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ABSTRACT  

Protein targeting is a fundamental cellular process that directs proteins from their site of 

synthesis to the site where they function. The signal recognition particle (SRP) dependent 

targeting pathway is conserved in both eukaryotes and prokaryotes where it co-translationally 

targets polypeptide chains emerging from ribosomes to the endoplasmic reticulum (eukaryotes) 

or cytoplasmic membrane (prokaryotes). A structurally unique form of SRP is found in 

chloroplasts where it functions to post-translationally bind and target a subset of integral 

thylakoid membrane proteins, the light harvesting chlorophyll binding proteins (LHCPs). Mature 

LHCPs bind chlorophyll a/b and function in photosynthetic light capture. Like many other 

chloroplast proteins, LHCPs are nuclear encoded and synthesized in the cytosol.  Following their 

import into the chloroplast stroma, LHCPs associate with chloroplast SRP (cpSRP), which 

maintains LHCP solubility and initiates targeting of LHCP to the thylakoid membrane via an 

cpSRP receptor (cpFtsY) at the thylakoid membrane. Both cpSRP and cpFtsY are GTPases and 

associate at the thylakoid by a mechanism that requires GTP binding by both proteins. 

Subsequent insertion of LHCP into the lipid bilayer is mediated by a protein insertase Albino3 

(Alb-3), which binds cpSRP to stimulate LHCP release from cpSRP and GTP hydrolysis by both 

cpSRP and its receptor. Work here has focused on studies to understand mechanistic details of 

the cpSRP targeting pathway and better understand the timing of targeting events at the 

membrane.  The results provide support for a structure-based chronology of protein interactions 

between LHCP targeting substrates, cpSRP, cpFtsY, and Alb-3. They also demonstrate that GTP 

hydrolysis by cpSRP and its receptor at the membrane is not necessary for LHCP insertion by 

Alb-3, but serves to maintain an available pool of Alb-3 insertase at the membrane by 



 

 

stimulating the exit of cpSRP targeting components following release of LHCP from cpSRP to 

Alb-3.  
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I.      INTRODUCTION 
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Protein Targeting 

Protein targeting or protein localization is the process by which proteins produced in the 

cytoplasm are transported to their destinations inside or outside the cell. Proper protein 

localization of nuclear encoded polypeptides from their site of synthesis in the cytosol to distinct 

membrane-bound compartments and organelles is crucial to maintain normal cellular function.  

The protein routing mechanisms that serve to localize newly made polypeptides rely on targeting 

sequences in the targeting substrate that are recognized by soluble and membrane-associated 

sorting components. In the case of chloroplasts (and mitochondria), which have a prokaryotic 

ancestry (64), sorting of proteins encoded by the organellar genome and synthesized by 

chloroplast ribosomes is accomplished by homologous sorting mechanisms found in modern day 

prokaryotes (9, 28, 31, 64). However, of the ~3000 proteins present in the chloroplast, only ~100 

of these proteins are encoded by chloroplast DNA. Genes coding for the remainder of chloroplast 

proteins have since moved to the nucleus following the endosymbiotic event that gave rise to 

chloroplasts. Nearly all of the nuclear encoded chloroplast proteins are synthesized as full-length 

precursor proteins in the cytoplasm and contain an N-terminal targeting sequence or ‘transit 

peptide’, which directs the protein to chloroplast import machinery in the two envelope 

membranes. The import machinery forms a protein translocation channel composed of proteins 

that function as members of the TOC (Translocase of the outer membrane of chloroplast) and 

TIC (Translocase of the inner membrane of chloroplast) that recognize and engage transit 

peptides to facilitate precursor translocation across the envelope membranes (5, 38, figure 1.1). 

Transit peptides vary in length from 20 to ˃ 100 residues and exhibit an abundance of 

hydroxylated residues as well as lacking acidic residues (25, 28). In the absence of additional 

targeting information, transit peptides direct proteins to the chloroplast stroma and are cleaved by 



3 

 

a stromal processing protease. However, nuclear encoded thylakoid proteins must be routed from 

the stroma to the thylakoid where they are transported into or across the membrane.   

Proteins that reside in the thylakoid lumen possess bipartite transit peptides with a stroma 

targeting and lumen targeting domain.  Cleavage of the stroma targeting domain by a processing 

protease in the stroma produces a targeting pathway intermediate in the stroma that is also 

intermediate in size between the full-length precursor and the mature sized protein (25). The 

lumen targeting domain then directs proteins to the thylakoid where a Sec or TAT transporter, 

homologous to those in bacteria, transports proteins into the thylakoid lumen (69). The lumen 

targeting domain is structurally and functionally similar to bacterial signal peptides and are 

cleaved by a lumen processing protease to produce the mature sized protein in the thylakoid 

lumen.  In contrast, nuclear encoded integral thylakoid proteins such as those that function in the 

photosystem 1 and 2 peripheral light harvesting protein complexes (LHCPs) contain information 

in the mature protein that is required for localization from the stroma to the thylakoid. Four 

distinct thylakoid localization pathways found in chloroplasts are- 

Secretory Pathway (Sec pathway) 

Precursor proteins which are translocated via chloroplast Sec pathway (cpSec) possess an N-

terminal stroma targeting domain and a C-terminal lumen targeting domain (45, 46). Lumenal 

targeting domain consists of a charged N-terminal region, a core region of hydrophobic amino 

acid residues, and an A-X-A motif at the C-terminal region which is made up of polar residues. 

This motif serves as the cleavage site for the thylakoid processing peptidase (45). cpSec pathway 

is involved in the targeting of soluble proteins to the thylakoid lumen (e.g. Plastocyanin, OE33) 

as well as integration of thylakoid membrane proteins (e.g. Cytochrome f ) (2, 34, 50). Key 
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components of chloroplast Sec pathway have been identified based on homology modelling (45). 

The components of Sec-protein transport machinery have been found in endoplasmic reticulum 

dependent targeting in eukaryotes (51), bacterial plasma membranes (70), in addition to the 

thylakoid membranes of plants and algal chloroplasts (6, 7). Protein translocation across the 

plasma membrane in bacteria consists of a membrane embedded Sec protein complex which is 

made up of SecY, SecE, SecG, SecF, SecD, YajC and a peripheral protein Sec A which is an 

ATPase (55, 59 ). SecYEG together form the core of membrane translocase in bacteria and SecA 

guides the unfolded protein to pass through the pore formed by SecYEG together. Bacterial Sec 

B serves as a chaperone and keeps the protein to be targeted in a targeting competent state. 

SecFDYajC forms another trimeric complex at the membrane which together with SecYEG aids 

in the smooth protein translocation across the membrane (45, 60). Chloroplast Sec targeting 

system contains only SecY (cpSecY), SecE (cpSecE) and SecA (cpSecA) homologues and they 

function very similar to the bacterial Sec targeting mechanism (37, 49, 57, 59, 73). cpSec E 

froms a complex at the thylakoid membrane with cpSecY and cpSecA serves as an ATPase and 

these together lead to the transport of thylakoid luminal proteins from stroma or to the 

integration of thylakoid membrane proteins (Figures 1.1 and 1.2). All substrate proteins of cpSec 

system have been known to be in their unfolded states. Studies have shown that SecA dependent 

translocation in chloroplasts could be inhibited by using antibodies against cpSecY which 

reiterates that these components work together in the system (46, 59). Translocation of thylakoid 

protein OE33 has also been shown to be inhibited when azide was used in the study (25, 30, 36). 

Azide is known as the inhibitor of bacterial SecA protein. cpSec pathway has also been shown to 

be involved in the co-translational targeting of the proteins like Cytochrome f, D1 which are 

synthesized by the chloroplast DNA using the stromal ribosomes (6). 
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Twin arginine translocation pathway (TAT pathway) 

In chloroplast, an equal number of substrate proteins are targeted via cpSec pathway and cpTAT 

pathway whereas in bacteria, there are more substrate proteins which are targeted via Sec 

pathway and very few via TAT pathway (48). Substrate proteins like OE17, OE23, and Pftf are 

targeted by cpTAT pathway either in the lumen or integrated on the thylakoid membrane. The 

lumenal targeting domain of the substrate proteins for cpTAT pathway also contain charged N-

terminal region, a core region of hydrophobic amino acid residues, and an A-X-A motif at the C-

terminal region which is made up of polar residues (45). The only difference between the 

substrate protein for cpSec pathway and cpTAT pathway is that the substrate proteins for cpTAT 

pathway contain twin Arginine motif in their N terminal charged region. cpTAT pathway 

transports both folded and unfolded proteins across the membrane without the need of any 

soluble factors or nucleoside triphosphates, however, it requires the hydrogen ion gradient across 

the membrane to carry out its function (7, 48). This translocation system is present in 

chloroplasts of plants, algae and in bacteria. Fungi and animals lack this targeting system (6). 

Three integral membrane proteins- Tha4, Hcf106 and cpTatC are found on the thylakoid 

membrane of chloroplasts (48, figure 1.2). They are known as TatA, TatB and TatC in bacteria 

and are located on the cytoplasmic membrane. Maize Hcf106 (high-chlorophyll fluorescence 

106) mutant plants showed deficiency in several thylakoid membrane complexes like 

photosystem I &II, cytochrome b6/f complex as shown in Settles et al.( 61) and this plant was 

shown to be specifically defective in cpTat dependent targeting pathway (aka delta pH dependent 

pathway). The three subunits of cpTAT system exist in two sub-complexes on the thylakoid 

membrane. Subunits cpTatC and Hcf106 exist together as a receptor complex without Tha4 

subunit. An active cpTat translocase machinery is formed as the substrate protein binds to the 
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receptor complex and pH gradient is established leading to the binding of Tha4 with the receptor 

complex bound to the substrate. Inhibition of precursor protein binding as well as inhibition of  

protein translocation was observed in the assays where thylakoid membranes were pretreated 

with antibodies to Hcf106 or cpTatC whereas inhibition of  protein translocation without any 

harm to protein binding was observed when thylakoids were pretreated with antibodies to Tha4 

(45,). Studies have shown that oligomers of Tha4 (TatA in bacteria) are formed at the thylakoid 

membrane Tat translocase during protein transport making a flexible protein conducting channel 

(10, 21, 60). This explains how cpTat pathway (or bacterial TAT pathway) is able to transport 

folded proteins of different sizes into the thylakoid lumen or across bacterial plasma membrane. 

In-vitro import studies have shown that proton gradient force is essential for driving cpTat 

dependent targeting in chloroplasts or isolated thylakoid membranes (7, 41). However, in vivo 

studies in Chlamydomonas reinhardtii and tobacco protoplasts (14, 15) have shown that cpTat 

system works well even in the absence of proton gradient across the thylakoid membranes. Some 

more studies showed that neither electric potential nor proton gradient provide the driving force 

in cpTat transporting systems (14, 66). Further work needs to be done in order to answer this 

mystery. 

Spontaneous pathway 

This method of protein insertion is very different in its nature. It was first discovered in higher 

plant chloroplasts that CFo-II, the membrane component of ATP synthase complex found on the 

thylakoid membranes is post-translationally targeted via spontaneous insertion pathway (58, 

figure 1.1). Spontaneous insertion pathway leads to the insertion of single span membrane 

proteins in absence of stromal factors, nucleoside triphosphates (42) and is also independent of 

any proton gradient force across the membrane. Integration of such proteins into the protease 
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treated thylakoids proved that these proteins do not require any proteinaceous translocase 

component (56). Integration was also found to be unaffected in the presence of cpSec inhibitor- 

sodium azide which proved that CFo-II protein insertion is independent of cpSec machinery (58). 

CF0-II is a nuclear encoded chloroplast protein and is post translationally targeted to the 

chloroplasts from cell cytoplasm with the help of bipartite transit peptide which resembles those 

of the lumenal proteins (55). Absence of twin arginine motif in its signal peptide also rules out 

the possibility of cpTAT pathway aiding in the membrane insertion of this protein. The W and X 

protein subunits of photosystem II-PsbW, PsbX are also known to insert spontaneously into the 

thylakoid membrane (11). Presence of lumenal signal peptide in such proteins led to the 

speculation that signal peptide acts as a hydrophobic domain and helps in the insertion of 

proteins into the lipid bilayer by forming a loop intermediate (33). Once inserted, signal peptides 

are cleaved by the lumenal peptidases to give rise to the mature protein (67). Coat protein M13 

which spans the inner membrane of virus infected bacterial cells is synthesized on polysomes as 

a precursor protein with an amino terminal signal peptide (11). This precursor inserts 

spontaneously into the plasma membrane where its signal peptide gets cleaved by the 

periplasmic signal peptidases leading to the mature form of protein (18) 

 Signal recognition particle pathway (SRP pathway) 

Signal recognition particle machinery coordinates the targeting of secretory proteins or 

membrane proteins to their proper destinations in living systems and it functions co-

translationally. The components of SRP pathway were first identified in mammalian cells in 

early 1980s (32, 71, 72,) and now this system is known to be present in all domains of life. SRP 

components initiate the targeting by binding to an N-terminal signal sequence on the emerging 

nascent polypeptide chain from the ribosomes. This binding step halts translation of the 
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polypeptide chain in eukaryotes. SRP-ribosome-nascent chain complex then interacts with the 

SRP receptor (SR) at the membrane in a GTP dependent manner (19, 32, 41). Translation of the 

nascent chain resumes while the polypeptide is directed into the Sec 61translocase on the 

endoplasmic reticulum in eukaryotes or into the SecYEG complex in prokaryotes leading to 

either translocation of the protein to enter into secretory pathway or integration of the protein on 

plasma membrane in prokaryotes (32). This is followed by the release of SRP and SR from 

ribosome-nascent chain complex. GTP hydrolysis by SRP and SRP receptor leads to the 

dissociation of the complex in order to recycle SRP components for next rounds of targeting 

(32).  

