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Abstract

The USDA Forest Service aims to use satellite imagery for monitoring and predicting changes

in forest conditions over time within the country. We specifically focus on a 230, 400 hectares

region in north-central Wisconsin between 2003 - 2012. The auxiliary data collected from

the satellite imagery of this region are relatively dense in space and time and can be used

to efficiently predict how the forest condition changed over that decade. However, these

records have a significant proportion of missing values due to weather conditions and system

failures. To fill in these missing values, we build spatiotemporal models based on fixed effect

periodic patterns, spatial random effects with conditional autoregressive prior and a first-

order autoregressive temporal effect. Multiple validation and comparison diagnostics are

run to identify the best performing model for each of the auxiliary variables as well as for

basal area. Findings from our analysis are represented with a series of maps followed by a

discussion of their agreement with known spatial patterns across the landscape.
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Chapter 1

Spatial and Spatio-Temporal Modeling

1.1 Introduction

Now-a-days the use of satellite in collecting data over a period of time is increasing rapidly

because it is easy, quick and inexpensive. However, usually this kind of data contains lots of

missing values due to bad weather or malfunction of sensor. But a full map is required before

using it in a model. Hence, in this thesis a hierarchical model is developed for reconstructing

complete spatiotemporal map.

1.2 Spatial Modeling

Spatial data are data that have geographic reference. It represents not only the location but

also the size, shape and attributes of an object on planet like forest, lake, road, city etc. Due

to the development of science and technology the use of spatial data in diverse areas such as

geological science, climatology, environmental science, biological science, public health etc

increases significantly from last few decades.

There are three types of spatial data. (i) Point-referenced data: Spatial data are called

point-referenced data, also known as geostatistical data, if the response y(s) at location

s ∈ D ⊆ Rr is a random vector and s varies continuously over D. In the spatial context,

usually r > 1, for instance, r = 2 means latitude and longitude, or r = 3 says latitude,

longitude, and altitude above sea level. On the other hand, time series follows this approach

with r = 1. (ii) Areal data: In this type of dataset the fixed subset, D, is divided into a

finite collection of regular or irregular shaped areal units, say {W1,W2, . . . ,WS}, that are

separated with well-defined boundaries. The outcome ys is a summary over the areal unit
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Ws. Since this kind of data is used here, we are explaining it with an example. Figure 1.1

shows the proportion of a surveyed population whose household income falls below 200% of

poverty level in several regions of Hennepin County, Minnesota (Banerjee et al., 2014). Here

the areal units are separated by regional boundaries. (iii) Point pattern data: Here y(s)

represents the occurrence or not of an event and locations s are random that means given

y(s) we want to know which location it corresponds to.

Figure 1.1: Map of percentage of surveyed population with household income below 200%
of the federal poverty limit in several regions of Hennepin County, Minnesota (Figure 1.2 in
Banerjee et al. (2014))

1.2.1 Modeling for Areal Data

This thesis work specifically focus on areal data. Let the given region, D, is partitioned into

S areal units say {W1,W2, . . . ,WS} and the summary response at unit Ws is ys. Now we

2



can write the regression model as:

ys = XT (s)β + e(s) (1.1)

where X(s) is the predictor variable at unit Ws, β is the regression coefficient and e(s) is the

residual at s-th areal unit. (1.1) is known as the multiple linear regression model. Now if we

get a high value of adjusted R2 we can use this model to do prediction. But if the adjusted

R2 is low, we first have to figure out the reason and based on the reason the model needs to

be modified. Some possibilities are:

• The response and covariates are not strongly correlated.

• This model requires additional important covariates.

• Measurements from adjacent areal units may have some additional information that

cannot be captured by the regressors.

Now if the third is the case, we need to modify the model by separating the residual into

spatial, φ(s), and nonspatial, ε(s), random effects. Therefore, (1.1) becomes:

ys = XT (s)β + φ(s) + ε(s)

This model is known as areal-level spatial model.

1.2.2 Construction of Neighborhood Matrix

In spatial data it is expected that measurements for areal units which are close to each other

will tend to be more similar than those which are far way from each other. Therefore, we

need to construct a neighborhood matrix, w, to define the relationship among areal units.

Some common approaches to consider areal units as neighborhood are:

3



• Sharing boundary: Two areal units, say Ws and Ws′ are said to be neighborhood if

they share common edges (left), vertex (middle) or both (right).

Ws′

Ws′ Ws Ws′

Ws′

Ws′ Ws′

Ws

Ws′ Ws′

Ws′ Ws′ Ws′

Ws′ Ws Ws′

Ws′ Ws′ Ws′

• Centroid distances: In this case either the number of neighbors, k, or the distance, d,

beyond which there is no direct spatial influence between spatial units is fixed. For

given k, all k closest units, based on centroid distance, of Ws are called neighbors of

it. On the other hand, if distance, d, is an important criterion of spatial influence, a

cell, Ws′ , is called neighbor of Ws if distance between them is less than d.

Usually the entries of neighborhood matrix, w, are binary: w(s, s′) = 1 if the cells Ws and

Ws′ are neighbors and 0 otherwise.

