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Abstract

The goal of this study is to explore and characterize the effects of using a dynamic
graphing utility (DGU) on conceptual understanding and attitudes toward mathematics, measured
by the responses of college algebra students to an attitude survey and concepts assessment. Two
sections of college algebra taught by the primary researcher are included in the study, with one
group using the dynamic graphing utility Desmos (www.desmos.com), and the other using the
TI-84 (or equivalent) graphing calculator as a control. The Precalculus Concept Assessment
(Carlson, Oehrtman, & Engelke, 2010) was used to measure aspects of students’ conceptual
understanding of course material, while the Student Attitude Survey developed at
UMass-Dartmouth (Brookstein, Hegedus, Dalton, Moniz, & Tapper, 2011) was adopted to explore
student attitudes. Both instruments were administered at the beginning and end of the 16-week
term. Although no statistically significant overall difference was detected in the change in mean
PCA scores between the two groups, analysis of results suggests that there were differences in
the type of reasoning abilities whose development was supported by the use of the two devices.
However, the largest PCA score improvements occurred among female students in the treatment
group. The most consistent results from the SAS concerned student attitudes toward group work,
indicating a negative trend in this attitude component. There were some indications that students
using the DGU Desmos were more engaged with using technology as part of the learning
process. Implications and limitations of the present study are discussed in detail, as well as

directions and suggestions for future research.



©2016 by Ryan Thomas
All Rights Reserved



Acknowledgments

This document is the culmination of years of work, which would not have been possible
without the support of many people. First of all, | would like to thank my advisor, Dr. Shannon
Dingman, for his guidance in reaching this point. Without the contributions of his time and
expertise | would not have been able to complete this undertaking successfully, and I'm grateful for
his counsel. | would also like to thank the members of my committee, Dr. Bernard Madison, Dr.
Edmund Harriss, and Dr. Laura Kent. Each provided advice along the way, both before and
during the research process, and contributed to the development of this study.

My friends and colleagues within the math department and MRTC have also played an
important role in my education and development as a teacher in the past several years, and | am
grateful for the experience gained in working with all of them. In particular, working closely with
good friends like Beth Dickerson, Matthew Gentry, and Newton Foster on a day-to-day basis has
been vitally important to my mental health. | have also been very fortunate to come to work every
day with my wife, Dr. Emily Thomas, but we’ll come back to her in a bit.

I am very thankful to all my family for their love and support throughout my education, and
especially to my parents, Randy and Dana Thomas. They’ve been behind me every step of the
way and | would not have been able to do any of this without their support. Most of all, | am
grateful for the opportunities provided by a loving God. Not only did | come out of this thing with a
(hard-earned) doctorate, but | have also made good friends and found my officemate-turned-wife,

Emily. There is no way | could have done this without you, Em.



Table of Contents

o (1T o o 1
The Problem and Its Background. ......... ..o e 1
Purpose of the STUAY........ooi 4
Statement of the Problem. ... ... 6
ReSEarch QUESTIONS. . .. . e e 7
Theoretical CoNSIAErations. ... .. ....uiui e 7
Significance of the StUAY ... 11
ST 00 0= 12
Review of the Existing Literature. ... ... ..o e 13
L= 1T ] 0o 13
Graphing CalCUIators. ... e 16
Desmos & Dynamic Geometry Software....... ..o 28
Conceptual Understanding of Mathematics. ..., 34
Student Attitudes Toward Mathematics. ... 42
ST 0] 0= 44
Research Methodology .. ... ..o e e 45
Data Collection INStrUMENTS. ... e 45
The Pilot STUAY ... ... e 51
Primary Data ColleCtion...........oi e 54



VL.

=1 |1 £ 57

PCA RESUIS. .. . e 57
SAS RESUIS. .. ..t 64
Student Engagement and Perception. ..o, 73
100010 0T= 1 o PR 74
Summary and CONCIUSIONS. ...ttt e 75
SUMMaArY Of RESUIS ... e 75
Implications Of FINAINGS. ......o.oiii e e e 78
Limitations of the Study ... 80
Future ReSearCh. . ... ..o 82
100010 0T= 1 o PR 84
REFEIENCES. .. .o 89

N o] o= o T [ 98



List of Tables & Figures

Chapter 1:
Figure 1. Example of using sliders in Desmos. This figure illustrates the dynamic nature of
graphing in Desmos; dragging the sliders for the values of a and b changes the appearance of the

line in real-time.

Chapter 2:

Figure 2. Perpendicular lines on a graphing calculator. Note that these lines do not appear to meet
at a right angle due to the scale of the window.

Figure 3. The graph of an exponential function. Note that the asymptotic behavior on the left-hand
side of the graph is unclear as a result of the low screen resolution.

Figure 4. The graph of a polynomial function with four real roots. Finding these roots using built-in
calculator functions can be tedious and presents a barrier to students’ learning.

Figure 5. The Desmos user interface. Commands can be entered via the pop-up virtual keyboard
shown here, or by typing the appropriate symbols.

Figure 6. Side-by-side comparison of the same graph as displayed by the TI-84 graphing

calculator and Desmos. Note the pixelated appearance of the image on the left.

Chapter 3:

Table 1. The PCA Taxonomy consists of the reasoning abilities and understandings identified as
being fundamental to success in calculus (Carlson, Oehrtman, & Engelke, 2010).

Figure 7. An item from the PCA. The correct response (a) requires students to recognize the need
to invert a familiar function prior to composing two functions. (Carlson, Oehrtman, & Engelke,

2010).



Table 2. Some sample items from the SAS. Here the response choices range from “strongly

disagree” (SD) to “strongly agree” (SA). (Brookstein et al., 2011)

Chapter 4:

Table 3. Summary of PCA Results. Results of independent two-sample t-tests conducted on the
PCA pre- and post-test results for both treatment (DGU) and control (GC) groups. Mean (M) and
standard deviation (SD) are reported in each case, along with the t-test results.

* denotes significance at the 0=0.05 level.

Table 4. Comparison of ACR Scores for Treatment and Control Groups. There were five PCA
items whose ACR score showed a difference (T-C) of 4 or more points, indicating that one group
improved or maintained better than the other on these items, but not necessarily that the actual
number of correct responses differed.

Table 5. Significant Results of Paired t-tests by Group. There were a total of 9 SAS items with a
statistically significant difference in scores from the pre- to the post-test in one or both groups.
Mean (M) and standard deviation (SD), as well as change in mean (AM) are reported.

* denotes statistical significance at the a=0.05 level.

Table 6. SAS ltems by Attitude Component. The 28 items on the SAS correlate to four

components of student attitude.



Chapter 1 - Introduction

The Problem and Its Background

As technology advances, evolves, and becomes more widely available, educators must
continue to find ways to adapt to and plan for the types of tools that will be accessible to students.
In the past few decades the development and subsequent propagation of the graphing calculator
has brought widespread change to mathematics curricula and instruction. Moving forward, ease of
access to computers, tablets, smartphones, and other devices, as well as improvements in
educational software, promise to further revolutionize both what and how we teach. Although it is
impossible to know what innovations the future holds, educators should make every effort to
maximize the potential benefits of educational technology for students.

The first commercially available graphing calculators appeared on the market in 1985, in
the midst of a revolution in mathematics education. Plummeting test scores and fears of falling
behind the rest of the world in science, technology, engineering, and mathematics (STEM) fields
produced watershed documents in the form of An Agenda for Action (NCTM, 1980) and A Nation
at Risk (National Commission on Excellence in Education, 1983). Calls for increased attention and
accountability in education were accompanied by specific recommendations for educators to take
advantage of newly available technologies, especially classroom computers and handheld
calculators. When the first graphing calculators emerged, and in particular as more affordable
versions hit the market, many practitioners saw the upside of the devices. The first research
dissertations dealing with the use of graphing calculators as tools for teaching and learning
mathematics began to appear in 1990 (Penglase & Arnold, 1996), although a number of
practitioner pieces and editorials preached the potential benefits of the new technology prior to

published research results. Many authors writing in the late 1980s and early 1990s (e.g., Burrill,
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1992) believed that graphing calculators had the “potential to revolutionize mathematics education,
both in the way it is taught and the content and emphases of curricula” (Penglase & Arnold, 1996,
p. 58). Some of this promise has come to fruition; standards documents have codified the place of
graphing calculators and computers in the mathematics classroom, curriculum materials have
been developed that allow teachers to easily incorporate technology, and innovative teachers have
found creative uses for available devices. On the other hand, basic skills (pencil-and-paper
calculations, standard algorithms, etc) and solving problems that are devoid of context continue to
be a significant curricular component (Dingman & Madison, 2010), doing nothing to help students
see the connections between classroom mathematics and real-world applications that are relevant
to their daily lives.

While educational standards moved to embrace calculator and computer use in the
mathematics classroom, those opposed to reform efforts argued that students would become
overly dependent on such technologies and use them as a means to avoid learning. Indeed,
technology use became something of a sticking point for both sides during the “math wars” of the
1990s and early 2000s (Jackson, 1997; Schoenfeld, 2004). Ultimately, Schwartz (1996) concludes
that calculators and related technology have two primary pedagogical virtues: they increase the
rate at which students gain experience with mathematics, and concentrate attention on essential
points of the material rather than on arithmetic and tedious calculation. However, Esty (2000a)
offers an opposing interpretation of these same characteristics, noting that students may misuse
technology to increase the rate at which they can “do traditional problems without gathering
experience with the subject” (p. 2), and complete traditional problems without paying particular
attention to any mathematically interesting point. The key bit of phrasing here is that traditional
problems can lend themselves to such abuses of technology, and this is especially true when too

powerful a tool is provided or allowed. For example, if entering “solve(x+2=5, x)” is all that is



required of a student, then while that student may be learning a bit about computer science, little
mathematics is occurring.

In light of this, the question then becomes, as Esty (1998) phrases it, “how can we use an
exercise to teach students something worth knowing, instead of merely exercising the student’s
calculator?” (p. 1). If the example in the previous paragraph was an exercise in and of itself, then
its utility as a site for learning about mathematics would be questionable at best. However, if it
were merely the final step in solving an open-ended problem that drew attention to key properties
of linear functions, our opinion of its usefulness might be different. Graphing calculators, dynamic
geometry software, and other educational technology can empower students to explore concepts
on their own (Quesada & Cooper, 2010) and allow the learning process to focus less on
computation and more on concepts (Esty, 1998), but only if a corresponding shift in pedagogy and
curriculum seeks to use technology as a learning tool in an appropriate way. Calculators and
computers were originally intended as tools to help expert mathematicians and scientists perform
more calculations in less time; as they become more user-friendly, they require less knowledge of
their own inner workings to operate, and thus become easier to misuse to avoid learning.
Educators and policymakers should be aware of this possibility, and make conscious decisions
that help to mitigate or eliminate the possibility of such misuse.

Although graphing calculators are widely accepted and used, particularly in grades 9-12
and post-secondary settings, they are not without faults. Mitchelmore and Cavanagh (2000)
conducted interviews with high school students that were designed to investigate difficulties and
misconceptions that the students had while using a graphing calculator in the context of linear and
quadratic graphs. While some of the issues encountered were mathematical in nature, others
were related directly to the design and technical limitations of the calculator itself. Anderson, Miller,

and Wang (2009) identified and classified many of the common errors made by students using



handheld calculators. Once again, some of these errors were caused by misconceptions or
insufficient awareness of mathematical concepts (e.g., order of operations), but others, such as
the somewhat specialized syntax required to perform some functions in the calculator, are a
product of the inherent nature of the device. Although graphing calculators are capable of
performing many useful tasks, the process required to do so can present a stumbling block for
students. For example, finding the zeros of a function graphically using a calculator from the TI-84
family can be quite involved, and a student who possesses good visual intuition about where the
zeros occur may yet be unable to determine their exact value due to misunderstandings about
operating the device. As a result, classroom teachers may feel inclined to address technology
issues directly, shifting focus from the mathematical content to the calculator. Depending on the
course in question, a limited amount of direct attention to using technology may be unavoidable
and even beneficial. However, this must be carefully balanced with maintaining the central focus
on mathematical content, and should be an aspect of teaching practice that is subject to regular

self-evaluation.

Purpose of the Study

Ease of access to the internet, whether through personal computers, smartphones, or
tablets, affords the opportunity to significantly change the way that classroom technology is used.
After all, the graphing calculator may be good at what it does, but how often are they used by
working professionals? Rather than introduce students to a specialized tool such as the graphing
calculator, using mobile technology that is both readily available and more familiar in design may
provide additional benefits. In the present study, the free online graphing utility Desmos
(www.desmos.com/calculator) was used in instruction and assessments, with the hope that

students would find it more intuitive and accessible than the graphing calculator.



Desmos addresses many of the shortcomings of handheld graphing calculators. It is
entirely free, uses HTMLS5 to run in a web browser with no additional downloads or installation
required, and can be used as an app on many smartphones and tablets (“Desmos | About Us”,
2015). In addition to its availability, many features of Desmos are very intuitive; for example,
zooming in or out on a graph can be accomplished by mouse scrolling on a personal computer, or
by using the familiar pinch-zoom gesture on touchscreen devices. These intuitive design choices
make using Desmos more relatable and familiar for students, in turn reducing the attention
needed to teach students the technology and allowing for increased focus on developing skills,
strategies, and mathematical concepts. Desmos also provides a fertile ground for student
exploration, as the list of inputs and the graph itself are shown side-by-side and updates happen in
real-time. Students can employ sliders to stand for values in equations to experiment with the
effects of changing different components of an equation. Although the available literature on
Desmos is limited, Beigie (2014) and Ebert (2014) found it to be a very useful tool for getting
students to actively participate in mathematics. In addition, my personal experience using Desmos
in the classroom has verified that many students engage with it and prefer it over the graphing
calculator.

Writing in 1990, Demana and Waits observed that technology was poised to significantly
impact mathematics education, writing that “the importance of, and need for, highly proficient skill
in arithmetic and algebraic paper-and-pencil manipulation in the workplace has already been
rendered nearly obsolete by technology” (p. 27). Twenty-five years on, this is all the more
accurate. Movements within mathematics education, including the various standards movements
in K-12 and the development and implementation of Quantitative Reasoning/Literacy courses in
many colleges and universities, are evidence of the changing face of school mathematics. The

goal of many of these efforts is to couch mathematics in real-world contexts in order to help
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students see the connections between what happens in the classroom and their lives (Dingman &
Madison, 2010). However, in this time of transition, many students with little interest in continuing
in mathematics still find themselves in traditional courses, such as college algebra.

At this critical juncture, it is vital that research into the effects of this technology on student
learning be conducted to inform educational policy, curriculum and textbook design, and the
practice of teachers in the field in order to utilize new tools effectively and improve the overall
quality of mathematics instruction. In the present study, having taught college algebra for several
years with a variety of curricular materials and pedagogical approaches, | sought a means to help

students engage with the course content in a way that would be lasting and meaningful for them.

Statement of the Problem

Service-level mathematics courses like college algebra often need to serve two purposes
and two groups of students: on one hand, there are those who need preparation (and often
remediation) before moving on to courses in higher mathematics or other disciplines, and on the
other, there are students who are in a terminal course to satisfy a general education degree
requirement. At some point in the future, these terminal students may instead be required to take
some type of quantitative literacy course, and will likely be better served by it, but at present many
find themselves in college algebra. The question then is how to best serve both groups; in
particular, engendering confidence and understanding of specific concepts and topics, while also
building problem-solving skills, number sense, and a positive attitude toward mathematics.
Integrating technology into the learning process has been one solution to this problem, but in
many cases the technology used has failed to evolve beyond the graphing calculators introduced

twenty years ago. In the present study, my goal was to use a modern graphing utility in college



algebra in order to investigate any differences in student outcomes, as compared to a similar

group of students using the graphing calculator in an (essentially) identical class setting.

Research Questions
The primary interest of this study is the effect of a modern, dynamic graphing utility
(Desmos) on student outcomes, as compared to a control group using graphing calculators in an
essentially identical learning environment. | will be examining the following research questions:
1. Does using Desmos (rather than a graphing calculator) lead to improvements in college
algebra students’ understanding of the concepts in the course?
2. Does the use of Desmos (rather than a graphing calculator) positively impact college

algebra students’ attitudes toward mathematics?

Theoretical Considerations and Definitions

One of the flaws in much of the existing research on graphing utilities is that most of the
studies compare the results of classes taught using the graphing calculator to those taught using
“traditional” methods on assessments over the same topics, but often without providing much
detail into the context of the instructional methods used or documentation of how the calculator
affects student understanding (Cavanagh & Mitchelmore, 2003; Penglase & Arnold, 1996).
Introducing technology into the classroom allows for a paradigm shift; new avenues of exploration,
problem solving methods, and modeling opportunities become available. However, it is also
possible to adopt a new tool without making any real changes to curriculum, pedagogy, or
assessment. In light of this, the classroom context in which calculators or other graphing utilities
are used could significantly impact their effect on outcomes, in terms of student learning,

achievement, and attitudes toward mathematics.



This study takes place in several sections of college algebra at a public, four-year
university in the southern United States. The curriculum for this course was determined by state
standards, and included traditional topics such as a survey of polynomial, exponential, and
logarithmic functions, systems of equations, and an introduction to regression. A hybrid online
model was used for the course; in particular, the class met regularly (in person) while students
completed the bulk of their coursework online using the service MyLabsPlus. Class meetings used
a partially “flipped” design, which required students to read pre-class lessons (PCLs) and view
instructional videos, the majority of which were authored within the department and specifically
tailored to the course. These materials were intended to give students familiarity with definitions,
terminology, and example problems so that class time could be used more efficiently. In-class
activities included small group and individual work on sample problems and worksheets,
discussions in both small group and whole-class settings, and a limited amount of direct
instruction. Throughout, effort was given to emphasizing the connections among course topics and
the relationship between the skills required to complete exercises and the “bigger picture”. A
multi-representational view of the function concept was employed for the duration of the course,
and students were encouraged at various times to make use of symbolic, graphical, and numerical
forms of functions in problem solving. In addition, the idea of function as a means of describing the
covariation of two quantities (Thompson & Carlson, in press; Oehrtman, Carlson, & Thompson,
2008) was often discussed in class, though admittedly there were limited opportunities to assess
students’ covariational reasoning.

