injection of antibody-

conjugated IO nanoparticles. Specifically, the IO nanoparticles were conjugated with chicken-

IgG antibody specific to the mouse-IgG-antigen injected into the dermis of growing feathers. The 

mouse-IgG injected growing feathers were then periodically sampled and examined for the 

presence of nanoparticles. Prussian blue stained tissue sections of mouse-IgG-antigen injected 

growing feathers showed no iron positive cells (blue cells) at any of the time-points examined. 

There are many reasons this first study was not successfully demonstrating the potential 

usefulness of the growing feather dermal tissue to study nanoparticle targeting delivery, 

including the choice of the antigen-antibody combination. Chicken-IgG-specific-to-mouse-IgG- 

antibody was chosen for intravenous injection in this study since the injection was in chicken and 

an immune response to the chicken antibody was therefore not expected. The chicken anti-mouse 

IgG antibody was commercially available. In addition, mouse IgG injected into the dermis of 

growing feathers was known to cause immune activities, including vascular changes favorable 

for nanoparticle entry from blood into injected growing feathers, by the 6 hour time-point. 
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Moreover, Prussian blue staining of IO nanoparticle injected growing feathers clearly showed 

uptake of the particles by macrophages (data not shown), supporting the concept that if i.v. 

injected IO nanoparticles leave the circulation to enter antigen-injected dermal tissue we would 

be able to detect them. However, arrival and retention of IO nanoparticles in the pulp of antigen-

injected growing feathers could not successfully be demonstrated in this study.   

Other possible reasons for this failure include the possibility that the mouse-IgG injected 

into growing feathers was already removed and taken up by inflammatory cells and hence not 

accessible to the antibody-conjugated iron oxide nanoparticles at the 6 hour time-point. Although 

as seen in H/E stained sections, the injection of mouse IgG into the dermis of the growing 

feathers did induce an inflammatory response including vascular changes that enabled 

extravasation of inflammatory leukocytes from the blood that also would have allowed 

nanoparticles to leave the circulation at this location. It is possible that the inflammatory 

response and associated vascular changes were not strong enough to have antibody-conjugated 

IO nanoparticles or unconjugated IO-PEG, or IO-COOH come into the tissue in large 

amounts. Perhaps, dual administration of specific antigen with low levels of lipopolysaccharide 

may have been a more favorable inflammatory stimulus for IO nanoparticle entry into the tissue. 

Lastly, the dosage of IO nanoparticles injected was lower than that used for targeting in other 

animal models (Chertok et al., 2008; NDong et al., 2015). 

 

Conclusion 

This is the first report describing organ-distribution of iron oxide nanoparticles in the 

chicken system, demonstrating accumulation of iron oxide nanoparticles in macrophages in liver 

and spleen, as well as differences in the time-course and uptake level of 10 nm IO-COOH 
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compared to 10 nm IO-PEG nanoparticles. Several protocols were successfully developed for the 

chicken model, including image analysis of tissue sections to quantify iron staining and manual 

counting of iron stained cells. Furthermore, protocols for staining frozen tissue sections using the 

peroxidase mimicking activity of IO nanoparticles, the Prussian blue HT20 staining kit, as well 

as a dual immunohistochemical and iron staining procedure were developed. Lastly while not 

successful, the targeting experiment conducted in this study is a very good starting point for 

experimental modifications to optimize this approach to monitor targeting/delivery success of 

nanoparticles.  
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