Chloroplast SRP targeting (cpSRP) system functions post-translationally. The only known 

substrates which utilize chloroplast targeting system are the nuclear encoded integral thylakoid 

membrane proteins called light harvesting chlorophyll binding proteins (LHCPs). LHCPs consist 

of three transmembrane domains (TM) and they are found associated with photosystem II on the 

thylakoid membrane. LHCPs are synthesized in the cytoplasm and then imported into the 

chloroplast via translocation through the TOC and TIC envelope proteins. Once in the stroma, 

LHCPS are targeted post-translationally via chloroplast SRP machinery to the thylakoid 

membrane. 

Mammalian SRP consists of a ribonucleoprotein which is made up of 7SL RNA and six 

polypeptides denoted as SRP9, SRP14, SRP19, SRP54, SRP68, and SRP72(71,72, figure 1.3). 

This ribonucleoprotein complex is divided into two domains-S domain (consists of central 

portion of RNA together with SRP19, SRP54 and SRP68/72 heterodimer) and Alu domain 

(consists of heterodimer SRP19/14 and 5ꞌ and 3ꞌ terminal RNA regions) (23, 53). Bacterial SRP 

is much smaller in size than mammalian SRP. It consists of a single ribonucleoprotein Ffh 
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(homologue of mammalian SRP54) in complex with 4.5S RNA in Gram negative bacteria. Gram 

positive bacteria contain 6S RNA moiety in association with an additional protein HBsu and Ffh 

(4). In general, bacterial SRP lacks Alu domain found in mammalian SRP. Elongation arrest 

activity of mammalian SRP is led by its Alu domain (54, 62). SRP54/Ffh bind tightly to their 

respective RNA moieties and to the signal sequence of the nascent chain complexes.  

Chloroplast SRP (cpSRP) is relatively simple in structure when compared to its mammalian or 

bacterial homologues. It consists of a heterodimer composed of a 54Kda subunit (cpSRP54) 

which is a homologue of mammalian SRP54 and a unique 43Kda subunit (cpSRP43). cpSRP 

lacks RNA moiety. Two pools of cpSRP54 have been found in the stroma of chloroplasts, one 

pool is associated with cpSRP43 and another pool is associated with chloroplast ribosomes (16) 

and appears to function in co-translation targeting of chloroplast DNA encoded proteins (1, 35). 

cpSRP43 is composed of three chromodomains (CD), one at the N terminus (CD1) and two at 

the C terminus (CD2 and CD3). The central region of the molecule is made up of four ankyrin 

(Ank) repeats (Ank1, Ank2, Ank3 and Ank4) (20, 22, 29). Studies have shown that it’s CD2 

domain of cpSRP43 which binds cpSRP54 resulting in a heterodimeric cpSRP formation (20, 29, 

63, 26). Studies have shown that different domains of cpRP43 exhibit significant dynamics and 

that the flexibility of cpSRP43 is decreased when it binds to cpSRP54 (17). 

SRP54/Ffh/cpSRP54 contain amino terminal four helix bundle N domain packed against a G 

domain which contains GTP binding site and a C-terminal methionine rich M-domain (74) which 

is known to interact with SRP RNA or cpSRP43 in case of chloroplasts. A flexible linker 

connects the two domains (24, 53). SRP54/Ffh is also known to bind the signal sequence of 

emerging polypeptide chain from ribosomes and in fact both types are shown to bind ribosomes 

while scanning for the emerging signal sequences via their N domains (53). Crosslinking data 
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has shown that M-domain of cpSRP54 interacts with the transmembrane domain- TM3 of the 

substrate LHCP during protein targeting (27). 

Next component of SRP system is the SRP receptor (SR) which is found at the membrane of 

endoplasmic reticulum in mammalian cells (Figure 1.3). It is made up of two subunits SRα and 

SRβ both of which are GTPases (19, 41, 65). SRβ subunit is found embedded in the membrane. 

Bacterial SRP receptor is known as FtsY (homologue of SRα) and is found either in the 

cytoplasm or bound to the inner membrane in bacterial cells (12, 39). Some gram positive 

bacteria also contain a lipid binding domain in their FtsY (3). SRP receptor in chloroplasts is 

known as cpFtsY and is found in the stroma or at the thylakoid membrane. cpFtsY also contains 

a GTP binding domain like FtsY and SRα/SRβ and it binds to the thylakoid membrane via its N-

domain (40). SRα is homologous to the E. coli and chloroplast FtsY. 

In mammalian or bacterial co-translational SRP targeting, SRP directs nascent chain ribosome 

complex to the Sec translocase at the membrane as mentioned before. In chloroplast post 

translational SRP targeting, substrate is known to be directed to the Alb-3 translocase found on 

the thylakoid membrane. Alb-3 translocase belongs to the class of YidC/Oxa1 family of 

translocase (43) 

In chloroplast post translational SRP targeting (Figure 1.4), precursor LHCP enters inside the 

chloroplast via TOC/TIC translocation pathway. Transit peptide of the precursor form of LHCP 

is cleaved by the stromal peptidases leading to a mature form of LHCP which then interacts with 

heterodimeric cpSRP to form a soluble transit complex in stroma. Transit complex maintains 

substrate LHCP in an integration competent state (52). LHCP binds to ankyrin region of 

cpSRP43 via an 18 amino acid stretch termed as L-18 and is found between the second and third 
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transmembrane domain of LHCP (13, 29, 68) and its speculated that it interacts with M-domain 

of cpSRP54 via its third transmembrane domain. 

Transit complex is received at the thylakoid membrane by cpSRP receptor cpFtsY. cpFtsY 

interacts with N-G domain of cpSRP54 followed by GTP binding by both GTPases. This 

membrane bound targeting complex is next translocated to the chloroplast translocase Alb-3 

which is thought to be responsible for LHCP integration into the thylakoid membrane as 

antibodies to Alb-3 blocked LHCP integration in vitro (44). GTP hydrolysis occurs to release 

cpSRP and cpFtsY into the stroma. There are still some unknown intricate details about LHCP 

targeting via cpSRP pathway. For example, what triggers the release of LHCP from the 

cpSRP/cpFtsy complex at the thylakoid membrane? What is the role of GTP hydrolysis in the 

LHCP targeting cycle, is it necessary for LHCP integration? What is the sequence of the protein-

protein interactions which take place in the stroma or at the thylakoid membrane in order to 

result in a productive targeting cycle? Following chapters in this dissertation will help in 

answering these questions about the LHCP targeting pathway. 
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Figure 1.1: Overview of nucleus encoded chloroplast protein targeting pathways (28) 

This figure represents various routes that the nuclear encoded chloroplast proteins can take based 

on their N-terminus targeting signals. Once inside the chloroplast, their transit peptides are 

cleaved off by the stromal peptidases and then protein can use one of four types of signaling 

pathways which will lead to the delivery of proteins either in the stroma, or on the thylakoid 

membrane or inside the lumen of  thylakoid 
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Figure 1.2: Detailed representation of the components of chloroplast protein targeting      

pathways 

 

This figure represents various pathways that the nuclear encoded chloroplast proteins or       

chloroplast encoded proteins can utilize to undergo proper localization inside the chloroplasts. 
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Figure 1.3: Components of signal recognition particle pathway 

 

Components of the mammalian, E. coli, and chloroplast SRP systems are shown in the figure. 

Mammalian and bacterial SRPs contain an RNA moiety, while chloroplast SRP lacks RNA 

moiety and contains a unique 43-kDa protein subunit. A homologous SRP receptor protein is 

found in all organisms. Sec translocase is utilized by mammals and E. coli, while E. coli and 

chloroplast have homologous insertase proteins Yid C and Alb-3. 
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Figure 1.4: Current model of LHCP targeting via cpSRP pathway 

LHCP forms a soluble transit complex with chloroplast signal recognition particle (cpSRP) 

inside the chloroplast stroma. This complex then interacts in a GTP bound state with cpFtsY 

GTPase at the membrane. This GTP bound complex targets the substrate LHCP to Alb-3 

insertase at the membrane leading to the release and insertion of LHCP into the membrane. 
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II.      A STUDY TO DETERMINE THE BINDING SITE OF C-TERMINUS OF 

ALBINO 3 ON CHLOROPLAST SIGNAL RECOGNITION PARTICLE 43 

(CPSRP43) 
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ABSTRACT 

 cpSRP43 is a signal recognition particle (SRP) protein found in post-translational targeting of 

light harvesting chlorophyll binding proteins (LHCP) in chloroplasts (23). It serves as an 

interaction bridge between the cpSRP targeting complex and the Alb-3 insertase to help 

coordinate insertion of LHCP into the thylakoid membrane. It is known that in co-translational 

targeting, ribosome interacts with both the targeting machinery and the insertase during peptide 

synthesis and insertion (21). Since the post-translational LHCP-SRP targeting system lacks a 

ribosomal component, it is speculated that cpSRP43 communicates with the Alb-3 insertase to 

carry out LHCP targeting events at the membrane, similar to the role of ribosome in co-

translational targeting. It is known that cpSRP43 is comprised of three chromodomains and a 

four-ankyrin repeat region (15, 24). Further, it has been established that the C-terminal region of 

Alb3 binds to cpSRP43 (17).  Based on these data, we hypothesize that negatively charged 

residues found in the ankyrin repeats of cpSRP43 are the physical sites which bind the C-

terminus of the Alb-3 insertase. In order to test this hypothesis, we created six double point 

mutants of cpSRP43 where for each double point mutant, two negatively charged amino acids in 

the ankyrin region were converted to lysine or glycine. These double point mutants were 

examined for their ability to bind the substrate and to interact with Alb-3 insertase. Results 

showed that all of the mutants retained their ability to interact with the insertase but interestingly, 

three of the six mutants lost their ability to form soluble transit complex which is the first step in 

SRP dependent LHCP targeting pathway. 
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INTRODUCTION  

Signal recognition particle (SRP) dependent protein targeting is present in all domains of life. It 

functions co-translationally in prokaryotes and eukaryotes leading to the delivery of nascent 

polypeptide chain to its target destination which could be an organellar membrane or the lumen 

of an organelle. Signal recognition particle (SRP) dependent targeting has also been found to 

target light harvesting chlorophyll binding proteins (LHCP) via an exclusive post-translational 

mechanism in chloroplasts. LHCPs are encoded by nuclear DNA yet function as integral 

thylakoid membrane protein complexes, i.e. the antenna complex for chloroplast photosystems I 

and II (8).  

Chloroplast signal recognition particle (cpSRP) consists of a conserved 54KDa protein and a 

unique 43 KDa protein. CpSRP54 consists of a GTP binding domain at its amino terminal and a 

methionine rich M domain at its carboxyl terminal (10). CpSRP54 exists in two pools in the 

stroma of chloroplasts. One pool is associated with ribosomes and is involved in co-translational 

protein targeting. The second pool is associated with cpSRP43 and is involved in post-

translational targeting. This second pool, comprised of cpSPR43 and cpSRP54, termed cpSRP is 

unique among signal recognition particles (SRPs) because it lacks an RNA moiety. CpSRP43 

consists of an N-terminal chromodomain linked to four ankyrin repeat domains followed by 

chromodomain 2 and chromodomain 3 (Figure 2.1). CpSRP54 has been shown to interact with 

chromodomain 2 of cpSRP43 via its M-domain (12). CpSRP interacts with its receptor cpFtsY at 

the thylakoid membrane. Both cpSRP54 and cpFtsY are GTPases. Previous studies have shown 

that precursor form of LHCP (with an N-terminal signal peptide) enters the chloroplast where it 

undergoes processing by proteases to give rise to the mature form of LHCP, now lacking 

chloroplast signal peptide (16,22). Mature LHCP is then received by cpSRP in the stroma where 
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they form a soluble transit complex which then interacts with cpFtsY at the thylakoid membrane 

(via cpSRP54). This transit complex then interacts with Alb-3 insertase at the thylakoid 

membrane, leading to the release and insertion of LHCP into the membrane. Subsequent GTP 

hydrolysis by cpSRP54 and cpFtsY leads to the release of cpSRP and cpFtsY back into the 

stroma.  

Alb-3 has been shown to be indispensable in LHCP targeting, antibodies to Alb-3 protein inhibit 

LHCP integration into the thylakoid membranes (19). The Alb-3 insertase belongs to 

YidC/Oxa1/Alb3 family of membrane protein translocases conserved in bacteria, mitochondria 

and chloroplasts respectively. Alb-3 is an integral membrane protein found in the thylakoid 

membrane of chloroplasts in green plant as well as in the thylakoid membranes of 

Chlamydomonas reinhardtii. In addition to Alb-3, a homologue, Alb-4, has been identified in 

Arabidopsis thaliana (29). Alb-4 shows 55% sequence similarity to Alb-3 and both are integral 

membrane proteins having five transmembrane domains (11). Analysis of Arabidopsis Alb-4 

knock out mutants showed defective assembly of CF1CF0 ATPase complex, a thylakoid 

membrane protein complex, and reduction in ATP synthesis compared to the wild type plants 

(8). Alb-3 knock out Arabidopsis mutant plants produced yellow to white colored leaves when 

grown on carbon source containing media. These mutants lacked chlorophyll content, had fewer 

thylakoid membranes, were unable to grow in soil, and lacked proper thylakoid membrane 

biogenesis (8, 25). Crosslinking studies have shown that Alb-3 is associated with cpSecY, 

another thylakoid membrane protein, suggesting a role for Alb-3/cpSecY in co-translational 

protein targeting of subunits of chloroplast photosystem II protein (19, 27).  