In the interest of clarity, some terms that will be used throughout are briefly defined below.
For additional details, please refer to chapter 2.

e The major curriculum reform efforts in the wake of the “Back to Basics” movement of the

1970s have all made calls for an increased focus on going beyond basic skills and rote
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memorization in mathematics education. This is reflected in the learning principle from the
NCTM Principles & Standards for School Mathematics (2000), which calls for a
combination of factual knowledge, procedural facility, and conceptual understanding, as
well as in the CCSSM Standards for Mathematical Practice (2010). The concept of
learning with understanding summarizes this idea nicely; Hiebert et al. (1997) define
understanding by saying that “we understand something if we see how it is related or
connected to other things we know” (p. 4).

Hiebert and Lefevre (1986) argue that distinguishing between conceptual and
procedural knowledge can provide a useful framework for thinking about mathematics
learning. In short, procedural knowledge comprises the rules, algorithms, and procedures
for completing mathematical tasks, as well as the formal language and symbolism of
mathematics. On the other hand, conceptual knowledge, as defined by Hiebert and
Lefevre, is that which is “rich in relationships” (p. 7) and can be thought of as a “connected
web of knowledge” (p. 7). As a practical means of thinking about mathematics learning,
procedural knowledge constitutes a large part of “how” to go about solving problems, while
conceptual knowledge has more to do with “why” something works the way it does.
Students in the treatment group made use of their personal devices to access Desmos
during class and while completing assignments. These included laptops, tablets, and

smartphones, and will collectively be referred to as students’ “personal” and/or “mobile”
devices or technology. A “BYOD” (“bring your own device”) policy was in place in the
classroom, and students also had access to a BYOD learning center staffed by instructors,

graduate students, and learning assistants employed by the department to provide

mathematical support.
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e Classroom interactions involved limited direct instruction, group and individual work, open
discussions intended to facilitate student inquiry, and activities meant to motivate and
underscore concepts and connections. In all phases, a constructivist stance on learning
drove pedagogical decisions and, as much as possible, | encouraged students to make
conjectures and check for themselves, rather than “telling”.

e The tool used in this experiment is the online graphing utility Desmos, but it may be the
case that other similar tools exist or are developed in the future. As a result, | will use the
term dynamic graphing utility (DGU) to refer to any graphing tool that shares the key
characteristics of Desmos; namely, intuitive design features, instant feedback, a modern
display, etc. Here dynamic refers to the real-time updates and single-screen design that
provide students with immediate feedback when they change something. For example,
graphing the slope-intercept equation of a line with sliders for the “slope” and “y-intercept”
parameters (as shown in figure 1 below) allows students the opportunity to conjecture,

test, and generalize the effects of changing the values of a and b.

b & F
~N ar
O y=ax+b " |

a=1
b=1
-10 -8 - 4 e 0 4 10
[ -

Figure 1. Example of using sliders in Desmos. This figure illustrates the dynamic nature of
graphing in Desmos; dragging the sliders for the values of a and b changes the appearance of the
line in real-time.
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Significance of the Study

The present study is unique in the literature of teaching mathematics with technology for
several reasons. First of all, it is (to the best of our knowledge) the first study to incorporate the
graphing utility Desmos and examine its effects on student outcomes. Existing research using
Desmos is limited to practitioner pieces (Beigie, 2014; Ebert, 2014; Locke, 2015), and although
there is an existing body of research on graphing calculators and dynamic geometry software
(e.g., Geometer’s Sketchpad), the accessibility, versatility, and intuitive design of Desmos make it
significantly different than other graphing utilities and, therefore, worth investigating in detail. Prior
experience using Desmos in the classroom has indicated that it offers rich opportunities for
engaging students and removing obstacles to their understanding of, and success with,
mathematics. Students in previous classes (who were unable to use Desmos on formal
assessments) were often observed using Desmos during in-class activities, and on more than one
occasion groups of students independently adopted Desmos to perform regression on data sets
and create graphs as part of an out-of-class group project.

Although not unique to this study, the design of the present research program is also
uncommon among the literature, in that both treatment and control groups were taught by the
same instructor, thereby controlling for any teacher effect. In addition, both groups were assessed
using the same instruments and, as much as possible, were given the same learning
opportunities. These design decisions were intended to address the shortcomings found by
Penglase and Arnold (1996) in the existing literature; in particular, that many studies fail to
distinguish “the role of the tool from that of the learning process” (p. 58) and that “claims regarding
the relative effectiveness of the tool... fail decisively to account for important influences upon

attitudes and conceptual understanding” (p. 82). Although it is difficult to separate the tool itself
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from the setting in which it is used, my hope is that by providing (as much as possible) the same
learning context for both groups, the effects of the tool will become easier to identify. The sample
size is admittedly small, but the results (which will be discussed in detail in chapter 4) may serve to

inform decisions about the direction of related future research and classroom practice.

Summary

This study fills a gap in the existing literature concerning graphing technology in
mathematics education by using a DGU (Desmos) in a treatment group and comparing student
outcomes directly to a control group using TI-84-class graphing calculators. Both treatment and
control groups were taught by the author. As much as possible, both sections were handled
identically; they were given the same assignments, in-class activities, and learning opportunities,
although class discussions and the like sometimes followed slightly different paths due to their
student-centered nature. Both classes completed the same homework, quizzes, tests, and
projects throughout the semester, with the exception that the treatment group used Desmos while
the control used the graphing calculator. Students were given pre- and post-assessments to
measure their conceptual understanding and attitudes toward mathematics. By removing teacher
and pedagogy effects, the design of this experiment should isolate any effects of the tool used to a

reasonable degree; however, as ever, there are many factors that could play into the results.
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Chapter 2 - Review of the Existing Literature

In this chapter, an overview of the existing literature as it relates to educational technology,
graphing calculators, Desmos and dynamic geometry software, conceptual understanding of
mathematics, and students’ attitudes toward mathematics will be given, along with discussion to

illustrate its relation to the current study.

Technology

Technology use is increasingly prevalent in nearly all aspects of daily life, a trend that is
reflected in the evolution of school mathematics since handheld (and later graphing) calculators
and classroom computers became widely available. Evidence of the tendency toward integrating
technology in mathematics education can be seen in the literature in practitioner pieces,
curriculum materials, and research articles, as well as in policy statements from groups such as
the NCTM and the United States Department of Education. In its 1980 call to arms, An Agenda
for Action, the NCTM recommended that “mathematics programs take full advantage of the power
of calculators and computers at all grade levels” (p. 1). This sentiment is echoed throughout the
high-profile mathematics education publications of the 1980s, with similar recommendations
appearing in A Nation at Risk (National Commission on Excellence in Education, 1983) and the
NCTM Curriculum & Evaluation Standards for School Mathematics (1989). Subsequent
standards documents, including the NCTM Principles and Standards for School Mathematics
(2000) and the Common Core State Standards for Mathematics (2010) codified this call to
embrace modern technology in mathematics classrooms. As a result of these developments,
graphing calculators, classroom computers, and online systems for completing homework and
other assignments have become commonplace in secondary and college mathematics courses.

Further advances in technology are likely to make its use in the classroom even more routine, so it
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is important that the mathematics education community makes an effort to fully understand best
practices and potential outcomes of technology integration.

Innovations in technology have heavily impacted industry as well, as noted by Demana
and Waits (1990), who observed that paper-and-pencil algebraic and arithmetic manipulations
were nearly obsolete in the workplace, having been replaced in many instances by emerging
technologies. Although education is about more than serving the needs of industry, it is interesting
to note that an observable shift in the role that mathematics plays in the professional lives of
non-mathematicians could be seen twenty-five years ago, yet many mathematics classrooms still
devote a great deal of effort to paper-and-pencil mechanics. Demana and Waits go on to make
the case that mathematics educators should strive to help students learn how and when to make
use of technology, and that students “must be trained as flexible problem solvers, capable of
understanding and employing technological advances as they occur” (p. 31). This argument,
particularly the need for developing flexibility in solving problems, has been one of the driving
forces behind the movement to institute quantitative literacy courses as an alternative to college
algebra (Steen, 2001; Dingman & Madison, 2010; Diefenderfer, 2012). However, even in a more
traditional course, an approach to problem solving that involves more thinking and less
remembering is beneficial. If students can learn to use technology as a tool to support their
thinking, they may also come to rely on themselves for verifying mathematical validity. This is not
only a useful predisposition for those continuing on to subsequent mathematics courses, but also
contributes to students’ overall ability to deal with numbers in the real world.

Aziz (2010) defines educational technology as the “considered implementation of
appropriate tools, techniques, or processes that facilitate the application of sense, memory, and
cognition to enhance teaching processes and improve learning outcomes” (p. 1). It seems that the

focus is too often solely on the latter - improving learning outcomes - without the time and
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reflection that constitute considered implementation. The official position statement of the NCTM
on the role of technology in the teaching and learning of mathematics (2011) takes a similar
stance, calling for strategic use of technology and arguing that simply providing access to
technology is not sufficient for change to occur. In practice, the curriculum and teacher have a
critical role in the use of technology (Roschelle, et al., 2010; Suh, 2010), and can heavily influence
potential student outcomes. Assessing the efficacy of technology use, both in terms of the tool
itself and the strategies employed in its use, should be a key part of practice. Ineffective tools or
methods should be improved upon or discarded, as indiscriminate use of scarce resources is
unlikely to benefit anyone. However, Aziz notes that such careless implementation is found all too
often in education. In some ways, haphazard technology use mirrors the curriculum reform
process; Fey and Graeber (2003) have referred to this as a cycle of “crisis-reform-reaction”, in
which dramatic improvement is expected almost immediately. Without careful implementation,
involving reflection and self-assessment on the part of teachers, educational technology of any
sort is unlikely to produce clear, meaningful student gains.

Technology has already revolutionized many aspects of life, and education has been no
exception. Computers and handheld calculators have significantly impacted school mathematics in
the course of the last thirty years, but as Keengwe, Onchwari, and Wachira (2008) observe, the
potential for classroom technology foreseen in the 1980s has not been fulfilled. Although there
have been changes in the way classroom technology is implemented and creativity in its use is
trending upward, the dramatic improvements that were speculated upon in the 1980s have not
materialized. However, as emerging technologies such as tablets and online applications become
more readily available, educators should explore new possibilities. In many circumstances, existing
tools and methods are deeply entrenched, and the glacial pace at which things sometimes change

in education stands in stark contrast to the rapid development of technology. Educators at alll
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levels should be willing to explore new tools and strategies in the classroom, rather than becoming

complacent in the status quo.

Graphing Calculators

Alongside calls for embracing graphing technology, there has been a desire among
educators and researchers to determine the effect of integrating these tools into the mathematics
classroom. This research has produced mixed results at times; some authors have found a
positive correlation between graphing calculator use and student achievement, while others
detected no significant differences in the two groups. At first glance, it appears that the existing
literature fails to provide a conclusive answer to the question of whether or not graphing
calculators are beneficial to students’ understanding of mathematics. However, upon closer
inspection, the issue is more complicated than this. Doerr and Zangor (2000), in reviewing the
existing literature on graphing calculator use, found that “many, if not most, graphing calculator
studies are quasi-experimental in design and seek to answer the question of whether or not
graphing calculators are effective in achieving certain instructional objectives, which are often left
unchanged from traditional paper-and-pencil approaches” (p. 144). Furthermore, Penglase and
Arnold (1996) noted that much of the existing body of literature fails to distinguish between the use
of technology and the context in which it is used, which lends more support to the argument that
although the existing literature is indicative of results, it also raises many questions and should be
interpreted and applied carefully.

With 25+ years of research on graphing calculators available, we have the benefit of
meta-analyses that combine the results of many individual studies, providing a more
comprehensive picture of the research. Ellington’s (2003) meta-analysis of research on the effects

of technology in pre-college mathematics integrated 54 studies and found encouraging results. In
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particular, Ellington found that graphing calculator use is correlated with improvements in students’
conceptual and problem-solving skills, that students’ operational skills benefit from calculator use,
and that graphing calculators may positively influence student attitudes toward mathematics.
Ellington’s summary of her findings states that the greatest student gains were found when
calculators took on a pedagogical role in the classroom, beyond being available for checking work
or drill, which illustrates the need to modify instructional approaches to maximize the potential
benefits of including a graphing utility in the classroom. It should also be noted here that the vast
majority of studies included in this meta-analysis did not use curricular materials designed for
instruction with calculators. However, in 36 of the 54 included studies, teachers did make
pedagogical use of the calculator in instruction. This shows some initiative on the part of
mathematics teachers to change classroom practice to incorporate technology, even in the
absence of purpose-built curricular materials.

Also of note, Ellington indicated that in all cases, even those in which no significant
improvement was detected, there was no evidence to suggest that calculator use had hindered
the development of students’ mathematical skills. This provides evidence counter to one of the
most common arguments against the graphing calculator; namely that it would hold back students’
skill development. It should be noted that the majority of the studies included in Ellington’s
meta-analysis were conducted in what might be called “traditional” mathematics classrooms, and
that in only 6 of the 54 studies were specially-designed curricular materials used to fully integrate
the graphing calculator in the learning process. However, two-thirds of the studies did feature the
calculator as what Ellington describes as an active part of teaching and learning (p. 455). The
results of this study also suggest that calculator use in the classroom should be part of a long-term
approach to mathematics instruction, with the largest gains in operational skills and student

attitudes toward mathematics occurring in those studies that lasted 9 or more weeks. Ellington



18

recommended that future research should investigate the retention and transfer of skills, the role
that the graphing calculator plays in the development of students’ problem-solving abilities, and the
use of curricular materials that are purposefully designed with the graphing calculator in mind.

In a 1994 study on the effects of graphing calculator use on students’ performance in
precalculus, Quesada and Maxwell found significant positive results in terms of student
achievement on a common final exam when compared to students taught using traditional
methods. Furthermore, the authors found that students in the experimental group (i.e., those using
the graphing calculator) indicated that “they perceived that they had done more exploration, that
they believed that the graphing calculator helped them to understand the concepts studied in the
course, and that they will take following courses in sections where the graphing calculator is used”
(p. 211-212). On the other hand, students in the experimental group reported spending more time
and performing slightly worse than in previous mathematics classes, although this may be due at
least in part to normal progression. The authors’ analysis of student responses to open-ended
survey questions about the students’ experience with the graphing calculator found three main
positive aspects; namely, that the graphing calculator facilitates understanding, allows for
answer-checking, and saves time on calculations. For many of these students, “checking answers”
extended beyond confirming answers graphically or numerically to a more holistic process of
engaging in thinking about problems visually before attempting to solve algebraically. This
supports the notion that graphing calculator use can contribute to the development of visual
intuition, an important tool in the study of mathematics.

As is often the case with educational research, studies on the effects of graphing
calculators must be interpreted carefully due to the difficulty of isolating a single factor. The
complexity of the learning process and the huge number of elements that can affect student

outcomes makes it very difficult to know exactly what causes change, and it is probable that in
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many cases several factors contribute to bring about improvements. Quesada and Maxwell (1994)
cite several factors that may have supported students’ learning and contributed to the positive
effects observed when using the graphing calculator; among these, interactive presentation of
topics, immediate feedback and the ability to check answers, development of visualization skills,
and students’ self-construction of knowledge (p. 214), stand out as qualities that go hand-in-hand
with the introduction of the graphing calculator in the classroom. Esty (1998, 2000a, 2000b)
emphasizes that employing graphing calculators must be accompanied by a corresponding
change in pedagogy and curricular focus. In particular, the goal must become teaching students
“something worth knowing, instead of merely exercising the student’s calculator” (1998, p. 1). The
graphing calculator (and indeed, many other technological innovations) allow educators to focus
less on computational tasks and more on conceptual aspects of the curriculum; however, they can
also be misused as a means to avoid involvement (2000a) and replace learning with finding
answers (2000b). Thus simply adding the graphing calculator (or any other tool) to an otherwise
unchanged classroom is unlikely to result in more learning or improvements in student outcomes.
Instead, pedagogy, curriculum, and assessments should all be carefully adapted to accommodate
the new approaches to mathematics made possible by introducing new tools.

In the context of the present study, the function concept is the linchpin of the curriculum.
Many sources (e.g., Tall, McGowen, & DeMarois, 2000; Oehrtman, Carlson, & Thompson, 2008;
Carlson, Oehrtman, & Engelke, 2010; Musgrave & Thompson, 2014) have noted its importance,
with Carlson et al. calling it the core mathematical concept of the curriculum from algebra through
calculus. In light of this, it seems appropriate to examine the documented connections between
the use of graphing calculators and students’ understanding of the function concept. Several
sources (Leinhardt, Zaslavsky, & Stein, 1990; Wilson & Krapfl, 1994; Doerr & Zangor, 2000) have

noted that the use of a graphing utility allows students to generate many examples of graphs
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quickly and accurately. In turn, this makes different learning opportunities feasible; for example,
asking students to graph several transformations of a given function, make conjectures regarding
the “rules” for graph transformations, and then verify their thinking could be a very productive and
memorable activity for beginning algebra students. However, asking students to complete this
same task using only pencil and paper would likely be much more time-consuming, as well as
presenting additional conceptual difficulties due to the loss of precision brought on by manual
graphing. This activity (and many others like it) depend on two key capabilities of the graphing
calculator: being able to simultaneously view several related graphs, and the ability to change a
parameter and observe the results with little additional effort required (Demana, Schoen, & Waits,
1993).

The ability to easily access multiple representations (i.e., graphic, symbolic, and tabular) of
a function is another potential benefit to using graphing calculators (Hollar & Norwood, 1999), and
one that can be especially useful in the context of problem solving. Depending on the context of
the problem situation, the slight differences in the type of information gained by looking at each of
these representations can provide insight. As students gain experience with using a graphing
calculator to solve problems, they may come to realize the benefits that fluid movement among
these representations offers, and in turn develop a more cohesive understanding of functions in
general. Ruthven (1990) writes

reliable access to graphic calculators is likely to encourage both students and teachers to

make more use of graphic approaches in solving problems and developing new

mathematical ideas, not only strengthening these specific relationships, but rehearsing

more general relationships between graphic and symbolic forms (p. 447),
reinforcing the idea that multiple forms of the same function can be valuable in problem situations

due to the differences in the information they present. Hollar and Norwood (1999) observed that
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the graphing calculator enabled students to approach problems from a different perspective, using
multiple representations to explore and estimate; that is, students may use graphic forms to
visualize problem situations and estimate solutions, then (if more precision is needed) explore the
problem in more detail using tabular and symbolic representations.

