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ABSTRACT 

Physiologically based pharmacokinetic (PBPK) models, also known as 

recirculation models, consist of a series of tissue and organ blocks linked together by 

blood circulation, mimicking the anatomical structure of mammalian body.  Each tissue is 

divided into vascular, interstitial, and intracellular sub-compartments. Linear system 

analysis (LSA)-recirculation models differ from the classical PBPK model in that they 

characterize each organ or tissue with a unit impulse response in the framework of input-

output convolution relationship rather than systems of differential equations. Target-

mediated disposition (TMD) is a phenomenon where drug disposition is influenced by 

capacity-limited binding to a target, resulting in dose-dependent events, such as a 

decrease in drug clearance with increasing dose level. Erythropoiesis stimulating agents 

such as recombinant human erythropoietin (EPO) and Continuous Erythropoietin 

Receptor Activator (C.E.R.A.) exhibit TMD where their disposition and anti-anemic 

activity are mediated by their interaction with EPO receptor (EPOR).   

The objectives of this work were: 1) to develop a minimal, receptor-based LSA-

recirculation model, 2) to apply the developed model in analyzing the effect of bone 

marrow (BM) ablation on C.E.R.A. elimination kinetics, and comparing EPO and 

C.E.R.A. interaction with EPOR in vivo, 3) to investigate the efficiency of the 

experimental design used to achieve the previous objective for estimation of the 

developed model parameters, and 4) To identify the physiological conditions at which 

TMD-compartmental models approximate TMD-recirculation models. 

A literature review of LSA- recirculation models is provided in Chapter 2. In 

Chapter 3, receptor-based, LSA-recirculation model was mathematically formulated, and 
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applied to analyze C.E.R.A. pharmacokinetics studied in adult sheep with normal and 

ablated BM using a tracer interaction method (TIM). In Chapter 4, the model developed 

in Chapter 3 was further applied to analyze EPO and C.E.R.A. TIM data collected in 

adult sheep. A comprehensive, sensitivity analysis was performed in Chapter 5. In 

Chapter 6, statistical moments of linearized receptor-based compartmental and 

recirculation models were computed; and simulation of plasma drug concentrations, and 

receptor profiles in both structures were presented. 

The developed model, together with the TIM, was able to quantitatively assess the 

interaction of C.E.R.A. with hematopoietic and non-hematopoietic EPOR population and 

provide a mechanism based explanation for C.E.R.A.’s slower elimination and greater 

erythropoietic activity in vivo compared to EPO, despite its lower affinity to EPOR. The 

TIM detected a saturable interaction between C.E.R.A. and non-hematopoietic EPOR 

which contradicts the behavior of EPO. The TIM experimental setting is adequate for 

estimation of the developed model parameters. TMD-recirculation models reduce to 

TMD-compartmental models under conditions of well-perfused target tissue, comparable 

drug initial distribution volume and target tissue extracellular volume, negligible non-

receptor mediated clearance, and rapid equilibrium between venous and arterial blood 

drug concentrations, small extracellular volume, reduced cardiac output, low receptor 

pool concentration, and high drug-receptor equilibrium dissociation constant. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

In 1937, Teorell introduced the first physiological model for the distribution of a 

substance in the body. The model consisted of four compartments representing sites of 

drug administration, elimination, and inactivation connected through a blood circulation 

compartment (Figure 1.1) [1]. Bellman, Jacquez, and Kalaba, in 1960, derived 

mathematical expressions for drug distribution in a tissue with vascular, interstitial and 

cellular components [2], as well as in the whole body [3]. In the late 1960’s, Bischoff and 

Brown [4] were the first to apply a whole-body physiologically based pharmacokinetic 

(PBPK) model (Figure 1.2) to describe drug distribution in mammals. Since the 1970’s, 

PBPK modeling has been applied to the prediction of disposition of several anticancer 

agents [5-11], individual toxicants, and chemical mixtures [12-15]; and in human health 

risk assessment [16-19]. 

1.2. Physiologically based pharmacokinetic model development 

The procedure of developing a whole-body PBPK model essentially consists of 

the following four stages [20, 21]: 1) model structure specification, 2) tissue model 

specification, 3) equation writing and coding, and 4) parameter specification and/or 

estimation. 

1.2.1. Model structure specification 

The overall structure of a whole-body PBPK model is a series of tissue and organ 

blocks linked together by blood circulation (Figure 3), mimicking the anatomical 

structure of mammalian body. Although there are no rules available regarding which 

tissues should be included or excluded, a typical whole-body PBPK model consists of 
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core, special, and reservoir tissues [21]. The core tissues comprise blood, heart-lung 

segment, liver (for metabolized drugs), kidneys (for urinary excreted drugs), and adipose 

tissue (for lipophilic drugs). The special tissues include sites of drug administration, sites 

of drug action, tissues with atypical (e.g., nonlinear) kinetics, and tissues for which 

experimental data is available. Tissues that constitute a considerable mass of the 

mammalian body such as muscles, skin, adipose, and bone may be included as reservoir 

tissues. Examples of minimal PBPK models for particular applications have been 

presented in literature [22-26]. A lumping principle stating that only dynamically similar 

tissues should be lumped together was derived [27]. In the field of toxicokinetics, the 

PBPK model structures mainly include the core tissues and the rest is lumped into 

“rapidly equilibrating” and “slowly equilibrated”, or “highly perfused” and “poorly 

perfused” [28-31].  

1.2.2. Tissue model specification 

After the whole-body PBPK model is determined, the model structure for each 

tissue block needs to be specified. Each tissue block is divided into sub-compartments 

that represent the vascular space, interstitial space, and intracellular space (Figure 1.4). 

Based on the available physicochemical and biochemical information of the drug, such as 

molecular size, lipophilicity, tissue membrane permeability, tissue protein binding, and 

tissue metabolism, the tissue blocks are categorized into flow (perfusion) rate-limited or 

permeability rate-limited. 

Flow rate-limited models represent the simplest and the most widely used case. 

They are based on the assumption of a well-mixed model, where drug partioning across 

tissue membranes is instantaneous and homogenous [21, 32]. Thus, the rate limiting step 
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is blood flow and the sub-compartments in Figure 1.4 can be combined into a single 

compartment. Flow models are normally assumed when the drug has a small molecular 

weight or when the tissue has a relatively small volume [21, 33-35]. 

In cases where drug diffusion across membranes is the rate limiting step, a 

permeability rate-limited model should be prescribed. The sub-compartments in Figure 

1.4 can be combined into vascular and extravascular spaces, depending on whether the 

rate limitation is at the capillary membrane or at both the capillary and cellular 

membranes [21, 36-38]. Permeability models are usually used for high molecular weight 

drugs that are polar (e.g., peptides and proteins) or when the tissue has a relatively large 

volume (e.g., adipose) or a protective barrier (e.g., brain) [35]. 

1.2.3. Equation writing and coding 

Once the structure of the whole-body PBPK model and the rate-limiting features 

of the tissue blocks have been defined, the model is mathematically represented by a 

series of mass balance differential equations (or algebraic equations for processes that 

equilibrate instantly) [21]. For a non-eliminating tissue with flow limited mass transport 

(Figure 1.5A), this equation is: 

)( KCCQ
dt
dCV PART −⋅=⋅         (1.1) 

where Q, V, and C are the blood flow, anatomic volume, and concentration of the drug in 

the tissue, respectively. CART is the drug concentration in the arterial blood, KP is the 

tissue-to-blood partition coefficient. For the liver (LV), Eq. 1.1 is modified to include an 

input from the gut (GU) and spleen (SP), as well as to include an elimination pathway via 

metabolism (Figure 1.3): 



4 
 

 
 

CCLKCQ

KCQKCQCQQQ
dt
Cd

V

LVLVLVPLVLV

SPPSPSPGUPGUGUARTSPGULV
LV

LV

⋅−⋅−

⋅+⋅+⋅−−=⋅

,

,,)(
 (1.2) 

where CLLV is the hepatic metabolic clearance that can be expressed as [39]: 

fCLCL uLV ⋅= int         (1.3) 

where fu is the fraction unbound in the plasma, and Clint, is the hepatic intrinsic clearance 

that is related to the hepatic extraction ratio, ELV, by the “well-stirred” model [40]:
 

fClQ
fCl

E
uLV

u
LV ⋅+

⋅
=

int

int

         
(1.4)

 

, or the “parallel tube” model [40]: 

]/exp[1 int QfClE LVuLV ⋅−=
        

(1.5)
 

The hepatic intrinsic clearance is described by the Michaelis-Menten equation [41]: 

)(
max

int
CKf

VCL
LVc m +⋅

=
          

(1.6) 

that reduces under linear, non-saturable elimination to: 

Kf
VCL
c m⋅

= max
int

           
(1.7) 

where Vmax and Km are the maximum reaction velocity and the equilibrium dissociation 

constant, respectively, and fc is the fraction unbound in the hepatocytes. 

For the kidneys (KD), Eq. 1.1 is modified to include the renal clearance, CLKD 

(Figure 1.3):  

CCLKCCQ
dt
Cd

V KDKDKDPKDARTKD
KD

KD ⋅−−⋅=⋅ )( ,    (1.8) 

CLKD can be modeled by [42]: 

)1( FGFRfCL ruKD −⋅⋅=
        

(1.9)
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where GFR is the glomerular filteration rate, and Fr is the fraction reabsorbed. 

The basic equations for a permeability rate-limited, non-eliminating tissue, where 

vascular space is assumed to be in equilibrium with extravascular space (Figure 1.5B), 

are defined as:  

)()( KCCPSCCQ
dt
Cd

V PEVVVART
V

V −⋅−−⋅=⋅     (1.9) 

)( KCCPS
dt
Cd

V PEVV
EV

EV −⋅=⋅       (1.10) 

where VV and VEV are the volumes of the vascular and extra-vascular spaces of the tissue, 

respectively. CV and CEV are drug concentrations in the vascular and extra-vascular 

spaces of the tissue, respectively. PS is the tissue permeability surface area coefficient. 

For an eliminating tissue, Eq. 1.10 is modified by inclusion of clearance elements similar 

to the flow-rate models. 

The final step in writing the mathematical model is to provide the equations for 

the heart-lung segment (HLS), venous (VEN), and arterial (ART) blood to establish the 

mass balance for the closed system (Figure 1.3):
 

)( ,KCCQ
dt
Cd

V HLSPHLSVENHLS
HLS

HLS −⋅=⋅
       

(1.11)
 

CQKCQ
dt
Cd

V VENHLS

n

i
iPii

VEN
VEN ⋅−⋅=⋅ ∑

=1
,

      
(1.12)

 

)( , CKCQ
dt
Cd

V ARTHLSPHLSHLS
ART

ART −⋅=⋅
      

(1.13) 

where QHLS is the cardiac output, Qi, Ci, and KP,i are the flow rate, the concentration, and 

the tissue-to-blood partition coefficients for the ith tissue. 
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For drugs exhibiting non-linear plasma and/or tissue protein binding, Bischoff and 

Dedrick [43] proposed a modification for the PBPK model equations that involved 

partitioning of drug concentrations in the blood and tissue regions, C, according to the 

equation: 

  CpCwC bu ⋅+⋅=
         

(1.14)
 

where w and p are the volume fractions of water and protein, respectively. Cu and Cb are 

the unbound and bound drug concentrations, respectively, that were assumed to be related 

by the Langmuir isotherm: 

∑
= ⋅+

⋅⋅
=

n

i ui

uii
b

CK
CKBC

1 1          
(1.15)

 

where Bi and Ki are the concentration and equilibrium dissociation constant of the ith 

binding site.
 

After the PBPK model has been defined mathematically, it must be coded in 

particular software for estimation and simulation purposes. Software packages like 

ACSL® [44, 45], MATLAB® with its graphic interface SIMULINK® (The Math Works, 

Inc.), SAAM II® (SAAM Institute, Inc.), CMTRIX [46], PK-Sim (Bayer Technology 

Services GmbH, Leverkusen, Germany), GastroPlus® (Simulations Plus, Inc., Lancaster, 

CA), SimCYP® (SimCYP Ltd., Sheffield, UK), and PKQuest [47] can serve for such 

purposes. 

1.2.4. Parameter specification and/or estimation 

PBPK models comprise drug-independent (physiological) and drug-dependent 

(physicochemical and biochemical) parameters. The drug-independent parameters 

include body weight, tissue volumes, cardiac output, and regional blood flow rates. These 
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parameters are normally taken from the literature for the species of interest [48-51]. The 

drug-dependent parameters include partitioning and permeability coefficients, protein and 

enzyme binding, and intrinsic clearance. These parameters are either (1) obtained from 

literature, (2) estimated by fitting the PBPK model to concentration-time data [33, 52], 

(3) predicted using in vitro-in vivo extrapolation and allometric scaling techniques (e.g., 

scaling of hepatic metabolic clearance [53-57]), or (4) predicted using in silico techniques 

that depend on drug molecule descriptors and tissue composition (e.g., prediction of 

tissue partition coefficients [58-61]). 

1.3. Classical compartmental versus physiological pharmacokinetic 

models 

In the conventional pharmacokinetic (PK) modeling approach, the behavior of the 

system is described as a series of kinetically similar compartments, whose number is 

determined based on the best fit to the observed PK data. The physiological modeling 

approach, on the other hand, uses well-defined tissues in a heterogenous structure that 

follows the mammalian anatomy and physiology. Thus, unlike the classical 

compartmental models, where structure is defined after collection of plasma time-

concentration data and in terms of drug-dependent parameters only, the PBPK model 

structure is determined before any PK experiment is conducted and in terms of both drug-

dependent and independent parameters. 

A first-order process describes the drug transfer between compartments in the 

classical approach, while a convection process via the vascular network characterizes the 

transfer between tissue blocks in the physiological approach. Conventional models 

assume that drug molecules are distributed instantly and homogenously after entering a 
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compartment. PBPK models allow selection between one- and multi-compartment tissue 

structure, depending on the drug properties and the nature of a given tissue. 

1.4. Advantages and limitations of physiologically based 

pharmacokinetic models 

The main advantage of PBPK models over the classical compartmental models is 

its physiologically predictive nature [62]. Such multi-organ models can predict the time 

course of drug concentration in venous and arterial blood, as well as in particular organs 

or tissues by the virtue of their heterogeneity. Additionally, they can predict the influence 

of initial distribution from the injection to the target site on drug pharmacodynamics. This 

is of importance for the onset of action when drugs have a very short effect site 

equilibration time (e.g., general anesthetics) [63]. PBPK models can predict alterations in 

drug disposition kinetics due to physiological or pathological perturbations in organ 

functions by the virtue of comprising parameters that correspond to the anatomy and the 

physiology. Physiological parameters can show sensitivity to changes in hydrodynamics 

[64-66], rest and physical exercise [67-69], age [70-80], gender [72, 77, 81], pregnancy 

[82, 83], disease development (e.g., liver cirrhosis [84, 85],and kidney diseases [86]), and 

medical intervention (e.g., surgery [87]) . Thus, PBPK modeling, like population 

modeling, can be very useful in explaining the sources of PK variability. Impact of drug-

drug interactions on disposition kinetics can be mechanistically predicted using PBPK 

modeling [88-92]. The unified structure of PBPK model between mammalian species 

allows for the inter-species scaling of anatomical and physiological parameters. 

Therefore, PBPK modeling provides a mechanistic approach to predict drug disposition 
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profiles in humans based on data from other species (rather than using empirical formulae 

based on body weight as in the allometric scaling of the compartmental models) [93]. 

PBPK models can only be identified by literature resources, separate experiments, 

and concentrations measured in several tissues (using invasive or destructive sampling) 

but not on the basis of routine clinical pharmacokinetic data [63]. Therefore, these 

models require extensive literature mining and experimentation. The accuracy of 

predictions using a PBPK model depends on the accuracy of the parameters defined in 

the mass balance equations. The uncertainty introduced into PBPK model parameters, 

due to its dependence on literature and separate experiments or due to unidentifiability of 

parameters estimated from the PK data, may result in a final model that fails to reflect 

true in vivo drug concentrations [94, 95]. 

1.5. Systems analysis and physiological models 

A modern approach based on implementation of linear system analysis (LSA) 

principles in physiological models has been applied to describe the disposition of several 

therapeutic agents [25, 26, 96-100]. This approach aims at reducing the complexity of the 

classical PBPK models by keeping restrictive assumptions to the minimum. The 

difference between classical and LSA-recirculation models is that the latter is based on a 

general “building block” that is characterized by a unit impulse response (UIR) function 

that encapsulates the essential two fundamental disposition components, namely 

distribution and elimination [39, 101]. The other difference is that the rate of transfer of a 

drug out from a block in a LSA-based system depends linearly on the input rate to the 

block and the UIR of that block by a convolution operator [101], rather than by systems 
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of ordinary differential equations. Literature review of LSA implementation in PBPK 

models is presented in Chapter 2. 

1.6. Target-mediated disposition  

Target-mediated disposition (TMD) is a phenomenon where drug distribution 

and/or elimination are influenced by capacity-limited binding to a target (receptor or 

enzyme) [102]. This binding results in dose-dependent events, including a decrease in the 

volume of distribution at steady state and/or target-mediated clearance with increasing 

dose level [102, 103]. A general mechanism-based pharmacokinetic (PK) model of TMD 

was developed to describe the behavior of such systems [103]. The model comprises 

elements for target turnover, drug–target binding, and drug–target complex endocytosis. 

The model in its simplest form does not account for a possible feedback up-regulation or 

down-regulation of the target due to interaction with the drug. Additionally, the model 

does not assume recycling of the drug or its target subsequent to the endocytosis process. 

The model is presented in detail in Chapter 6. 

The TMD model in the framework of a 2- or 3-compartment mammillary model 

has been applied to analyze the disposition of various small molecules, peptides, proteins, 

hormones, and monoclonal antibodies, using plasma concentration–time data obtained 

from individual or population pharmacokinetic studies in different mammalian species 

[104-106]. This traditional paradigm of TMD system analysis does not specify a 

particular organ or tissue expressing the target based on the assumption that the biophase 

is well perfused by the circulating blood. Unfortunately, this assumption is not valid for 

some drugs experiencing TMD, for example recombinant human erythropoietin (EPO), 
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where a lag has been reported between its peak serum and bone marrow (BM) 

concentrations [107]. 

1.7. Erythropoiesis stimulating agents as examples of target-mediated 

disposition drugs 

Erythropoietin (EPO) is a 34-kD glycoprotein hormone that regulates 

erythropoiesis. It binds to a cell surface receptor (EPOR) on bone marrow (BM) erythroid 

progenitor cells (burst-forming unit-erythroids and colony-forming unit-erythroids), 

promoting their proliferation and differentiation into mature red blood cells (RBC) and 

protecting them from apoptosis [108]. Simultaneously, activation of EPOR by EPO 

binding promotes degradation of the formed complex via internalization followed by 

targeting to lysosomes [109]. Continuous Erythropoiesis Stimulating Agent, C.E.R.A., is 

a methoxy pegylated EPO analogue weighing approximately 60 kD. C.E.R.A. has unique 

binding characteristics to EPOR that involve slow association, but slightly faster 

dissociation compared to EPO [110]. C.E.R.A. has slower systemic clearance, longer 

elimination half-life, and higher in vivo erythropoietic activity than EPO [96, 111]. 

Previous studies provided several evidences that EPOR-mediated pathways play a 

major role in elimination of EPO and its long acting analogues. Patients with aplastic 

anemia (i.e., anemia caused by damage of BM stem cells) demonstrated much higher 

EPO levels than in patients with beta-thalassemia (i.e., anemia caused by reduced or 

absent synthesis of the beta chains of hemoglobin) at the same hemoglobin concentration 

[112]. Receptor-mediated elimination of EPO as a result of lysosomal degradation was 

reported in erythroid progenitor cells extracted from spleens of mice infected with anemia 

inducing virus [109]. In vitro cellular trafficking of EPO and darbepoetin alfa, a 
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hyperglycosylated EPO analogue, showed that only cells expressing surface EPOR were 

able to degrade both compounds [113]. Busulfan-induced BM ablation resulted in 

significant reduction of EPO clearance in adult sheep [114, 115]. EPO clearance in sheep 

was not affected by hepatectomy or nephrectomy [116]. Given the lack of differences in 

C.E.R.A. PK properties among healthy humans, chronic kidney disease patients, and 

patients with impaired hepatic function; it appears that kidneys and liver are also 

unimportant in C.E.R.A. elimination [117-119]. Recently, a significant positive linear 

correlation was found between EPOR mRNA level in the bone marrow and EPO 

clearance in phlebotomized sheep [120]. 

EPO exhibits TMD in several animals and in humans as evidenced by a decrease 

in clearance with increasing dose [121, 122]. The disappearance of EPO non-linear 

disposition by BM ablation in sheep [115, 123] provides strong evidence that the EPO 

TMD is due to its saturable interaction with EPOR in the BM. Non-linear kinetics of EPO 

was previously studied using several PK models that assume Michaelis-Menten type of 

elimination. The proposed models were either: open two-compartment with central 

elimination [121], disposition decomposition analysis [115, 123], or recirculation two-

compartment with tissue-specific elimination [96]. Recently, a two-compartment TMD 

model was used to study EPO pharmacokinetics in rats, monkeys, and humans. The 

model was integrated to a cellular life-span model for simultaneous analysis of PK and 

pharmacodynamic data [124].  The PK TMD model is presented in detail in Chapter 6. 

1.8. Objectives and specific aims 

The primary objective was to develop a mechanistic modeling platform that 

integrates a minimal, linear system analysis based recirculation model and a receptor 
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based model to characterize the PK properties of drugs experiencing target mediated 

disposition. Under that overall objective, the specific aims were: 

1. To formulate a receptor-based recirculation model. 

2. To apply the formulated model in analyzing the effect of bone marrow ablation on 

C.E.R.A. elimination kinetics.  

3. To apply the formulated model in comparing EPO and C.E.R.A. interaction with 

EPOR in vivo. 

4. To investigate the efficiency of the experimental design used to achieve aims 2 and 

aim 3 for estimation of the developed model parameters. 

5. To identify the physiological conditions at which TMD-compartmental models 

approximate TMD-recirculation models. 

1.9. Hypothesis 

The overall hypothesis of this work is that physiologically based pharmacokinetic 

modeling is a more appropriate approach to characterize the pharmacokinetics of target 

mediated disposition drugs than the abstract classical compartmental approach and can 

extend the applications of the receptor-based models. 

Hypothesis 1: It is mathematically possible to integrate a minimal, linear system 

analysis based recirculation model and a receptor based model. 

Hypothesis 2: C.E.R.A. elimination is mediated by binding with EPO receptor 

(EPOR) on the surface of EPOR expressing cells, followed by endocytosis and lysosomal 

degradation in the intracellular space.  

Hypothesis 3: EPO and C.E.R.A. different elimination rate and in vivo 

erythropoietic activity is driven by different interaction properties with EPOR. 
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Hypothesis 4: The formulated model parameters are reliably estimated from the 

experimental design implemented in Chapter 3 and Chapter 4. 

Hypothesis 5: The nature of the hosting structure impacts the drug and receptor 

time-concentration profiles and influences the performance of target-mediated disposition 

models. 

1.10. Outline of the thesis 

 A literature review of linear systems analysis (LSA)-recirculation models is 

provided in Chapter 2. This review: 1) presents a “unified” methodology for building 

LSA-recirculation models, 2) addresses the mean time and clearance concepts in those 

models, 3) discusses the various mechanistic models of organ disposition, and 4) 

introduces a recirculation model for drugs exhibiting non-linear elimination. 

In Chapter 3, a receptor-based recirculation model was mathematically 

formulated, and C.E.R.A. pharmacokinetics (PK) was studied in adult sheep with normal 

and ablated bone marrow (BM) using a sensitive and specific technique, the tracer 

interaction method (TIM) [125]. To quantitatively assess the interaction of C.E.R.A. with 

EPO receptor (EPOR) populations located inside and outside the BM in adult sheep, the 

developed model was fitted to the tracer component of the TIM with the non-tracer 

component being represented as a forcing function. Besides the model-based analysis of 

the TIM data, a non-compartmental analysis was conducted using the non-tracer 

component of the TIM. The information obtained from this analysis enabled direct 

assessment of the effect of BM ablation on C.E.R.A. macro-parameters (e.g., clearance, 

half-life, volume of distribution at steady state, etc.) which were explained in terms of the 

receptor-based processes incorporated in the developed model. 
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In Chapter 4, the model developed in Chapter 3 was further applied to provide a 

mechanism based explanation for C.E.R.A.’s slower elimination and greater 

erythropoietic activity in vivo compared to EPO. This was achieved by analyzing EPO 

and C.E.R.A. TIM data collected in adult sheep.  

To investigate the suitability of the TIM experimental design used in Chapters 3 

and 4 for estimation of the developed model parameters, a comprehensive, partial-

derivative sensitivity analysis was performed in Chapter 5. 

In Chapter 6, the physiological conditions at which a target-mediated disposition 

(TMD)-two compartment model approximates a minimal, linear systems analysis, TMD-

recirculation model were identified by: 1) Comparing the statistical moments of the 

linearized forms of both models; and 2) Simulation of drug and receptor profiles at 

different IV bolus doses based on EPO/EPOR parameter values reported in literature for 

humans and perturbing these parameter values.  Additionally, the influence of the host 

structure on parameter estimation efficiency was evaluated by simulation of 1,000 

datasets for each model at D-optimized sampling times in a dose-escalation design 

followed by re-estimation of the parameters and calculation of estimation metrics.
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Figure 1.1. The first physiological model proposed by Teorell in 1937. The k’s are first-
order transfer, excretion, and inactivation rate constants.
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Figure 1.2. The physiological model proposed by Jacquez et al in 1960 and applied in 
mammals by Bischoff and Brown in 1967.
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Figure 1.3. Schematic representation of a generic whole-body physiologically based 
pharmacokinetic model. The Q’s are the blood flow rates. The CL’s are the 
clearances.
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Figure 1.4. Schematic representation of a complex tissue block.
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Figure 1.5. Schematic representation of blood flow rate-limited (A) and capillary 
membrane permeability rate-limited (B) tissue model. Symbols are defined in 
the text.
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CHAPTER 2. SYSTEM ANALYSIS IN PHYSIOLOGICAL 

MODELING 

2.1. Background 

Linear system analysis (LSA) is a PK modeling approach that, unlike classical 

compartmental modeling used in a physiological or non-physiological context, is 

characterized by the following [126, 127]: 1) its applicability is independent of a 

particular structural model, 2) its dependence on convolution and deconvolution rather 

than on ordinary differential equations, and 3) the pharmacokinetic processes are 

regarded as stochastic at the level of a single molecule. Furthermore, the applicability of 

LSA is based on the assumption that movements of single molecules are mutually 

independent which implies the validity of the superposition principle [126, 127]. 

Therefore, linearity of the recirculatory system is a prerequisite for the physiological 

approach presented in this section. Recirculation models implementing LSA principles 

have been applied to describe the disposition of several therapeutic agents [25, 26, 96-

100]. 

2.2. Building system analysis recirculation models 

The difference between classical and LSA-recirculation models is that the latter 

views the organ as a general “building block” that is characterized by a unit impulse 

response (UIR) function, also known as a transfer function, which defines the basic 

disposition kinetics of the organ block [39, 101]. The other difference is that the rate of 

transfer of a drug out from an organ block in a LSA-based system depends linearly on the 

input rate to the organ and the UIR of that organ according to the general convolution 

equation [96, 101, 128-130]: 



 

 

22 

 

nconvolutiodenotestUIRrateInputrateOutput )(,)( ∗∗=   (2.1) 

The UIR encapsulates the essential two fundamental disposition components, namely 

distribution and elimination [39, 96, 128, 129]. Accordingly, the UIR function may be 

reparametrized in terms of [39, 96]: 1) an extraction fraction, E, which represents the 

probability that a drug molecule which enters the organ will be eliminated, i.e. does not 

appear as a part of the output; and 2) a transit time density function, g(t), which 

represents the distribution component: 

)()1()( tgEtUIR ⋅−=         (2.2) 

The body may be considered kinetically as composed of a number of organ blocks 

connected partly in series and partly in parallel in such a way that the drug transfer can be 

recycled through the system. Mathematically, such systems (e.g., Figure 2.1A) can 

suitably be treated in a two step derivation, namely by first deriving the ‘open loop’ 

characteristics of the system, and secondly by closing the loop. 

2.2.1. Open-loop system 

To describe the physiological model shown in Figure 2.1A, a simpler single-pass 

system (Figure 2.1B) is obtained by cutting open the vascular system at plane P (Figure 

2.1A). The system can be “broken down” into a set of pathways with serial and parallel 

connections, as shown in Figure 2.2. In serially connected blocks (Figure 2.2A), the 

transfer function of the pathway, UIR12(t): 

)()1()(*)()( 12122112 tgEtUIRtUIRtUIR ⋅−==
    

(2.3)
 

where: 

)(*)()( 2112 tgtgtg =
        

(2.4)
 

)1()1(1 2112 EEE −⋅−−=
       

(2.5)
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In parallel connected blocks with fraction of blood flow to the ith block, Pi (Figure 2.2B),
 

the transfer function of the pathway, UIR12(t): 

)()1()()()( 1212221112 tgEtUIRPtUIRPtUIR ⋅−=⋅+⋅=
   

(2.6)
 

where: 

)()()( 221112 tgPtgPtg ⋅+⋅=
       

(2.7)
 

EPEPE 221112 ⋅+⋅=
        

(2.8)
 

From above it can be concluded that, under linear conditions, irrespectively of the 

complexity of the connections of the individual organ blocks, an “open-loop” system (Figure 

2.1B) can be reduced or ‘lumped together’ exactly to form a single organ block (Figure 

2.1C). This is a very useful property because it provides a ‘unified’ way of considering the 

recirculation system.
 

In this conceptual “open-loop” analysis, the recirculation system is regarded as a 

black-box (Figure 2.1C) that can be described by a unit response function, UIRSP(t): 

( ) )()1()()()(
1

tgEtUIRQQtUIRtUIR SPSP

N

i
iiHLSSP ⋅−=⋅∗= ∑

=
  (2.9) 

where UIRHLS(t) is the transfer function of the heart-lung segment (with cardiac output 

Q), and the transfer function of different organs of systemic circulation (with blood flow 

rates Qi) are denoted by UIRi (i= 1,2,---,N). The transit time density function of the 

“open-loop” system, gsp(t) is given by: 

( )∑
=

⋅∗=
N

i
iiHLSSP tgQQtgtg

1
)()()(
      

(2.10)
 

, and the extraction ratio of the single-pass, ESP, is given by: 

( )∑
=

⋅−⋅−−=
N

i
iiHLSSP EQQEE

1
)1()1(1
     

(2.11)
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Working with Laplace transform facilitates dealing with complex mathematical formulae 

because it converts the convolution operator into multiplication. In the Laplace domain, 

after inclusion of Eqs. 2.10 and 2.11, Eq. 2.9 becomes: 

( ) ( )

( )∑

∑∑

=

==

⋅⋅

⋅⋅−⋅−=⋅⋅=

N

i
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N

i
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N

i
iiHLSSP

sgQQsg

EQQEsUIRQQsUIRsUIR

1

11

)()(

)1()1()()()(

 (2.12) 

2.2.2. Closed-loop system 

Closing the loop of the single-pass system (Figure 2.1D), results in an output from 

the system that contains recycled drug due to the additive feed-back on the input. The 

result is an output that is consistently larger than seen for the “open-loop” system. The 

input, f
in

(t), and output,  f
out

(t), for a “closed-loop” system, similar to the “open-loop” 

system, are related by a convolution expression:  

)(*)()( tftUIRtf inCIRCout =
       

(2.13) 

where UIRCIRC(t) is the transfer function of the “closed-loop” system. If the point of 

sampling is directly from the input site (e.g., intravenous administration and sampling), 

UIRCIRC(t) is related to the single-pass transfer function, UIRSP(t), in the Laplace domain: 

)(1
)()(
sUIR

sUIRsUIR
SP

SP
CIRC −

=        (2.14) 

If the point of sampling is not directly from the input site, the rate must be propagated to the 

point of sampling. For instance, in case of intravenous administration and arterial sampling, 

the Laplace transform of UIRCIRC(t) is given by: 

)(1
)()()(

sUIR
sUIRsUIRsUIR

SP

HLSSP
CIRC −

⋅
=       (2.15) 
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The drug time-concentration disposition curve (C(t)) in LSA-based recirculation 

systems can be obtained only in Laplace-transformed form according to the relationship: 

)(
)(

)( sUIRQ
sf

sC CIRC
in ⋅=        (2.16) 

where f
in

 (s) is the Laplace transform of the external drug input rate function. Software 

packages like MULTI (FILT) [131], MINIM [132], SCIENTIST (Micromath, Inc.), and 

ADAPT II (with Talbot’s method) [133] can fit models specified in the Laplace domain 

based on numerical inverse Laplace transform.  

2.3. Mean time and clearance concepts 

The transit time density function, g(t), in Eq. 2.2 provides the mean transit time 

through an organ block, MTT: 

))((lim)(
0

0

dssdgdttgtMTT
s→

∞

−=⋅= ∫       (2.17) 

Accordingly, if the MTT is large it means that the ‘affinity’ of the drug to stay in the 

organ is large. The degree of ‘accumulation’ of drug in the organ is therefore related to 

the MTT, which depends only on g(t). Thus, g(t) determines the distribution properties for 

the organ block. Additionally, the MTT can be obtained by the moment ratio of the 

transfer function through the organ block, UIR(t): 

)(lim

))((lim

)(

)(

0

0
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sUIR

dssdUIR

dttUIR

dttUIRt
MTT

s
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→

→
∞
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−
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⋅
=

∫

∫
     (2.18) 

In serially connected blocks (Figure 2.2A), the MTT is given by: 

MTTMTTMTT 2112 +=
       

(2.19)
 



 

 

26 

 

, while in parallel connected blocks (Figure 2.2B), the MTT is given by: 

MTTPMTTPMTT 221112 ⋅+⋅=
      

(2.20)
 

Extending the above concepts to the recirculation system shown in Figure 2.1A, the mean 

transit time of the single-pass, MTTSP is given by: 

( )∑
=

⋅+=
N

i
iiHLSSP MTTQQMTTMTT

1      
(2.21)

 

where MTTHLS(t) is the mean transit time of the heart-lung segment (with cardiac output 

Q), and the mean transit time of different organs of systemic circulation (with blood flow 

rates Qi) are denoted by MTTi (i= 1,2,---,N). MTTSP gives the volume of distribution at 

steady state, Vss: 

QMTTV SPss ⋅=
        

(2.22) 

The extraction ratio of an organ block, E, represents the probability that a drug 

molecule which enters the tissue once will be eliminated, i.e. does not appear as part of the 

output. Thus, E can be obtained only in the context of an “open-loop” system. E is calculated 

from the zero-moment of the transfer function, UIR(t): 

)(lim1)(1
0

0

sUIRdttUIRE
s→

∞

−=−= ∫       (2.23) 

or, by measuring the steady-state input, Ain,ss, and output, Aout,ss amounts: 

A
AAE
ssin

ssoutssin

,

,, −=
        

(2.24) 

The average time the drug spends in the “closed-loop” system before it is 

completely eliminated is known as the mean residence time (MRT). In contrast to the 

MTT, the MRT can be defined only in the context of a “closed-loop” system as the moment 

ratio of the recirculation transfer function, UIRCIRC(t): 
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For a system with identical input and sampling points, the MRT depends on both the 

mean transit time, MTTSP (Eq. 2.22), and the extraction ratio, ESP (Eq. 2.11), of the 

single-pass: 

E
MTTMRT

SP

SP=
        

(2.26) 

Two types of clearance can be defined within the framework of LSA-based 

recirculation models, the extraction clearance, CLE, and the response clearance, CLR. The 

extraction clearance can only be defined in the sense of a single pass system and it 

depends on the extraction-ratio of the single-pass, ESP (Eq. 2.11), and the total blood 

flow, Q: 

QECL SPE ⋅=
         

(2.27) 

In contrast to this, one can always define a response-type clearance, CLR, that is 

equivalent to the general definition of the clearance in classical compartmental and non-

compartmental models, the ratio of the input dose to the produced area under the time-

concentration curve: 

)(lim/)(/
0

0

sUIRQdttUIRQCL CIRC
s

CIRCR
→

∞

== ∫      (2.28) 

For a system with identical input and sampling points, the CLR depends on the extraction 

ratio of the single-pass, ESP (Eq. 2.11): 

)1/( EQECL SPSPR −⋅=        (2.29) 
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2.4. Organ transfer and distribution models 

Although the organ transfer function, UIR(t) (Eq. 2.1), and transit time density 

function, g(t) (Eq. 2.2), can be always specified on an empirical basis [39, 96, 134-137], 

attempts to derive functions based on mechanistic models for drug disposition and 

distribution through the organ have been published. In this section, the widely used 

mechanistic models with their derived transfer and/or distribution functions are 

presented. The kinetic parameters based on moment analysis of such functions, namely 

the extraction ratio and the mean transit time, are also shown. 

