
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

8-2013

The Word Problem for the Automorphism Groups
of Right-Angled Artin Groups is in P
Carrie Anne Whittle
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Applied Mathematics Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Whittle, Carrie Anne, "The Word Problem for the Automorphism Groups of Right-Angled Artin Groups is in P" (2013). Theses and
Dissertations. 894.
http://scholarworks.uark.edu/etd/894

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarworks.uark.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/894?utm_source=scholarworks.uark.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

The Word Problem for the Automorphism Groups of Right-Angled Artin Groups is in P

The Word Problem for the Automorphism Groups of Right-Angled Artin Groups is in P

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Mathematics

By

Carrie A. Whittle
Northeast Missouri State University

Bachelor of Science in Mathematics and Physics, 1994
Missouri State University

Master of Science in Mathematics, 2008

August 2013
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Dr. Yo’av Rieck
Dissertation Director

Dr. Chaim Goodman-Strauss
Committee Member

Dr. Mark E. Arnold
Committee Member

ABSTRACT

We provide an algorithm which takes any given automorphism φ of any given right-angled

Artin group G and determines whether or not φ is the identity automorphism, thereby solving

the word problem for the automorphism groups of right-angled Artin groups. We do this by

solving the compressed word problem for right-angled Artin groups, a more general result. A

key piece of this solution is the use of Plandowski’s algorithm. We also demonstrate that

our algorithm runs in polynomial time in the size of the given automorphism, written as a

word in Laurence’s generators of the automorphism group of the given right-angled Artin

group.

ACKNOWLEDGMENTS

I would first like to thank Dr. Yo’av Rieck for the generous amount of time and effort he

put into helping me complete this dissertation well. He did an excellent job of guiding my

research and teaching me the related concepts along the way, and he went out of his way

to assist me in many other aspects of preparing to graduate and finding a job. I greatly

appreciate his encouragement and guidance throughout this process.

I would like to gratefully acknowledge Dr. Chaim Goodman-Strauss and Dr. Mark Arnold for

taking the time to review my dissertation and for their patience as I completed a last-minute

correction. I would also like to thank Dr. Deborah Korth for coordinating my work schedule

to accommodate my long commute.

Many professors and instructors have assisted me during my academic career, without whom

I would not have reached this point. Among these I would like to thank Mrs. Jane Taylor,

from whom I first learned the fun of proofs; Dr. Kevin Easley and Dr. Michael Adams,

outstanding professors who made learning math so enjoyable that I became a math major;

Dr. Maria DiStefano, who was an enormous encouragement and support to me throughout

my undergraduate career; and Dr. Mark Rogers, whose guidance while earning my master’s

degree helped immensely in preparing me to work on my Ph.D.

My parents, Bruce and Marilyn Willerton, have always encouraged me to pursue my dreams

and continue to do so. I am immensely grateful to them for all they have done for me.

Likewise I appreciate the many other family members and friends who have supported me

during my graduate studies.

I would especially like to express my gratitude to my husband, Brian Whittle, whose

willingness to take on even more responsibilities at home enabled me to earn my degree. His

understanding, encouragement, and support were critical to my success, and I cannot thank

him enough.

I extend my thanks finally to my daughter, Emma Whittle, whose sparkling personality

injects much fun and laughter into my life. She inspires me to be and do my best.

DEDICATION

This dissertation is dedicated to Dr. Michael Jeremy Mallory, whose persistence and

cheerfulness in the face of increasingly difficult obstacles was an inspiration to many.

CONTENTS

Introduction 1

1 Background 3

1.1 Right-Angled Artin Groups . 3

1.2 Straight Line Programs . 11

2 Algorithms 13

2.1 Introduction to the Algorithms . 13

2.2 Algorithms, Part 1 – Basics . 18

2.3 Algorithms, Part 2 – Preliminaries for Ordering Lexicographically 66

2.4 Algorithms, Part 3 – Lexicographic Ordering 83

2.5 Algorithms, Part 4 – Normal Form . 132

Conclusion 143

Bibliography 168

INTRODUCTION

Right-angled Artin groups (RAAGs for short) are groups that interpolate between free abelian

groups and free groups. They came to the forefront of research in topology in recent years

due to the work of Haglund and Wise [3], Agol [1], and others. In this work, they showed

that 3-manifold groups are so-called virtually special if and only if they are subgroups of

right-angled Artin groups, which are also known as graph groups and partially abelian groups.

Agol used this to prove the Virtually Haken Conjecture, a very important achievement in

topology. Charney has written a nice survey of RAAGs in [2].

We are interested in solving the word problem for the automorphism groups of RAAGs, and

we do so by solving the compressed word problem for RAAGs. In [5], Laurence proved that

the automorphism group of any right-angled Artin group is finitely generated, and in his

proof provided a generating set for the automorphism group of any RAAG. It was shown

in [6, 8] that since Aut(G) is finitely generated for any RAAG G (and since every RAAG is

finitely generated), given an automorphism φ and an element g of a RAAG, it is possible to

construct a straight line program, a particular type of compression, which represents φ(g). In

fact, we are able to do this for any finitely generated group, and do it in polynomial time in

the number of generators of the automorphism group. We solve the word problem for the

automorphism group Aut(G) of a RAAG G by determining whether or not, for an arbitrary

φ ∈ Aut(G), φ(ai) = ai for every ai in the generating set of G.

Now if we can put an element like φ(ai) into a normal form, we can easily tell if it is

equivalent to ai. One way of putting words (that is, elements written as concatenations of

generators) from a RAAG into normal form is to put each into its shortest form and order it

lexicographically. We refer to this particular normal form as shortlex form for short. Hermiller

and Meier have shown in [4] that given any word w which represents a given element of a

RAAG, there is a process involving only commuting letters and eliminating canceling pairs

1

of generators which will produce the word w′ which is equivalent to w in the group, is in

shortest form, and is lexicographically ordered. Since neither of these actions — commuting

letters nor eliminating canceling pairs — lengthens the word, the process never increases the

length of the word.

