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Abstract

Tree ring chronology data is known to reflect regional climate due to the strong impact of rainfall

and temperature. Therefore, tree ring data can be used to reconstruct historical climate in order

to understand how climate changed in the past and make prediction about the future behavior of

the climate. For simplicity, this research only considers the influence of precipitation on tree ring

growth within the New England area. A total of 94 measurement sites are used to record tree ring

width over 881 years and corresponding precipitation data are given at some locations for 121

years. We developed a spatio-temporal model to describe the response of a tree growth to precip-

itation on an annual timescale and introduced the general hierarchical statistical framework from

data, process and parameter models. To predict climate in the past, we considered an autoregres-

sive process in time that accounts for temporal correlation of precipitation. Based on data col-

lected at each observed location, geospatial Kriging allows us to predict reasonable precipitation

at unobserved locations in a regional perspective.
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1. Introduction

It is important to reconstruct the paleoclimate in order to comprehend how climate varied in the

past and to forecast the future behavior of climate. Tree ring width data is typically considered to

reflect the climate of a certain region due to the strong impact of rainfall and temperature to the

tree growth (Guiot, 1982; Fritts, 1976; Schweingruber, 1996). The tree ring width is the amount

of tree grows annually, which can reflect the climate condition of the year. Nowadays, two kinds

of data are often compared to analyze climatology: one data source is the annual climate data

which includes the total precipitation and average of temperatures, the other data source is the

annual tree growth data which includes the tree ring width or densitometric parameters (Tessier,

1989). Climate data collected at each location only provides ”local information”, it is important

and meaningful for us to understand and predict the ”regional patterns” based on the observed

data. What’s more, we also need to know whether the climate growth system is stable in time. To

answer both questions together, we analyze our data using spatio-temporal statistical methods.

1.1. Tree ring data

The tree ring chronology data used for our research is measured from 12 different tree species at

N=94 sites within the central New England region of USA. Each tree ring chronology is at least

160 years long for each species at most sites, some sites have records for the total of 881 years

that date back to 1135 (Figure 1.1). The observation of annual tree ring widths observed from

location s at time t are represented by Y(s, t).

As shown in the Figure 1.1, each line represents a chronology. There are plenty of tree ring chronol-

ogy data from 1815 until 2015, but the datasets are less dense in the past. This leads to a more

complicated situation to fit the statistical model because the model must be capable of dealing

with missing data.
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1.2. Climate data

The climate data used in this research are Parameter-Elevation Relationships on Independent

Slopes Model (PRISM) gridded data for the total of 121 years from 1895 to 2015 (Group, 2011).

In this analysis, we obtained both temperature and annual total precipitation (rain and melted

snow) data from PRISM datasets collected from N=94 sites within the New England area of

USA. The log transformation of precipitation data can be recognized as normally distributed

within a given month. The average temperature is also normally distributed at a given month but

follows the same pattern that the highest temperature occurs around June to August and the low-

est temperatures can be recorded from December to February. We simplify the research to fit tree

ring width data using log precipitation following results in Tipton et al. (2016) that suggest the

tree ring chronologies are moisture sensitive. We model the log precipitation data with a Gaus-

sian distribution as spatial random effect.

Figure 1.1: Tree-ring chronology data collected from 94 sites from 1135 to 2015. Each line is
a time series data. Denser and more black lines can be noticed from 1815 to 2015, the color of
lines becomes lighter as data density decreases as time goes back to 1135.
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Figure 1.2: Log total annual precipitation data collected from 94 sites within the same area as tree
ring width data. Each line represents the log annual precipitation at each site.

Figure 1.2 is the time series plot of log annual total precipitation at each site represented by dif-

ferent colored lines from 1895 to 2015. From this figure, we notice the log total precipitation

recorded at some sites is lower than other sites, but the average is approximately constant in time

with, perhaps, a slight increase from year 1980 to 2015.

We have tree ring width data dating back to 1135 however, the precipitation data were only col-

lected from 1895 to 2015, meaning there are unobserved climate data over 760 years. When fit-

ting the model, it is necessary to reconstruct unknown precipitation in the past using a relation-

ship between tree ring width and precipitation learned from the overlapping data sources. Using

this learned relationship, we then predict the annual log precipitation over the spatial domain of

interest.
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2. Statistical Method

Spatio-temporal data analysis is a growing area of statistical research because of the development

of computational techniques for large datasets. Virtually all data occur at some locations in space

and time and data commonly found in the real world involve interactions across various spatial

and temporal scales. A primary aim of spatio-temporal data analysis is to predict the process in

both space and time by describing the characteristics of the process with a statistical model.

A general hierarchical statistical model (HM) is often an approach to derive the posterior dis-

tribution for both spatial and spatio-temporal processes. HM often uses a shinkage estimator,

pulling the posterior distribution towards the prior mean of individual parameters and reducing

the mean squared errors (Zhao et al., 2010). Three commonly used methods to estimate Hierar-

chical Models are maximum likelihood estimation (MLE), Bayesian hierarchical model (BHM),

and empirical Bayes model (EBM). To find the MLE, one need to estimate parameters by finding

their values that can maximize the likelihood function. A fully BHM arises from modeling pa-

rameter uncertainty at a parameter model level, with the advantage that BHM gives us in-depth

thought and collaboration between climatologists and statisticians (Hoeting, 2009). We usually

find the joint posterior of all parameters and make inference with Markov Chain Monte Carlo

(MCMC). Finding the MLE of hyper-parameters, then plugging the estimates into a BHM gives

rise to an empirical Bayes model (EBM). BHM produces a shrinkage estimator for all parame-

ters towards their population means, but can be difficult to compute. EBM can be viewed as an

approximation to a BHM. EBM neglects the uncertainty of hyper-parameters by assigning them

with most likely values instead of integrating over a distribution. Therefore, EBM normally pro-

duces narrower credible intervals and more intensive shrinkage estimators than BHM. To solve a

complex problem, it is straightforward to break the problem into three stages: data models (like-

lihood), process models (prior distribution), and parameter models (hyper-prior distribution). We

begin by describing the general spatial model, and introduce the general spatio-temporal model

by adding the influence of temporal behavior into the model, then derive a spatio-temporal model
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based on our real problem in what follows.