2.4.1. Flow limited mass transfer model 

In 1982, Weiss [39] derived the transfer function of an organ consisting of 

homogenous blood (B) and tissue (T) regions separated by a capillary membrane (Figure 

2.3A). Denoting the input and output concentrations of the organ by Cin and Cout, the 

mass balance equation was written as:  

CfCLdtCdVdtCdVCCQ BuBBTToutin ⋅⋅+⋅+⋅=−⋅ int)()()(
   

(2.30)
  

where Q is the blood flow, VT and VB are the volumes of the organ blood and tissue 

regions, CT and CB are the concentrations in the organ blood and tissue regions, and Clint 

is the intrinsic clearance describing the elimination of the drug from the organ that was 

assumed to occur from the blood space. Clint was related to the free drug molecules in the 

organ by fu that denotes the fraction of drug unbound in the blood. Assuming: 1) a flow 

rate limited transport, 2) the concentration of the drug in the blood and tissue regions are 

in equilibrium (i.e., CT = KP·CB , where KP is the tissue-to-blood partition coefficient), 

and 3) VB << VT (i.e., the organ volume, V ≈ VT), the effect of the tissue membrane 
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(Figure 2.3A) becomes negligible and the organ behaves as a one-compartment structure 

(Figure 2.3B). In this case Eq. 2.30 reduces to: 

CfCLdtCdVKCCQ BuBPoutin ⋅⋅+⋅⋅=−⋅ int)()(
     

(2.31) 

For simplicity, it was assumed that the organ behaves as a “well-stirred” structure [40], 

where the effluent blood is in equilibrium with the blood in the organ (i.e., Cout = CB). 

Thus, Eq. 2.31 becomes:
 

CfCLdtCdVKCCQ outuoutPoutin ⋅⋅+⋅⋅=−⋅ int)()(
     

(2.32) 

After taking Laplace transform for Eq. 2.32 and using the definition UIR(s) = 

Cout(s)/Cin(s), Eq. 2.32 yields:
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(2.33) 

with inverse Laplace transform: 









⋅

⋅
⋅+

−⋅
⋅

= t
VK

fCLQ
VK

QtUIR
P

u

P

intexp)(
      

(2.34) 

Utilizing Eqs. 2.23 and 2.18, the kinetic parameters characterizing the transfer function in 

Eq. 2.33 or 2.34, namely the extraction ratio, E, and mean transit time, MTT, are given 

by:
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u⋅+
−=
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(2.35) 

, and:
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2.4.2. Finite mass transfer resistance model 

Extending the derivations to an organ structure with tissue membrane resistance, 

Weiss [39] defined the mass balance for the blood and tissue regions in Figure 2.3C by:
 

)()( KCCPSdtCdV PTBTT −⋅=⋅
 
(2.37)

 
CfCLKCCPSCCQdtCdV BuPTBoutinBB ⋅⋅−−⋅−−⋅=⋅ int)()()(

   
(2.38) 

where PS is membrane permeability-surface area coefficient. Again, using the ‘well-

stirred” assumption Eqs. 2.37 and 2.38 become:
 

)()( KCCPSdtCdV PToutTT −⋅=⋅
       

(2.39)
 

CfCLKCCPSCCQdtCdV outuPToutoutinoutB ⋅⋅−−⋅−−⋅=⋅ int)()()(
  

(2.40) 

, and the transfer function is defined as:
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with inverse Laplace transform: 

[ ])exp()()exp()(
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(2.42) 

where:
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, and:
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2.4.3. Dispersion models 

In the theory of chromatography, two mathematical models were proposed to 

describe the elution of a non-degradable [138] and a degradable [139] solute from a 

chromatographic column taking into consideration the axial dispersion of the solute. The 

first model, referred to as the one-compartment dispersion model, assumes instant 

equilibrium of the solute between the mobile and the stationary phases. The second one, 

termed as the two-compartment dispersion model, assumes finite mass partitioning 

between the phases. 

2.4.3.1. One-compartment model 

The model was introduced to the field of pharmacokinetics by Roberts and 

Rowland [140, 141] who used it to analyze the outflow curves of liver perfusion 

experiments. The key assumption of the model is that the transit time distribution of the 

solute as it moves through the organ is principally due to the process of longitudinal or 

axial dispersion (Figure 2.4A). This means that the transverse or radial diffusion is many 

orders of magnitude more rapid than the transit through the organ, so it can be neglected. 

The axial dispersion may be caused by: 1) variations in flow velocity and or variations in 

solute path lengths; 2) mixing of blood at the branch points of interconnected capillaries; 

and/or 3) molecular diffusion. Under the assumption of rapid equilibrium between the 

organ blood and tissue spaces (Figure 2.4B), the solute concentration in the organ was 

described by the partial differential equation: 

),(),(),(),(
int2
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V udispss ⋅⋅−⋅⋅=⋅⋅+⋅ ν

  
(2.48) 
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where C(t,z) is the concentration at time t and distance z, ν is the linear flow velocity of 

blood through the organ, and Ddisp is the axial dispersion coefficient that characterizes the 

degree of mixing of the injected solute with the organ. Clint is the intrinsic clearance, and 

fu is the fraction unbound in the plasma. V denotes the organ volume, and Vss denotes the 

steady-state volume of distribution that can be calculated by:
 

f
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VKVV
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u
TpBss

,

⋅⋅+=
        

(2.49) 

where VB is the volume of the blood space, VT is the volume of the tissue space, KP is the 

tissue-to-blood partition coefficient, and fu,t is the fraction unbound in the tissue. If VT >> 

VB, Vss can be approximated by: 

VK
f
f

VKV Wp
tu

u
pss ⋅=⋅⋅=

,         
(2.50) 

, VW denotes the organ total water volume. 

Using Laplace transform to solve Eq. 2.48 at the initial and boundary conditions:
 

0),(,)(1)0,(,0),0( =∞⋅== tCtQtCzC δ
     

(2.51) 

where Q is the blood flow, δ(t) is dirac-delta function, and C(t,0) is equivalent to a unit 

bolus input, yielded the following transfer function:
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with inverse Laplace transform: 
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where:
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, and:
 

DN is the dispersion number that is given by: 

)( LDD dispN ⋅= ν
         

(2.56) 

where L is the organ length. RN is the efficiency number that is given by:
 

QfCLR uN ⋅= int

         
(2.57) 

DN measures the relative importance of the dispersion to the convective movement of the 

solute through the organ, while RN is a measure for the removal rate of the solute by the 

organ. 

The moment-based parameters characterizing the transfer function in Eq. 2.52 or 2.53 

are:
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2.4.3.2. Two-compartment model 

In 1989, Yano et al [142] introduced the two-compartment dispersion model and 

used it to analyze the outflow curves of liver perfusion experiments. In addition to the 

assumptions made by the one-compartment dispersion model, the two-compartment 

model assumes a finite mass transfer occurring between the blood (B) and tissue (T) 
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spaces of the organ (Figure 2.4C). Accordingly, the model is a hybrid of the one-

compartment dispersion model supported by Roberts and Rowland [140, 141] and the 

finite mass transfer resistance model supported by Weiss [39]. The model was described 

by the equations: 
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(2.61) 

where CB(t,z) and CT(t,z) are the concentrations in the blood and tissue phases at time t 

and distance z. VB and VT are the volumes of the blood and tissue spaces. kBT and kTB 

denote the forward and backward partition rate constants between blood and tissue. 

Using the initial and boundary conditions:
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(2.63) 

and solving using Laplace transform, the transfer function was:
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(2.64) 

where DN and RN  are the dispersion and efficiency numbers, respectively, and they were 

defined as in the one-compartment model (Eqs. 2.56 and 2.57). kBT and kTB were 

correlated with the tissue-to-blood partition coefficient, KP and the permeability surface 

area coefficient, PS, that were proposed by Weiss [39] in the finite mass transfer 

resistance model: 
 
VPSk BBT =
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)( KVPSk PTTB ⋅=
         

(2.66) 

Unlike the one-compartment dispersion model, an analytical solution for the inverse of 

the Laplace transform of the two-compartment model (Eq. 2.64) does not exist. The 

extraction ratio calculated from the zero-moment of Eq. 2.64 is the same as that of the 

one-comp model (Eq. 2.58), while the mean transit time is:
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2.4.4. Extended dispersion models 

The one-compartment dispersion model assumes well-mixed organ compartment, 

while the two-compartment dispersion model assumes instant radial equilibrium within 

the tissue space. In other words, the former model is suitable to capture the PK of a non-

permeable solute, while the later model is well-suited for a permeating, but non-diffusing 

solute. Weiss and Roberts [143], and Weiss [144] presented a stochastic approach to 

extend the one-compartment dispersion model to account for the distribution of a 

permeating solute under the assumptions of 1) slow intra-tissue distribution “the 

dispersion-diffusion model”, or 2) slow intra-tissue binding “ the dispersion-binding 

model”. The approach considers the transit time of a permeating solute molecule as a 

random variable, W, that is equivalent to the sum of the random transit time of 

intravascular marker, X, and the sojourn times, Yi, of N excursions from the blood to the 

tissue space [143]: 

YYYXW N+⋅⋅⋅⋅⋅+++= 21

        
(2.68) 

In this analysis, it was assumed that each molecule distributes radially in the tissue space 

and returns to the same point in the blood space which implies that axial distribution was 
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neglected. Assuming: 1) independent, identically distributed random variables, Y1, Y2, 

…,YN, with density function in the Laplace domain gy(s) (sojourn time density), and 2) 

the number of excursions, N, can be modeled as a Poisson renewal process, the organ 

transit time density function of the permeating molecule in the Laplace domain, gw(s) was 

given by: 

))](1([)( sgksgsg yinxw −⋅+=
       

(2.69) 

where gx(s) denotes the Laplace transform of the transit time density function of a non-

permeating solute (i.e. an intravascular marker), while gy(s) denotes the Laplace 

transform of the residence time distribution for a single excursion to the extra-vascular 

space (i.e. sojourn time density). kin is the influx rate from the vascular to the extra-

vascular space. An inverse Gaussian density function parametrized in terms of blood 

flow, Q, blood volume, VB, and distribution coefficient of variation, CV, was empirically 

used to model gx(s):  
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(2.70) 

The use of inverse Gaussian distribution was proven to be equivalent to the one-

compartment dispersion model for a non-eliminated solute [137]. Modeling of gy(s) was 

done using the distribution function of the diffusion or the binding model (derivations are 

shown in the following sections). The resulting density function, gw(s) (Eq. 2.69), can be 

presented in the Laplace domain only (i.e. the analytical solution in the time domain does 

not exist). 

The same approach was used to model solute cellular distribution by assuming an 

organ structure with cellular and extracellular spaces rather than tissue (extra-vascular) 
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and blood (vascular) spaces [144]. In contrast to the dispersion model whose parameters 

can be determined using standard organ perfusion experiments [141, 142, 145-153], the 

extended dispersion model parameters require specific experimental setting known as the 

multiple indicator dilution method [25, 98, 134, 154-159]. The method involves 

simultaneous administration of the drug with an intravascular marker (e.g., indocyanine 

green) or an extracellular marker (e.g., sucrose or inulin) and a marker for the total body 

water (e.g., antipyrine or hydrogenated water). Fitting to the time-concentration data of 

such markers allows estimation of several physiological parameters (e.g., blood flow, 

blood volume, extra-vascular water volume, cellular water volume, etc.) which ensures 

accurate estimation of drug-dependent parameters (e.g., dispersion and distribution 

parameters, cellular binding parameters, partition coefficient, membrane permeability, 

etc.).  

2.4.4.1. Dispersion-diffusion model 

The model was derived by Wiess and Roberts in 1996 [143]. The model consists 

of blood (B) and tissue (T) spaces separated by a capillary membrane (Figure 2.5A). Q is 

the blood flow. kin and kout are the influx and outflux rate constants: 

VfPSk Buin ⋅=
         

(2.71) 

VfPSk Ttuout ,⋅=
         

(2.72) 

where PS is the permeability surface area coefficients. VB and VT are the volumes of the 

blood and tissue spaces. fu and fu,t are the fractions unbound in plasma and tissue. The 

model assumes that the solute distributes within the tissue space by radial diffusion 

neglecting the effect of axial diffusion (Figure 2.5A). Transport in the tissue space was 

defined by a one-dimensional diffusion process:  
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(2.73) 

where CT(t,z) is the concentration in the tissue space at time t and distance z. Ddiff is the 

radial diffusion coefficient, and L is the depth of the tissue space. The boundary 

conditions describing the transfer between the blood and tissue regions across the 

capillary membrane with permeability P: 

)]0,()([)0,(
, tCftCfP
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tdCD TtuBu

T
diff ⋅−⋅⋅=⋅−

     
(2.74) 

, and outer boundary conditions: 

0),(
=

dz
LtdCT

          
(2.75) 

where CB(t) is the concentration in the blood space. The mass balance of the solute in the 

blood: 

)0,()()()( tCkVtCkVtCQ
dt

tdCV ToutTBinBB
B

B ⋅⋅+⋅⋅−⋅−=⋅
   

(2.76) 

with initial condition that reflects a unit bolus input: 

)(1)0( tQCB δ⋅=
         

(2.77) 

Solving the model (Eqs. 2.73-2.77) for CB(t) using Laplace transform yielded the organ 

density function for a permeable solute, gw(s). Assuming a single exponential distribution 

for the vascular marker, gx(s): 
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(2.78) 

substitution in Eq. 2.69 yielded the Laplace transform of the sojourn time density in the 

extra-vascular space, gy(s): 
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where d is the time constant for the intra-tissue diffusion process (d = L2/Ddiff). 

2.4.4.2. Dispersion-binding model 

The model was derived for the liver by Weiss [144] and Weiss et al [160]. The 

model assumes that during the radial distribution through the tissue space, the solute 

binds with a receptor, R, in the cellular phase with a rate constant kon to form a solute-

receptor complex, R*, that dissociates to free solute and free receptor with rate constant 

koff (Figure 2.5B). The model was described by the following ordinary differential 

equations: 
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(2.81) 

)()](*[)(*)(* tCtRRktRkdt
tdR

Ctotonoff ⋅−⋅+⋅−=
     

(2.82) 

where CC(t) and CEC(t) are the concentrations in the organ cellular and extracellular 

regions, VC and VEC are the volumes of the organ cellular and extracellular regions, Q is 

the blood flow, kin and kout are the influx and outflux rate constants, and Rtot is the total 

receptor. For relatively small occupancies (i.e. R* << Rtot), Eqs. 2.81 and 2.82 simplify to 

that of a linear, non-saturable binding: 

)()()(*)()( tCRktCktRktCk
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(2.83) 
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)()(*)(* tCRktRkdt
tdR

Ctotonoff ⋅⋅+⋅−=
      

(2.84) 

Solving Eqs. 2.80, 2.83, and 2.84 for CB(t) using the same approach in the dispersion-

diffusion model, the Laplace transform of the residence time distribution for a single 

excursion to the cellular space, gy(s) is given by: 
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, and kon* = kon·Rtot. 

The model assumes slow tissue binding. Later [97, 161], the model was extended 

to include quasi-instant binding to cell constituents characterized by an equilibrium 

amount ratio KR (Figure 2.5C). gy(s) was modified to: 

[ ] kkkkkKkKsKKs
ksksg

offininoffoffRondistRdist

offin
y ⋅+++⋅+⋅⋅++⋅⋅

+⋅
=

)*()1(
)(

)(
2
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, and Kdist = kin/kout. 

2.5. Extension to non-linear elimination 

In 2008, Veng-Pedersen et al [96] was the first to extend the LSA-based 

recirculation model to account for non-linear elimination. The initial proposed model was 

a complex system (Figure 2.6A) consisting of a pulmonary circulation in serial 

connection with two parallel connected sub-systems, S1 and S2. The arterial blood is 

pumped with a cardiac output that was proportional to a constant Kout. The sub-systems, 

S1 and S2, receive blood flow rates with fractions w1, and w2, respectively. Following the 

simplifying lumping rules of serial (Eqs. 2.3-2.5), and parallel (Eqs. 2.6-2.8) connected 



 

 

41 

 

sub-systems, the pulmonary circulation was reduced to heart-lung (HL) segment (Figure 

2.6B) that was lumped with the sub-systems, S1 and S2, resulting in a final model with 

two parallel connected subsystems, HLS1 and HLS2 (Figure 2.6C). Figure 2.6D 

illustrates the implementation of non-linearity in the model where it was assumed that 

saturable elimination occurs from the sub-system HLS1, resulting in a heterogenous final 

model. A Front-End-Back-End approach was used to model the non-linear elimination 

where it was assumed that the extraction ratio, E depends on the input rate, fin(t), and the 

output rate, fout(t). Accordingly, the output rate from the sub-system HLS1, fout1(t) was 

given by: 

)(*)))())(,,()((,,()( 111 21111 tgtftfKENtfwKENtf outNin outNout ++⋅=
  

(2.88)
 

where N(.) is a non-linearity function that was modeled as a Michaelis-Menten equation: 

XXKKEXKEN NNN ⋅+⋅−= )/(1(),,( 11111

      
(2.89) 

At the linear operating range when the input rate and output rate are much smaller than 

the non-linearity constant, KN, Eq. 2.89 reduces to (1-E1)*X, and Eq. 2.88 becomes: 

)(*))()()(()1()( 1 211 tgtftftfEtf outin outout ++⋅−=
     

(2.90) 

The disposition through the sub-system HLS2 was assumed to be linear and does not 

involve drug extraction. Accordingly, the output rate from HLS2, fout2(t) was given by: 

)(*))())(,,()(()( 111 222 tgtftfKENtfwtf outNin outout ++⋅=
     

(2.91) 

Using a bi-exponential transit time density function, g(t): 

)/())exp()(exp()( αββαβα −⋅−−⋅−⋅⋅= tttg
      

(2.92) 

the convolution equations (Eqs. 2.88 and 2.91) were converted to the following ordinary 

differential equations: 

ytftfKENtfwKENdtyd outNin outN 1111 21111 )))())(,,()((,,( ⋅−++⋅= α
  

(2.93)
 



 

 

42 

 

)()( 111 tfydttfd outout ⋅−⋅⋅= ββα
       

(2.94)
 

ytftfKENtfwdtyd outNin out 2111 222 ))())(,,()(( ⋅−++⋅= α
   

(2.95)
 

)()( 222 tfydttfd outout ⋅−⋅⋅= ββα
      

(2.96) 

The output drug concentration that was measured in the venous blood, Cout(t) was given 

by: 

))()(()( 21 tftfKtC outoutoutout +⋅=
        

(2.97) 

2.6. Summary 

The mechanistic nature and universality of physiologically based pharmacokinetic 

(PBPK) model structure between mammalian species make them uniquely suited to 1) 

predict drug pharmacokinetics in humans from in vitro and preclinical data, 2) 

characterize the physiological and biochemical basis for drug altered pharmacokinetics 

and toxicokinetics, and 3) recognize the underlying reasons for variability in drug 

response which contributes to optimized or even individualized drug dosing for patients. 

Although some advanced PBPK models have been developed and successfully applied in 

environmental and toxicological research, PBPK modeling has not received the proper 

attention in drug development. Generally, this is attributed to the complexity of model 

development process and the uncertainty introduced into model parameters that 

negatively influence the accuracy of model predictions. Those drawbacks necessitated the 

use of minimal PBPK models and the search for alternative means to mathematically 

represent the processes of drug transport within a physiological structure. Linear systems 

analysis (LSA) principles applied to physiological modeling is an approach that 

simplifies PBPK model development by characterizing the organ with a unit impulse 

response (UIR) function in the framework of input-output convolution relationship. The 
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organ UIR can be specified on an empirical basis avoiding assumptions about mechanism 

of drug distribution and elimination or it can reflect rigorous, mechanism-based processes 

on the sub-organ or even the cellular level. This review: 1) presents a “unified” 

methodology for building LSA-recirculation models, 2) addresses the mean time and 

clearance concepts in those models, 3) discusses the various mechanistic models of organ 

disposition, and 4) introduces a recirculation model for drugs exhibiting non-linear 

elimination. This review is important for the readers in order to understand 1) the 

rationale for adopting the LSA-physiological paradigm in this thesis, and 2) the principles 

of the physiological model developed in Chapter 3 and applied in Chapter 3 and Chapter 

4. 
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Figure 2.1. Schematic representation of a linear recirculation model development showing closed-loop system (A), open-loop system 
(B), lumped open-loop system (C), and lumped closed-loop system (D). Symbols are defined in the text. 
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Figure 2.2. Schematic representation of organ blocks in serial connection (A), and in 
parallel connection (B). Symbols are defined in the text. 
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Figure 2.3. Schematic representation of organ structure (A) used for the derivation of the 
flow limited mass transfer model (B), and finite mass transfer resistance 
model (C). Symbols are defined in the text.
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Figure 2.4. Schematic representation of organ structure (A) used for the derivation of the 
one-compartment dispersion model (B), and the two-compartment dispersion 
model (C). Symbols are defined in the text.
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Figure 2.5. Schematic representation of the extended dispersion model showing 
dispersion-diffusion model (A), the dispersion-binding model (B), and the 
dispersion-binding model accounting for non-specific binding (C). Symbols 
are defined in the text.
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Figure 2.6. Schematic representation of a non-linear recirculation model development 
showing complex initial model (A), reduced model (B), final model in the 
linear operation range (C), final model in the non-linear operation range (D). 
Symbols are defined in the text. 
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CHAPTER 3. PHARMACOKINETIC ANALYSIS OF 

CONTINUOUS ERYTHROPOIETIN RECEPTOR ACTIVATOR 

(C.E.R.A.) IN ADULT SHEEP WITH NORMAL AND ABLATED 

BONE MARROW 

3.1. Introduction 

Continuous Erythropoietin Receptor Activator (C.E.R.A.) is a novel 

erythropoiesis stimulating agent (ESA) that differs from epoetin β by the integration of 

amide bonds between amino groups and methoxy polyethylene glycol-succinimidyl 

butanoic acid, resulting in a molecule weighing approximately 60 kD [162]. C.E.R.A. has 

unique binding characteristics to erythropoietin receptors (EPOR) that involve slow 

association, but slightly faster dissociation compared to EPO, resulting in reduced 

internalization and degradation [110, 162, 163] . Studies in animals, healthy humans and 

patients with chronic kidney disease show that C.E.R.A. has a slow systemic clearance 

and an extended elimination half-life [96, 117, 118]. The pharmacokinetic (PK) 

properties of C.E.R.A., together with its receptor binding properties are responsible for 

improved pharmacodynamics reflected in increased reticulocyte count and stable 

hemoglobin level in vivo [111, 164].  

In contrast to Michaelis-Menten kinetics, which is the frequently used empirical 

model to address saturation kinetics, the target-mediated disposition (TMD) model can 

adequately describe several molecular processes such as drug-receptor binding, drug-

receptor complex internalization, receptor production and degradation [103]. The TMD 

model can be simplified to its quasi-equilibrium (QE) form, if drug-receptor binding is 

assumed to be fast [165], or to its quasi-steady state (QSS) form, if both binding of drug 
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to its receptor and internalization of drug-receptor complex are assumed to be rapid 

[166].  

Since its publication, the TMD model synthesized in the context of a two- or 

three-compartment model for drug disposition has been extensively used to study the PK 

of several drugs exhibiting receptor-mediated endocytosis, including: interferon-β [167], 

thrombopoietin [168], and recombinant human erythropoietin (EPO) [124]. However, 

physiologically-based PK (PBPK) models have become a powerful alternative to 

classical compartmental models because they provide a mechanistic approach that: 1) 

relates drug disposition to various physiological, anatomical and physico-chemical 

factors [62]; and 2) offers a strong basis for inter-species, tissue, route, and drug 

extrapolations [21]. 

A major obstacle to the wide spread implementation of the physiological 

approach is the high dimensionality of PBPK models that often times makes them far too 

complex to be fitted to plasma concentration-time data. Accordingly, lumping 

dynamically similar tissues to form dimensionally smaller but still PBPK models and 

focusing on target tissue(s) has been considered a successful strategy [27]. 

The classical PBPK models are based on organ/tissue models that assume 

perfusion or permeability rate limited structure (described using systems of differential 

equations) [21]. An improvement that keeps any restrictive assumptions to the minimum 

is characterization of organ or tissue regions by model-independent transit time 

distributions in the framework of linear systems principles (i.e., input-output convolution 

relationship). This approach has been termed “stochastic modeling” [96, 143].  
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The tracer interaction method (TIM) is a tracer/non-tracer based methodology for 

analyzing non-linear, saturation kinetics under dynamic conditions, by monitoring 

perturbations in the level of a tracer form of the drug following the introduction of the 

parent drug [125]. The TIM approach provides not only a sensitive and an accurate 

method to assess drug-receptor in vivo binding characteristics, but also a way to 

differentiate between receptor populations in distinct tissues [115, 123].  

It has been hypothesized that elimination of C.E.R.A. in sheep is capacity-limited 

and greater non-linearity was observed for C.E.R.A. than for EPO [96]. The aim of this 

work is to get a greater insight into C.E.R.A.’s complex, non-linear disposition, and to get 

a better understanding of the interaction between C.E.R.A. and EPOR in BM and non-

BM tissue. This is done by a minimal stochastic receptor-based, recirculation model used 

for analyzing data from TIM experiments in adult sheep before and after chemical 

ablation of EPOR in the bone marrow (BM). The use of a sheep model allows the 

comparison of C.E.R.A. TIM behavior with that reported for EPO [115]. 

3.2. Materials and methods 

3.2.1. Animals 

All animal care and experimental procedures were approved by the University of 

Iowa Institutional Animal Care and Use Committee and adhere to the ‘Principles of 

Laboratory Animal Care’ (NIH publication #85-23, revised in 1985). A total of sixteen 

healthy young adult sheep (weight mean±SD = 27±2.6 kg) were selected for the study. 

Four sheep were chosen for comparing the PK of labeled and unlabeled C.E.R.A.. Two 

sheep were used in TIM control studies. Ten sheep were used for the TIM experiments 

conducted under normal BM conditions, and after BM ablation (five animals for each 
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case). The animals were housed in an indoor, light- and temperature-controlled 

environment, with ad lib access to feed and water. Prior to study initiation, jugular 

venous catheters were aseptically placed under pentobarbital anesthesia. Intravenous 

ampicillin (1 g) was administered daily for 3 days following catheter placement. The 

long-term infusion of C.E.R.A. required in the TIM experiments were done with a 

portable infusion pump (Pegasus infusion pump, Instech/Solomon Laboratories Plymouth 

Meeting, PA, USA) mounted on a specially designed sheep jacket. 

3.2.2. Ablation protocol 

Busulfan was administered orally twice a day in a dose of 11 mg/kg/day for three 

consecutive days.  Ampicillin (1 g b.i.d.) was administered daily for the first 3 days prior 

to the busulfan treatment, and again daily after the start of the treatment. Animals were 

clinically monitored for adverse effects of the chemotherapy such as weight loss, hair 

loss, blood in urine or stools, fever, unusual bleeding or bruising, and loss of appetite. 

3.2.3. Study protocol 

3.2.3.1. 125I-Labeled vs. unlabeled C.E.R.A. PK study 

Identical or near-identical disposition of the tracer and the non-tracer forms of a 

drug is a pre-requisite for TIM methodology. Accordingly, a 200 mU/kg intravenous (IV) 

bolus dose of 125I- C.E.R.A. and a 109 U/kg IV bolus dose of unlabeled C.E.R.A. were 

simultaneously administered to three subjects, and plasma concentrations of both forms 

were followed for about 86 hours. The initial concentration normalized plasma profiles of 

unlabeled and 125I-C.E.R.A. (Figure 3.4) were compared using nonparametric measures, 

namely, AUC [0-last] (calculated by linear trapezoidal rule), and concentrations at the 
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10th, 25th, 50th, 75th, and 90th  time percentile (calculated by linear interpolation). 

Wilcoxon signed rank test was used to test for significance. 

3.2.3.2. TIM experiments  

A detailed description of the theory and principles of the TIM was previously 

published [125] and a schematic representation of the TIM procedure is shown in Figure 

3.1. In the current study, each animal underwent a single TIM PK experiment. A 50 

mU/kg IV bolus dose of 125I-C.E.R.A. was initially administered, then immediately 

followed by an IV infusion at 1.7 mU/h/kg of the tracer to the end of the experiment. An 

IV bolus injection (113 U/kg) of unlabeled C.E.R.A. was administered when the plasma 

125I-C.E.R.A. level approached steady state (i.e., at approximately 24 hours). An average 

of 53 blood samples (~0.5 mL per sample) were collected for plasma 125I-C.E.R.A. from 

zero to 130 hours, while about 50 samples for plasma unlabeled C.E.R.A., were collected 

from 24 to 360 hours. To minimize hemoglobin and red cell loss due to frequent blood 

sampling, blood was centrifuged, the plasma removed, and the red cells re-infused. 

3.2.3.3. TIM control experiments 

The TIM experiment assumes that the drug disposition kinetics is time-invariant. 

To investigate the validity of this assumption in C.E.R.A. kinetics, a ‘half’ TIM 

experiment was conducted. The plasma level of 125I-C.E.R.A. was followed over a period 

of 300 hours after a single IV bolus (66 mU/kg) and a constant rate infusion (2 mU/h/kg) 

administered to a normal BM and a BM ablated subjects. No unlabeled drug was given. 
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3.2.4. Assay 

3.2.4.1. Radiolabeled C.E.R.A. 

125I-C.E.R.A. was prepared by iodination of 1 µg of C.E.R.A. with 1 mCi of 125I-

Na (Perkin Elmer, Billerica, MA, USA) using 8 µg chloramine-T. The 125I-C.E.R.A. 

plasma concentrations and in infusion solutions were determined by non-specific protein 

precipitation followed by separation by centrifugation. Specifically, 1 mL duplicate 

aliquots of plasma sample or infusion solution were added to 12 x 75 glass test tubes, 1 

mL 10% w/v trichloroacetic acid was added, then the precipitated proteins were pelleted 

by a 30 minute centrifugation, and the supernatant was decanted and the pellet was 

counted for radioactivity. 

3.2.4.2. Unlabeled C.E.R.A.  

C.E.R.A. was provided as 5.9 mg of protein/mL solution (Lot No. R78238600, 

Hoffmann-LaRoche Inc.), and was stored at -70˚ C. This stock was used to prepare 

working stocks (in 50 mM sodium phosphate with 0.02% sodium azide and 5% BSA, pH 

7.4) at a concentration of 0.14 mg of protein/mL. Preparation and analysis of the 

unknown C.E.R.A. plasma, standard curve, non-specific binding, and zero standard 

samples were done using a double-antibody radioimmunoassay (RIA) procedure (lower 

limit of quantitation 1 mU EPO/mL) [169]. All plasma samples from the same animal 

were measured in the same assay to reduce variability.  

The unknown C.E.R.A. concentrations were determined using the EPO standard 

curve between the EPO EC80 and EC20 as mU EPO equivalents/mL. The EPO standard 

curve was used instead of C.E.R.A. standard curve for convenience and because of our 

extensive experience with the EPO RIA [169]. The use of the EPO standard curve to 
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measure C.E.R.A. was validated by performing 1:2 dilutions of the C.E.R.A. stock 

solution until the response was between the EC80 and EC20 on the EPO standard curve. 

The dilution corrected responses were determined and had a C.V. of 8.3% across the 

linear range of the EPO standard curve, demonstrating a 1-to-1 relationship between the 

determined mU EPO equivalents/mL and the ng/mL of C.E.R.A. within this range. These 

validations resulted in a C.E.R.A. conversion constant of 71,300 mU/µg of protein 

(n=13). All unknown C.E.R.A. samples were measured in duplicate or triplicate and 

diluted between the EC80 and EC20 on the EPO standard curve, which corresponds to a 

linear C.E.R.A. range of 65.5-647 pg of protein/mL.  

The RIA cannot distinguish between endogenously produced erythropoietin and 

exogenously administered C.E.R.A. in the same plasma sample. To minimize the 

contribution of endogenous EPO in the measured C.E.R.A. concentration, only C.E.R.A. 

plasma samples with concentrations greater than 300 mU EPO equivalents/mL were 

reported. Endogenous EPO contribution for all reported C.E.R.A. plasma samples should 

therefore be <10%, since baseline EPO concentrations in sheep typically range from 10-

30 mU/mL [170, 171]. 

3.2.5. Pharmacokinetic model 

A physiologically based PK model was used to analyze C.E.R.A. TIM tracer data. 

The proposed model consists of 3 tissues: heart–lung segment (HLS), non-target-

mediated (NTM), and target-mediated (TM) disposition, which are interconnected by 

arteries and veins (Figure 3.2). The cardiac output is given by Q,  and Pi  is the fraction of 

blood flow to ith tissue for i=TM or NTM ( 1PP NTMTM =+ ). Based on the assumption 

that drug disposition in the HLS and NTM tissues is linear, the output rates from both 
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tissues ( )(tf i
out , for i = HLS or NTM) were described by the following convolution 

equations: 

UIR(t)*(t)]f out(t)f outInf(t)δ(t)Div[(t)f out
TMNTMHLS +++⋅=                  (3.1) 

(t)UIRtf outPtf out NTM
HLS

NTM
NTM *)()( ⋅=

                               
(3.2) 

and: 

NTMorHLSifortg iEitUIRi =⋅−= ,)()1()(     (3.3) 

where Div  and )(tInf  are IV bolus dose and constant rate infusion of the tracer, 

respectively. )(tδ denotes Dirac delta function, (*) denotes convolution, UIR(t) is the unit 

impulse response function, E is the extraction ratio and g(t) is a transit time density 

function. Under the assumption that HLS and NTM tissues are non-extracting and that 

the drug exhibits identical bi-exponential distribution in both tissues, Eqs. 3.1-3.3 reduce 

to: 

g(t)*(t)]f out(t)f outInf(t)δ(t)Div[(t)f out
TMNTMHLS +++=    (3.4) 

)(*)()( tgtf outPtf out
HLS

NTM
NTM ⋅=        (3.5) 

and: 

10,)exp()1()exp()( ≤≤⋅−⋅⋅−+⋅−⋅⋅= λββλααλ tttg    (3.6) 

where α and β are rate parameters and λ is a mixing parameter. 