In recent years, numerous studies have been undertaken to understand the role of Alb-3 in post-

translational LHCP protein via the chloroplast signal recognition particle (cpSRP) pathway (13, 
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14). It has been shown that Alb-3 interacts with cpSRP43 in order to release LHCP from the 

complex at the membrane (26) leading to LHCP integration into the membrane. This interaction 

is supported by the fact that cpSRP43 loses its ability to bind protease treated thylakoids (17) 

where the C-terminus portion of Alb-3 has been removed by protease. Also, we have data from 

previous studies which proves that C-term peptide has an affinity for cpSRP43-ankyrin region in 

nano-molar range whereas the same peptide does not show significant affinity for the 

chromodomain regions of cpSRP43 (17). It doesn’t show any affinity for cpSRP54 or cpFtsY as 

well. 

It has also been shown in protein binding assays that cpSRP43 is the key component involved in 

the interaction with translocase Alb-3 in thylakoids as it causes the release of LHCP from the 

cpSRP complex (17). Three dimensional structure of cpSRP43 shows negatively charged amino 

acid residues in its ankyrin repeats (Figure 2.1) and isothermal titration calorimetry (ITC) data 

supports the fact that ankyrin regions in cpSRP43 have affinity for Alb-3-C-terminus (Alb-3-

Cterm) with nano-molar affinity (17). Also, multiple sequence alignments of Alb-3 shows the 

presence of four conserved regions augmented with positively charged residues on the C-

terminus portion of Alb-3 that extends into the stroma (9).  

Based on all the supporting data, it was hypothesized that it is the acidic patch found in the 

ankyrin regions on cpSRP43 which could be a potential site for the binding of C-terminus 

portion of Alb-3 insertase. If this step is understood, it will help in understanding the sequence of 

events which take place at the thylakoid membrane in order to release LHCP from the cpSRP/SR 

complex. 
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MATERIALS AND METHODS 

All reagents and enzymes were purchased commercially. All DNA constructs were sequence 

verified by the Molecular Resource Laboratory, University of Arkansas for Medical Sciences, 

Little Rock. Recombinant protein concentrations were determined by analyzing coomassie blue 

stained SDS PAGE gels on Alpha Innotech FluorChem IS-8900 using Alpha Ease FC Stand 

Alone software (Alpha Innotech). 

Construction of GST-cpSRP43 and mcpSRP43 Proteins 

Recombinant, purified GST-cpSRP43 and cpSRP43 were prepared as described previously (12, 

28). Briefly, the coding sequence for mcpSRP43 from pGEM-pcpSRP43 was cloned into BamHI 

and EcoRI sites of pGEX-6P-2 (28). Expression plasmid was then transformed into E.coli BL21 

star. Cells were cultured in Luria- Bertani (LB)  medium, induced with 0.5mM isopropyl β–D-1-

thiogalactopyranoside (IPTG) resulting in the expression of GST-mcpSP43 (28). Cell pellets 

were lysed, filtered, and then purified over a Glutathione-Sepharose column (GE Healthcare) and 

GST-mcpSRP43 was eluted in Glutathione elution buffer (20mM Glutathione, 100mM Tris, pH 

8, 120mM NaCl). GST-mcpSRP43 in Glutathione elution buffer was desalted into HKM buffer 

(10mM HEPES-KOH, pH 8, 10mM MgCl2) and stored at minus 80 degrees celsius.   

For production of recombinant mcpSRP43, eluted GST-mcpSRP43 in Glutathione elution buffer 

as mentioned above, was desalted into 50mM Tris-HCl, 150mMNaCl, 1mM EDTA, 1mM 

dithiothreitol, pH 7 and incubated overnight with PreScission ProteaseTM at 4 degrees celsius to 

cleave the GST tag (12). Cleaved cpSRP43 along with GST tag was then desalted into phosphate 

buffer saline and then purified over Glutathione-Sepharose column to elute cpSRP43 and to 

remove cleaved GST tag as well as the PreScission Protease. mcpSRP43, found in the flow-
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through of the Glutathione-Sepharose column, was further desalted into HKM buffer and stored 

at minus 80 degrees celsius.   

Construction of cpSRP43 Mutant Proteins 

All six cpSRP43 mutant proteins as listed in table 2.1, Mutant 1 (AGAGLGHLD), Mutant 2 

(LGAGIGVED), Mutant 3 (EDRGVGAVD), Mutant 4 (AGAKLKHLD), Mutant 5 

(LGAKIKVED) and Mutant 6 (EDRKVKAVD) were full-length cpSRP43 proteins (GenBank 

accession number AAD01509) where in two acidic charges in the protein sequence were mutated 

into two basic charges (to lysine) or to glycine. For example Mutant 1 protein corresponds to 

mcpSRP43 D189G D191G which means that aspartic acid residues at positions 189 and 191 

were mutated to glycine. See table 2.1 for other mutant descriptions. Briefly, primer-encoded 

point mutations were introduced into the coding sequence of mature cpSRP43 (starting with 

amino acid sequence AAVQRN) by PCR. The resulting product was cloned into pGEX-6P-2 

(GE Healthcare) using BamHI and EcoRI sites. All constructs were sequence-verified by 

Molecular Resource Laboratory, University of Arkansas for Medical Sciences, Little Rock, AR. 

Each plasmid was then transformed into BL21 Star for isopropyl β–D-1-thiogalactopyranoside 

(IPTG) induced expression followed by affinity purification and tag cleavage as described above. 

Both GST tagged and cleaved versions of each mutant proteins were made. The concentration of 

purified protein was estimated by coomassie blue staining using bovine serum albumin (BSA) as 

a standard. 
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Construction of cpSRP54-His Protein 

Recombinant cpSRP54-His was expressed and purified as described previously (28). Briefly, the 

coding sequence for mcpSRP54 was amplified from pNH2 (10) using a reverse primer that 

introduced six histidines at the C-terminus and the resulting PCR product was cloned into 

pPROLar.A122 using KpnI and HindIII sites to generate pPROLar-cpSRP54-His. Expression 

plasmid was then transformed into E.coli strain BL21 star and cells were cultured in LB medium, 

induced with 0.5mM isopropyl β–D-1-thiogalactopyranoside (IPTG) plus 0.2% arabinose 

resulting in the expression of cpSRP54-His (28). Cell pellets were lysed, filtered and then 

purified over Talon metal affinity resin to elute mcpSRP54-His in Talon elution buffer (50mM 

Na2HPO4, 0.3M NaCl, 150mM imidazole, pH 7). The eluted protein was desalted into 2XHKM 

+ 200mM KCl. Eluted protein was diluted with an equal volume of glycerol prior to being 

aliquoted and stored at minus 80 degrees celsius.  

Construction of cpFtsY Protein 

 Recombinant cpFtsY was expressed and purified as previously (28). Briefly, the coding 

sequence was amplified from pcpFtsY4Z and cloned into pET-32b (+) using NcoI and HindIII 

sites. The resulting clone expressed a thioredoxin (Trx) fusion protein Trx-His-Stag-cpFtsY. 

Expression plasmid was then transformed into E.coli BL21 star and cells were cultured in Luria-

Bertani (LB) medium, induced with 0.5mM isopropyl β–D-1-thiogalactopyranoside (IPTG). Cell 

pellets were lysed, filtered and then purified over Talon metal affinity resin to elute Trx-His-

Stag-cpFtsY in Talon elution buffer (50mM Na2HPO4, 0.3M NaCl, 150mM imidazole, pH 7). 

The eluted protein was desalted into 2XHKM + 200mM KCl. Eluted protein was diluted with an 

equal volume of glycerol prior to storage at minus 20 degrees celsius. 
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Construction of His-Stag-Alb-3-Cterm 

The coding sequence for Alb-3-Cterm was amplified by PCR from His-FLAG-Alb3-Cterm-pQE-

80L(17) with a reverse primer designed to match the C-terminus of Alb-3-Cterm and a forward 

primer designed to replace the FLAG tag (DYKDDDDK) with an S tag 

(KETAAAKFERQHMDS) resulting in a construct with a His6 tag, Ser-Ala linker, S tag, 

thrombin cleavage site, and the 124-amino acid segment of Alb-3 beginning at NNVLSTA and 

ending at SKRKPVA. This plasmid, referred to as His-Stag-Alb-3-Cterm-pQE-80L, was 

transformed into BL21 star. Bacterial cells were cultured in LB medium and induced with 1mM 

isopropyl β–D-1-thiogalactopyranoside (IPTG). Cell pellets were lysed, filtered and then purified 

over Talon metal affinity resin to elute His-Stag-Alb-3-Cterm in Talon elution buffer (50mM 

Na2HPO4, 0.3M NaCl, 150mM imidazole, pH 7). The eluted protein was desalted into HKM + 

100mM KCl and stored at minus 80 degrees celsius in small aliquots (17). 

Preparation of Chloroplasts 

Intact chloroplasts were isolated from 10-12 day old pea seedlings (P. sativum cv. Laxton’s 

Progress) and used to prepare thylakoids and stroma as previously described (6).  Chlorophyll 

(Chl) content was determined as described previously (2). Thylakoids were salt-washed (SW) 

two times with 1M potassium acetate in import buffer (IB: 50mM hepes-KOH, pH 8, 0.33M 

sorbitol) and then washed two times with import buffer containing 10mM MgCl2 (IBM) as 

described previously (17). Thylakoids were resuspended at 1mg/ml chlorophyll in IBM buffer 

prior to use. 
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Preparation of Radiolabeled Precursors for in vitro Transcription and Translation 

The plasmid used for in vitro transcription/translation of pLHCP (psAB80XD/4) has been 

described previously (5). L18 refers to the amino acid sequence of pLHCP starting form 189th 

amino acid up to 206th amino acid (VDPLYPGGSFDPLGLADD) and PPL is the endoplasmic 

reticulum-targeted protein preprolactin (7). The chimeric protein L18-PPL was produced as an in 

vitro transcribed/translated construct as described previously(7). 

mcpFtsY Translated Product 

  Forward and reverse primers were designed to match the mature coding sequence of A. thaliana 

cpFtsY starting with the predicted mature sequence CSAGPSGF and including KpnI and XbaI 

sites, respectively, for ligation into pGEM-4Z.  The forward primer also included extra bases 

cacg at the 5’ end which encode a Kozak sequence (cacgatgg) when added to the atg of the 

initiator methionine.  The resulting PCR fragment was restricted with KpnI and XbaI, then 

ligated into similarly-restricted pGEM-4Z to create the plasmid cpFtsY-pGEM-4Z. This plasmid 

was used for in vitro transcription/translation of cpFtsY as previously described (18). 

M-domain of cpSRP54 Translated Product 

The amino acid sequence for the M-domain of cpSRP54 begins with MGDVLS and ends with 

GSGN. The nucleotides coding for these amino acids were amplified from pNH2 (10) using 

XbaI and SmaI sites to create pGEM-3Z-Mdomain-cpSRP54 for in vitro transcription/translation 

(12). 

In vitro transcribed and capped mRNA was translated in the presence of [35S] methionine (4) 

using a wheat germ system to produce radiolabeled proteins (6). Precursor LHCP translation 
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product (TP), mcpFtsY translation product (TP), L18-PPL translated product(TP), M-domain of 

cpSRP54 TP were diluted with equal volume of 6mM unlabeled methionine in IB prior to use. 

Constructs were quantified by comparing the [35S] signal from a given protein band as analyzed 

by SDS-PAGE and phosphor imaging (17).  

Pull down Assay 

 GST tagged versions of cpSRP43 and mutants 1-6 (see table 2.1) were used in pull down assays. 

For pull-down assays involving recombinant proteins, 1000pmoles of GST-mcpSRP43  or 

mutant GST-cpSRP43 were incubated for 15 minutes at room temperature with 1500pmoles of 

Alb-3-Cterm or 1000pmoles of mcpSRP54-His in pull down buffer (10mM HEPES-KOH, pH 

8.0, 50mM KOAc and 10mM MgCl2) in a total reaction volume of 70µl. For pull-down assays 

involving in vitro transcribed and translated proteins, 200pmoles of GST-43s were incubated 

with 25µl of the translated products in a total reaction volume of 200µl. Next, 25µl or 70µl of 

50% Glutathione sepharose slurry in HKM was added into each reaction, respectively and 

incubated by gently shaking for 30 minutes at room temperature. After incubation, beads were 

washed with wash buffer (20mM hepes-KOH, pH 8, 300mM KCl, 10mM MgCl2 and 2% 

Tween20) two times, followed by a final wash with HKM. Co-precipitating proteins were eluted 

in 50µl of solubilization buffer (mostly comprised of Tris, Sodium dodecyl sulfate, β-

mercaptoethanol, glycerol and water) and samples were analyzed by 12.5% SDS PAGE to 

separate the eluted proteins. Gels were visualized using coomassie blue staining and phosphor 

imaging as described below in Sample Analysis section.    
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Transit Complex Assay 

Transit complex assays (TC) were performed as described in Payan and Cline, 1991 (20) with 

the following modifications. Transit complex was made by mixing 1μg (~25pmoles) of each 

cpSRP or 5µl of Stromal extract (4X), 10μl   of 1:2 diluted in vitro translated radiolabeled 

pLHCP translation product (TP) and HKM in a total volume of 60μl. Proteins were incubated 

together at 26 degrees celsius for 30 minutes followed by centrifugation at 70,000 x g for 1 hour 

at 4 degrees celsius to remove aggregated pLHCP. The top 30µl of each centrifuged reaction was 

diluted with 10µl of 50% glycerol and loaded on 6% Native gel as described previously (17).  