2.1. Spatial Model

Consider a process occurring at spatial locations s, where the elements of s are latitude and longi-

tude, and s ∈ D is a fixed finite area. The process is observed at N locations {s1, ...,sN} where Y is

the observed geostatistical random field:

Y = (Y(s1), ...,Y(sN))′. (2.1)

The geostatistical model is an application of regionalized variables theory to prediction of the

values in spatial or spatio-temporal phenomena (Matheron, 1971). The geostatistical model as-

sumes that spatially discrete data are sampled from an unobserved continuous process over a fi-

nite area. By learning the spatial relationships of the continuous process, one can predict at new

locations (Diggle et al., 2010).

In order to construct a spatially correlated regression model, we need to define a general hierar-

chical model for observations. Here, we introduce the general hierarchical statistical model in

sections first describing the data model, then the process model, and finally we describe the pa-

rameter model (Arab, 2015).

2.1.1. Data Model

The observed random field Y(.) is a noisy measurement of value of the geostatistical process

Z(.) = {Z(s) : s ∈ Ds} at locations s ∈ D. Then, we assume the observation model:

Yi(s) = Z(s) +εi(s), (2.2)

where εi(s) is a white noise process with mean zero and variance σ2
ε ≥ 0. In this equation, i is the

number of repeated measures at site s. In most cases, i = 1, so for simplicity, we drop the repeated

5



measures notation in what follows. However, in the application, we have some sites with repeated

measures.

Equivalently, we can write:

Y(s)|Z(s),σ2
ε

iid
∼ N(Z(s),σ2

ε). (2.3)

We assume that Z(.) and ε(.) are independent Gaussian processes and characterize the probability

distribution using the first two moments.The assumption of second order stationarity of the ran-

dom process Z(.), also called weak stationarity or covariance stationarity, meaning the mean is

constant and the covariances cov(Z(s),Z(s + h)) depend only on lag h. Therefore, we can define

the covariance operator

CZ(h) = cov(Z(s),Z(s + h)), for all s,s + h ∈ Ds. (2.4)

When h = 0, define CZ(0) ≡ σ2
Z and

lim
h→0

(CZ(0)−CZ(h)) = CZ(0+) = σ2
0 ≥ 0, (2.5)

where σ2
0 ≤ σ

2
Z and σ2

0 is called the micro scale variance of the random process Z(.). In early de-

velopment of spatial and spatio-temporal statistics, it was assumed that there is no measurement

error of any observation taken on the process, which is an unreasonable assumption in general.

Then, the covariance of the data is,

cov(Y(s),Y(s + h)) ≡CY(h) =


σ2

Z +σ2
ε, h = 0

CZ(h), h , 0,
(2.6)

when h = 0, we have σ2
Y = σ2

Z +σ2
ε which is referred to as the sill. With var(ε(s)) = σ2

ε, we know

that

lim
h→0

(CY(0)−CY(h)) = CY(0+) = σ2
0 +σ2

ε = c0 ≥ 0. (2.7)
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In this equation, the quantity c0 containing two non-negative parts is called the nugget effect in

the geostatistical area, where σ2
0 represents the micro scale component of Z(.) and σ2

ε stands for

the measurement error of the whole process Y(.) (Cressie and Wikle, 2015, p.123).

2.1.2. Process Model

The process model describes the latent, unobserved process of interest. For the geostatistical spa-

tial model, defined onD ∈ Rd, Gaussian geostatistical models (GGMs) are commonly used to

model continuous spatial Gaussian processes using a spatial covariance, which is a function of

spatial distance and direction. There are two common assumptions of GGMs, second order sta-

tionarity and isotropy (Song et al., 2008). Second order stationarity means that the process has a

constant mean and the covariance function is determined by the distance between two measure-

ment locations over space. The term isotropic implies that the covariance function of the process

only depends on Euclidean distance, meaning direction is not considered. One can model the co-

variance of a second order stationary and isotropic spatial process using a parametric function of

Euclidean distance (Song et al., 2008).

In the data model provided above, the independent Gaussian process Z(.) is the geostatistical pro-

cess. We use the geostatistical process as a process model in the HM context and define the pro-

cess model as

Z(s) = X(s)′β+η(s), s ∈ D, (2.8)

where β = (β0,β1, ...,βp−1)′ is a p-dimensional fixed effect, X(s) = (1,X1(s), ...,Xp−1(s)) is a known

N × p matrix (p < N) of covariates, containing the constant 1 and p− 1 columns explanatory co-

variates potentially observed at location s, and η(s) is the random spatial effect at location s which

is assumed to from isotropic Gaussian process η with mean zero and stationary covariance func-

tion Cη. We use µ(s) ≡ X(s)′β to represent the mean of the spatial process.
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Consequently, the simplified geostatistical data model can be written as:

Y(s) = µ(s) +η(s) +εY(s) (2.9)

where η = (η(s1), ...,η(sN))′ ∼ N(0,Cη) and the covariance of the i jth element Cηi j =

cov(η(si),η(s j)) = τ2Ri j where τ2 is the variance of the spatially correlated process and the matrix

R is an isotropic correlation matrix that has ijth element Ri j as a function of the distance |si − s j|

between location si and s j.

Common choices for the correlation functions are the Matérn family, of which the Gaussian and

exponential covariance functions are special cases. In our model, we choose the Gaussian covari-

ance function, also known as the double exponential function as our correlation function. The

Gaussian correlation function matrix has i jth element Ri j(φ) = exp(
−d2

i j

φ2 ) where di j is the function

of distance between si and s j = ||si − s j||
1
2 , and φ is a range parameter that controls the rate of de-

crease of the correlation between observations as distance increases. The two hyper-parameters τ

and φ are not identifiable, meaning that no matter what methods are used, neither parameter can

be estimated consistantly even with larger datasets. However, the product of τ and φ can be es-

timated consistantly which is the quantity that is important to the spatial interpolation (Zhang,

2004).