The convolution equations, 3.4–3.6, can be conveniently converted to a set of 

algebraic and first-order differential equations, which are simpler to manipulate 

numerically and computationally. Introducing the dummy variables y1 and y2 where: 

)exp(1 t*(t)]f out(t)f outInf(t)δ(t)Div[y TMNTM ⋅−⋅⋅+++⋅= ααλ   (3.7) 
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)exp()1(2 t*(t)]f out(t)f outInf(t)δ(t)Div[y TMNTM ⋅−⋅⋅−+++⋅= ββλ   (3.8) 

and: 

 yytf out
HLS

21)( +=         (3.9) 

similarly, introducing the dummy variables y3 and y4 where: 

)exp(*)(3 ttf outPy HLS
NTM ⋅−⋅⋅⋅= ααλ       (3.10) 

)exp()1(*)(4 ttf outPy HLS
NTM ⋅−⋅⋅−⋅= ββλ      (3.11) 

and: 

yytf out
NTM

43)( +=         (3.12) 

differentiating the convolution equations 3.7, 3.8, 3.10, and 3.11 with respect to time 

gives: 

αλ

αλα

⋅⋅=

++⋅⋅+−=

Divy

tf outtf outInf(t)ydtyd TMNTM

)0(,

))()((

1

11            (3.13)       

βλ

βλβ

⋅−⋅=

++⋅⋅−+⋅−=

)1()0(,

))()(()1(

2

22

Divy

tf outtf outInf(t)ydtyd TMNTM

       (3.14)     

0)0(,)( 333 =⋅⋅⋅+⋅−= ytf outPydtyd HLS
NTM αλα          (3.15)                            

0)0(,)()1( 444 =⋅⋅−⋅+⋅−= ytf outPydtyd HLS
NTM βλβ    (3.16)                   

Nonlinear drug disposition through TM tissues is considered by a receptor-based 

model (Figure 3.3) that follows the generalized target mediated drug disposition model 

[103]. Accordingly, the reversible interaction between drug tracer input concentration (

)(tCin
TM ) and free EPOR in the extracellular space (R), occurs with a second-order rate 

constant (kon), to form drug-EPOR complex (R*), which dissociates at a first-order rate 

constant (koff), is internalized into the intracellular space with a first-order rate constant 
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(kint), and subsequently degraded by lysosomes. The EPOR is produced at a zero-order 

rate constant (ksyn) and degraded at a first-order rate constant (kdeg). The changes in R and 

R* were described by: 

RktCinRkRkkdtdR TM
onoffsyn ⋅−⋅⋅−⋅+= ∗

deg)(                
(3.17)

 

)()( int tCinRkRkkdtdR TM
onoff ⋅⋅+⋅+−= ∗∗

                        
(3.18) 

Based on the assumption that the TM tissues behave as a “well-stirred 

compartment” where distribution equilibrium is achieved rapidly between free drug 

concentration in the tissues and in the emerging venous blood such that the amount 

eliminated in the TM tissue in a time interval Δt is proportional to R* while the amount 

entering the TM tissue over this interval is proportional to )(tCin
TM , a receptor-dependent 

extraction function, )(tETM , was defined as: 

1(t)E(t)Cin

R(t)E TMTMTM ≤≤=
∗

0,
                           

(3.19) 

where )(tCin
TM is given by:  

Q
(t)f out

QP

(t)f outP
(t)Cin

HLS

TM

HLS
TMTM =

⋅

⋅
=         

(3.20) 

and the output rate from the TM tissues is given by: 

)())(1()( tf outtEPtf out
HLS

TMTM
TM ⋅−⋅=                             (3.21)  

At quasi-equilibrium conditions, it is assumed that binding and de-binding of the 

drug with receptor are much faster than the other processes of the system [165] resulting 

in: 

K
R

(t)C )R-R( in
R

(t)C R in
D

tot
TMTM

=
⋅

=
⋅

∗

∗

∗
                               (3.22) 
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where Rtot is total receptor (Rtot = R + R*), KD is drug/EPOR equilibrium 

dissociation constant (KD = koff  / kon). 

Rearranging Eq. 3.22 for R*: 

(t)CinK

(t)CR inR TM
D

tot
TM

+

⋅
=∗                                  (3.23) 

where the change in Rtot was obtained by adding Eqs. 3.17 and 3.18: 

 R(0)R,R)kk(Rkkdt
Rd

0totintdegtotdegsyn
tot =⋅−+⋅−= ∗

  
(3.24) 

where R0 is the initial EPOR concentration. 

The initial receptor concentration (R0 ) cannot be numerically estimated from drug 

plasma concentrations. To solve this problem, Eqs. 3.23 and 3.24 were normalized by R0 : 

(t)CinK

(t)CRR inRR TM
D

0tot
TM

0 +

⋅
=∗        (3.25) 

 1R(0)R,

RR)kk(RRkRkRdt
Rd

0tot

0intdeg0totdeg0syn0
tot

=

⋅−+⋅−= ∗

  
(3.26) 

, and the receptor dependent extraction function, ETM(t), is considered to be proportional 

to R*/R0 rather than R*. Accordingly Eq. 3.19 becomes: 

1(t)E(t)Cin

RR(t)E TMTM
0

TM ≤≤=
∗

0,
     

(3.27) 

Equation 3.25 was modified to account for the TIM procedure: 
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t coldt0for
(t)CinK

(t)CRR in

tcoldtfor
(t)CcoldK

(t)CRR in

RR

TM
D

0tot
TM

D

0tot
TM

0

≤<
+

⋅

>
+

⋅

= 〈∗         (3.28) 

where )(tCcold is plasma non-tracer concentrations and tcold  is time of injection of the 

non-tracer. 

The total plasma concentration that is measured in venous blood ( )(tCtot
out ) 

(Figure 3.2) was given by: 

Qtf outtf outtCtot
out

TMNTM ))()(()( +=                                      (3.29) 

The final model equations were 3.9, 3.12, 3.13-3.16, 3.20, and 3.26-3.29. The 

selection of the final model was based on comparing the Akaike information criterion 

(AIC) of several competing nested models. In a preliminary analysis, it became evident 

that the rapid binding was more favorable than the full TMD model. Sharing the transit 

time density function parameters between HLS and NTM tissues reduced the number of 

rate parameters, Alpha’s and Beta’s, and the mixing parameter, Lambda’s, from six to 

three and resulted in lower AIC value. Another interesting finding in the search for the 

optimal model was that the data doesn’t support the identification of extra-TM tissue 

elimination parameters. Thus, the extraction ratio of HLS and NTM tissues was set to 

zero. 

To improve the estimation of the parameters, the sheep physiological parameters, 

Q and PTM, were fixed to values drawn from literature [51], with Q = 7122.7 ml/h/kg, and 

PTM was assumed to be equal to the fraction of blood flow to the bone marrow (0.0597). 
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3.2.6. Non-compartmental analysis 

To assess the effect of bone marrow ablation on C.E.R.A. total plasma clearance 

(CL), initial volume of distribution (Vd), steady-state volume of distribution (Vss), 

distribution half-life (t1/2(α)), elimination half-life (t1/2(β)), and mean residence time 

(MRT), a non-compartmental analysis was performed by fitting a biexponential equation 

(Cp(t) = C1 · exp(-P1· t) + C2 · exp(-P2· t)    ,  P1 > P2 > 0 )  to unlabeled C.E.R.A. plasma 

concentrations. 

3.2.7. Computational details 

Pharmacokinetic modeling and non-compartmental analysis were conducted using 

WINFUNFIT, an interactive Microsoft Windows program evolved from the general non-

linear regression program FUNFIT [172]. The numerical solution for the final model 

(Eqs. 3.9, 3.12, 3.13-3.16, 3.20, and 3.26-3.29) was fitted to tracer data for the pre- (t < 

tcold) and post- (t > tcold) unlabeled drug administration phases with the plasma non-tracer 

concentrations represented as a cross-validation cubic spline [173]. The best fit was 

accepted only if simulated (t)ETM (Eq. 3.27) values were ≤ 1 at all time points. 

To summarize the uncertainty in the individual subject receptor-related parameter 

estimates, the mean percent standard error (MSE%) of the estimate was calculated for 

each parameter as: 

∑
=

×=
n

1i i

i n100
P
SE

n
1MSE%

       
(3.30) 

where SEi and Pi are the standard error of the parameter and the estimate of the parameter 

for the ith subject, respectively, and n is the number of subjects. 
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Statistical comparisons of mean values for the receptor-related (Table 3.1) and 

non-compartmental PK parameters (Table 3.2) between normal and ablated BM sheep 

populations were done using a one- or two-tailed Student’s t-test with correction for non-

equal variance, if needed. P-values of 0.05 and 0.01 were taken as the levels of 

significance for the type I null hypotheses error.  

3.3. Results  

3.3.1. Checking TIM assumptions 

TIM experiment is based on the assumption that the tracer behaves in the same 

kinetic manner as the parent drug [125]. Figure 3.4 indicates that 125I-C.E.R.A. can be 

considered a proper tracer by having very similar disposition curve to unlabeled 

C.E.R.A., when both forms are mixed together. This finding was confirmed by a non-

significant difference (p > 0.05) in AUC [0-last] and concentrations at various time 

percentiles.  Additionally, TIM experiment assumes that the drug disposition kinetics is 

time-invariant [125].  This assumption is not likely to be violated for the EPO TIM 

experiments due to their relatively short duration. However, for C.E.R.A., due to the 

much slower elimination kinetics requiring approximately 10 times longer TIM 

experiments, a violation of this assumption is a possibility and needs to be tested. This 

was done by performing a TIM experiment in which no parent drug was given. In that 

case, if it is assumed that the kinetics is time-invariant, then the tracer level should 

approach an asymptote in the continued constant rate IV infusion of the tracer. This was 

indeed observed for C.E.R.A. not only before but also after BM ablation (Figure 3.5). 
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3.3.2. Model adequacy 

The average correlation coefficient between predicted (3.9, 3.12, 3.13-3.16, 3.20, 

and 3.26-3.29) and observed 125I-C.E.R.A. plasma concentrations was 0.993 for both 

normal and ablated animal subjects. This finding indicates that the proposed PK model is 

well suited for capturing the behavior of the observed data.  From Table 3.1, the receptor-

related parameters were well estimated with mean percent standard error, MSE%, of less 

than 30% for all parameters, with most of them less than 15%.  The relatively high 

MSE% for C.E.R.A.-EPOR complex internalization rate constant, kint, is due to two 

subjects having a high relative standard error of 69 and 85%, respectively. Calculation of 

the MSE% for kint without those subjects results in a MSE% of less than 17%. A 

relatively small amount of subject to subject variability was observed in all parameters 

with maximum coefficient of variation, CV%, less than 60% and a larger variability was 

found between ablated subjects compared to normal subjects (Table 3.1). 

3.3.3. Effect of busulfan ablation on elimination kinetics 

TIM data before ablation (Figure 3.6, upper panel) shows a significant 

perturbation in the 125I-C.E.R.A. plasma level (square symbols) caused by the bolus 

injection of unlabeled C.E.R.A. (triangle symbols) at about 24 hours. The pronounced 

perturbation, which is a characteristic of non-linear elimination pathway [125], is 

persistent after busulfan treatment (Figure 3.6, lower panel). This pronounced 

phenomenon was consistently observed in all of the animals with ablated BM. This 

behavior of C.E.R.A. differs from what has been reported for EPO, whose elimination is 

completely linearized by BM ablation [115].  
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3.3.4. Effect of busulfan ablation on PK parameters 

The estimated receptor-related micro-parameters obtained from the physiological 

modeling of the tracer component of the TIM are displayed in Table 3.1. The macro-

parameters estimated from the non-compartmental analysis performed on the non-tracer 

component of the TIM are depicted in Table 3.2. The ablation resulted in a highly 

significant reduction (p < 0.01) in the EPOR normalized production rate constant, ksyn / 

R0, EPOR degradation rate constant, kdeg, and C.E.R.A.-EPOR complex internalization 

rate constant, kint, and C.E.R.A. total clearance, CL, to about 44, 28,  0.4, and 60  

percentage of the normal subjects mean values, respectively. A pronounced increase (p < 

0.01) in C.E.R.A. elimination half-life, t1/2(β), and mean residence time, MRT, by 

approximately 2.4-folds, was detected. No significant change (p > 0.05) was observed in 

C.E.R.A./EPOR equilibrium dissociation constant, KD, C.E.R.A. initial volume of 

distribution, Vd, steady-state volume of distribution, Vss, or distribution half-life, t1/2(α). 

3.4. Discussion 

3.4.1. Role of EPOR in C.E.R.A.’s elimination 

The main assumption of our model is that C.E.R.A. is degraded only by cells 

expressing EPOR through binding to those receptors, followed by internalization via 

endocytosis, and subsequent degradation in the lysosomes. Although no specific sites and 

mechanisms of C.E.R.A. metabolism have been identified yet, several lines of evidence 

support our key assumption. In vitro cellular trafficking of EPO and NESP, a 

hyperglycosylated EPO analogue, showed that only cells expressing surface EPOR were 

able to degrade both compounds [113]. Under the assumption that hyperglycosylation 
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and PEGylation exert similar effects on EPO molecule, the role of EPOR in C.E.R.A. 

elimination must be considered.  

C.E.R.A. PK parameters were similar in patients with severe hepatic impairment 

and healthy subjects after single IV bolus dose [119]. The same observation can be made 

when comparing the bioavailability normalized clearance (0.66 vs. 0.90 mL/h/kg), and 

terminal half-life (160 vs. 139 h) of C.E.R.A. in healthy volunteers and patients with 

chronic kidney diseases following subcutaneous (SC) administration of a single dose 

[117, 118]. In accordance with EPO whose clearance in sheep is not affected by 

hepatectomy and nephrectomy [116], C.E.R.A. in vivo elimination seems to be 

independent of liver and kidneys. C.E.R.A. polyethylene glycol (PEG) chains stabilize 

the core glycoprotein against the action of proteases, reducing the probability of 

biotransformation taking place in blood. 

3.4.2. Busulfan ablation and EPOR distribution 

It is proposed, but is still a controversial issue [174] that EPOR is expressed not 

only on erythroid progenitor cells found mainly in the BM but also on non-hematopoietic 

cells present outside the BM, e.g., capillary endothelial cells, myocardiocytes, liver 

parenchyma cells, kidney interstitial cells, retinal cells, myoblasts, neural cells, glia and 

astrocytes [175-178]. Busulfan is a potent and selective inhibitor of myeloid 

hematopoietic stem cells [179], the cells that give rise to the erythroid progenitor cells. 

Thus, it does not seem very likely that non-hematopoietic EPOR expressing cells outside 

the BM will be much affected by busulfan treatment. From our previous work with 

chemical ablation by busulfan [114, 115, 123], no colony-forming unit erythroids, and 

only extremely few burst-forming unit erythroids colonies were found after 6 days of 
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incubation of BM aspirates drawn at day 8 and day 13 following busulfan treatment of 

sheep. Thus, the ablation protocol effectively eradicates BM progenitor cells within 8 

days post-treatment without possibility of future cellular regeneration. In the current 

study, all C.E.R.A. PKs in BM ablated sheep were performed 8 days after the ablation 

procedure ruling out the probability of interaction with regenerated BM progenitors. 

 3.4.3. Effect of busulfan ablation on EPO and C.E.R.A. behavior 

Previous TIM studies showed that EPO elimination kinetics changed from non-

linear to purely linear after ablation of the BM, suggesting that EPOR expressed outside 

BM may contribute to non-saturable clearance of EPO [115]. Contrary to EPO, 

persistence of a significant perturbation in 125I-C.E.R.A. plasma level after introducing a 

high bolus dose of non-tracer in BM ablated sheep indicates a different molecular 

elimination mechanism for C.E.R.A. outside BM. The suggested mechanism is believed 

to be mediated through saturable interaction of C.E.R.A. with “classical EPOR”, and/or 

other receptor populations located outside BM.  The reason for this qualitative difference 

in the behavior of EPO and C.E.R.A., as well as the extra-BM location(s) responsible for 

the persistent C.E.R.A. non-linearity in ablated sheep is not clear. 

 3.4.4. Differentiation of C.E.R.A.’s interaction characteristics with 

hematopoietic and non-hematopoietic EPOR populations 

Combining the receptor-based modeling with TIM experiments conducted before 

and after BM ablation permits the differentiation of erythropoietic and non-erythropoietic 

receptor populations’ characteristics.  This differentiation assumes that the receptor-

related PK parameters of non-ablated animals are representative of EPOR inside and 

outside the BM, while those of ablated animals are representative of EPOR only outside 
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the BM.  From Table 3.1, the ratio of EPOR synthesis rate constant, ksyn to initial total 

EPOR concentration, R0 was significantly reduced by busulfan treatment. This change is 

obtained as a result of a significant reduction in ksyn and/or a significant increase in R0. 

Assuming that R0 was not affected by the ablation, the change in ksyn / R0 can be 

attributed to a difference in ksyn but not in R0, although both parameters appear to be 

important.  Thus, in comparing erythropoietic and non-erythropoietic receptors; the latter 

seem to be formed at a slower rate. The same seems to be the case for both receptor 

populations’ degradation rates, as suggested by the significant reduction in kdeg after BM 

ablation (Table 3.1). 

The internalization and lysosomal degradation processes in our model were 

presented by kint. Study of the fate of 125I-EPO and EPOR in human EPOR expressing 

UT-7 cells, demonstrated that EPO was completely degraded after endocytosis, while few 

of EPORs were recycled back to the surface of the cells [109, 180]. In a different study in 

cultured Ba/F3 and UT-7/EPO cells, 60% of internalized EPO or NESP was re-secreted 

intact. In spite of this, however, the absence of differences in the proportions of EPO and 

NESP subject to degradation or recycling, as well as, the identical internalization rate of 

both compounds ruled out the importance of the fate of the ESAs after binding with 

surface EPOR in influencing their half-lives [113]. In the current model, fractions of 

recycled C.E.R.A. or EPOR were not considered due to our desire to keep the model 

simple.  The interesting finding that C.E.R.A.-EPOR complex internalization rate 

constant, but not the dissociation constant, was significantly reduced by busulfan 

treatment (Table 3.1) suggests that despite erythropoietic and non-erythropoietic 
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populations have the same affinity to C.E.R.A. molecules, the former contribute more 

effectively to C.E.R.A. in vivo elimination.  

 3.4.5. Effect of busulfan ablation on C.E.R.A.’s macro-parameters 

Our finding that some of C.E.R.A. PK parameters determined by non-

compartmental analysis were significantly affected by busulfan-induced BM ablation 

(Table 3.2) provides a strong evidence for the importance of BM in C.E.R.A. disposition. 

Substantial changes in C.E.R.A. total plasma clearance, CL, elimination half-life, t1/2(β), 

and mean residence time, MRT, but not in initial volume of distribution, Vd, steady-state 

volume of distribution, Vss, or distribution half-life, t1/2(α), indicate that busulfan 

treatment affects the elimination phase (β phase) of C.E.R.A., and is consistent with the 

finding of the physiological model that BM plays a major role in C.E.R.A. elimination. 

Similar changes in EPO CL, t1/2(β), MRT, Vd, and t1/2(α)  were previously reported from 

PK studies performed in pre- and post-BM ablated sheep [114], suggesting that ESAs 

have a common elimination pathway that depends on hematopoietic EPOR. 

The substantial reduction in C.E.R.A. internalization rate constant, kint, after 

busulfan treatment can explain the significant decrease in CL, as well as the significant 

increase in t1/2(β), and MRT. However, the C.E.R.A. elimination after the ablation of the 

BM could be mediated by EPOR located outside the BM, or other EPOR independent 

elimination pathway(s). However, questions regarding location and nature of such 

pathway(s) require additional investigations. 

3.5. Conclusion 

A receptor-based recirculation model was successfully developed. Similar to the 

classical receptor based compartmental model [103, 165], the developed model accounts 
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for drug-receptor binding, receptor turnover, and drug/receptor complex endocytosis and 

lysosomal degradation. However, the developed model differs from the classical 

approach in retaining the key features of mammalian anatomy, namely, the heterogeneity 

of the tissue building blocks and the connection via the vascular network. Additionally, 

the developed model keeps restrictive assumptions to the minimum through 

characterization of the tissue blocks by model-independent transit time distributions in 

the framework of linear systems principles (i.e., input-output convolution relationship).  

The developed model, together with the TIM, was able to quantitatively assess the 

interaction of C.E.R.A. with hematopoietic and non-hematopoietic EPOR population in 

adult sheep. As predicted by the model, the hematopoietic EPOR has higher production 

and degradation rates, similar affinity to C.E.R.A., and it is more involved in C.E.R.A’s 

in vivo elimination, compared to the non-hematopoietic population. In agreement with the 

physiologic model, the non-compartmental analysis provided clear evidence that BM 

plays a major role in the in vivo elimination of C.E.R.A. 

The TIM detected a saturable interaction between C.E.R.A. and non-

hematopoietic EPOR. The saturable nature of the non-erythropoietic, non-BM pathway(s) 

for  C.E.R.A  in contrast to EPO predicts two fundamental differences : 1. An increasing 

fraction of  C.E.R.A is utilized for erythropoiesis for  increasing concentrations, and  2.  

The clearance of C.E.R.A  becomes more limited for increasing concentrations.  Taken 

together these differences favor a more efficacious and prolonged action for C.E.R.A. 
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Table 3.1. Receptor-related parameter estimates obtained from the tracer component of the C.E.R.A. TIM study in normal and BM 
ablated sheep using the physiological model. 

Parameter (units) Definition 
Normal (n = 5) Ablated (n = 5) 

p-value 
MSE% 

(n = 10) Mean (CV%) Mean (CV%) 

ksyn / R0 (1/h) Initial EPOR normalized synthesis rate constant 164.3 (31.3) 71.5 (48.1) < 0.01 8.7 

kdeg (1/h) EPOR degradation rate constant 42.5 (32.4) 11.7 (57.9) < 0.01 8.7 

KD (pmol) C.E.R.A./EPOR equilibrium dissociation constant 88.4 (18.3) 62.1 (44.8) > 0.05 12.3 

kint (1/h) C.E.R.A./EPOR internalization rate constant 2.41 (17.7) 0.009 (44.9) < 0.01 29 

CV%, Coefficient of Variation. MSE%, Mean Percent Standard Error. 
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Table 3.2. Parameter estimates obtained from the non-tracer component of the C.E.R.A. 
TIM study in normal and BM ablated sheep using non-compartmental 
analysis. 

Parameter 

(units) 
Definition 

Normal (n = 5) Ablated (n = 5) 
p-value 

Mean (CV%) Mean (CV%) 

CL (mL/h/kg) Total plasma clearance 0.74 (20.9) 0.44 (15.5) < 0.01 

Vd (mL/kg) 

Initial volume of 

distribution 

19.2 (27.2) 24.6 (20.2) > 0.05 

Vss (mL/kg) 

Steady-state distribution 

volume 

42.0 (29.2) 59.3 (20.0) > 0.05 

MRT (h) Mean residence time 56.6 (13.7) 135.9 (12.7) < 0.01 

t1/2(α) (h) Distribution half-life 0.65 (0.49) 0.66 (0.53) > 0.05 

t1/2(β) (h) Elimination half-life 40.0 (13.5) 95.1 (12.6) < 0.01 

CV%, Coefficient of Variation. 
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Figure 3.1. Scheme of the tracer interaction method (TIM) 
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Figure 3.2. Scheme of the developed physiologic model. Symbols are defined in the text. 
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Figure 3.3. Scheme of the receptor-based model in target mediated disposition tissues. 
Symbols are defined in the text. 
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Figure 3.4. C.E.R.A. concentration-time profiles normalized to the initial measured concentration following simultaneous bolus 
administration of 125I-labeled and unlabeled C.E.R.A. 
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Figure 3.5. TIM concentration-time profiles for control animals (unlabeled bolus dose not administered) in both normal and BM 
ablated animals. 
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Figure 3.6. Representative fits of the receptor-based recirculation model to the 125I-
C.E.R.A. tracer data (squares) in adult sheep with normal and ablated BM (top 
and bottom panels). The non-tracer C.E.R.A. data (triangles) are fitted to a 
general cross validation cubic spline function. 
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CHAPTER 4. DIFFERENTIAL PHARMACOKINETIC ANALYSIS 

OF IN VIVO ERYTHROPOIETIN RECEPTOR INTERACTION 

WITH RECOMBINANT HUMAN ERYTHROPOIETIN (EPO) AND 

CONTINUOUS ERYTHROPOIETIN RECEPTOR ACTIVATOR 

(C.E.R.A.) IN ADULT SHEEP 

4.1. Introduction 

Erythropoietin (EPO) is a 34-kD glycoprotein hormone that regulates 

erythropoiesis. It binds to cell surface receptors (EPOR) on bone marrow erythroid 

progenitor cells (burst-forming unit-erythroids and colony-forming unit-erythroids), 

promoting their proliferation and differentiation into mature red blood cells (RBC) and 

protecting them from apoptosis [108, 181]. Binding of EPO to the cell surface induces 

dimerization of two EPOR molecules, which, in turn, initiates the Janus kinase 

intracellular signal transduction required for erythropoiesis [182]. Simultaneously, 

activation of EPOR by EPO binding promotes degradation of the formed complex via 

internalization followed by targeting to lysosomes [109]. On a macroscopic level, 

receptor-mediated elimination is responsible for the nonlinear clearance of EPO that is 

observed in various animal species [121, 183-185], including humans [122]. 

Continuous Erythropoietin Receptor Activator (C.E.R.A.) is a novel 

erythropoiesis stimulating agent (ESA). Unlike EPO, C.E.R.A. contains methoxy 

polyethylene glycol chains linked to amino groups via amide bonds, resulting in a 

molecule weighing approximately 60 kD [162]. Studies in humans have shown that 

C.E.R.A. has a long half-life (approximately 130 hours) [117] and is able to correct 

anemia and maintain a stable hemoglobin level for extended intervals. These features 
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allow the direct conversion of patients with chronic kidney disease from shorter 

frequencies (three times a week to one time every second week) EPO treatment to once a 

month C.E.R.A. administration [164, 186]. 

Preclinical studies in animal models demonstrated that C.E.R.A. has slower 

systemic clearance, longer elimination half-life, and higher in vivo erythropoietic activity 

than EPO [96, 111]. The differences in pharmacokinetic (PK) and pharmacodynamic 

(PD) properties of EPO and C.E.R.A. have been hypothesized to be attributed to a unique 

interaction between C.E.R.A. and EPOR, which involves a slower association, but a 

slightly faster dissociation, than those observed between EPOR and EPO. However, this 

hypothesis was based solely on in vitro binding studies that reported 50 to 100-fold lower 

affinity of C.E.R.A. for EPOR binding sites [110].  

In order to elucidate the mechanism behind the significantly slower elimination 

and prolonged activity of C.E.R.A. in vivo, we studied the interactions between EPOR 

and both EPO and C.E.R.A. in adult sheep using a sensitive PK methodology, the tracer 

interaction method (TIM) [125], and a receptor-based physiological recirculation model. 

The model incorporates parameters for drug-receptor binding, receptor turnover, and 

drug-receptor complex endocytosis. The modeling is done within a physiological 

modeling framework that considers heterogeneous tissues connected through a 

recirculatory vascular network. 

4.2. Materials and methods 

4.2.1. Animals 

All animal care and experimental procedures were approved by the University of 

Iowa Institutional Animal Care and Use Committee and adhere to the ‘Principles of 
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Laboratory Animal Care’ (NIH publication #85-23, revised in 1985). Seven healthy 

young adult sheep, 2-4 months old, 24.9±3.5 kg (mean±SD), were selected for the EPO 

experiments, and five sheep, 2-4 months old, 28.4±2.44 kg, were used for the C.E.R.A. 

experiments. The animals were housed in an indoor, light- and temperature-controlled 

environment, with ad lib access to feed and water. Prior to study initiation, jugular 

venous catheters were aseptically placed under pentobarbital anesthesia. Intravenous 

ampicillin (1 g) was administered daily for 3 days following catheter placement. The 

long-term infusion of C.E.R.A. required in the TIM experiments were done with a 

portable infusion pump (Pegasus infusion pump, Instech/Solomon Laboratories Plymouth 

Meeting, PA, USA) mounted on a specially designed sheep jacket. 

4.2.2. Study protocol 

A detailed description of the theory and principles of the TIM was previously 

published [125]. In the current study, each animal underwent a single TIM PK 

experiment. A single IV bolus dose of 125I- labeled drug (465 mU/kg for EPO and 50 

mU/kg for C.E.R.A.) was initially administered, then immediately followed by a constant 

rate infusion of the tracer (117 mU/h/kg for EPO and 1.6 mU/h/kg for C.E.R.A.). An IV 

bolus injection of the non-tracer (94.8 U/kg for EPO and 104 U/kg for C.E.R.A.) was 

administered when the plasma level of the tracer approached steady state (at 

approximately 4 hours for EPO and 20 hours for C.E.R.A.). Blood samples (0.5 mL per 

sample) were collected subsequent to the tracer and the non-tracer administrations for 

determination of plasma EPO and plasma C.E.R.A. levels. For the tracer, about 38 

samples were collected for EPO from 0 to 14 hours, while about 50 samples were 

collected for C.E.R.A. from 0 to 85 hours. For the non-tracer, 24 samples were collected 
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for EPO from 4 to 14 hours, while 30 samples were collected for C.E.R.A. from 20 to 85 

hours. The longer sampling period for C.E.R.A. was required due to the slower 

elimination of C.E.R.A.. To minimize hemoglobin and red cell loss due to frequent blood 

sampling, blood was centrifuged, the plasma removed, and the red cells re-infused.  

4.2.3. Assay 

4.2.3.1. Radiolabeled drug 

Radiolabeled EPO (125I-EPO) and radiolabeled C.E.R.A. (125I-C.E.R.A.) were 

prepared by iodination of 1 µg of the drug with 1 mCi of 125INa (Perkin Elmer, Billerica, 

MA, USA) using 8 µg chloramine-T (Sigma-Aldrich, St. Louis, MO, USA) in a 10 

second reaction that is terminated with 24 µg sodium metabisulfite (Sigma-Aldrich, St. 

Louis, MO, USA).  This reaction mixture is desalted on a Sephadex 25 column (PD10, 

GE Healthcare Biosciences Corp., Piscataway, NJ, USA) and stored at 4° C before final 

purification on a size separation column (Sephadex g100, GE Healthcare Biosciences 

Corp.). The radiolabeled drug was measured in plasma samples or infusion solution by 

non-specific protein precipitation followed by separation by centrifugation.  Specifically 

1 mL duplicate aliquots of plasma sample or infusion solution are added to 12 x 75 glass 

test tubes, 1 mL 10% w/v trichloroacetic acid (TCA) is added, the precipitated proteins 

are pelleted by a 30 minute centrifugation, the supernatant is decanted and the pellet is 

counted for radioactivity. 

4.2.3.2. Unlabeled drug 

Plasma EPO concentrations were measured in triplicate using a double-antibody 

radioimmunoassay (RIA) procedure (lower limit of quantitation 1 mU/mL) [169]. All 

samples from the same animal were measured in the same assay to reduce variability. 
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C.E.R.A. was provided as 5.9 mg of protein/mL solution (Lot No. R78238600, 

Hoffmann-LaRoche Inc.), and was stored at -70° C. This stock was used to prepare 

working stocks (in 50 mM sodium phosphate with 0.02 % sodium azide and 5% BSA, pH 

7.4) at a concentration of 0.14 mg of protein/mL. Preparation and analysis of the 

unknown C.E.R.A. plasma, standard curve, non-specific binding, and zero standard 

samples was identical to the unlabeled EPO determination. The unknown C.E.R.A. 

concentrations were determined using the EPO standard curve between the EPO EC80 and 

EC20 as mU EPO equivalents/mL. The EPO standard curve was used instead of C.E.R.A. 

standard curve for convenience and our extensive experience with the EPO RIA. The use 

of the EPO standard curve to measure C.E.R.A. was validated by performing 1:2 

dilutions of the C.E.R.A. stock solution until the response was between the EC80 and 

EC20 on the EPO standard curve. The dilution corrected responses were determined and 

had a C.V. of 8.3% across the linear range of the EPO standard curve, demonstrating a 1-

to-1 relationship between the determined mU EPO equivalents/mL and the ng/mL of 

C.E.R.A. within this range. These validations resulted in a C.E.R.A. conversion constant 

of 71,300 mU/µg of protein (n=13). All unknown C.E.R.A. samples were measured in 

duplicate or triplicate and diluted between the EC80 and EC20 on the EPO standard curve, 

which corresponds to a linear C.E.R.A. range of 65.5-647 pg of protein/mL. 

The RIA cannot distinguish between endogenously produced erythropoietin and 

exogenously administered EPO or C.E.R.A. in the same plasma sample. To minimize the 

contribution of endogenous EPO in the measured drug concentration, only plasma 

samples with concentrations greater than 300 mU EPO equivalents/mL were reported. 

Endogenous EPO contribution for all reported EPO and C.E.R.A. plasma samples should 



84 
 

 

 

therefore be <10%, since baseline EPO concentrations in sheep typically range from 10-

30 mU/mL [170, 171]. 

4.2.4. Pharmacokinetic analysis 

The previously introduced receptor-based recirculation PK model in Chapter 3, 

section 3.2.5  was adopted to analyze the kinetics of EPO and C.E.R.A. using tracer data 

and the TIM methodology [125]. Briefly, the model consists of three tissues, heart-lung 

segment (HLS), non-target mediated disposition (NTM) and target mediated disposition 

(TM), interconnected by arteries and veins (Figure 3.2). The cardiac output is given by Q 

,  and Pi  is the fraction of blood flow to ith tissue for i=TM or NTM ( 1PP NTMTM =+ ). 

Drug disposition in the HLS and NTM tissues was assumed to be linear. Therefore, the 

output rates from both tissues ( )(tf i
out , for i = HLS or NTM) are described by the 

following convolution equations (* denotes convolution) that relate the input and input 

rates for a given tissue to a unit impulse response function (UIR(t)): 

UIR(t)*(t)]f out(t)f outInf(t)δ(t)Div[(t)f out
TMNTMHLS +++⋅=                               (4.1) 

)(*)()( tUIRtf outPtf out
HLS

NTM
NTM ⋅=

                                
(4.2) 

where )(tDiv δ⋅  and )(tInf  are IV bolus dose and constant rate infusion of the tracer, 

respectively. 

Assuming both HLS and NTM tissues are non-extracting, the UIR(t)  function 

reduces to a transit time density function ( )(tg ) that was nonparametrically described as 

a biexponential function: 

10,

)exp()1()exp()()(

≤≤

⋅−⋅⋅−+⋅−⋅⋅==

λ

ββλααλ tttgtUIR
            (4.3) 
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Nonlinear drug disposition through TM tissues was considered by a receptor-

based model (Figure 3.3) that follows the generalized target mediated drug disposition 

model [103] and its quasi-equilibrium approximation  [165]. Accordingly, the interaction 

between drug input concentration ( )(tCin
TM ) and free EPOR in the extracellular space (R), 

occurs with a second-order rate constant (kon), to form a Drug-EPOR complex (R*), 

which dissociates at a first-order rate constant (koff), or is internalized into the intracellular 

space with a first-order rate constant (kint), and then subsequently degraded by lysosomes. 

The EPOR is assumed to be produced at a zero-order rate constant (ksyn) and degraded at 

a first-order rate constant (kdeg) (Figure 3.3) 

At quasi-equilibrium conditions, where binding and de-binding of the drug with 

receptor are much faster than the other processes of the system: 

K
R

(t)C )R-R( in
R

(t)C R in
D

tot
TMTM

=
⋅

=
⋅

∗

∗

∗
                               (4.4) 

where Rtot is total EPOR, (Rtot = R + R*), KD is drug/EPOR equilibrium dissociation 

constant (KD = koff  / kon). 

Rearranging Equation 4.4 for R* and normalizing the resulting equation by initial total 

EPOR (R0) gives: 

(t)CinK

(t)CRR inRR TM
D

0tot
TM

0 +

⋅
=∗                                 (4.5) 

The changes in R and R* were added to obtain the change in Rtot and the resulting 

equation was normalized by R0: 

 1R(0)R,

RR)KK(RRKRKRdt
Rd

0tot

0intdeg0totdeg0syn0
tot

=

⋅−+⋅−= ∗

  
(4.6) 
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The normalization in Eqs. 4.5 and 4.6 is necessary because R0 cannot be estimated from 

drug plasma concentrations. 

To establish a link between the receptor-based model in TM tissues and the rest of 

the recirculation model, a receptor-dependent extraction function, )(tETM , was defined 

as:
  

1(t)E(t)Cin

RR(t)E TMTM
0

TM ≤≤=
∗

0,
                           

(4.7) 

where )(tCin
TM is given by:  

Q
(t)f out

QP

(t)f outP
(t)Cin

HLS

TM

HLS
TMTM =

⋅

⋅
=                         

(4.8) 

Assuming that distribution equilibrium is achieved rapidly between the tissues 

and the emerging venous blood the output rate from TM tissues is given by: 

)())(1()( tf outtEPtf out
HLS

TMTM
TM ⋅−⋅=                              (4.9)  

Finally, the total plasma tracer concentration that is measured in the venous blood 

( )(tCtot
out ) is given by: 

Qtf outtf outtCtot
out

TMNTM ))()(()( +=                                       (4.10) 

Equations 4.1 to 4.3 were conveniently converted to the following equivalent 

equations (Eqs. 4.11-4.16). The latter six equations are simpler to deal with numerically 

and computationally because they include first-order differential equations and avoid the 

convolution operator. 

 
αλ

αλα

⋅⋅=

++⋅⋅+−=

Divy

tf outtf outInf(t)ydtyd TMNTM

)0(,

))()((

1

11

     (4.11) 
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 βλ

βλβ

⋅−⋅=

++⋅⋅−+⋅−=

)1()0(,

))()(()1(

2

22

Divy

tf outtf outInf(t)ydtyd TMNTM

     (4.12) 

yytf out
HLS

21)( +=                                        (4.13) 

0)0(,)( 333 =⋅⋅⋅+⋅−= ytf outPydtyd HLS
NTM αλα      (4.14) 

0)0(,)()1( 444 =⋅⋅−⋅+⋅−= ytf outPydtyd HLS
NTM βλβ                   (4.15) 

yytf out
NTM

43)( +=                                         (4.16) 

Equation (4.5) was modified to account for the TIM procedure: 

t coldt0for
(t)CinK

(t)CRR in

tcoldtfor
(t)CcoldK

(t)CRR in

RR

TM
D

0tot
TM

D

0tot
TM

0

≤<
+

⋅

>
+

⋅

= 〈∗             (4.17) 

where )(tCcold is plasma non-tracer concentrations represented as  a cross-validation 

cubic spline [173] when fitting the model to tracer data and tcold  is time of injection of the 

non-tracer. 