1.2.3 A Measure of Areal Dependence

Before incorporating spatial random effects in the model, it is necessary to check whether

there exists any spatial association among neighborhood areal units or not. Moran’s I is a

popular statistic that measure the strength of spatial association among areal units (Banerjee

et al., 2014).

Moran’s I is defined as

I =
n
∑

s

∑
s′ w(s, s′)(ys − ȳ)(ys′ − ȳ)

(
∑

s 6=s′)
∑

s(ys − ȳ)
,

where I ∈ (−1, 1) but not strictly. Significantly different from zero values of I represents
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strong spatial association and if I is close to zero, then there is no spatial association in the

data.

1.2.4 Conditional Auto-Regressive Prior

A conditional autoregressive (CAR) prior, introduced by Besag (1974), is a common choice

for spatial random effects due to the convenient computation in Gibbs sampling. The deriva-

tion of the Gaussian prior is discussed below:

We begin with conditionals distributions.

φs|{φs′ : s 6= s′} ∼ N
(∑

s′

bss′φs′ , τ
2
s

)
, i = 1, 2, . . . , S (1.2)

Now using Brook’s lemma (Brook, 1964) we get the joint distribution as follows

π(φ1, φ2, . . . , φS) ∝ exp
{
− 1

2
φTD−1(I −B)φ

}
(1.3)

where B = {bss′ : s, s′ ∈ D} , D is a diagonal matrix with Dss = τ 2s and φ = (φ1, φ2, . . . , φS)T .

Hence, φ follows multivariate normal distribution with mean 0 and covariance matrix Σφ =

(I−B)−1D. Now Σ−1φ will be symmetric if
bss′
τ2s

=
bs′s
τ2
s′

for all s, s′. That meansB is not required

to be symmetric. Reset bss′ = w(s, s′)/ws+ and τ 2s = τ 2/ws+ where neighborhood matrix, w,

is symmetric. Hence, (1.2) becomes π(φs|{φs′ , s 6= s′}) ∼ N
(∑

s′ w(s, s′)φs′/ws+, τ
2/ws+

)
.

And the joint distribution becomes:

π(φ1, φ2, . . . , φS) ∝ exp
{
− 1

2τ 2

∑
s 6=s′

w(s, s′)(φs − φs′)2
}

This density, being invariant to translation, is improper.
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1.3 Temporal Modeling

When a sequence of data points are measured over different time periods, usually evenly

spaced times, it is called time series. In autoregressive model, the variable of interest is

modeled on the past values of the same variable and the order is the total number of old

time points that are used to do the prediction. Let ψt be the value of outcome variable at

time t. Hence, a p-th order autoregressive model can be written as

ψt = β0 + β1ψt−1 + β2ψt−2 + · · ·+ βpψt−p + δt

where δt is white noise. When p = 1, it is called first-order autoregressive model and the

form becomes

ψt = β0 + β1ψt−1 + δt

1.4 Spatio-Temporal Modeling for Areal Data

Spatio-temporal data are data sets that are observed both spatially and temporally. Hence,

with an extension in the spatial model discussed in Chapter 1.2.1 a spatio-temporal model

can be formulated. Let {W1,W2, . . . ,WS} be S areal units and yst be the summary response

at unit Ws at time t. The spatio-temporal model can be written as

yst = µst + est (1.4)

where µst is the mean structure and est denotes the residual at unit s at time t. Now est can

be rewritten as est = wst + εst where wst is the spatio-temporal random effect and εst is the

white noise. Finally, the spatio-temporal model becomes

yst = µst + wst + εst

6



Chapter 2

Description of Remote Sensing Imagery

An active area of forestry research involves the use of auxiliary data that can be collected

quickly and inexpensively, such as from satellite imagery. These data are then used to model

the relationship between these auxiliary data and the field plot data in an effort to improve

the precision of population estimates, particularly for smaller domains within the larger

population. Since satellite-based sensors, such as Landsat 7’s ETM+ instrument, detect

reflectance from the Earth’s surface, these data are expected to be closely correlated with land

cover. Kauth and Thomas (1976) developed a linear transformation of the original Landsat

Multispectral Scanner bands, named the tasseled cap (TC) transformation. Comparable

transformations have since been developed for the Landsat Thematic Mapper, Enhanced

Thematic Mapper Plus, and Operational Land Imager sensors. The TC features are related

to growing vegetation, soil moisture, and overall surface brightness, and are correlated with

the phases of vegetation development over time. With the advent of the data policy of 2008,

granting unrestricted access to the entire USGS archive of Landsat, dense time series of

TC features can now be used to model forest dynamics. Numerous studies have shown TC

observations derived from Landsat imagery to be useful for mapping land cover (Yuan et al.,

2005), as well as several forest characteristics such as growing stock volume (Zheng et al.,

2014) and biomass (Karlson et al., 2015).