2.1.3. Parameter Model

Parameter models for Bayesian Hierarchical models, are prior distributions for unknown parame-

ters. We should define appropriate probability densities to unknown parameters according to our

knowledge about their underlying support. If a priori knowledge is unavailable, it is often better

to use non-informative distributions.

Prior distributions we choose for the geostatistical model mentioned above are φ ∼ Unif(φL,φU),

τ2 ∼ InverseGamma(α2
τ,β

2
τ), σ

2
y ∼ InverseGamma(α2

σ,β
2
σ).
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2.1.4. Spatial Kriging

The term Kriging was proposed by Georges Matheron (1963) in honor of D.G. Krige, a South

African mining engineer. In geostatistics, Kriging can use a set of scattered data points to pro-

duce an estimated surface based on their spatial autocorrelation. In general, Kriging is an inter-

polation method for spatial prediction of geostatistical data based on the theory of stochastic pro-

cesses.

Kriging is a prediction method based on statistical autocorrelation among measurement points.

Because the assumption of a spatial correlation is reflected by the distance or direction between

sample points that can be used to explain variation in the surface, we use Kriging to generate a

prediction surface with associated uncertainty. The estimated quantity of Kriging is interpreted as

a random variable of a process at an unknown location, given observed quantities in neighbor as

well as the estimated variances.

One can estimate random effects in linear mixed models using Best Linear Unbiased Prediction

(BLUP) (Robinson, 1991). Although it is similar to Best Linear Unbiased Estimate (BLUE),

there are difference between these two methods. The BLUP is used to predict random effects

while BLUE is used to estimate fixed effects. In general, one uses maximum likelihood or least

square method to estimate fixed effects, while random effects are estimated using restricted max-

imum likelihood (REML)(Robinson, 1991). Furthermore, random effects are assumed to be sam-

pled randomly from the population we are interested in, while fixed effects are assumed to be

chosen consciously because they are parameters of interests (Searle et al., 2009). When fitting a

mixed model, we first estimate the mean and covariance of the random effects, then the random

effect can be calculated from the estimated mean and covariance as well as the known data. As

an analogy, in the Bayesian framework the estimated mean and covariance specify a normal prior

and the known data can be treated as likelihood. Then, the BLUP can be considered as the poste-

rior mean as it takes account of both known data and estimated prior. In practice, the parameters,

9



including variances and residuals associated with the random field, are normally unknown. By

simply plugging in the estimated values of these parameters into the predictors, the Empirical

Best Linear Unbiased Predictor (EBLUP) can be developed. EBLUP can cause overly optimistic

prediction as parameter variability will not be accounted for.

Kriging is the interpolation method derived from BLUP theory. Given appropriate assumptions

of priors (for example, estimated mean and covariance), Kriging is similar to BLUP of a random

field at unobserved locations. Assuming a Gaussian process, one can predict unobserved values

at any new spatial locations, based on the prior and likelihood function associate with observed

values at some spatial locations. In other word, Kriging can be explained as Bayesian inference

(Williams, 1998), meaning that Kriging starts with a Gaussian prior distribution and the covari-

ance function evaluated between any two sample locations. The posterior is also Gaussian dis-

tributed with a mean and covariances that can be computed from observed values. An analysis

using Kriging consists of multiple steps, including exploratory statistical analysis of the data, var-

iogram modeling, creating the surface, and optionally exploring a variance surface (Sen et al.,

2008; Al-Hasnawi et al., 2017).

Briefly speaking, Kriging fits a mathematical model to all sample points within a specified area,

weights the surrounding observed values, then derive a prediction for an unobserved location

which is a linear combination of observations. The general formula is:

η̂(s0) =

N∑
i=1

λiη(si), (2.10)

where η(si) is the observed value of the spatial random effect at the ith location, λi is an unknown

weight for the random effect at ith location, which is determined by the covariance between the

observed and unobserved points, s0 is the predicted location and N is the number of observed

points. In our log precipitation example, we predict log precipitation at unobserved locations and

s0 according to data measured at observed locations si.
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Now we recall that both data and process models of the HM are assumed to be Gaussian pro-

cesses with spatial random process. Because all joint probability and conditional probabil-

ities are Gaussian distributions, the simple kriging predictor is the optimal spatial predictor

E(η(s0)|Y,µ,Cη,σ
2
ε) which is linear in the data (Cressie and Wikle, 2015). In this case, we have

to generate predictions for the unobserved locations given observed data. Now we define the ran-

dom geostatistical spatial process, mean of the spatial process and data at observed locations as

ηobs, µobs, Yobs and use unobs to represent values at unobserved locations which need to be pre-

dicted, our model can be written as:

 Yobs

Yunobs

 ∼ N
( µobs

µunobs

+

 ηobs

ηunobs

 ,σ2
εI

)
(2.11)

 ηobs

ηunobs

 ∼ N
( 0obs

0unobs

 ,
 Cobs,obs Cobs,unobs

Cunobs,obs Cunobs,unobs


)
, (2.12)

where Cobs,obs = [cov(η(si),η(s j))]n
i, j=1, Cunobs,obs = [cov(η(soi),η(s j))]

n,nunobs
i=1, j=1, Cunobs,unobs =

[cov(η(soi),η(so j))]
nunobs
i, j=1 . To estimate the latent η, we use composition sampling. Using the con-

ditional multivariate normal distribution for sampling ηunobs, we have the model (Rencher, 2002):

ηunobs|ηobs ∼ N(µ̄, Σ̄), (2.13)

where

µ̄ = µunobs +Cunobs,obsC−1
obs,obs(ηobs−µobs) (2.14)

Σ̄ = Cunobs,unobs−Cunobs,obsC−1
obs,obsCobs,unobs. (2.15)
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2.2. Spatio-Temporal Model

When data vary spatially and temporally, we model the data using a spatio-temporal process.

Combined with data model introduced in section 2.1.1, the general form of a spatio-temporal

model can be generalized as:

Y(s, t) = µ(s, t) +η(s, t) +εY(s, t) (2.16)

for s ∈ D and t ∈ [1,T ].