To improve the estimation of the parameters, the sheep physiological parameters, 

Q and PTM, were fixed to values drawn from literature [51], with Q = 7122.7 ml/h/kg, and 

PTM was assumed to be equal to the fraction of blood flow to the bone marrow (0.0597). 

4.2.5. Computational details 

The numerical solution for Equation 4.10 was individually fitted to sheep tracer 

data for the pre- (t < tcold) and post- (t > tcold) unlabeled drug administration phases using 

WINFUNFIT, an interactive Microsoft Windows program evolved from the general non-

linear regression program FUNFIT [172]. The ratio of maximum unlabeled drug 



88 
 

 

 

concentration to equilibrium dissociation constant, KD , was calculated and taken as a 

nonlinearity index (NLI). Statistical comparisons of mean values for the TIM receptor-

related PK parameters (Table 4.1) between EPO and C.E.R.A. were done using a one-

tailed Student’s t-test with correction for non-equal variance, if needed, after testing by 

an F-ratio test. p-values of 0.05 and 0.01 were taken as the levels of significance for the 

type I null hypotheses error. All statistical tests were done using SAS/STAT (SAS 

Institute Inc., Cary, NC). 

4.3. Results  

The elimination patterns of both EPO (Figure 4.1) and C.E.R.A. (Figure 4.2) were 

nonlinear, as evidenced by the significant perturbation in plasma tracer level (square 

symbols) caused by the injection of the non-tracer bolus (triangle symbols). This 

pronounced phenomenon was observed consistently in all animals. The plasma tracer 

concentrations were adequately described by the receptor-based recirculation model, as 

indicated by mean correlation coefficients of 0.984 and 0.993 for the fits of EPO and 

C.E.R.A. data, respectively. This conclusion was supported by strong correlations 

between predicted and observed plasma tracer concentrations in both EPO and C.E.R.A. 

treatment populations (Figure 4.3). 

Receptor-related parameters obtained from the model fittings are summarized in 

Table 4.1. The inter-individual coefficients of variation (CV) of all parameter estimates 

were less than 33%, suggesting small variability between subjects. EPO and C.E.R.A. 

had significantly different parameter values (p < 0.05). The most extreme difference was 

observed for the equilibrium dissociation constant (KD), where the mean value was 15-

fold larger for C.E.R.A. than for EPO. The nonlinearity index (NLI), the initial total 
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EPOR-normalized production rate constant (ksyn / R0), and the internalization rate 

constant of the drug/EPOR complex (kint), were approximately 7.5-, 8-, and 10-fold 

higher for EPO than for C.E.R.A., respectively. The EPOR degradation rate constant 

(kdeg) was the most similar for the two compounds with a mean value that was about 1.5-

fold larger for EPO than for C.E.R.A.. The EPOR underwent faster elimination in 

presence of EPO than in presence of C.E.R.A., as indicated by mean half-life values of 

both degradation (t1/2(kdeg)) and internalization (t1/2(kint)) processes that were 1.5- and 10-

fold longer for C.E.R.A., respectively. 

4.4. Discussion 

The present study hypothesizes that EPOR-expressing cells play a major role in 

ESAs elimination from the body and that this process is initiated by binding of the ESA 

to surface EPOR, followed by internalization and degradation by lysosomes. Thus, 

changes in receptor homeostasis due to EPO or C.E.R.A. administration, as well as 

receptor binding and endocytosis properties of both hormones, should explain their 

different rates of metabolism. In this work we indirectly quantify these processes using 

the TIM, which is an experimental procedure that specifically deals with the competition 

between labeled and unlabeled forms of a drug on receptor binding sites enabling the 

kinetic mechanism of the binding to be elucidated. 

4.4.1. Receptor-based in vivo elimination of EPO and C.E.R.A. 

Our previous studies provided significant evidence that EPOR-mediated pathways 

play a major role in the in vivo elimination of EPO and C.E.R.A.. Busulfan-induced bone 

marrow ablation resulted in pronounced reduction of EPO clearance in adult sheep [114, 

115]. The same phenomenon was observed for C.E.R.A. as a consequence of busulfan 
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administration to adult sheep (Chapter 3). Furthermore, in phlebotomized sheep, a 

significant correlation was found between increases in EPOR mRNA and EPO clearance 

[120]. 

Kidneys and liver are not considered important in the in vivo elimination of EPO 

[116]. Likewise, given the lack of differences in C.E.R.A. PK properties among healthy 

humans, chronic kidney disease patients, and patients with impaired hepatic function, it 

appears that these organs are also unimportant in C.E.R.A. elimination [117-119]. Long-

term stability of EPO in whole blood at room temperature indicates no significant 

biotransformation taking place in circulation [187].  

4.4.2. EPOR turnover 

For a fixed volume of target-mediated tissues, free EPOR concentration (R) is 

proportional to EPOR mass and therefore determines the capacity of the receptor-

mediated elimination process. The larger the R, the greater the rate of elimination via the 

EPOR route. Assuming negligible variations in pre-administration receptor concentration 

(R0) between animals in the EPO and C.E.R.A. treatment groups, the observed difference 

in ksyn / R0 is mainly due to a difference in ksyn.  The ksyn / R0 ratio was eightfold larger, 

while kdeg was only about twofold larger, for EPO than for C.E.R.A. (p < 0.01) (Table 

4.1). This finding suggests that animals injected with EPO have experienced a greater up-

regulation in EPOR than those injected with C.E.R.A.. In a study analyzing the effect of 

EPO on regulation of its receptor expression in sheep, it was found that EPOR mRNA 

was up-regulated as a result of increased endogenous EPO levels after phlebotomy 

induced anemia [120]. An in vitro study using murine cell lines reported an increase in 

the number of EPOR per cell after 6 days of incubation with EPO, without altering EPOR 
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binding affinity [188]. In a different study, erythroleukemic cells cultured in presence of 

EPO had a higher number of EPOR than cytokines stimulated cells [189]. EPOR up-

regulation was also reported in mice cerebral vascular endothelial cells after treatment 

with EPO [190].   

4.4.3. EPOR binding with EPO and C.E.R.A. 

The equilibrium dissociation constant (KD, the ratio of the dissociation and 

association rate constants) was significantly higher for C.E.R.A. (p < 0.01, Table 4.1), 

indicating that it has a slower association rate and/or a faster dissociation rate than EPO. 

Analysis of equilibration curves in a comparative in vitro binding study for EPO and 

C.E.R.A. with soluble recombinant EPOR and EPOR expressing cultured human cells 

indicated that the difference in affinity is driven mainly by slower association [110].  

The faster occupation of EPOR by EPO molecules suggests that, for a given time 

interval, production of the EPO/EPOR complex is higher than production of the 

C.E.R.A./EPOR complex. The faster binding between EPO and EPOR on the cell surface 

can explain the significantly higher ksyn / R0 in the EPO treatment group, where rapid 

disappearance of free EPOR from the medium stimulates the synthesis of more receptors 

by a positive feedback control mechanism.  

4.4.4. Disposition nonlinearity of EPO and C.E.R.A. 

According to Equation (4.5), the degree of nonlinearity is determined by KD and 

(t)Cin
TM , the input concentration to target-mediated tissues. When KD and (t)Cin

TM  have 

comparable values, the drug metabolic rate depends nonlinearly on drug concentration. A 

very large KD value or a very small (t)Cin
TM  results in linear, first-order kinetics. The 

maximum degree of nonlinearity is expected at the highest (t)Cin
TM  observed at the highest 
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observed plasma concentration. The nonlinearity index was much greater than 1 (Table 

4.1), which indicates a significant degree of nonlinearity for both drugs. The nonlinearity 

of  EPO was greater, in accordance with its larger nonlinearity index (p < 0.01). 

4.4.5. Endocytosis and metabolism of surface-bound EPO and C.E.R.A. 

Slow internalization of the drug/receptor complex to the intracellular space 

reduces drug elimination by increasing the probability of drug dissociation into the 

medium; slow degradation in lysosomes counteracts elimination by increasing the 

likelihood that the complex will be re-secreted, intact, to the cell surface. The parameter 

kint lumps the processes of internalization and degradation together. Thus, the results of 

the current analysis cannot elucidate which process drives the smaller kint value observed 

for C.E.R.A. (Table 4.1). Panchapakesan et.al. hypothesized that the very slow 

association but fast dissociation between C.E.R.A. and EPOR results in a brief binding 

period that is barely long enough to permit internalization [191]. Our finding that the 

difference between EPO and C.E.R.A. kint values agree well with the differences in KD 

values (10 versus 15-folds, respectively) supports the hypothesis of Panchapakesan et al. 

and suggests that internalization of surface-bound EPOR is the rate-limiting step in post-

binding events. 

Although EPOR expressed  in cultured Ba/F and UT-7/EPO cells was bound 

approximately 5 times more quickly by EPO than by darbepoetin alpha,  both drugs were 

internalized at the same rate and there were no differences in their fractions degraded or 

re-secreted after internalization [113]. Contrary to these patterns, we found that EPO and 

C.E.R.A. had different kint values, which suggests that the metabolic fate of the C.E.R.A.-

EPOR complex is unique.   
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4.4.6. In vivo erythropoiesis of EPO and C.E.R.A. 

It has been proposed that ESAs function via the same mechanism [192]: they 

interact directly with EPOR on the cell surface and induce a conformational change in the 

receptor, which triggers the intracellular Janus kinase signal transduction required for the 

production of RBCs [182]. In this setup, the bound receptor concentration can serve as a 

PD marker of the pharmacological effect of ESAs with KD and kint values being 

considered as qualitative measures for receptor occupancy and receptor activation 

duration, respectively. The fact that C.E.R.A. has a higher KD value (i.e., lower 

occupancy) suggests that the greater in vivo erythropoietic activity reported for C.E.R.A. 

compared with EPO [111] can be attributed to the slower internalization and/or 

degradation of C.E.R.A.-EPOR complex (i.e., smaller kint value) which results in 

prolonged signaling in vivo. Increased EPOR occupancy increases the rate of 

erythropoiesis, not by increasing the rate of cell division, but by increasing the 

recruitment and differentiation of more erythroid progenitor cells. However, once all 

available progenitors are actively dividing, the occupation of further receptors becomes 

trivial [192]. This hypothesis is supported by the fact that maximum erythropoiesis is 

elicited even when only a minor fraction of EPORs is activated [109, 193]. Accordingly, 

it seems that the erythropoietic activity of ESAs depend on their ability to recruit more 

cells rather than their ability to occupy more receptors. In presence of equivalent receptor 

occupation efficiencies (i.e., equal KD values), cell recruitment potential depends solely 

on the survival of ESA molecule after binding with EPOR or even after endocytosis that 

is increased by decreased kint values. Therefore, long-acting EPO analogues such as 
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darbepoetin alpha receptors [194] and C.E.R.A. [111] demonstrate higher potency than 

EPO in vivo despite their lower affinity to EPOR.   

4.5. Conclusion 

The adopted receptor-based recirculation model accounts for: 1) drug-receptor 

binding, 2) receptor turnover, and 3) drug/receptor complex endocytosis and lysosomal 

degradation enabling an in-depth mechanistic analysis of the PK/PD of EPO and 

C.E.R.A. in adult sheep. As predicted by the model, the slower elimination of C.E.R.A. 

can be explained in terms of the following mechanisms: 1) less EPOR up-regulation 

induced by C.E.R.A. administration; 2) slower binding of C.E.R.A. to EPOR; and 3) 

reduced internalization and/or degradation rate of surface-bound C.E.R.A.. Slower 

C.E.R.A./EPOR complex elimination explains the greater in vivo erythropoiesis observed 

for C.E.R.A. [111] despite its lower affinity to its receptor. 
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Table 4.1. Receptor-related pharmacokinetic parameters of EPO and C.E.R.A. obtained by fitting a receptor-based recirculation model 
to TIM data from adult sheep. 

Parameter (units) Definition 
EPO (n = 7) C.E.R.A. (n = 5) 

p-value 
Mean (CV%) Mean (CV%) 

ksyn / R0 (1/min) Initial EPOR normalized synthesis rate constant 21.0 (17) 2.70 (31.3) < 0.01 

kdeg (1/min) EPOR degradation rate constant 1.10 (19.6) 0.70 (32.4) < 0.01 

t1/2(kdeg)* (min) EPOR degradation half-life 0.66 (19.9) 1.06 (29) < 0.05 

KD (pmol) Drug/EPOR equilibrium dissociation constant 6.00 (29.6) 88.4 (18.3) < 0.01 

NLI Nonlinearity index 106 (31.1) 14.8 (20.2) < 0.01 

kint (1/min) Drug/EPOR internalization rate constant 0.40 (2.2) 0.04 (17.7) < 0.01 

t1/2(kint)* (min) Drug/EPOR internalization half-life 1.72 (2.2) 17.7 (16.1) < 0.01 

CV%, Coefficient of Variation. *half-lives were calculated as: ln(2)/corresponding rate constant. 
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Figure 4.1. Representative fit of the receptor-based recirculation model to the 125I-EPO  TIM tracer data (squares) in adult sheep. The 
non-tracer EPO data (triangles) are fitted to a general cross validation cubic spline function. 
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Figure 4.2. Representative fit of the receptor-based recirculation model to the 125I-C.E.R.A. TIM tracer data (squares) in adult sheep. 
The non-tracer C.E.R.A. data (triangles) are fitted to a general cross validation cubic spline function. 
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Figure 4.3. Predicted versus observed plasma tracer concentrations in EPO and C.E.R.A. treatment populations. 
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CHAPTER 5. SENSITIVITY ANALYSIS OF THE RECEPTOR-

BASED RECIRCULATION MODEL 

 5.1. Introduction 

Physiologically based pharmacokinetic (PBPK) models follow the anatomical 

scheme of mammalian species by connecting physiologically realistic compartments, 

representing kinetically important organs or tissues via arterial and venous blood 

pathways. The models comprise physiological parameters such as organ volumes, blood 

flow rates, etc., as well as drug-dependent parameters such as tissue-to-blood partition 

coefficients, tissue membrane permeabilities, metabolic rate parameters, and protein 

binding. A common feature for all these parameters is inherent variability, and hence a 

successful and complete PBPK model will describe the effect of variability and 

uncertainty of the underlying parameters on the model output(s). Sensitivity analysis is 

the appropriate mathematical tool for the later problem [195]. Recently, sensitivity 

analysis has drawn a lot of attention in PBPK modeling, especially in the field of risk 

assessment and toxicokinetics [196-199]. 

Sensitivity analysis in pharmacokinetics (PK) and pharmacodynamics (PD) is 

defined as the systematic investigation of the relationship between PK or PD model 

response(s) and perturbations occurring in the system structure and/or parameters [200]. 

Sensitivity analysis provides detailed information regarding the time course of the impact 

of each model parameter on model output(s) [196, 198, 199]. This information can be 

useful at the initial model specification stage in: (1) discriminating between which 

parameters that needs to be included and those that should be left out of the model [195]; 

and (2) deriving an optimal PK or PD experimental design (e.g., sampling times, input 
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doses, etc.) [196]. At the model assessment and validation stage, the sensitivity analysis 

allows to characterize the degree of confidence in the final parameter estimates [195]. 

Sensitivity analysis methods can be classified to “Local” and “Global”. The Local 

methods depend on computation of analytical sensitivities; the partial derivatives of 

model output(s) with respect to model parameters [94, 201]. The Global methods depend 

on Monte Carlo simulation techniques [197, 202-205]. Briefly, in the Monte Carlo 

method, a probability distribution for each of the model input parameters is randomly 

sampled, and the model is run using the chosen set of parameter values. This process is 

repeated a large number of times until the probability distributions for the desired model 

outputs have been created. This method allows assessment of parameter uncertainty 

effect on the variability in the model output. Despite the partial derivative methods don’t 

predict an overall model output variability, they allow ranking of model parameters 

according to their influence on the relative change in the model output. These methods 

don’t require large number of simulations that are needed for the Monte Carlo methods, 

so they take significantly less computation time. For the Monte Carlo methods to be 

adequate, the input parameter distributions should reflect the true parameter variability. 

However, this information is usually not available [94]. Thus, partial derivative methods 

offer a simpler way to investigate parameter sensitivities than Monte Carlo methods. 

The tracer interaction method (TIM) is a sensitive and accurate methodology for 

analyzing non-linear, saturation kinetics under dynamic conditions, by monitoring 

perturbations in the level of a tracer form of the drug following the introduction of the 

parent drug [125]. In Chapters 3 and Chapter 4, the TIM was used to estimate parameters 

of a receptor-based recirculation model developed to analyze recombinant human 
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erythropoietin and Continuous Erythropoietin Receptor Activator (C.E.R.A.) disposition 

in adult sheep. The aim of this work was to evaluate the appropriateness of the TIM 

design in estimation of the model parameters using a partial derivative sensitivity 

method.   

5.2. Methods 

5.2.1. Pharmacokinetic model 

The model studied in this work was previously introduced (Chapter 3, section 

3.2.5). Briefly, the model consists of three tissues, heart-lung segment (HLS), non-target 

mediated disposition (NTM) and target mediated disposition (TM), interconnected by 

arteries and veins (Figure 3.2). Linear drug disposition through HLS, and NTM tissues 

was described by stochastic transport principles, namely, transit time density function and 

convolution relationship. Nonlinear drug disposition through TM tissues was considered 

by a receptor-based model (Figure 3.3) that assumes quasi-equilibrium condition and 

accounts for drug-receptor binding, receptor turnover, and drug/receptor complex 

endocytosis. The model equations used in the current analysis are: 
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where Q is cardiac output, Pi  is fraction of blood flow to ith tissue for i=TM or NTM (

1PP NTMTM =+ ), )(tf i
out  is the output rate from ith tissue for i=HLS, TM or NTM, (*) 

denotes convolution, )(tDiv δ⋅  is IV bolus dose of the tracer, )(tInf is constant rate 

infusion of the tracer, UIR(t) is unit impulse response function, which reduces to a transit 

time density function ( )(tg ) under the assumption that the tissue is non-extracting, 

)(tETM is  receptor-dependent extraction function,  Rtot  is total EPOR (Rtot = free receptor, 

R + bound receptor, R*), R0 is initial receptor concentration,  (t)Cin
TM is input drug 

concentration to TM tissues, (t)Cout
TM  is output drug concentration from TM tissues, KD  is 

drug/receptor equilibrium dissociation constant (KD = dissociation rate constant, koff  / 

association rate constant, kon),  ksyn is receptor synthesis rate constant, kdeg is receptor 

degradation rate constant, kint  is drug/receptor internalization rate constant. 

 In case of a TIM experimental design: 
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where (t)Ccold is non-tracer plasma concentrations, tcold is time of injection of the non-

tracer, and )(tCtot
out is total output plasma concentration. 

5.2.2. Sensitivity analysis 

A sensitivity analysis was implemented to evaluate the influence of each model 

parameter on the predicted plasma concentration-time profile. The model parameters 

investigated included the transit time density function parameters; α, β, λ, and receptor-

related parameters; ksyn / R0, kdeg, KD, and kint. 

Sensitivity function (S(t)) was obtained using the partial derivatives of predicted 

plasma concentration-time profile with respect to model parameters [94, 201]. The S(t) 

was calculated using the central difference method: 

θ
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where )tθ(Ctot
out i ,  is the total plasma tracer concentrations predicted at the ith parameter 

θ i  and time t. θ i∆  is the change in parameter θ i  (5% was used for all parameters). While 

parameter θ i was investigated, all other parameters were held constant. The log-

normalized S(t): 
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determines the relative change in )tθ(Ctot
out i , caused by a small relative change in θ i [94, 

201]. A NS(t) that is near zero indicates that the corresponding θ i  has only little influence 

on the plasma concentration response. A θ i that has NS(t) further away from zero, in the 

positive or the negative side, is associated with a greater influence on ),( tθCtot
out i . 

Clewell et al [94] has defined cut-off values for high, medium, and low normalized 

sensitivity values to be: >0.5, 0.2-0.5, and <0.2, respectively.  

5.2.3. Simulations 

Simulations of the total plasma tracer concentrations, )t(Ctot
out (Eq. 5.11) 

according to the TIM experimental setting were performed using WINFUNFIT, an 

interactive Microsoft Windows program evolved from the general non-linear regression 

program FUNFIT [172]. A detailed description of the theory and principles of the TIM 

was previously published [125]. Briefly, a single IV bolus dose of a tracer form of the 

drug is initially administered, then immediately followed by a constant rate infusion of 

the tracer. An IV bolus injection of the parent drug is administered when the plasma level 

of the tracer approached steady state. Blood samples are collected subsequent to the 

tracer and the non-tracer administrations for determination of plasma drug levels. In the 

current study, the TIM experimental conditions used for C.E.R.A. in Chapter 4 were 

implemented. The tracer bolus dose was 50 mU/kg, the tracer infusion rate was 1.6 

mU/h/kg, the time of non-tracer bolus input was 20 hours, the non-tracer bolus dose was 

104 U/kg, and the tracer sampling time range was 0-85 hours. The nominal parameter 

values were the mean values of C.E.R.A. parameter estimates obtained by individual 

fittings of the physiologic model to TIM data from 5 adult sheep (see Chapter 4). The 

physiologic model parameter values used for the simulations are listed in Table 5.1. The 
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physiological parameters, Q and PTM, were fixed to sheep values drawn from literature 

[51], with PTM  assumed to be equal to the fraction of blood flow to the bone marrow. The 

body weight was fixed to 28.4 kg. 

5.3. Results and discussion 

Table 5.2 shows the maximum absolute relative sensitivities of the model 

parameters. All parameters exhibited medium (0.2 to 0.5) to high (>0.5) maximum 

absolute relative sensitivities at the simulated TIM conditions, indicating that those 

parameters were reliably estimated with the implemented experimental design. Maximum 

absolute sensitivity of parameter β was larger than that of parameters α and λ (1 versus 

0.3). Among receptor-related parameters, kint showed the lowest sensitivity (maximum 

absolute sensitivity: 0.5 versus ~1.2 for ksyn / R0, kdeg and KD). 

The time-dependent sensitivity of the venous blood tracer concentrations 

predicted by the model to the transit-time density function and receptor-related 

parameters are depicted in Figures 5.1 and 5.2, respectively. All absolute sensitivity 

values ranged from 0 to +1.3. Sensitivity values of the transit time density function 

parameters peaked prior to non-tracer administration with minor perturbations that 

occurred during or after the non-tracer input. Those perturbations fell rapidly to zero and 

remained there almost to the end of the experiment (Figure 5.1). On the other hand, 

sensitivities of receptor-related parameters increased gradually with time and peaked 

around the non-tracer input (Figure 5.2). After non-tracer perturbation, the overall model 

output was much more sensitive to changes in receptor-related parameters than to 

changes in density function parameters, indicating that the drug-receptor interaction was 

the most important factor determining the shape of the tracer concentration-time curve 
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after perturbation. This result is expected because after the non-tracer administration, the 

competition on the binding sites of the receptor is maximum, therefore, it can be assumed 

that the plasma concentration will be mainly affected by the receptor-related processes. 

From Figure 5.1, maximum absolute sensitivity occurred at approximately zero 

hour for parameter β and at approximately 8 hour for parameter α. Thus, β indicates a fast 

initial distribution phase from highly perfused tissues, while α reflects a slow terminal 

distribution from poorly perfused tissues. Although KD, kdeg, and ksyn / R0 are important in 

determining system response between approximately zero and 10 hours after the non-

tracer input, it seems that only kdeg and ksyn / R0 can influence the response at later times 

(i.e., from 10 hours after non-tracer administration until the end of the experiment) 

(Figure 5.2). Unlike KD, the absolute sensitivity of which peaks at a non-tracer input time 

and vanishes afterwards, the absolute sensitivity of kint peaks 40 hours after the non-tracer 

input (Figure 5.2). 

5.4. Conclusion 

A comprehensive, partial derivative sensitivity analysis showed that the TIM 

experimental setting is adequate for estimation of the physiologic model parameters. 

Although, the time course of tracer plasma concentrations in the TIM design is 

determined by both linear distribution and receptor-related parameters before the non-

tracer injection, it is primarily determined by receptor-related parameters after the 

injection.
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Table 5.1. Physiologic model input parameter values used for sensitivity analysis 
simulations. 

 

Parameter Definition Units Value 

α Transit time density function rate parameter h-1 0.14 

β Transit time density function rate parameter h-1 185 

λ Transit time density function mixing parameter h-1 0.001 

ksyn/R0 
Initial receptor normalized zero-order receptor 

synthesis rate constant 
h-1 164 

kdeg First-order receptor degradation rate constant h-1 42.5 

KD Drug–receptor equilibrium dissociation constant pmole 88.4 

kint 

First-order drug/receptor internalization rate 

constant 
h-1 2.41 
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Table 5.2. Maximum absolute relative sensitivities of the physiologic model parameters. 

 

Parameter Definition Value 

α Transit time density function rate parameter 0.3 

β Transit time density function rate parameter 0.9 

λ Transit time density function mixing parameter 0.3 

ksyn/R0 
Initial receptor normalized zero-order receptor synthesis 

rate constant 
1.3 

kdeg First-order receptor degradation rate constant 1.2 

KD Drug–receptor equilibrium dissociation constant 1.2 

kint First-order drug/receptor internalization rate constant 0.5 
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Figure 5.1. Absolute normalized sensitivity function for the physiologic model transit time density function parameters using TIM 
plasma tracer concentrations as the model output. Symbols are defined in the text. 
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Figure 5.2. Absolute normalized sensitivity function for the physiologic model receptor-related parameters using TIM plasma tracer 
concentrations as the model output. Symbols are defined in the text. 
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CHAPTER 6. EQUIVALENCE OF COMPARTMENTAL AND 

RECIRCULATION TARGET-MEDIATED DISPOSITION 

PHARMACOKINETIC MODELS 

6.1. Introduction 

Target-mediated disposition (TMD) is a phenomenon where drug distribution 

and/or elimination are influenced by capacity-limited binding to a target (receptor or 

enzyme) [102]. This binding results in dose-dependent events, including a decrease in the 

volume of distribution at steady state and/or target-mediated clearance with increasing 

dose level [102, 103]. A general mechanism-based pharmacokinetic (PK) model of TMD 

was developed to describe the behavior of such systems [103]. The model comprises 

elements for target turnover, drug–target binding, and drug–target complex endocytosis. 

The TMD model in the framework of a two- or three-compartment model has been 

applied to analyze the disposition of various small molecules, peptides, proteins, 

hormones, and monoclonal antibodies, using plasma concentration–time data obtained 

from individual or population pharmacokinetic studies in different mammalian species 

[104-106].    

Unlike the classical compartmental models which depend on series of kinetically 

similar compartments to describe the system’s behavior, physiologically based 

pharmacokinetic (PBPK) models use well-defined tissues in a heterogenous structure that 

comprises parameters representing mammalian anatomy and physiology. In the classical 

approach, a first-order process describes the drug transfer between compartments, while a 

convection process via the vascular network characterizes the transfer between tissue 

blocks in the physiological approach. Conventional models assume instant and 
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homogenous distribution of drug molecules through a given kinetic space which is not 

the case for PBPK models that allow selection between one- and multi-compartment 

tissue structure, depending on the drug properties and the nature of a given tissue. 

Although PBPK models offer significantly increased relevance over classical 

models for interpreting and predicting different physiological scenarios [21, 62], they 

require estimation of a large number of input parameters. Therefore, parametrization of a 

PBPK model cannot be based only on routine clinical pharmacokinetic data [63], but also 

requires extensive literature resources, separate in vitro and in vivo experiments, 

concentration measurements in several tissues (using invasive or destructive sampling), 

in silico predictions, and allometric scaling [21]. Thus, building a PBPK model is often 

times a complex process associated with uncertainty levels introduced into model 

parameters.  Such uncertainty can influence the accuracy of predictions using a PBPK 

model and may lead to a final model that fails to reflect true in vivo drug concentrations 

[94, 95].  

The drawbacks of traditional PBPK models necessitated the use of minimal 

models and the search for alternative means to mathematically represent the processes of 

drug transport within a physiological structure [25, 26]. Linear systems analysis (LSA) 

principles applied to physiological modeling, usually referred to as recirculation models, 

provide a scientifically attractive method of reducing the complexity of the traditional 

models. This approach views the organ/tissue as a general “building block” that is 

characterized by a unit impulse response (UIR) function in the framework of input-output 

convolution relationship, rather than assuming a flow rate- or permeability rate-limited 

structure defined using systems of ordinary differential equations [96, 101, 128-130, 
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143]. The UIR function, also known as the transfer function, encapsulates the essential 

two fundamental disposition components, namely distribution and elimination, and 

therefore can be reparametrized in terms of an extraction fraction which represents the 

probability that a drug molecule which enters the organ/tissue will be eliminated; and a 

transit time distribution function. The distribution function can be specified on an 

empirical basis [96, 134, 135, 137] or it can reflect rigorous, mechanism-based processes 

on the sub-organ or even the cellular level [143, 144]. 

Despite several reports published on PBPK models (about 360 research papers on 

MEDLINE since 2005), very few have compared the physiological and classical 

compartmental approaches. The aim of this work is two-fold: 1) to identify the 

physiological conditions at which a TMD-two compartment model approximates a 

minimal, LSA-based, TMD-recirculation model (i.e. the conditions at which estimates of 

receptor-related parameters using both models are expected to be the same); and 2) 

evaluate the influence of the host structure (compartmental or recirculation) on parameter 

estimation accuracy and precision. 

6.2. Theoretical 

6.2.1. Compartmental target-mediated disposition model (COMP-TMD) 

The general compartmental pharmacokinetic model of TMD proposed by Mager 

and Jusko [103] is illustrated in Figure 6.1. The model assumes that drug upon reaching 

the central compartment (C) binds with a second order rate (kon) to the free receptor (R) to 

form the drug–receptor complex (R*), which in turn, dissociates by a first-order rate 

process (koff). The internalization and degradation of the drug–receptor complex is 

represented as a first-order rate process (kint). The receptor is synthesized at a zero-order 
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rate (ksyn) and degraded at a first-order rate (kdeg). The drug in the central compartment 

undergoes linear distribution to and from a nonspecific tissue compartment (AT) by first-

order rates (kpt, ktp), and can be directly eliminated by a first-order process (kel). The full 

TMD PK model is described by: 

)()( tInRkCRkVAkCkkdtdC offonTtpptel +⋅+⋅⋅−⋅+⋅+−= ∗

             
(6.1)

 

VCkAkdtdA ptTtpT ⋅⋅+⋅−=           
(6.2) 

RkCRkRkkdtdR onoffsyn deg−⋅⋅−⋅+= ∗

      
(6.3) 

CRkRkkdtdR onoff ⋅⋅+⋅+−= ∗∗ )( int             
(6.4)

 

where V denotes the volume of the central compartment and )(tIn is the external input rate 

function. 

In this Chapter, it is assumed, for simplifying the analysis, that the free drug is not 

endogenously produced. Accordingly, for an exogenous input that involves an 

intravenous (IV) bolus dose (Div) at steady state, the initial conditions for Eqs. 6.1–6.4 

after the input are defined as: 

VDC(0) iv=          
(6.5a)

 

0( 0) =AT          
(6.5b) 

kkRR synss deg/==( 0)        
(6.5c)

 

0( 0) =*R          
(6.5d) 

where Rss denotes the steady-state free receptor concentration. 

6.2.2. Recirculation target-mediated disposition model (REC-TMD) 

The model consists of 3 tissues: heart–lung segment (HLS), non-target-mediated 

disposition tissue (NTM), and target-mediated disposition tissue (TM), which are 
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interconnected by arteries and veins (Figure 6.2, Panel A). The cardiac output is given by 

Q,  and Pi  is the fraction of blood flow to ith tissue for i=TM or NTM (PTM + PNTM = 1). 

Drug disposition in the HLS and NTM tissues is assumed to be linear. Therefore, the 

output rates from both tissues ( (t)f HLS
out and )(tf NTM

out ) are described by the following 

convolution equations (* denotes convolution) that relate the input and output rates for a 

given tissue to a unit impulse response function (UIR(t)): 

(t)UIR*(t)]f(t)ftD[(t)f HLS
TM
out

NTM
outiv

HLS
out ++⋅= )(δ     (6.6) 

(t)UIRtfPtf NTM
HLS
outNTM

NTM
out *)()( ⋅=       (6.7) 

and: 

NTMHLS,i for(t)gE(t)UIR iii =⋅−= )1(     (6.8) 

where Div is IV bolus input, δ(t) is Dirac-delta function,  E is the extraction ratio and g(t) 

is a transit time density function that is empirically described as an exponential 

distribution function:  

)exp( t(t)g HLS ⋅−⋅= αα                (6.9a) 

)exp( t(t)g NTM ⋅−⋅= ββ                (6.9b) 

where α and β are rate parameters. 

Assuming both HLS is non-extracting, the UIRHLS(t) function reduces to the 

transit time density function (gHLS(t)). 

Equations 6.6–6.9 were conveniently converted to the equivalent first-order 

differential equations, which are simpler to manipulate numerically and computationally 

because they avoid the convolution operator. Introducing the dummy variables y1 and y2 

where: 
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)exp()(1 t*(t)]f(t)ftD[y TM
out

NTM
outiv ⋅−++⋅= αδ     (6.10) 

)exp(*)(2 ttfy HLS
out ⋅−= β        (6.11) 

and: 

y(t)f HLS
out 1⋅= α         (6.12) 

yEPtf NTMNTM
NTM
out 2)1()( ⋅⋅−⋅= β       (6.13) 

Differentiating the convolution equations 6.10 and 6.11 with respect to time 

gives: 

Dy,(t)f(t)fydtdy iv
TM
out

NTM
out =++⋅−= )0(111 α     

(6.14)
 

0)0(222 =+⋅−= y,(t)fydtdy HLS
outβ      

(6.15)
 

Nonlinear drug disposition through TM tissues is considered by a flow limited 

mass transfer model [39] integrated with receptor-mediated elimination (Figure 6.2, Panel 

B). The TM tissues are divided into extracellular (blood + interstitial) and intracellular 

spaces separated by cellular membrane (assuming lack of capillary membrane resistance). 

The binding of free drug in the extracellular space (CEC) with R to form R* is controlled 

by kon and koff. The endocytosis of R* to the intracellular space is governed by kint. The 

receptor turnover in the extracellular space is represented by ksyn and kdeg. The mass 

balance for the free drug in the extracellular space: 

0)0(

)(

=⋅⋅+⋅⋅⋅−

−⋅⋅=⋅
∗ C,RVkCRVk

CCQPdtdCV

ECECoffECECon

TM
out

TM
inTMECEC

 
(6.16)

 

where VEC is the volume of the extracellular space, CTM
in  is the drug concentration in the 

arterial blood entering the TM tissues that is given by: 
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Q(t)fQ)(P(t)fPtC HLS
outTM

HLS
outTM

TM
in =⋅⋅=)(      

(6.17) 

, CTM
out  is the drug concentration in the venous blood emerging from the TM tissues.

 

CQP TM
inTM ⋅⋅  and CQP TM

outTM ⋅⋅  are the drug input rate, f TM
in , and output rate, f TM

out , 

respectively. The changes in R and R* are as described by equations 6.3 and 6.4 in the 

COMP-TMD model. 

Under the assumption that the TM tissues behave as a “well-stirred” structure 

[40], where the effluent blood is in equilibrium with the extracellular space (i.e., CTM
out  = 

CEV), equation 6.16 becomes: 

0)0(

)(

=⋅⋅+⋅⋅⋅−

−⋅⋅=⋅
∗ C,RVkCRVk

CCQPdtCdV
TM
outECoff

TM
outECon

TM
out

TM
inTM

TM
outEC

 
(6.18)

 

Finally, the total plasma concentration that is measured in venous blood ( Ctot
out ) is 

given by: 

QtftftC TM
out

NTM
out

tot
out ))()(()( +=       (6.19) 

6.2.3. Moment analysis of linearized COMP-TMD model 

Equations 6.1 and 6.4 can be written as: 

VDC(0)
RkCRRkVAkCkkdtdC

iv

offtotonTtpptel

=
⋅+⋅−⋅−⋅+⋅+−= ∗∗

,
)()(

 
(6.20)

 

0( 0) =⋅−⋅+⋅+−= ∗∗∗ *,)()( int RCRRkRkkdtdR totonoff   
(6.21)

 

where Rtot is the total receptor (R+R*).
 