We are given the Landsat 7’s ETM+ imagery, collected between the ten year period 2003 -

2012, from a 230, 400 hectares square-shaped region in north central Wisconsin. However,

this stack of monthly TC imagery has many missing values both in space and time, due to

failure of scan line correctors or presence of cloud cover. Hence, our goal is to fill in the

missing parts of these images using a spatiotemporal regression. Sellers et al. (1994, 1996)
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were among the first to use a mathematical model to describe time series of satellite imagery

in an effort to correct for missing data, in their case primarily due to snow or residual cloud

contamination. Their approach starts with adjustment of maximum value composite images

by means of harmonic regression via Fourier series. Utility of harmonic regression for feature

extraction from dense time series of Landsat data was also demonstrated in Wilson et al.

(2018). In current work, we explore whether augmenting spatial and/or temporal random

effects to these fixed-effect harmonic functions results in significant improvement in model

performance and prediction. Multiple candidate specifications are explored and compared

using diagnostic tools to select the best performing model and TC maps are reconstructed

for subsequent use.

Figure 2.1: (left) In the map of Wisconsin, the study area (the smaller square) is shown in the
southeastern part of the WELD tile H20V05 (the larger square). (right) Spatial variability
of the land cover within the study area.

Our region of interest lies in the southeastern part of Web-enabled Landsat Data (WELD) tile

H20V05 (Roy et al., 2010), located at the intersection of Langlade, Shawano, and Menominee

counties in north-central Wisconsin, USA. Figure 2.1 shows its position within the tile and
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the state in the left panel. The right panel shows a variety of land covers and uses, such as

agriculture fields (orange pixels), deciduous (purple) and evergreen (green) forests, developed

land (gray), as well as scattered water bodies (white) and wetlands (pink). This area falls

within the Laurentian Mixed Forest Province of the United States Forest Service National

Hierarchical Framework of Ecological Units (Cleland et al., 2007; McNab et al., 2007) with

the the city of Wausau in northwest. The province experiences a continental climate, with

some maritime influence near the Great Lakes. This leads to moderately long winters and

warm summers, when most of the precipitation occurs. This landscape was shaped by past

glaciation with a mix of agricultural fields, boreal and broadleaf deciduous forests. The

eastern half of the study area is predominantly forested. On June 7, 2007, a tornado, with

estimated winds of 225 to 255 kilometers per hour, touched down and followed a 65 kilometers

long and 3/4 kilometer-wide northeasterly path through parts of Menominee, Langlade, and

Oconto counties.

Figure 2.2: Proportion of missing TC observations (left) temporally, at each month and (b)
spatially, at each cell, during 2003 - 2012

The auxiliary data used in the study were dense Landsat time series images from the WELD

project. WELD imagery are composites of high fidelity data, determined on a pixel-by-

9



pixel basis, from all Landsat 7 ETM+ scenes collected over a compositing period. These

composite images have been processed for the contiguous United States and Alaska over the

decade of 2003 - 2012. The composite scenes have been ortho-rectified, transformed to top-of

atmosphere reflectance and mosaicked into 5000 × 5000 pixel tiles at the native 30-meter

pixel resolution using the Albers Equal Area projection with origin at 23◦N and 96◦W. Our

study area, a part of tile H20V05, consists of 1600 × 1600 pixels. The WELD monthly

composites for the entire decade of 2003 - 2012 from this area were used for the study. For

each monthly composite, the reflectance values from ETM+ were transformed to the first

three TC components: 1) brightness (TC1), 2) greenness (TC2), and 3) wetness (TC3)

(Huang et al., 2002). The monthly TC features were then compiled into individual stacks.

To control the dimension, we aggregated adjacent 16× 16 pixels into a single gridcell of area

23.04 hectares by taking average on the pixels with available data. At this scale, our study

area consists of 10, 000 gridcells, an area 230, 400 hectares in size, Easting between 532, 330

and 579, 750 meters, and Northing between 2, 452, 240 and 2, 499, 760 meters. However, each

TC component has a high frequency of missing values (∼ 23%) with 100% missing data for

six months (April in 2004, June in 2003, November in 2011, and December in 2006, 2011 and

2012), due either to completely missing records in the WELD archive or to pixels that were

masked out because of the presence of clouds, snow, or artifacts of sensor failure. Figure 2.2

(a) shows the temporal patterns of missingness and Figure 2.2 (b) shows the spatial pattern

of missingness with a strong linear boundary, with larger values in the east and smaller values

in the west, due to the flight track of the Landsat satellites. Areas to the west of the image

are in the zone of overlap between neighboring Landsat scenes, while areas to the east have

no overlap. Therefore, there are fewer pixel observations in the eastern portion of the image,

meaning that it is more likely that data will be missing due to clouds, snow, or sensor error.

Hence, in order to make the imagery complete, we perform a model-based reconstruction of

missing TC observations in Chapter 3.
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Chapter 3

Model for Reconstruction of Remote Sensing Measurement

Since the TC features, as outlined above, have large gaps across space and time, our aim is

to make these imagery compete. Hence, we develop a hierarchical model for reconstructing

the complete spatiotemporal map for each of these features.