Define the spatio-temporal random effect to be a single stationary Gaussian process, η =

[η(s1,1), · · · ,η(sN ,1),η(s1,2), · · · ,η(sN ,T )]′ ∼ N(0,Σ), where the covariance function

cov(η(si, ti),η(s j, t j)) = c(||si − s j||, ||ti − t j||) depends on both ||si − s j|| and ||ti − t j|| with the dimen-

sion of NT ×NT (Genton, 2007). The covariance is a separable structure which means that there

is no conditional dependence of observations between space and time. Thus, the covariance of

the process is the product of a spatial and a temporal covariance function:

cov(η(si, ti),η(s j, t j)) = τ2C1(||si− s j||;φ)C2(||ti− t j||;θ). (2.17)

Then the covariance can be written as the Kronecker product between spatial and temporal co-

variance matrices:

Σ = Ση(τ2,φ,θ) = τ2Rs(φ)⊗Rt(θ), (2.18)

where Rs(φ) and Rt(θ) are spatial and temporal correlation matrices with sizes N ×N and T ×T

respectively.

Dynamic spatio-temporal models are usually used to describe a process that is discrete in space

and time (Wikle, 2015). For our annual precipitation example, the data we have is discrete in

time, therefore, considering the spatial random effect η(s, t) to be a discrete time series process

is reasonable. By applying the same idea of Hierarchical Models to dynamic spatio-temporal
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models, one generally makes Markov assumptions for the process, with the requirement of the

following form (Wikle, 2015):

ηt(·) =M(ηt−1(·);θn;δt(·)), (2.19)

whereM is the function of parameters θn that can control the evolution of the process, in our

model, we use ρ instead, the most recent past observation ηt−1 and the spatial error process δt. In

general, the model can have a Gaussian or non-Gaussian distribution. We consider an AR(1) time

series process for the spatial random effect η(s, t). Defining ηt = (η(s1, t),η(s2, t), ...,η(sN , t)),we

have the dynamic linear model representation of the space-time process:

ηt = Mtηt−1 +δt, (2.20)

where the N × N transition matrix Mt =


ρ 0

. . .

0 ρ

 and δt ∼ N(0, τ2Rs(φ)) that accounts for

spatial correlation. For t = 1, · · · ,T , define Yt = (Y(s1, t),Y(s2, t), ...,Y(sn, t))′. Then the model can

be written as:

Yt ∼ N(µt +ηt,σ
2
εI) (2.21)

ηt ∼ N(Mtηt−1,Σ), (2.22)

where Mt and Eq.2.22 models the dynamics of the spatial process in time and Σ = τ2Rs(φ) mod-

els the spatial correlation.

2.2.1. Spatio-Temporal Kriging

Extending the concept of spatial Kriging in Chapter 2.1.4, we generalize the the same idea in a

spatio-temporal context in what follows.
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Cressie and Wikle (2015, p.321) illustrated that the assumption of stationarity is for conveniently

estimating parameters and computation, however, Kriging doesn’t require the assumption of sta-

tionarity. Therefore, the spatio-temporal Kriging is developed based on the covariance function in

discrete time. With the general form of spatio-temporal model given in the previous section, the

simple-Kriging predictor η(s0, t0) takes the form of a linear combination of the data (Cressie and

Wikle, 2015):

η(s0, t0) =

N∑
i=1

T∑
j=1

λi jY(si, t j) + c, (2.23)

where λ and c are optimized to minimize the prediction MSE. We also assume the mean func-

tion µ(s, t) is known in this case. Define Ytobs and µtobs as the observation data and mean value

of the spatio-temporal process at observed locations, and µtunobs and ηtunobs as the mean value

of the spatio-temporal process and the log precipitation at unobserved locations. Consider the

Gaussian assumption for the random spatio-temporal process and the error process in general

spatio-temporal. Thus, we summarize the model as:

ηtunobs

Ytobs

 ∼ N
(µtunobs

µtobs

+

C0,0 c′0

c0 Cη

 , (2.24)

where Cη = Ση + ΣY , C0,0 = var(ηtunobs), c0 = cov(Ytobs,ηtunobs). According to Rencher (2002),

the posterior distribution is:

ηtunobs|Ytobs ∼ N
(
µtunobs + c′0C−1

η (Ytobs−µtobs),C0,0− c′0C−1
η c0

)
. (2.25)

Under the Gaussian assumption, the simple Kriging predictor is the posterior mean and the sim-

ple Kriging variance is the posterior variance.

2.3. Application of Spatio-Temporal Model to Tree Ring Data

Now we have the basic knowledge about the general form of the spatio-temporal model. Con-

sider the application data of the relationship between tree ring width and log precipitation de-
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scribed in Chapter 1. We introduce the spatio-temporal model with same HM structure in this

section.

2.3.1. Data Model

Tree Ring Data Model

We work with tree ring chronology data where we assume the observed tree ring chronology

Y(., .) is a noisy measurement of latent precipitation value Z(., .) = {Z(s, t) : s ∈ Ds, t = 1, · · · ,T }

measured at locations s ∈ Ds and time t. Then, we assume the observation model:

Y(s, t) = γ0 +γ1Z(s, t) +εy(s, t), (2.26)

where εy(s, t) is a white noise process with mean zero and variance σ2
y ≥ 0, γ is unknown coef-

ficients representing the weight of precipitation impact. For simplicity, in simulation we assume

γ0 = 0 and γ1 = 1. Equivalently, we can write:

Y(s, t)|γ,Z(s, t),σ2
y

iid
∼ N(γ0 +γ1Z(s, t),σ2

y). (2.27)

Climate Data Model

Because precipitation is also a measured value, the data model for log annual precipitation is:

W(s, t) = Z(s, t) +εw(s, t), (2.28)

where Z(s, t) stands for the spatio-temporal process of true log precipitation that is Gaussian dis-

tributed and εw(s, t) is the white noise process with zero mean and variance σ2
w, which is the mea-

surement error. Equivalently, we can write:

W(s, t)|Z(s, t),σ2
w

iid
∼ N(Z(s, t),σ2

w). (2.29)
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2.3.2. Process Model

The independent Gaussian process Z(., .) is the geostatistical process. Continuing with both the

tree ring data model and climate data model introduced in the previous section, we define our

process model as

Z(s, t) = X(s, t)′β+η(s, t) s ∈ D, t ∈ [1,T ], (2.30)

where for each time step t, β = (β0,β1, ...,βp−1)′ is a p-dimensional fixed effect, X(s, t) =

(1,X1(s, t), ...,Xp−1(s, t)) is a known N × p matrix (p < N) of covariates, containing the constant

1 and p− 1 columns explanatory covariates potentially observed at location s, and η(s, t) is the

spatio-temporal random effect at location s for time step t which is assumed to be an AR(1) time

series process that

η(s, t) ∼ N(Mtη(s, t−1),Σ), (2.31)

where Σ = τ2Rs(φ) and Mt is the diagonal matrix of ρ. We use µ(s, t) ≡ X(s, t)′β to represent the

mean of the geostatistical spatio-temporal process. Equivalently, we can write:

Z(s, t)−µ(s, t)|φ,ρ,τ2 iid
∼ N(Mt(Z(s, t−1)−µ(s, t−1)),Σ). (2.32)

Consequently, the simplified spatio-temporal model in Eq.2.26 can be written as:

Y(s, t) = γ0 +γ1(µ(s, t) +η(s, t)) +εy(s, t), (2.33)

or, equivalent,

Y(s, t)|γ,µ(s, t),η(s, t),σ2
y

iid
∼ N(γ0 +γ1µ(s, t) +γ1η(s, t),σ2

y). (2.34)
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2.4. Markov Chain Monte Carlo

After modeling the geospatial process with geostatistical model, it is necessary to estimate pa-

rameters of the desired model distribution to make prediction of the random effects at unknown

locations. In a Bayesian framework, the posterior distribution of parameter θ given observations y

is

[θ|y] =
[y|θ][θ]∫

θ
[y|θ][θ]dθ

(2.35)

where the integral in the denominator of Eq.2.35 is to ensure that the Bayesian posterior distribu-

tion is integrated to 1. For some models (for example, when both likelihood and prior are normal

distributions), the integral can be solved analytically. Unfortunately, it is intractable to integrate

the Bayesian posterior distributions for most target models in a closed form. Alternatively, we

approximate the integral using another approach called Markov Chain Monte Carlo (MCMC).

In statistics, MCMC is one of the most commonly used methods to draw samples from posterior

distributions and estimate quantities of interest from a Bayesian Hierarchical model. To solve

large hierarchical models, it is required to integrate over lots of unknown parameters. In order

to approximate the integral numerically, we generate samples from the marginal posterior dis-

tribution of each parameter, instead of estimating the probability distribution and calculating the

normalizing constant. Recent developments of MCMC have made the computation easier. The

joint distribution of the samples from the marginal distributions of each parameter is equivalent

to samples from the posterior distribution, up to Monte Carlo error. However, MCMC typically

can only approximate the target distribution since there are always some residual effects of start-

ing position. To create a good MCMC chain with the desired distribution, it is also important to

determine how many steps that are needed to converge to the stationary distribution from initial

position within an acceptable error. Typically, we run MCMC for a large number of iterations

and obtain samples after a ”burn-in” period when observe the chain, by reason of that samples

at early iterations may not characterize the target posterior distribution, that are often discarded
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(Gilks et al., 1995b). A poor starting value will cause the increase of burn-in steps. After the

Markov chain converges to the equilibrium distribution, the distribution estimated from sam-

ples gets close to the actual desired distribution as the number of iterations increase. Therefore,

when we estimate parameters using MCMC, we normally draw samples from K iterations of the

marginal posterior and use mean value for easy representation, because if we choose a large K,

the mean of samples gets close to the posterior mean.

2.4.1. Metropolis Algorithm

A general framework to generate a Markov chain is the Metropolis algorithm. Define the parame-

ter of interest as θ. The Metropolis algorithm uses a proposal distribution to generate a new value

θ∗ for the Markov chain based on the value of the parameter θ at the current iteration and com-

putes a probability for accepting the proposed move. The proposal distribution can either be sym-

metric (Metropolis algorithm) or asymmetric (Metropolis-Hasting algorithm).

Metropolis Algorithm

The Metropolis algorithm was proposed by Metropolis et al. (1953). The proposal distribution

of the Metropolis algorithm can be independent or dependent of the parameter at current state of

the Markov chain. The most commonly used proposal is the random walk, which is dependent

on the current state of Markov chain. The random walk proposal distribution [θ∗|θ(k−1)], is gen-

erated based on the value of θ at the latest iteration k − 1, where θ∗ ∼ N(θ(k−1),σ2
tune), with the

mean is the value of the parameter at previous iteration θ(k−1) and the variance is σ2
tune, a tuning

parameter that is chosen to adjust the performance of the MCMC samples. The tuning parameter

has the property that a small σ2
tune leads to a relatively close value to the previous accepted value,

meaning the acceptance rate of the Metropolis sampler increases, while choosing a larger σ2
tune

results in decrease of the acceptance rate as it makes bigger transitions for the Markov chain.