Under linear, non-saturable binding conditions, 

when C <<< R, few occupancies happen resulting in R* <<< Rtot and Rtot ≈ Rss. 

Accordingly, equations 6.20 and 6.21 reduce to: 

VDC(0)RkCRkVAkCkkdtdC ivoffssonTtpptel =⋅+⋅⋅−⋅+⋅+−= ∗ ,)(  
(6.22)
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0( 0) =⋅⋅+⋅+−= ∗∗ *,)( int RCRkRkkdtdR ssonoff    
(6.23)

 

Solving equations 6.22, 6.23, and 6.2 for the free drug plasma concentration using 

Laplace transform yields: 

BAkV
DsC

el

iv

++
⋅=

1)(
       

(6.24a)
 

where: 

kks
ksRkA

off

sson

++
+⋅⋅

=
int

int)(
        

(6.24b)
 

ks
kkss

B
tp

tppt

+
++⋅

=
)(

        
(6.24c)

 

The AUC and AUMC/AUC for the linearized compartmental model are: 

Rkkkkk
kk

V
DsCAUC

ssonoffel

offiv

s ⋅⋅++⋅
+

⋅==
→

intint

int

0 )(
)(lim

    
(6.25)

 

])([)(

)()(

)(lim

))((lim

intintint

int

0

0

Rkkkkkkkk

kRkkkkkk

sC

dssdC

AUC
AUMC

ssonoffelofftp

tpssonofftpptoff
2

s

s

⋅⋅++⋅⋅+⋅

⋅⋅⋅++⋅+
=

−
=

→

→ (6.26)
 

When kel = 0, equations 6.25 and 6.26 reduce to:  

Rkk
kk

V
DAUC

sson

offiv

⋅⋅
+

⋅=
int

int

       
(6.27)

 

Rkkkkk

kRkkkkkk

AUC
AUMC

ssonofftp

tpssonofftpptoff
2

⋅⋅⋅+⋅

⋅⋅⋅++⋅+
=

intint

int

)(

)()(
    (6.28) 

6.2.4. Moment analysis of linearized REC-TMD model 

Under linear conditions, drug disposition through TM tissues can be described by: 

0)0(

)(

=⋅⋅+⋅⋅⋅−

−⋅⋅=⋅
∗ C,RVkCRVk

CCQPdtCdV
TM
outECoff

TM
outssECon

TM
out

TM
inTM

TM
outEC

 
(6.29) 

CRkRkkdtdR TM
outssonoff ⋅⋅+⋅+−= ∗∗ )( int      

(6.30)
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The solution of equations 6.29 and 6.30 for the output drug concentration from 

the TM tissues in the Laplace domain is given by: 

)()( sCBAs
AsC TM

in
TM
out ⋅

++
=        (6.31) 

where: 

V
QPA

EC

TM ⋅
=

         
(6.31a)

 

kks
Rkk

RkB
off

ssoff on
sson ++

⋅⋅
−⋅=

int        
(6.31b)

 

Rearranging equation 6.31: 

BAs
A

sC
sCsUIR TM

in

TM
out

TM ++
==

)(
)()(        (6.32) 

For a closed-loop recirculation model with same input and sampling sites, the 

response in the Laplace domain is described by [96]: 

 
)(1

)(
)(

sUIR
sUIR

Q
DsC

sp

spivtot
out −

⋅=

       

(6.33)

 where UIRsp(s) is the laplace transform of the single-pass unit impulse response. For the 

recirculation model presented in Figure 6.2A: 

)]()([)()( sUIRPsUIRPsUIRsUIR TMTMNTMNTMHLSsp ⋅+⋅⋅=

   

(6.34)

 The AUC and AUMC/AUC for the linearized recirculation model are: 

EPEP
EPEP

Q
DsCAUC

TMTMNTMNTM

TMTMNTMNTMivtot
out

s ⋅+⋅
⋅+⋅−

⋅==
→

)(1
)(lim

0
   

(6.35)
 

EPEP
MTTPMTTPMTT

sC

dssCd

AUC
AUMC

TMTMNTMNTM

TMTMNTMHLS NTM
tot
out

s

tot
out

s

⋅+⋅
⋅+⋅+

=
−

=
→

→

)(lim

))((lim

0

0

 

(6.36)
 

where ETM is the extraction ratio from the TM tissues: 
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VRkkkkQP
VRkksUIRE

ECssonoffTM

ECsson
TM

s
TM ⋅⋅⋅++⋅⋅

⋅⋅⋅
=−=

→
intint

int

0 )(
)(lim1

  
(6.37)

 

, and MTT denotes the mean transit time: 

α
1))((lim

0
=−=

→
dssgdMTT HLSs

HLS

      
(6.38)

 

β
1))((lim

0
=−=

→
dssgdMTT NTMs

NTM

      
(6.39)

 

])([)(

])[(

)(lim

))((lim

intintint

int

0

0

VRkkkkQPkk

VRkkkk

sUIR

dssUIRd
MTT

ECssonoffTMoff

ECssonoffoff
2

TM
s

TM
s

TM

⋅⋅⋅++⋅⋅⋅+

⋅⋅⋅++
=

−
=

→

→

 
(6.40)

 

When PTM = 1, equations 6.35 and 6.36 reduce to:  

Rkk
kk

V
DAUC

sson

off

EC

iv

⋅⋅
+

⋅=
int

int

       
(6.41)

 

αα

αα 1
)(

)()(

intint

int
+

⋅⋅⋅+⋅

⋅⋅⋅++⋅+
=

Rkkkk
RkkVQkk

AUC
AUMC

ssonoff

ssonoffECoff
2

   

(6.42)

 6.3. Methods 

6.3.1. Simulations 

The effect of the host structure (compartmental or recirculation) on drug and 

receptor kinetics was studied at different Cinput(0)/KD ratios (1,5,10,50, and 100), where 

KD = koff / kon, Cinput(0) = C(0) in the COMP-TMD model and Cinput(0 )=
 

(0)CTM
in in the 

REC-TMD model.
 

(0)CTM
in was calculated for an IV bolus external input (Div) from Eqs. 

6.6, 6.8, 6.9a, and 6.17 to be: 

QD(0)C iv
TM
in /α⋅=

        
(6.43) 
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The values of drug–receptor binding as well as drug–receptor complex 

internalization parameters were set to recombinant human erythropoietin (EPO)-EPOR 

parameter values previously reported from an in vitro trafficking study in cultured Ba/F3 

and UT-7/EPO cells [113]. The EPOR turnover parameter values were obtained from a 

previous intravenous PK study in humans [206]. The receptor-related parameter values 

were: EPOR production rate constant (ksyn), 9.141 pmole·h-1; EPOR degradation rate 

constant (kdeg), 0.079 h-1; EPO/EPOR association rate constant (kon), 0.03 pmole-1· h-1; 

EPO/EPOR dissociation rate constant (koff), 1.74 h-1; and EPO/EPOR complex 

internalization rate constant (kint), 3.6 h-1. 

In the COMP-TMD model, the receptor-independent parameter values were set to 

EPO values in humans [206]. The parameter values were: first-order elimination rate 

constant (kel), 0.106 h-1; plasma-to-tissue distribution rate constant (kpt), 0.064 h-1; tissue-

to-plasma distribution rate constant (ktp), 0.123 h-1; and central volume of distribution (V), 

0.032 L· kg-1. In the REC-TMD model, parameters Q and PTM were fixed to human 

cardiac output and fraction of blood flow to bone marrow previously reported in the 

literature (Q, 4.5 L· h-1·kg-1; and PTM, 0.092) [48, 207]. The volume of the extracellular 

space in the TM tissues, VEC, was set to 0.257 L which is equivalent to 43% of red 

marrow water in a human weighting 70 kg [208]. The percentage was based on the 

fraction of the extracellular fluid to total body water [208]. The HLS transit time density 

function parameter, α, was fixed to 140.6 h-1  in order to equate C(0) in the COMP-TMD 

model with  (0)CTM
in in the REC-TMD model. The NTM tissues transit time density 

function parameter, β, was set to an arbitrary value of 2.4 h-1. Selection of β to be much 

smaller than α mimics the physiology, where it seems logical to expect that drug 
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distribution through the systemic circulation is slower than that through the pulmonary 

circulation. The NTM tissues extraction ratio, ENTM, was fixed to 0.001.This value was 

selected to equate the non-receptor mediated elimination clearance in both the COMP-

TMD and REC-TMD models (i.e., kel · V = PTM · Q · ENTM). The average human body 

weight in the simulations was taken to be 70 kg. 

Simulations were also performed at perturbed values for kel, kpt, and ktp in COMP-

TMD model; and PTM, VEC, and α in REC-TMD model.  Dependence of the maximal 

plasma concentration, Cmax, predicted by REC-TMD on Q, VEC, α, Rss, KD, and kint was 

also simulated at Cinput(0)/KD ratio of 10.  

All simulations were performed using WINFUNFIT, an interactive Microsoft 

Windows program evolved from the general nonlinear regression program FUNFIT 

[172]. 

6.3.2. Parameter estimation analysis 

The approach of Dutta and Ebling [209], with modifications, was used to 

investigate the estimation accuracy and precision of COMP-TMD and REC-TMD model 

parameters. For each model, noisy individual datasets were generated using 

$SIMULATION block in NONMEM (version VI, level 2) [210]. The models were 

numerically solved using the stiff differential equation solver ADVAN8. The parameter 

true values were V = 2.24 L; kel  = 0.106 h-1; kpt = 0.064 h-1; ktp  = 0.123 h-1; Q = 312 L/h; 

PTM  = 0.9; VEC = 2.24 L;  ENTM = 0.007;  α = 140 h-1; β = 14 h-1; ksyn = 9.141 pmol/h; kdeg 

= 0.079 h-1; kon = 0.03 1/pmol/h; koff = 1.74 h-1; and kint = 3.6 h-1. The pharmacokinetic 

design used was a dose-escalation study with the administered doses in each model set to 

achieve Cinput(0)/KD ratios of 1, 5, 10, 50, and 100. A proportional variance model with 



123 
 

 

 

10% error was used in data construction. For each structural model (COMP-TMD or 

REC-TMD), a total of 1,000 datasets were generated. Simulations of COMP-TMD and 

REC-TMD models were performed at 9, and 8 time points, respectively, between 0 and 

100 hours. The number of time points in each model is equivalent to the number of 

parameters to be estimated (see next paragraph). For a given structural model, the 

sampling times were selected by maximization of D-criterion (determinant of Fisher 

information matrix) using PROC MODEL and PROC OPTEX in SAS® (version 9.2, 

SAS Institute Inc., Cary, NC, USA) according to the implementation of Atkinson et al 

[211]. The sampling times for both models at each dosing level are listed in Table 6.1. 

Optimization of sampling times was performed to reduce unintentional bias introduced 

by selecting times that increase sensitivity to parameters of one of the models at expense 

of the other. 

All individual datasets simulated from a given structural model were fitted by the 

corresponding model to give estimates of the model parameters (COMP-TMD: kel, kpt, ktp, 

V, ksyn, kdeg, kon, koff, and kint; and REC-TMD: α, β, ENTM, ksyn, kdeg, kon, koff, and kint). All 

fittings and parameter estimations were performed using the extended least squares 

method in NONMEM VI [212]. The initial estimates for the parameters were chosen at 

random from a uniform distribution of ±25% of the true parameter value.  

The parameter estimates of the successful runs for the COMP-TMD and REC-

TMD models were analyzed for accuracy and precision. The percentage bias (inaccuracy) 

was assessed by: 

100)(% ⋅
−

=
true

trueestimateMEANBias
     

(6.44)
 

with 95% asymptotic confidence interval: 
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SEBiasIC bias⋅±= 96.1%..%95       
(6.45)

 

where SEbias is the standard error of the bias: 

100)(
⋅

⋅
=

trueN
estimateSD

SEbias        
(6.46)

 

where N is the number of converging runs.
 
The percentage relative standard error of the 

estimate (%RSEest), 

100
)(

)(
% ⋅

⋅
=

estimateMEANN
estimateSD

RSEest      
(6.47) 

was used as a measure for estimation imprecision. 

6.4. Results and discussion 

Although COMP-TMD and REC-TMD models host the same receptor-based 

model, they adopt different structural assumptions: 1) The COMP-TMD model is an 

open-system, while the REC-TMD model is a closed-system, 2) The COMP-TMD model 

assumes inter-compartmental transport that is mediated by a first-order process 

(represented by the parameters kpt, and ktp), while the REC-TMD model assumes 

convective inter-tissue transfer that is mediated via the vascular network (represented by 

the parameters Q, PTM, and PNTM), 3) The COMP-TMD model assumes that drug 

molecules distribute instantly and homogenously upon entering the compartment, while 

the REC-TMD model uses transit time distribution function to reflect delayed and 

heterogeneous distribution through HLS and NTM tissues, 4) Non-receptor mediated 

elimination in COMP-TMD model is represented by a first-order process through the 

parameter kel, while in the REC-TMD model it is based on the extraction ratio ENTM and 

blood flow-dependent clearance, PNTM · Q · ENTM, 5) Although receptor-mediated 

elimination in both models is dependent on processes representing drug-receptor 
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association, kon, dissociation, koff, and endocytosis, kint; free receptor synthesis, ksyn, and 

degradation, kdeg; as well as on interaction site volume, V and VEC in COMP-TMD and 

REC-TMD models, respectively, it also depends on blood flow in case of the 

recirculation model (as it is evident from the derivation of the extraction ratio of the TM 

tissues, ETM, for the linearized form of the REC-TMD model, equation 37). Our analysis 

aims at investigating the influence of the different hosting structures on receptor and drug 

concentration-time profiles; deriving the conditions at which such profiles coincide 

between the two models; and assessing the quality of parameter estimations in both 

structures.  

6.4.1. Simulations 

The TMD model allows prediction of the time courses of free (R) and bound (R*) 

receptor concentrations as shown in Figures 6.3 and 6.4. Both the COMP-TMD and 

REC-TMD models showed an initial rapid drop in R levels followed by gradual recovery 

to the initial steady-state condition (Figure 6.3). The concentration–time profiles of R* 

demonstrated an initial rapid rise followed by a secondary sharp then slow decline to very 

small value (Figure 6.4). 

Both the compartmental and recirculation models exhibited dose-dependent 

events, with the extent of the R level drop (correspondingly, the rise in R* level), and the 

duration of the R level recovery (correspondingly, the decline in R* level) were increased 

in accordance with increased dosing levels. In general, the recovery and decline periods 

of R and R* levels, respectively, were significantly longer in the recirculation model than 

in the compartmental model (~ 5, 10, 11,14, and 15 times for Cinput(0)/KD ratios of 

1,5,10,50, and 100, respectively). 
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The initial drop in the free receptor (R) level (Figure 6.3) that correlates with the 

initial rise in the bound receptor (R*) level  (Figure 6.4) is dictated by the second-order 

binding process which takes place with a rate kon · C  in the COMP-TMD, and kon · CTM
out  

in the REC-TMD model. The binding process is balanced by the first-order dissociation 

process, koff · R*, that result in the recovery for R (Figure 6.3) and the decline for R* 

(Figure 6.4). The duration of this equilibrium process is controlled by the time the free 

receptors are converted to their bound form (i.e. the time required for the free receptors to 

become saturated), which depends on the drug level relative to its equilibrium 

dissociation constant. 

Subsequent to the equilibrium process, the R level is restored to the initial 

baseline steady state (Figure 6.3) as a result of the constant receptor production process, 

ksyn, at a rate that is determined by the receptor elimination constant kdeg. The decline in 

R* level to 0 following equilibrium (Figure 6.4) is predominated by an internalization 

process, kint · R*.  

Figure 6.5 shows the free drug plasma time-concentration profiles as predicted by 

the COMP-TMD and REC-TMD models. In the compartmental model, a biphasic decline 

can be seen, while a rapid increase from 0 to maximum concentration followed by a slow 

decline can be observed for the recirculation model. Corresponding to the longer R 

recovery and R* decline periods for the recirculatory model compared to the 

compartmental model, the drug residence time in the former was ~ 250, 50, 40,34, and 36 

folds larger for Cinput(0)/KD ratios of 1,5,10,50, and 100, respectively. However, this 

increase in the residence time was accompanied by ~ 50 folds smaller maximal 
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concentration for the REC-TMD versus the COMP-TMD model at the corresponding 

doses. 

To understand the reason(s) behind the prolonged receptor activity period and 

drug residence time observed upon simulation of REC-TMD components using 

physiologically plausible values for Q, PTM, VEC, α, and β; values obtained from in vitro 

experiments for kon, koff, and kint; and values obtained from COMP-TMD model for ENTM, 

ksyn and kdeg, the statistical moments of the linearized forms of both models were derived. 

Comparison of the COMP-TMD model zero-moment (equations 6.25 and 6.27) with that 

of the REC-TMD model (equations 6.35, 6.37, and 6.41) suggests equal clearance if: 1) 

Elimination rate constant in the compartmental model, kel, is equal to zero, 2) Fraction of 

blood flow to TM tissues in the recirculation model, PTM, is equal to 1, and 3) Volume of 

central compartment in the COMP-TMD model, V, is equal to volume of the TM 

extracellular space in the REC-TMD model, VEC. These findings indicate that a well-

perfused target tissues, negligible non-receptor mediated clearance (kel · V and PNTM · Q · 

ENTM in COMP-TMD and REC-TMD models, respectively), and extracellular volume of 

distribution that approximates drug initial volume of distribution are essential for 

comparable drug and receptor profiles. Besides the fore mentioned conditions, 1) Equal 

plasma-to-tissue distribution constant, kpt, and cardiac output (Q)/VEC, 2) Equal tissue-to-

plasma distribution constant, ktp, and HLS distribution constant, α, in COMP-TMD and 

REC-TMD models, respectively, and 3) α → ∞ (which implies that drug distribution 

through the HLS is very rapid and equilibrium between venous and arterial blood is fast) 

are required for the mean residence times calculated according to the compartmental 
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(equations 6.26 and 6.28) and recirculation (equations 6.36, 6.37-6.40, and 6.42) models 

to become identical. 

To determine if the linearly derived conditions apply to the non-linear case, the 

drug and receptor time-concentration profiles were simulated using the conditions 

identified by the moment analysis (Figure 6.6, Lower Panel). The identical R and R* and 

the almost identical C and Ctot
out  concentrations between the COMP-TMD and REC-TMD 

models following administration of a large bolus dose indicate the validity of these 

conditions when drug-receptor binding is saturable and suggests that the difference in 

receptor activity period and drug residence time between the two models ( Figure 6.6, 

Upper Panel) is impacted by values of non-receptor related parameters, namely, kel, kpt, 

ktp, PTM, Q, α, β, ENTM, and VEC rather than dose- or time-dependent events. However, 

using parameter values that force linear clearance and mean residence time to be equal 

between the two models, the only difference that can be observed between drug plasma 

concentrations is during the first few minutes where maximal concentrations (Cmax) 

predicted by the compartmental model is still larger than that of the recirculation model 

(Figure 6.6, Lower Panel). 

Figure 6.7, Upper Panel shows the dependence of Cmax in the REC-TMD model 

on Q, VEC, and α. Increasing Q decreases Cmax suggesting better agreement between the 

compartmental and recirculation models in lower mammals such as rodents than in 

humans. Since Cmax decreases by increasing VEC, closer Cmax values are expected when 

solid mass of the target tissue is much larger than its water content. Rapid equilibrium 

between venous and arterial blood drug concentrations is not only needed for close mean 
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residence time between the two models, but also for higher REC-TMD Cmax values as 

suggested by the increase in Cmax with increased α. 

Unlike the compartmental model where Cmax is independent of receptor-related 

parameters, Cmax in the recirculation model is affected by receptor-mediated processes 

since it is reached after the drug’s first passage through the system. Free receptor 

concentration determines the capacity of receptor-mediated elimination process, the 

larger the R, the greater the rate of elimination. The uptake rate of the drug by receptors is 

determined by the equilibrium dissociation constant where a high KD value indicates 

either slow association rate with and/or fast dissociation rate from the receptors, and 

hence leads to reduced receptor-mediated elimination rate. The parameter kint lumps the 

processes of internalization and degradation together. Slow internalization of the 

drug/receptor complex to the intracellular space reduces drug elimination by increasing 

the probability of drug dissociation into the medium; slow degradation in lysosomes 

overcomes elimination by increasing the chances of the complex to be re-secreted, intact, 

to the cell surface. The previous facts explain the increase in the recirculation model Cmax 

with decreased Rss, increased KD, and reduced kint values (Figure 6.7, Lower Panel). 

However, the REC-TMD model parameters can be ranked according to the relative 

change in Cmax value caused by a 5% relative change in parameter value as follows: VEC > 

Q > α > Rss > KD > kint, and the influence of kint was minute (< 0.01%). 

Erythropoietin (EPO) promotes the proliferation and differentiation of Bone 

marrow (BM) erythroid progenitor cells (burst-forming unit-erythroids and colony-

forming unit-erythroids) by binding to EPO receptors (EPOR) on cell surface [108]. 

Simultaneously, degradation of the formed complex via internalization followed by 
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targeting to lysosomes is promoted by activation of EPOR [109]. In this study, using 

EPO/EPOR system to illustrate the differences between COMP-TMD and REC-TMD 

models was because of several evidences provided by previous studies that EPO exhibits 

TMD. Higher EPO concentrations was observed in patients with aplastic anemia (anemia 

due to damage of BM stem cells) than in patients with beta-thalassemia (anemia caused 

by reduced synthesis of hemoglobin beta chains) at the same hemoglobin concentration 

[112]. EPO clearance decreases with increased dosing level in rats [121] and humans 

[122]. In adult sheep, EPO clearance was significantly reduced by BM ablation [114], 

while it was not affected by hepatectomy or nephrectomy [116]. The disappearance of 

EPO non-linear disposition by BM ablation [123] provides strong evidence that EPO 

TMD is due to its saturable interaction with EPOR in the BM. Recently, EPOR mRNA 

level in the BM was correlated with EPO clearance [120].  

6.4.2. Parameter estimation analysis 

The influence of the host structure, compartmental or recirculation, on estimation 

accuracy and precision of receptor turnover parameters, ksyn and kdeg, drug–receptor 

binding parameters, kon and koff, and drug–receptor complex internalization parameter, 

kint, is shown in Figure 6.8. The relative bias and imprecision of all receptor-related 

parameters were less than 7 and 6%, respectively, indicating good estimation efficiency 

using the pharmacokinetic design implemented in this study that involves simultaneous 

fitting to small and large IV bolus doses at D-optimized sampling times. 

In the compartmental model, the true values of all receptor-related parameters 

were under predicted, while in the recirculation model, only ksyn, kdeg, and koff were under 

estimated (Figure 6.8, Left Panel). Ranking of receptor parameters in the COMP-TMD 
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and REC-TMD models according to the farthest relative bias values is: ksyn < kdeg < kon < 

kint < koff (Figure 6.8, Left Panel). Overlapping relative bias intervals can be observed for 

the parameters ksyn, kdeg, koff, and kint when estimated within a compartmental or a 

recirculatory structure (Figure 6.8, Left Panel). Although kon estimate was less than the 

true value in the COMP-TMD model, but greater than the true value in the REC-TMD 

model, the distance of the relative bias value from the zero line and the length of the bias 

confidence interval were almost identical between the two models (Figure 6.8, Left 

Panel). These findings suggest that the nature of the hosting structure does not 

significantly affect the estimation accuracy of the receptor-related parameters. 

TMD model parameters were estimated with high precision as indicated by a 

maximum relative standard error, %RSE, less than 6% in both models (Figure 6.8, Right 

Panel). The order of receptor-related parameters in the COMP-TMD and REC-TMD 

models according to the %RSE values is: ksyn < kdeg < kon < kint < koff (Figure 6.8, Right 

Panel). Similar to estimation accuracy, precision of ksyn, kdeg, and kon was comparable 

between both models. The difference between the two models can be observed in the 

%RSE of koff (~1.3 folds larger for COMP-TMD) and kint (~2 folds larger for REC-TMD) 

(Figure 6.8, Right Panel). 

Figure 6.9 illustrates the estimation accuracy and precision of the compartmental 

model distribution parameters (kpt and ktp), the non-receptor-mediated elimination 

parameter (kel), and volume of distribution (V); and that of the recirculation model transit 

time distribution parameters (α and β), and non-receptor-mediated extraction ratio (ENTM). 

The estimation accuracy of V, kel, α, and ENTM was high (relative bias was very close to 

zero) (Figure 6.9, Upper Panel). The parameters kpt, ktp, and α were reasonably estimated 
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with bias percentage ranging from 1 to 4% (Figure 6.9, Upper Panel). All non-receptor 

related parameters were estimated with high precision as evident by a %RSE of less than 

0.5% (Figure 6.9, Lower Panel). 

In this analysis setting REC-TMD model ENTM to be equal to 0.007 was to equate 

the non-receptor mediated elimination clearance in both the COMP-TMD and REC-TMD 

models (i.e., kel · V = PTM · Q · ENTM). Selection of the fraction of blood flow to the TM 

tissues, PTM, to be equal to 0.9 and the volume of the extracellular space, VEC, to be equal 

to the compartmental model volume of distribution, V, was to achieve close clearance and 

mean residence time between the two models (as discussed in the previous section) which 

provides an equal basis for comparison of the different structures.   

6.5. Conclusion 

Target-mediated disposition (TMD)-compartmental models can provide a suitable 

approximation for TMD-recirculation models under conditions of well-perfused target 

tissue, comparable drug initial distribution volume and target tissue extracellular volume, 

negligible non-receptor mediated clearance, rapid equilibrium between venous and 

arterial blood drug concentrations, small extracellular volume, reduced cardiac output, 

low receptor pool concentration, and high drug-receptor equilibrium dissociation 

constant. Incorporation of a TMD model in a recirculatory structure does not significantly 

affect the estimation accuracy and precision of receptor-related parameters. Selection 

between receptor-based compartmental and recirculation models shouldn’t be based only 

on goodness-of-fit criteria but also on available information about target tissue 

composition and blood supply, as well as drug biochemical (e.g., in vitro binding 
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properties) and pharmacokinetic (e.g., initial volume of distribution, non-receptor 

mediated clearance, etc.) properties. 
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Table 6.1. D-optimal sampling times for COMP-TMD and REC-TMD models at 
different doses. 

Dose 

(pmole/kg) 

Sampling times (hours) 

COMP-TMD REC-TMD 

2 
0, 0.049, 0.179, 0.426, 0.858, 1.59, 

2.81, 5.16, 12.7 

0.005, 0.035, 0.121, 0.299, 0.671, 

1.50, 3.27, 6.61 

9 
0, 0.061, 0.255, 0.693, 1.62, 3.43, 

6.39, 10.3, 15.3 

0.005, 0.038, 0.146, 0.433, 1.21, 

3.39, 8.99, 17.5 

18.6 
0, 0.042, 0.181, 0.542, 1.52, 4.34, 

10.2, 17.6, 25.3 

0.005, 0.037, 0.136, 0.368, 0.927, 

2.71, 12.5, 28.4 

93 
0, 0.011, 0.057, 0.463, 3.19, 10.31, 

23.0, 38.5, 49.0 

0.004, 0.018, 0.064, 0.178, 0.658, 

20.3, 56.8, 75.6 

185.6 
0, 0.006, 0.033, 0.439, 3.34, 11.2, 

26.3, 47.6, 60.5 

0.003, 0.013, 0.043, 0.141, 0.583, 

23.0, 71.5, 95.3 
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Figure 6.1. Target-mediated disposition model incorporated in a two-compartment model as proposed by Mager and Jusko. Symbols 
are defined in the text. 
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Figure 6.2. Target-mediated disposition model (Panel B) incorporated in a recirculation model (Panel A). Symbols are defined in the 
text.
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Figure 6.3. Simulated free receptor time–concentration profiles for COMP-TMD and 
REC-TMD models at increasing Cinput(0)/KD ratios (bold solid: 1, regular 
solid: 5, bold dashed: 10, regular dashed: 50, and dotted: 100). The parameter 
values are V = 2.24 L; kel  = 0.106 h-1; kpt = 0.064 h-1; ktp  = 0.123 h-1; Q = 312 
L/h; PTM  = 0.092; VEC = 0.26 L;  ENTM = 0.001;  α = 140.6 h-1; β = 2.4 h-1; ksyn 
= 9.141 pmol/h; kdeg = 0.079 h-1; kon = 0.03 1/pmol/h; koff = 1.74 h-1; and kint = 
3.6 h-1. 
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Figure 6.4. Simulated drug/receptor complex time–concentration profiles for COMP-
TMD and REC-TMD models at increasing Cinput(0)/KD ratios (bold solid: 1, 
regular solid: 5, bold dashed: 10, regular dashed: 50, and dotted: 100). The 
parameter values are V = 2.24 L; kel  = 0.106 h-1; kpt = 0.064 h-1; ktp  = 0.123 h-
1; Q = 312 L/h; PTM  = 0.092; VEC = 0.26 L;  ENTM = 0.001;  α = 140.6 h-1; β = 
2.4 h-1; ksyn = 9.141 pmol/h; kdeg = 0.079 h-1; kon = 0.03 1/pmol/h; koff = 1.74 h-
1; and kint = 3.6 h-1.
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Figure 6.5. Simulated plasma drug time–concentration profiles for COMP-TMD and REC-TMD models at increasing Cinput(0)/KD 
ratios (bold solid: 1, regular solid: 5, bold dashed: 10, regular dashed: 50, and dotted: 100). The parameter values are V = 
2.24 L; kel  = 0.106 h-1; kpt = 0.064 h-1; ktp  = 0.123 h-1; Q = 312 L/h; PTM  = 0.092; VEC = 0.26 L;  ENTM = 0.001;  α = 140.6 
h-1; β = 2.4 h-1; ksyn = 9.141 pmol/h; kdeg = 0.079 h-1; kon = 0.03 1/pmol/h; koff = 1.74 h-1; and kint = 3.6 h-1. 
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Figure 6.6. Simulated plasma drug, free receptor, and drug/receptor complex time–
concentration profiles for COMP-TMD (dotted line) and REC-TMD (solid 
line) models at Cinput(0)/KD ratio of 10 using two different sets of parameter 
values (Upper Panel: kel  = 0.106 h-1, kpt = 0.064 h-1, ktp  = 0.123 h-1, PTM  = 
0.092, VEC = 0.26 L, α = 140.6 h-1; and Lower Panel: kel  = 0 h-1, kpt = 139 h-1, 
ktp  = α = 500 h-1, PTM  = 1, VEC = 2.24 L). Values of other parameters are V = 
2.24 L; Q = 312 L/h;  ENTM = 0.001; β = 2.4 h-1; ksyn = 9.141 pmol/h; kdeg = 
0.079 h-1; kon = 0.03 1/pmol/h; koff = 1.74 h-1; and kint = 3.6 h-1. 
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Figure 6.7. Dependence of Cmax in the REC-TMD model on Q, VEC, α, Rss, KD, and kint 
at Cinput(0)/KD ratio of 10. Parameter values used while investigating the 
parameter of interest are VEC = 2.24 L; Q = 312 L/h; PTM  = 1;  ENTM = 0.001; 
β = 2.4 h-1; ksyn = 9.141 pmol/h; kdeg = 0.079 h-1; kon = 0.03 1/pmol/h; koff = 
1.74 h-1; and kint = 3.6 h-1. 
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Figure 6.8. Relative estimation bias (mean and asymptotic 95% confidence interval) and 
imprecision of receptor-related parameters, ksyn, kdeg, kon, koff, and kint, when 
incorporated in COMP-TMD and REC-TMD models. % Bias was calculated 
as the deviation of the mean parameter estimate from the true parameter value 
expressed as a percentage from the true value. % Imprecision was calculated 
as the relative standard error of the parameter estimate.
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Figure 6.9. Relative estimation bias (mean and asymptotic 95% confidence interval) and 
imprecision of receptor-independent parameters in COMP-TMD model, V, kel, 
kpt, and ktp; and in REC-TMD model, ENTM ,  α, and β. % Bias was calculated 
as the deviation of the mean parameter estimate from the true parameter value 
expressed as a percentage from the true value. % Imprecision was calculated 
as the relative standard error of the parameter estimate. 
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

The overall hypothesis of this work is that physiologically based pharmacokinetic 

modeling is a more appropriate approach to characterize the pharmacokinetics (PK) of 

target mediated disposition (TMD) drugs than the abstract classical compartmental 

approach and can extend the applications of the receptor-based models. Based on this 

hypothesis, the primary objective was to develop a mechanistic modeling platform that 

integrates a minimal, linear system analysis based recirculation model and a receptor 

based model to characterize the PK properties of drugs experiencing TMD. 

The research presented in this dissertation explored three main stages of model 

development: 1) Model formulation (Chapter 3); 2) Model application (Chapters 3 and 

4); and 3) Model evaluation (Chapters 5 and 6). In Chapter 3, a receptor-based 

recirculation model that accounts for drug-receptor binding, receptor turnover, and 

drug/receptor complex endocytosis and lysosomal degradation was mathematically 

formulated. 

 In the same chapter,  pharmacokinetics (PK) of Continuous Erythropoietin 

Receptor Activator (C.E.R.A. ), a long acting recombinant human erythropoietin (EPO) 

analogue, was studied in adult sheep with normal and ablated bone marrow (BM) using a 

sensitive and specific technique, the tracer interaction method (TIM). To quantitatively 

assess the interaction of C.E.R.A. with EPO receptor (EPOR) populations located inside 

and outside the BM in adult sheep, the developed model was fitted to the tracer 

component of the TIM with the non-tracer component being represented as a forcing 

function. The developed model, together with the TIM, was able to quantitatively assess 

the interaction of C.E.R.A. with hematopoietic and non-hematopoietic EPOR population 



145 
 

 
 

 

in adult sheep. As predicted by the model, the hematopoietic EPOR has higher 

production and degradation rates, similar affinity to C.E.R.A., and it is more involved in 

C.E.R.A’s in vivo elimination, compared to the non-hematopoietic population.  The TIM 

detected a saturable interaction between C.E.R.A. and non-hematopoietic EPOR, which 

contradicts the known behavior of EPO. 

Besides the model-based analysis of the TIM data presented in Chapter 3, a non-

compartmental analysis was conducted using the non-tracer component of the TIM. The 

information obtained from this analysis enabled direct assessment of the effect of BM 

ablation on C.E.R.A. macro-parameters (e.g., clearance, half-life, volume of distribution 

at steady state, etc.). In agreement with the physiologic model, the non-compartmental 

analysis provided clear evidence that BM plays a major role in the in vivo elimination of 

C.E.R.A. 

In Chapter 4, the model developed in Chapter 3 was further applied to provide a 

mechanism based explanation for C.E.R.A.’s slower elimination and greater 

erythropoietic activity in vivo compared to EPO. This was achieved by analyzing EPO 

and C.E.R.A. TIM data collected in adult sheep. As predicted by the model, the slower 

elimination of C.E.R.A. can be explained in terms of the following mechanisms: 1) less 

EPOR up-regulation induced by C.E.R.A. administration; 2) slower binding of C.E.R.A. 

to EPOR; and 3) reduced internalization and/or degradation rate of surface-bound 

C.E.R.A.. Slower C.E.R.A./EPOR complex elimination explains the greater in vivo 

erythropoiesis observed for C.E.R.A. despite its lower affinity to its receptor. 

To investigate the suitability of the TIM experimental design used in Chapters 3 

and 4 for estimation of the developed model parameters, a comprehensive, partial-
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derivative sensitivity analysis was performed in Chapter 5. It was found that the TIM 

experimental setting is adequate for estimation of the physiologic model parameters. The 

analysis also showed that the time course of tracer plasma concentrations in the TIM 

design is determined by both linear distribution and receptor-related parameters before 

the non-tracer injection, but it is primarily determined by receptor-related parameters 

after the injection. 

In Chapter 6, the physiological conditions at which a TMD-two compartment 

model approximates a minimal, linear systems analysis, TMD-recirculation model were 

identified by: 1) Comparing statistical moments of linearized forms of both models; and 

2) Simulation of drug and receptor profiles at different IV bolus doses based on 

EPO/EPOR parameter values reported in literature for humans and perturbing these 

parameter values.  It was found that conditions of well-perfused target tissue, comparable 

drug initial distribution volume and target tissue extracellular volume, negligible non-

receptor mediated clearance, rapid equilibrium between venous and arterial blood drug 

concentrations, small extracellular volume, reduced cardiac output, low receptor pool 

concentration, and high drug-receptor equilibrium dissociation constant are necessary for 

equivalent compartmental and recirculation models. 