3.1 Hierarchical model development

We begin by defining notation. The spatial domain of study, denoted by W , is partitioned

into disjoint areal units W1,W2, ...,WS such that the feature imagery are available at the

resolution of these areal units. Let T be the temporal domain and ys(τ) represents the

value of a feature variable at any gridcell Ws at time τ ∈ T . Dataset for each of these

features consists of composite values over disjoint time intervals within T , so we partition

T =
T⋃
t=1

Dt. For the current application, data were reported monthly, so D1, D2, ..., DT

represent consecutive months spanning T . Define yst =
∫

τ∈Dt

ys(τ)dτ as the summary feature

over Ws during Dt. We assign a model for the Xst process below:

yst = µst + εst, s = 1, 2, ..., S, t = 1, 2, ..., T (3.1)

where µst denotes the mean structure and εst ∼ N(0, σ2) represents the pure error uncorre-

lated in space and time. We propose several options for specifying µst below with gradual

increase in the model complexity through increase in the number of parameters:

• Model I : We start with the customary fixed-effect linear regression model with a

vector of covariates (including intercept) Xst and regression coefficients β. This model

does not include any random effect. In practice, Xst can include any relevant co-
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variate, spatial and/or temporal. Wilson et al. (2018) employs a harmonic regression

via Fourier series that can be used to approximate a periodic function, such as the

seasonality of a vegetation index. For example, the first harmonic captures the ex-

pected annual variation in vegetation response. The second harmonic accommodates

some cropping patterns seen in the area, with spring and winter crops grown on the

same fields in some cases. A closer approximation is given by using more harmon-

ics in the series at the cost of potential overfitting. In general, if first q harmon-

ics are used as covariates, Xst becomes a function of t only and can be written as

Xt = [1, cos h1t, sin h1t, . . . , cos hqt, sinhqt]
T where hi = 2πi/12 and the period of the

i-th harmonic is 12/i. It follows that

µst = XT
t β

• Model II: To capture the temporal pattern in residuals, we augment a time-dependent

random effect in Model I as

µst = XT
t β + ψt.

Since ψt is free of s, it can only measure temporal variation in the spatially aggregated

data. A first-order autoregressive (AR(1)) prior is assigned on ψt as:

ψt = ηψt−1 + δt,

where δt
iid∼ N (0, κ2) and ψ(0) ∼ N (0, κ2/(1 − η2)) with |η| < 1. The joint prior

distribution of Ψ = (ψ(1), ψ(2), ..., ψ(T ))T can be written asNT (0,Σψ) where Σψ[i, j] =

κ2η|i−j|/(1− η2).

12



• Model III: Incorporating a spatiotemporal random effect inside Model I, we get

µst = XT
t β + φst (3.2)

We explore two different choices for specifying the distribution of φst, also suggested

in Gelfand et al. (2004).

• Model III-A: Consider the additive form of temporal and spatial effects which esti-

mate spatially averaged temporal effect and temporally averaged spatial effect respec-

tively for φst in (3.2). Its form resembles a two-way ANOVA model without interaction

term:

φst = ψt + φs

where φs is the spatial random effect at gridcell Ws. A conditional autoregressive

(CAR) prior (Besag and Kooperberg, 1995) is assigned to φ. This requires us to define

a neighborhood matrix w such that, for 1 ≤ s, s′ ≤ S, w(s, s′) = 1 if the pair of

gridcells Ws and Ws′ are neighbors and 0 otherwise. The prior joint distribution for

{φs} is specified by the series of univariate conditional distributions:

φs|{φs′ : s′ 6= s} ∼ N

(∑
s′ w(s, s′)φs′

ws+
,
τ 2φ
ws+

)
,

where τφ is the scale parameter of the conditional distribution and ws+ =
∑

s′ w(s, s′)

denotes the number of neighbors of gridcell Ws.

• Model III-B: Model φst in (3.2) as a temporally independent sequence of spatial

processes. Define φs∗ = (φs1, φs2, ..., φsT )T for 1 ≤ s ≤ S. Given neighborhood matrix

w as in Model III-A, the prior conditional distribution for φs∗ is defined by the series

of multivariate conditional distributions:

13



φs∗|{φs′∗ : s′ 6= s} ∼ NT (Mφ
s ,Σ

φ
s ),

where Mφ
s is a vector of length T with its t-th entry =

∑
s′ w(s, s′)φs′t/ws+ and Σφ

s is

a T × T diagonal matrix with its t-th diagonal = τ 2φ,t/ws+.

• Model IV: Model III-B lacks any parameter to capture potential temporal association,

so we augment it with a temporal random effect as,

µx
st = XT

t β + φst + ψt,

with φst and ψt defined as in Model III-B and Model II respectively.

We assign the usual Gaussian prior N2q+1(α0, ν
2
βI2q+1) for β and Inverse-Gamma prior

IG(a0, b0) for all variance parameters, i.e., σ2, τ 2φ , τ
2
φ,t, κ

2. A truncated Gaussian prior

N (0, ν2η)I(−1,1) is assigned to η. The hyperparameters that appear inside these prior distri-

butions are treated as constants with their values chosen in order to diffuse the prior while

maintaining propriety.

3.2 Posterior estimation and assessment

We employ an MCMC scheme to draw posterior samples for model parameters and use them

to simulate from the posterior predictive distributions of missing TC features. Since missing

observations lead to unbalanced structure of the available measurements in space and time,

derivation of posterior distributions of φst and ψt, for the models where one or both of them

appear, requires attention and is described below.