Integration Assay 

Integration assays were carried out as described in Cline et al., 1993 (6) with minor 

modifications. Salt washed thylakoids equal to 25μg of chlorophyll, 1μg of cpFtsY, 1mM (final) 

GTP, 1µg of cpSRP54, 1µg cpSRP43, and 12.5μl of radiolabeled pLHCP translated product (TP) 

were added to IBM to make a total volume of 75μl.  Samples were incubated at 26 degrees 

celsius for 30 minutes in the presence of light. Thylakoids were centrifuged at 4100 x g for 8 

minutes at 6 degrees celsius, supernatant removed, and thylakoids resuspended in IB and treated 

with 12.5μl of thermolysin (2mg/ml thermolysin stock in 10mM CaCl2) on ice for one hour. To 

stop the reaction, 100μl of 50mM EDTA in IB was added to thermolysin treated thylakoids 

followed by centrifugation at 4100 x g for 8 minutes at 6 degrees celsius. Pelleted thylakoids 

were solubilized using SDS buffer, heated, and analyzed by SDS-PAGE and phosphor imaging.  
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Sample Analysis 

SDS PAGE and native gels were imaged using Typhoon FLA 9500 (GE Healthcare Life 

Sciences). OptiQuant software (GE Healthcare Life Sciences) was used to quantify signal from 

radiolabeled protein. All experiments were performed in triplicate. Bar graphs were generated 

using Microsoft Excel 2013. Error bars represent standard error of the mean (SEM). Protein 

concentrations were determined by analyzing coomassie blue stained SDS PAGE gels on Alpha 

Innotech FluorChem IS-8900 using Alpha Ease FC Stand Alone software (Alpha Innotech) as 

compared to bovine serum albumin (BSA) standards. 
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RESULTS 

Mutants cpSRP43 D189G D191G, cpSRP43 D223G E225G and cpSRP43 D223K E225K  

Form Soluble Transit Complex 

mpSRP43 D156G D158G (Mutant 3), mcpSRP43 D189K D191K (Mutant 4) and mcpSRP43 

D156K D158K (Mutant 6) did not form transit complex. The remaining mutants- mcpSRP43D 

189G D191G (Mutant 1), mcpSRP43 D223G E225G (Mutant 2) and mcpSRP43 D223K E225K 

(Mutant 5) did form transit complex (Figure 2.2). All six mutants were produced with the idea 

that the interaction between Alb-3 insertase and cpSRP43 could possibly be hampered by 

targeting the insertase binding/reacting site on cpSRP43. These mutations in cpSRP43 directly 

modified the predicted binding site. The designed cpSRP43 mutants were hypothesized to retain 

their ability to interact with cpSRP54 and LHCP. In other words, all of the mutants were 

expected to form heterodimeric cpSRP complex as well as transit complex. However, results 

showed that half of the mutants i.e. mutants 3, 4 & 6 lost the ability to form a soluble transit 

complex, thereby eliminating their ability to complete the LHCP insertion pathway.  

It is known that transit complex is a trimeric complex where cpSRP43 and cpSRP54 bind LHCP. 

LHCP binds to the ankyrin region of cpSRP43 via an 18 amino acids long stretch that occurs 

before the third transmembrane domain (7, 17). CpSRP54 is known to bind chromodomain 2 

(CD2) of cpSRP43 via its M domain (12). Mutations in the ankyrin region of cpSRP43, 

specifically at positions 156/158 and 189/191 somehow effected either interaction with cpSRP54 

or with LHCP. In these mutants, aspartic acid residues were converted to either lysine or to 

glycine residues and these changes in the charged amino acids might have disturbed the 

electrostatic interactions between the binding partners in trimeric complex. In order to further 
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examine this, all six mutants were tested in pull down assays to assess their interaction with the 

individual components involved in transit complex formation.  

All cpSRP43 Mutant Proteins Co-precipitate L18-PPL, M-domain of cpSRP54 and cpFtsY 

The M-domain of cpSRP54 was used instead of full length cpSR54 as previously established 

(12). Similarly, the L18 region of LHCP, fused to the carrier protein PPL was used instead of full 

length LHCP as previously described (7). Data shows that all mutants were able to pull down the 

M-domain of cpSRP54 as well as L18 region of LHCP when tested in separate assays (Figure 

2.4). Therefore, this showed that all interacting domains were able to bind each other 

individually but that the trimeric complex was not able to form. This finding suggests that there 

may be additional, as of yet unidentified, interactions involved in the transit complex formation. 

All cpSRP43 Mutant Proteins Retain their Ability to Bind Alb-3-Cterm 

Three dimensional modeling of cpSRP43 protein suggests that the all six mutants should be able 

to interact with cpFtsY in the quaternary complex comprised of cpSRP43-cpSRP54-LHCP-

cpFtsY. Formation of this complex is viewed as a critical step prior to transfer of the LCHP 

cargo to the insertase at the thylakoid membrane. In order to check this, GST tagged versions of 

the cpSRP43 mutants were used to pull down cpFtsY (Figure 2.4). The data showed that all 

GST-cpSRP43 mutants pulled down cpFtsY at a level comparable to wild-type GST-cpSRP43. 

Importantly, even the mutants that were unable to form transit complex were still able to interact 

with cpFtsY (Figure 2.2 and 2.4).  

 



37 

 

Mutants cpSRP43D189GD191G, cpSRP43D223GE225G, cpSRP43D223KE225K Support 

LHCP Integration 

Next step was to check the ability of these mutants to integrate LHCP into the thylakoid 

membrane. Results showed that mcpSRP43 D189G D191G (Mutant 1), mcpSRP43 D223G 

E225G (Mutant 2) and mcpSRP43 D223K E225K (Mutant 5) were efficient in LHCP integration 

whereas mpSRP43 D156G D158G (Mutant 3), mcpSRP43 D189K D191K (Mutant 4) and 

mcpSRP43 D156K D158K (Mutant 6) showed reduced or no integration (Figure 2.3). LHCP 

targeting is considered to be vectorial, a step by step method of post translational targeting where 

the first step is to form transit complex and then transit complex interacts with cpFtsY at the 

membrane and then this quaternary complex interacts with C-terminus of Alb-3 insertase leading 

to release and insertion of LHCP. Hence, it makes sense that mutants which failed in the first 

step of this targeting pathway (i.e. transit complex formation) could not lead to a successful 

round of LHCP targeting. Therefore, mutants 3, 4 and 6 which did not form transit complex, lost 

their ability or showed reduced ability to integrate LHCP into the thylakoid membranes. Mutants 

1, 2 and 5 which formed transit complex, also proved efficient in LHCP integration into the 

membranes (Figure 2.3). The hypothesis of this study was that these mutant versions of cpSRP43 

would not interact with C-terminus of the Alb3 insertase at the membrane and hence there would 

be no insertion of LHCP into the membrane. However, results showed that the mutants which 

supported transit complex formation also supported LHCP integration. In order to further support 

this result, we did a pull down assay using GST tagged cpSRP43 and mutants with the C-

terminus portion of the Alb-3 insertase. Pull down assay confirmed that all GST-cpSRP43 

mutants were able to interact with C-terminus of insertase similar to wild-type GST-cpSRP43 
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(Figure 2.5). Hence, the mutations that were made in cpSRP43 were not sufficient to interrupt 

cpSRP43 and Alb-3 insertase interaction. 
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DISCUSSION 

In co-translational targeting of cytosolic proteins either to the bacterial plasma membrane or to 

the endoplasmic reticulum membrane in eukaryotes, signal recognition particle (SRP) system 

serves as a tool to carry the nascent ribosome chain complex to SecYEG/Sec61 

translocase/insertase at the membrane which leads to the release/insertion of the protein into the 

lumen or into the membrane (1). Co-translational protein targeting machinery includes a 

translating ribosome, nascent polypeptide chain, SRP54 with RNA moiety, SRP receptor and a 

translocase. All these components together orchestrate successful protein delivery either inside 

the organelle or into the membrane.  

SRP targeting system has also been observed in chloroplasts of higher plants where it comprises 

of a heterodimeric chloroplast SRP component (cpSRP54 and cpSRP43), cpSRP receptor 

(cpFtsY) and an insertase (Alb-3). Chloroplast SRP targeting machinery is unique in the sense 

that it lacks ribosomes, lacks RNA moiety, works post-translationally and has introduced a novel 

component-cpSRP43 into the targeting system. Only known substrate which utilizes this novel 

cpSRP targeting system is the light harvesting chlorophyll binding protein (LHCP). LHCP 

proteins are nuclear encoded and constitute about 50% of the protein bulk in thylakoids (26). 

Previous studies have shown that cpSRP43 and cpSRP54 bind to the imported LHCP in stroma 

and direct it to the thylakoid membrane in order to form cpSRP/LHCP/cpFtsY/Alb-3 complex. 

This targeting complex then undergoes a series of sequential arrangements leading to the release 

of cpSRP components from each other and the insertion of LHCP into the membrane. What 

triggers the release of LHCP at the membrane from the cpSRP component is unknown.  

In co-translational targeting, ribosomes sense the presence of translocase and this leads to the 

release of polypeptide chain from the ribosomes into the translocase. Since cpSRP system lacks 



40 

 

ribosomes, so how does the targeting complex that has been loaded with the cargo (LHCP) sense 

the availability of Alb-3 translocase in order to release cargo at the membrane? Previous work 

proves that it is cpSRP43 in the targeting complex which communicates with Alb-3 in order to 

cause the subsequent release and insertion of LHCP into the thylakoid membrane. (17, 26). 

Ankyrin regions in cpSRP43 have been shown to be the binding site of C-terminus of Alb-3 

insertase on cpSRP43. Based on structural information of cpSRP43, the ankyrin regions carry lot 

of negatively charged residues which we thought could be a potential site to interact with the 

positively charged residues found on C-terminus of Alb-3. Therefore, this study is designed to 

see if the interaction with C-terminus of Alb-3 can be lost when the negative charge on cpSR43 

is replaced with positive charge or by neutralizing the negative charge on cpSRP43. 

Results here have not supported the hypothesis because none of the cpSRP43 mutants which we 

designed lost their interaction with Alb-3. This can be explained based on the fact that may be 

more than two point mutations are needed to see the effect. However, it is interesting to note that 

some of the cpSRP43 mutants lost their ability to form transit complex when all three proteins 

(cpSRP43, cpSRP54 and LHCP) that are required to form transit complex were present in 

solution. It could mean that some other possible interactions are involved, may be between 

cpSRP54 and LHCP, which are necessary to hold LHCP in a soluble state in solution. The study 

also shows that cpSRP43 has an affinity for cpFtsY in solution even in the absence of cpSRP54. 

Overall, this piece of information provides an insight into the new types of interactions which 

may take place in this overall unique system of protein targeting especially in the transit complex 

formation step in the pathway. In future, a different approach can be used to answer this 

question. Example includes inter-molecular FRET (Forster resonance energy transfer) technique 

where two dye molecules are placed on different proteins in order to understand relative 
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movements of proteins when present as a complex in solution and this can be narrowed down to 

understand the specific sites involved in protein-protein interaction. 

  

 

 

 

 

 

 

 

 

 

Table 2.1: Description of cpSRP43 mutants used in the study 

 

 

 

 

 

 

Mutants Description 

Mutant 1 cpSRP43 D189G D191G 

Mutant 2 cpSRP43 D223G E225G 

Mutant 3 cpSRP43 D156G D158G 

Mutant 4 cpSRP43 D189K D191K 

Mutant 5 cpSRP43 D223K E225K 

Mutant 6 cpSRP43 D156K D158K 
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Figure 2.1: Three dimensional structure of cpSRP43 

The figure here represents acidic patch (in blue) located on the ankyrin repeats (Ank 1-4) of 

cpSRP43. Ankyrin repeats are shown in red color and they are connected to each other via loops 

(in green), yellow color represents chromodomain1 (CD1) of cpSRP43. 
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Figure. 2.2: Mutants cpSRP43 D189G D191G, cpSRP43 D223G E225G and 

cpSRP43D223K E225KK E225G/K form transit complex 

Transit complex assay was performed using 1µg of recombinant cpSRP proteins and 10ul of 1:2 

diluted in vitro translated radiolabeled LHCP. Lane 1, 2, 9 & 10 are the control lanes where lane 

1 represents transit complex formed using stromal extract, lane 2 represents transit complex 

formed using wild type cpSRP43 and wild type cpSRP54, lanes 9 represents transit complex 

formed using wild type cpSRP54 and LHCP, lane 10 represents transit complex formed using 

wild type cpSRP43 and LHCP. Lanes 3-8 represent transit complex formed using mutant 

cpSRP43 proteins and wild type cpSRP54. Transit complex was examined using native page and 

phosphor imaging. Only one set of mutants (both lysine and glycine versions, lanes 4 & 7 using 

cpSRP43 D223G E225G and cpSRP43 D223K E225K) showed transit complex formation. 

cpSRP43 D189G D191G retained its transit complex forming ability when aspartic acid sites 

were mutated to glycines but lost its ability when same amino acids were switched with lysines 

cpSRP43 D189K D191K). CpSRP43 D156G D158G and cpSRP43 D156K D158K however, did 

not form transit complex at all. This experiment was repeated three times.  
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Figure 2.3: Mutants cpSRP43 D189G D191G, cpSRP43 D223G E225G, cpSRP43 D223K 

E225K support LHCP integration. 