Having access to multiple forms of the same function, coupled with the precision and
accuracy of generated graphs, provides the opportunity for the graphing calculator to transform
the way that mathematics students approach problem solving. Writing in 1994, Wilson and Krapfl
relate the experience of Ken, a preservice mathematics teacher previously studied by Wilson
(1992), as he developed strategies for using the graphing calculator. Prior to using a graphing
calculator, Ken did not use graph-centric methods for solving problems due to the loss of accuracy
and precision that comes with manual graphing. However, the capability of the graphing calculator
to quickly create accurate graphical representations of functions makes it viable to solve (or at
least obtain good estimates) using graphical methods. The authors contend that “the graphics
calculator helped Ken understand functions and graphs in a fundamentally different way - as tools
to help him interpret and solve mathematical problems” (1994, p. 255). The details of symbolic
manipulation in problem solving can change from one problem to the next (e.g., solving an
equation involving a quadratic expression versus one involving logarithms), which can distract
students from the context when attempting to solve real-world problems and instead draw their
focus to trying to decide what “type” of problem is at hand. On the other hand, using graphic and
tabular representations to supplement the symbolic form of a function as tools for interpreting and
solving could allow for a more connected view of mathematics. Ruthven (1990) observed that
students who made consistent use of the graphing calculator in problem solving tended to show

more innovation in their strategies. This follows logically; having more options available - namely,
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easy access to symbolic, graphic, and tabular representations of a function - allows students more
opportunities to experiment, explore, and get themselves “unstuck”.

Finally, an important advantage offered by graphing calculators (and other computer tools)
is that they provide students with immediate and personalized feedback in a way that is not
possible using traditional pencil-and-paper methods. Ruthven (1990) observed that this feedback
can reduce students’ anxiety to a degree by relieving uncertainty. Since anxiety about
mathematics has been linked to poor performance and overall avoidance of the subject (Hembree,
1990), alleviating this anxiety would likely be beneficial for many students. Furthermore, research
has noted that this feedback loop not only leads to reduced anxiety, but can also help build
students’ confidence in their mathematical abilities (Ruthven, 1990; Dunham & Dick, 1994; Idris,
2006). Students have also reported their own perception that the graphing calculator is a useful
tool that helps them to develop a more coherent understanding, or visualize certain ideas better
(Smith & Shotsberger, 1997). Perception plays an important role in attitude, as perception affects
self-confidence, which in turn contributes to attitude and motivation. Here again there is a role
played by the duration of the exposure to technology, with sustained use resulting in higher levels
of affect. Hennessy & Dunham (2001) contend that technology use can temper negative attitudes
over a long period of time, but short-term use of a tool is less likely to result in lasting change.

Graphing calculators are not without fault, however, and the potential drawbacks to using
the device have also been well-documented. One of the primary arguments against using
calculators of any type has always been that students may become overly dependent on the
devices in ways that are not mathematically productive (Leinhardt, Zaslavsky, & Stein, 1990;
Wilson & Krapfl, 1994), and that this could lead the mathematical authority in the classroom to
shift from teacher or textbook to the device itself, rather than to mathematical reasoning as

intended. However, Doerr and Zangor (2000) found no evidence of this, arguing that this
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tendency can be overcome by explicit attention to the limitations of the calculator and by
emphasizing that mathematical reasoning is the basis on which conjectures are proven. Through
direct and repeated attention to creating mathematical meaning, the participants in this study
came to view the graphing calculator as a tool, but recognized that they also needed to rely on
mathematical reasoning as a check on results obtained by the calculator. Using novel problems
and tasks that require contextual interpretation are also likely to mitigate an over-dependence on
the calculator, since these types of activity require thinking and reasoning on the part of the
learner that is independent of calculator use.

There are also aspects of working with a graphing calculator that can create problems for
students, both technically and conceptually. Mitchelmore and Cavanagh (2000) traced high school
students’ (Australian grades 10,11) difficulties and misconceptions to four areas: scale, accuracy
and approximation, linking representations, and graphic representation by pixels. Issues related to
scale have also been reported by other sources (Leinhardt, Zaslavsky, and Stein, 1990; Williams,
1993), and may be due in part to students’ lack of experience with graphs where the axes were
not scaled equally. Curricular materials often favor examples and exercises that are easily
viewable in the calculator-standard 10 x 10 viewing window, so students can encounter problems
when non-standard window settings are required. This is also related to a poor understanding of
using the calculator’s built-in zoom operations and finding reasonable window settings manually.
Typical graphing calculators have a “zoom out” feature that increases the range of both axes
equally; while this is sometimes useful, in many circumstances simply zooming out results in losing
important features of the graph (e.g., the local extrema of a polynomial function). The physical
design of most graphing calculators can also present challenges. In particular, the most common
design features a rectangular screen that is approximately 33% wider than it is tall, yet displays

graphs using a square window. This results in some oddities, such as perpendicular lines
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appearing as though they do not intersect at a right angle (see figure 2 below). Although this may
seem like a relatively minor quibble, it could conceivably cause misunderstanding or confusion on

the part of some learners.

Figure 2. Perpendicular lines on a graphing calculator. Note that these lines do not appear to meet
at a right angle due to the scale of the window.

Mitchelmore and Cavanagh (2000) also observed misconceptions and misunderstandings
relating to accuracy and approximation among the participants in their study. For example,
students tended to correlate a greater number of decimal places with increased accuracy when
making approximations, but at the same time showed a “marked preference” (p. 265) for integer
values. This may also be a byproduct of the curriculum, as examples and exercises tend to favor
problems with integer (or other “nice”) solutions. While this presumably allows learners to focus on
the point of the example instead of getting bogged down in complicated arithmetic, it may come at
the cost of creating a bias against “messy” (e.g., irrational) solutions. A better understanding of
how calculator and computer algorithms work, and the associated limitations, could help to
alleviate some issues related to the accuracy of calculator approximations (Dick, 1992), but it
would also be useful to incorporate more real-world applications and “messy” data into the

curriculum.
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Linking different representations of functions is another area identified as a potential
source of difficulty for students. There is a tendency among students to accept the graph displayed
by the calculator without necessarily thinking critically about the results; in particular, students may
fail to recognize inconsistencies between the symbolic form of a given function and the graph
generated by the calculator (Mitchelmore & Cavanagh, 2000). For example, the graph of a
rational function can look quite different in the graphing calculator, particularly near discontinuities.
In cases like this, students may not think about their knowledge of the symbolic representation of
the function, leading them to misinterpret the calculator output (Ruthven, 1990; Leinhardt,
Zaslavsky, & Stein, 1990). Some sources (Thompson, 1994b) have identified students’ difficulties
with translating among different representations of functions in general, which would certainly
contribute to this phenomenon. This may also relate to issues of scale in certain circumstances,
such as the perpendicular line example discussed previously. Explicit attention to finding “friendly”
window settings (that is, those that provide a more visually accurate graph) could help to alleviate
this problem (Vonder Embse & Engebretsen, 1996).

The final category of student difficulties in using the graphing calculator identified by
Mitchelmore and Cavanagh (2000) is in the representation of graphs by a finite number of pixels.
Despite dramatic improvements in LCD screen technology in the past two decades, most
graphing calculators still use the same low resolution monochrome displays found in the first
iterations of the devices. Mitchelmore and Cavanagh note that their students commented on the
jagged appearance of graphs caused by the graphing calculator’s low screen resolution. This low
resolution and the irregular graphs that it causes can also lead to misunderstanding (Hector, 1992;
Demana, Schoen, & Waits, 1993); for example, the asymptotic decay toward the horizontal axis of
an exponential function “disappears” when the calculator can no longer display the curve as

separate from the axis itself (see figure 3). This could be related to (or exacerbated by) difficulties
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with linking the symbolic and graphic representations as well, so it is conceivable that more
accurate graphical depictions could be used by students to develop more coherent conceptions of

function types.

Figure 3. The graph of an exponential function. Note that the asymptotic behavior on the left-hand
side of the graph is unclear as a result of the low screen resolution.

Ultimately, many of the difficulties commonly experienced by students when using a
graphing calculator likely have more to do with mathematics than technology. Issues relating to
scale, accuracy and approximation, and linking different function representations can likely be
traced to an incomplete or inadequate understanding of the underlying mathematical concepts.
However, these problems may be compounded by the design and shortcomings of the calculator,
as in the case of the scale issues brought on by putting a square window in a rectangular display.
The representation of graphs by a finite (and in most cases, very limited) number of pixels is due
mostly to the limitations of the technology itself, but could be aggravated if the user does not have
a firm understanding of the associated function properties. Furthermore, Williams (1993) found
that the graphing calculator can be confusing for some students, even after instruction and
experimentation, and that “teachers mistakenly assume they and their students have shared
understandings when, in fact, the two groups have quite different ideas” (p. 198). This can be

difficult to identify and diagnose, as graphing calculator use does not leave the same evidence as
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pencil-and-paper calculations. However, talking to students about their reasoning and “looking
over their shoulder” as they work with the calculator (Williams, 1993) can provide important

feedback about the way that a student’s understanding aligns with the teacher’s goals.

Figure 4. The graph of a polynomial function with four real roots. Finding these roots using built-in
calculator functions can be tedious and presents a barrier to students’ learning.

Certain features of and calculations with the graphing calculator can be technically difficult
(or at least cumbersome) as well. For example, consider the process of finding the real roots of
the polynomial function whose graph is shown in figure 4 above. Identifying the real roots of this
function is a perfectly reasonable exercise that could be found in a typical college algebra course,
and can be accomplished using built-in functions of most graphing calculators. However, the
process for finding these roots (in this case, with a calculator in the TI-84 family) involves setting
an appropriate viewing window, then using the “ZERO” command once for each root, which in
turn requires the user to scroll near the desired point, set left and right bounds, and finally provide
a “guess” value before actually calculating the value of the root. Those who understand numerical
approximation techniques for finding roots (e.g., Newton’s method, Runge-Kutta) will quickly
recognize the need for each of these commands, but for students they can be intimidating and
present a potential barrier to learning. Kissane, Bradley, and Kemp (1994) argue that “it is unlikely

that the necessary technical and discrimination skills associated with graphics calculators will be
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picked up by students without us paying much explicit attention to them” (p. 32). Classroom
experience supports this claim, as students sometimes need repeated explanations of certain
techniques, such as finding real zeros. In these cases, the focus shifts to be too much about the
technology itself, rather than the mathematics at hand.

Graphing calculators are a powerful tool that, when used appropriately and accompanied
by a shift in classroom culture, have the potential to change the way that students learn
mathematics. Research indicates that students who use the graphing calculator in the learning
process tend to outperform their peers, and emerge with more innovative approaches to problem
solving. There are potential drawbacks and pitfalls to using graphing calculators, however.
Aspects of the devices can intensify students’ misconceptions if not treated carefully, and some
built-in calculator operations are cumbersome and can become barriers to understanding.
Developing classroom practices, curricular materials, and assessments that maximize the potential
benefits of the graphing calculator, while also minimizing drawbacks by keeping the focus on
mathematics, is a difficult but important process. It should also be noted that at present, the
primary concern is calculator operations related to graphing and representation of functions. Any
use of the graphing calculator as a computer algebra system (CAS) will be beyond our current

scope, but previous research has explored this usage as well (e.g., Cannon & Madison, 2003).

Desmos & DGS

Aside from graphing calculators, some in the mathematics education community have
advocated the use of classroom or personal computers along with dynamic geometry software
(DGS) such as Geometer’s Sketchpad or GeoGebra. One of the primary strengths of such
programs is that they allow students to interact with geometric figures in a dynamic setting; Hull

and Brovey (2004) argue that the dynamic environment provided by this software allows students
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to investigate a large number of possibilities relatively quickly, enabling them to explore and
conjecture. In short, DGS can reduce tedium in some of the tasks involved in learning Euclidean
geometry (e.g., ruler-and-compass constructions) in the same way that graphing calculators can
diminish the need for monotonous calculations, allowing students’ focus to shift to more
mathematically-rich aspects of the curriculum (Quesada & Cooper, 2010). Since DGS use is
typically situated in the context of geometry courses, making direct inferences about how it relates
to the learning of algebraic concepts may be difficult. However, the effects that dynamic
interactions with technology have on students’ understanding and attitudes may shed light on the
present study.

Hull and Brovey (2004) conducted a study at a public high school in the southern U.S.
aimed at investigating the effects of using DGS (in this case, Geometer’s Sketchpad) in a ninth
grade geometry class. The students used the software during a three-week long unit on circles,
which included teacher demonstrations and hands-on experience with the software in a computer
lab. The researchers measured student learning by comparing the scores of students in the
treatment group with those of a similar group of students from the previous year on a traditional
geometry assessment. Post-intervention mean test scores showed a slight improvement for the
treatment group, though the authors do not indicate whether this difference was statistically
significant. An attitude survey was also administered, but differences in the pre- and
post-intervention survey results were slight. The authors concede that these results are
inconclusive, and that the impact of the use of DGS on these students cannot be determined
based solely on this study. However, the very short duration (three weeks) of this intervention may
have prevented the students from becoming comfortable using the software, and the authors
suggest that a longer study could produce stronger results. In spite of the lack of conclusive

findings, Hull and Brovey did observe that students were “more convinced of the veracity of a
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theorem when it is explored using a software program” (p. 7), perhaps due to the larger volume of
examples that can be quickly examined using DGS than with traditional methods. In addition, the
participants in this study reported having enjoyed DGS lessons (conducted in a computer lab)
more than their usual classroom lessons. This is evidence of the ability of DGS and other
computer-aided tools to foster a student-centric learning environment, and suggests that its
sustained use could positively impact attitudes toward mathematics.

More recently, and of primary interest in the present study, the free online graphing utility
Desmos offers a powerful alternative to the graphing calculator. Desmos was selected for use in
this study for a variety of reasons, including its availability and ease of use. Since it runs in a web
browser and is compatible with a wide range of devices, students can quickly and easily access
Desmos from anywhere. Desmos also offers a mobile app, available for smartphones and tablets,
that allows students to use their preferred personal device during class and while completing
assignments. Allowing students a degree of ownership in this matter may affect attitudes toward
the technology, as well as reducing the learning curve. Friendly design features, including intuitive
scrolling and the familiar “pinch” zooming on touchscreen devices, make using Desmos very
similar to web browsing and other everyday interactions with technology. On a strictly practical
level, Desmos is also completely free to use, whereas a new graphing calculator requires a
significant expense. Furthermore, graphing calculator technology is outdated, and lack of
competition among manufacturers has created a near-monopoly (Smith, 2015) in the high school
market. However, iPads and other mobile technologies are becoming more common in K-12
classrooms. In the spring of 2015, the Eanes (TX) school district conducted a pilot study using a
restricted version of Desmos on iPads for their 8th grade state standardized assessment (Yenca,

2015; Locke, 2015; Smith, 2015). As this relatively new alternative to the traditional graphing



31

calculator gains popularity and support, it is important to carefully examine its use and effects on

students.

= Untitled Graph = Save

Figure 5. The Desmos user interface. Commands can be entered via the pop-up virtual keyboard
shown here, or by typing the appropriate symbols.

Desmos is a powerful graphing utility that performs nearly all of the same functions as a
TI-84 graphing calculator, but is much more user-friendly and intuitive (Ebert, 2014; Smith, 2015;
Liang, 2016). The user interface shows the input and graphing window side-by-side, allowing
students to see updates to their graphs in real-time. Beigie (2014) contends that these
instantaneous changes in the graphing window provide immediate feedback, and this is very
conducive to informal experimentation and conjecturing. Compare this to the graphing calculator,
which requires students to switch back and forth between input and graphing windows and will
often bog down as it redraws graphs, and the potential benefits are easy to see. In addition,
students can add sliders in place of parameters (such as coefficients) that allow them to vary
these values and observe the changes, all in real-time and without having to change windows
(see figure 1). This could be a powerful way for students to gain experience with many core

concepts in a class such as college algebra. For example, instead of presenting “rules” to be
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memorized for graph transformations, students could conjecture and experiment to construct their
own understanding of how the transformations work. Sliders and the dynamic nature of graphing
in Desmos allow students to see the effects of changing parameters immediately, providing
individualized feedback and a way for students to verify their hypotheses.

Desmos also provides a powerful tool for problem solving. Multiple graphs can be
displayed in the same window in up to six different colors, whereas the majority of graphing
calculators use a monochrome display. Graphing calculators with color displays have appeared on
the market recently, but retain their predecessors’ low screen resolution, pixelated appearance,
and limited processing power. On the other hand, Desmos displays graphs in sufficiently high
resolution as to appear smooth and very rarely shows any sign of slowdown or lag in normal
usage (see figure 6). Perhaps more importantly for applications, Desmos makes finding points of
interest on a graph a straightforward process. Relative extrema, x- and y-intercepts, and points of
intersection can be found by simply clicking on the curve near the point. While the complicated
processes involved in finding such points with a graphing calculator tend to obscure the
mathematics at hand, the effortless nature of using Desmos to accomplish the same task allows
students to focus on the big picture. Finally, users have the option to save graphs for later use and
can easily share their work with others, providing a greater capacity for application as a

collaborative tool than the graphing calculator.
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Figure 6. Side-by-side comparison of the same graph as displayed by th; TI-84 graphing
calculator and Desmos. Note the pixelated appearance of the image on the left.