However, finding a process which takes a word from a right-angled Artin group and puts it

into shortlex form is not trivial, and it is even harder to find a process which runs efficiently.

In our solution, we use an inductive process to take two words which are each in shortlex

form and find the biggest subwords in the second word that should move into the first word

and move them. In this process, each subword is moved as a straight line program; we do not

evaluate the words or subwords in G, because that would be extremely inefficient. A key piece

that enables our algorithm to run efficiently is Plandowski’s algorithm. Plandowski showed

in [7] that there is a polynomial-time algorithm which, given two straight line programs,

determines whether or not the words produced by those straight line programs are the same.

We prove that since each of the two pieces is already shortest and in lexicographic order,

there is a constant bound on the number of subwords that move from the second word into

the first, and on the number of subwords that move within the second word as a result of

moving the subwords which move into the first. This bound enables us to put a word, written

as φ(g) for some φ ∈ Aut(G) and some g ∈ G, and expressed as a straight line program, into

shortlex form in polynomial time in the length of the word φ written as a concatenation of

generators of Aut(G).

2

Chapter 1

BACKGROUND

1.1 Right-Angled Artin Groups

We begin by defining a right-angled Artin group. Perhaps the simplest way to define a

right-angled Artin group is by giving its presentation.

Definition 1.1. A right-angled Artin group has a presentation of the form

G =< a1, a2, . . . , am | R >,where R ⊆ {[ai, aj] | i 6= j}.

We see that finitely generated free groups and free abelian groups are each special cases of

right-angled Artin groups. However, there are many right-angled Artin groups “in-between”

these two classes of groups; we will consider a few examples in a moment. A convenient

way to represent a right-angled Artin group is by a simplicial graph, where each vertex

corresponds to one generator, and there is an edge between two vertices if and only if the

two corresponding generators commute. Let us now look at some specific right-angled Artin

groups.

Examples of Right-Angled Artin Groups

The graph representing the free group on n generators is the graph with n vertices and no

edges, so the graph to the left below represents F5. The graph on the right represents Z5.

F5 : a

b

c

d

e

Z5 : a

b

c

d

e

3

The free product of Z2 with itself is

Z2 ∗ Z2 ∼= 〈a, b, c, d | [a, b], [c, d]〉 ,

and the corresponding graph is pictured to the right.

a b

c d

Contrast the previous example with the direct product of

the free group on two generators, F2, with itself, which can

be written

F (a, b)× F (c, d) ∼= 〈a, b, c, d | [a, c], [a, d], [b, c], [b, d]〉 ,

with corresponding graph to the right.

a c

bd

Not all right-angled Artin groups can be decomposed into direct products or free products

of free abelian groups and free groups like the examples above. Consider, for example, the

right-angled Artin groups corresponding to the graphs below.

a

b
c

d

e

a

b c

d

ef
a

b
c d

e

f

Basic Definitions and Notation

It will be helpful to introduce some vocabulary and notation at this point. If A is the generating

set of a right-angled Artin group, then by the notation A−1 we mean {a−1 | a ∈ A}, the set

of inverses of elements of A. We call the elements of the A and A−1 letters, and the group

operation is denoted by concatenation. Naturally, we refer to any finite concatenation of

letters and their inverses as a word. Thus any word represents an element of the group. The

length of a word w, denoted |w|, is the number of letters it contains.

The empty word — the word with no letters, which we denote by ε — is the identity element.

We often use exponents as shorthand for concatenation of a letter with itself; we can write

a3 for the word aaa, for example. When a letter and its inverse are adjacent in a word, we

4

call this a canceling pair, since for any letter a, aa−1 is equivalent in the group to the empty

word. A word is called reduced if it contains no canceling pairs.

Here we must be a bit careful, because there are two ways in which we can speak of two words

being the same — they could be identical, letter-for-letter, or they could merely represent

the same group element. If we say that two words w1 and w2 are equal, denoted w1 = w2, we

mean that they are identical, letter-for-letter. If we say that two words are similar, denoted

w1 ' w2, we mean that they represent the same group element. One immediate consequence

of the definition of similar words is that if two words are equal, then they are similar.

The Word Problem

We often want to know if a word is similar to the empty word, and this is called the word

problem for the group. Since two words w1 and w2 are similar if and only if w1 (w2)
−1 ' ε,

we sometimes think of the word problem as deciding whether or not two words represent the

same group element. For free groups and free abelian groups, we can easily find an algorithm

that will answer this question.

For free abelian groups, we merely check to see if for each generator ai, the number of

occurrences of ai in the given word equals the number of occurrences of a−1i in the word. If

so, the word is similar to the empty word, since we can commute all the occurrences of ai

and a−1i to be next to each other and then cancel them. Otherwise, they are not similar. For

example, in Z3, abc−1bcb−2a−1 ' ε, but abc−1b−1 6' ε.

The situation is a bit more complicated with free groups. As with free abelian groups, if

for any generator ai the number of occurrences of ai in the given word does not equal the

number of occurrences of a−1i in the word, then the word is not equivalent to the empty

word in the group. This is true not only for free abelian groups and free groups, but for all

right-angled Artin groups. But if the two numbers are equal, the word is not necessarily

5

the empty word as it was with free abelian groups; consider aba−1b−1. So for free groups we

remove all canceling pairs, look at the resulting word and remove all canceling pairs from it,

etc., until there are no more canceling pairs to remove. At this point, if the resulting word is

ε, then the original word was equivalent to the empty word in the group; otherwise it was

not. In F3, for example, ab−1caa−1c−1ba−1 ' ε, but ab−1ca−1c−1b 6' ε.