To start with update for φst, we introduce some notations. For 1 ≤ s ≤ S, let As∗ =

{t : yst is available} and ns+ = |As∗|. Define two vectors, each of length ns+, as ỹs =

{yst : t ∈ As∗}, ψ̃s = {ψ(t) : t ∈ As∗} and an ns+ × (2q + 1) matrix X̃s with rows from

14



{XT
t : t ∈ As∗}. The likelihood of the data involving φs∗ follows from ỹφs ∼ Nns+(Ĩφs φs∗, D

φ
s )

where ỹφs = (ỹs − X̃sβ) and (ỹs − X̃sβ − ψ̃s) for Model III-B and Model IV respectively,

Ĩφs is a ns+ × T submatrix of IT obtained by retaining only the rows with indices in As∗

and Dφ
s = σ2Ins+ . Therefore, the posterior distribution of φs∗ becomes NT (V φ

s µ
φ
s , V

φ
s ) where

µφs = (Ĩφs (s))T (Dφ
s )−1ỹφs + (Σφ

s )
−1
Mφ

s and (V φ
s )−1 = (Ĩφs )T (Dφ

s )−1Ĩφs + (Σφ
s )−1.

Turning our attention to updating Ψ, we define E = {t : ∃s such that yst is available} and

TE = |E|. For t ∈ E , define A∗t = {s : yst is available} and n+t = |A∗t|. Now, the likelihood

of the data involving Ψ follows from ỹψ ∼ NTE (ĨψΨ, Dψ) where ỹψ is a vector of length TE

with its t-th entry being
∑
s∈A∗t

(yst −Xt
Tβ)/n+t for Model II,

∑
s∈A∗t

(yst −Xt
Tβ − φs)/n+t for

Model III-A and
∑
s∈A∗t

(yst −Xt
Tβ − φst)/n+t for Model IV, Ĩψ is a TE × T submatrix of IT

constructed by retaining the rows with indices in E and Dψ is a TE×TE diagonal matrix with

t-th diagonal entry σ2/n+t. Hence, the posterior distribution of Ψ becomes NT (Vψµψ, Vψ)

where µψ = ĨTψD
−1
ψ ỹψ and V −1ψ = ĨTψD

−1
ψ Ĩψ + Σ−1ψ .

All other parameters except η, have posterior distributions in standard forms since we use

conjugate priors. The posterior distribution of η is non-standard and is drawn via slice

sampling (Neal, 2003). All posterior distributions, used in MCMC, are summarized below. It

is noted that in this application there is no cell with 100% missing time points. However, data

with all missing values at any grid cell requires modification in the posterior distributions

accordingly.

Model I:

β|− ∼ N2q+1(Σβ µβ,Σβ);σ2|− ∼ IG(a1, b1)

where

µβ =
S∑
s=1

X̃T
s ỹs/σ

2 + α0/ν
2
β and Σ−1β =

S∑
s=1

X̃T
s X̃s/σ

2 + I2q+1/ν
2
β
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a1 = a0 +
S∑
s=1

ns+/2 and b1 = b0 +
S∑
s=1

(ỹs − X̃sβ)T (ỹs − X̃sβ)/2

Model II:

β|− ∼ N2q+1(Σβ µβ,Σβ), σ2|− ∼ IG(a1, b1),

ψ0|− ∼ N (ηψ1, κ
2),Ψ|− ∼ NT (Vψ µψ, Vψ), κ2|− ∼ IG(a2, b2),

u|− ∼ Unif(0,
√

1− η2 ), η|− ∝ N (v2
ηµη, v

2
η)I{−

√
1−u2,

√
1−u2 }

where

µβ =
S∑
s=1

X̃T
s (ỹs − ψ̃s)/σ2 + α0/ν

2
β and Σ−1β =

S∑
s=1

X̃T
s X̃s/σ

2 + I2q+1/ν
2
β

a1 = a0 +
S∑
s=1

ns+/2 and b1 = b0 +
S∑
s=1

(ỹs − X̃sβ − ψ̃s)T (ỹs − Ũsβ − ψ̃s)/2

µψ = ĨTψD
−1
ψ ỹψ and V −1ψ = ĨTψD

−1
ψ Ĩψ + Σ−1ψ

a2 = a0 + (T + 1)/2 and b2 = b0 +
T∑
t=1

(ψt − ηψt−1)2/2 + (1− η2)ψ2
0/2

µη =
T∑
t=1

ψtψt−1/κ
2 and v−2η =

T∑
t=2

ψ2
t−1/κ

2 + 1/ν2η

Model III-A:

β|− ∼ N2q+1(Σβ µβ,Σβ), σ2|− ∼ IG(a1, b1),

ψ0|− ∼ N (ηψ1, κ
2),Ψ|− ∼ NT (Vψ µψ, Vψ), κ2|− ∼ IG(a2, b2),

u|− ∼ Unif(0,
√

1− η2 ), η|− ∝ N (v2
ηµη, v

2
η)I{−

√
1−u2,

√
1−u2 }, τ

2
φ |− ∼ IG(a3, b3)