A. Seventy five microliters integration assays were performed using 1µg of cpSRP43 or 

cpSRP43 mutants as indicated, 25µg of salt washed thylakoids, 1µg of recombinant wild type 

cpSRP54, 1µg of recombinant wild type cpFtsY, 1mM GTP, and 12.5µl of 1:2 diluted in vitro 

translated radiolabeled pLHCP. Integrated LHCP represented as DP (degradation product) was 

analyzed using SDS PAGE and phosphor imaging. The experiment was repeated three times and 

quantified using Optiquant software.  

B. Graph shows the percentage of LHCP integration relative to integration of LHCP using wild 

type cpSRP43 (Lane 2 on the gel). Control lane 9 from (A) represents integration lacking cpFtsY 

and serves as a background control for the quantifications. Data shows that cpSR43 D223G 

E225G and cpSRP43 D223K E225K are efficient in LHCP integration which is consistent with 

the transit complex data (Figure 2.2).  CpSRP43 D156G D158G, cpSRP43 D189K D191K and 

cpSRP43 D156K D158K neither formed transit complex nor showed any significant LHCP 

integration. CpSRP43 D189G D191G showed reduced integration compared to cpSR43 D223G 

E225G and cpSRP43 D223K E225K. 
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Figure 2.4: All cpSRP43 mutant proteins co-precipitate L18-PPL, M-domain of cpSRP54 

and cpFtsY 

Two hundred pmoles of recombinant GST tagged cpSRP43 or GST tagged cpSRP43 mutants 

were used to pull down 25µl of 1:2 diluted radiolabeled translation products (L-18PPL, M-

domain of cpSRP54, or and cpFtsY). Gels were coomassie stained to quantify GST-cpSRP43 

constructs. Phosphor imaging was used to quantify co-precipitated radiolabeled translation 

products. Lane 1 represents either the marker lane (on top-most gel) or the translation product 

lane (on remaining gels). Lane 9 on each gel represents the pull-down reaction where no 

cpSRP43 was added and represents the background binding of translation products to the 

Glutathione sepharose beads. Lane 2 represents pull down assays done using wild type GST-

cpSRP43. Lanes 3-8 show the pull down results using mutant GST-cpSRP43. All cpSRP43 

mutants were able to pull down L18-PPL, the M-domain of cpSRP54, and full length cpFtsY 

similar to  wild type cpSRP43. 
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Figure 2.5: All cpSRP43 mutant proteins retain their ability to bind Alb-3-Cterm 

One thousand pmoles of GST tagged cpSRP43 or GST tegged cpSRP43 mutants were co-

incubated with 1500pmoles of Alb-3-Cterm protein. GST fusions and co-precipitating Alb3-

Cterm were isolated using Glutathione sepharose. Samples were analyzed by SDS PAGE and 

coomassie stained to visualize protein bands. GST tagged cpSRP43 and all GST tagged cpSRP43 

mutants were able to co-precipitate Alb-3-Cterm. 
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III.      CHLOROPLAST SIGNAL RECOGNITION PARTICLE 54 (CPSRP54) 

INTERACTS WITH THIRD TRANSMEMBRANE DOMAIN OF LIGHT 

HARVESTING CHLOROPHYLL BINDIDNG PROTEIN (LHCP) 
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ABSTRACT 

Chloroplast SRP54 is a homologue of cytosolic SRP54/Ffh (fifty four homologue) and is 

known to be involved in post translational targeting of light harvesting chlorophyll binding 

(LHCP) proteins. Chloroplast SRP54 (cpSRP54) lacks key components (RNA moiety, 

ribosomes) which are used by its cytosolic homologues to carry out protein targeting of the 

secretory or membrane proteins. Study here aims to understand how cpSRP54 carries out 

its targeting role in chloroplasts. Homology modeling has predicted cpSRP54 as a dynamic 

component where its domains orient themselves in order to acquire all the functions of its 

missing partners in this system. In co-translational targeting, there is a direct contact 

between the targeting peptide and cytosolic SRP54/Ffh but here in our system of post 

translational targeting, this aspect of cpSR54 was unknown. Results in this study have 

demonstrated that cpSRP54 interacts with the substrate directly via its hydrophobic binding 

pocket and this is consistent with the co-translational targeting system. Any loss in the 

hydrophobicity of the binding pocket of cpSRP54 leads to its inability to interact with its 

substrate. The work done in this study has elucidated the significance of domain 

orientations in cpSRP54 which impact the overall role of cpSRP54 in the soluble phase of 

LHCP targeting cycle. 
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INTRODUCTION 

Proteins synthesized in the cytoplasm are targeted either to the plasma membrane in 

bacteria or to the endoplasmic reticulum in eukaryotes via a conserved signal recognition 

particle (SRP) pathway (2, 13). Recognition of a hydrophobic signal sequence on 

ribosome nascent chain complex by the SRP marks the beginning of the targeting process 

(21). This is followed by binding of SRP to the ribosome nascent chain complex which 

subsequently leads to the association of SRP with its receptor (SR) at the membrane. 

Upon membrane binding, nascent chain ribosome complex is released from SRP-SR 

complex and transferred to the translocase at the membrane which subsequently leads to 

the insertion of the protein (16, 19). This entire targeting process consists of highly 

coordinated sequence of events in order to result in proper localization of the proteins. 

Co-ordination is achieved in terms of timely protein - protein interactions via proper 

conformational changes in the partner components involved in targeting. 

In bacteria, SRP components consist of a 54-KDa protein called SRP54, referred as Ffh 

(fifty four homologue) bound to 4.5S SRP RNA, SRP receptor FtsY and a translocase 

Sec YEG at the plasma membrane (1). Ffh consists of amino terminal N domain that is 

found to be associated with Ras-like guanine triphosphatase (GTPase) G domain. N-G 

domains are connected to the third carboxyl terminal M domain via a linker (2, 14). N 

and G domains of Ffh are responsible for interacting with the SRP receptor FtsY in a 

GTP dependent manner. M domain binds to the 4.5S SRP RNA and is also known to bind 

the hydrophobic signal sequences of the nascent polypeptide chain (14).  

A novel SRP mediated post translational targeting system has been observed in 

chloroplasts of green plants. The only known targeting substrate that utilizes this unique 

SRP pathway are light harvesting chlorophyll binding proteins (LHCPs). LHCPs are 
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nuclear encoded, integral thylakoid membrane proteins which are found associated with 

photosystems I and II and they are known to aid in photosynthetic light capture (5). 

Chloroplast SRP (cpSRP) machinery consists of a 54-KDa subunit of SRP called 

cpSRP54, SRP receptor cpFtsY, Alb-3 translocase and a unique 43-KDa SRP subunit 

called cpSRP43 (18). CpSRP43 and cpSRP54 together exist as a heterodimer in the 

stroma of chloroplasts. This system lacks ribosomes and RNA moiety.  

Homology modeling has shown that cpSRP54 also contains four helix bundle N domain 

and five conserved GTPase domain called G domain. A flexible linker connects N-G 

domain to the carboxyl-terminal methionine rich M-domain. Despite of same domain 

organization as found in bacterial Ffh, cpSRP54 participates in a ribosome free 

environment to target LHCP. Also, there is no RNA binding site on cpSRP54. So how 

does cpSRP54 carry out its targeting role in this system?  

Protein dynamics and protein structure studies have shown that cpSRP54 is a highly 

flexible protein with most of the flexibility present in the linker region which connects N-

G domain to M-domain and a finger loop element which is present in the M-domain (in 

between first and second helices of M-domain, Figure 3.1). Data from modeling studies 

has shown that M-domain of cpSRP54 contains a hydrophobic grove which is formed by 

M-domain and this grove is predicted to read the hydrophobic residues found on the third 

transmembrane domain (TM3) of LHCP. In other words, M-domain is predicted to 

interact with TM3 of LHCP in the same way as M domain of cytosolic SRP54 (Ffh) 

interacts with the signal sequence of nascent polypeptide chain. This is supported by 

cross linking studies done in the past where cpSRP54 showed interaction with TM3 of 

LHCP in elongation arrested ribosomes (10).  
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Studies have shown that cpSRP43 interacts with L-18 motif of LHCP which is present 

between TM2 and TM3 domains of LHCP (20). CpSRP54 undergoes conformational 

changes when it binds to cpSRP43 and these conformational changes are predicted to 

have emerged from the interaction between the linker and the finger loop element of M 

domain which orients M domain in a state where it becomes accessible for the M domain 

to scan TM3 as it comes out of the cpSRP43 - LHCP binding grove. Also, there is 

supporting SAXS data which shows that M-domain of cpSRP54 lies relatively closer to 

the third transmembrane domain of LHCP in transit complex (Figure 3.2).   

In this study, we are trying to narrow down TM3 binding site on cpSRP54 when 

cpSRP54 is in complex with LHCP and cpSRP43 in solution. We have created cpSRP54 

mutants with either two point mutations in M domain grove or a 15 amino acid deletion 

mutation in the same grove with the hope that these mutants would either lose their 

ability to bind to the substrate or somehow will not be oriented in a state where substrate 

binding is accessible. Results are quite consistent with the structural data predictions. 
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MATERIALS AND METHODS 

Cloning of Chloroplast SRP proteins 

Primer-encoded Asn point mutations were introduced by polymerase chain reaction (PCR) into 

the mature cpSRP54 coding sequence (starting with amino acid sequence MAFGQL and 

including a C-terminal 6 His tag) at positions V339 (QTRAVAKMG) and L370 

(AEKNLLVME) to make cpSRP54 V339N L370N. A loop deletion mutant, cpSRP54 Δ345-

359, was made by splicing via overlap extension using internal overlapping primers to remove 

15 amino acids (MTRVLGMIPGMGKVS). The resulting PCR products were cloned into 

pGEM-4Z (Promega, Madison, WI) using KpnI and HindIII sites for in vitro 

transcription/translation. CpSRP54 M-domain was produced as previously described in Goforth 

et al. (7). All constructs were sequence-verified by the Molecular Resource Laboratory, 

University of Arkansas for Medical Sciences, Little Rock, AR. 

Co-precipitation Assays 

A protein binding assay was performed as described in Goforth et al. (7) using 100pmoles of 

GST-cpSRP43 and 35S-labeled mcpSRP54 mutants produced by in vitro transcription/translation 

(Figure 3.3). 

Transit Complex Formation  

Mature-sized cpSRP54 or mutants of cpSRP54 described above were examined for their ability 

to support transit complex formation as described in Goforth et al. (7) with the following 

changes: 25pmoles of recombinant cpSRP43 was added to in vitro translated cpSRP54 or 

cpSRP54 mutant (indicated in Figure 3.4) along with 35S-labeled in vitro translated pLHCP, 
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pLHCPΔTM3 (amino acids 1–206), or L18-TM3 (amino acids 189–269), which are described in 

DeLille et al. (4). One-third of the assay was examined by native-PAGE, as described in Goforth 

et al. (7). OptiQuant software from GE Healthcare and Life Sciences (Piscataway, NJ) was used 

to quantify radiolabeled protein from Phosphor imaging. 
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RESULTS 

GST tagged cpSRP43 Co-precipitates cpSRP54 V339N L370N  

Previous work has shown that cpSRP54 interacts with chromodomain 2 of cpSRP43 via its M-

domain (7) and it is shown that arginines at positions 461 and 462 in mature cpSRP54 are 

essential for this interaction (5). In co-translational targeting system, cytosolic SRP54 is known 

to bind hydrophobic signal sequences of the ribosome nascent chain complex via the 

hydrophobic residues which line up its signal sequence binding grove in the M-domain (15, 17, 

22). Sequence analysis shows that M-domain of cpSRP54 also contains hydrophobic residues in 

its M-domain. In fact, modeling data shows that M-domain is arranged in the form of four 

helices with a finger loop between first and second helices and a large C-terminal extension (8, 9, 

14). This together forms a hydrophobic signal sequence binding pocket. Also, LHCP contains 

three transmembrane domains-TM1, TM2 and TM3. TM3 has been known to be the most 

hydrophobic domain among all three transmembrane domains of LHCP (10).  Crystal structure 

data also shows that TM3 exits cpSRP43 near its chromodomain 2 region and it is the same 

region on cpSRP43 which is known to interact with M-domain of cpSRP54 (11).  

Based on this, it was hypothesized that hydrophobic grove found in M-domain of cpSRP54 

interacts with TM3 domain of the substrate LHCP. If it is true, then any reduction in the 

hydrophobicity of M-domain binding grove will lead to loss of substrate loading ability of 

cpSRP54. In order to test this hypothesis, double deletion mutant of cpSRP54 was produced 

where valine and leucine at positions 339 and 370 in the M-domain were substituted by 

asparagine. Next, the mutant was tested for its interaction with cpSRP43 in a pull down assay 

(Figure 3.3). Lane 9 in figure 3.3 represents background binding of cpSRP54 V339N L370N to 

the GST tag and lanes 1, 2 represent pull down assay done using wild type cpSRP54. Results 
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showed that the mutation did not alter the interaction between cpSRP43 and cpSRP54 V339N 

L370N mutant protein (Figure 3.3, lane 8).  

Mutant cpSRP54 V339N L370N Forms Transit Complex with pLHCPΔTM3 

Next, the mutant was tested for its ability to form transit complex using in vitro translated 

radiolabeled constructs of LHCP - full length LHCP, L18-TM3 and pLHCPΔTM3. All these 

LHCP constructs are known to form transit complex using full length cpSRP components (4). 