Once we allow ourselves to consider right-angled Artin groups which may not be free or free

abelian, finding an algorithm is significantly more complicated. We could try doing as we did

with free groups — removing canceling pairs repeatedly until there are no more to remove —

but even after doing so we may have a word which is not the empty word but which is similar

to it.

Examples of Solving the Word Problem

Think about the right-angled Artin group G =< a, b, c | [a, b], [b, c] >,

with corresponding graph to the right, as an example.

a

b

c

After removing canceling pairs from the word ab−1cc−1b2a−1c−1b−1c in two successive steps,

we have the similar word aba−1c−1b−1c, which contains no canceling pairs. However, since

the letter b commutes with both a and c in this group, we can perform two commutations to

arrive at the similar word aa−1bb−1c−1c. Removing the three canceling pairs from this word

gives us ε.

So now our algorithm involves not only removing canceling pairs, but also commuting letters,

and we may have to do each many times. Not only that, but since some pairs of letters may

not commute, we must check to see if they do before commuting them, and even then it may

not be obvious whether or not it is possible to commute the letters in such a way as to result

in more canceling pairs. It would take a fairly long word to illustrate this well, but perhaps

6

the following short example will hint at this difficulty.

a

b c

d

In the group G =< a, b, c, d | [a, b], [a, d], [b, c], [c, d] >, with corre-

sponding graph to the left, consider the word bd−1a−1cdb−1c−1a.

There are no canceling pairs and there is not one single commutation which will result in

any canceling pairs; we must perform at least two commutations to get a canceling pair:

bd−1a−1cdb−1c−1a ' bd−1a−1dcb−1c−1a ' bd−1a−1dcc−1b−1a ' bd−1a−1db−1a. From here, we

need only two more commutations and three cancelations to see that this word represents

the identity element.

One can imagine how difficult this process could become with many generators and very long

words. However, it is also believable that an algorithm exists which would handle this process

for any word in any right-angled Artin group. Indeed, it has been shown that the word

problem is solvable for right-angled Artin groups. Hermiller and Meier [4] and VanWyk [10]

proved that right-angled Artin groups have a biautomatic structure. This structure provides

a means of solving the word problem.

The Word Problem for Automorphism Groups

We now discuss the word problem for the automorphism group of a right-angled Artin group.

As we mentioned in our introduction, in order to solve the word problem for an automorphism

group, it is necessary that the automorphism group be finitely generated. That Aut(G)

is finitely generated for any right-angled Artin group G was proven by Laurence [5] and

separately by Servatius [9]. Therefore any automorphism of a right-angled Artin group G

can be represented by a word whose letters are automorphisms in a fixed generating set.

From this point on, we will fix the set of Laurence’s generators as our chosen generating

set for the automorphism group of any right-angled Artin group. The word problem in this

7

case is whether or not a given automorphism, say ψ, represents the identity element of the

automorphism group. Since the identity element of every automorphism group is the identity

map, this involves determining whether or not ψ(ai) = ai for every ai in a generating set of

G.

Therefore we know the word problem for the automorphism group is solvable because the

word problem for right-angled Artin groups is solvable. However, solving the word problem in

the way described above is highly inefficient. Suppose that our given automorphism ψ is the

composition of n automorphisms from a chosen finite generating set, say ψ = φjnφjn−1 · · ·φj1 .

This is a word of length n, but the word in G represented by ψ(a1), for example, could be

exponentially longer. Even in the unlikely case that each of these φjk takes each generator ai

to a word of only length one or two, the length of the word ψ(ai) written in generators of G

could be about (3/2)n. For example, suppose a and b are two elements of a generating set for

G and that φ : G→ G is partially given by φ(a) = ab and φ(b) = a. Now if ψ = φ6, a word

of 6 letters in Aut(G), then

ψ(a) = φ6(a)

= φ5(ab)

= φ4(aba)

= φ3(abaab)

= φ2(abaababa)

= φ(abaababaabaab)

= abaababaabaababaababa,

a word of 21 letters in G.

This illustrates how the automorphism group of a right-angled Artin group G can be used

to compress words in G. One may notice that this compression only shortens words in G

8

which have repetitions or patterns, as in the example above. However, most of the strings

that actually occur in our work have this characteristic.

Since the length of the word in G represented by a word in Aut(G) is, in general, exponentially

longer than the word in Aut(G), using any solution for the word problem in G which requires

evaluating each ψ(ai) to solve the word problem in Aut(G) will be extremely slow and take at

least exponentially long time. In our research we give a polynomial-time solution to the word

problem for Aut(G). We actually give a more general result — a solution to the compressed

word problem for G which is polynomial in the size of the compression. This result implies a

polynomial-time solution to the word problem for Aut(G), since the automorphism group

provides one kind of compression.

Further Definitions

Before we can discuss the algorithms which will provide a solution to the compressed word

problem for RAAGs, we must introduce more vocabulary. The following definitions all occur

in the context of a right-angled Artin group G =< a1, a2, . . . , am | R >,where R ⊆ {[ai, aj] |

i 6= j}.

We say ai blocks aj if [ai, aj] is not a relator of G. Given an ordering on a set of letters, we

say the letter a is lighter than the letter b, and that b is heavier than a, if a comes before b

in the ordering. We denote this by a < b or b > a. We say ai hinders aj on the left (right),

denoted ai|aj (aj|ai), if i ≤ j (j ≤ i) or [ai, aj] is not in R.

We will often use abbreviations for specific subwords of a given word. For a fixed word w

with 0 ≤ i ≤ j ≤ |w|, w[i : j] represents the string of characters beginning immediately after

the ith character and ending immediately after the jth character. So for the word w = abcd,

w[1 : 3] = bc and w[2 : 2] = ε. By using a negative index, we indicate counting from the

end; hence w[1,−1] = w[1, |w| − 1] = w[1 : 3] = bc. We use w[i] to indicate w[i : i+ 1], the

9

i+ 1th character; w[: j] to indicate w[0 : j], the leftmost subword of length j; and w[i :] to

indicate w[i : |w|], the rightmost subword of length |w| − i. Thus w[1] = b, w[: 1] = a, and

w[1 :] = bcd; furthermore, w[0] = a and w[−1] = d.