φ(s)|− =


N (ṽ2

φµ̃φ, ṽ
2
φ), if ns+ > 0

N (v2
φµφ, v

2
φ), if ns+ = 0
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where

µβ =
S∑
s=1

X̃T
s (ỹs − ψ̃s − φs)/σ2 + α0/ν

2
β and Σ−1β =

S∑
s=1

X̃T
s X̃s/σ

2 + I2q+1/ν
2
β

a1 = a0 +
S∑
s=1

ns+/2 and b1 = b0 +
S∑
s=1

(ỹs − X̃sβ − ψ̃s − φs)T (ỹs − X̃sβ − ψ̃s − φs)/2

µψ = ĨTψD
−1
ψ ỹψ and V −1ψ = ĨTψD

−1
ψ Ĩψ + Σ−1ψ

a2 = a0 + (T + 1)/2 and b2 = b0 +
T∑
t=1

(ψt − ηψt−1)2/2 + (1− η2)ψ2
0/2

µη =
T∑
t=1

ψtψt−1/κ
2 and v−2η =

T∑
t=2

ψ2
t−1/κ

2 + 1/ν2η

a3 = a0 + (S − 1)/2 and b3 = b0 +
S∑
s=1

∑
s′ 6=s

w(s, s′)(φ(s)− φ(s′))2/4

µ̃φ =
∑
t∈As∗

(ỹs − X̃sβ − ψ̃s)/σ2 +
∑
s′

w(s, s′)φ(s′)/τ 2φ and ṽ−2φ = ns+/σ
2 + ws+/τ

2
φ

µφ =
∑
s′

w(s, s′)φ(s′)/ws+ and v−2φ = τ 2φ/ws+

Model III-B: We introduce an additional notation φ̃s = {φst : t ∈ As∗}.

β|− ∼ N2q+1(Σβ µβ,Σβ), σ2|− ∼ IG(a1, b1), τ
2
φ |− ∼ IG(a2, b2), φs∗|− ∼ NT (V φ

s µ
φ
s , V

φ
s )

where

µβ =
S∑
s=1

X̃T
s (ỹs − φ̃s)/σ2 + α0/ν

2
β and Σ−1β =

S∑
s=1

X̃T
s X̃s/σ

2 + I2q+1/ν
2
β

a1 = a0 +
S∑
s=1

ns+/2 and b1 = b0 +
S∑
s=1

(ỹs − X̃sβ − φ̃s)T (ỹs − X̃sβ − φ̃s)/2

a2 = a0 + (S − 1)T/2 and b2 = b0 +
T∑
t=1

S∑
s=1

∑
s6=s′

w(s, s′)(φst − φs′t)2/4

µφs = (Ĩφs (s))T (Dφ
s )−1ỹφs + (Σφ

s )
−1
Mφ

s and (V φ
s )−1 = (Ĩφs )T (Dφ

s )−1Ĩφs + (Σφ
s )−1
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Model IV:

β|− ∼ N2q+1(Σβ µβ,Σβ), σ2|− ∼ IG(a1, b1),

τ 2φ |− ∼ IG(a2, b2), φs∗|− ∼ NT (V φ
s µ

φ
s , V

φ
s ),

ψ0|− ∼ N (ηψ1, κ
2),Ψ|− ∼ NT (Vψ µψ, Vψ), κ2|− ∼ IG(a3, b3),

u|− ∼ Unif(0,
√

1− η2 ), η|− ∝ N (v2
ηµη, v

2
η)I{−

√
1−u2,

√
1−u2 }

where

µβ =
S∑
s=1

X̃T
s (ỹs − φ̃s − ψ̃s)/σ2 + α0/ν

2
β and Σ−1β =

S∑
s=1

X̃T
s X̃s/σ

2 + I2q+1/ν
2
β

a1 = a0 +
S∑
s=1

ns+/2 and b1 = b0 +
S∑
s=1

(ỹs − X̃sβ − φ̃s − ψ̃s)T (ỹs − X̃sβ − φ̃s − ψ̃s)/2

a2 = a0 + (S − 1)T/2 and b2 = b0 +
T∑
t=1

S∑
s=1

∑
s 6=s′

w(s, s′)(φt(s)− φt(s′))2/4

µφs = (Ĩφs (s))T (Dφ
s )−1ỹφs + (Σφ

s )
−1
Mφ

s and (V φ
s )−1 = (Ĩφs )T (Dφ

s )−1Ĩφs + (Σφ
s )−1

µψ = ĨTψD
−1
ψ ỹψ and V −1ψ = ĨTψD

−1
ψ Ĩψ + Σ−1ψ

a3 = a0 + (T + 1)/2 and b3 = b0 +
T∑
t=1

(ψt − ηψt−1)2/2 + (1− η2)ψ2
0/2

µη =
T∑
t=1

ψtψt−1/κ
2 and v−2η =

T∑
t=2

ψ2
t−1/κ

2 + 1/ν2η

Predictive performance of five candidate models for each TC is examined using three different

criteria. First, we calculate log likelihood and Bayesian predictive information criterion

(BPIC, Ando, 2007; Li et al., 2017). Model with the lowest BPIC is considered to be the best.