Existing research using Desmos is very limited, and consists primarily of practitioner
pieces. Beigie (2014) and Ebert (2014) used Desmos as the medium for open-ended graphing
projects that tasked students (in high school Algebra 1 and Algebra 2, respectively) with creating a
piece of art using graphs of mathematical relations. This project requires students to apply their
knowledge of different types of relations, as well as reinforcing their understanding of graph
transformations and restrictions on domain and range. Although neither author presents any real
data, anecdotal evidence from these articles suggests that students are able to engage with
Desmos in a deep and meaningful way. The project described by Beigie required students to use
a minimum of twelve graphs to create the drawing, but the work eventually handed in by students
included an average of sixty-three graphs per drawing. Ebert experienced a similar phenomenon,
writing that “many students go far above and beyond the requirements of this project and are
extremely proud of their work” (p. 390). The degree to which these students engaged with
Desmos in the context of this project is evidence of the potential it holds for changing students’
attitudes about mathematics. Yenca (2015), in describing the Texas pilot program to utilize a
restricted version of Desmos in 8th grade standardized testing, reports that an informal survey

was conducted on a small (n=49) sample of students. Of these, 76% indicated that they preferred
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using the TI-84; however, detailed survey data shows that the reason for this preference was
primarily due to built-in calculator functions, such as descriptive statistics computations and
conversion from decimal to fraction form. On the other hand, close analysis of students’ survey
responses indicates that 88% of these same students favored using Desmos for any tasks that
involved graphing. It is reasonable to assume that students’ preference is strongly correlated with
the content of the curriculum; if these students needed to do more graphing and less statistics, the
results could look quite different.

Although the exact effects of using Desmos on students’ understanding, achievement, and
attitudes toward mathematics and technology are as yet unknown, the existing literature and
experience with the tool seem to indicate that it has the potential to significantly improve student
outcomes. Determining the extent to which its use impacts students will require extensive
research, but it is our hope that the present study will provide encouraging preliminary results and

perhaps provide direction for future investigation.

Conceptual Understanding of Mathematics

Improving mathematics education has been an ongoing and contentious issue for over a
century, with research mathematicians, educators, classroom teachers, administrators, parents,
and policymakers all contributing to the various reform movements that have brought about the
current state. At the core of many of these debates have been the questions of how people learn
mathematics, and what kinds of mathematical knowledge are worth developing. Gray and Tall
(1994) summarize the dichotomy surrounding mathematics by saying that “mathematics has been
notorious over the centuries for the fact that so many of the population fail to understand what a
small minority regard as being almost trivially simple” (p. 116). The conclusion that the authors

reach is that the experience of doing mathematics is qualitatively different for these two groups;
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while some see mathematics as a series of tedious computations, standard algorithms, and
formulas to be memorized and repeated, others are able to focus on the bigger picture and can
encapsulate these things into mathematical objects that are more easily manipulated. Fields
medalist William Thurston, commenting on the state of mathematics education in the United
States in 1990, observed the following:

by the time students are in college, they are inhibited from thinking for themselves and

from admitting out loud what they are thinking. Instead, they try to figure out what routines

they are supposed to learn. When there is any departure in class from the syllabus or the

text, someone invariably asks whether it's going to be on the test (p. 4).

The Common Core State Standards for Mathematics (2010) sought to remedy this by calling for a
decrease in emphasis on standard algorithms and more opportunities for students to develop their
own thinking, starting in the earliest grades. However, proper implementation is vital for this
change to take hold (Gaddy, Harmon, Barlow, Milligan, & Huang, 2014) and there is some
concern that schools may misinterpret the standards, simply presenting alternative algorithms in
addition to the standard ones rather than allowing students to think for themselves (Sun &
Strauss, 2016).

If the goal of mathematics educators is to improve the quality of students’ education in
mathematics, it is critical to carefully consider the matter of what it means to learn something.
Contributions from psychology, including the work of Piaget (1970), Vygotsky (1978), and von
Glasersfeld (1989), have formed the basis for the current prevailing notion that mathematical
knowledge is developed through an internal construction process. This may be influenced by a
great many things, but ultimately it occurs within the individual learner. The phrase “learning with
understanding” has been used to describe the desired student outcome, which the NCTM

Principles & Standards (2000) define as a combination of factual knowledge, procedural facility,
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and conceptual understanding. As defined by Hiebert and Lefevre (1986), the conceptual aspect
of mathematical knowledge is rich in relationships, while the procedural consists of the formal
language and symbolism, together with the algorithms and rules that comprise step-by-step
instructions for completing mathematical tasks. Furthermore, Hiebert and Carpenter (1992) and
Hiebert et al. (1997) relate understanding to a network or web of interconnected ideas, claiming
that we really understand something when we begin to see how it is related to other things we
know, and that as these connections grow in strength and number, so does the degree of
understanding. The argument made by Thurston (1990) and others (White & Mitchelmore, 1996;
Carlson, Oehrtman, & Engelke, 2010; Thompson, 2013) is that one of the chief failings of the
mathematics education program has been the focus on procedures and skills without sufficient
attention to meaning, coherence, and creating connections between procedural and conceptual
aspects of the content in the curriculum. To some degree, this is likely a product of the movement
toward evaluation by standardized testing, which tends to privilege students who are able to
quickly recall and apply procedures to solve familiar problem types. However, when confronted
with novel problem situations, these same students may struggle and find themselves unable to
cope.

Explicit attention to meaning has often been overlooked or ignored in the mathematics
classroom in the United States, instead being replaced by a focus on “learning” to take prescribed
steps in response to certain stimuli (White & Mitchelmore, 1996; Thompson, 2013). International
studies such as TIMSS indicate that this paradigm has not been effective, either in developing
mathematical understanding and critical thinking skills in American students or in terms of the
relative strengths of the average American mathematics student as compared to their
counterparts abroad (McKnight & Schmidt, 1998). On the other hand, the question of how to go

about attending to meaning in the classroom is difficult to answer, especially when one considers
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that many classroom mathematics teachers will have been trained in the same
procedurally-focused environment. Harel, Fuller, and Rabin (2008) observed instances of
classroom teachers using mathematical terms and symbols in ways that were sometimes
conflicting or differed from typical usage, and without attention to their meaning. For example, in
discussing percent change, the teacher used the equations “b6 = 1+%”and“b = 1 -%" as a
sort of mnemonic intended to aid students in carrying out prescribed procedures, rather than as
part of a meaningful discussion or statement about related quantities. The students in this episode
would have been better served by using language and symbols in a precise and consistent
manner, and may have also come to better appreciate the reasoning behind studying the concept
had it been treated in a more meaningful way.

Mathematics is a subject that can be continually reorganized and compressed within the
mind of the individual. As we gain experience with an idea, we begin to move beyond the minutiae
and can see things from a coherent, contextualized perspective. This and related phenomena are
given various names in the literature, including encapsulation (Dubinsky, 1997), mental
compression (Thurston, 1990), and assimilation (Piaget, 1970). Gray and Tall (1994) explain this
occurrence as a cognitive process, by which a dynamic process is transformed into a static
“conceptual entity”, or a “cognitive object that can be manipulated as the input to a mental
procedure” (p. 118). As an example, Thurston (1990) recalls his childhood realization of the
connection between fractions and division; in particular, rather than interpreting “134 divided by
29” as a tedious computation to be carried out, likely following an algorithm learned by rote,
Thurston was able to instead conceptualize the fraction 134/29 as a mathematical object in its own
right. This mental reorganization allows one to use a process or idea as part of a larger
mathematical task; for example, the algebraic manipulations (factoring, etc) that take place in the

context of finding a partial fraction decomposition. While these symbolic operations may have
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been of primary interest at some point in the history of an individual learner’s mathematical
training, by the time partial fraction decomposition is relevant, they are (or should be) a
background tool on the same level as basic arithmetic.

A framework for the construction of mathematical knowledge developed by Dubinsky
(1997) breaks this development into three phases: action, process, and object. Learners will
initially conceptualize a new idea as an action, which operates on and transforms objects, but is
perceived as being external to some degree and occurs in response to some outward cue. At this
stage of development, the learner likely needs to rely on external resources that give precise
instructions to be followed; for example, a student who has an action conception of function may
be able to evaluate a given function at specified points, but could be expected to struggle with
finding its inverse. Repeated experience and individual reflection on actions can lead to the learner
internalizing the action into a process. Although the outcome of this process is the same as the
action that preceded it, a process is more internal and does not depend on external stimuli in the
same way as an action. Furthermore, a process conception provides greater capacity for reflection
and description, as well as enabling a learner to mentally reverse steps without necessarily
needing to explicitly perform them (Dubinsky, 1997). In the case of function, developing a process
conception allows a learner to comprehend more advanced ideas, including composition and
inversion of functions. If an individual is further able to perceive the process as a whole, it is said to
be “encapsulated” as an object, to which subsequent higher-order actions and processes can be
applied (e.g., recognizing that the derivative of a function is a function itself). This is difficult to
accomplish, and pedagogical strategies for leading students toward developing this type of
conception are limited (Dubinsky, 1997; Voskoglou, 2013). Voskoglou argues that “because
encapsulation entails a radical shift in the nature of one’s conceptualization” (p. 32), it requires

time, experience, and reflection to accomplish. For Dubinsky, the highest cognitive level is the
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creation of schema that organize actions, processes, and objects. Although examining students’
understanding in great detail using the APOS framework described here will not be attempted in
the present study, it does provide a useful way of thinking about students’ reasoning that has
helped to influence instructional decisions.

David Tall and his collaborators have conducted significant research into determining the
bases of mathematical learning (Tall & Vinner, 1981; Tall, 1992; Gray & Tall, 1994; Tall, McGowen,
& DeMarois, 2000), introducing the terms concept image and concept definition into the literature.
A learner’s concept image for a mathematical concept is the total cognitive structure that is
associated with that concept, including mental pictures and related properties and processes. Tall
and Vinner write that the concept image is “built up over the years through experiences of all
kinds, changing as the individual meets new stimuli and matures” (p. 2). On the other hand, a
learner’s concept definition is a group of words used to specify a concept. This may be a formal
(i.e., mathematically accepted) concept definition or a personal concept definition that is
constructed by the individual, and may or may not be developed in a meaningful way. Rote
memorization of a formal concept definition is unlikely to serve the learner in novel situations, but if
a meaningful personal concept definition is developed through experience, then the learner may
develop strong connections among related concept images in a way that promotes understanding.
At a more fundamental level, Tall (1992) presents the idea of cognitive roots as the basis for
developing mathematics concepts. According to Tall, a cognitive root should be simultaneously
familiar to students and a good foundation for later mathematical development. Supposing that a
sound cognitive root can be identified for a topic, it could then be used to influence decisions in
curriculum development and pedagogy. For example, limit is typically the first concept that
students experience in calculus, but it is also an idea that may be difficult for students to learn in a

meaningful way in a short period of time. Tall suggests investigating “local straightness” as an
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alternative; this is an idea that is relatively easy to investigate and discover using technology (e.qg.,
repeatedly zooming in on a curve) and may provide a better support for topics appearing later in
the curriculum, including the derivative. For more on this, Bingolbali and Monaghan (2008)
investigate the development of first-year undergraduate students’ concept images of the
derivative.

Returning to the function concept, some of the difficulties that students often encounter in
mathematics can be characterized through the lens of these theories of learning. Vinner and
Dreyfus (1989) extended the work of Tall and Vinner (1981) in investigating concept image and
definition by studying constructions for the function concept in Israeli first-year college students
and junior high mathematics teachers who had not majored in mathematics (n=271 and n=36,
respectively). In the course of this study, the authors found that many of the participants held
inconsistent images and definitions for this concept. The term compartmentalization describes the
occurrence of potentially incompatible images and definitions in an individual's cognitive structure,
which may conflict when they are evoked. In a detailed analysis of their results, Vinner and
Dreyfus determined that those students whose major field of study required more mathematics
tended to show symptoms of compartmentalization less often, which the authors attribute to these
students being “more aware of their thought processes and... more likely to reflect on them” (p.
365). For those students in non-STEM disciplines, the inconsistent concept images and definitions
evidenced here may never reconcile themselves, which could negatively impact these students’
attitudes and self-confidence about mathematics moving forward.

Several sources have noted that among the factors that contribute to students’ overall
weak understanding of the function concept is a tendency toward a static view of function. Tall
(1992) writes that the central idea of function as a process is often overlooked. Here Tall uses the

term “process” in a different sense than Dubinsky (1997), and this is clarified by Tall, McGowen,
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and DeMarois (2000), who propose that the “function machine” is a viable cognitive root for the
function concept. This “function machine” is a pedagogical tool designed to help students view
function as a process which takes a given input and transforms it into a particular output, with the
goal of developing a sense of function as a way of relating two quantities. Thompson (1994b) also
cautions against placing too much emphasis on multiple representations of functions at the cost of
creating meaning; in short, that curricula should initially employ graphs, expressions, and tables as
representations of a specific situation or context, rather than starting with a formal definition of
function and then developing the various representations. Oehrtman, Carlson, and Thompson
(2008) observe that “strong emphasis on procedures without accompanying activities to develop
deep understanding of the concept has not been effective for building foundational function
conceptions” (p. 151), which perhaps indicates that whatever model is used to initially convey the
function concept, instruction and curricular materials should make a concerted effort to create
meaning with and for function. As learners develop understanding of the function concept and
begin to internalize it as a process (in the sense of Dubinsky), they will also exhibit mental actions
associated with covariational reasoning (Carlson, Oehrtman, & Engelke, 2010).

The cognitive structures that constitute an individual’s mathematical knowledge are
dynamic, shifting and reorganizing as new connections are made in response to experience.
Exactly how this happens, whether it be Piaget’s assimilation to a scheme (1970), Thurston’s
mental compression (1990), Dubinsky’s APOS framework (1997), or something else entirely, is
not fully known. However, its effects on mathematics education can be seen by considering some
of the common difficulties encountered in practice. Thurston writes that “after mastering
mathematical concepts, even after great effort, it becomes very hard to put oneself back in the
frame of mind of someone to whom they are mysterious” (p. 5). Mathematics is unique in that

each individual can essentially re-discover everything for themselves - apart from organizational
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tools like notation, there are very few things that must be memorized. This distinguishes the
subject from other school curricula (e.g., language arts or history) where remembering is an
essential skill for success. As a result, teaching mathematics involves carefully bridging the gap
between one’s own mathematical knowledge, carefully constructed and curated over a lifetime of
experience and training, and that of the students, each with a unique set of prior experiences and

preconceptions. It is challenging but crucial to allow students the room to develop on their own.

Student Attitudes Toward Mathematics

Attitudes toward mathematics, and in particular math anxiety, have been shown to relate to
mathematics achievement, and there is evidence to indicate a reciprocal relationship between the
two (Aiken, 1970); that is, attitudes affect achievement, and achievement affects attitude.
Therefore, any potential effects on attitude as a result of technology use may be valuable to
educators and beneficial for learners. Those students who also experience math anxiety are
further impeded in learning. Hembree (1990) finds that math anxiety is linked to poor performance
on achievement tests, and in particular that higher anxiety levels consistently correlated with lower
performance. Furthermore, Hembree’s results indicate an inverse relationship between math
anxiety levels and both positive attitudes toward the subject and self-confidence in mathematics.
Students with high levels of math anxiety are also more likely to exhibit behaviors that indicate
avoidance of the subject, including taking fewer mathematics classes. Hembree indicates that
“mathematics anxiety seems to be a learned condition more behavioral than cognitive in nature”
(p. 45). Although these behaviors likely start at an early age, if they are indeed the result of a
learned condition, then there is some hope of overcoming this anxiety.

Another source of possible difficulty for students who experience math anxiety involves the

method of instruction. Based on prior findings indicating that teacher characteristics may be tied to
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attitudes toward mathematics (Aiken, 1970), Clute (1984) conducted a study to determine if
instructional style and math anxiety interact in affecting student achievement. Two similar student
groups were taught using different instructional methods - one group was given a series of
organized lectures designed to guide students toward “mastering” material, while the other used a
discovery-based approach involving questioning sequences to develop the subject matter. Both
groups were given an achievement test after the intervention to quantify the results. In this
experiment, the discovery group attained a higher overall mean score than the expository group
(though not statistically significant), and scores among students with low and medium levels of
math anxiety in the discovery group were both higher (in the mean) and more homogeneous than
their counterparts in the expository group. However, among those students with high levels of
math anxiety, the students in the discovery group had lower mean test scores with a higher level
of variance. Math anxiety level had a significant impact on achievement level, with high anxiety
correlating with lower achievement. Furthermore, there was a statistically significant interaction
effect between instructional method and anxiety level, with low- and medium-level anxiety groups
performing better (on average) with discovery-based instruction, while high-level anxiety students
performed better with expository instruction. This is evidence that supports using a variety of
instructional strategies, as different groups of students will respond differently to various
pedagogical approaches.

Although empirical data concerning the relationship between dynamic graphing utility use
and student attitudes toward mathematics is severely limited, there are some indications that there
may be a positive correlation between the two. Hollar and Norwood (1999) found slight positive
effects related to graphing calculator use among college students enrolled in intermediate algebra,
though their results were not statistically significant. Other sources (Ruthven, 1990; Dunham &

Dick, 1994; Smith & Shotsberger, 1997; Hennessy & Dunham, 2001; Idris, 2006) also provide
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anecdotal evidence that lends credence to the possibility for graphing calculator use to improve
students’ engagement with and enjoyment of the subject. Chazan (1999), in discussing his
experience teaching a functions-based approach to algebra supported by technology, observed
that the latter provided a support system for students’ involvement. Hull and Brovey (2004), in
their study using the DGS Geometer’s Sketchpad, found that their students enjoyed using the
computer software more than traditional paper-and-pencil methods. Beigie (2014) and Ebert
(2014), in practitioner pieces about using Desmos, displayed evidence that students were able to
engage with Desmos and went far beyond minimum requirements in completing assignments.
Though far from conclusive, these results are indicative of potential positive effects on student

attitude toward mathematics as a consequence of prolonged experience with using Desmos.

Summary

The existing body of research on graphing calculators is extensive; however, the literature
contains few references to DGUs apart from a few practitioner pieces. While it seems reasonable
to think that a DGU would offer the same benefits to students as a graphing calculator, the added
dynamic features and overall more intuitive user experience may provide powerful advantages as
well. Investigating any differences in student outcomes when using these tools should reveal if this

is in fact the case, and provide direction for future studies.
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Chapter 3 - Methodology

In this chapter, the methods and design of the study will be presented. More specifically,
the instruments used in data collection, the experience gained in conducting a pilot study, and the

implementation in the primary experiment will be discussed.