Let G be a group with an ordering on its generators, and let w be a word in the generators

of G. Then w is said to be in lexicographic order if for any other word w′ which is similar

to w and contains the same letters as w the following condition holds: If i is the smallest

integer such that w[i] 6= w′[i], then w[i] comes before w′[i] in the ordering given. Lemma 1.2

follows from this definition.

Lemma 1.2. A word w representing an element of a right-angled Artin group is in lexicographic

order if and only if for any letter w[i] in w, all letters between w[i] and the rightmost letter

left of w[i] with which w[i] does not commute come before w[i] in the lexicographic ordering.

Proof. We show sufficiency by proving the contrapositive. Suppose that in the word w there

are letters w[g], w[h], and w[i] in w such that w[g] is the rightmost letter left of w[i] not

commuting with w[i], that w[h] lies between w[g] and w[i], and that w[h] is heavier than

w[i]. Without loss of generality, assume that w[h] is the leftmost letter between w[g] and

w[i] which is heavier than w[i]. Then the word v = w[: h − 1] · w[i] · w[h : i − 1] · w[i :] is

similar to w since by the choice of w[g], w[i] commutes with all letters between w[g] and w[i].

(Recall that w[h] = w[h− 1 : h].) Furthermore, v[: h− 1] = w[: h− 1], and the hth letter of v

is w[i], which is lighter than w[h]. Thus the smallest integer j for which w[j] 6= v[j] is h, and

v[h] < w[h]. Hence w is not in lexicographic order.

We also prove the contrapositive to show necessity. Let w be a word which is not in

lexicographic order, and let v be similar to w and have the same letters as w but be in

lexicographic order. Let h be the smallest integer for which v[h] 6= w[h]; then by definition,

v[h] < w[h]. Now v[: h− 1] = w[: h− 1], so the letter v[h] must occur in w[h :]; let w[i] be

the leftmost occurrence of v[h] in w[h :]. Since v ' w, w[i] must commute with every letter

10

in w[h : i− 1], so the rightmost letter left of w[i] not commuting with w[i] lies in w[: h− 1].

Moreover, w[i] = v[h] < w[h], so the letter w[h] is heavier than w[i] and lies between w[i] and

the rightmost letter left of w[i] which does not commute with w[i].

1.2 Straight Line Programs

The tool that we use to represent a given automorphism is a straight line program. These,

and related terms, are defined below.

A straight line program A =< L,A, An,P > consists of the following: a finite set L =

{a1, a2, . . . , am} of letters, called terminal characters; a disjoint finite setA = {A1, A2, . . . , An}

of non-terminal characters; a root non-terminal An; and a set P = {Ai → Qi} of production

rules. Each production rule causes a non-terminal Ai to be replaced with its production, Qi,

which is a word whose letters are all in L ∪ A. For any nonterminal Aj appearing in Qi, it

must be the case that j < i.

To run the straight line program A, we replace the root An with its production Qn, then

replace the non-terminals in the production with their productions, and so forth until only

terminal characters remain in the word that results. We denote this word by w(A) or wA;

similarly the word produced by the non-terminal Ai is denoted w(Ai) or wAi
.

We can illustrate this process with a production tree. Let the tree for a terminal character ai

be a vertex labeled ai, and let the tree for a non-terminal Ai be a planar graph with a vertex

labeled Ai connected by edges to a copy of the tree for each character in its production Qi,

where the trees for each character appear in order from left to right. The vertices labeled

with terminal characters are often called leaves. The word formed by the labels of the leaves

of the production tree for A is the word w(A) produced by the straight line program.

A straight line program is said to be in Chomsky normal form if all of the productions Qi

11

have length one or two, where the productions of length one are terminal characters and the

productions of length two consist of two nonterminal characters.

12

Chapter 2

ALGORITHMS

2.1 Introduction to the Algorithms

Before discussing the algorithms in detail, it will be helpful to comment about some differences

between our routines and those for standard straight line programs. We wrote our routines

in Python, and the entire Python program which puts a word into shortlex form is included

in the appendix.

First we should note that instead of using straight line programs as defined in Section 1.2,

we created an object type called SLP which we use instead, along with the global constant

m, which is the number of generators of the right-angled Artin group. The attributes of the

object SLP are P, which is the list holding the production rules of the associated straight line

program; normform, which is set to true if the SLP object is in quasinormal form (which

we explain below) and set to false if not; gens, a list of length m with each item gens[i] set

to the string ‘ai’; invgens, a list of length m with each item invgens[i] set to the string ‘Ai’;

and numbr, which is set to the length of the list P.

It is straightforward to convert between a straight line program in Chomsky normal form and

an SLP object. Given a straight line program B =< L,B, B,P >, we let m be the number

of elements of L, let P be the list of ProdRule objects (also discussed below) associated with

P , let gens and invgens be the lists described above, and let numbr be the length of the list

P. On the other hand, given m and an SLP B, we set L to be {a0, a1, . . . , am−1}, set P to be

the set of production rules indicated by the list P, set B to be the set of all non-terminal

characters that appear in P , and let B = Bnumbr−1. Notice that by letting B = Bnumbr−1 we

are setting the root to Bk, where k is the largest index of any non-terminal character. It

13

is standard to index the terminal and non-terminal characters from 1 to numbr. However,

Python indexes its lists starting with 0, so we index the terminal characters from 0 to m− 1

and the non-terminal characters from 0 to numbr − 1. Thus the root terminal has index

numbr− 1 rather than numbr. Note that changing the indices can be done in linear time, so

we need not worry about this detail when showing that the programs run in polynomial time.