Hence, one should note that it is important to balance generating accepted proposals and explor-

ing the range of the posterior. Another distinct property of the Metropolis proposal is symmetry:
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if [θ∗|θ(k−1)] = [θ(k−1)|θ∗], the conditional probability of θ∗ given θ(k−1) and the conditional proba-

bility of θ(k−1) given θ∗ are equal. The Metropolis acceptance rate is

α(θ∗, θ(k−1)) = min(1,
[y|θ∗][θ∗]

[y|θ(k−1)][θ(k−1)]
). (2.36)

Metropolis-Hastings Algorithm

Metropolis-Hastings was implemented by Hastings (1970) on more general cases based on the

Metropolis algorithm. The most important property of a Metropolis-Hasting proposal distribu-

tion is asymmetry with the most compelling reason that it can guarantee that the proposed value

of the parameter is in the support of the parameter range. Say, for a variance parameter, a sym-

metric normal proposal may generate negative proposals that must be rejected, resulting in inef-

ficient MCMC samplers with low acceptance rate. Instead, we can use an asymmetric proposal

to guarantee a positive proposal leading to higher acceptance rate. With an asymmetric proposal

[θ∗|θ(k−1)], the Metropolis-Hastings acceptance rate is

α(θ∗, θ(k−1)) = min(1,
[y|θ∗][θ∗]

[y|θ(k−1)][θ(k−1)]
[θ(k−1)|θ∗]
[θ∗|θ(k−1)]

). (2.37)

where [θ(k−1)|θ∗]
[θ∗|θ(k−1)] is a correction factor for the asymmetric proposal. Specifically, the Metropolis al-

gorithm can be treated as a special case of Metropolis-Hastings algorithm with the factor [θ(k−1)|θ∗]
[θ∗|θ(k−1)]

equal to 1. By comparing u, which is drawn from uni f orm(0,1), with α(θ∗, θ(k−1)), we use this

rate to decide whether the proposed value will be accepted as the new state or not (Yildirim,

2012).

2.4.2. Gibbs Sampling

The sampling method used in this research is called Gibbs sampling, a MCMC algorithm that

was described by Geman and Geman (1987). Gibbs sampling generates a Markov chain, where

each sample of the chain is correlated with the latest value of other samples. Gibbs sampling is
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commonly used in Bayesian inference, and it allows all full conditional distributions of parame-

ters of the target distribution to be sampled exactly.

Gibbs sampling is considered a special case of the Metropolis Hastings algorithm without the re-

quirement of any ”tuning”. Specifically, the proposal distribution generated for Gibbs sampling

always has a Metropolis-Hastings acceptance rate of 1, meaning that the proposal is always ac-

cepted. A Markov chain generated with Gibbs sampling is stationary. The Metropolis-Hastings

algorithm works for the same reasons. Therefore, Gibbs sampling is frequently used in combina-

tion with other MCMC algorithms such as Metropolis-Hastings algorithm and rejection sampling

to draw from the posterior distributions to accomplish sampling procedures (Gilks et al., 1995a).

The basic idea of Gibbs sampling is to split the multidimensional parameter θ into m blocks and

sample each block in turn, conditional on the most recent values of other blocks. The advantage

of Gibbs sampling is that it breaks a multidimensional parameter into several parameter blocks

simplify a complicated problem. Algorithm 1 describes an iteration of Gibbs sampling.

Algorithm 1 Gibbs Sampling

Initialize θ(1) ∼ q(θ)
For iteration k = 2, ...,K do

θ(k)
1 ∼ [θ1|θ

(k−1)
2 ,θ(k−1)

3 , ...,θ(k−1)
m ]

θ(k)
2 ∼ [θ2|θ

(k)
1 ,θ(k−1)

3 , ...,θ(k−1)
m ]

...

θ(k)
m ∼ [θm|θ

(k)
1 ,θ(k)

3 , ...,θ(k)
m−1]

return θ(1:K)
1 ,θ(1:K)

2 , · · · ,θ(1:K)
m

In Algorithm 1, the distribution [θ1|θ
(k−1)
2 ,θ(k−1)

3 , · · · ,θ(k−1)
m ] is known as the full conditional distri-

bution of θ1. The multidimensional parameter θ to be sampled consists of m blocks θ1, θ2, · · · , θm.

For the first iteration, we initialize the m-dimensional parameter θ(1) by assigning each block with

an initial distribution, and draw samples from these distributions. The initial values of the param-

eter blocks are often assigned randomly, but one can determine these value using other algorithms

such as EM. From the second iteration onward, new samples of each parameter are drawn from

the conditional posterior distribution of each parameter block based on the current values of all
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other parameter blocks. We draw samples for all m blocks at each iteration to produce one new

m-dimensional sample θ(k). The above process need to be repeated K iterations. Typically, the

whole MCMC algorithm must run for a large number of iterations so that the stationary distribu-

tion generated under the above algorithm will converge to the target posterior distribution.

Because the samples of all parameters obtained from the Gibbs sampler are from probability dis-

tributions, we can calculate any quantity of interest directly. For example, the estimate for the

mean of the parameter is simply the mean of the MCMC samples.

The BUGS model language is now widely used in Bayesian statistics as it has simpler code

structure and easier to write and understand than a Gibbs sampler. BUGS is short for Bayesian

inference using Gibbs sampling algorithm. It is a project that developed software to deal with

Bayesian analysis of complex statistical models using MCMC methods. The R package NIMBLE

(NIMBLE Development Team, 2019) that uses the BUGS model language as programmable ob-

jects is used in this research. Similar to BUGS, to implement Bayesian modeling and inference,

Stan project developed a programming language using the No-U-Turn sampler (NUTS) to obtain

posterior simulations given a user-defined model and data. The R package Rstan (Stan Develop-

ment Team, 2018) used in this research, allows us to conveniently fit Stan models with R.
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3. Simulation

3.1. Spatial Model

To simplify the tree ring chronology data example, we simulate the spatial model Eq.2.9 pro-

posed in Chapter 2.1. We can write the integrated model as (integrating out the latent Gaussian

process η):

Y ∼ N(0,σ2
yI +τ2Ri j(φ)). (3.1)

With the choice of prior distribution that: φ ∼ N(0,1), τ ∼ N(0,2), σy ∼ N(0,1) are truncated to

positive support and β ∼ N(0,5), we use RStan (Stan Development Team, 2018) to fit with the

simulation data.

(a) Simulated geospatial cli-
mate process

(b) Spatial Kriging using spatial
model

(c) Simulated climate data com-
pared with predicted climate
data

Figure 3.1: Compare simulated geospatial climate process with Kriging estimates in space. In (c),
dots represent predicted sample data, red line means that simulation is exactly same as prediction.