Data Collection Instruments

There were two primary instruments used for data collection in this experiment, each
intended to address one of the principal research questions. Since the primary goal of the study
was to examine the effects of using a DGU (Desmos) as a support for students’ developing
understanding of algebraic concepts, it was necessary to find an appropriate tool for measuring
this knowledge. In reviewing the relevant literature, the Precalculus Concept Assessment (PCA)
developed by Carlson, Oehrtman, and Engelke (2010) was identified as a viable option and
adopted after careful review. The PCA is a 25-item multiple-choice exam designed to probe for
the “reasoning abilities and understandings central to precalculus and foundational for beginning
calculus” (Carlson et al., 2010, p. 113). Although designed for use in the context of precalculus,
the majority of the items in the PCA are also appropriate for college algebra students, particularly
those focused on aspects of the function concept, rate of change, and interpreting models in
sample applications. A sample of assessment items is included in the appendix, and full details of
the results are provided along with the data analysis. For an example item from the assessment,
see Figure 7.

Central to the reasoning behind developing an instrument like the PCA is the evidence that
emphasizing the importance of procedures, without a simultaneous focus on overall understanding
and coherence, is not an effective means for developing “conceptions that support meaningful

interpretation and use of concepts when solving novel problems” (Carlson et al., 2010, p. 115;
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Hiebert & Carpenter, 1992; Thompson, 1994a; White & Mitchelmore, 1996). The authors

developed the PCA and related taxonomy with a primary motive to “provide useful knowledge
about the central ideas of precalculus that are needed for learning calculus” (Carlson et al., 2010,
p. 119). Through a series of qualitative studies (Carlson, 1997, 1998; Carlson et al., 2002;
Oehrtman, 2008; Oehrtman, Carlson, & Thompson, 2008) and four phases of development, these
reasoning abilities and understandings became part of the PCA taxonomy, the full reproduction of
which can be found in Table 1. This taxonomy also indicates the breakdown of PCA items, which
will be used in data analysis.

Table 1

The PCA Taxonomy

Reasoning Abilities
R1  Process view of function (items 1, 2,4,5,6,7, 8,9, 10, 11, 12, 13, 17, 20, 22, 23)
View a function as a generalized process that accepts input and produces output. Appropriate coordination
of multiple function processes
R2  Covariational reasoning (items 15, 18, 19, 24, 25)
Coordinate two varying quantities that change in tandem while attending to how the quantities change
in relation to each other
R3  Computational abilities (items 1, 3, 4, 10, 11, 14, 16, 17, 21)
Identify and apply appropriate algebraic manipulations and procedures to support creating and reasoning
about function models
Understandings
Understand meaning of function concepts
ME Function evaluation (items 1, 5. 6, 11, 12, 16, 2(0)
MR Rate of change (items 8, 10, 11, 15, 19, 22)
MC  Function composition (items 4, 5, 12, 16, 17, 20, 23)
MI  Function inverse (items 2, 4,9, 10, 13, 14, 23)
Understand growth rate of function types
GL  Linear (items 3, 10, 22)
GE Exponential (item 7)
GR Rational (items 18, 25)
GN  General non-linear (items 15, 19, 24)
Understand function representations (interpret, use, construct, connect)
RG  Graphical (items 2, 5, 6, 8,9, 10, 15, 19, 24)
RA  Algebraic (items 1, 4, 7, 10, 11, 14, 16, 17, 18, 21, 22, 23, 25)
RN  Numerical (items 3, 12, 13)
RC Contextual (items 3, 4, 7. 8, 10, 11, 15, 17, 18, 20, 22)

Table 1. The PCA Taxonomy consists of the reasoning abilities and understandings identified as
being fundamental to success in calculus (Carlson, Oehrtman, & Engelke, 2010).
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The key reasoning abilities identified in the development of the PCA include a view of
function as a process rather than an action, the ability to coordinate the covariation of two
quantities, and certain related computational skills. The taxonomy also includes conceptual
understanding of the meaning of function concepts, representations, and growth rates. Many of
the actual assessment items require students to interpret functions defined verbally or in context
and apply elements of the taxonomy. For example, one item (see Figure 7) asks students to
identify the formula that defines the area of a square in terms of its perimeter, requiring the ability
to recognize the need to invert a familiar function (e.g., p = 4/ to find the perimeter of a square)

prior to composing two functions.

Which one of the following formulas defines the area, 4, of a square in terms of its
perimeter, p?

a) A=’£
16
b) A=si
c) A=—
) 4
d) A=16s"

e) p=4J4

Figure 7. An item from the PCA. The correct response (a) requires students to recognize the need
to invert a familiar function prior to composing two functions. (Carlson, Oehrtman, & Engelke,
2010).

Development of the PCA was motivated by internal research at Arizona State University
(Thompson et al., 2007), which found that less than 30% of students earning a grade of C or
better in university-level precalculus went on to success (A-B-C) in Calculus I. While many of
those who persisted were successful, nearly two-thirds of the precalculus students did not

continue on to an initial calculus course. This is symptomatic of the issues facing STEM education

in general, as many of these students likely left STEM fields. The PCA itself is a valid tool for
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assessing students’ learning of the ideas and abilities identified in the taxonomy, with Cronbach’s
0a=.73 (2010, p. 137) and support from qualitative studies conducted during the development
process indicating that there is overall coherence in the assessment. Due to the complex
interactions among the reasoning abilities and conceptual understandings in question, each PCA
item is associated with multiple taxonomy categories and no two items assess the same
combination. This allows the instrument to remain at a reasonable length (25 items), but also
makes it difficult to establish “meaningful correlations among items” (p. 137) and necessitates
some reliance on the qualitative data conducted during the development process. Nevertheless,
follow-up data using the PCA as a placement test into first-semester calculus (n=248) found that
“T'7% of the students scoring 13 or higher... passed the first-semester calculus course with a
grade of C or better while 60% of the students scoring 12 or lower failed with a D or F or
withdrew” (p. 140). This lends further evidence to the validity and reliability of the PCA as a
predictor of success in calculus, and hence as an assessment of the foundational reasoning
abilities and conceptual understandings identified in the PCA taxonomy.

In order to investigate any changes to students’ attitudes toward mathematics, an
appropriate attitude survey was also needed. The Student Attitude Survey (SAS) developed at
the University of Massachusetts-Dartmouth by Brookstein, Hegedus, Dalton, Moniz, and Tapper
(2011) was reviewed and subsequently adopted. The SAS is a 27 item, 5-point Likert-scale survey
that explores “students’ deeply held beliefs about mathematics and learning of mathematics, as
well as their propensity for sharing private thinking” (Brookstein et al., 2011, p. 1), and was
originally developed as part of an NSF-funded project examining the use of technology (SimCalc
MathWorlds software and curriculum) in 9th grade Algebra 1 classrooms. Slight modifications
were made to the survey to accommodate the present study; since the survey was designed to be

administered to high school students, two items refer to middle school classes and were changed
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to instead reference “previous math classes”. One additional item was added to gather more
information about students’ attitudes about the use of technology in learning and understanding
mathematics. The post-intervention survey also included an optional space for students’ written
comments, which will be discussed along with the survey results in the data analysis. The survey

itself is included in the appendix in its entirety, and a few sample items are reproduced in Table 2.

Table 2

SAS Sample ltems
| think mathematics is important in life. SD |D NU [A | SA
| like math. SD | D NU [A | SA
Using technology helps me understand mathematics. SD |D NU |A | SA

Table 2. Some sample items from the SAS. Here the response choices range from “strongly
disagree” (SD) to “strongly agree” (SA). (Brookstein et al., 2011)

Validity testing of the SAS was conducted as part of the development process at
UM-Dartmouth. To establish concurrent validity, the SAS was compared to the
Fennema-Sherman Mathematics Attitude Scale. This instrument has been extensively vetted over
nearly forty years, and “is regarded as valid and reliable” (Brookstein et al., 2011, p. 2), but
measures different aspects of students’ attitudes toward mathematics and was originally intended
to determine gender-related differences among students. However, the Fennema-Sherman scale
and the SAS share similar items on the dimensions of disposition and confidence related to
mathematics, so it was chosen as a comparison to demonstrate concurrent validity. A sample of
students (n = 139) were given both the Fennema-Sherman survey and the SAS, and one-sample
t-tests were conducted on mean scores of similar test items, with non-significant differences being
interpreted as demonstrations of concurrence between the two instruments. Of six SAS items

compared to items on the Fennema-Sherman survey, three had non-significant differences, and
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those that were significant were “generally small - less than one category (of the five in the scale)’
(p. 3). Furthermore, the authors found that “items related to confidence received the highest level
of concurrence” (p. 2).

The original project for which the SAS was designed hypothesized that “attitudes and/or
motivations of students would change over time... if the SAS could be demonstrated to detect
pre/post changes in student attitudes, it could be said to have predictive validity” (p. 3-4). The
ability to detect such changes is also crucial to the present study, since attitude-related effects of
using a DGU are one of the primary questions under investigation. In order to verify the validity of
the SAS, the developers considered the instrument as composed of four components or
categories of items; namely, positivity toward learning mathematics and school, working
collaboratively and related effect, working privately, and use of technology. For these four
components, Cronbach’s a ranged from .637 to .744 in an initial dataset (n = 408), indicating
some measure of internal consistency and reliability. Furthermore, testing with this initial dataset
showed that the SAS was able to detect changes at the 99% confidence level for two components
(positivity toward learning mathematics and school, use of technology) and at the 90% confidence
level for a third (working collaboratively and related effect). This suggests that the SAS does
indeed possess predictive validity in aggregate, and can be used as a reliable measure of changes
in student attitudes. Brookstein et al. (2011) found a relatively small number of significant changes
to mean scores on SAS items. The authors cite one possible explanation as the short time span
(6-12 weeks) between pre/post tests, arguing that “this is a relatively short amount of time to
expect changes in specific attitudes - results for individual variables may change over longer
periods of time” (p. 4-5). The primary data collection in the present study follows a longer schedule

(approximately 15 weeks), but attitudes and dispositions can be deep-seated and slow to change.
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This will need to be kept under consideration during data analysis, but we can be reasonably

confident that the SAS will detect any changes in attitude that do occur.

The Pilot Study

A pilot study was conducted to test course materials and data collection instruments, the
results of which were then used to inform the design of the primary research program. The
participants in the pilot study were 14 students enrolled in a 5-week summer college algebra
course taught by the primary researcher. These participants came from a wide variety of
academic classifications and major fields of study, with the majority taking the course as a general
education requirement. Students were made aware of their participation in the study and informed
consent was obtained on the first day of class. In addition, students were asked to complete an
attitude survey (SAS) on the first day of class as a pre-intervention measure of attitudes toward
mathematics and technology. Participants responded to this same survey again during the last
week of class to determine any changes in attitudes during the course.

The course itself followed a typical precalculus algebra curriculum, with an emphasis on
function as a unifying concept and multiple function representations (symbolic, graphic, tabular) as
a tool for interpretation and problem solving. A hybrid instructional design was used, with students
expected to prepare prior to class by reading pre-class lesson notes and watching instructional
videos, allowing for in-class time to be spent pursuing active learning opportunities. The 90-minute
class sessions typically included whole-class and small group discussion about mathematical
concepts, small group and individual activities (in the form of worksheets or individual exercises),

and limited direct instruction. Due to the rapid pace of a summer course, the balance among these
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components differed slightly from day to day, but always with the goal of guiding students toward
developing an understanding of the conceptual “big picture”.

Students in the pilot study completed homework and quizzes using the online service
MyLabsPlus, allowing them to receive immediate feedback (in the form of a correct/incorrect
prompt) and limited guidance if desired. They were allowed full access to the Desmos graphing
utility on their personal devices (smartphones, tablets, and/or laptops) in class and for all
assignments, with many students often using Desmos to explore or check aspects of their thinking
during classroom activities. During exams, students worked in a proctored computer lab and were
allowed access to Desmos on the provided desktop computers. Although the core features are
present regardless of the method of access, there are slight differences as a result of the input
methods available on touchscreen devices and personal computers, such as scrolling rather than
“pinching” to zoom or using a physical rather than a digital keyboard. While the author considers
these differences to be negligible for most since they are also present in a typical web browsing
experience, students were encouraged to use Desmos on both touchscreen and non-touchscreen
devices while working on homework assignments in order to mitigate any difficulties in
transitioning to a desktop computer for testing.

Due to the time constraints of a summer course, the PCA was not administered at the
beginning of the pilot study, and so no pre-/post-intervention comparison is possible for the pilot
data. However, students did perform well overall on course assessments. Several questions found
on the final examination were common to the final from the same course in the previous summer,
also taught by the author. Students in the pilot study performed better than their counterparts on
over 60% of these questions, and did no worse than the previous group on nearly 75%. This is

highly anecdotal, of course; the sample size is small (approximately 14 students in each class) and
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there is insufficient background information to draw any substantial conclusions. However, it is at
least an intriguing bit of information and suggests that gains may indeed be possible.

Students were asked to complete the SAS on the first day of class, after the study
parameters and informed consent were discussed. Those opting out of the study were still asked
to complete the SAS for pedagogical purposes, but their responses have been omitted from
analysis. Students were given the survey again during the last week of class. A paired t-test was
used to test the hypothesis that post-intervention scores on the SAS differed significantly from the
pretest scores on each of the 28 survey items. For the pilot data, significant differences (a = 0.05)
were detected on 4 survey items. In particular, item 8, “technology can make mathematics easier
to understand” (#(27) = 0.034), item 26, “when using technology for learning mathematics, | feel
like | am in my own private world” (£27) = 0.041), and item 28, “using technology helps me
understand mathematics” (£(27) = 0.018) showed statistically significant improvement in the
post-intervention responses. On the other hand, item 17, “I receive good grades on math tests and
quizzes” (t(27) = 0.041) showed a significantly lower score in the post-intervention responses.
Although this change ostensibly represents a loss of confidence in mathematics, this may (at least
in part) be due to the natural progression of course difficulty, as well as the breakneck pace of a 5
week summer course.

Although no statistically significant differences were detected in the other 24 SAS items,
differences in pre- and post-intervention mean scores indicate that many students experienced
gains in their interest in mathematics, confidence in problem solving and talking out loud in front of
classmates, and overall valuation of the importance of mathematics in life. Again, these results
were not statistically significant, but do at least suggest movement in the desired direction. In
addition, students were given an opportunity to provide written comments on the post-survey. Few

exercised this option, but one student wrote that they “went from being apprehensive about ever
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doing well at math to considering taking calculus for fun”, indicating gains in this particular
student’s attitude and confidence toward mathematics in general.

The small sample size (n = 14) for the pilot study makes it difficult to draw conclusions
from these data with much confidence. In addition, the short duration (approximately 5 weeks) of
the study may have mitigated some effects that would be more apparent in a longer setting.
However, the overall results are encouraging and suggest avenues of exploration for the primary
data collection. First and foremost, an entry score on the PCA for students participating in the pilot
would have provided an additional dimension of investigation into the effects of using a DGU. As a
result, participants in the primary study were asked to complete the PCA during the first week of
class as well as the SAS. In addition, the pilot study provided an opportunity to develop in-class
activities, including group worksheets and class demonstrations in Desmos. In many cases, these

materials were refined as a result of lessons learned during the pilot study.

Primary Data Collection

For the primary study, two sections of college algebra (approximately 30 students each)
were taught by the principal researcher, with one section serving as the treatment group and the
other as a control. The treatment group made frequent use of Desmos for instruction and class
activities and were allowed to use it for testing, while the control group instead used TI-84-type
graphing calculators. Apart from this difference, students in both sections completed all of the
same assignments and were given the same learning opportunities in class. The two classes were
similar in size and comprised almost entirely of first-semester college students from a variety of
majors. The course served as a sort of middle ground between remedial mathematics and
“standard” college algebra; in particular, students placed into this course, which included some

elements of review and remediation, typically entered the university with slightly lower placement
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scores in mathematics. However, students were asked to complete the same exams and other
assignments as their counterparts in the “standard” college algebra course, with the primary
difference being that classes met four times per week rather than two.

Students in both groups were made aware of the research study on the first day of class,
and their informed consent was obtained at this time. An overview of the study was given to
students in both sections, both verbally and in the consent form. These descriptions did not
mention the use of Desmos or the graphing calculator specifically; the stated purpose of the study
was to “develop theories on students’ conceptual understanding of and attitudes towards college
algebra”. This was done in an attempt to mitigate any biasing in favor of the treatment group.
However, it is highly probable that students in the treatment group became aware of their status at
some point during the course of the semester. This section of approximately 30 students was
alone among ~2000 college algebra students at the university that had sanctioned use of Desmos
for assignments and tests, so it seems safe to assume that these students were aware of the
difference. It is conceivable that the control group did not know the role they played in the study.
On the other hand, all students were made aware of their participation in a research program, so
the Hawthorne effect (French, 1953) must be considered in analyzing the results.

Having obtained the students’ informed consent, participants were asked to complete both
the SAS and PCA during the first week of class. Students were given a full class period (50
minutes) to complete the PCA, and had access to Desmos or a graphing calculator (as
appropriate) if they so desired. Prior to beginning the PCA, students were told that it would
provide a sense of what everyone knew coming into the class and would not be counted for a
grade. Obtaining these course entry data points (for both the SAS and PCA) did require a
substantial time investment during an already hectic first week of class, but the benefits to the final

analysis outweigh the cost. Having pre- and post-course data points for both instruments, as well
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as control and treatment groups that received the same instruction and completed the same

course work, will allow for a much more direct examination of any treatment effects.

Summary

The primary data collection instruments, the PCA and SAS, will allow investigation of the
principle research interests; in particular, any differences in the development of students’
understanding of the concepts central to the college algebra curriculum and any shifts in attitudes
toward mathematics. Obtaining pre- and post-intervention responses on both instruments will
allow for exploration of any changes that occur over the course of the term. Furthermore, the PCA
taxonomy and detailed analysis of the results could indicate any qualitative differences in the type
of skills or reasoning abilities that are privileged by the use of graphing calculator or DGU
technology. In the following chapter, analysis of the study results will be presented alongside

discussion of the consequences.
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Chapter 4 - Results

In this chapter, the collected data and results of the study will be examined. Data analysis
will include discussion of the results of both the Precalculus Concepts Assessment (PCA) and
Student Attitude Survey (SAS), as well as observations about student engagement. As a
reminder to the reader, the primary focus of this study is the effects of a dynamic graphing utility
(in this case, Desmos) on student outcomes. In particular, a treatment group of students using
Desmos as part of instruction and assessment was compared to a control group in a similar
learning environment, with the key difference that these students were permitted only the use of a
TI-84 (or equivalent) graphing calculator. The research questions of primary interest are as
follows:

1. Does using Desmos (rather than a graphing calculator) lead to improvements in college
algebra students’ understanding of the concepts in the course?
2. Does the use of Desmos (rather than a graphing calculator) positively impact college
algebra students’ attitudes toward mathematics?
By analyzing the PCA and SAS results, we hope to gain some indications as to the effects of

DGU use on these aspects of student outcomes.