In the same chapter, the influence of the host structure on parameter estimation 

efficiency was evaluated by simulation of 1,000 datasets for each model at D-optimized 

sampling times in a dose-escalation design followed by re-estimation of the parameters 

and calculation of estimation metrics. It was showed that incorporation of a TMD model 

in a recirculatory structure does not significantly affect the estimation accuracy and 

precision of receptor-related parameters. The main conclusion of the chapter is that 
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selection between receptor-based compartmental and recirculation models shouldn’t be 

based only on goodness-of-fit criteria but also on available information about target tissue 

composition and blood supply, as well as drug biochemical (e.g., in vitro binding 

properties) and pharmacokinetic (e.g., initial volume of distribution, non-receptor 

mediated clearance properties. 
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APPENDIX A. WINFUNFIT CODES FOR CHAPTERS 3-5 

A.1. Fortran subroutines for fitting the recirculation model to TIM 

data 

! THESE SUBROUTINES TO DEFINE THE MODEL TO BE FITTED BY 
WINFUNFIT 
! PROGRAMMED BY MHE IN FEBRUARY 2010 

 
SUBROUTINE USERMODEL_ODE(T,Y,YPRIME,P,NP,IFUN) 
! THIS SUBROUTINE DEFINES THE MODEL DIFFERENTIAL EQUATIONS 

 
IMPLICIT NONE 
REAL*8 :: Y(*), YPRIME(*), P(*) ,T 
INTEGER  :: NP,IFUN 
REAL*8 :: 
Z,TD,CEST,ALPHA,BETA,GAMMA,LAMDA,R,D,Q,Ksyn,Kdeg,Kint,KD,P1,TCOLD,
X,ONE,TWO,FOUT1,FOUT2,FOUT3,ONE = 1D0, Z=0D0                                       
 
ALPHA=P(1) 
BETA=P(2) 
LAMDA=P(3) 
Ksyn=P(4) 
KD=P(5) 
Kdeg=P(6) 
Kint=P(7) 
P1=P(8) 
R=P(9) 
D=P(10) 
Q=P(11) 
TCOLD=P(12) 

 
FOUT1=Y(1)+Y(2) 
FOUT3=Y(3)+Y(4) 
 
      IF (T .GT. TCOLD) THEN 
       CALL CUBIC_GCV(TD,CEST) 
       Z=DEXP(CEST) 
      ELSE IF (T .LE. TCOLD) THEN 
       Z= FOUT1/Q 
      END IF 
 
X=Y(5)/(KD+Z) 
FOUT2=P1*(ONE-X)*FOUT1 
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      IF(IFUN.EQ.1)THEN 
       YPRIME(1) = -ALPHA*Y(1)+ LAMDA*ALPHA*(R + FOUT2+FOUT3) 
 YPRIME(2) = -BETA*Y(2)+(ONE-LAMDA)*BETA*(R + FOUT2+FOUT3) 
       YPRIME(3) = -ALPHA*Y(3)+(ONE-P1)*LAMDA*ALPHA*FOUT1 
 YPRIME(4) = -BETA*Y(4)+(ONE-P1)*(ONE-LAMDA)*BETA*FOUT1 
 YPRIME(5) = Ksyn-Kdeg*Y(5)+(Kdeg-Kint)*X*FOUT1/Q 
      ENDIF 
      RETURN 
      END 

 
 

SUBROUTINE USERMODEL_ODE_JACOBIAN (T,Y,DFDT,DFDY,N,P,NP,IFUN) 
! THIS SUBROUTINE IS NECESSARY FOR SOLVING STIFF DIFFERENTIAL 
EQUATIONS 
! THIS SUBROUTINE DEFINES THE PARTIAL DERIVATIVE OF EACH 
DIFFERENTIAL EQUATION WITH RESPECT TO TIME AND EACH Y VARIABLE 
 
 IMPLICIT NONE 
 INTEGER, INTENT(IN)::N,NP,IFUN 
 DOUBLE PRECISION, INTENT(IN)::T 
 DOUBLE PRECISION,DIMENSION(N), INTENT (IN)::Y 
 DOUBLE PRECISION,DIMENSION(N),INTENT(OUT)::DFDT 
 DOUBLE PRECISION,DIMENSION(N,N),INTENT(OUT)::DFDY 
 DOUBLE PRECISION,DIMENSION(NP),INTENT(IN)::P 
 DOUBLE PRECISION,PARAMETER::ZERO=0D0,ONE=1D0 
 DOUBLE PRECISION :: 
Z,TD,CEST,ALPHA,BETA,GAMMA,LAMDA,R,D,Q,Ksyn,Kdeg,Kint,KD,P1,TCOLD,
X 
 
ALPHA=P(1) 
BETA=P(2) 
LAMDA=P(3) 
Ksyn=P(4) 
KD=P(5) 
Kdeg=P(6) 
Kint=P(7) 
P1=P(8) 
R=P(9) 
D=P(10) 
Q=P(11) 
TCOLD=P(12) 
 
 IF(IFUN.EQ.1)THEN 
  DFDT(1)=ZERO 
  DFDT(2)=ZERO 
  DFDT(3)=ZERO 
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  DFDT(4)=ZERO 
  DFDT(5)=ZERO 
 
IF (T .GT. TCOLD) THEN 
        CALL CUBIC_GCV(TD,CEST) 
        Z=DEXP(CEST) 
    X= ONE/(KD+Z) 
 
    DFDY(1,1)=-ALPHA+LAMDA*ALPHA*P1-
LAMDA*ALPHA*P1*Y(5)*X 
    DFDY(1,2)=LAMDA*ALPHA*P1-LAMDA*ALPHA*P1*Y(5)*X 
    DFDY(1,5)=-LAMDA*ALPHA*P1*(Y(1)+Y(2))*X 
    DFDY(2,1)=(ONE-LAMDA)*BETA*P1-(ONE-
LAMDA)*BETA*P1*Y(5)*X 
    DFDY(2,2)=-BETA+(ONE-LAMDA)*BETA*P1-(ONE-
LAMDA)*BETA*P1*Y(5)*X 
    DFDY(2,5)=-(ONE-LAMDA)*BETA*P1*(Y(1)+Y(2))*X 
    DFDY(5,1)=(Kdeg-Kint)*X*Y(5)/Q 
    DFDY(5,2)=(Kdeg-Kint)*X*Y(5)/Q 
    DFDY(5,5)=-Kdeg+(Kdeg-Kint)*X*(Y(1)+Y(2))/Q 
 
ELSE IF (T .LE. TCOLD) THEN 
        Z= ZERO 
    X=ONE/(KD+((Y(1)+Y(2))/Q)) 
 
    DFDY(1,1)=-ALPHA+LAMDA*ALPHA*P1-
LAMDA*ALPHA*P1*KD*Y(5)*X*X 
    DFDY(1,2)=LAMDA*ALPHA*P1-
LAMDA*ALPHA*P1*KD*Y(5)*X*X 
    DFDY(1,5)=-LAMDA*ALPHA*P1*(Y(1)+Y(2))*X 
    DFDY(2,1)=(ONE-LAMDA)*BETA*P1-(ONE-
LAMDA)*BETA*P1*KD*Y(5)*X*X 
    DFDY(2,2)=-BETA +(ONE-LAMDA)*BETA*P1-(ONE-
LAMDA)*BETA*P1*KD*Y(5)*X*X 
    DFDY(2,5)=-(ONE-LAMDA)*BETA*P1*(Y(1)+Y(2))*X 
    DFDY(5,1)=(Kdeg-Kint)*KD*Y(5)*X*X/Q 
    DFDY(5,2)=(Kdeg-Kint)*KD*Y(5)*X*X/Q 
    DFDY(5,5)=-Kdeg+(Kdeg-Kint)*X*(Y(1)+Y(2))/Q 
       END IF 
 
 DFDY(1,3)=LAMDA*ALPHA 
 DFDY(1,4)=LAMDA*ALPHA 
 DFDY(2,3)=(ONE-LAMDA)*BETA 
 DFDY(2,4)=(ONE-LAMDA)*BETA 
 DFDY(5,3)=ZERO 
 DFDY(5,4)=ZERO 
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 DFDY(3,1)=LAMDA*ALPHA*(ONE-P1) 
 DFDY(3,2)=LAMDA*ALPHA*(ONE-P1) 
 DFDY(3,5)=ZERO 
 DFDY(3,3)=-ALPHA 
 DFDY(3,4)=ZERO 
 DFDY(4,1)=(ONE-LAMDA)*BETA*(ONE-P1) 
 DFDY(4,2)=(ONE-LAMDA)*BETA*(ONE-P1) 
 DFDY(4,5)=ZERO 
 DFDY(4,3)=ZERO 
 DFDY(4,4)=-BETA 
ENDIF 
END SUBROUTINE USERMODEL_ODE_JACOBIAN 
 

 
SUBROUTINE USERMODEL(T,Y,P,NP,IFUN) 
! THIS SUBROUTINE:  
! (1) DEFINES THE EQUATIONS TO BE FITTED  
! (2) ASSIGNS NAMES TO THE PARAMETERS (IFUN=-1000 CALL)  
! (3) ALLOWS THE USER TO DEFINE AND REGISTER EVENT (IFUN =-1000 
CALL)  
! (4) INTERACTIVELY ALLOWS THE USER TO SELECT THE ALGORITHM TO 
BE  
! USED BY WINFUNFIT FOR THE INTEGRATION OF THE DIFFERENTIAL 
EQUATIONS SPECIFIED IN THE SUBROUTINE "USERMODEL_ODE" GIVEN 
ABOVE.  
! (5) ALLOWS FITTING SPLINES TO EXTERNAL DATA 
! (6) PROVIDES THE USER THE OPPORTUNITY TO MAKE SPECIAL 
CALCULATIONS AND PLOTS AFTER WINFUNFIT HAS COMPLETED A 
FITTING TO A DATA SET (IFUN=0 CALL)  
 
IMPLICIT  NONE 
INTEGER                           :: NP, IFUN, JFUN, J,JY,I,JOB1,JOB2 
INTEGER,PARAMETER                 :: NEQN=5  
REAL*8                            :: FX1,FX2,RT_SS,FOUT1_SS,A,B,C,AA,BB  
REAL*8                            :: T, Y, 
P(*),ALPHA,BETA,GAMMA,LAMDA,R,D,Q,Ksyn,Kdeg,Kint,KD,P1,FSS,RT_0,TCO
LD,X,FOUT1,FOUT2,FOUT3,Y1,Y2,Y3,Y4,Y5 
INTEGER                           :: NOBSB, NOBSP, LUN, NSIGDIGITS,NPS=200,NOBS 
REAL*8                            :: FACTOR, ZERO = 0D0, TZERO = 0D0 , ONE = 1D0  
,TWO = 2D0 , THREE = 3D0         
REAL*8                            ::  TOBS(50),COBS(50),CLN(50), TC(200), CC(200) ,DT                                                                                
LOGICAL, SAVE                     :: SHOWIT, PLOTSAVED,FIRSTCALL=.TRUE. 
CHARACTER (LEN=256)               :: ID, DATAFILENAME,COLDNAME 
CHARACTER (LEN=20)                :: PNAME 
REAL*8                            :: YZERO(NEQN) 
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ALPHA=P(1) 
BETA=P(2) 
LAMDA=P(3) 
Ksyn=P(4) 
KD=P(5) 
Kdeg=P(6) 
Kint=P(7) 
P1=P(8) 
R=P(9) 
D=P(10) 
Q=P(11) 
TCOLD=P(12) 
FSS=P(13) 
RT_0=P(14) 
 
      IF(IFUN.EQ.-1000)THEN 
 IF (FIRSTCALL.EQ..TRUE.) THEN 
        PRINT*, "ENTER THE NAME OF FILE FOR COLD :" 
  READ*, COLDNAME 
  OPEN(UNIT=8, FILE=COLDNAME, STATUS='OLD') 
        READ (8,*) NOBS 
         DO I= 1, NOBS 
          READ (8,*) TOBS(I),COBS(I) 
    PRINT*, TOBS(I), COBS(I) 
    CLN(I)=LOG(COBS(I)) 
         END DO 
        CALL CUBIC_GCV_FIT(TOBS,CLN,NOBS) 
        CLOSE (8,STATUS='SAVE') 
        FIRSTCALL = .FALSE.  
 ENDIF 
 

CALL SetFunfitParameterName(1,"ALPHA")                            
CALL SetFunfitParameterName(2,"BETA")                          
CALL SetFunfitParameterName(3,"LAMDA")                           
CALL SetFunfitParameterName(4,"Ksyn")                          
CALL SetFunfitParameterName(5,"KD")                            
CALL SetFunfitParameterName(6,"Kdeg")                         
CALL SetFunfitParameterName(7,"Kint")   
CALL SetFunfitParameterName(8,"P1")  
CALL SetFunfitParameterName(9,"R") 
CALL SetFunfitParameterName(10,"D") 
CALL SetFunfitParameterName(11,"Q") 
CALL SetFunfitParameterName(12,"TCOLD") 
CALL SetFunfitParameterName(13,"FSS") 
CALL SetFunfitParameterName(14,"RT_0") 
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CALL SET_INTEGRATOR(6) 
ENDIF 
 
IF(IFUN.EQ.1) THEN !FIND SS SOLUTIONS FOR INITIAL CONDITIONS 

JOB1 = 0 
RT_SS = 0.1D0 
A=Kdeg*KD*Q*Q*P1 
B=(Kint-Kdeg)*Q*FSS*KD 
C=-Ksyn*Q*FSS*KD 

 
  DO  

FX1 = A*RT_SS*RT_SS+B*RT_SS+C                                                                           
 ! NOTE THE FUNCTION IS EVALUATED BEFORE THE CALL 
CALL SINGLE_POSETIVE_ROOT_FINDER (RT_SS, FX1, JOB1)  
! THE INITIAL SEARCH FOR A BRACKET ASSUMES THAT FX     
! IS MONOTONIC 

           IF (JOB1 /= 1) EXIT 
ENDDO 

 
JOB2 = 0 
FOUT1_SS= 0.1D0 
AA=Q*P1*RT_SS-FSS 
BB=-Q*KD*FSS 

 
DO  
FX2 = AA*FOUT1_SS+BB 
CALL SINGLE_POSETIVE_ROOT_FINDER (FOUT1_SS, FX2, JOB2)  
IF (JOB2 /= 1) EXIT 
ENDDO 

 
YZERO(1) = LAMDA*ALPHA*D+LAMDA*FOUT1_SS 
YZERO(2)=(ONE-LAMDA)*BETA*D+(ONE-LAMDA)*FOUT1_SS 
YZERO(3)= LAMDA*(ONE-P1)*FOUT1_SS 
YZERO(4) = (ONE-LAMDA)*(ONE-P1)*FOUT1_SS 
YZERO(5)= RT_0  

   
       JY = 1 
       CALL 
INTEGRATE_USERMODEL_ODE(T,Y1,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=2 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y2,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=3 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y3,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=4 
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   CALL 
INTEGRATE_USERMODEL_ODE(T,Y4,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=5 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y5,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
 
   FOUT1=Y1+Y2 
   FOUT3=Y3+Y4 
     X=Y5/(KD+FOUT1/Q) 
   FOUT2=P1*(ONE-X)*FOUT1 
   Y=(FOUT2+FOUT3)/Q 
ENDIF 
 
IF(IFUN.EQ.0)THEN  ! SPECIAL USER OUTPUT SECTION 

CALL PROMT(SHOWIT) ! WANT TO SEE USER PLOT(S)? 
       IF(SHOWIT) THEN 
  IF(TOBS(1).GT.0.0) THEN 
   DT = (TOBS(NOBS) - TOBS(1))/FLOAT(NPS-1) 
   DO J=1, NPS 
    TC(J) = P(12) + DT*FLOAT(J-1) 
    CALL CUBIC_GCV(TC(J), CC(J)) 
    CC(J) = DEXP(CC(J)) 
   ENDDO 
  ENDIF  !TCOLD > 0 
 

CALL ADDOBSERVATIONSLEFT(1) 
CALL ADDFITTEDCURVELEFT(1) 
CALL LEFTLABEL('PLASMA 125I-CERA (CPM/ML)') 
IF(TCOLD.GT.0.0) THEN 

CALL RIGHTLABEL('COLD CERA CONC. (MU/ML) ') 
   CALL ADD_POINTS_RIGHT(TOBS, COBS, NOBS) 
   CALL ADD_CURVE_RIGHT(TC,CC,NPS) 

ENDIF 
CALL TITLE('CERA TIM (SUBJECT 50082)') 
CALL XLABEL('TIME (HR)') 
CALL DISPLAYPLOT 
! RECORD PLOT ID IF PLOT IS SAVED 
CALL RECORDPLOTIFSAVED(3)    

      ENDIF   ! SHOWIT  
ENDIF  ! IFUN = 0 
RETURN 
!*********  N O N  OPTIONAL DEFINITION SECTION ************* 
!      
! THIS IS FOR RECORDING OF THE MODEL USED IN THE FITTING : 
!      
      ENTRY MODELID(ID) 
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      ID = 'INF TIM MODEL V1.0' 
      RETURN 
      END 

A.2. Fortran subroutines for generalized cross validated cubic spline 

fitting 

SUBROUTINE CUBIC_GCV_FIT (T,F,N) 
!THIS SUBROUTINE FITS A GCV CUBIC SPLINE TO DATA POINTS 
! COPYRIGHT PV-P      
! INPUT: 
!     T,F         ARRAYS OF LENGTH N TO BE FITTED BY CUBIC  
!                 GENERALIZED CROSS VAIDATION (F=F(T)) 
! 
! R E S T R I C T I O N S :  N MUST NOT EXCEED 2000 
 

SAVE C,Y,TSAVE,NSAVE 
      PARAMETER (NMAX=2000,NWK=7*(NMAX+2),IC=NMAX-1) 

DOUBLE PRECISION FF(NMAX),X(NMAX),Y(NMAX),DF(NMAX),ONE, 
C(IC,3),SE(NMAX),WK(NWK),VAR,D,ZERO,Z2,SSSE,SSRES 

      REAL T(*), F(*), TSAVE(NMAX)  
      DATA  ONE, ZERO / 1D0 , 0D0 / 
 
    IF(N.GT.NMAX)STOP '** ERROR  (CUBIC_GCV_FIT) : TOO LARGE ARRAY' 
    IF(N.LT.2) STOP   '** ERROR  (CUBIC_GCV_FIT) : TOO SMALL ARRAY' 
 
     DO J =   1,N  
       FF(J) = DBLE(F(J)) 
       DF(J) = ONE 
       X(J) = DBLE(T(J)) 
       TSAVE(J) = T(J) 
      ENDDO 
 
      NSAVE = N 
      VAR = - ONE 
 
      CALL CUBGCV (X,FF,DF,N,Y,C,IC,VAR,1,SE,WK,IER) 
 
      IF(IER.NE.0) THEN 
       PRINT*,'** ERROR (CUBIC_GCV_FIT): IER =',IER 
       READ* 
 STOP 
      ENDIF 
      RETURN 
!***** 
      ENTRY CUBIC_GCV(TCALC,FCALC) ! INPUT: TCALC, OUTPUT: FCALC 
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      TT = MAX(TSAVE(1),TCALC) 
      TT = MIN(TT,TSAVE(NSAVE))  
                 
      DO J = 1,NSAVE-1 
       IF(TT.LE.TSAVE(J+1)) THEN 
        D = DBLE(TT-TSAVE(J)) 
        FCALC = SNGL(((C(J,3)*D+C(J,2))*D+C(J,1))*D+Y(J)) 
        EXIT 
       ENDIF  
      ENDDO 
      RETURN 
      END 
!******     
   
!     ALGORITHM 642 COLLECTED ALGORITHMS FROM ACM. 
!     ALGORITHM APPEARED IN ACM-TRANS. MATH. SOFTWARE, VOL.12, NO. 
!     2, JUN., 1986, P. 150. 
!   SUBROUTINE NAME     - CUBGCV 
! 
!-------------------------------------------------------------------------- 
! 
!   COMPUTER            - VAX/DOUBLE 
! 
!   AUTHOR              - M.F.HUTCHINSON 
!                         CSIRO DIVISION OF MATHEMATICS AND STATISTICS 
!                         P.O. BOX 1965 
!                         CANBERRA, ACT 2601 
!                         AUSTRALIA 
! 
!   LATEST REVISION     - 15 AUGUST 1985 
! 
!   PURPOSE             - CUBIC SPLINE DATA SMOOTHER 
! 
!   USAGE               - CALL CUBGCV (X,F,DF,N,Y,C,IC,VAR,JOB,SE,WK,IER) 
! 
!   ARGUMENTS    X      - VECTOR OF LENGTH N CONTAINING THE 
!                           ABSCISSAE OF THE N DATA POINTS 
!                           (X(I),F(I)) I=1..N. (INPUT) X 
!                           MUST BE ORDERED SO THAT 
!                           X(I) .LT. X(I+1). 
!                F      - VECTOR OF LENGTH N CONTAINING THE 
!                           ORDINATES (OR FUNCTION VALUES) 
!                           OF THE N DATA POINTS (INPUT). 
!                DF     - VECTOR OF LENGTH N. (INPUT/OUTPUT) 
!                           DF(I) IS THE RELATIVE STANDARD DEVIATION 
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!                           OF THE ERROR ASSOCIATED WITH DATA POINT I. 
!                           EACH DF(I) MUST BE POSITIVE.  THE VALUES IN 
!                           DF ARE SCALED BY THE SUBROUTINE SO THAT 
!                           THEIR MEAN SQUARE VALUE IS 1, AND UNSCALED 
!                           AGAIN ON NORMAL EXIT. 
!                           THE MEAN SQUARE VALUE OF THE DF(I) IS RETURNED 
!                           IN WK(7) ON NORMAL EXIT. 
!                           IF THE ABSOLUTE STANDARD DEVIATIONS ARE KNOWN, 
!                           THESE SHOULD BE PROVIDED IN DF AND THE ERROR 
!                           VARIANCE PARAMETER VAR (SEE BELOW) SHOULD THEN 
!                           BE SET TO 1. 
!                           IF THE RELATIVE STANDARD DEVIATIONS ARE UNKNOWN, 
!                           SET EACH DF(I)=1. 
!                N      - NUMBER OF DATA POINTS (INPUT). 
!                           N MUST BE .GE. 3. 
!                Y,C    - SPLINE COEFFICIENTS. (OUTPUT) Y 
!                           IS A VECTOR OF LENGTH N. C IS 
!                           AN N-1 BY 3 MATRIX. THE VALUE 
!                           OF THE SPLINE APPROXIMATION AT T IS 
!                           S(T)=((C(I,3)*D+C(I,2))*D+C(I,1))*D+Y(I) 
!                           WHERE X(I).LE.T.LT.X(I+1) AND 
!                           D = T-X(I). 
!                IC     - ROW DIMENSION OF MATRIX C EXACTLY 
!                           AS SPECIFIED IN THE DIMENSION 
!                           STATEMENT IN THE CALLING PROGRAM. (INPUT) 
!                VAR    - ERROR VARIANCE. (INPUT/OUTPUT) 
!                           IF VAR IS NEGATIVE (I.E. UNKNOWN) THEN 
!                           THE SMOOTHING PARAMETER IS DETERMINED 
!                           BY MINIMIZING THE GENERALIZED CROSS VALIDATION 
!                           AND AN ESTIMATE OF THE ERROR VARIANCE IS 
!                           RETURNED IN VAR. 
!                           IF VAR IS NON-NEGATIVE (I.E. KNOWN) THEN THE 
!                           SMOOTHING PARAMETER IS DETERMINED TO MINIMIZE 
!                           AN ESTIMATE, WHICH DEPENDS ON VAR, OF THE TRUE 
!                           MEAN SQUARE ERROR, AND VAR IS UNCHANGED. 
!                           IN PARTICULAR, IF VAR IS ZERO, THEN AN 
!                           INTERPOLATING NATURAL CUBIC SPLINE IS CALCULATED. 
!                           VAR SHOULD BE SET TO 1 IF ABSOLUTE STANDARD 
!                           DEVIATIONS HAVE BEEN PROVIDED IN DF (SEE ABOVE). 
!                JOB    - JOB SELECTION PARAMETER. (INPUT) 
!                         JOB = 0 SHOULD BE SELECTED IF POINT STANDARD ERROR 
!                           ESTIMATES ARE NOT REQUIRED IN SE. 
!                         JOB = 1 SHOULD BE SELECTED IF POINT STANDARD ERROR 
!                           ESTIMATES ARE REQUIRED IN SE. 
!                SE     - VECTOR OF LENGTH N CONTAINING BAYESIAN STANDARD 
!                           ERROR ESTIMATES OF THE FITTED SPLINE VALUES IN Y. 
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!                           SE IS NOT REFERENCED IF JOB=0. (OUTPUT) 
!                WK     - WORK VECTOR OF LENGTH 7*(N + 2). ON NORMAL EXIT  
!                           THE FIRST 7 VALUES OF WK ARE ASSIGNED AS FOLLOWS:- 
! 
!                           WK(1) = SMOOTHING PARAMETER (= RHO/(RHO + 1)) 
!                           WK(2) = ESTIMATE OF THE NUMBER OF DEGREES OF 
!                                   FREEDOM OF THE RESIDUAL SUM OF SQUARES 
!                           WK(3) = GENERALIZED CROSS VALIDATION 
!                           WK(4) = MEAN SQUARE RESIDUAL 
!                           WK(5) = ESTIMATE OF THE TRUE MEAN SQUARE ERROR 
!                                   AT THE DATA POINTS 
!                           WK(6) = ESTIMATE OF THE ERROR VARIANCE 
!                           WK(7) = MEAN SQUARE VALUE OF THE DF(I) 
! 
!                           IF WK(1)=0 (RHO=0) AN INTERPOLATING NATURAL CUBIC 
!                           SPLINE HAS BEEN CALCULATED. 
!                           IF WK(1)=1 (RHO=INFINITE) A LEAST SQUARES 
!                           REGRESSION LINE HAS BEEN CALCULATED. 
!                           WK(2) IS AN ESTIMATE OF THE NUMBER OF DEGREES OF 
!                           FREEDOM OF THE RESIDUAL WHICH REDUCES TO THE 
!                           USUAL VALUE OF N-2 WHEN A LEAST SQUARES  
!      REGRESSION LINE IS CALCULATED. 
!                           WK(3),WK(4),WK(5) ARE CALCULATED WITH THE DF(I) 
!                           SCALED TO HAVE MEAN SQUARE VALUE 1.  THE 
!                           UNSCALED VALUES OF WK(3),WK(4),WK(5) MAY BE 
!                           CALCULATED BY DIVIDING BY WK(7). 
!                           WK(6) COINCIDES WITH THE OUTPUT VALUE OF VAR IF 
!                           VAR IS NEGATIVE ON INPUT.  IT IS CALCULATED WITH 
!                           THE UNSCALED VALUES OF THE DF(I) TO FACILITATE 
!                           COMPARISONS WITH A PRIORI VARIANCE ESTIMATES. 
! 
!                IER    - ERROR PARAMETER. (OUTPUT) 
!                         TERMINAL ERROR 
!                           IER = 129, IC IS LESS THAN N-1. 
!                           IER = 130, N IS LESS THAN 3. 
!                           IER = 131, INPUT ABSCISSAE ARE NOT 
!                             ORDERED SO THAT X(I).LT.X(I+1). 
!                           IER = 132, DF(I) IS NOT POSITIVE FOR SOME I. 
!                           IER = 133, JOB IS NOT 0 OR 1. 
! 
!   PRECISION/HARDWARE  - DOUBLE 
! 
!   REQUIRED ROUTINES   - SPINT1,SPFIT1,SPCOF1,SPERR1 
! 
!   REMARKS      THE NUMBER OF ARITHMETIC OPERATIONS REQUIRED BY  
!                SUBROUTINE IS PROPORTIONAL TO N.   
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!      THE SUBROUTINE USES AN ALGORITHM DEVELOPED BY M.F. 
!       HUTCHINSON AND F.R. DE HOOG, 'SMOOTHING NOISY DATA WITH 
!       SPLINE FUNCTIONS', NUMER. MATH. (IN PRESS) 
! 
!----------------------------------------------------------------------- 
! 
      SUBROUTINE CUBGCV(X,F,DF,N,Y,C,IC,VAR,JOB,SE,WK,IER) 
! 
!---SPECIFICATIONS FOR ARGUMENTS--- 
      INTEGER N,IC,JOB,IER 
      DOUBLE PRECISION X(N),F(N),DF(N),Y(N),C(IC,3),SE(N),VAR,WK(0:N+1,7) 
! 
!---SPECIFICATIONS FOR LOCAL VARIABLES--- 

DOUBLE PRECISION 
DELTA,ERR,GF1,GF2,GF3,GF4,R1,R2,R3,R4,TAU,RATIO,AVH,AVDF,AVAR,Z
ERO,ONE,STAT(6),P,Q 

! 
      DATA RATIO/2.0D0/ 
      DATA TAU/1.618033989D0/ 
      DATA ZERO,ONE/0.0D0,1.0D0/ 
! 
!---INITIALIZE--- 
      IER = 133 
      IF (JOB.LT.0 .OR. JOB.GT.1) GO TO 140 
      CALL SPINT1(X,AVH,F,DF,AVDF,N,Y,C,IC,WK,WK(0,4),IER) 
      IF (IER.NE.0) GO TO 140 
      AVAR = VAR 
      IF (VAR.GT.ZERO) AVAR = VAR*AVDF*AVDF 
! 
!---CHECK FOR ZERO VARIANCE--- 
      IF (VAR.NE.ZERO) GO TO 10 
      R1 = ZERO 
      GO TO 90 
! 
!---FIND LOCAL MINIMUM OF GCV OR THE EXPECTED MEAN SQUARE  
!    ERROR 
   10 R1 = ONE 
      R2 = RATIO*R1 
      CALL 
SPFIT1(X,AVH,DF,N,R2,P,Q,GF2,AVAR,STAT,Y,C,IC,WK,WK(0,4),WK(0,6),WK(0,
7)) 
   20 CALL 
SPFIT1(X,AVH,DF,N,R1,P,Q,GF1,AVAR,STAT,Y,C,IC,WK,WK(0,4),WK(0,6),WK(0,
7)) 
      IF (GF1.GT.GF2) GO TO 30 
! 
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!---EXIT IF P ZERO--- 
      IF (P.LE.ZERO) GO TO 100 
      R2 = R1 
      GF2 = GF1 
      R1 = R1/RATIO 
      GO TO 20 
 
   30 R3 = RATIO*R2 
   40 CALL 
SPFIT1(X,AVH,DF,N,R3,P,Q,GF3,AVAR,STAT,Y,C,IC,WK,WK(0,4),WK(0,6),WK(0,
7)) 
      IF (GF3.GT.GF2) GO TO 50 
! 
!---EXIT IF Q ZERO--- 
      IF (Q.LE.ZERO) GO TO 100 
      R2 = R3 
      GF2 = GF3 
      R3 = RATIO*R3 
      GO TO 40 
 
   50 R2 = R3 
      GF2 = GF3 
      DELTA = (R2-R1)/TAU 
      R4 = R1 + DELTA 
      R3 = R2 - DELTA 
      CALL 
SPFIT1(X,AVH,DF,N,R3,P,Q,GF3,AVAR,STAT,Y,C,IC,WK,WK(0,4),WK(0,6),WK(0,
7)) 
      CALL 
SPFIT1(X,AVH,DF,N,R4,P,Q,GF4,AVAR,STAT,Y,C,IC,WK,WK(0,4),WK(0,6),WK(0,
7)) 
! 
!---GOLDEN SECTION SEARCH FOR LOCAL MINIMUM--- 
   60 IF (GF3.GT.GF4) GO TO 70 
      R2 = R4 
      GF2 = GF4 
      R4 = R3 
      GF4 = GF3 
      DELTA = DELTA/TAU 
      R3 = R2 - DELTA 
      CALL 
SPFIT1(X,AVH,DF,N,R3,P,Q,GF3,AVAR,STAT,Y,C,IC,WK,WK(0,4),WK(0,6),WK(0,
7)) 
      GO TO 80 
 
   70 R1 = R3 
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      GF1 = GF3 
      R3 = R4 
      GF3 = GF4 
      DELTA = DELTA/TAU 
      R4 = R1 + DELTA 
      CALL 
SPFIT1(X,AVH,DF,N,R4,P,Q,GF4,AVAR,STAT,Y,C,IC,WK,WK(0,4),WK(0,6),WK(0,
7)) 
   80 ERR = (R2-R1)/ (R1+R2) 
      IF (ERR*ERR+ONE.GT.ONE .AND. ERR.GT.1.0D-6) GO TO 60 
      R1 = (R1+R2)*0.5D0 
! 
!---CALCULATE SPLINE COEFFICIENTS--- 
   90 CALL 
SPFIT1(X,AVH,DF,N,R1,P,Q,GF1,AVAR,STAT,Y,C,IC,WK,WK(0,4),WK(0,6),WK(0,
7)) 
  100 CALL SPCOF1(X,AVH,F,DF,N,P,Q,Y,C,IC,WK(0,6),WK(0,7)) 
! 
!---OPTIONALLY CALCULATE STANDARD ERROR ESTIMATES--- 
      IF (VAR.GE.ZERO) GO TO 110 
      AVAR = STAT(6) 
      VAR = AVAR/ (AVDF*AVDF) 
  110 IF (JOB.EQ.1) CALL SPERR1(X,AVH,DF,N,WK,P,AVAR,SE) 
! 
!---UNSCALE DF--- 
      DO 120 I = 1,N 
         DF(I) = DF(I)*AVDF 
  120 CONTINUE 
! 
!--PUT STATISTICS IN WK--- 
      DO 130 I = 0,5 
         WK(I,1) = STAT(I+1) 
  130 CONTINUE 
      WK(5,1) = STAT(6)/ (AVDF*AVDF) 
      WK(6,1) = AVDF*AVDF 
      GO TO 150 
! 
!---CHECK FOR ERROR CONDITION--- 
  140 CONTINUE 
!     IF (IER.NE.0) CONTINUE 
  150 RETURN 
      END 
 
      SUBROUTINE SPINT1(X,AVH,Y,DY,AVDY,N,A,C,IC,R,T,IER) 
! 
! INITIALIZES THE ARRAYS C, R AND T FOR ONE DIMENSIONAL CUBIC 
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! SMOOTHING SPLINE FITTING BY SUBROUTINE SPFIT1.  THE VALUES 
! DF(I) ARE SCALED SO THAT THE SUM OF THEIR SQUARES IS N 
! AND THE AVERAGE OF THE DIFFERENCES X(I+1) - X(I) IS CALCULATED 
! IN AVH IN ORDER TO AVOID UNDERFLOW AND OVERFLOW PROBLEMS IN 
! SPFIT1. 
! 
! SUBROUTINE SETS IER IF ELEMENTS OF X ARE NON-INCREASING, 
! IF N IS LESS THAN 3, IF IC IS LESS THAN N-1 OR IF DY(I) IS 
! NOT POSITIVE FOR SOME I. 
! 
!---SPECIFICATIONS FOR ARGUMENTS--- 
      INTEGER N,IC,IER 
      DOUBLE PRECISION 
X(N),Y(N),DY(N),A(N),C(IC,3),R(0:N+1,3),T(0:N+1,2),AVH,AVDY 
! 
!---SPECIFICATIONS FOR LOCAL VARIABLES--- 
      INTEGER I 
      DOUBLE PRECISION E,F,G,H,ZERO 
      DATA ZERO/0.0D0/ 
! 
!---INITIALIZATION AND INPUT CHECKING--- 
      IER = 0 
      IF (N.LT.3) GO TO 60 
      IF (IC.LT.N-1) GO TO 70 
! 
!---GET AVERAGE X SPACING IN AVH--- 
      G = ZERO 
      DO 10 I = 1,N - 1 
         H = X(I+1) - X(I) 
         IF (H.LE.ZERO) GO TO 80 
         G = G + H 
   10 CONTINUE 
      AVH = G/ (N-1) 
! 
!---SCALE RELATIVE WEIGHTS--- 
      G = ZERO 
      DO 20 I = 1,N 
         IF (DY(I).LE.ZERO) GO TO 90 
         G = G + DY(I)*DY(I) 
   20 CONTINUE 
      AVDY = DSQRT(G/N) 
! 
      DO 30 I = 1,N 
         DY(I) = DY(I)/AVDY 
   30 CONTINUE 
! 
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!---INITIALIZE H,F--- 
      H = (X(2)-X(1))/AVH 
      F = (Y(2)-Y(1))/H 
! 
!---CALCULATE A,T,R--- 
      DO 40 I = 2,N - 1 
         G = H 
         H = (X(I+1)-X(I))/AVH 
         E = F 
         F = (Y(I+1)-Y(I))/H 
         A(I) = F - E 
         T(I,1) = 2.0D0* (G+H)/3.0D0 
         T(I,2) = H/3.0D0 
         R(I,3) = DY(I-1)/G 
         R(I,1) = DY(I+1)/H 
         R(I,2) = -DY(I)/G - DY(I)/H 
   40 CONTINUE 
! 
!---CALCULATE C = R'*R--- 
      R(N,2) = ZERO 
      R(N,3) = ZERO 
      R(N+1,3) = ZERO 
      DO 50 I = 2,N - 1 
         C(I,1) = R(I,1)*R(I,1) + R(I,2)*R(I,2) + R(I,3)*R(I,3) 
         C(I,2) = R(I,1)*R(I+1,2) + R(I,2)*R(I+1,3) 
         C(I,3) = R(I,1)*R(I+2,3) 
   50 CONTINUE 
      RETURN 
! 
!---ERROR CONDITIONS--- 
   60 IER = 130 
      RETURN 
 