Additionally, cross-validation is performed using holdout method by repeatedly splitting the

data into training sets and test sets, and evaluating the predictive accuracy of the model

on the latter. We use three measures for assessment: (i) absolute bias: computed as the
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difference between the hidden test observations and their corresponding posterior medians,

(ii) uncertainty: measured as the width of 90% highest posterior density (HPD) interval and

(iii) empirical coverage: calculated as the proportion of test observations that are within the

corresponding 90% HPD interval. The model that attains the desired coverage level with

minimum bias and uncertainty is deemed to be the best. Finally, to determine whether a

candidate model adequately captures the spatial dependence, we assess its residuals using

Moran’s I statistic (Banerjee et al., 2014). A near zero or negative value of this statistic

suggests lack of empirical evidence of spatial similarity between the residuals.
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Chapter 4

Data Analysis

We begin by implementing candidate models from Chapter 3.1 on the Landsat imagery and

assessing their performance using the tools described in Chapter 3.2. Then reconstruct the

imagery from the best candidate model.

In our Gaussian linear model of (3.1), y represents TC features in logarithmic scale. In

the original dataset, TC1 has strictly positively values whereas TC2 and TC3 can be both

positive and negative. Prior to applying the logarithmic transformation, we first translate

and rescale the measurements of TC2 and TC3 to the same range as that of TC1. We choose

first q = 2 harmonics as fixed-effect covariates following the findings of Wilson et al. (2018)

that 3rd or higher order harmonics fit extraneous noise rather than meaningful signal in TC

components. Now, we estimate the five candidate models discussed in Chapter 3.1, separately

for each TC feature, using MCMC algorithms from Appendix A.1. In both of Model III-B and

IV, we set the sequence of hyperparameters τφ(t) = τφ, free of t. This is reasonable as each

TC component contains significant percentage of missing data at many of the 120 months

(including 6 months with no data) resulting in insufficient information to separately identify

these hyperparameters for those months. For constructing the binary adjacency matrix in

the CAR prior, we define any two cells as neighbors only if they share boundaries, resulting in

exactly 4 neighbors for any interior cell. The chains are run for 60, 000 iterations with a burn-

in length of 10, 000 and a thinning interval of 50. Now, we compare the model performance

using the measures described in Chapter 3.2 starting with likelihood and BPIC. Then, using

holdout cross-validation for each TC, we randomly remove 25, 000 observations into a test

set, fit the candidate models on the remaining data points and post-MCMC, simulate these

test observations from their respective posterior predictive distributions. We replicate this
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holdout method 36 times with mutually exclusive test sets to approximately cover the entire

set of observations and compute the three performance measures from Chapter 3.2, averaged

across replications. Table 4.1 presents a detailed comparative analysis along with model-

specific computation times, based on a single-processor implementation.

Table 4.1: Comparison of five candidate models for each TC feature

Measure Feature Model I Model II Model III-A Model III-B Model IV
Likelihood-based Model Comparison

LL†

(×105)

TC1 6.906 8.007 10.193 11.331 29.207
TC2 13.700 14.561 15.869 18.865 31.928
TC3 16.219 18.244 18.452 18.998 33.911

BPIC
(×105)

TC1 -13.811 -16.012 -20.198 -18.477 -40.640
TC2 -27.401 -29.120 -31.560 -32.644 -46.921
TC3 -32.438 -36.485 -36.755 -35.663 -51.385

Cross Validation

Absolute
Bias

TC1 966.545 853.638 669.487 647.509 406.122
TC2 391.557 340.310 324.370 275.120 173.625
TC3 503.845 396.970 386.249 382.587 192.803

Uncertainty
TC1 3756.835 3367.608 2705.282 2717.386 1844.386
TC2 1974.386 1801.597 1574.553 1333.331 972.392
TC3 2144.116 1725.701 1694.420 1702.369 970.789

Empirical
Coverage

TC1 0.894 0.892 0.893 0.906 0.910
TC2 0.915 0.908 0.908 0.919 0.918
TC3 0.894 0.901 0.901 0.896 0.913

Computational Cost
Minutes per − < 1 ∼ 2 ∼ 5 ∼ 10 ∼ 11

1000 iterations
† LL refers to posterior median of log-likelihood

As expected, the likelihood increases with increase in model complexity from left to right of

Table 4.1. The jump is most evident in case of Model IV which also registers the steepest

decline in BPIC values relative to its competitors. Models III-A and III-B perform compa-

rably in most of the cases. In terms of out-of-sample cross-validation measures, although all

candidates attain the desired coverages, they exhibit significant difference in bias and un-

certainty values. Model IV again achieves the shortest bias and narrowest credible intervals
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among the five candidates with improvement ranging between 33-50% relative to the 2nd

best performing model. Models III-A and III-B perform comparably with respect to these

measures as well. As expected, the computational cost rises sharply from left to right of the

table, owing to the presence of spatial random effects in three rightmost models.