Results showed that mutant cpSRP54 V339N L370N lost its ability to form transit complex with 

full length LHCP and L18-TM3 (Figure 3.4, lanes 3 and 11). However, when pLHCPΔTM3 was 

used as a substrate, the mutant cpSRP54 V339N L370N regained its ability to interact and form 

transit complex (Figure 3.4, lane 7). This indicates that removal of TM3 from LHCP suppressed 

the mutation in cpSRP54 indicating that there could be a possible interaction between TM3 of 

LHCP and M-domain of cpSRP54. In fact, it suggests that M-domain of cpSRP54 acts as a 

driving force to orient cpSRP into a LHCP loading competent state where it must interact with 

TM3 of LHCP first to initiate transit complex formation. Since there was no loss of cpSRP43 

binding using this mutant, it also gives an idea that cpSRP43 binds at a different site on cpSRP54 

than the site where LHCP binds on cpSRP54. Lanes 4, 8 and 12 in figure 3.4 represent that 

substrate is not able to form a soluble complex if cpSRP components are not added to the assay, 

lanes 1, 5 and 9 show transit complex formation using wild type cpSRP54 and different LHCP 

constructs. 

cpSRP54 Δ345-359 Interacts With cpSRP43 But Fails to Form Transit Complex 

Modeling and FRET (Forster resonance energy transfer) data suggests that cpSRP54 exists in 

two possible conformations, one where M-domain is coupled to N-G domain and the other where 
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it is decoupled from N-G domain. This shuttling/positioning of the cpSRP54 domains take place 

by the interaction between a flexible linker (which connects N-G domain to M-domain) and the 

finger loop (between first and second helices) of the cpSRP54 M-domain. Since, our previous 

mutant cpSRP54 V339N L370N showed that M-domain must interact or recognize TM3 of 

LHCP first in order to initiate LHCP loading process. And for this interaction to take place, it is 

essential that M-domain is positioned near the TM3 exit site on cpSRP43 (3). And for this to 

happen, the flexible linker and finger loop must interact to orient M-domain properly.  

In order to test this, a new cpSRP54 mutant- cpSRP54 Δ345-359 was designed where 15 amino 

acid residues forming the finger loop (residues 345-359 in the mcpSRP54) were deleted from the 

M-domain. It was hypothesized that the linker and finger loop are critical for positioning M-

domain of cpSRP54. If this is true, then this finger loop mutant would also lose its ability to 

interact with LHCP. Therefore, to test the hypothesis, this mutant protein was tested for its 

interaction with cpSRP43 and then for transit complex formation. Results showed that the finger 

loop deletion mutant cpSRP54 Δ345-359 retained its ability to interact with cpSRP43 (Figure 

3.3) like the previous mutant cpSRP54 V339N L370N but LHCP loading ability was completely 

lost when transit complex assay was done using this cpSRP54 finger loop deletion mutant 

cpSRP54 Δ345-359 with the three LHCP constructs as described before (Figure 3.4). This data 

suggests that the interaction between finger loop of M-domain of cpSRP54 with the linker is 

essential in orienting cpSRP54 in a state where M-domain can scan TM3 of LHCP as it comes 

out of cpSRP43 in order to provide a hydrophobic binding grove to the TM3.  

Taken together, these results confirm that cpSRP54 M-domain interacts with TM3 of LHCP by 

providing a hydrophobic binding grove. Flexible elements present in cpSRP54 (linker and the 

finger loop) interact with each other in order to orient cpSRP43-cpSRP54 in a LHCP loading 
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competent state in solution which is the first essential step in LHCP targeting. And this is 

consistent with the data from co-translational targeting system where SRP54 binds to the signal 

sequence of the nascent peptide chain emerging from the translating ribosome via the 

hydrophobic M-domain pocket and gets ready to perform the co-translational targeting events. 
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DISCUSSION 

In co-translational targeting system, SRP54/Ffh contains an RNA moiety and it also interacts 

with the hydrophobic signal sequence as it emerges out of the translating ribosomes. Elongation 

arrest occurs and SRP54/Ffh guides the ribosome nascent chain complex to the plasma 

membrane or endoplasmic reticulum where it interacts with the SRP receptor found at the 

membrane and transfers the ribosome nascent chain complex to the insertase at the membrane 

where elongation process resumes and the nascent chain is inserted into the membrane co-

translationally (1). In our post-translational LHCP targeting system, not much is known about 

what interactions take place between cpSRP54 and the substrate LHCP. CpSRP54 lacks RNA 

moiety and there are no ribosomes involved in this type of targeting process. So how does the 

system work under these conditions for the successful targeting of LHCP? 

In the past, much work has been done to understand the structure of cpSRP43 and its interaction 

with the substrate. In this study, we are trying to look at the possible interactions between 

cpSRP54 and LHCP. There is a crosslinking study which shows that cpSRP54 interacts with 

TM3 of LHCP in the ribosome bound complex (10). 

This is the first study to directly look at the interaction between cpSRP54 and LHCP in solution. 

This study represents the domain organization of cpSRP54 and how orientations of the domain 

occur to promote the binding of cpSRP54 with its partners whether its cpSRP43 or LHCP. 

Results here show that cpSRP54 interacts with the third transmembrane domain of LHCP and 

this interaction is critical to keep cpSRP ready to form a complex with LHCP. Different 

conformational changes in between the cpSRP54 domains also play an important role in the 

targeting events. Previous work has shown that cpSRP43 is a dynamic protein and when it binds 

to cpSRP54, its flexibility decreases and its affinity to bind L-18 of LHCP increases (6).  
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In this study, we have tried to look at the role of conformational changes which occur in the 

cpSRP54 domains when it binds to cpSRP43 and to the substrate. This is the first study which 

confirms direct interaction between TM3 of LHCP and M-domain of cpSRP54 in transit 

complex. There are still many unanswered questions in this pathway. What happens to the N-G 

domain of cpSRP54 in transit complex, do those domains interact with cpSRP43 in the complex. 

How do the conformations of the proteins in the transit complex change when the targeting 

complex reaches the membrane? What is the factor that triggers this change? Much work is 

needed to understand the details of this pathway. However, present work provides a valuable 

insight in understanding the overall complicated process of LHCP targeting. 
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Figure 3.1: cpSRP54 domain organization 

 

cpSRP54 is composed of three domains based upon homology. N-G domain is made up of four 

helix bundle N domain and a GTPase active G domain. N-G domain is connected to a C-terminal 

methionine rich domain called M-domain by a flexible linker. 
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Figure 3.2: Structure of cpSRP using SAXS and existing domain structures 

Figure here represents the positioning of cpSRP and L18-TM3 of LHCP in transit complex. 

Chromodomain 2 of cpSRP43 (in green) is bound to M-domain of cpSRP54 (in pink and yellow) 

and L18-TM3 (in blue) is bound to Ankyrin regions on cpSRP43. This data has been generated 

with the help from Dr. Suresh Kumar’s lab. 
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Figure 3.3:  cpSRP54 M-domain mutants co-precipitate with GST-cpSRP43 

In vitro translated radiolabeled cpSRP54WT (wild-type cpSRP54) or cpSRP54 mutants 

(cpSRP54 V339N L370N and cpSRP54 Δ345-359) were incubated with GST or GSTtagged 

cpSRP43 (GST- cpSRP43) as described in Materials and Methods. Proteins were recovered with 

Glutathione sepharose and separated by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis. Radiolabeled translation product (TP) and co-precipitated cpSRP54 constructs 

were visualized by phosphor imaging (top) or by protein staining (bottom). 
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A. 

  

B.  

                                      Transit Complex Assay Quantification 
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Figure 3.4: cpSR54 finger loop deletion mutant loses ability to form transit complex 

A.The indicated cpSRP54 constructs were produced by in vitro translation and incubated with 

recombinant cpSRP43 and radiolabeled in vitro translated pLHCP or the indicated pLHCP 

deletion constructs, as described in the Materials and Methods. Transit complex containing the 

indicated radiolabeled LHCP construct was examined by native-PAGE/phosphor imaging as 

described in the Materials and Methods. The position of transit complex formed with each 

pLHCP construct is indicated (arrowhead) as is the position of aggregated LHCP constructs in 

the well.  

B. Each transit complex assay was conducted in triplicate and quantified as described in the 

Materials and Methods. For each pLHCP construct, the relative amount of transit complex 

formed with each cpSRP54 mutant is shown. Error bars represent the standard deviation. 
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IV.      GTP HYDROLYSIS IS NOT REQUIRED FOR LHCP INTEGRATION 

INTO THE THYLAKOLID MEMBRANES 
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ABSTRACT 

Light harvesting chlorophyll binding proteins (LHCPs) are a family of nuclear encoded 

chloroplast thylakoid proteins that are synthesized in the cytosol, imported into the chloroplast 

stroma, and subsequently directed to the thylakoid membrane. LHCP targeting/insertion into 

thylakoid membranes requires GTP, a thylakoid protein insertase, and two prokaryote derived 

GTPases, chloroplast signal recognition particle (cpSRP) and its membrane receptor (cpFtsY). 

cpSRP binds LHCP in the stroma to form a soluble targeting complex that is directed to 

thylakoids owing to affinity of cpSRP for cpFtsY, an interaction requiring GTP and resulting in a 

membrane-bound targeting complex. LHCP insertion requires Albino-3 (Alb-3), a protein 

insertase that interacts with cpSRP and stimulates GTP hydrolysis by cpSRP/cpFtsY and to 

enable release of cpSRP from cpFtsY. The role and timing of GTP hydrolysis in LHCP insertion 

is less clear. Using assays that reconstitute LHCP integration into isolated thylakoids, we have 

demonstrated that GTP hydrolysis is not required for LHCP insertion from a membrane-bound 

targeting complex. GMPPNP, a non-hydrolysable analogue of GTP, is sufficient to support 

LHCP integration. Surprisingly, LHCP integration supported by GMPPNP, and not GTP, is 

sensitive to elevated concentrations of free cpSRP/cpFtsY, which interact at the membrane with 

Alb-3 and reduce Alb-3 availability for authentic interaction with cpSRP-bound LHCP targeting 

substrate. Our data supports a mechanism in which guanine nucleotide binding by cpSRP/cpFtsY 

is required for LHCP release from cpSRP upon interaction with Alb-3 whereas GTP hydrolysis 

serves at the membrane to release cpSRP/cpFtsY GTPases from each other and from Alb-3 for 

subsequent rounds of targeting. It is hypothesized that unproductive LHCP targeting is avoided 

by formation a GTP-stabilized cpSRP/cpFtsY/LHCP targeting complex at the membrane until 

Alb-3 becomes available. 
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INTRODUCTION 

Protein localization is a vital process in all living cells that allows proteins to be directed from 

their site of synthesis in the cytosol to cellular sites where they must function. Many of the 

ancestral routing mechanisms that evolved in prokaryotes have adapted to serve in modern day 

eukaryotes. For example, a cytosolic signal recognition particle (SRP) targeting system that 

functions in prokaryotes to co-translationally localize integral membrane proteins to the cytosolic 

membrane, also directs soluble and membrane secretory proteins from the cytosol to the 

endoplasmic reticulum in eukaryotes by a conserved co-translational mechanism. Not 

surprisingly, critical structural and functional aspects of the co-translational SRP targeting 

system in prokaryotes and eukaryotes have been preserved.  Specifically, cytosolic SRPs in 

prokaryotes and eukaryotes contain an RNA moiety associated with a 54KDa GTPase (SRP 54; 

Ffh in prokaryotes) that exhibits affinity for a conserved SRP receptor (FtsY in prokaryotes), 

which is also a GTPase.  

In these co-translational targeting mechanisms, ribosome-associated SRP binds targeting 

substrates as they emerge from the ribosome owing to the ability of SRP54 to bind the 

hydrophobic region of signal sequences at the N-terminus of targeting substrates (14, 16). The 

SRP-ribosome-nascent chain complex docks at the membrane via the SRP receptor, an event that 

requires GTP binding by both cpSRP54 and its receptor. In eukaryotes, the ribosome interacts 

with both SRP and its receptor (17), but an available Sec translocase in the endoplasmic 

reticulum is required to stimulate dissociation of SRP54 from the targeting substrate’s signal 

sequence and stimulate GTP hydrolysis by SRP54 and its receptor (22), an event that enables 

SRP to separate from its receptor at the membrane and engage in subsequent rounds of targeting.  

In prokaryotes, a homologous Sec translocase has been shown to act similarly in promoting the 
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concerted signal sequence release from SRP and handover of the translating ribosome to the Sec 

translocase from SRP targeting machinery (1). 

A unique organellar SRP targeting system has evolved in chloroplasts to target light harvesting 

chlorophyll-binding proteins (LHCPs) to the chloroplast thylakoid membrane.  LHCPs are a 

family of integral membrane proteins that bind chlorophyll a/b and are considered the most 

abundant membrane proteins on earth representing up to 50% of bulk protein in thylakoids. As 

nuclear encoded genes, LHCPs are synthesized as full-length precursor in the cytosol.  Following 

their import and processing into the chloroplast stroma, mature-sized LHCPs remains soluble 

owing to the unparalleled ability of cpSRP in stroma to bind full-length targeting substrates. The 

cpSRP-LHCP complex in stroma, termed transit complex, represents the targeted form of LHCPs 

in chloroplasts. CpSRP is a heterodimer composed of a conserved 54kDa GTPase (cpSRP54) 

and a 43KDa protein (cpSRP43) unique to chloroplasts. The ability of transit complex to 

associate productively with thylakoid membranes relies on affinity of membrane-bound cpFtsY 

for cpSRP54 (18), a GTP requiring reaction stabilized when GTP is replaced by non-

hydrolysable GTP (19). Unlike cytosolic SRPs, posttranslational substrate binding by cpSRP 

relies on cpSRP43, which has affinity for the L-18 motif present in each member of the LHCP 

protein family and located between the second and third transmembrane domains (TM) of 

LHCPs (8, 23).  Recent data indicates that the while transit complex formation is initiated 

through cpSRP43-LHCP interaction, it is followed by association of cpSRP54 with LHCP-TM3 

(12). 