Derived from Figure 3.1, a geospatial climate process was simulated over an area of 20×20 sites,

then we randomly selected 100 sites as samples. Figure 3.1c shows the relationship between sim-

ulated climate data and predicted climate data, the red line represents that the simulation is same

as prediction, in this figure, most data points lie along with the red line, which leads to the result

shown in Figure 3.1b. We notice that the Kriging prediction in Figure 3.1b shows the same pat-
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tern as the simulated climate data (Figure 3.1a), thus, our spatial model overall performs well in

predictions.

3.2. Spatio-Temporal Model

To model tree ring width and climate data with the full spatio-temporal model, we simulate with

the spatio-temporal model Eq.2.33 proposed in Chapter 2.3, with the assumption that γ0 = 0,

γ1 = 1 and the mean value of the spatio-temporal process is 0, we can write the model as:

Y(s, t) ∼ N(η(s, t),σ2
y) (3.2)

η(s, t) ∼ N(ρη(s, t−1), τ2Rs(φ)) (3.3)

The Posterior distribution is given by:

[η,ρ,σ2
y ,φ,τ

2|Yt] ∝
T∏

t=1

[Yt|η,ρ,σ
2
y ,φ,τ

2][η][σ2
y][φ][τ2][ρ] (3.4)

With the choice of prior distribution that: φ ∼ Unif(φL,φU), τ2 ∼ InverseGamma(α2
τ,β

2
τ), σ

2
y ∼

InverseGamma(α2
σ,β

2
σ), ρ ∼ Unif(ρL,ρU), the full conditional distributions for all parameters are

calculated in the Appendix.

For the simulation study, 300 years of the tree ring chronologies over an area of 30×30 sites were

simulated then a subset of 36 sites were randomly selected as samples. In this simulation, η is

considered as initial simulated climate data over 300 years which is the spatio-temporal AR pro-

cess. I assumed that the first 200 years of climate data are unknown which can represent that the

climate data was not observed over this period. Y is simulated tree ring chronologies including

simulated climate data and white noise over 300 years. Therefore, the goal is to predict the pre-

vious unobserved climate based on the spatio-temporal model and the current data (Figure 3.2,

Figure 3.3).
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Figure 3.2: 30 years are randomly selected out of the first 200 years to show the relationship be-
tween predicted and true climate data of simulation. Dots are climate data and lines represent that
the prediction is same as truth.

Figure 3.3: Predicted climate data of the first 200 years for each of 36 sites. Black ribbons with
dark and light shading represent the predicted 50% and 95% Bayesian credible intervals respec-
tively and red lines are true simulation data.
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Figure 3.2 evaluates the fit of our spatio-temporal model. In Figure 3.2, the x-axis is the true sim-

ulation data and y-axis is the predicted data, a subset of 30 years are randomly selected to show

the relationship between true climate data and predicted climate data. The lines represent that the

prediction climate is exactly same as true climate. As shown in Figure 3.2, all dots lie along with

the line for all 30 selected years, therefore, our model fits the simulation data well.

Based on the simulation climate data of the last 100 years, we use the proposed spatio-temporal

model to predict the climate data for the first 200 years for all 36 sites (Figure 3.3). In Figure 3.3,

each facet represents the climate change over 300 years at one measurement site. Black ribbons

represent the predicted climate distribution, with darker shading representing 50% Bayesian cred-

ible intervals (BCIs) and lighter shading representing 95% Bayesian credible intervals. Red lines

are true simulated climate data. As shown in the figure, the predicted climate change captures the

pattern of true simulation data, most of predicted simulation data falls within the 95% Bayesian

credible intervals.

Based on the simulation results, the model performs well to predict unobserved climate data over

the first 200 years for all 36 measurement sites. Therefore, the next step is to use the developed

spatio-temporal model with real tree ring chronology and precipitation data to predict climate.
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4. Results

Because of the high goodness of fit of the proposed spatio-temporal model, I fit the model with

the real tree ring chronology and log precipitation. The goal is to predict log precipitation data

for years that climate information is unobserved. Figure 4.1 and Figure 4.2 show the model fitting

results.

Figure 4.1: 12 measurement sites are selected to show predicted log precipitation results. In each
facet, gray line is the log precipitation data observed from year 1895-2015 and red ribbons with
dark and light shading are 95% and 50% Bayesian credible intervals of predicted log precipita-
tion distribution for year 1135-1894.

In Figure 4.1, 12 measurement sites are selected to show predicted log precipitation where each

facet represents a site. Gray lines are observed log precipitation at each site only available for the

last 121 years (1895-2015). We predict unobserved log precipitation data for the first 760 years

(1135-1894), red ribbons indicate the predicted log precipitation distribution, with dark shading

representing 50% BCIs and lighter shading representing 95% BCIs, which means there is 95%

posterior probability that the log precipitation falls within the light shading area and 50% pos-

terior probability that the log precipitation values lie within darker area. Log precipitation data

varies a lot for the first 350 years and becomes relatively stable at some sites. We can also notice
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that for some sites the credible intervals are wider than others, likely because of the lack of tree

ring width data.

Figure 4.2: Predicted log precipitation averaged over spatial locations for years 1135-1894. Gray
line is observed average log precipitation of all sites for year 1895-2015, red ribbons show pre-
dictive distribution with dark shading representing 50% BCI and light shading representing 95%
BCI.

We plot the log precipitation averaged over space for years 1135- 1894 in Figure 4.2. The gray

line is the observed average log precipitation data of all measurement sites from year 1895 to

2015 and red ribbons are 50% and 95% credible intervals of predicted log precipitation. The av-

erage log precipitation shows the same pattern as the predicted log precipitation for each site. For

the first 350 years, precipitation has a strong variation but becomes relatively stable after year

1500. Overall, the spatial average of log precipitation over recorded years is stable around 4.

To validate the model fitting result on real tree ring data, we fit the developed spatio-temporal

model with observed log precipitation data from year 1895 to year 2015. Figure 4.3 and Figure

4.4 show the validation results.