   70 IER = 129 
      RETURN 
 
   80 IER = 131 
      RETURN 
 
   90 IER = 132 
      RETURN 
      END 
      SUBROUTINE 
 
 SPFIT1(X,AVH,DY,N,RHO,P,Q,FUN,VAR,STAT,A,C,IC,R,T,U,V) 
! 
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! FITS A CUBIC SMOOTHING SPLINE TO DATA WITH RELATIVE 
! WEIGHTING DY FOR A GIVEN VALUE OF THE SMOOTHING PARAMETER 
! RHO USING AN ALGORITHM BASED ON THAT OF C.H. REINSCH (1967), 
! NUMER. MATH. 10, 177-183. 
! 
! THE TRACE OF THE INFLUENCE MATRIX IS CALCULATED USING AN 
! ALGORITHM DEVELOPED BY M.F.HUTCHINSON AND F.R.DE HOOG 
(NUMER. 
! MATH., IN PRESS), ENABLING THE GENERALIZED CROSS VALIDATION 
! AND RELATED STATISTICS TO BE CALCULATED IN ORDER N 
OPERATIONS. 
! 
! THE ARRAYS A, C, R AND T ARE ASSUMED TO HAVE BEEN INITIALIZED 
! BY THE SUBROUTINE SPINT1.  OVERFLOW AND UNDERFLOW PROBLEMS 
ARE 
! AVOIDED BY USING P=RHO/(1 + RHO) AND Q=1/(1 + RHO) INSTEAD OF 
! RHO AND BY SCALING THE DIFFERENCES X(I+1) - X(I) BY AVH. 
! 
! THE VALUES IN DF ARE ASSUMED TO HAVE BEEN SCALED SO THAT THE 
! SUM OF THEIR SQUARED VALUES IS N.  THE VALUE IN VAR, WHEN IT IS 
! NON-NEGATIVE, IS ASSUMED TO HAVE BEEN SCALED TO COMPENSATE 
FOR 
! THE SCALING OF THE VALUES IN DF. 
! 
! THE VALUE RETURNED IN FUN IS AN ESTIMATE OF THE TRUE MEAN 
SQUARE 
! WHEN VAR IS NON-NEGATIVE, AND IS THE GENERALIZED CROSS 
VALIDATION 
! WHEN VAR IS NEGATIVE. 
! 
!---SPECIFICATIONS FOR ARGUMENTS--- 
      INTEGER IC,N 
      DOUBLE PRECISION 
X(N),DY(N),RHO,STAT(6),A(N),C(IC,3),R(0:N+1,3),T(0:N+1,2),U(0:N+1),V(0:N+1),
FUN,VAR,AVH,P,Q 
! 
!---LOCAL VARIABLES--- 
      INTEGER I 
      DOUBLE PRECISION E,F,G,H,ZERO,ONE,TWO,RHO1 
      DATA ZERO,ONE,TWO/0.0D0,1.0D0,2.0D0/ 
! 
!---USE P AND Q INSTEAD OF RHO TO PREVENT OVERFLOW OR 
UNDERFLOW--- 
      RHO1 = ONE + RHO 
      P = RHO/RHO1 
      Q = ONE/RHO1 
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      IF (RHO1.EQ.ONE) P = ZERO 
      IF (RHO1.EQ.RHO) Q = ZERO 
! 
!---RATIONAL CHOLESKY DECOMPOSITION OF P*C + Q*T--- 
      F = ZERO 
      G = ZERO 
      H = ZERO 
      DO 10 I = 0,1 
         R(I,1) = ZERO 
   10 CONTINUE 
      DO 20 I = 2,N - 1 
         R(I-2,3) = G*R(I-2,1) 
         R(I-1,2) = F*R(I-1,1) 
         R(I,1) = ONE/ (P*C(I,1)+Q*T(I,1)-F*R(I-1,2)-G*R(I-2,3)) 
         F = P*C(I,2) + Q*T(I,2) - H*R(I-1,2) 
         G = H 
         H = P*C(I,3) 
   20 CONTINUE 
! 
!---SOLVE FOR U--- 
      U(0) = ZERO 
      U(1) = ZERO 
      DO 30 I = 2,N - 1 
         U(I) = A(I) - R(I-1,2)*U(I-1) - R(I-2,3)*U(I-2) 
   30 CONTINUE 
      U(N) = ZERO 
      U(N+1) = ZERO 
      DO 40 I = N - 1,2,-1 
         U(I) = R(I,1)*U(I) - R(I,2)*U(I+1) - R(I,3)*U(I+2) 
   40 CONTINUE 
! 
!---CALCULATE RESIDUAL VECTOR V--- 
      E = ZERO 
      H = ZERO 
      DO 50 I = 1,N - 1 
         G = H 
         H = (U(I+1)-U(I))/ ((X(I+1)-X(I))/AVH) 
         V(I) = DY(I)* (H-G) 
         E = E + V(I)*V(I) 
   50 CONTINUE 
      V(N) = DY(N)* (-H) 
      E = E + V(N)*V(N) 
! 
!---CALCULATE UPPER THREE BANDS OF INVERSE MATRIX--- 
      R(N,1) = ZERO 
      R(N,2) = ZERO 
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      R(N+1,1) = ZERO 
      DO 60 I = N - 1,2,-1 
         G = R(I,2) 
         H = R(I,3) 
         R(I,2) = -G*R(I+1,1) - H*R(I+1,2) 
         R(I,3) = -G*R(I+1,2) - H*R(I+2,1) 
         R(I,1) = R(I,1) - G*R(I,2) - H*R(I,3) 
   60 CONTINUE 
! 
!---CALCULATE TRACE--- 
      F = ZERO 
      G = ZERO 
      H = ZERO 
      DO 70 I = 2,N - 1 
         F = F + R(I,1)*C(I,1) 
         G = G + R(I,2)*C(I,2) 
         H = H + R(I,3)*C(I,3) 
   70 CONTINUE 
      F = F + TWO* (G+H) 
! 
!---CALCULATE STATISTICS--- 
      STAT(1) = P 
      STAT(2) = F*P 
      STAT(3) = N*E/ (F*F) 
      STAT(4) = E*P*P/N 
      STAT(6) = E*P/F 
      IF (VAR.GE.ZERO) GO TO 80 
      STAT(5) = STAT(6) - STAT(4) 
      FUN = STAT(3) 
      GO TO 90 
 
   80 STAT(5) = DMAX1(STAT(4)-TWO*VAR*STAT(2)/N+VAR,ZERO) 
      FUN = STAT(5) 
   90 RETURN 
      END 
      SUBROUTINE SPERR1(X,AVH,DY,N,R,P,VAR,SE) 
! 
! CALCULATES BAYESIAN ESTIMATES OF THE STANDARD ERRORS OF THE 
FITTED 
! VALUES OF A CUBIC SMOOTHING SPLINE BY CALCULATING THE 
DIAGONAL ELEMENTS 
! OF THE INFLUENCE MATRIX. 
! 
!---SPECIFICATIONS FOR ARGUMENTS--- 
      INTEGER N 
      DOUBLE PRECISION X(N),DY(N),R(0:N+1,3),SE(N),AVH,P,VAR 
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! 
!---SPECIFICATIONS FOR LOCAL VARIABLES--- 
      INTEGER I 
      DOUBLE PRECISION F,G,H,F1,G1,H1,ZERO,ONE 
      DATA ZERO,ONE/0.0D0,1.0D0/ 
! 
!---INITIALIZE--- 
      H = AVH/ (X(2)-X(1)) 
      SE(1) = ONE - P*DY(1)*DY(1)*H*H*R(2,1) 
      R(1,1) = ZERO 
      R(1,2) = ZERO 
      R(1,3) = ZERO 
! 
!---CALCULATE DIAGONAL ELEMENTS--- 
      DO 10 I = 2,N - 1 
         F = H 
         H = AVH/ (X(I+1)-X(I)) 
         G = -F - H 
         F1 = F*R(I-1,1) + G*R(I-1,2) + H*R(I-1,3) 
         G1 = F*R(I-1,2) + G*R(I,1) + H*R(I,2) 
         H1 = F*R(I-1,3) + G*R(I,2) + H*R(I+1,1) 
         SE(I) = ONE - P*DY(I)*DY(I)* (F*F1+G*G1+H*H1) 
   10 CONTINUE 
      SE(N) = ONE - P*DY(N)*DY(N)*H*H*R(N-1,1) 
! 
!---CALCULATE STANDARD ERROR ESTIMATES--- 
      DO 20 I = 1,N 
         SE(I) = DSQRT(DMAX1(SE(I)*VAR,ZERO))*DY(I) 
   20 CONTINUE 
      RETURN 
      END 
      SUBROUTINE SPCOF1(X,AVH,Y,DY,N,P,Q,A,C,IC,U,V) 
! 
! CALCULATES COEFFICIENTS OF A CUBIC SMOOTHING SPLINE FROM 
! PARAMETERS CALCULATED BY SUBROUTINE SPFIT1. 
! 
!---SPECIFICATIONS FOR ARGUMENTS--- 
      INTEGER IC,N 
      DOUBLE PRECISION 
X(N),Y(N),DY(N),P,Q,A(N),C(IC,3),U(0:N+1),V(0:N+1),AVH 
! 
!---SPECIFICATIONS FOR LOCAL VARIABLES--- 
      INTEGER I 
      DOUBLE PRECISION H,QH 
! 
!---CALCULATE A--- 
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      QH = Q/ (AVH*AVH) 
      DO 10 I = 1,N 
         A(I) = Y(I) - P*DY(I)*V(I) 
         U(I) = QH*U(I) 
   10 CONTINUE 
! 
!---CALCULATE C--- 
      DO 20 I = 1,N - 1 
         H = X(I+1) - X(I) 
         C(I,3) = (U(I+1)-U(I))/ (3.0D0*H) 
         C(I,1) = (A(I+1)-A(I))/H - (H*C(I,3)+U(I))*H 
         C(I,2) = U(I) 
   20 CONTINUE 
      RETURN 
      END 
!       
!UT HERE............END OF CUBGCV.FOR 

A.3. Fortran subroutines for positive root finding 

SUBROUTINE SINGLE_POSETIVE_ROOT_FINDER (X, FX, JOB) 
! THIS SUBROUTINE FINDS SINGLE POSETIVE ROOT 
! THE INITIAL SEARCH FOR A BRACKET ASSUMES THAT FX IS MONOTONIC 
! COPYRIGHT PV-P      
! INPUT: 
!   X         THE VARIABLE TO WHICH THE ROOT IS WANTED TO BE FOUND 
!   FX      THE FUNCTION THAT IS SOLVED FOR X 
!   JOB      INDICATOR FOR MISSION COMPLETION  
 
   IMPLICIT NONE 
   SAVE 
   INTEGER,                  INTENT (INOUT) :: JOB 
   DOUBLE PRECISION,         INTENT (INOUT) :: X 
   DOUBLE PRECISION,         INTENT (IN)    :: FX 
   ! LOCALS 
   INTEGER                                  :: NEVAL, NEXT 
   INTEGER, PARAMETER                       :: MAX_NEVAL = 50 
   DOUBLE PRECISION                         :: XA, FXA, XB, FXB, XTRY, TOL, ZERO = 
0D0, HALF = 0.5D0, FACTOR = 10D0, BIG 
   DOUBLE PRECISION                         :: A,B,C,D,E,FA,FB,FC,P,Q,R,S,TOL1, XM, 
TWO = 2D0, THREE = 3D0, ONE = 1D0 
   DOUBLE PRECISION, PARAMETER              :: EPS=EPSILON(XA)                                
   LOGICAL                                  :: BRACKETING_DONE, FXA_NEXT 
   ! 
   ! 
   IF(X <= ZERO) STOP ' SINGLE_POSETIVE_ROOT_FINDER: IMPRPOPER 
USAGE' 
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   IF(JOB == 0) THEN 
      BRACKETING_DONE = .FALSE. 
      XA  = X 
      FXA = FX 
      X = FACTOR*X 
      FXA_NEXT = .FALSE. 
      BIG = HUGE(ZERO)/(FACTOR*FACTOR) 
      TOL = DSQRT(EPS)                                      ! PENDING TOL SUITABLE VALUE 
      NEVAL = 1 
      JOB = 1 
      GOTO 1000 
   ENDIF 
  
   NEVAL = NEVAL + 1 
   IF(NEVAL > MAX_NEVAL) STOP ' SINGLE_POSETIVE_ROOT_FINDER: 
COULD NOT FIND ROOT' 
  
  
   IF(.NOT. BRACKETING_DONE) THEN 
  
      IF(FXA_NEXT)THEN 
          XA = X 
          FXA = FX 
      ELSE 
          XB = X 
          FXB = FX 
      ENDIF 
  
  
      IF(FXA*FXB < ZERO)THEN 
         BRACKETING_DONE = .TRUE. 
!                                           PRINT*, 'X, XA, XB, FXA, FXB',X, XA, XB, FXA, FXB 
!                                           READ* 
         A = XA 
         B = XB 
         FA = FXA 
         FB = FXB 
         C = B 
         FC = FB 
         NEXT = 1 
   
      ELSE 
  
         IF(FXA_NEXT) THEN 
            IF(X < BIG) X = FACTOR*XB 
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         ELSE 
            XTRY = X/FACTOR 
            IF(XTRY > ZERO) X = XA/FACTOR 
         ENDIF 
         FXA_NEXT = .NOT. FXA_NEXT 
         GO TO 1000 
      ENDIF 
  
   ENDIF 
  
        GOTO (5,10) NEXT   ! WE HAVE BRACKETED THE ROOT SO LET US NOW 
FIND IT 
5 CONTINUE 
                                IF ((FB > ZERO .AND. FC > ZERO) .OR. (FB < ZERO .AND. FC < 
ZERO)) THEN 
                                                C=A 
                                                FC=FA 
                                                D=B-A 
                                                E=D 
                                END IF 
                                IF (ABS(FC) < ABS(FB)) THEN 
                                                A=B 
                                                B=C 
                                                C=A 
                                                FA=FB 
                                                FB=FC 
                                                FC=FA 
                                END IF 
                                TOL1=TWO*EPS*ABS(B)+HALF*TOL 
                                XM=HALF*(C-B) 
                                IF (ABS(XM) <= TOL1 .OR. FB == ZERO) THEN 
                                                X=B 
                                                JOB = 2 
            GOTO 1000 
                                END IF 
                                IF (ABS(E) >= TOL1 .AND. ABS(FA) > ABS(FB)) THEN 
                                                S=FB/FA 
                                                IF (A == C) THEN 
                                                                P=TWO*XM*S 
                                                                Q=ONE-S 
                                                ELSE 
                                                                Q=FA/FC 
                                                                R=FB/FC 
                                                                P=S*(TWO*XM*Q*(Q-R)-(B-A)*(R-ONE)) 
                                                                Q=(Q-ONE)*(R-ONE)*(S-ONE) 
                                                END IF 
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                                                IF (P > ZERO) Q = -Q 
                                                P=ABS(P) 
                                                IF (TWO*P  <  MIN(THREE*XM*Q-
ABS(TOL1*Q),ABS(E*Q))) THEN 
                                                                E=D 
                                                                D=P/Q 
                                                ELSE 
                                                                D=XM 
                                                                E=D 
                                                END IF 
                                ELSE 
                                                D=XM 
                                                E=D 
                                END IF 
                                A=B 
                                FA=FB 
                                B=B+MERGE(D,SIGN(TOL1,XM), ABS(D) > TOL1 ) 
        NEXT = 2 
        X = B       
        GOTO 1000 
 10     CONTINUE  
                                FB = FX      
    GO TO 5 
                X=B 
                JOB = 2 
1000 CONTINUE  ! ONLY RETURN POINT  
     RETURN 
END SUBROUTINE SINGLE_POSETIVE_ROOT_FINDER  
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APPENDIX B. WINFUNFIT CODES FOR CHAPTER 6 

B.1. Fortran subroutines for simulation of the compartmental model 

! THESE SUBROUTINES TO DEFINE THE MODEL TO BE SIMULATED BY 
WINFUNFIT 
! PROGRAMMED BY MHE IN FEBRUARY 2011 
 
SUBROUTINE USERMODEL_ODE(T,Y,YPRIME,P,NP,IFUN) 
! THIS SUBROUTINE DEFINES THE MODEL DIFFERENTIAL EQUATIONS 
 
IMPLICIT NONE 
REAL*8 :: Y(*), YPRIME(*), P(*) ,T 
INTEGER  :: NP,IFUN 
REAL*8 :: V,KEL,KPT,KTP,D,KSYN,KDEG,KON,KOFF,KINT  
 
V=P(1) 
KEL=P(2) 
KPT=P(3) 
KTP=P(4) 
KSYN=P(5) 
KDEG=P(6) 
KON=P(7) 
KOFF=P(8) 
KINT=P(9) 
D=P(10) 
 
IF(IFUN.EQ.1)THEN 

YPRIME(1) = -KON*Y(1)*Y(3)+KOFF*Y(4)-(KEL+KPT)*Y(1)+KTP*Y(2)/V 
YPRIME(2) = -KTP*Y(2)+KPT*Y(1)*V 
YPRIME(3) = KSYN-KON*Y(1)*Y(3)+KOFF*Y(4)-KDEG*Y(3) 
YPRIME(4) = KON*Y(1)*Y(3)-(KOFF+KINT)*Y(4) 

ENDIF 
RETURN 
END 
 
SUBROUTINE USERMODEL_ODE_JACOBIAN (T,Y,DFDT,DFDY,N,P,NP,IFUN) 
! THIS SUBROUTINE IS NECESSARY FOR SOLVING STIFF DIFFERENTIAL 
EQUATIONS 
! THIS SUBROUTINE DEFINES THE PARTIAL DERIVATIVE OF EACH 
DIFFERENTIAL EQUATION WITH RESPECT TO TIME AND EACH Y VARIABLE 
 
 IMPLICIT NONE 
 
 INTEGER, INTENT(IN)::N,NP,IFUN 
 DOUBLE PRECISION, INTENT(IN)::T 
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 DOUBLE PRECISION,DIMENSION(N), INTENT (IN)::Y 
 DOUBLE PRECISION,DIMENSION(N),INTENT(OUT)::DFDT 
 DOUBLE PRECISION,DIMENSION(N,N),INTENT(OUT)::DFDY 
 DOUBLE PRECISION,DIMENSION(NP),INTENT(IN)::P 
 DOUBLE PRECISION,PARAMETER::ZERO=0D0 
 DOUBLE PRECISION :: V,KEL,KPT,KTP,D,KSYN,KDEG,KON,KOFF,KINT 
 
V=P(1) 
KEL=P(2) 
KPT=P(3) 
KTP=P(4) 
KSYN=P(5) 
KDEG=P(6) 
KON=P(7) 
KOFF=P(8) 
KINT=P(9) 
D=P(10) 
 
 IF(IFUN.EQ.1)THEN 
  DFDT(1)=ZERO 
  DFDT(2)=ZERO 
  DFDT(3)=ZERO 
  DFDT(4)=ZERO 
 
 DFDY(1,1)=-KON*Y(3)-(KEL+KPT) 
 DFDY(1,2)=KTP/V 
 DFDY(1,3)=-KON*Y(1) 
 DFDY(1,4)=KOFF 
 
 DFDY(2,1)=KPT/V 
 DFDY(2,2)=-KTP 
 DFDY(2,3)=ZERO 
 DFDY(2,4)=ZERO 
 
 DFDY(3,1)=-KON*Y(3) 
 DFDY(3,2)=ZERO 
 DFDY(3,3)=-KON*Y(1)-KDEG 
 DFDY(3,4)=KOFF 
 
 DFDY(4,1)=KON*Y(3) 
 DFDY(4,2)=ZERO 
 DFDY(4,3)=KON*Y(1) 
 DFDY(4,4)=-(KOFF+KINT) 
ENDIF 
END SUBROUTINE USERMODEL_ODE_JACOBIAN 
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SUBROUTINE USERMODEL(T,Y,P,NP,IFUN) 
! THIS SUBROUTINE:  
! (1) DEFINES THE EQUATIONS TO BE FITTED  
! (2) ASSIGNS NAMES TO THE PARAMETERS (IFUN=-1000 CALL)  
! (3) ALLOWS THE USER TO DEFINE AND REGISTER EVENT (IFUN =-1000 
CALL)  
! (4) INTERACTIVELY ALLOWS THE USER TO SELECT THE ALGORITHM TO 
BE  
! USED BY WINFUNFIT FOR THE INTEGRATION OF THE DIFFERENTIAL 
EQUATIONS SPECIFIED IN THE SUBROUTINE "USERMODEL_ODE" GIVEN 
ABOVE.  
! (5) ALLOWS FITTING SPLINES TO EXTERNAL DATA 
! (6) PROVIDES THE USER THE OPPORTUNITY TO MAKE SPECIAL 
CALCULATIONS AND PLOTS AFTER WINFUNFIT HAS COMPLETED A 
FITTING TO A DATA SET (IFUN=0 CALL)  
 
IMPLICIT  NONE 
INTEGER                           :: NP, IFUN, JFUN, J,JY,I 
INTEGER,PARAMETER                 :: NEQN=4  
REAL*8                            :: T, Y, P(*) 
REAL*8                            :: 
V,KEL,KPT,KTP,D,KSYN,KDEG,KON,KOFF,KINT,Y1,Y2,Y3,Y4 
INTEGER                           :: NOBSB, NOBSP, LUN, NSIGDIGITS 
REAL*8                            :: FACTOR, ZERO = 0D0, TZERO = 0D0                                        
LOGICAL, SAVE                     :: SHOWIT, PLOTSAVED 
CHARACTER (LEN=256)               :: ID, DATAFILENAME 
CHARACTER (LEN=20)                :: PNAME 
REAL*8                            :: YZERO(NEQN) 
 
V=P(1) 
KEL=P(2) 
KPT=P(3) 
KTP=P(4) 
KSYN=P(5) 
KDEG=P(6) 
KON=P(7) 
KOFF=P(8) 
KINT=P(9) 
D=P(10) 
 
      IF(IFUN.EQ.-1000)THEN 

CALL SetFunfitParameterName(1,"V")                            
CALL SetFunfitParameterName(2,"KEL")                          
CALL SetFunfitParameterName(3,"KPT") 
CALL SetFunfitParameterName(4,"KTP")                       
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CALL SetFunfitParameterName(5,"KSYN")                          
CALL SetFunfitParameterName(6,"KDEG")                            
CALL SetFunfitParameterName(7,"KON")                         
CALL SetFunfitParameterName(8,"KOFF")   
CALL SetFunfitParameterName(9,"KINT")  
CALL SetFunfitParameterName(10,"D") 
 
CALL SET_INTEGRATOR(6) 

      ENDIF 
 
IF(IFUN.EQ.1) THEN 
 
       YZERO(1) = D/V 

YZERO(2)=ZERO 
   YZERO(3)= KSYN/KDEG 

YZERO(4) = ZERO 
   
       JY = 1 
       CALL 
INTEGRATE_USERMODEL_ODE(T,Y1,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=2 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y2,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=3 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y3,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=4 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y4,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
  

Y=Y1  ! Simulate Plasma Concentration 
!Y=Y3  ! Simulate Free Receptor Concentration 
!Y=Y4  ! Simulate Bound Receptor Concentration 

ENDIF 
 
IF(IFUN.EQ.0)THEN  ! SPECIAL USER OUTPUT SECTION 

CALL PROMT(SHOWIT) ! WANT TO SEE USER PLOT(S)? 
       IF(SHOWIT) THEN 

CALL ADDOBSERVATIONSLEFT(1) 
CALL ADDFITTEDCURVELEFT(1) 
CALL LEFTLABEL('PLASMA CONC. (PMOLE)') 
CALL TITLE('SIMULATED COMP-TMD PLASMA CONCENTRATION') 
CALL XLABEL('TIME (HR)') 
CALL DISPLAYPLOT 
! RECORD PLOT ID IF PLOT IS SAVED 
CALL RECORDPLOTIFSAVED(3)    
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       ENDIF   ! SHOWIT  
ENDIF  ! IFUN = 0 
RETURN 
!*********  N O N  OPTIONAL DEFINITION SECTION ************* 
!      
! THIS IS FOR RECORDING OF THE MODEL USED IN THE FITTING : 
!      
      ENTRY MODELID(ID) 
      ID = 'INF TIM MODEL V1.0' 
      RETURN 
      END 

B.2. Fortran subroutines for simulation of the recirculation model 

! THESE SUBROUTINES TO DEFINE THE MODEL TO BE SIMULATED BY 
WINFUNFIT 
! PROGRAMMED BY MHE IN FEBRUARY 2011 
 
SUBROUTINE USERMODEL_ODE(T,Y,YPRIME,P,NP,IFUN) 
! THIS SUBROUTINE DEFINES THE MODEL DIFFERENTIAL EQUATIONS 
 
IMPLICIT NONE 
REAL*8 :: Y(*), YPRIME(*), P(*) ,T 
INTEGER  :: NP,IFUN 
REAL*8 :: 
ALPHA,BETA,ENTM,KSYN,KDEG,KON,KOFF,KINT,P1,Q,VEC,D,FOUT1,FOUT2,
FOUT3,CIN,ONE = 1D0                                         
 
ALPHA=P(1) 
BETA=P(2) 
ENTM=P(3) 
KSYN=P(4) 
KDEG=P(5) 
KON=P(6) 
KOFF=P(7) 
KINT=P(8) 
P1=P(9) 
Q=P(10) 
VEC=P(11) 
D=P(12) 
 
FOUT1= ALPHA*Y(1) 
FOUT3=(ONE-P1)*(ONE-ENTM)*BETA*Y(2) 
FOUT2=P1*Q*Y(3) 
CIN=FOUT1/Q 
 
IF(IFUN.EQ.1)THEN 
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YPRIME(1) = -ALPHA*Y(1)+(FOUT2+FOUT3) 
YPRIME(2) = -BETA*Y(2)+FOUT1 
YPRIME(3) = -KON*Y(4)*Y(3)+KOFF*Y(5)+((P1*Q)/VEC)*(CIN-Y(3)) 
YPRIME(4) = KSYN-KDEG*Y(4)-KON*Y(4)*Y(3)+KOFF*Y(5) 
YPRIME(5) = -KINT*Y(5)-KOFF*Y(5)+KON*Y(4)*Y(3) 

ENDIF 
RETURN 
END 
 
 
SUBROUTINE USERMODEL_ODE_JACOBIAN (T,Y,DFDT,DFDY,N,P,NP,IFUN) 
 
! THIS SUBROUTINE IS NECESSARY FOR SOLVING STIFF DIFFERENTIAL 
EQUATIONS 
! THIS SUBROUTINE DEFINES THE PARTIAL DERIVATIVE OF EACH 
DIFFERENTIAL EQUATION WITH RESPECT TO TIME AND EACH Y VARIABLE 
 
 IMPLICIT NONE 
 INTEGER, INTENT(IN)::N,NP,IFUN 
 DOUBLE PRECISION, INTENT(IN)::T 
 DOUBLE PRECISION,DIMENSION(N), INTENT (IN)::Y 
 DOUBLE PRECISION,DIMENSION(N),INTENT(OUT)::DFDT 
 DOUBLE PRECISION,DIMENSION(N,N),INTENT(OUT)::DFDY 
 DOUBLE PRECISION,DIMENSION(NP),INTENT(IN)::P 
 DOUBLE PRECISION,PARAMETER::ZERO=0D0,ONE=1D0 
 DOUBLE PRECISION :: 
ALPHA,BETA,ENTM,KSYN,KDEG,KON,KOFF,KINT,P1,Q,VEC,D 
 
ALPHA=P(1) 
BETA=P(2) 
ENTM=P(3) 
KSYN=P(4) 
KDEG=P(5) 
KON=P(6) 
KOFF=P(7) 
KINT=P(8) 
P1=P(9) 
Q=P(10) 
VEC=P(11) 
D=P(12) 
 
 IF(IFUN.EQ.1)THEN 
  DFDT(1)=ZERO 
  DFDT(2)=ZERO 
  DFDT(3)=ZERO 
  DFDT(4)=ZERO 
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  DFDT(5)=ZERO 
 
 DFDY(1,1)=-ALPHA 
 DFDY(1,2)=(ONE-P1)*(ONE-ENTM)*BETA 
 DFDY(1,3)=P1*Q 
 DFDY(1,4)=ZERO 
 DFDY(1,5)=ZERO 
 
 DFDY(2,1)=ALPHA 
 DFDY(2,2)=-BETA 
 DFDY(2,3)=ZERO 
 DFDY(2,4)=ZERO 
 DFDY(2,5)=ZERO 
 
 DFDY(3,1)=P1*ALPHA/VEC 
 DFDY(3,2)=ZERO 
 DFDY(3,3)=-KON*Y(4)-P1*Q/VEC 
 DFDY(3,4)=-KON*Y(3) 
 DFDY(3,5)=KOFF 
 
 DFDY(4,1)=ZERO 
 DFDY(4,2)=ZERO 
 DFDY(4,3)=-KON*Y(4) 
 DFDY(4,4)=-KDEG-KON*Y(3) 
 DFDY(4,5)=KOFF 
 

DFDY(5,1)=ZERO 
 DFDY(5,2)=ZERO 
 DFDY(5,3)=KON*Y(4) 
 DFDY(5,4)=KON*Y(3) 
 DFDY(5,5)=-KINT-KOFF 
ENDIF 
END SUBROUTINE USERMODEL_ODE_JACOBIAN 
 
 
SUBROUTINE USERMODEL(T,Y,P,NP,IFUN) 
! THIS SUBROUTINE:  
! (1) DEFINES THE EQUATIONS TO BE FITTED  
! (2) ASSIGNS NAMES TO THE PARAMETERS (IFUN=-1000 CALL)  
! (3) ALLOWS THE USER TO DEFINE AND REGISTER EVENT (IFUN =-1000 
CALL)  
! (4) INTERACTIVELY ALLOWS THE USER TO SELECT THE ALGORITHM TO 
BE  
! USED BY WINFUNFIT FOR THE INTEGRATION OF THE DIFFERENTIAL 
EQUATIONS SPECIFIED IN THE SUBROUTINE "USERMODEL_ODE" GIVEN 
ABOVE.  
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! (5) ALLOWS FITTING SPLINES TO EXTERNAL DATA 
! (6) PROVIDES THE USER THE OPPORTUNITY TO MAKE SPECIAL 
CALCULATIONS AND PLOTS AFTER WINFUNFIT HAS COMPLETED A 
FITTING TO A DATA SET (IFUN=0 CALL)  
 
IMPLICIT  NONE 
INTEGER                           :: NP, IFUN, JFUN, J,JY,I 
INTEGER,PARAMETER                 :: NEQN=5  
REAL*8                            :: T, Y, P(*) 
REAL*8                            :: 
ALPHA,BETA,ENTM,KSYN,KDEG,KON,KOFF,KINT,P1,Q,VEC,D,FOUT1,FOUT2,
FOUT3,Y1,Y2,Y3,Y4,Y5 
INTEGER                           :: NOBSB, NOBSP, LUN, NSIGDIGITS 
REAL*8                            :: FACTOR, ZERO = 0D0, TZERO = 0D0 , ONE = 1D0                                         
LOGICAL, SAVE                     :: SHOWIT, PLOTSAVED 
CHARACTER (LEN=256)               :: ID, DATAFILENAME 
CHARACTER (LEN=20)                :: PNAME 
REAL*8                            :: YZERO(NEQN) 
 
ALPHA=P(1) 
BETA=P(2) 
ENTM=P(3) 
KSYN=P(4) 
KDEG=P(5) 
KON=P(6) 
KOFF=P(7) 
KINT=P(8) 
P1=P(9) 
Q=P(10) 
VEC=P(11) 
D=P(12) 
 
IF(IFUN.EQ.-1000)THEN 

CALL SetFunfitParameterName(1,"ALPHA")                            
CALL SetFunfitParameterName(2,"BETA")                          
CALL SetFunfitParameterName(3,"ENTM")                           
CALL SetFunfitParameterName(4,"KSYN")                          
CALL SetFunfitParameterName(5,"KDEG")                            
CALL SetFunfitParameterName(6,"KON")                         
CALL SetFunfitParameterName(7,"KOFF")   
CALL SetFunfitParameterName(8,"KINT")  
CALL SetFunfitParameterName(9,"P1") 
CALL SetFunfitParameterName(10,"Q") 
CALL SetFunfitParameterName(11,"VEC") 
CALL SetFunfitParameterName(12,"D") 
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CALL SET_INTEGRATOR(6) 
ENDIF 
 
IF(IFUN.EQ.1) THEN 
 
       YZERO(1) = D 

YZERO(2)=ZERO 
   YZERO(3)= ZERO 

YZERO(4) = KSYN/KDEG 
YZERO(5)= ZERO  

   
       JY = 1 
       CALL 
INTEGRATE_USERMODEL_ODE(T,Y1,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=2 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y2,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=3 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y3,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=4 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y4,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
   JY=5 
   CALL 
INTEGRATE_USERMODEL_ODE(T,Y5,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
 

FOUT1=ALPHA*Y1 
FOUT3=(ONE-P1)*(ONE-ENTM)*BETA*Y2 
FOUT2=P1*Q*Y3 
Y=(FOUT2+FOUT3)/Q ! Simulate Plasma Concentration 
!Y=Y4  ! Simulate Free Receptor Concentration 
!Y=Y5  ! Simulate Bound Receptor Concentration 

ENDIF 
 
IF(IFUN.EQ.0)THEN  ! SPECIAL USER OUTPUT SECTION 

CALL PROMT(SHOWIT) ! WANT TO SEE USER PLOT(S)? 
       IF(SHOWIT) THEN 

CALL ADDOBSERVATIONSLEFT(1) 
CALL ADDFITTEDCURVELEFT(1) 
CALL LEFTLABEL('PLASMA CONC. (PMOLE)') 
CALL TITLE('SIMULATED REC-TMD PLASMA CONCENTRATION') 
CALL XLABEL('TIME (HR)') 
CALL DISPLAYPLOT 
! RECORD PLOT ID IF PLOT IS SAVED 
CALL RECORDPLOTIFSAVED(3)  



181 
 

 
 

 

       ENDIF   ! SHOWIT  
ENDIF  ! IFUN = 0 
RETURN 
!*********  N O N  OPTIONAL DEFINITION SECTION ************* 
!      
! THIS IS FOR RECORDING OF THE MODEL USED IN THE FITTING : 
!      
      ENTRY MODELID(ID) 
      ID = 'INF TIM MODEL V1.0' 
      RETURN 
      END 
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APPENDIX C. NONMEM CODES FOR CHAPTER 6 

C.1. Control stream file for simulation/fitting of the compartmental 

model 

$PROB SIMULATION/FITTING OF COMPARTMENTAL TMD MODEL 
$DATA comp.csv IGNORE=C 
$INPUT TIME DV EVID CMT AMT 
$SUBROUTINE ADVAN = 8 TOL =4 
$MODEL NCOMP = 4  

COMP=(BLOOD) 
COMP=(PERIPH) 
COMP=(FREEREC) 
COMP=(BOUNDREC) 

$PK 
IF(ICALL.EQ.4) THEN 

KEL=THETA(1) 
KPT=THETA(2) 
KTP=THETA(3) 
KSYN=THETA(4) 
KDEG=THETA(5) 
KON=THETA(6) 
KOFF=THETA(7) 
KINT=THETA(8) 
V=THETA(9)  