Once at the membrane, the transit complex docked with cpFtsY is believed to interact with the 

C-terminus of a protein insertase, Albino-3 (Alb-3), an interaction that takes place owing to 

affinity of the stroma-exposed Alb-3 C-terminus and cpSRP43 (9, 15).  Although a homologous 
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Sec translocase functions in thylakoids to co- and post-translationally transport a specific subset 

of protein into or across the thylakoid membrane (2, 21), the Sec translocase is not thought to 

play a role in LHCP insertion (19).  

Clues as to the role of Alb-3 interaction with cpSRP43 at the membrane come from the 

observation that peptide corresponding to the Alb-3 C-terminus induces GTP hydrolysis by 

cpSRP54/cpFtsY in a cpSRP43 dependent manner and also causes LHCP substrate release from 

cpSRP (15), a necessary step to promote LHCP insertion by Alb-3.  What is not clear is the order 

of events triggered by Alb-3; is GTP hydrolysis needed for efficient LCHP release from cpSRP 

and subsequent insertion into thylakoids or does it simply serve to enable separation of cpSRP 

from its receptor, cpFtsY?  It is also conceivable that LHCP insertion by Alb-3 relies on Alb-3 

dissociation from cpSRP at the membrane, an event most likely tied to GTP hydrolysis by 

cpSRP54/cpFtsY and which allows dissociation of cpSRP54 from cpFtsY (19). Our results show 

that GTP hydrolysis is not required for LHCP integration; Alb-3 remains functional for LHCP 

insertion even when bound by cpSRP-cpFtsY.  However GTP hydrolysis is needed to recycle the 

availability of Alb-3 for the next cpSRP loaded with LHCP cargo.  
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MATERIALS AND METHODS 

All reagents and enzymes were purchased commercially. All DNA constructs were sequence 

verified by the Molecular Resource Laboratory, University of Arkansas for Medical Sciences, 

Little Rock. Recombinant protein concentrations were determined by analyzing coomassie blue 

stained SDS PAGE gels on Alpha Innotech FluorChem IS-8900 using Alpha Ease FC Stand 

Alone software (Alpha Innotech). 

Construction of in vitro Transcribed and Translated pLHCP clone 

Standard PCR techniques were used to add a Strep II tag (WSHPQFEK) to the N-terminus and 

three additional methionines to the C-terminus of the coding sequence for pLHCP (5). The 

resulting PCR product, Strep-pLHCP-3MC, was cloned into pGEM-4Z (Promega) using EcoRI 

and SalI for in vitro transcription and translation as for pLHCP as described previously (5, 15) 

Translation products were diluted with equal volume of 60 mM unlabeled methionine in import 

buffer (IB: 50mM hepes-KOH, pH 8.0, 0.33M sorbitol) prior to use. 

Cloning, Expression and Purification of Recombinant Proteins  

Recombinant, purified proteins Trx-His-S-tagged cpFtsY and cpSRP43 were produced and 

isolated as described previously (11, 24). A C-terminal Strep II tag (WSHPQFEK) was added to 

the coding sequence of mcpSRP54-His (10, 11) by standard PCR techniques. The resulting PCR 

product was cloned into pPROLar.A122 plasmid (Clontech Laboratories, Inc.) using KpnI and 

HindIII sites to generate a plasmid coding for mcpSRP54-His-Strep as described previously for 

mcpSRP54-His (24). Soluble mcpSRP54-His-Strep was purified via Talon metal affinity resin 

(Clontech Laboratories, Inc.), concentrated using 30kDa molecular weight cut off (MWCO) 

vivaspin centrifugal concentrator (GE Healthcare Life Sciences) followed by secondary 
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purification over Strep-tactin (EMD) gravity flow resin per manufacturer's protocols. The 

resulting mcpSRP54-His-Strep was desalted into HKM buffer (10mM hepes-KOH, pH 8.0, 

10mM MgCl2) with 100mM KCl and aliquots were stored at minus 80 degrees celsius till use. 

 Chloroplast SRP Formation  

cpSRP complex was prepared by combining equimolar amounts of cpSRP43 and cpSRP54-His-

Strep and incubating overnight at 4 degrees celsius. After incubation, the complex was purified 

by gel filtration column HiLoad36/60 Superdex75 (Amersham Biosciences) to yield cpSRP in 

HKM buffer (10mM hepes-KOH, pH 8.0, 10mM MgCl2) plus 100mM KCl as per Moore et al 

2003 (19). 

Preparation of Salt washed Thylakoids  

Intact chloroplasts were isolated from 10 to 12 days old pea seedlings (Pisum sativum cv. 

Laxton’s Progress) and used to prepare thylakoids as described previously (6). Chlorophyll 

content was determined as described previously (3). Thylakoids were salt-washed (SW) two 

times with 1M potassium acetate in import buffer (IB: 50mM hepes-KOH, pH 8.0, 0.33M 

sorbitol) and then washed two times with import buffer containing 10mM MgCl2 (IBM buffer) as 

described before (15). Thylakoids were resuspended at 1mg/ml chlorophyll in IBM buffer prior 

to use.  

Transit Complex Assay 

Transit complex (TC) assays were performed as described in Payan et al 1991 (20) with 

following modifications. Transit complex was made by mixing 0.5μg of preformed cpSRP, 20μl 

of 1:2 diluted in vitro translated radiolabeled Strep-pLHCP-3MC translation product, and HKM 

(10mM hepes-KOH, pH 8.0, 10mM MgCl2) buffer in a total volume of 45μl. The reaction size 
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was scaled dependent on integration assays needs. Proteins were incubated together at 26 degrees 

celsius for 30 minutes followed by apyrase (Sigma-Aldrich) treatment or control (no apyrase) 

treatment. For apyrase treatment, one microliter of apyrase (in 10mM hepes-KOH, pH 7.0, 

50mM NaCl, 0.1mM MgCl2, 0.1mM Dithiothreitol and 50% glycerol) was added per 12.5μl of 

1:2 diluted translation product (TP). The samples were incubated on ice for 15 minutes. After 

incubation, 2.5μl of 50% glycerol was added to a 15μl aliquot of transit complex for native gel 

analysis. Increasing concentrations of preformed cpSRP (0.0125μg, 0.025μg, 0.05μg, 0.1μg, 

0.2μg, 0.5μg, 1.0μg and 2μg) were used to perform transit complex assays as shown in figure 

4.3A and figure 4.4A. 

Integration Assay 

Integration assays were carried out as described in Cline et al 1993 (6) with few modifications. 

Seventy five microliters total volume assays containing IBM, salt washed thylakoids equal to 

25μg of chlorophyll, 5μg of cpFtsY, and 1mM (final) nucleotides (GMPPNP or GTP) were 

incubated with or without 1 Unit of apyrase on ice for 30 minutes. After incubation, 30μl 

aliquots of apyrase treated or control (no apyrase) transit complex assays (as described above) 

were added as indicated to the integration reaction mixture.  Samples were incubated at 26 

degrees celsius for 30 minutes in the presence of light. Thylakoids were centrifuged at 4100 x g 

for 8 minutes at 6 degrees celsius and treated with 12.5μl of thermolysin (2mg/ml thermolysin 

stock in 10mM CaCl2) on ice for an hour. Hundred microliters of 50mM EDTA 

(ethylenediamine tetra acetic acid in import buffer) was added to thermolysin treated thylakoids 

followed by centrifugation at 4100 x g for 8 minutes at 6 degrees celsius. Pelleted thylakoids 

were solubilized using SDS buffer and heated for SDS-PAGE analysis. Amounts equivalent to 

13.8μg of chlorophyll per sample were analyzed by SDS PAGE and phosphor imaging. A second 
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approach was used to perform integration assays (Figure 4.5 and figure 4.6) where salt washed 

thylakoids were treated with excess preformed cpSRP, nucleotides (GMPPNP or GTP), cpFtsY 

and apyrase prior to transit complex addition. All integration assays in this approach received 

transit complex formed as described above by using only one concentration of preformed cpSRP 

(0.5μg). 

Sample Analysis 

SDS PAGE and native gels were imaged using Typhoon FLA 9500 (GE Healthcare Life 

Sciences). OptiQuant software (GE Healthcare Life Sciences) was used to quantify signal from 

radiolabeled protein. All experiments were performed in triplicate. Bar graphs were generated 

using Microsoft Excel 2013.  Error bars represent standard error of the mean (SEM). 
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RESULTS 

GMPPNP, a Non-hydrolysable Analogue of GTP is Sufficient for LHCP Integration 

It has been demonstrated in SRP mediated co-translational protein targeting that GTP hydrolysis 

is required to recycle SRP/SR complex in order to carry out subsequent cycles of targeting (7). 

To understand the role of guanine nucleotide in SRP mediated post-translational targeting of 

LHCP, we reconstituted LHCP integration assays using salt washed thylakoids (from Pisum 

sativum), pre-formed transit complex, cpFtsY, in the presence of  GTP or GMPPNP (a non 

hydrolysable analogue of GTP) or no added nucleotides (Figure 4.1, lanes 1-3). These assays 

were also conducted in the presence of apyrase (Figure 4.1, lanes 4-6). Apyrase hydrolyses 

nucleoside triphosphates into nucleoside monophosphates (13) but it cannot hydrolyze 

GMPPNP. GTP present in lanes 4, 5 & 6 (Figure 4.1) has been hydrolyzed by apyrase. 

Quantification was done by repeating the experiment three times. Integration assay where no 

additional nucleotides were added was set to 100% (Fig. 1, lane 3). Data shows that additional 

GTP stimulates LHCP integration by about ~70% (Figure 4.1, lane 1). GMPPNP also supports 

LHCP integration (Figure 4.1, lane 5), although to a reduced level. This suggested that GTP 

hydrolysis may not be required for LHCP integration as integration is supported by a non-

hydrolysable GTP analogue.   

GMPPNP is Not a Limiting Factor in LHCP Integration  

By comparing lanes 3 and 5 in figure 4.1 it is clear that GMPPNP supported integration is 

reduced by ~55%. To account for loss in integration activity in the presence of GMPPNP, we 

conducted integration by using different concentrations of GMPPNP (Figure 4.2) in the presence 

of apyrase. Results showed that GMPPNP concentration as low as 30μM is sufficient to saturate 
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integration activity, and, we used 1mM GMPPNP previously, (Figure 4.1). This suggested that 

GMPPNP concentration is not a limiting factor to account for loss in GMPNP supported LHCP 

integration.   

 Excess free cpSRP limit LHCP integration in presence of GMPPNP 

We also conducted integration assays using different concentrations of cpSRP to further 

understand the loss in GMPPNP supported integration. We have used in vitro translated LHCP 

and recombinant cpSRP in our transit complex assays, this may serve as a source of excess free 

cpSRP that is not bound to the substrate. Previous studies have shown that cpSRP and cpFtsY 

lock together in the presence of GMPPNP and occupy Alb-3 translocation binding sites (19). 

This may be the reason behind loss of GMPPNP supported integration in our experiments where 

excess free cpSRP is blocking the Alb-3 translocase binding sites in the presence of GMPPNP. 

To test this, we formed transit complex using different concentrations of cpSRP (Figure 4.3A). 

More cpSRP resulted in more transit complex formation. Integration assays were also done in 

presence of GTP and transit complex formed as mentioned above. As expected, more transit 

complex resulted in more GTP supported integration (Figure 4.3B). Similarly, we also performed 

transit complex assays and integration assays using different concentrations of cpSRP in 

presence of apyrase and GMPPNP, respectively. Apyrase treated transit complex assays showed 

increasing trend (Figure 4.4A) as shown by non-apyrase treated transit complex assays (Figure 

4.3A). Integration done in the presence of GMPPNP and apyrase using apyrase treated transit 

complex with different concentrations of cpSRP first showed an increasing trend but then at a 

higher cpSRP concentration, integration dropped down (Figure 4.4B). This confirmed that excess 

cpSRP reduces integration activity by occupying Alb-3 translocase sites in presence of 

GMPPNP.  
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Thylakoids pre-incubated with excess cpSRP also limit GMPPNP supported integration  

In order to reconfirm previous result, we repeated above assays by pre-incubating salt washed 

thylakoids with excess cpSRP and then added transit complex formed by using 0.5μg of cpSRP 

either in the presence of GTP or a combination of GMPPNP and apyrase, respectively. Data 

showed that excess free cpSRP did not decrease GTP supported integration (Figure 4.5A) but did 

limit integration in the presence of GMPPNP and apyrase (Figure 4.5B). These results elucidated 

the fact that excess free cpSRP in the presence of GMPPNP reduces translocase availability to 

the targeting complex. GTP hydrolysis is not required for LHCP integration but at the same time 

hydrolysis shows a stimulatory effect on integration. This suggests a downstream role of 

hydrolysis, similar to what happens in co-translational targeting where hydrolysis leads to release 

of cpSRP and cpSRP receptor components from each other to carry out subsequent rounds of 

protein targeting. 
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DISCUSSION 

In this report, we have examined the role of guanine nucleotide (GTP) in post-translational 

LHCP targeting pathway, which relies on a unique post-translational SRP system. Despite the 

fact that components are lacking in the cpSRP targeting system whose interactions control the 

timing of GTP hydrolysis in cytosolic SRP targeting to the endoplasmic reticulum (ribosome, 

SRP RNA, an insertase), our data indicates that the targeting substrates are transferred from the 

SRP to the translocase prior to the need for GTP hydrolysis despite the absence of conserved 

proteins. Presumably this is true of the cytosolic co-translational SRP in prokaryotes, although 

the details surrounding the timing of substrate release from SRP in E. coli relative to GTP 

hydrolysis is less clear.   