PCA Results

The PCA was administered to participants in both the treatment and control groups during
both the first and last weeks of class, separated by an interval of about 15 weeks. Students were
given a full class period (50 minutes) to complete the assessment, and were informed that the
results would not affect their grades. During the assessment, students in the control section were
permitted to use a graphing calculator (TI-84 or equivalent), while students in the treatment

section were allowed access to Desmos on their personal devices (smartphones, tablets, or
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laptops) with wireless connectivity functions disabled. The overwhelming majority of items on the
PCA are calculator neutral (Cannon & Madison, 2003); that is, apart from basic arithmetic,
calculator capabilities are unlikely to be of much benefit in completing assessment items. For
example, questions about the graph of a function may be accompanied by the graph, but not a
symbolic representation that could be entered in a graphing utility. As a result, the assessment
tests the reasoning abilities that students have developed related to (for example) graphical
representations without requiring accurate use of the tool. Students’ examinations were scored by
hand, and each students’ responses to individual items were recorded in a spreadsheet. Students
were assigned randomly generated 4-digit identification numbers in order to pair their results, but
this information was stored separately and used only by the primary researcher. Once the results
of the post-test had been recorded, numerical scores were calculated for each student, as well as
a change score found by subtracting each student’s pre- score from their post- score.

Statistical analysis began by computing descriptive statistics and verifying the normality of
each data set. A total of 37 students (17 control, 20 treatment) completed both the pre- and post-
administration of the PCA, so these results formed the primary data. While testing the results for
normality, one outlier was identified that significantly affected the analysis. This score, which came
on the post-test in the treatment group, was nearly 3.5 standard deviations above the mean and
was excluded from analysis. With this result removed, histograms and Q-Q plots were used to
verify that the data were sufficiently normal. Results of the initial administration of the PCA
showed that the treatment group scored higher in the mean than the control group, so an
independent two-sample t-test was conducted to compare PCA scores on the initial assessment
between the treatment and control groups. There was a significant (a=0.05) difference in the
scores for the DGU (M=9.37, SD=2.67) and graphing calculator (M=6.41, SD=3.86) groups;

{(34)=2.697, p=0.011. This suggests that there were significant differences in the two groups
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initially, and more specifically, that the students in the DGU (treatment) group scored higher on the
pre-intervention PCA. As a result of these initial differences in the two classes, analysis of the
end-of-course examination requires care to ensure that any disparity in the groups is not simply

the result of this initial gap. Note that a summary of statistical results is included in Table 3.

Table 3
Summary of PCA Results
DGU (n=20) GC (n=17) t-test results
Pre-
M 9.37 6.41 1(34)=2.697
SD 2.67 3.86 p=0.011*
Post-
M 9.68 7.71 (34)=2.02
SD 2.47 3.39 p=0.052*
Difference:
M 0.32 1.29 {(34)=0.96
SD 3.20 2.89 p=0.344

Table 3. Results of independent two-sample t-tests conducted on the PCA pre- and post-test
results for both treatment (DGU) and control (GC) groups. Mean (M) and standard deviation (SD)
are reported in each case, along with the t-test results.
* denotes significance at the 0=0.05 level.

To get an initial sense of the post-intervention results, an independent two-sample t-test
was conducted to compare PCA scores on the final assessment between the two groups. This
test revealed marginally significant results at the 0=0.05 level; the DGU group (M=9.68, SD=2.47)

showed overall gains and continued to score higher than the graphing calculator group (M=7.71,

SD=3.39), but the difference lies at the edge of statistical significance ({(34)=2.02, p=0.052).
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While the mean score of both groups increased over the course of the semester, greater gains
were seen in the control group mean (+1.29) than in the treatment group mean (+0.32), leading to
a weaker overall result. In an attempt to mitigate any effects from the initial between-groups
difference, a subsequent two-sample t-test was conducted on the change scores, calculated by
finding the difference in each student’s pre- and post- scores. The results of this test indicate that
there was no significant difference in the change score between the treatment (M=0.32, SD=3.20)
and control (M=1.29, SD=2.89) groups; ({(34)=0.96, p=0.344). This lends further evidence to
suggest that the graphing utility used by the students in the two groups -- the DGU Desmos or the
graphing calculator -- did not significantly impact the development of the knowledge and reasoning
skills needed for the participants to score well overall on the PCA. Analysis of covariance
(ANCOVA), which is robust against preexisting differences in groups and reduces within-group
error variance, was administered as an additional check on these findings. In particular, a one-way
ANCOVA was conducted to determine if there was a statistically significant difference between
the DGU and graphing calculator groups on the end-of-course PCA scores, controlling for
beginning-of-course PCA scores. There was no significant effect of the type of graphing tool used
on end-of-course PCA score after controlling for beginning-of-course PCA score; F(1, 33)=0.407,
p=0.528. This further supports the conclusions drawn above; although the mean scores of both
groups improved over the course of the semester, there was no significant difference in the
amount of improvement between the two groups.

In the process of organizing and analyzing the data, a gender disparity emerged among
the participants in the treatment group. In the control group, the mean pre-post change score was
very similar for both female and male students (+1.5 and +1 points, respectively). However,
among the treatment group, the mean change score for female participants, excluding the

aforementioned outlier, was over 3 points higher than that of the male participants (+2.1 and -1
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points, respectively). This may indicate that some aspect of working with Desmos holds greater
benefits for female students, but additional research will be needed to explore this possibility. Once
the already-small sample has been subdivided by gender, there are simply too few data points for
any meaningful conclusions. Nevertheless, these observed gender differences could serve as a
guide for future research and provide an interesting direction for investigation.

To better understand any differences in the two groups, the results of individual
assessment items were compiled and compared. Since each item on the PCA is multiple choice,
counting the number of students choosing each answer option and comparing pre-/post- results
between the two groups may uncover any distinction in the way that participants’ reasoning skills
developed in the course of the study. In order to obtain this data, the number of responses for
each answer option on both the pre- and post-test were used to calculate a delta score
representing the change in number of participants choosing each answer option from the pre-test
to the post-test. Of particular interest is the change in the number of correct responses; for brevity,
this will be denoted as “ACR”. For example, on Iltem 1 there were three more correct responses
on the post-test than on the pre-test among the control group participants, so ACR for this item in
the control group is +3. As a means of comparing the two groups, the difference in ACR scores
between the treatment and control groups is of primary interest. While there were relatively few
PCA items for which these ACR scores differed substantially, there were five items that were
found to have a difference of 4 (>10% of total respondents) or more points. These are

summarized in Table 4.
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Table 4

Comparison of ACR Scores for Treatment and Control Groups

Group Item 2 Iltem 10 Item 17 Item 19 ltem 25
Control -6 -4 +2 -4 +3
Treatment +2 0 -2 +1 -3
Difference +8 +4 -4 +5 -6

Table 4. There were five PCA items whose ACR score showed a difference (T-C) of 4 or more
points, indicating that one group improved or maintained better than the other on these items, but
not necessarily that the actual number of correct responses differed.

There are three PCA items for which the treatment ACR was at least 4 greater than that
of the control group: Items 2, 10, and 19. On the other hand, Items 17 and 25 showed a difference
of at least 4 in favor of the control group. Referring to the PCA Taxonomy (see Table 1, chapter 3)
allows for a close examination of the implications in terms of the reasoning abilities and
understandings demonstrated by these responses. The reasoning abilities -- process view of
function, covariational reasoning, and computational abilities -- assessed by these items do not
demonstrate a marked difference between the two groups; the variance in ACR scores consists of
instances where each group outperformed the other on each of these three reasoning abilities.
However, the types of understanding measured by the PCA -- those related to the meaning of
function concepts, growth rates of function types, and function representations -- do indicate that
there may be some difference in the development of the two groups. The items on which the DGU
group attained a higher ACR score indicate that their understanding of rate of change, function
inverse, and graphical representations may have been improved or maintained better than that of

their counterparts in the graphing calculator group. On the contrary, the graphing calculator group
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demonstrated more improvement on items related to function composition and algebraic
representations than did the DGU group. Once again, the small overall sample size and relatively
small differences in ACR scores prohibit any strong inference, but may provide direction for future
research.

The PCA results do not indicate a significant difference in the impact of the type of
graphing utility used for the course between the two groups. Although there was a statistically
significant difference on the pre-test and a marginally significant difference on the post-test,
controlling for the initial disparity in the two groups suggests that the gains made by the
participants over the course of the study were essentially the same for both groups. The results of
other assessments, including common computer-based and written comprehensive examinations
taken at the end of the term, lend more evidence to this conclusion; there were no significant
differences between the scores of the two groups on either of these assignments. As detailed
above, analysis of the PCA results suggest that students in the DGU group may have developed
stronger graphical reasoning skills than those using only the graphing calculator. On the other
hand, students in the graphing calculator group may have exited the course with a better
understanding of algebraic representations. This difference in student outcomes may be due in
part to the nature of working with these tools; while Desmos accepts input in nearly any form, the
graphing calculators used by the control group require students to enter expressions as “y=". As a
result, some initial symbol manipulation is often required of students, and in certain situations
students may choose to apply algebraic (rather than graphical) methods instead. This could lead
to these students becoming more familiar with algebraic representations. On the contrary, the
relative ease of working with Desmos, as well as the larger and more visually accurate graphical
depictions that it produces, likely contributed to students in the DGU group developing stronger

graphical reasoning skills. Again, the evidence here is far from conclusive; however, it does point
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the way for future research and suggest some possible differences in the types of reasoning
abilities supported by the graphing calculator or DGU.

An unexpected result that emerged in the process of analyzing the data was that although
mean PCA scores increased for both groups, this increase was not significant at the 0.05 level for
either group. Paired two-sample f-tests were conducted on pre- and post-test PCA scores for
both the DGU and graphing calculator groups in order to determine the effects of the course as a
whole on the types of understanding assessed by the PCA. Neither group improved their PCA
scores by a significant (a=0.05) amount over the course of the term. The overall results of the
course in terms of student performance were not unusual; grades were similar to the population of
college algebra students in the same cohort, and there is no reason to think that the performance
of study participants on assessments and in final course grades was anything but typical. This
suggests that the typical college algebra curriculum, regardless of technological support available,
does not foster the development of the types of skills and reasoning abilities assessed by the

PCA.

SAS Results

The version of the SAS used in this experiment is a 28 item, 5 point Likert-scale
questionnaire that explores aspects of students’ attitudes toward mathematics and technology.
Participants were asked to complete the SAS once during the first week of class, and again during
the last week, with an interval of about 15 weeks separating the two. Both pre- and post- surveys
also included a prompt and space for students’ written comments, though few students took
advantage of this opportunity. Each time the SAS was administered, participants were given about
15 minutes to complete the survey. As a result, it was much more feasible to obtain SAS results

from students who were absent when it was given; they could easily complete the survey in a few
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minutes before or after the next class. Making up a missed PCA would require a significant time
commitment on the part of the student, and furthermore would need to be done within a day or
two of the scheduled administration in order to be consistent with the rest of the data.
Consequently, no examinations were completed in this way. Thus the final data set, which consists
only of those students who completed all four instruments, was driven largely by the PCA
response rate. In addition, there were three individuals who completed the four instruments but
did not consent to have their results included in the research study at the beginning of the
experiment. Once again, student responses were paired using randomly generated identification
numbers. To conduct analysis of the results, survey responses were coded using a 0-4 scale, with
0 representing “strongly disagree” and 4 representing “strongly agree”.

The initial phase of data analysis involved examining the results of the SAS administered
during the first week of class. Participants’ individual responses to each survey item were
recorded numerically, using the 0-4 scale previously described. In order to analyze the data in
aggregate, the mean response was calculated for each survey item among each of the two study
groups. This created two sets of 28 data points, with one datum for each item on the SAS (28
total) and one set for each of the treatment and control sections. To analyze the initial data, a
two-sample paired f-test was conducted to determine if there were initial differences in SAS
responses between the treatment and control groups. The results of this test indicate that there
was no significant (a=0.05) difference between the two groups on the initial SAS iteration;
1(27)=0.28, p=0.78. This suggests that there were no statistically significant differences in the
initial SAS responses between the two groups. It should be noted that a paired t-test was used
here due to the nature of the data sets; in particular, a given entry in each set corresponds to the
same SAS item, so pairing the data restricts the test to differences in the mean responses in an

item-by-item fashion. These test results support the hypothesis that the participants did not differ
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significantly in the aspects of attitude toward mathematics measured by the SAS at the beginning
of the course.

A similar strategy was applied to analyze the data obtained from the second
administration of the survey, completed by the participants at the end of the semester. Again,
mean responses were calculated for each survey item within each of the two study groups. These
data sets were used to conduct a two-sample paired t-test to determine if there were
between-group differences in SAS responses at the end of the course. This test revealed that
there was a significant (a=0.05) difference in the two groups on the post-test; {(27)=2.38, p=0.02.
Since the initial SAS results failed to indicate any distinction between the DGU and graphing
calculator groups in the aspects of attitude toward mathematics that are measured by the survey,
it is reasonable to suppose that the contrast in the two groups that developed has some relation to
the difference in participants’ experiences over the course of the semester. This is a complicated
issue; each individual will have a unique set of experiences, perceptions of those experiences, and
subsequent developments related to mathematics (see, e.g., Piaget, 1972). The current
experiment was designed with the intent to control as many factors related to the course itself as
possible; participants in both treatment and control groups completed the same assignments,
assessments, and classroom activities. Since the primary difference (at the group level) in the two
groups is the type of graphing utility in use, it is likely that this was a contributing factor to any
observed differences in the groups on the end-of-course SAS.

The mean responses of several survey items did not differ much from pre- to post-test, so
analysis was conducted to determine which individual items changed over the course of the
semester. For each survey item, a paired two-sample t-test was conducted to determine if there
were significant differences in participants’ responses on the initial and final administration of the

SAS within each of the two study groups. Missing responses were replaced with the mean for that
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item. The results of these tests are summarized in Table 5, which includes summary statistics and
t-test results for those items with a statistically significant difference. The column labeled “AM”
shows the change in mean score from pre- to post-test, and was calculated by subtracting the
former from the latter.

There were a total of nine items that showed a statistically significant (a=0.05) difference in
the initial and final SAS results for one or both groups. Of those, four were significantly different in
both groups, while the other five differed for only one group. The four items common to both
groups (items 3, 5, 20, and 22) all relate to social components of learning: preference for working
alone or in groups, perception of how well the respondent learns on their own, and attitude
towards listening to the ideas of peers. The results of all of these items suggest that the
participants grew to view group work in mathematics less favorably in the course of completing
this class. As mentioned previously, group activities were a regular feature of class sessions, and
in addition, students were required to complete one out-of-class group project during the second
half of the term. For the project and majority of in-class activities, students chose their own
partners (typically groups of 3-4); however, the out-of-class project in particular can be taxing for
students and it has not been uncommon historically for friction to arise within groups. This may
have influenced responses to these items to some degree, as there was a relatively short interval
between the project due date and the second SAS administration. In addition, item 12, which asks
about group activities outside of school, differed significantly from pre- to post- for the treatment
group only. These participants’ responses to the statement “I do not participate in many group
activities outside of school” at the end of the course were more neutral than at the beginning of the

course, when the mean response fell near the “disagree” option.
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Table 5

Significant Results of Paired t-tests by Group

ltem  Group M (pre-) SD (pre-) M (post-) SD(post-) AM p
2 T 2.52 1.12 3.00 1.13 +0.48 0.02**
C 2.36 0.90 2.73 0.98 +0.36 0.10
3 T 1.43 0.84 2.48 1.16 +1.04 0.00*
C 1.18 0.73 2.05 1.17 +0.86 0.01*
5 T 1.48 1.04 2.74 1.14 +1.26 0.00*
C 1.41 1.37 1.95 1.09 +0.54 0.01*
8 T 2.61 0.84 2.65 1.40 +0.04 0.88
C 2.55 0.74 3.00 0.93 +0.45 0.02**
12 T 1.17 0.98 1.78 1.09 +0.61 0.02**
C 1.27 0.83 1.50 0.91 +0.23 0.26
15 T 2.35 1.19 2.48 1.20 +0.13 0.48
C 1.68 0.99 2.18 1.10 +0.50 0.00**
16 T 1.83 1.27 2.27 1.05 +0.45 0.05**
C 2.59 1.14 2.68 1.21 +0.09 0.69
20 T 2.61 1.03 1.91 1.08 -0.70 0.01*
C 2.59 1.05 2.09 1.1 -0.50 0.02*
22 T 2.91 0.60 2.43 0.95 -0.48 0.02*
C 2.82 0.80 2.05 1.09 -0.77 0.00*

Table 5. There were a total of 9 SAS items with a statistically significant difference in scores from
the pre- to the post-test in one or both groups. Mean (M) and standard deviation (SD), as well as
change in mean (AM) are reported.

* denotes statistical significance at the a=0.05 level.

** denotes statistical significance at the a=0.05 level in one group only
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Two other items differed significantly from the beginning to the end of the term in the
treatment group only. Both of these (items 2 and 16) deal with students’ past experiences in
mathematics classes and may indicate a shift in perception. There were also two items (8 and 15)
for which the post-test responses differed significantly from the pre-test in only the control group.
Item 15, which concerns students’ confidence in their ability to solve mathematics problems,
exhibits growth in mean response in both groups; however, this difference was statistically
significant for only the control group. Similarly, the post-test results for item 8 showed growth
among both groups, suggesting that both groups experienced gains in their perception that
technology can make mathematics easier to understand, although in the treatment group these fell
short of statistical significance.