ELSE 
KEL=THETA(10) 
KPT=THETA(11) 
KTP=THETA(12) 
KSYN=THETA(13) 
KDEG=THETA(14) 
KON=THETA(15) 
KOFF=THETA(16) 
KINT=THETA(17) 
V=THETA(18) 

ENDIF 
KELA=THETA(10) 
KPTA=THETA(11) 
KTPA=THETA(12) 
KSYNA=THETA(13) 
KDEGA=THETA(14) 
KONA=THETA(15) 
KOFFA=THETA(16) 
KINTA=THETA(17) 
VA=THETA(18) 
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F1=1/V 
A_0(3)=KSYN/KDEG 

$DES 
DADT(1)= -KON*A(1)*A(3)+KOFF*A(4)-(KEL+KPT)*A(1)+KTP*A(2)/V 
DADT(2)= -KTP*A(2)+KPT*A(1)*V 
DADT(3)= KSYN-KON*A(1)*A(3)+KOFF*A(4)-KDEG*A(3) 
DADT(4)= KON*A(1)*A(3)-(KOFF+KINT)*A(4) 

$ERROR 
sol=A(1) 
IF(ICALL.EQ.4) THEN 

Y = sol*(1+ETA(1)) 
ELSE 

Y = sol*(1+ETA(2)) 
ENDIF 

$THETA 
0.106  FIX 
0.064  FIX 
0.123  FIX 
9.141 FIX 
0.079 FIX 
0.03 FIX 
1.74 FIX 
3.6 FIX 
2.24 FIX 
(0,0.1306)  
(0,0.069) 
(0,0.116) 
(0,9.59) 
(0,0.066) 
(0,0.0324) 
(0,1.6) 
(0,3.329) 
(0,2.37) 

$OMEGA 
0.01 FIX  ; 10% proportional error model   
0.011  

$SIM (12345) SUBPROB=1000 (2000 NORMAL) 
$ESTIMATION   MAXEVALS=9999999   PRINT=0 NOABORT NSIG=2 
$TABLE KELA KPTA KTPA VA KSYNA KDEGA KONA KOFFA KINTA 
NOAPPEND NOHEADER NOPRINT FILE=comptab.txt    

C.2. Control stream file for simulation/fitting of the recirculation 

model 

$PROB SIMULATION/FITTING OF RECIRCULATION TMD MODEL 
$DATA rec.csv IGNORE=C 
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$INPUT TIME DV EVID CMT AMT 
$SUBROUTINE ADVAN = 8 TOL =4 
$MODEL NCOMP = 5  

COMP=(HEART) 
COMP=(NTM) 
COMP=(TM) 
COMP=(FREEREC) 
COMP=(BOUNDREC) 

$PK 
IF(ICALL.EQ.4) THEN 

ALPHA=THETA(1) 
BETA=THETA(2) 
ENTM=THETA(3) 
KSYN=THETA(4)  
KDEG=THETA(5) 
KON=THETA(6) 
KOFF=THETA(7) 
KINT=THETA(8) 

ELSE 
ALPHA=THETA(9) 
BETA=THETA(10) 
ENTM=THETA(11) 
KSYN=THETA(12)  
KDEG=THETA(13) 
KON=THETA(14) 
KOFF=THETA(15) 
KINT=THETA(16) 

ENDIF 
ALPHAA = THETA(9) 
BETAA = THETA(10) 
ENTMA = THETA(11) 
KSYNA = THETA(12) 
KDEGA = THETA(13) 
KONA = THETA(14) 
KOFFA = THETA(15) 
KINTA = THETA(16) 
QQ=312 
P1=0.9 
VEC=2.24 
A_0(4)=KSYN/KDEG 

$DES 
FOUT1=ALPHA*A(1) 
FOUT3=(1-P1)*(1-ENTM)*BETA*A(2) 
FOUT2=P1*QQ*A(3) 
CIN=FOUT1/QQ 
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DADT(1)= -ALPHA*A(1)+(FOUT2+FOUT3) 
DADT(2)= -BETA*A(2)+FOUT1 
DADT(3) = -KON*A(4)*A(3)+KOFF*A(5)+((P1*QQ)/VEC)*(CIN-A(3)) 
DADT(4)= KSYN-KDEG*A(4)-KON*A(4)*A(3)+KOFF*A(5) 
DADT(5)= -KINT*A(5)-KOFF*A(5)+KON*A(4)*A(3) 

$ERROR 
FOUTT1=ALPHA*A(1) 
FOUTT3=(1-P1)*(1-ENTM)*BETA*A(2) 
FOUTT2=P1*QQ*A(3) 
sol=(FOUTT2+FOUTT3)/QQ 
IF(ICALL.EQ.4) THEN 

Y = sol*(1+ETA(1)) 
ELSE 

Y = sol*(1+ETA(2)) 
ENDIF 

$THETA 
140 FIX 
14 FIX 
0.007 FIX 
9.141 FIX 
0.079 FIX 
0.03 FIX 
1.74 FIX 
3.6 FIX 
(0,107.55) 
(0,13.1) 
(0,0.009,1) 
(0,9.59) 
(0,0.066) 
(0,0.0324) 
(0,1.6) 
(0,3.329) 

$OMEGA 
0.01 FIX  ; 10% proportional error model   
0.011  

$SIM (12345) SUBPROB=1000 (2000 NORMAL) 
$ESTIMATION   MAXEVALS=9999999   PRINT=0 NOABORT NSIG=2 
$TABLE ALPHAA BETAA ENTMA KSYNA KDEGA KONA KOFFA KINTA 
NOAPPEND NOHEADER NOPRINT FILE=rectab.txt 
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APPENDIX D. SAS CODES FOR CHAPTER 6 

D.1. Compartmental model D-optimal sampling times  

data Candidates; 
do Time = 0 to 100 by 0.001; 
output; 
end; 
 
proc model data=Candidates noprint; 
dependent C1 C2 C3 C4; 
parm KSYN  9.141  KDEG  0.079  KON  0.03  KOFF  1.74  KINT  3.6 KPT 0.064 KTP 
0.123 V 2.24 KEL 0.106; 
dose=129.92; 
if ( time=0 ) then  
            do; 
                C1=dose/V;  
                C2=0; 
   C3=KSYN/KDEG; 
   C4=0;  
            end; 
 else  
            do; 
                   dert.C1= -KON*C1*C3+KOFF*C4-(KEL+KPT)*C1+KTP*C2/V; 
        dert.C2= -KTP*C2+KPT*C1*V; 
        dert.C3= KSYN-KON*C1*C3+KOFF*C4-KDEG*C3; 
        dert.C4= KON*C1*C3-(KOFF+KINT)*C4; 
            end; 
solve C1 C2 C3 C4/ out=Solution time=Time; 
 
proc model data=Solution noprint; 
dependent C1 C2 C3 C4; 
parm KSYN  9.141  KDEG  0.079  KON  0.03  KOFF  1.74  KINT  3.6 KPT 0.064 KTP 
0.123 V 2.24 KEL 0.106; 
dose=129.92; 
if ( time=0 ) then  
            do; 
                   C1=dose/V;  
                   C2=0; 
        C3=KSYN/KDEG; 
        C4=0;  
            end; 
else  
            do; 
                   dert.C1= -KON*C1*C3+KOFF*C4-(KEL+KPT)*C1+KTP*C2/V; 
        dert.C2= -KTP*C2+KPT*C1*V; 
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        dert.C3= KSYN-KON*C1*C3+KOFF*C4-KDEG*C3; 
        dert.C4= KON*C1*C3-(KOFF+KINT)*C4; 
            end; 
f1 = getder( C1, KSYN ); 
f2 = getder( C1, KDEG ); 
f3 = getder( C1, KON ); 
f4 = getder( C1, KOFF ); 
f5 = getder( C1, KINT ); 
f6 = getder( C1, KPT ); 
f7 = getder( C1, KTP ); 
f8 = getder( C1, V ); 
f9 = getder( C1, KEL ); 
outvar f1 f2 f3 f4 f5 f6 f7 f8 f9; 
restrict KSYN=9.141,  KDEG=0.079,  KON=0.03,  KOFF=1.74,  KINT=3.6, 
KPT=0.064, KTP=0.123, V=2.24, KEL=0.106; 
fit C1 / out=Jacobian dynamic; 
run; 
 
proc optex data=Jacobian coding=NONE; 
model f1 f2 f3 f4 f5 f6 f7 f8 f9/ noint; 
generate n=9 method=m_fedorov niter=100 keep=1 CRITERION=D; 
output out=Design; 
id Time; 
proc print data=Design; 
run; 

D.2. Recirculation model D-optimal sampling times  

data Candidates; 
do Time = 0 to 100 by 0.001; 
output; 
end; 
 
proc model data=Candidates noprint; 
dependent C1 C2 C3 C4 C5 C6; 
parm KSYN  9.141  KDEG  0.079  KON  0.03  KOFF  1.74  KINT  3.6 ALPHA 140 
BETA 14 ENTM 0.007; 
dose=129.92; 
QQ=312; 
P1=0.9; 
VEC=2.24; 
if ( time=0 ) then  
            do; 
                   C1=dose;  
                   C2=0; 
         C3=0; 
        C4=KSYN/KDEG; 
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        C5=0; 
                   C6=0;         
            end; 
else  
            do; 

   dert.C1= -ALPHA*C1+C6*QQ; 
   dert.C2= -BETA*C2+ALPHA*C1; 
   dert.C3 = -KON*C4*C3+KOFF*C5+((P1*QQ)/VEC)*((ALPHA*C1/QQ)-C3); 
  dert.C4= KSYN-KDEG*C4-KON*C4*C3+KOFF*C5; 
  dert.C5= -KINT*C5-KOFF*C5+KON*C4*C3; 
  dert.C6=(P1*QQ*dert.C3+(1-P1)*(1-ENTM)*BETA*dert.C2)/QQ; 

            end; 
solve C1 C2 C3 C4 C5 C6/ out=Solution time=Time; 
 
proc model data=Solution noprint; 
dependent C1 C2 C3 C4 C5 C6; 
parm KSYN  9.141  KDEG  0.079  KON  0.03  KOFF  1.74  KINT  3.6 ALPHA 140 
BETA 14 ENTM 0.007; 
dose=129.92; 
QQ=312; 
P1=0.9; 
VEC=2.24; 
if ( time=0 ) then  
            do; 
                   C1=dose;  
                   C2=0; 
         C3=0; 
        C4=KSYN/KDEG; 
        C5=0; 
                   C6=0;        
            end; 
else  
            do; 

   dert.C1= -ALPHA*C1+C6*QQ; 
   dert.C2= -BETA*C2+ALPHA*C1; 
   dert.C3 = -KON*C4*C3+KOFF*C5+((P1*QQ)/VEC)*((ALPHA*C1/QQ)-C3); 
   dert.C4= KSYN-KDEG*C4-KON*C4*C3+KOFF*C5; 
   dert.C5= -KINT*C5-KOFF*C5+KON*C4*C3; 
   dert.C6=(P1*QQ*dert.C3+(1-P1)*(1-ENTM)*BETA*dert.C2)/QQ; 

            end; 
f1 = getder( C6, KSYN ); 
f2 = getder( C6, KDEG ); 
f3 = getder( C6, KON ); 
f4 = getder( C6, KOFF ); 
f5 = getder( C6, KINT ); 
f6 = getder( C6, ALPHA ); 
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f7 = getder( C6, BETA ); 
f8 = getder( C6, ENTM ); 
outvar f1 f2 f3 f4 f5 f6 f7 f8; 
restrict KSYN=9.141,  KDEG=0.079,  KON=0.03,  KOFF=1.74,  KINT=3.6, 
ALPHA=140, BETA=14, ENTM=0.007; 
fit C6 / out=Jacobian dynamic; 
run; 
 
proc optex data=Jacobian coding=NONE; 
model f1 f2 f3 f4 f5 f6 f7 f8/ noint; 
generate n=8 method=m_fedorov niter=100 keep=1 CRITERION=D; 
output out=Design; 
id Time; 
proc print data=Design; 
run;  



190 
 

 
 

 

APPENDIX E. R CODES FOR CHAPTER 6 

E.1. Compartmental model parameters bias and precision calculation  

############################################################# 
##Data manipulation-extraction-cleaning 
#1) In nonmem summary output delete the model specifications till the part (problem no. 
1---). 
#2) Copy the summary into excel sheet as separate columns. 
#3) Copy the (TERMINATED or SUCCESSFUL) column and the (ERROR=) and the 
(Subproblem number) column to #another excel #sheet. 
#4) Add cells to the (Subproblem number) column till it matches the (TERMINATED or 
SUCCESSFUL) words. 
#5) Name the (TERMINATED or SUCCESSFUL) column as (xx1) and the (Subproblem 
number) column as (xx2). 
#6) SaVe the excel sheet as (nmsummary.csV). 
#7) Copy the nonmem table into excel sheet and add the names of the parameters as 
lower cases (eg. #alpha,KSYN,--etc.). 
#8) SaVe excel sheet as (nmparam.csV). 
############################################################# 
data=read.csv("C://Documents and 
Settings/melkomy/Desktop/NMcomp/nmsummary1a.csv") 
data2<-data[data$XX1=="SUCCESSFUL",] 
XX4<-as.vector(data2$XX2) 
XX5<-as.numeric(XX4) 
XX5<-as.numeric(XX4) 
XX6<-XX5[XX5<=1000] 
succ<-XX6 
index<-(succ*50)-5 
nn<-length(succ) 
data.man=read.csv("C://Documents and 
Settings/melkomy/Desktop/NMcomp/nmparam1a.csv") 
data.fin<-data.man[index,] 
write.csv(data.fin,file="C://Documents and 
Settings/melkomy/Desktop/NMcomp/extrparam1a.csv") 
################################## 
################################################################ 
##calculation of bias and precision 
################################################################## 
param<-read.csv("C://Documents and 
Settings/melkomy/Desktop/NMcomp/extrparam1a.csv") 
KEL.true=0.106 
KPT.true=0.064 
KTP.true=0.123 
V.true=2.24 
KSYN.true=9.141 



191 
 

 
 

 

KDEG.true=0.079 
KON.true=0.03 
KOFF.true=1.74 
KINT.true=3.6 
 
KEL.bias<-((mean(param$KEL)-KEL.true)/KEL.true)*100 
KPT.bias<-((mean(param$KPT)-KPT.true)/KPT.true)*100 
KTP.bias<-((mean(param$KTP)-KTP.true)/KTP.true)*100 
V.bias<-((mean(param$V)-V.true)/V.true)*100 
KSYN.bias<-((mean(param$KSYN)-KSYN.true)/KSYN.true)*100 
KDEG.bias<-((mean(param$KDEG)-KDEG.true)/KDEG.true)*100 
KON.bias<-((mean(param$KON)-KON.true)/KON.true)*100 
KOFF.bias<-((mean(param$KOFF)-KOFF.true)/KOFF.true)*100 
KINT.bias<-((mean(param$KINT)-KINT.true)/KINT.true)*100 
 
KEL.bias.rse<-(sd(param$KEL)/(KEL.true*sqrt(nn)))*100 
KEL.bias.upp<-KEL.bias+1.96*KEL.bias.rse 
KEL.bias.low<-KEL.bias-1.96*KEL.bias.rse 
 
KPT.bias.rse<-(sd(param$KPT)/(KPT.true*sqrt(nn)))*100 
KPT.bias.upp<-KPT.bias+1.96*KPT.bias.rse 
KPT.bias.low<-KPT.bias-1.96*KPT.bias.rse 
 
KTP.bias.rse<-(sd(param$KTP)/(KTP.true*sqrt(nn)))*100 
KTP.bias.upp<-KTP.bias+1.96*KTP.bias.rse 
KTP.bias.low<-KTP.bias-1.96*KTP.bias.rse 
 
V.bias.rse<-(sd(param$V)/(V.true*sqrt(nn)))*100 
V.bias.upp<-V.bias+1.96*V.bias.rse 
V.bias.low<-V.bias-1.96*V.bias.rse 
 
KSYN.bias.rse<-(sd(param$KSYN)/(KSYN.true*sqrt(nn)))*100 
KSYN.bias.upp<-KSYN.bias+1.96*KSYN.bias.rse 
KSYN.bias.low<-KSYN.bias-1.96*KSYN.bias.rse 
 
KDEG.bias.rse<-(sd(param$KDEG)/(KDEG.true*sqrt(nn)))*100 
KDEG.bias.upp<-KDEG.bias+1.96*KDEG.bias.rse 
KDEG.bias.low<-KDEG.bias-1.96*KDEG.bias.rse 
 
KON.bias.rse<-(sd(param$KON)/(KON.true*sqrt(nn)))*100 
KON.bias.upp<-KON.bias+1.96*KON.bias.rse 
KON.bias.low<-KON.bias-1.96*KON.bias.rse 
 
KOFF.bias.rse<-(sd(param$KOFF)/(KOFF.true*sqrt(nn)))*100 
KOFF.bias.upp<-KOFF.bias+1.96*KOFF.bias.rse 
KOFF.bias.low<-KOFF.bias-1.96*KOFF.bias.rse 
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KINT.bias.rse<-(sd(param$KINT)/(KINT.true*sqrt(nn)))*100 
KINT.bias.upp<-KINT.bias+1.96*KINT.bias.rse 
KINT.bias.low<-KINT.bias-1.96*KINT.bias.rse 
 
KEL.prec<-(sd(param$KEL)/(sqrt(nn)*mean(param$KEL)))*100 
KPT.prec<-(sd(param$KPT)/(sqrt(nn)*mean(param$KPT)))*100 
KTP.prec<-(sd(param$KTP)/(sqrt(nn)*mean(param$KTP)))*100 
V.prec<-(sd(param$V)/(sqrt(nn)*mean(param$V)))*100 
KSYN.prec<-(sd(param$KSYN)/(sqrt(nn)*mean(param$KSYN)))*100 
KDEG.prec<-(sd(param$KDEG)/(sqrt(nn)*mean(param$KDEG)))*100 
KON.prec<-(sd(param$KON)/(sqrt(nn)*mean(param$KON)))*100 
KOFF.prec<-(sd(param$KOFF)/(sqrt(nn)*mean(param$KOFF)))*100 
KINT.prec<-(sd(param$KINT)/(sqrt(nn)*mean(param$KINT)))*100 
###################################### 
##output results 
###################################### 
KEL<-c(KEL.bias,KEL.bias.low,KEL.bias.upp,KEL.prec) 
KPT<-c(KPT.bias,KPT.bias.low,KPT.bias.upp,KPT.prec) 
KTP<-c(KTP.bias,KTP.bias.low,KTP.bias.upp,KTP.prec) 
V<-c(V.bias,V.bias.low,V.bias.upp,V.prec) 
KSYN<-c(KSYN.bias,KSYN.bias.low,KSYN.bias.upp,KSYN.prec) 
KDEG<-c(KDEG.bias,KDEG.bias.low,KDEG.bias.upp,KDEG.prec) 
KON<-c(KON.bias,KON.bias.low,KON.bias.upp,KON.prec) 
KOFF<-c(KOFF.bias,KOFF.bias.low,KOFF.bias.upp,KOFF.prec) 
KINT<-c(KINT.bias,KINT.bias.low,KINT.bias.upp,KINT.prec) 
NRUN<-c(nn,nn,nn,nn) 
 
summary<-
matrix(data=c(KEL,KPT,KTP,V,KSYN,KDEG,KON,KOFF,KINT,NRUN),nrow=4,ncol
=10,byrow=F,dimnames=list(c("Bias","Bias.Low","Bias.UPP","Precision"),c("KEL","K
PT","KTP","V","KSYN","KDEG","KON","KOFF","KINT","NRUN"))) 
write.csv(summary,file="C://Documents and 
Settings/melkomy/Desktop/NMcomp/rsummary1a.csv") 

E.2. Recirculation model parameters bias and precision calculation 

############################################################# 
##Data manipulation-extraction-cleaning 
#1) In nonmem summary output delete the model specifications till the part (problem no. 
1---). 
#2) Copy the summary into excel sheet as separate columns. 
#3) Copy the (TERMINATED or SUCCESSFUL) column and the (ERROR=) and the 
(Subproblem number) column to #another excel #sheet. 
#4) Add cells to the (Subproblem number) column till it matches the (TERMINATED or 
SUCCESSFUL) words. 
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#5) Name the (TERMINATED or SUCCESSFUL) column as (xx1) and the (Subproblem 
number) column as (xx2). 
#6) SaVe the excel sheet as (nmsummary.csV). 
#7) Copy the nonmem table into excel sheet and add the names of the parameters as 
lower cases (eg. #alpha,KSYN,--etc.). 
#8) SaVe excel sheet as (nmparam.csV). 
############################################################# 
data=read.csv("C://Documents and 
Settings/melkomy/Desktop/NMrec/nmsummary1a.csv") 
data2<-data[data$XX1=="SUCCESSFUL",] 
XX4<-as.vector(data2$XX2) 
XX5<-as.numeric(XX4) 
XX6<-XX5[XX5<=1000] 
succ<-XX6 
index<-(succ*45)-5 
nn<-length(succ) 
data.man=read.csv("C://Documents and 
Settings/melkomy/Desktop/NMrec/nmparam1a.csv") 
data.fin<-data.man[index,] 
write.csv(data.fin,file="C://Documents and 
Settings/melkomy/Desktop/NMrec/extrparam1a.csv") 
################################## 
################################################################ 
##calculation of bias and precision 
################################################################## 
param<-read.csv("C://Documents and 
Settings/melkomy/Desktop/NMrec/extrparam1a.csv") 
ALPHA.true=140 
BETA.true=14 
ENTM.true=0.007 
KSYN.true=9.141 
KDEG.true=0.079 
KON.true=0.03 
KOFF.true=1.74 
KINT.true=3.6 
 
ALPHA.bias<-((mean(param$ALPHA)-ALPHA.true)/ALPHA.true)*100 
BETA.bias<-((mean(param$BETA)-BETA.true)/BETA.true)*100 
ENTM.bias<-((mean(param$ENTM)-ENTM.true)/ENTM.true)*100 
KSYN.bias<-((mean(param$KSYN)-KSYN.true)/KSYN.true)*100 
KDEG.bias<-((mean(param$KDEG)-KDEG.true)/KDEG.true)*100 
KON.bias<-((mean(param$KON)-KON.true)/KON.true)*100 
KOFF.bias<-((mean(param$KOFF)-KOFF.true)/KOFF.true)*100 
KINT.bias<-((mean(param$KINT)-KINT.true)/KINT.true)*100 
 
ALPHA.bias.rse<-(sd(param$ALPHA)/(ALPHA.true*sqrt(nn)))*100 
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ALPHA.bias.upp<-ALPHA.bias+1.96*ALPHA.bias.rse 
ALPHA.bias.low<-ALPHA.bias-1.96*ALPHA.bias.rse 
 
BETA.bias.rse<-(sd(param$BETA)/(BETA.true*sqrt(nn)))*100 
BETA.bias.upp<-BETA.bias+1.96*BETA.bias.rse 
BETA.bias.low<-BETA.bias-1.96*BETA.bias.rse 
 
ENTM.bias.rse<-(sd(param$ENTM)/(ENTM.true*sqrt(nn)))*100 
ENTM.bias.upp<-ENTM.bias+1.96*ENTM.bias.rse 
ENTM.bias.low<-ENTM.bias-1.96*ENTM.bias.rse 
 
KSYN.bias.rse<-(sd(param$KSYN)/(KSYN.true*sqrt(nn)))*100 
KSYN.bias.upp<-KSYN.bias+1.96*KSYN.bias.rse 
KSYN.bias.low<-KSYN.bias-1.96*KSYN.bias.rse 
 
KDEG.bias.rse<-(sd(param$KDEG)/(KDEG.true*sqrt(nn)))*100 
KDEG.bias.upp<-KDEG.bias+1.96*KDEG.bias.rse 
KDEG.bias.low<-KDEG.bias-1.96*KDEG.bias.rse 
 
KON.bias.rse<-(sd(param$KON)/(KON.true*sqrt(nn)))*100 
KON.bias.upp<-KON.bias+1.96*KON.bias.rse 
KON.bias.low<-KON.bias-1.96*KON.bias.rse 
 
KOFF.bias.rse<-(sd(param$KOFF)/(KOFF.true*sqrt(nn)))*100 
KOFF.bias.upp<-KOFF.bias+1.96*KOFF.bias.rse 
KOFF.bias.low<-KOFF.bias-1.96*KOFF.bias.rse 
 
KINT.bias.rse<-(sd(param$KINT)/(KINT.true*sqrt(nn)))*100 
KINT.bias.upp<-KINT.bias+1.96*KINT.bias.rse 
KINT.bias.low<-KINT.bias-1.96*KINT.bias.rse 
 
ALPHA.prec<-(sd(param$ALPHA)/(sqrt(nn)*mean(param$ALPHA)))*100 
BETA.prec<-(sd(param$BETA)/(sqrt(nn)*mean(param$BETA)))*100 
ENTM.prec<-(sd(param$ENTM)/(sqrt(nn)*mean(param$ENTM)))*100 
KSYN.prec<-(sd(param$KSYN)/(sqrt(nn)*mean(param$KSYN)))*100 
KDEG.prec<-(sd(param$KDEG)/(sqrt(nn)*mean(param$KDEG)))*100 
KON.prec<-(sd(param$KON)/(sqrt(nn)*mean(param$KON)))*100 
KOFF.prec<-(sd(param$KOFF)/(sqrt(nn)*mean(param$KOFF)))*100 
KINT.prec<-(sd(param$KINT)/(sqrt(nn)*mean(param$KINT)))*100 
###################################### 
##output results 
###################################### 
ALPHA<-c(ALPHA.bias,ALPHA.bias.low,ALPHA.bias.upp,ALPHA.prec) 
BETA<-c(BETA.bias,BETA.bias.low,BETA.bias.upp,BETA.prec) 
ENTM<-c(ENTM.bias,ENTM.bias.low,ENTM.bias.upp,ENTM.prec) 
KSYN<-c(KSYN.bias,KSYN.bias.low,KSYN.bias.upp,KSYN.prec) 
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KDEG<-c(KDEG.bias,KDEG.bias.low,KDEG.bias.upp,KDEG.prec) 
KON<-c(KON.bias,KON.bias.low,KON.bias.upp,KON.prec) 
KOFF<-c(KOFF.bias,KOFF.bias.low,KOFF.bias.upp,KOFF.prec) 
KINT<-c(KINT.bias,KINT.bias.low,KINT.bias.upp,KINT.prec) 
NRUN<-c(nn,nn,nn,nn) 
 
summary<-
matrix(data=c(ALPHA,BETA,ENTM,KSYN,KDEG,KON,KOFF,KINT,NRUN),nrow=4
,ncol=9,byrow=F,dimnames=list(c("Bias","Bias.Low","Bias.UPP","Precision"),c("ALPH
A","BETA","ENTM","KSYN","KDEG","KON","KOFF","KINT","NRUN"))) 
write.csv(summary,file="C://Documents and 
Settings/melkomy/Desktop/NMrec/rsummary1a.csv") 

E.3. Plotting of Figure 6.8 

 ############################################################# 
equiv.data=read.csv("F://Simulations_new/recept.csv") 
dev.new(width=7.5, height=10) 
par(mfrow=c(5,2),oma=c(2.5,5.5,3.5,0.5),mar=c(0.5,5.5,1,0)) 
par<-unique(equiv.data$param) 
 
for(i in 1:length(par)){ 
data<-equiv.data[equiv.data$param==par[i],] 
#Bias plot 
bias.comp0<-data$bias[data$model=="COMP-TMD"] 
bias.comp.up<-data$bias.up[data$model=="COMP-TMD"] 
bias.comp.low<-data$bias.low[data$model=="COMP-TMD"] 
bias.rec0<-data$bias[data$model=="REC-TMD"] 
bias.rec.up<-data$bias.up[data$model=="REC-TMD"] 
bias.rec.low<-data$bias.low[data$model=="REC-TMD"] 
x.lim<-c(0.8,2.2) 
if((bias.comp0*bias.rec0)<0){ 
y.up<-max(abs(c(bias.comp.low,bias.comp.up,bias.rec.low,bias.rec.up)))+0.1 
y.low<--y.up 
}else{ 
y.up<-max(bias.comp.up,bias.rec.up,0)+0.1 
y.low<-min(bias.comp.low,bias.rec.low,0)-0.1 
} 
y.dat.comp.up<-
seq(min(bias.comp0,bias.comp.up),max(bias.comp0,bias.comp.up),by=0.01) 
x.dat.comp.up<-rep(1,length(y.dat.comp.up)) 
y.dat.comp.low<-
seq(min(bias.comp0,bias.comp.low),max(bias.comp0,bias.comp.low),by=0.01) 
x.dat.comp.low<-rep(1,length(y.dat.comp.low)) 
y.dat.rec.up<-seq(min(bias.rec0,bias.rec.up),max(bias.rec0,bias.rec.up),by=0.01) 
x.dat.rec.up<-rep(2,length(y.dat.rec.up)) 
y.dat.rec.low<-seq(min(bias.rec0,bias.rec.low),max(bias.rec0,bias.rec.low),by=0.01) 
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x.dat.rec.low<-rep(2,length(y.dat.rec.low)) 
plot(data$bias, data$prec, 
type="n",xlim=x.lim,ylim=c(y.low,y.up),xlab="",ylab="",las=1,xaxt="n",yaxt="n",main=
"",font=2) 
points(1,bias.comp0,col ="black",pch=16,cex=2)  
points(2,bias.rec0,col ="black",pch=16,cex=2) 
lines(x.dat.comp.up,y.dat.comp.up, col = "black", lwd = 2)  
lines(x.dat.comp.low,y.dat.comp.low, col = "black", lwd = 2) 
lines(x.dat.rec.up,y.dat.rec.up, col = "black", lwd = 2)  
lines(x.dat.rec.low,y.dat.rec.low, col = "black", lwd = 2)  
abline(h=0,lty=2,cex=2) 
if(i==5){ 
axis(side=1, at=c(1,2),las=1,labels=c("COMP-TMD","REC-
TMD"),font=2,cex.axis=1.5,tick=F) 
} 
if(i==1) POS.Bias<-c(0,-0.4,-0.8,-1.2) 
if(i==2) POS.Bias<-c(0,-0.5,-1,-1.5,-2) 
if(i==3) POS.Bias<-c(6,3,0,-3,-6) 
if(i==4) POS.Bias<-c(10,5,0,-5,-10,-15) 
if(i==5) POS.Bias<-c(10,5,0,-5,-10) 
axis(side=2,las=1,font=2,cex=1.2,at=POS.Bias) 
 
#plot precision 
prec.comp<-data$prec[data$model=="COMP-TMD"] 
prec.rec<-data$prec[data$model=="REC-TMD"] 
if(i<5){ 
put.names=F 
}else{ 
put.names=T 
} 
excess<-c(0.05,0.05,0.05,0.2,0.2) 
if(i==1) POS.Prec<-c(0.05,0.15,0.25) 
if(i==2) POS.Prec<-c(0.1,0.3,0.5) 
if(i==3) POS.Prec<-c(0.5,1,1.5) 
if(i==4) POS.Prec<-c(1,2,3,4,5) 
if(i==5) POS.Prec<-c(1,2,3,4) 
barplot(height=data$prec,width=0.5,space=c(3,0.5),legend.text=F,beside=T,xlim=c(0,3),
ylim=c(0,max(prec.comp,prec.rec)+excess[i]),yaxt="n",axisnames=put.names,cex.names
=1.5,names.arg=c("COMP-TMD","REC-TMD"),las=1,main="",font=2) 
axis(side=2,las=1,font=2,cex=1.2,at=POS.Prec) 
box() 
} 
############################### 
#Put text 
mtext(text="%Bias", side=3, line=1, outer=T,col="black",cex=1.5,font=2,at=0.32) 
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mtext(text="%Imprecision", side=3, line=1, 
outer=T,col="black",cex=1.5,font=2,at=0.82) 
####################################################### 
mtext(text=expression(bolditalic("k"[int])), side=2, 
line=0.1,outer=T,las=2,col="black",cex=2,font=4,at=0.1,family="serif") 
mtext(text=expression(bolditalic("k"[off])), side=2, 
line=0.1,outer=T,las=2,col="black",cex=2,font=4,at=0.3,family="serif") 
mtext(text=expression(bolditalic("k"[on])), side=2, 
line=0.1,outer=T,las=2,col="black",cex=2,font=4,at=0.5,family="serif") 
mtext(text=expression(bolditalic("k"[deg])), side=2, 
line=0.1,outer=T,las=2,col="black",cex=2,font=4,at=0.7,family="serif") 
mtext(text=expression(bolditalic("k"[syn])), side=2, 
line=0.1,outer=T,las=2,col="black",cex=2,font=4,at=0.9,family="serif") 

E.4 Plotting of Figure 6.9 

############################################################# 
equiv.data=read.csv("F://Simulations_new/nonrecept.csv") 
par.names<-
c(expression(bolditalic("V")),expression(bolditalic("k"[el])),expression(bolditalic("k"[pt]
)),expression(bolditalic("k"[tp])),expression(bolditalic("E"[NTM])),expression(bolditalic(
alpha)),expression(bolditalic(beta))) 
dev.new(width=10, height=7.5) 
par(mfrow=c(2,1),oma=c(0,0,0,0),mar=c(2.5,2.5,4.5,0.5)) 
#Bias plot 
y.up<-max(equiv.data$bias.up,0)+0.1 
y.low<-min(equiv.data$bias.low,0)-0.1 
par<-unique(equiv.data$param) 
for(i in 1:length(par)){ 
data<-equiv.data[equiv.data$param==par[i],] 
bias0<-data$bias 
biasup<-data$bias.up 
biaslow<-data$bias.low 
x.lim<-c(0.8,7.2) 
y.dat.up<-seq(min(bias0,biasup),max(bias0,biasup),by=0.01) 
x.dat.up<-rep(i,length(y.dat.up)) 
y.dat.low<-seq(min(bias0,biaslow),max(bias0,biaslow),by=0.01) 
x.dat.low<-rep(i,length(y.dat.low)) 
plot(data$bias, data$prec, 
type="n",xlim=x.lim,ylim=c(y.low,y.up),xlab="",ylab="",las=1,main="%Bias",cex.main
=2,font=2,xaxt="n") 
points(i,bias0,col ="black",pch=16,cex=2) 
lines(x.dat.up,y.dat.up, col = "black", lwd = 2)  
lines(x.dat.low,y.dat.low, col = "black", lwd = 2)  
par(new=T) 
} 
axis(side=1,las=1,font=2,cex.axis=2,at=1:7,labels=par.names,family="serif",tick=F) 
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abline(h=0,lty=2,cex=2) 
 
#Precision plot 
barplot(height=equiv.data$prec,width=0.5,space=c(0,1.25,1.1,1.25,1,1.25,1.25),legend.te
xt=F,beside=T,xlim=c(0,7),ylim=c(0,max(equiv.data$prec)+0.05),axisnames=T,cex.nam
es=2,names.arg=par.names,las=1,main="%Imprecision",cex.main=2,font=2,family="seri
f") 
box() 
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APPENDIX F. PUBLICATIONS AND SUBMITTED 

MANSUSCRIPTS 

1. El-Komy MH, and Veng-Pedersen P, Equivalence of compartmental and 

recirculation target-mediated disposition pharmacokinetic models. Submitted to J 

Pharmacokinet Pharmacodyn. 

2. Kania-Korwel I, Barnhart CD, Stamou M, Truong KM, El-Komy MH, Lein PJ, 

Veng-Pedersen P, and Lehmler HJ, 2,2’,3,5’,6-Pentachlorobiphenyl (PCB 95) and 

its hydroxylated metabolites are enantiomerically enriched in female mice. 

Accepted in  Environ Sci Technol. 

3. El-Komy MH, Schmidt RL, Widness JA, Veng-Pedersen P,  Differential 

pharmacokinetic analysis of in vivo erythropoietin receptor interaction with 

erythropoietin and continuous erythropoietin receptor activator in sheep. 

Biopharm Drug Dispos 32: 276-288 

4. El-Komy MH, Widness JA, Veng-Pedersen P (2011) Pharmacokinetic analysis of 

continuous erythropoietin receptor activator disposition using a target-mediated, 

physiologic recirculation model and a tracer interaction methodology. Drug 

Metab Dispos 39: 603-609 

5. Kania-Korwel I, El-Komy MH, Veng-Pedersen P, Lehmler HJ (2010) Clearance 

of polychlorinated biphenyl atropisomers is enantioselective in female C57Bl/6 

mice. Environ Sci Technol 44: 2828-35 
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