Furthermore, this process of converting from a straight line program to an SLP object or

vice-versa also runs in linear time in numbr. We state this formally below.

Lemma 2.1. An algorithm exists which, given a straight line program A in Chomsky normal

form, produces an SLP object B such that wB = wA, and which runs in polynomial time in

the length of A. Similarly, an algorithm exists which, given an SLP B, produces a straight

line program A in Chomsky normal form such that wA = wB, and which runs in polynomial

time in the number of ProdRules in B.

We now explain how we store production rules as ProdRule objects in the list P. For straight

line programs in Chomsky normal form, all productions of length one are terminal characters;

these production rules are of the form Bi → a±1r . In our programs, we store this type of

production rule as a string in the ith item of the appropriate list, where that string is ‘ar’ if

Bi → ar or ‘Ar’ if Bi → a−1r . We should at this point clarify our use of the notation. In the

Python programs, we use ‘a0’ and ‘A0’, for example, to represent the letter a0 and its inverse,

respectively. In the proofs, we often call the non-terminal characters Aj, so A0 is the first

non-terminal character. When using the notation ‘Ar’ in close proximity to the discussion of

non-terminal characters, we will use Bj rather than Aj for the non-terminal characters to

help avoid confusion.

All productions of length two in Chomsky normal form are the concatenation of two non-

terminal characters; these production rules are of the form Bi → Bj · Bk, where j < i and

k < i. In our routines we created a new object type called Concat to store this type of

production rule. An object of type Concat has attributes idx1 and idx2, and for the rule

14

Bi → Bj ·Bk, we store j in idx1 and k in idx2 of a Concat object, which is stored in item i

of the appropriate list. We found the need to create another object type, Pr1Pr, to store

production rules whose productions have length one but are non-terminal characters. (These

are not included in Chomsky normal form.) An object of type Pr1Pr has an attribute idx1

where we store j for a rule of the form Bi → Bj; this Pr1Pr object is then stored in item i

of the corresponding list. We also created an object type called ProdRule to encompass all

three of the types of production rules described above; the attribute wi of a ProdRule object

is either a string, a Concat object, or a Pr1Pr object, depending on the type of production it

describes. Technically, all of the Concat and Pr1Pr objects and all strings used as terminal

characters are stored in the wi attribute of a ProdRule object before being put into their

lists. We will refer to both actual production rules, as defined above, and ProdRule objects

as ‘production rules’; which of the two is being referred to will be clear from the context. We

should note that a straight line program which is not in Chomsky normal form can have

production rules with productions consisting of more than two characters, but there is no

ProdRule object in our routines which can store such a production rule, so no SLP object

has any such production rules.

As indicated above, we use a slightly different normal form than Chomsky normal form for

the straight line programs in our routines. To differentiate, we will use “normal form” to

refer to Chomsky normal form and “quasinormal form” to refer to the normal form we use.

We explain quasinormal form in the next paragraph.

One way in which the two forms are different is that a straight line program in normal form

has no productions of length one which are non-terminal characters. In quasinormal form we

allow this type of production, but only when the word produced by the straight line program is

a single letter, for reasons we explain presently. For every terminal character in a straight line

program in our Python routines, there is a production rule whose production is that terminal

character; this is not required in normal form. This does not mean, however, that every

15

terminal character appears in every word produced by a straight line program in our routines;

each letter only appears in the produced word if some non-terminal character has a production

rule pointing to the non-terminal character which points to that letter. For example, if

P = {B0 → a0, B1 → a1, B2 → a2, B3 → a−10 , B4 → a−11 , B5 → a−12 , B6 → B4 · B0}, then

the straight line program in our routines having this set of production rules would produce

the word a−11 a0. Similarly, the straight line program having the set of production rules

P = {B0 → a0, B1 → a1, B2 → a2, B3 → a−10 , B4 → a−11 , B5 → a−12 } would produce the

empty word. To produce a single letter, we must have a production rule pointing to the

non-terminal character which points to that letter. For example, the program with the set of

rules P = {B0 → a0, B1 → a1, B2 → a2, B3 → a−10 , B4 → a−11 , B5 → a−12 , B6 → B2} produces

the word a2.

In quasinormal form we require the rules whose productions are terminal characters to have

smaller indices than those which produce non-terminal characters. So while a straight line

program with the set of rules P = {B0 → a0, B1 → a1, B2 → B0 · B1, B3 → a2, B4 →

a−10 , B5 → a−11 , B6 → a−12 , B7 → B4 ·B2} is in normal form, it is not in quasinormal form. A

similarity between normal form and quasinormal form is that the empty word is not allowed

as a production in either form. A formal definition of quasinormal form is given below.

Definition 2.2. An SLP object A =< P > is said to be in quasinormal form if the following

conditions are met:

1. For each item gens[i] in the list gens and each item invgens[j] in invgens, P contains

one string-type ProdRule set to gens[i] or invgens[j], respectively;

2. All string-type ProdRules have smaller indices in P than Pr1Pr- or Concat-type

ProdRules;

3. The empty letter does not occur in P; and

4. There is no more than one Pr1Pr-type ProdRule in P, and if P contains a Pr1Pr-type

16

ProdRule, the word produced by A is a single letter.

Due to limited space in the flowcharts, the names of some variables in the Python programs

have been shortened in the flowcharts. However, the shorter names were chosen so that there

should be no confusion as to which variable each corresponds to. Additionally, some of the

names of the programs are longer and more descriptive in the flowcharts, but it should be

obvious which flowchart corresponds with which Python routine.