The survey items found in the SAS can be grouped into four factor categories that
describe the components of student attitude measured by those items: positivity towards learning
mathematics and school (deep affect), working collaboratively and related effect, working privately,
and use of technology (Brookstein et al., 2011). To analyze differences in the two groups across
these factors, the change in mean response scores from the pre- to post-survey was calculated
for each survey item among all participants in both groups. These change scores were then used
to find the difference in change in the two groups, calculated by subtracting the change in the
mean response among the control group from the change in mean response among the treatment
group. For example, on item 1 (“I think mathematics is important in life”), the mean response in the
control group decreased by 0.045 from the pre- to post-test, while the treatment group’s mean
response increased by 0.083, giving a total difference of 0.13. Once these differences had been
calculated for each item in the SAS, items were grouped according to the four factors for analysis.
The items related to each factor can be found in Table 6, and a copy of the instrument used in the

study can be found in the appendix.
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Factor

Survey ltems

Positivity towards learning mathematics and

school (deep affect)
Working collaboratively and related effect
Working privately

Use of technology

1,2,6,7,13,14,22,23

4,11,12,15,16,17,18,19,21,24

3,5,10,20

8,9,25,26,27,28

Table 6. The 28 items on the SAS correlate to four components of student attitude.

Responses to the items corresponding to positivity towards learning mathematics and
school (deep affect) do not indicate major shifts in student attitude. Of these items, one (item 22)
was significantly different from pre- to post- in both groups, while one other (item 2) was
significantly different in only the treatment group. Considering the change in mean response from
pre- to post- among the items related to this attitude component suggests that respondents in the
control group tended to fare better in overall attitude towards school (item 13) and mathematics
(item 14) in general. On the other hand, mean responses for those in the treatment group were
more favorable regarding the importance of mathematics in life (item 1) and personal interest in
the subject (item 23). This presents a somewhat convoluted picture; participants in the treatment
group indicated enjoying mathematics less but being more interested in the subject, while the
responses of their counterparts in the control group suggest the converse. Both groups appear to
have grown more anxious about school (item 6) in the duration of the course, although it may be
worthwhile to remember that nearly all of the participants were first-semester college students, so

some anxiety about one’s first round of final examinations may be expected.
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As previously discussed, many of the largest changes in students’ responses were on
those items related to working collaboratively or privately when learning mathematics. In
particular, mean responses to items 3, 5, 12, 15, 16, and 20 all differed significantly from pre- to
post-test, and each of these items relates to the working collaboratively or working privately
attitude components. This evidence consistently suggests a negative trend in participants’
inclination towards group work and an increase in preference for working individually. Even among
those items whose pre-/post- differences were only statistically significant in one group or the
other, the direction of change is consistent across both groups and indicative of this same trend.
Iltem 15, which concerns student confidence, shows that while mean confidence levels increased
for both groups, the increase was significantly more pronounced among the control group. While
the general increase in confidence across both groups is encouraging, future studies involving the
use of a DGU should attempt to discern how or why it relates to changes in student confidence,
and develop strategies for addressing these differences.

Items related to the use of technology were relatively consistent from pre- to post-test;
among these, only one (item 8) had significantly different responses at the end of the course, and
this in the control group only. This item concerns student perceptions about the ability of
technology to make mathematics easier to understand. There was a slight increase in the mean
response for this item in both groups, but it was more pronounced in the graphing calculator group
(AM=+0.45) than the DGU group (AM=+0.04). Among the other items related to this component
of attitude, there are again some conflicting indications. Mean scores for items 26 and 28
increased more in the treatment group, suggesting that these students developed a stronger
sense that technology use helped them to understand mathematics, while also experiencing
feelings of being in their “own private world” when using technology. Meanwhile, the responses of

students in the control group increased on item 27, indicating that these students became more
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comfortable using technology as part of class. It is possible that some of the conflict observed in
these responses is due to some unintended ambiguity in the wording of survey items. Although
disparities between the use of a DGU and graphing calculator are the primary focus of the study,
the students also spent a significant amount of time working with an online learning management
system (MyLabsPlus) to complete homework, quizzes, and tests. It is entirely possible that some
inconsistencies exist in how individual respondents interpreted survey items about technology;
participants could be thinking primarily of the graphing utility, the learning management system, or
some conflation of the two in response to the term “technology”. In future studies, care should be
taken to refine these findings by using more specific language.

There are several considerations that must be taken into account in interpreting these
results. Although the present study was conducted over the course of a 16-week semester, this is
a brief period of time relative to the participants’ years of prior experience with school in general,
and mathematics in particular. Students’ previous experiences with mathematics will invariably
have an influence on attitudes towards the subject, and the beliefs, perceptions, and feelings that
are the result of these prior experiences can be deep-seated and slow to change. In light of this
fact, it seems unlikely that attitudes will change significantly in the span of a single-semester
course. It is possible that some of the participants also had previous experience with graphing
calculators. No data was collected to determine the frequency with which this occurred, but
graphing calculator use is common in U.S. secondary classrooms and has been for some time.
Hennessy and Dunham (2001) argue that technology use can ease negative attitudes, but is more
likely to produce lasting change when employed over a long period of time. Therefore it is
conceivable that for a student with years of experience using a graphing calculator, a few weeks’

worth of contact with a DGU may result in only minor relative changes.
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Student Engagement and Perception

Although not a primary focus of the present study, student engagement is also an
important consideration in regards to technology use in the classroom. There is some evidence to
suggest that the DGU group was more engaged with the technology than those in the graphing
calculator group. As part of an out-of-class project, students in both classes were required to
complete an art project in which graph transformations, domain & range restrictions, and familiar
function types were used to “draw” a picture. The minimum requirements given to students for this
project were that at least three different types of functions (or other relations) must be used, and
that projects should include no fewer than fifteen individual pieces. As one might expect, many
students stayed close to these necessary conditions; however, students using Desmos went
beyond the minimum requirements more frequently than their counterparts in the graphing
calculator group. On average, students in the DGU group used over three more graphs than those
in the graphing calculator group (mean 24 and 20.96, respectively) and the median number of
graphs used in the DGU group was higher than in the graphing calculator group by four (median
20 and 16, respectively). While this is far from conclusive, it may indicate that working with a DGU
presents a more engaging experience for students. Additional research is needed in this area
before anything can be inferred with confidence, but it does present an additional dimension to
consider.

Students’ perceptions of the tool may also contribute to its overall effects. To gather
information about the way students perceived using a DGU or graphing calculator and the course
in general, the SAS included a prompt for any written comments. Unfortunately, few students
exercised this option; however, one student did write that “the inclusion of technology in this
course is the only reason that | was successful”. This appears to indicate that this particular

student did feel that technology use throughout the course was beneficial, but may also suggest
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that the student had come to depend on the technology. The design of course materials included
some measures to safeguard against over-reliance on technology (e.g., requiring students to find
exact solutions in terms of radical or logarithmic expressions, or interpreting a solution in context),
but it still presents a concern. Another student commented that Desmos “really helped me
visualize the problem, and therefore the answer”. This supports the findings of previous research
related to the development of visualization skills when using technology (e.g, Quesada & Maxwell,
1994; Smith & Shotsberger, 1997), and lends evidence to the idea that the graphical advantages

that Desmos holds over the graphing calculator may contribute to this development.

Summary

Overall results of the PCA do not indicate significant differences between students using
the DGU and those using the graphing calculator. Although the treatment group achieved higher
mean scores on both the pre- and post-tests, there was not a statistically significant difference in
the two groups. However, detailed item analysis suggests that there were differences in the types
of skills and reasoning abilities that students developed while working with one tool or the other.
The results of the SAS indicate a marked negative trend in students’ attitudes toward working in

groups, but findings related to other dimensions are less clear.
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Chapter 5 - Summary and Conclusions

In order to explore any differences in student outcomes as a result of using a DGU rather
than graphing calculator, two groups of college algebra students were allowed to use one type of
graphing utility in different sections of the same course, taught by the same instructor, and using
the same course materials and assessments. One group (treatment) was allowed to use the DGU
Desmos for tests and other assessments, and encouraged or required to use it as part of
instruction and other in-class activities, while the other (control) group was allowed the use of a
graphing calculator (TI-84 or equivalent). These students were asked to complete research
instruments at the beginning and end of the 16-week term to collect data pertaining to the primary
research questions:

1. Does using Desmos (rather than a graphing calculator) lead to improvements in college
algebra students’ understanding of the concepts in the course?
2. Does the use of Desmos (rather than a graphing calculator) positively impact college
algebra students’ attitudes toward mathematics?
In this chapter, the results of the experiment (as detailed in chapter 4) are summarized briefly. In
addition, the implications of these findings, limitations of the present study, and directions for future

research will be discussed.

Summary of Results

The Precalculus Concept Assessment (PCA) developed by Carlson, Oehrtman, and
Engelke (2010) was used as a means of measuring the development of participants’
understanding of algebraic concepts. This instrument was administered twice during the term -
once during the first week of class, and again a few days prior to the final exam - with an interval

of about 15 weeks separating the two. Comparing the pre- and post-test PCA results showed that
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while mean scores of both groups improved, there was not sufficient evidence to conclude that
this change was statistically significant within either group. Furthermore, after controlling for the
initial disparity at the beginning of the term in the two groups, there was no significant
between-groups difference detected in the amount of improvement; that is, mean scores in both
groups improved by the same amount, speaking statistically. Although the small sample size
discourages over-reliance on inferential statistics, the lack of a pronounced difference between the
groups suggests that the type of tool used did not significantly impact overall performance on the
PCA. It is interesting to note that the largest gains in PCA score from pre- to post-test occurred
among female students in the treatment group. Once subdivided by gender, the samples are
much too small to draw any conclusions, but this would appear to support the hypothesis of prior
research (e.g., Ruthven, 1990; Dunham, 1990) that the feedback and exposure to graphic
representations provided by a graphing utility may be likely to improve the performance of female
students relative to their male counterparts. It is possible that some dimension of working with a
DGU amplifies this effect, but additional research is required to better understand these
phenomena.

Although the overall effects of DGU use on PCA scores were not markedly different from
the graphing calculator group, distinctions emerged in the type of skills and reasoning abilities that
students in each group developed. These may be indicative of relative strengths and weaknesses
of using each tool as a support for students’ developing understanding of the core concepts in the
college algebra curriculum. While those students in the graphing calculator group improved more
on items related to symbolic representations and function composition, the DGU group showed
greater gains on items involving rate of change, function inverse, and graphical representations
(see Table 4, chapter 4). The observed differences in symbolic and graphical representations may

stem from the nature of working with these graphing utilities; in order to graph with a graphing
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calculator, some initial symbolic manipulation is often required whereas Desmos is capable of
accepting many forms of input, including implicitly defined functions. On the other hand, Desmos
provides graphical representations that are more visually appealing as a result of higher display
resolution, color graphics, and intuitive interaction (e.g., pinch-to-zoom). Differences in the
concepts that appear to have been privileged will require additional research to fully explain.
However, the rate of change items could be related to dynamic features of Desmos such as
sliders, since these students had the opportunity to see function values and secant lines in motion,
while those using the graphing calculator did not.

To measure changes in students’ attitudes toward mathematics, the Student Attitude
Survey (SAS) developed by Brookstein, Hegedus, Dalton, Moniz, and Tapper (2011) was
administered to participants at the beginning and end of the course, approximately 15 weeks
apart. In addition to the 28 Likert-scale items on the SAS, a prompt for written comments was
included, though regrettably few exercised this option. Student responses were recorded using a
0-4 scale (“strongly disagree” to “strongly agree”, respectively) and results of the pre- and
post-intervention surveys were paired for each individual student. Statistical analysis in the form of
a two-sample paired t-test indicated that there was no significant difference in the initial mean
responses between the two groups, suggesting that it is reasonable to assume that the students in
each group entered the class holding comparable attitudes on the dimensions measured by the
SAS. However, a similar test revealed statistically significant between-group differences on the
post-test, indicating that some factor or factors experienced by the students in the course of the
term caused attitudes among the two groups to shift in different ways. Subsequent paired t-tests
were used within the groups to determine which survey items changed over the course of the

semester, resulting in a total of nine items for which the pre- to post-test change was significant.
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Four of these were significantly different within both groups, while the other five showed a
significant change in only one group.

The most consistent findings obtained from the SAS results were on those items related to
working collaboratively or privately in mathematics. These results were indicative of a marked
negative trend in participants’ attitudes toward working in groups and an increase in preference for
working individually. This was somewhat surprising, as students regularly worked in groups as
part of in-class activities and there were no obvious indications in the classroom about any ill
feelings toward group work. However, a group project, which required research, writing, and
collaboration outside of the classroom and took place in the latter part of the term, may have
contributed to these results. Other findings showed evidence that the control group experienced a
larger gain in confidence related to their ability to solve mathematics problems and perceived that
technology can make mathematics easier to understand, while participants in the treatment group
may have experienced a shift in perception about mathematics classes. Items related to
technology were largely inconsistent; while one item may show larger gains for one group than the
other, the next item may indicate the opposite. This could be the result of non-specific language in
the item prompts as a consequence of the presence of multiple technologies within the course;
students not only used the graphing calculator or DGU, but also interacted with an online learning

management system to complete course assignments.

Implications of Findings

The overall results of the PCA do not give a clear sense of one tool being inarguably better
than the other. However, this should not come as a surprise; the history of mathematics education
presents a compelling argument against the existence of any cure-all. Instead, educators should

attempt to better understand the tools and methods available so that they may be effectively
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employed. A closer examination of the results shows that the type of tool used by the students --
the graphing calculator or a DGU like Desmos -- may have an impact on the type of reasoning
abilities and skills that students develop. In the current study, participants using Desmos appear to
have experienced more growth related to working with graphical representations, rate of change,
and function inverse. On the other hand, those students limited to using only the graphing
calculator showed more improvement on items related to symbolic representations and function
composition. With these differences in mind, it may be possible to adjust pedagogy and curriculum
in future courses to both embrace the strengths and curtail the weaknesses of either tool.

The results of the SAS also fail to reveal a clear distinction between the graphing
calculator and Desmos. The most consistent indications from the SAS results across both groups
suggest that the students’ attitudes toward group work and collaboration suffered during the
course of the term, but this is more closely related to course design and pedagogy than the type of
technology in use. The control group did show significant improvement on item 15 (“| feel
confident in my abilities to solve mathematics problems”), but the mean score for the treatment
group also improved on this item and due to initial differences between the groups, the post- score
for the treatment group was still slightly higher (2.48) than that of the control group (2.18). Survey
items related directly to technology present some inconsistent information about this component of
student attitudes; while some items (e.g., item 8) suggest that the graphing calculator may be
more advantageous, others (items 25, 28) appear to indicate that using Desmos has a greater
positive impact. The relatively short duration (16 weeks) of the study may have been a contributing
factor to the slight overall changes in SAS results. Attitudes tend to be deeply entrenched and
slow to change, so a single semester may be too short a time for many significant differences to
appear. However, the results of this study do provide some information about the effects of

technology on student attitudes, and also the impact that emphasis on group work had on these
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students. These findings can be a valuable asset to inform the design of follow-up studies,
particularly as it relates to measuring aspects of student attitudes.

There is also reason to believe that working with Desmos may provide a more engaging
experience for students than approaches that rely on the graphing calculator. The results of the art
project described previously, as well as those of similar projects (Beigie, 2014; Ebert, 2014) and
anecdotal evidence from this and previous classes, suggest that some students prefer Desmos to
the graphing calculator. Additional research is needed to further explore this hypothesis. For many
students in a course like college algebra, engagement and interest in the material can be an
ongoing source of struggle. However, if using a DGU can be shown to facilitate improvements in

student engagement, there would be strong motivation to adopt such utilities on a wider basis.

Limitations of the Study

There are some limitations with the present study that must be considered when
interpreting these results, and that may provide direction for future research. First of all, the small
sample size discourages us from relying too heavily on the results of inferential statistics. While the
findings do provide some information about possible differences in student outcomes when using
a DGU as compared to a graphing calculator, further research is needed to explore these initial
indications in greater detail. Additional data could provide a more complete picture of the effects
that intentional and prolonged DGU integration has on students. Subsequent research should
strive to expand the data set not only in terms of the number of participants, but also by collecting
additional types of information. The PCA is a multiple-choice instrument and the vast majority of
student work in the course was done using an online learning management system, so there are
very few artifacts that could be used to examine students’ thought process in problem solving.

Looking closely at student work could provide some useful insight, but the research instrument
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requires some modification to collect this type of information. Student interviews or think aloud
sessions would also contribute valuable data about student thinking to future study. Items related
to the use of technology on the SAS lack specificity that may have caused confusion for
respondents, as they regularly interacted with both graphing technology (in the form of the
graphing calculator or Desmos) and the learning management system. There were also very few
written comments or responses to working with the graphing utilities, which could have provided
valuable information about students’ perceptions. Follow-up interviews with students might yield
additional data that would clarify survey responses.

Other limitations concern the course itself, rather than the research instruments. Although
this study was conducted for a full 16 week term, the timeframe is arguably still short relative to
students’ prior experiences with mathematics. Graphing calculator use is commonplace in school
mathematics in the United States, so it is not unreasonable to assume that many college algebra
students will have several years of experience using a graphing calculator prior to entering the
course. It is also entirely possible that some students may have had previous experience using
Desmos or other graphing tools. In future studies, survey data about students’ prior use of
graphing utilities can be collected to address this uncertainty. Attitudes can be slow to change, and
it may be the case that these previous experiences had some effect on the observed student
outcomes. Presenting another source of restraint is the design of the experiment itself. In an
attempt to make the comparison of the treatment and control groups as straightforward as
possible, Desmos was used almost exclusively as a graphing calculator replacement. While there
are important differences from the graphing calculator in this regard (e.g., sliders, higher screen
resolution), it also restricts the use of some other features that may be beneficial for students. The
Desmos activity builder, which allows one to create self-paced, guided activities for students and

view the results of graphing exercises and writing prompts, presents an opportunity for building
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student engagement. However, because this does not translate well to paper for a more
traditional classroom environment, it was employed only once during the course. Conceivably,
using Desmos to its full potential by introducing more nontraditional items into the curriculum could

further differentiate it from the graphing calculator.