It has been established in co-translational protein targeting in bacteria, that ribosome nascent 

chain complex interacts with bacterial SRP54 (Ffh in bacteria) via the primary interaction site 

between ribosomal L-23 protein and N-domain of SRP54. This complex interacts with bacterial 

SR FtsY, which then directs the ribosome nascent chain complex to protein conducting channel 

SecYEG, located on the bacterial cytosolic membrane (cell membrane). SecYEG triggers release 

of nascent chain from SRP/SR complex by associating with the ribosomal protein L-23 leading 

to displacement of SRP54 from the ribosome. Conformational changes in the SRP54 (Ffh in 

bacteria) and SR FtsY promoted by SecYEG leads to the release of nascent chain from the 

ribosome into the SecYEG channel as well as GTP hydrolysis to liberate SRP components. 

Studies have also shown that in the eukaryotic co-translational protein targeting system, 

ribosome nascent chain complex in association with eukaryotic SRP54 and SR deliver ribosome 

nascent chain complex to translocase Sec61 in the rough endoplasmic reticulum membrane, 
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thereby leading to hydrolysis of GTP which leads to the recycling of eukaryotic SRP and SR into 

the cytoplasm. All the events are well synchronized to avoid any futile targeting. 

Our results here in post-translational protein targeting system are also consistent with the 

findings of co-translational protein targeting system that role of GTP hydrolysis is to recycle 

SRP and its receptor into the chloroplast stroma for further rounds of protein targeting. Since our 

system lacks ribosome, so what is it that triggers release of LHCP from transit complex? It has 

been published before that C-terminus of Alb-3 translocase interacts with cpSRP43 and that in 

the transit complex it’s the cpSRP43 that is interacting with LHCP via binding of ankyrin region 

with the L-18 region of LHCP. cpSRP54 (M-domain) is bound primarily via chromodomain 2 to 

cpSRP43 and cpFtsY is bound to cpSRP54. Therefore, when transit complex-FtsY complex at 

the membrane comes in contact with C-terminus of Alb-3, C-terminus interaction with cpSRP43 

may serve as a trigger to release LHCP from the complex to the translocase. Interaction of 

cpFtsY with the thylakoid membranes may lead to conformational changes in 

cpFtsY/cpSRP54/Albino-3 association which further aid in the LHCP release process. All the 

events lead to the release of LHCP to the translocase Alb-3 followed by LHCP integration into 

the membrane. GTP hydrolysis occurs to recycle cpSRP and cpFtsY into the stroma. Therefore, 

cpSRP43 may behave like a ribosome in our system. 

What happens to cpSRP/cpFtsY complex at the membrane when LHCP integration process is 

being going on, does LHCP integration and SRP recycling occur simultaneously or is it more 

like a sequential process where first LHCP is released and integrated into the membrane and then 

GTP hydrolysis occurs to recycle cpSRP? Our data shows that LHCP integration occurs in the 

absence of hydrolysis which may favor the fact that cpSRP/cpFtsY may still remain associated 

with the membrane/Alb-3 until LHCP fully integrates into the membrane to ensure proper 
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localization and then GTP hydrolysis occurs to recycle SRP/SR components into the stroma. Our 

results also show that when LHCP integration was done in the presence of GTP or GMPPNP (a 

non-hydrolysable analogue of GTP), more LHCP integrated into the thylakoid membrane in 

presence of GTP than in the presence of GMPPNP. This reduction in GMPPNP supported 

integration in the absence of hydrolysis could be attributed to the presence of cpSRP/cpFtsY 

complex at the membrane which may have occupied the available translocase sites on Alb-3, 

hence no recycling occurs thereby leading to the loss of subsequent rounds of LHCP integration, 

hence the low level of integration. This leads to a possibility that cpSRP/cpFtsY complex 

interaction sites on Alb-3 translocase could be different from what is needed for LHCP release 

and integration. But these sites are crucial for the attachment of targeting complex to the 

translocase in order to initiate targeting events at the membrane. Further work is needed to 

understand the protein-protein interactions that occur at the membrane when targeting complex is 

associated with the Alb-3 translocase just prior to the release of LHCP.   

Our data points to another feature of the Alb-3 insertase, namely that the cpSRP does not have to 

depart the insertase for the insertase to function properly. Yet, newly targeted substrates fail to 

insert when cpSRP/cpFtsY complexes remain associated with Alb-3. Therefore, a major function 

of GTP hydrolysis is not only the recycling of cpSRP/cpFtsY targeting components for new 

rounds of targeting, but GTP hydrolysis appears critical to continue the availability of Alb-3 for 

new targeting substrates.   

Also based on the high level of insertion achieved without the ability for cpSRP recycling 

(insertion with GMPPNP, figure 4.1, lane 5), our data suggests that under the conditions 

insertion was examined, recycling of cpSRP during the 30 minutes assay does not play a major 

role in reaching the levels of observed insertion. Rather, the major limitation was the level of 
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available insertase owing to arrest of cpSRP/cpFtsY complexes titrating Alb-3. This points to the 

physiological need to rapidly remove cpSRP/cpFtsY from Alb-3 to maintain its availability.   
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Figure 4.1: GTP hydrolysis is not required for LHCP integration 

  

Salt washed thylakoids (25μg of chlorophyll) were incubated with additional GTP (1mM, lanes 1 

& 4), GMPPNP (1mM, lanes 2 & 5) or no additional GTP (lanes 3 & 6) and 5μg of recombinant 

cpFtsY. All samples contain 0.15mM residual GTP from the translation mixture. Samples 4, 5 & 

6 were apyrase treated prior to transit complex (TC) addition. TC was made using 0.5μg of 

recombinant cpSRP & in vitro translated radiolabeled LHCP. Apyrase treated TC was added to 

samples 4, 5 & 6. Integrated LHCP was examined using SDS PAGE & Phosphor imaging as a 

degradation product (DP). Full-length translation product (TP) runs higher than DP on SDS 

PAGE gel. DP* refers to monomeric form of LHCP in the membrane. Graph depicts percentage 

of integration relative to the level of integration in lane 3 where no additional GTP was added 

and is determined from three separate experiments. 
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Figure 4.2: GMPPNP is not a limiting factor in LHCP integration 

  

To account for low level of LHCP integration in lane 5 compared to lane 1 in figure 4.1, 

integration assay was done using increasing amounts of GMPPNP (in μM), as shown in the 

figure. Salt washed thylakoids (25μg of chlorophyll) were incubated with increasing amounts of 

GMPPNP (lanes 2- 13), lane 14 contains 1mM additional GTP, 5μg of cpFtsY and apyrase 

before adding transit complex (TC). Transit complex was formed as described in the legend to 

figure 4.1 followed by incubation with apyrase and then added to the thylakoids mix. Phosphor 

imaging of integrated LHCP in the form of degradation product (DP) are shown in the figure. 

Full-length translation product (TP) runs higher than DP on SDS PAGE gel. DP* refers to 

monomeric form of LHCP.  
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Figure 4.3: Transit complex formed with increasing amounts of cpSRP  

results in increasing levels of GTP supported LHCP integration.  

 

A. Transit complex (TC) was formed using increasing amounts of recombinant cpSRP and in 

vitro translated radiolabeled LHCP as shown in the figure. Transit complex formation was 

examined using native PAGE and Phosphor imaging. The levels of transit complex formed using 

different concentrations of cpSRP were calculated form three separate experiments and is shown 

relative to transit complex formed using 0.5μg of cpSRP (lane 6).  

 

B. Integration assay was done by incubating salt washed thylakoids (25μg of chlorophyll) with 

additional GTP (1mM), 5μg of cpFtsY before adding transit complex (TC). Transit complex 

formed as mentioned in figure 4.3A was added to the thylakoids mix. Integrated LHCP was 

examined using SDS PAGE & Phosphor imaging as a degradation product (DP). Full-length 

translation product (TP) runs higher than DP on SDS PAGE gel. Graph shows percentage of 

LHCP integration relative to integration of LHCP using 0.5μg of cpSRP based on calculations 

from three separate experiments. DP* refers to degradation product representing monomeric 

form of LHCP. 
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Figure 4.4: Transit complex formed with increasing amounts of cpSRP limits LHCP      

integration in the presence of GMPPNP and apyrase. 

  

A. Transit complex was formed as mentioned in the legend to figure 4.3A followed by apyrase 

treatment, examined using native PAGE and Phosphor imaging. Graph depicts percentage of 

transit complex (TC) relative to transit complex formed using 0.5μg of cpSRP (lane 6) based on 

results from 3 separate experiments.  

B. Integration assay was conducted as mentioned in the legend to figure 4.3B in the presence of 

GMPPNP and apyrase and examined via Phosphor imaging. Efficiency of integrated LHCP was 

calculated from 3 separate experiments and is presented relative to integration efficiency using 

0.5μg of cpSRP. Full-length translation product (TP) runs higher than degradation product (DP) 

on SDS PAGE gel. DP* refers to degradation product representing monomeric form of LHCP. 
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Figure 4.5: Thylakoids pre-incubated with excess cpSRP, do not show decrease in LHCP 

integration in the presence of GTP 

 
Salt washed thylakoids (25μg of chlorophyll) were pre-incubated with increasing amounts of 

cpSRP (lanes 2-4), additional GTP (1mM), 5μg of cpFtsY before adding transit complex. Transit 

complex made using 0.5μg of recombinant cpSRP and in vitro translated radiolabeled LHCP was 

added to the pre-treated thylakoids. Integrated LHCP was examined using SDS PAGE & 

Phosphor imaging as a degradation product (DP). Full-length translation product (TP) runs 

higher than degradation product (DP) on SDS PAGE gel. Graph shows integration percentage 

relative to percentage of integration obtained using 0.5μg of cpSRP (lane 1 which was not 

incubated with excess cpSRP) as calculated from three separate experiments. DP* refers to 

degradation product representing monomeric form of LHCP
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Figure 4.6: Thylakoids pre-incubated with excess cpSRP limit LHCP integration in the 

presence of GMPPNP & apyrase 

Salt washed thylakoids (25μg of chlorophyll) were incubated with increasing amounts of cpSRP 

(lanes 2-4), GMPPNP, 5μg of cpFtsY and apyrase before adding transit complex. Apyrase 

treated transit complex was formed as mentioned in the legend to figure 4.5 and then added to 

the pre-treated thylakoids. Integrated LHCP was examined using SDS PAGE and Phosphor 

imaging as a degradation product (DP). Full-length translation product (TP) runs higher than DP 

on SDS PAGE gel. Three separate experiments were conducted to determine percentage of 

integration relative to level of integration obtained using 0.5μg cpSRP (lane 1 which was not 

incubated with excess cpSRP). DP* refers to degradation product representing monomeric form 

of LHCP. 
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V.      CONCLUSION AND FUTURE DIRECTIONS 
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Research work done here has tried to answer the questions that we asked in Chapter 1 regarding 

the role of different components in chloroplast signal recognition particle (cpSRP) pathway. This 

system lacks ribosome, RNA moiety of SRP, yet it has divided the functions of missing 

components very wisely among the available protein machinery of the pathway.  

In chapter 2, we have tried to look at the binding site between cpSRP43 and C-terminus of Alb-3 

translocase, although we did not succeed in finding the exact region of interaction on cpSRP43 

but this study hinted at the presence of other types of previously unknown interactions between 

binding partners in soluble phase of the SRP cycle. Results suggested that these interactions 

could be responsible for proper orientation of the binding partners at various steps of the 

targeting cycle in order to result in a productive LHCP targeting. For example, some of cpSRP43 

mutants lost their interaction with either full length cpSRP54 or full length LHCP or both in 

soluble phase of the pathway. However, there was no loss of the binding ability of these mutants 

when they were tested in pull down assays utilizing only the known interacting domains on the 

partner proteins (e.g. M-domain of cpSRP54, L-18 domain of LHCP) in solution. More work still 

needs to be done in understanding the role of Alb-3 translocase in chloroplast targeting cycle and 

this could possibly be achieved by combining biophysical techniques like intermolecular FRET 

(Forster resonance energy transfer) with molecular biology tools to look at the conformational 

changes that Alb-3 can cause in the targeting complex. 

In chapter 3, we have utilized a wonderful combination of bio-physical and bio-functional 

techniques to confirm that chloroplast signal recognition particle 54 (cpSRP54) binds to the third 

transmembrane domain (TM3) of LHCP when it is associated with cpSRP43 and LHCP in transit 

complex in solution. Studies have also shown that both subunits of cpSRP are dynamic in nature 

and when combined together, both help in orienting each other in a conformation which is more 
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favorable for the binding events to take place in solution or at the membrane, thereby avoiding 

any futile targeting step in the cycle. 

In chapter 4, we have looked at the role of nucleotide in GTP hydrolysis in the targeting cycle 

and results suggested that GTP hydrolysis is not required for LHCP integration. This result is 

consistent with the role of nucleotide hydrolysis in cytosolic SRP targeting in mammalian system 

and bacteria. GTP hydrolysis is essential to keep LHCP targeting cycle going as it replenishes 

stroma with the recycled cpSRP as well as available Alb-3 translocase at the membrane to 

continue targeting events. 

There is still some work needed in this area to understand the protein-protein interactions at the 

membrane, to confirm if translocase Alb-3 is involved in co-translational targeting of chloroplast 

encoded proteins and if it does, then how do the two types of targeting events compete in finding 

the available translocase. 
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