Model I Model II Model III−A Model III−B Model IV
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Moran's I

Figure 4.1: Histograms of 92 months’ Moran I statistic, when more than 50% observations
are available, calculated for five candidate models for each TC component

We perform one more assessment for presence of any leftover spatial association in the

model residuals. As the given data contains a significant proportion of missing observations

at many of the 120 months, we compute Moran I statistic, to measure the strength of spatial

association among residuals, only for months when data are available from more than 50%

of the cells. We use the R package ape (Paradis and Schliep, 2018) to compute the statistic

based posterior median residuals, separately for each of 92 such months. Figure 4.1 represents

the histogram of these 92 Moran’s I values for all candidate models.

The histograms show that there exists strong spatial association among residuals in models
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Aug Jul Jun May

Jan Feb Mar Apr

 1297.73

 1898.27

 2776.74

 4061.72

 5941.36

 8690.83

12712.68

Figure 4.2: Monthly Map of 10-year average TC1 (Brightness) reconstructed using Model
IV

without any spatial random effect (Model I and Model II) since in most of the months the

statistic lies between 0.5 to 0.8 for all TC components. After introducing a single spatial

random effect for all months at each cell (Model III-A), the strength of the association

remains pretty similar to what has been observed for the first two models. Introduction

of time-specific spatial random effects in Model III-B significantly reduces the value of the

statistic mostly to a range of 0.1 to 0.4 but the p-value remains 0 in one tailed (greater)

test at all months for all TCs. Model IV, that adds a temporal random effect to Model

III-B, once again performs optimally with the Moran I values falling in the negative range

and p-values close to or equal to 1 at all of these time points indicating no strong spatial
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Figure 4.3: Monthly Map of 10-year average TC2 (Greenness) reconstructed using Model IV

association left among residuals.

The findings from Table 4.1 and Figure 4.1 suggest that despite the highest computational

cost, performance of Model IV is far superior compared to the remaining models, for all three

TC components. Hence, we choose Model IV to impute each of missing TC observations

using median of the draws from its posterior predictive distribution. Figures 4.2 - 4.4 depict

10-year averaged monthly maps for reconstructed TC components in the original scale of

these measurements.

Both the spatial and monthly variation seen in Figures 4.2 - 4.4 can be explained by differ-

ences in land cover across the study area, as well as seasonality in vegetation and weather.

TC brightness is related to overall surface albedo. Snow-covered fields have larger albedo
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Figure 4.4: Monthly Map of 10-year average TC3 (Wetness) reconstructed using Model IV

values than forests. This pattern is most obvious in Figure 4.2 during the winter months,

with the western portion of the image being brighter than the eastern portion. The con-

trast in brightness between forests and agricultural fields is much smaller during the summer

months, in the absence of snow. TC greenness is related the amount of photosynthetically ac-

tive vegetation on the land surface. During the winter months, agricultural fields have been

previously harvested and are dormant. Similarly, deciduous trees have shed their leaves,

while evergreen trees retain their needles. During the spring, fields are planted and crops

begin to grow and deciduous trees leaf-out. Conversely in autumn, crops are harvested and

deciduous trees begin to drop their leaves. These patterns are visible in Figure 4.3, with

an overall increase in greenness during the spring and summer months. Also, the larger
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greenness values of evergreen trees stand out in the southeast potion of the image during

the winter months. Finally, TC wetness is related to soil moisture, as well as the presence of

water and snow. As with TC brightness, wetness values are larger during the winter months.

However, Figure 4.4 shows less contrast between forests and agricultural fields during the

growing season of approximately April through October.

26



Chapter 5

Discussion

We have developed a hierarchical approach to fill in missing tasseled cap imagery. Certain

aspects of this analysis are worth mentioning. The parametric structure developed in Chapter

3 can be generalized to any spatial or temporal scale, even if different from ours. For example,

if one wants to summarize the TC features seasonally, that can easily be accommodated in

the present setting. Additionally, that we established the feasibility of proposed approach

to fill in tasseled cap features, its natural extension would be to scale up the analysis to the

entire H20V05 WELD tile. This will necessitate focus on the computational aspects of the

model. More specifically, the model for filling up the missing values in TC imagery involves

spatiotemporal random effects and use of low-rank approximations should be explored to

control the computational cost. In our analysis, we ignore any georeferencing errors in the

satellite imagery.

The national forest inventory (NFI) of the United States, conducted under the Forest In-

ventory and Analysis (FIA) program of the USDA Forest Service, is designed to provide

consistent and unbiased strategic-level information about the status and trends of the Na-

tion’s forest resources (Bechtold and Patterson, 2005). An important forest characteristics

of interest is live tree basal area. We want to build a novel and flexible hierarchical model

leveraging the relationship between the TC imagery, for which the current thesis reconstructs

the complete set of measurements over each and every population unit at regular time in-

tervals, and the basal area data, for which we have relatively few observed values only from

the FIA sample units at certain years, in order to make annual predictions of the latter for

every population unit. The majority of studies use remote sensing imagery either at a single

point in time or as a composite of images over the study duration. However, we want to use
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the entire time series of monthly images over the decade of the study period. The temporal

patterns of these features, being correlated with land cover, are shown to be informative in

distinguishing deciduous from evergreen forests, as well as different tree species from one

another (Wilson et al., 2012). Hence, in the regression equation for forest characteristic,

we are planning to use the TC imagery as functional predictors (Morris, 2015; Ramsay and

Dalzell, 1991).
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