At the beginning of many of the routines, the variable n is set to the number of non-terminal

characters, the variable thisP is set to the list containing the productions, and/or other

variables are set to particular attributes of the SLP. These are not indicated in the flowcharts

because of the limited space there, and because any such steps are indicated in the information

about what is input into each routine at the beginning. Additionally, any such steps run in

linear time, so we may ignore them in our proofs that the routines run in linear or polynomial

time. In some of the routines, there are conditions checked which, depending on whether or

not the condition is true, cause the routine to determine the value to return with very little

work and then immediately exit. These are not indicated in the flowcharts because of the

space they would take up, but they are discussed in the proofs.

Remark 2.3. Some of the operations which occur in our algorithms, such as determining

whether a given value is less than n or creating a list of length n, do not actually occur

in constant time as claimed in the lemmas below; the time required does depend on n.

However, the time required for these operations is on the order of n log n, so claiming that

the time required is bounded by a constant does not change the results of the proofs that the

algorithms run in polynomial time.

For each algorithm involved in solving the word problem for a given automorphism of a

right-angled Artin group, we include a lemma and proof that the algorithm does what it

is supposed to and a separate lemma and proof that the algorithm runs in polynomial (or

linear) time. We begin by considering routines which stand alone and progress to the one

17

which uses all of the others (some indirectly) and which puts the word produced by a given

SLP into shortest form and lexicographic order. All algorithms which call other routines

appear after the routines they call in this paper.

2.2 Algorithms, Part 1 – Basics

We begin with two fairly simple routines which give us basic information, namely the length

of the produced word and which generators appear in the produced word, about the SLP

which is input.

Lemma 2.4. The algorithm Get Length described by the flowchart in Figure 2.1 returns the

length of the word produced by the SLP which is input.

Proof. We begin by creating a list called prL of length n, the number of production rules in

A, the SLP being input, setting each item in the list to 0. Each item in prL corresponds to a

non-terminal character, so item 0 in the list corresponds to A0, item 1 corresponds to A1, and

so on. We proceed through the production rules of A, considering one at a time, as the index

i steps from 0 to n− 1. Since A is in quasinormal form, the first production rules encountered

are those pointing to terminal characters, and for each of these, the corresponding item in

prL is set to 1. If at the ith step the production rule is Ai → Ar, then prL[i] is set to prL[r].

All other production rules must be of the form Ai → Ar · As, in which case we set prL[i] to

prL[r] + prL[s]. Since i > r, s for any such production rule (and i > r in the previous case),

the values of prL[r] and, if applicable, prL[s] have already been calculated. Thus at the end

of each step of the process, prL[i] will contain the length of w(Ai). Therefore the last item

in prL will contain the length of wA, which is the word produced by A. This is the number

which the algorithm returns.

Lemma 2.5. The algorithm Get Length described by the flowchart in Figure 2.1 runs in

polynomial time in n, the length of the SLP which is input.

18

Figure 2.1: Algorithm Get Length

19

Proof. The time it takes to run the operations that happen outside the main loop, as well as

the time required to determine whether or not i < n, do not depend on n and so happen in

constant time, say c1 steps. For each iteration of the main loop, the time is also independent

of n and so the number of steps is bounded by a constant, say c2. The loop runs n times, so

the total number of steps is no more than c2n+ c1. The actual time required for Get Length

is on the order of n log n by Remark 2.3, so the algorithm runs in polynomial time.

Lemma 2.6. The algorithm Find Included Generators described by the flowchart in Figure

2.2 returns a list z of length m where each item z[i] is 1 if the generator ai or its inverse

occurs in the word produced by the SLP which is input and is 0 otherwise.

Proof. We input an SLP A =< L,A, A,P >, and we create a list, z, of length m, setting

each list item to 0. In the main loop, we consider one generator at a time, ai. During the

ith step through the loop we begin by initializing another list, z1, containing n items all

set to 0. Each item in z1 corresponds to a non-terminal character, and we use the index j

to step through the production rules of A one at a time, starting with j = 0. Since A is

in quasinormal form, the first production rules encountered are those pointing to terminal

characters. For these, if the production rule is Aj → ai or Aj → a−1i , then item z1[j] is set to

1; otherwise z1[j] is left unchanged. If the production rule is Aj → Ar, then z1[j] is set to 1

if and only if z1[r] = 1; otherwise it is not changed. All other production rules must be of

the form Aj → Ar · As. In this case, if z1[r] = 1 or z1[s] = 1, z1[j] is set to 1; otherwise it

remains 0. Since j > r, s for any such production rule (and j > r in the previous case), the

values of z1[r] and, if applicable, z1[s] have already been calculated. So once j has progressed

through all of the production rules, the last item in z1, that is, z1[n− 1], will be 1 if and only

if ai or a−1i occurs in wX . Having run through the inner loop n times, we find ourselves at

the end of the ith step of the main loop. We now change z[i] to 1 if z1[n− 1] = 1; otherwise

it remains 0. Thus after stepping through all m steps of the main loop, we see that for each

i, z[i] = 1 if and only if a±1i occurs in wA, and all items that are not 1 are 0.

20

Figure 2.2: Algorithm Find Included Generators

21

Lemma 2.7. The algorithm Find Included Generators described by the flowchart in Figure

2.2 runs in polynomial time in n, the length of the SLP which is input.

Proof. The time it takes to run the operations that happen outside the main loop, as well as

the time required to determine whether or not j < m, do not depend on n and so happen in

constant time, say c1 steps. The main loop is run m times, and m is a constant for a given

right-angled Artin group. For each iteration of the smaller loop, the time is independent of n,

and so the number of steps is bounded by a constant, say c2. The smaller loop runs n times,

so the total number of steps is no more than c2 · n ·m+ c1 = c3n+ c1. The number of steps

is actually on the order of n log n because of Remark 2.3, so Find Included Generators runs

in polynomial time.

The routine Letter to SLP described below is used only in the Put In Lexicographic Order

and Make It Shortest algorithms. In these, we need to create an SLP which produces a single

given letter; that is what this algorithm does.