Future Research

The results of this study, as well as the experiences gained in conducting the experiment,
have provided a great deal of information to guide the direction of future research. The PCA
provided insight into learning outcomes and revealed possible differences in the type of reasoning
abilities developed by students in the two study groups. However, as a consequence of its
multiple-choice format, it does not encourage students to show work or produce artifacts of their
thinking apart from the answer choice. In the future, augmenting the PCA results with
open-response items could provide fertile ground for studying students’ problem solving strategies,
symbolic skills, and organizational methods. Modifying the curriculum to include more
nontraditional assessments and decrease the emphasis on computer-based homework problems
(often devoid of context and evaluated on an all-or-nothing basis) would also give a more detailed
picture of how these technologies are impacting student learning. The literature related to
graphing calculator and computer use in the classroom repeatedly cites the potential benefits of
students using the technology to conjecture, check, and refine their thinking; the dynamic features
of Desmos (e.g., sliders) make this process even more straightforward, so introducing more
opportunities for students to “play” could lead to changes in student outcomes.

Attitude outcomes could be explored in greater detail by collecting not only additional SAS
data, but also by refining the survey items and gathering a wider variety of evidence. Survey items

related to technology do not specify the type of technology to which they refer, which may have
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resulted in students responding to these items in an inconsistent fashion. Carefully phrasing these
items to clearly reflect the research questions could alleviate this problem. Subsequent research
should also supplement SAS results by collecting more qualitative data, such as written responses
and records of student interviews. Although the version of the SAS used in this study included a
prompt for students’ written comments, it was used very infrequently. More deliberate attempts to
gather information about the way students perceived using a DGU or graphing calculator, in the
students’ own words, could provide valuable insight into how and why students use graphing
utilities, and shed light on any differences experienced by those using each tool.

Anecdotal evidence, both from this study and previous experience using Desmos in the
classroom, indicates that it may provide a viable tool for engaging students in doing mathematics.
Gathering data to explore this should be a higher priority in any future research, which will require
developing methods to study this aspect of students’ interactions with the technology. Some of
these questions may be answered by gathering qualitative data such as written or interview
responses from students, but additional information may be needed as well. Classroom
observations by a third party are a potential source of evidence, as are nontraditional assessments
in the same vein as the art project used in the present study. These measures may also provide
more information about the indications that participants experienced a negative trend in those
attitude components related to working collaboratively, and allow subsequent studies to determine
what factors may have caused this apparent shift in favor of working individually.

Although the current sample is too small to make conclusive inferences, the observed
gender differences could be indicative of larger forces at play. Gender disparity in STEM fields is
well documented (e.g., Landivar, 2013), so research that may contribute to improving the
experience of female students in mathematics is worthwhile. Future studies could be conducted

with the goal of further exploring the gender differences observed in the current project.
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Considering possible gender disparity as part of the experimental design, and intentionally seeking
information about the differences in the experience of female and male students while learning
mathematics using a DGU, could yield valuable findings to help narrow the gender gap. More
research is needed, but these preliminary results suggest that this may be a viable avenue of
future study and is deserving of further attention.

The biggest question in any small-scale study is how well it can be replicated or
generalized to other situations. Although the size of the current sample discourages any strong
conclusions, it has provided useful direction for developing further research. In future studies, a
research program should be implemented across multiple sections of a course taught by
instructors not directly involved in the research design. This would allow for the principal
investigator(s) to observe classroom interactions and gather field data, providing an opportunity for
a more detailed analysis of students’ day-to-day classroom usage of the technology. Such a
program would not necessarily need to be limited to college algebra; since the function concept is
central to the curriculum through the calculus sequence, the use of a DGU could be applicable to
students in precalculus or calculus courses, as well as translating well to algebra in the 9-12
setting. By expanding the scope of the research beyond the classroom of a single instructor and
course, a more comprehensive body of data could be collected that would allow for a stronger

indication as to the efficacy of using a DGU such as Desmos.

Summary

The goal of this study was to explore any potential differences or advantages to using a
dynamic graphing utility as a replacement for the graphing calculator in college algebra. The study
was conducted in two sections of college algebra at a four-year public university in the southern

United States over the course of a 16-week semester. These two classes were randomly



85

assigned as the treatment and control groups, with the treatment group using the DGU Desmos
(including for tests) and the control group using the TI-84 (or equivalent; non-CAS) graphing
calculator. Both groups of students completed the same homework, tests, and other assessments
throughout the course, and were taught by the same instructor. Students were informed of the
study parameters on the first day of class, and consent was obtained from the research
participants (please see appendix for a copy of the consent form). During the first week of class,
students were asked to complete an attitude survey (SAS) and an instrument to measure their
understanding of concepts identified as fundamental to success in future mathematics courses
(PCA), which they would again be asked to complete approximately 15 weeks later, near the end
of the term. The results of these instruments were used to explore the primary research questions:
1. Does using Desmos (rather than a graphing calculator) lead to improvements in college
algebra students’ understanding of the concepts in the course?
2. Does the use of Desmos (rather than a graphing calculator) positively impact college
algebra students’ attitudes toward mathematics?
In addition to these primary questions, the matter of student engagement with technology
emerged as a potential source of difference in the two graphing utilities. Although the present
study offers only limited evidence on this subject, it does provide direction for future study.

The results of the Precalculus Concept Assessment (PCA) indicated that there were
significant differences in mean scores between the two groups on the pre-test, with the treatment
group scoring about 3 points (12%) higher than the control. Post-test results showed that both
groups improved, but that this was slightly more pronounced in the control group. While the
post-test between-group differences were still marginally significant, the difference in mean scores
closed somewhat so that the treatment group outscored the control by only about 2 points on the

final assessment. Within the two groups, paired t-tests of students’ pre- and post-test scores
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showed that although the mean scores of both groups improved over the course of the term, the
pre-/post- differences were not statistically significant in either group, which may speak to the
efficacy of the curriculum as preparation for the types of knowledge and skills assessed by the
PCA. Close analysis of the PCA results suggests that the type of graphing utility used by students
may have influenced the type of reasoning abilities that they developed during the course. While
students in the DGU group appear to have experienced some benefits relating to rate of change,
function inverse, and graphical representations, their counterparts in the graphing calculator group
improved more on items related to symbolic representations and function composition. This may
relate in part to the mechanics of working with the graphing utilities, since the graphing calculator
often requires symbolic manipulation prior to graphing but Desmos will accept implicitly defined
functions as input. Differences in items related to rate of change may owe to dynamic features of
Desmos, such as sliders.

The Student Attitude Survey (SAS) results provide some indications as to how students’
attitudes and perceptions about mathematics and working with technology changed during the
term. The most consistent results across both groups were for the items involving attitudes about
working collaboratively or privately. These give the overall impression that students in both groups
experienced a negative shift in attitudes toward group work, along with a corresponding positive
shift in attitudes toward working individually. Working in groups during class meetings was
common, and an out-of-class group project near the end of the semester may have influenced
these results somewhat. Other findings suggest that the control group may have experienced
growth in their self-confidence about solving mathematics problems, and that perceptions about
mathematics classes may have shifted for participants in the treatment group. Results of many of
the items related to technology were inconsistent, with conflicting indications about students’

attitudes toward working with technology in learning mathematics. This suggests some directions
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for future research, as collecting additional data in the form of written responses, student
interviews, or think-aloud work sessions could help to clarify these issues. The version of the
survey used in the study also failed to distinguish between the graphing utility and other instances
of technology (such as the online learning management system), so more specific language in the
survey itself may also provide results that are more transparent.

The current study does not provide clear evidence of either Desmos or the graphing
calculator offering students a clearly defined advantage in terms of conceptual understanding of
college algebra course topics (as measured by the PCA) or attitudes toward mathematics.
However, the lack of clear distinctions in student outcomes suggests that there are also no
significant drawbacks to the use of either device, just that there may be some differences in the
type of reasoning abilities that students develop as they work with one or the other. There is some
evidence to suggest that using a DGU (such as Desmos) may provide students with a more
engaging experience than the graphing calculator. This warrants further study in future research,
but if subsequent evidence continues to support this theory, it would lend support for more
widespread adoption of dynamic graphing utilities as an alternative to the graphing calculator.
Additional research, collecting a wide variety of data, could provide a more cohesive picture of the
effects of students’ use of a DGU. Records of think-aloud sessions and written work would shed
some light on the problem-solving strategies that students use when interacting with a DGU, while
student interviews or written responses to prompts could be used to further explore dimensions of
student attitudes. Classroom observations by a third party would provide a more complete and
more reliable record of interactions in the classroom that could supply additional evidence about
student engagement with the content and technology.

Although the findings of the present study are not sufficient to make a conclusive judgment

in favor of or against the use of a DGU as a graphing calculator replacement to support college



88

algebra students’ learning, the data collected here do provide direction and motivation for future
research. Furthermore, factors beyond the dimensions considered here, including availability and
equity considerations, make an interesting case for the use of a modern tool like Desmos. Current
results suggest that it does indeed present the same benefits to students as the typical graphing
calculator, with the added advantages of encouraging student engagement and being free-to-use
from nearly any web-capable device. As 1:1 mobile device environments become increasingly
prevalent in schools at all levels, exploring options that leverage these technologies to support
student learning becomes imperative. If subsequent research can expound on the attitude and
engagement dimensions of DGU integration, then the case in favor of using such tools would

become even stronger.
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1.

Research Compliance Protocol Letter

&
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108 MLEG » 1 University of Arkansas « Fayette

UNIVERSITY OF
Office of Research Compliance
Institutional Review Board
May 14, 2015
MEMORAMDUM
TO: Ryan Thomas
Shannon Dingman
FROM: Ro Wi
IRB Coordinator
RE: Mew Protocol Approval
IRE Protocol #: 15-04-703
Protocol Title: The Effects of Using Desmos on Student Affitudes and
Conceptual Understanding in College Aigebra
Review Type: € EXEMPT [J EXPEDITED [JFULLIRB

Approved Project Period: Start Date: 0501372015 _FExpiration Date: 05M1 272016

Your protocol has been approved by the IRB. Protocols are approved for a maximum period of
ane year. If you wish to continue the project past the approved project period (see above), you
must submit a request, using the form Continuing Rewview for IRE Approved FProjects, prior to the
expiration date. This form is available from the IRB Coordinator or on the Research Compliance
website (hitps-/fvpred.uark eduwunits/rscpfindex php). As a courtesy, you will be sent a reminder
two months in advance of that date. However, failure to receive a reminder does not negate
your abligation to make the request in sufficient time for review and approval. Federal
regulations prohibit retroactive approval of continuation. Failure to receive approval to continue
the project prior to the expiration date will result in Termination of the protocol approval. The
IRE Coordinator can give you guidance on submission times.

This protocol has been approved for 75 participants. If you wish to make any modifications
in the approved protocol, including enrolling more than this number, you must seek approval
prior to implementing those changes. All modifications should be requested in writing (email is
acceptable) and must provide sufficient detail to assess the impact of the change.

If you have questions or need any assistance from the IRE, please contact me at 108 MLKG
Building, 5-2208, or irb@uark.edu.
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2. Student Consent Form

Student Name (Print):

In signing this form, you are agreeing to participate in a research study designed to develop theories

on students' conceptual understanding of and attitudes towards college algebra. |, Ryan Thomas, a
graduate student in the mathematics department at the University of Arkansas, will be the primary
researcher, and | will be working under the supervision of Dr. Shannon Dingman.

You will be asked to complete a short survey (5-10 minutes) at the beginning and end of the
semester that is designed to gauge your attitude toward mathematics. Your responses to this survey
will be used for research purposes only with your consent. By signing this consent form, you are
also giving your permission for fizld notes containing descriptions of classroom interactions and

activities, as well as results of regular classwork including exams, to be used for research purposes.

Participation in this study is voluntary and may be ended at any time. Your decision whether or not
to participate will not affect the services normally provided by the University of Arkansas, and will
not lead to the loss of any benefits to which you are otherwise entitled. Whether you choose to
participate or not will have no effect on your grade or your relationship with your teacher. You are
not waiving any legal claims, rights, or remedies because of your participation in this research study.
By signing this form, you are asserting that you are at least 18 years of age.

Any information that is obtained in connection with this study and that can be identified with you
will remain confidential and will be disclosed only with your permission or as required by law.
Confidentiality will be maintained. Should you have any questions or desire further information,
please email me at rthomas@uark.edu, or contact my faculty advisor, Dr. Shannon Dingman, at
sdingman@uark.edu. You may also contact the University of Arkansas Research Compliance office if
you have any questions about your rights as a participant, or to discuss any concerns about, or
problems with the research: Ro Windwalker, CIP, Institutional Review Board Coordinator, Research
Compliance, University of Arkansas, 109 MLKG, Fayetteville, AR 72701-1201, Phone 479-575-2208,
Email irb@uark.edu.

Ryan Thomas

Signature of student: Date:

IRE #15-04-703
Approved: 05/13/2015
Expires: 05122016
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3. Precalculus Concept Assessment (PCA) Taxonomy

100

Reasoning Abilities
R1  Process view of function (items 1,2, 4,5,6,7, 8,9, 10, 11, 12, 13, 17, 20, 22, 23)
View a function as a generalized process that accepts input and produces output. Appropriate coordination
of multiple function processes
R2  Covariational reasoning (items 15, 18, 19, 24, 25)
Coordinate two varying quantities that change in tandem while attending to how the quantities change
in relation to each other
R3  Computational abilities (items 1, 3, 4, 10, 11, 14, 16, 17, 21)
Identify and apply appropriate algebraic manipulations and procedures to support creating and reasoning
about function models
Understandings
Understand meaning of function concepts
ME Function evaluation (items 1, 5, 6, 11, 12, 16, 20)
MR Rate of change (items 8, 10, 11, 15, 19, 22)
MC  Function composition (items 4, 5, 12, 16, 17, 20, 23)
MI  Function inverse (items 2, 4, 9, 10, 13, 14, 23)
Understand growth rate of function types
GL  Linear (items 3, 10, 22)
GE Exponential (item 7)
GR  Rational (items 18, 25)
GN  General non-linear (items 15, 19, 24)
Understand function representations (interpret, use, construct, connect)
RG  Graphical (items 2, 5, 6, 8,9, 10, 15, 19, 24)
RA  Algebraic (items 1, 4. 7. 10, 11, 14, 16, 17, 18, 21, 22, 23, 25)
RN Numerical (items 3, 12, 13)
RC Contextual (items 3, 4, 7, 8, 10, 11, 15, 17, 18, 20, 22)
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4. Sample PCA ltems

2) Use the graph of f'to solve fix) = -3 for x. g s
T /
a) (-3.-2) T (8
b) -4 I T | ) |I [ -
fi)) (‘_24’_3) T I_Jl_ LI |#gl \2 | |8 X
) (-3,-2 4

e) -3 ) 2

(-4.:3) -

4) Which one of the following formulas defines the area, 4, of a square in terms of its

perimeter, p?
2
a) A=
16
2
b) A—s2
A=—
C) 2
d) A=16s"
e) p=44

10) A hose 1s used to fill an empty wading pool. The graph shows volume (in gallons) in
the pool as a function of time (in minutes). Which of the following defines a formula
for computing the time, 7, as a function of the volume, v?

volume t
3+ a) V(t) = E
7L b) t(v)=2v

v

t(v)=—

1 4 c) (V >
time d) V(f) = 2t

1 2 3 ¢) None of the above
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17) A ball is thrown into a lake, creating a circular ripple that travels outward at a speed
of 5 cm per second. Express the area, 4, of the circle in terms of the time, ¢,
(measured in seconds) since the ball hit the lake.

a) 4=25mt
b) 4=nr
¢) A=25nr
d) 4=>5nr

e) None of the above

19) Using the graph below, explain the behavior of function f on the interval from
x=5tox=12.

a) Increasing at an increasing rate.

b) Increasing at a decreasing rate.

¢) Increasing at a constant rate.

d) Decreasing at a decreasing rate.

¢) Decreasing at an increasing rate.

—— Attt
)/2/34 56 78 9101112131415
—

25) Which ofzthe following best describes the behavior of the function fdefined by,
X

o) =——.

[. As the value of x gets very large, the value of fapproaches 2.
II. As the value of x gets very large, the value of fincreases.
III. As the value of x approaches 2, the value of fapproaches 0.

a) lonly
b) Il only
c) III only
d) Tand Il
e) Il andIII



5. Student Attitude Survey

Student ID number:

w
o
o

N/U |A

w
b

1|1 think mathematics is important in life.

In previous math classes, my teachers listened carefully to what | had to say.

| learn more about mathematics working on my own.

| do not like to speak in public.

| get anxious in school.

2
3
4
5|1 prefer working alone rather than in groups when doing mathematics.
6
7
8

=
RO RN R e (o N
w

0 4

0 4

0 4

0 4

0 4

0 4

In previous math classes, | learned more from talking to my friends than from listening to my teacher| 0 1 3 4
Technology can make mathematics easier to understand. 0 1 3 4
9|Cell phones are an important technology in my life. of 1 3| 4
10|1 like my own space outside school the majority of the time. 0] 1 3| 4
1111 enjoy being part of large groups outside school. 0 1 3 4
12|l do not participate in many group activities outside school. o 1 3 4
131 do not like school. o 1 2 3 4
14|l like math. 0 1 2 3 4
15|1 feel confident in my abilities to solve mathematics problems. of 1 2| 3 4
16|In the past, | have not enjoyed math class. 0 1 2 3 4
1711 receive good grades on math tests and quizzes. 0 1 2 3 4
18| When | see a math problem, | am nervous. 0 1 2 3 4
191 am not eager to participate in discussions that involve mathematics. 0 1 2 3 4
20| enjoy working in groups better than alone in math class. 0 1 2 3 4
21(1 like to go to the board or share my answers with peers in math class. of 1 2l 3 4
22|l enjoy hearing the thoughts and ideas of my peers in math class. 0 1 2 3 4
23|Mathematics interests me. o] 1 2 3| 4
2411 sometimes feel nervous talking out loud in front of my classmates. 0] 1 2[ 3 4
25|l enjoy using a computer when learning mathematics. 0] 1 2[ 3 4
26|When using technology for learning mathematics, | feel like | am in my own private world. of 1 2| 3 4
27|l am not comfortable using technology in math class. 0 1 2 3 4
28|Using technology helps me understand mathematics. of 1 2l 3 4

Please use this space for any written comments:

SD: strongly disagree
D: disagree

N/U: neutral/undecided
A: agree

SA: strongly agree
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