In Figure 4.3, we also selected 12 measurement sites to compare observed log precipitation data

with predicted credible intervals. Each facet represents a site. Black lines are observed log pre-
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Figure 4.3: 12 measurement sites are selected to compare observed and predicted log precipita-
tion. In each facet, black line is the log precipitation data observed from year 1895-2015 and red
ribbons with dark and light shading are 95% and 50% Bayesian credible intervals of predicted
log precipitation distribution over the same period.

Figure 4.4: Predicted average log precipitation data over space for year 1895-2015. Gray lines
are observed log precipitation at each site, black line represents the predicted average value of log
precipitation of all sites. Red ribbons show predictive distribution with dark and light shadings
representing 50% BCI and 95% BCI.
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cipitation data at each site for the last 121 years, red ribbons indicate the predicted log precipita-

tion distribution, with dark shading representing 50% BCIs and light shading representing 95%

BCIs. As shown in the figure, the predicted log precipitation distribution capture the trend of ob-

served data with only a few data points falls outside intervals, which indicates that the proposed

spatio-model performs well on real tree ring width data.

In Figure 4.4, we plot the average of log precipitation data over space for year 1895-2015. Gray

lines represent observed log precipitation grouped by each measurement site and black line is the

observed average log precipitation data of all measurement sites. Red ribbons are 50% and 95%

Bayesian credible intervals of predicted log precipitation. The BCIs for average value are not as

wide as for each site that almost all observed log precipitation data lie within the interval, which

confirms the good performance of model fitting result.

Based on predicting and validating results, the proposed Spatio-temporal model does well at pre-

dicting climate when climate data is available, but behaves not ideal when only tree ring data is

available and does worse at some sites that lack of historical tree ring width. Thus, our tree ring

data model is a poor fit and the results are unreliable.
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5. Conclusion

Using tree ring chronology and annual log precipitation, the objective of this study was to deve-

lope a spatio-temporal model that aims to predict both local and regional features of unobserved

log precipitation. The simulation studies demonstrate that the model is capable of accurately es-

timating the unobserved climate, however, the application of the model to the real data failed to

produce reasonable predictions. Based on the model fitting results, reasons that cause the failure

as we considered might be the improperly pre-processed original data, or the precipitation may

have different weights at different locations. Thus, there is more work needed to develop an ap-

propriate model to make us better understand historical climate change in practical point of view.

In the New England area, we predicted unobserved log precipitation at observed spatial loca-

tions for year 1135-1895. It is meaningful to use the spatio-temporal Kriging method to predict

log precipitation at unobserved locations as shown in simulation. There are some challenges to

face when develop the model, such as dealing with missing data. We treated log precipitation as a

Gaussian process of spatial random effect, typically in a Gaussian process, we only have a small

number of observations, where the goal is to estimate the latent response. A weakness of Gaus-

sian process modeling is that the computation does not scale well with the sample sizes. There-

fore, to assign a reasonable initial value to the missing log precipitation is important. What’s

more, the missing tree ring width data at some spatial locations were estimated from our spatio-

temporal model, which caused larger variance of predicted log precipitation.

Our moisture sensitive tree ring width is influenced by mainly precipitation, that has spatial pat-

tern over a long time period. Spatio-temporal analysis has more benefits than pure spatial or time-

series analysis because it allows us to simultaneously borrow strength across space and time

which gives us a more comprehensive perspective. However, there are some weakness of our

model when reconstruct the paleoclimate statistically based on tree ring width. One is that with

the developed spatio-temporal model and real data, although it is easier to understand the model

structure, the computational complexity is large. What’s more, even though the model works well
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with simulation data, it is unable for us to do model validation using real data, because of the

lack of historical precipitation. Based on the result, it is only confident to predict the precipitation

within a short time period. Moreover, both precipitation and tree ring data are normally acquired

in discrete time while climate performs a continuous influence on the tree ring growth (Tipton

et al., 2016). The tree-ring width represents the integrated impact of the climate condition to the

tree over a period, whereas the model we developed considers precipitation and tree ring data on

a yearly time step.

For simplicity, we only model the relationship between the tree ring width and log precipitation.

Tree growth is normally affected by the combined action of several factors besides precipitation,

such as temperature and species. Therefore, although there is an unknown parameter represent-

ing the influence of precipitation on tree ring growth in our spatio-temporal model, it is not very

efficient to estimate climate data accurately with our current model. In order to develop a spatio-

temporal model better describing how climate influence tree growth, it might be necessary to

consider a multivariate model, involving precipitation as well as temperature and tree species in

the future work. In addition, there are spatial correlations of climate between different locations

within a certain area, in the future work, applying dimension reduction theory to choose several

meaningful locations that best represent regional climate feature, instead of model with original

large dataset, is useful to improve the computational complexity.
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A. Appendix

Full conditional for ρ:

[
ρ|·

]
∝

T∏
t=1

[Yt|σ
2,φ,τ2,ρ][ρ]

∝

T∏
t=1

N(Yt|0, τ2Rs(ρ) +σ2I)Uniform(ρ|ρL,ρU)

(A.1)

which can be sampled using Metropolis-Hastings.

Full conditional for φ:

[
φ|·

]
∝

T∏
t=1

[Yt|σ
2,φ,τ2][φ]

∝

T∏
t=1

N(Yt|0, τ2Rs(φ) +σ2I)Uniform(φ|φL,φU)

(A.2)

which can be sampled using Metropolis-Hastings.

Full conditional for σ2:

[
σ2|·

]
∝

T∏
t=1

[Yt|σ
2,φ,τ2][σ2]

∝

T∏
t=1

N(Yt|0, τ2Rs(φ) +σ2I) Inverse-gamma(σ2|α2
σ,β

2
σ)

(A.3)

which can be sampled using Metropolis-Hastings.

Full conditional for τ2:

[
τ2, |·

]
∝

T∏
t=1

[Yt|σ
2,φ,τ2][τ2]

∝

T∏
t=1

N(Yt|0, τ2R(φ) +σ2I) Inverse-gamma(τ2|α2
τ,β

2
τ)

(A.4)

which can be sampled using Metropolis-Hastings.
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