Lemma 2.8. The algorithm Letter to SLP described by the flowchart in Figure 2.3 inputs

a ProdRule R. If R is of the form R → a±1r for some r, Letter to SLP returns an SLP in

quasinormal form which produces the letter a±1r ; otherwise Letter to SLP returns an SLP

which produces ε.

Proof. After we input a ProdRule R, we create an empty list Q; let B be < Q >, the SLP

having Q as its set of production rules; and let s = R. We check to see if s→ a±1r for some r,

and if not, we return the SLP B, which at this point has an empty list of production rules and

therefore produces ε. Otherwise we continue with the rest of the routine. Each item in Q will

correspond to a non-terminal character. We use the index i to step twice through the values

0, 1, . . . ,m− 1, beginning with i = 0. In the first loop, we first check to see if s→ ai, and

if so, we let the variable GI equal i. Whether or not s→ ai, we append the rule Q[i]→ ai

to Q, indicating the new rule Bi → ai. We then return to the beginning of the loop. The

22

first loop, therefore, adds the ProdRules corresponding to the non-terminal characters which

point to the generators (but not their inverses) to the list Q, and if s points to one of these ai,

then GI is set to that i. The second loop is similar to the first, the difference being that we

are concerned with the inverses of the generators this time. In the second loop, if s→ a−1i ,

we let the variable GI equal i+m. In either case, we append the rule Q[i+m]→ a−1i to Q,

indicating the new rule Bi+m → a−1i . We then return to the beginning of the loop. So the

second loop adds the ProdRules corresponding to the non-terminal characters which point to

the inverses of the generators to the list Q, and if s points to one of these a−1i , then GI is set

to that i plus m. Finally we append the production rule Q[2m] → Q[GI] to Q, indicating

the rule B2m → BGI . We create a new SLP B with this new set of production rules. Now,

therefore, the root non-terminal is B2m, and the production rule for B2m is B2m → BGI . Also,

by construction, the rule for BGI is BGI = Br =→ ar if s→ ar and is BGI = Br+m → a−1r if

s→ a−1r . Therefore if s→ a±1r for some r, the SLP B produces a±1r . It is straightforward to

check that B is in quasinormal form.

Lemma 2.9. The algorithm Letter to SLP described by the flowchart in Figure 2.3 runs in

constant time.

Proof. None of the steps in Letter to SLP are dependent on the length of any SLP, so the

algorithm runs in constant time.

The following algorithm is much more complicated than the previous ones we have considered.

In fact, the flowchart would not fit on a single page, which is why it is broken into two

flowcharts. Since quasinormalizing an SLP occurs as part of most of the following routines, it

is necessary to address Quasinormalize SLP early in our discussion of the algorithms.

Lemma 2.10. The algorithm Quasinormalize SLP described by the flowcharts in Figures 2.4

and 2.5 returns an SLP in quasinormal form which produces the same word as that produced

by the SLP which is input.

23

Figure 2.3: Algorithm Letter to SLP

24

Proof. The reader may find it helpful to refer to Example 2.13 while proceeding through this

proof. After we input the SLP A with list P of production rules, we begin by creating two

empty lists, Q and L, and two lists of length n, z and z2. We set each item of z to 0 and

each item of z2 to −1. We also initialize the variables q and oL to 0 and true, respectively.

Let us discuss the role each of these variables plays.

We will use Q to hold the new production rules. The list L will allow us to keep track of

which terminal characters we have already encountered so that we do not repeat any, and

the index of a terminal character in L will be the index of the corresponding production in Q.

For each i, item i of z will be the difference between i and the index in Q of the production

that corresponds to P[i], that is, the production of Ai. (Recall that for each i, the ProdRule

in Pi is the production of Ai.) For each i such that P[i] is a terminal character, the ith item

of z2 will be the index in Q of the terminal character P[i]; for any other i, z2[i] will remain

−1. The variable q is used to keep track of the index of the current item of Q. The variable

name oL is short for ‘only letters’; oL is set to true at the beginning and is changed to false

when and only when a production containing a non-terminal character, that is, a Concat- or

Pr1Pr-type ProdRule, which produces a word of length at least 1 is encountered. Thus if oL

is true at the end of the program, an SLP with empty production list Q is returned.

In the first small loop we use the index i to step through the production rules of A one at a

time, beginning with i = 0. In this loop, we are concerned only with those production rules

of A whose productions are terminal characters, so we first check to see if the current rule is

Ai → a±1r for some r; if not, we proceed to the next i. (If the rule is Ai → ε, we also proceed

to the next i.) If the rule is Ai → a±1r for some r ∈ {0, 1, . . . ,m− 1}, we check to see if a±1r

is in the list L. If not, we append a±1r to L and also append a±1r to Q, indicating the new rule

Bq → a±1r , and we increase the index q by 1. Whether a±1r is already in L or not, we change

z2[i] to be the index of a±1r in L. We then proceed to the next i. We exit this loop when

i = n.

25

After exiting this first small loop, we proceed to the main loop. (This is the part of the

routine illustrated in the flowchart in Figure 2.5.) As in the previous loop, we will use the

index i to step through the production rules of A one at a time, beginning with i = 0. Before

beginning to consider the production rules, we first create two empty lists, l and e; initialize

the variables lC and lP each to −1 and the variable k to 0; and create a list CL of length n

with each item set to 0. We use l to keep track of which letters have been encountered in

the productions before the current step of the loop. At each step, the list e will contain the

indices of those non-terminal characters previously encountered which produce the empty

word. The variable k holds the number of production rules in A already encountered by that

step for which a new corresponding production in Q is not created (as with non-terminal

characters which produce the empty letter or with Pr1Pr-type ProdRules). CL keeps track

of which items in Q contain Concat-type ProdRules. The variable name lC is short for ‘last

Concat’; this variable contains the highest index in P of a Concat-type ProdRule whose

corresponding production rule in Q is a Concat ProdRule. Similarly, lP is short for ‘last

Pr1Pr’, and this variable contains the highest index in P of either a Pr1Pr-type ProdRule

whose production is not the empty word or a Concat-type ProdRule with one of the two

non-terminal characters in the production producing the empty word. We will see the need

for CL, lC, and lP when we discuss the end of the algorithm.

As we encounter each production rule of A during the main loop, there are three possibilities.

The first is that the rule is of the form Ai → Ar for some r. In this case, we do not add a

ProdRule to Q, because it would need to be of the Pr1Pr type, and those are not allowed

in quasinormal form except when the word produced by the SLP is a single letter. Instead,

we want to replace any occurrence of Ai with Ar, eliminating the need for Ai. Of course,

we make no changes to A but instead effect this in our new set of rules in Q. To achieve

this, we set z[i] to be i− r + z[r] because r − z[r] is the index in Q of the production that

corresponds to the production of Ai. (Recall that for each j already encountered, z[j] is

the difference between j and the index in Q of the production corresponding to that of Aj.)

26

Letting z[i] = i− r + z[r] = i− (r − z[r]) thus causes z[i] to be the difference between i and

the index in Q of the production corresponding to that of Ar so that the production in Q

corresponding to that of Ai is the production in Q corresponding to that of Ar. Because we

are not adding a new rule to Q at this step, we also increase the value of k by 1. We then

check to see if r occurs in the list e. If so, then since Ar produces the empty word, so does

Ai, so we append i to e. If not, then we change the value of lP to i and that of oL to false.

We then return to the beginning of the loop to proceed with the next i.

The second possibility is that the production of the rule is a terminal character. Recall that

we added all of the production rules which produce terminal characters to Q in the first

small loop, so in this case no rules get added to Q. When the production of Ai is a terminal

character, we first check to see if the production is the empty letter. If it is, then we increase

the value of k by 1 and append i to the list e. If the production is not the empty letter, then

the production rule must be of the form Ai → a±1r for some r. If a±1r is already in the list l,

then Ai is not the first non-terminal character encountered whose production is a±1r , so we

increase the value of k by 1. If a±1r does not appear in l, then we append it to l. In every

case where the production of Ai is a terminal character, we set z[i] to be i− z2[i] because

z2[i] is the index in Q of that terminal character. (In the case of the empty letter, the index

in Q is −1, indicating that a production of the empty letter does not occur in Q.) Then we

return to the beginning of the loop.

The third and final possibility is that the rule is of the form Ai → Ar · As for some r and s.

If r and s are both in e, then Ai produces the empty letter, so we increase the value of k by

1, append i to e, and change z[i] to i+ 1. If r occurs in e but s does not, we change z[i] to

i− s+ z[s] since Ai produces the same word that As does; similarly, if s is in e but r is not,

we change z[i] to i− r + z[r]. If either r or s is in e but not both, we then set oL to false, set

lP to i, and increase the value of k by 1. Finally, if neither r nor s is in e then first we append

Q[r − z[r]] ·Q[s− z[s]] to Q, indicating the new rule Bq → Br−z[r] ·Bs−z[s]. (Technically, we

27

append a Concat-type ProdRule with attributes idx1 = r− z[r] and idx2 = s− z[s] to Q, but

we use the description in the previous sentence for the sake of readability.) We also change

z[i] to k since i− k is the index in Q of this new rule; let CL[q] = 1, oL = false, and lC = i;

and increase the value of q by 1. We return to the beginning of the loop.

After progressing through all of the production rules of A, we exit the main loop of the

algorithm. (At this point we return to the flowchart in Figure 2.4.) If the index n− 1 occurs

in e, then the root of A, that is, An−1, produces the empty word. In this case, we set oL to

true. If n− 1 is not in e, and if lP > lC, then wA is not empty, but there was no ProdRule

created and appended to Q which corresponds to An−1. Note that it is not possible for lP

and lC to be equal at this point, because if either is changed from its initial value the other

cannot be changed to the same value, and if neither is changed from its initial value then the

word produced by An−1 is empty and so we do not reach this point in the algorithm. Now

if lP < lC then lC is the highest index in Q, and the word produced by the non-terminal

character BlC corresponding to Q[lC] is the same as the word produced by An−1, so no further

editing of Q is required. If lP > lC, we need to determine which ProdRule in Q produces

the same word as that produced by An−1. To this end, we perform the following steps.

We set i to lP , because when lP > lC, lP is the highest index of a non-terminal character

in A which produces a nonempty word. We set the variable nr (short for ‘next rule’) to

i − z[i] and check to see if CL[nr] = 0. Note that nr is the index in Q of the production

that corresponds to that of Ai. If CL[nr] 6= 0, this means that Q[nr], the production rule

corresponding to that of Ai, is a Concat-type ProdRule, and thus the word produced by

Q[nr] is the same as that produced by Ai, and by extension, An−1. If this is the case, then we

truncate Q so that it contains only its first nr + 1 items, which indicate our new production

rules; this causes Bnr, which corresponds to Q[nr], to be the root. If, on the other hand,

CL[nr] = 0, then Q[nr] is a terminal character. If this is the case, then Ai, and by extension,

An−1, produces the single letter Q[nr]. Thus we append to Q the Pr1Pr-type ProdRule with

28

attribute idx1 set to nr, corresponding to the rule Bq → Bnr, where q is the length of Q

before appending this rule.

Before exiting the routine we check to see if oL is true. If so, we set Q to [], the empty list.

In either case, as described in the previous two paragraphs, the word produced by the item

of highest index in Q is the same as wA. Thus we create a new SLP B with the set Q of

production rules and then output B.

Now B meets all the criteria for being in quasinormal form: The rules whose productions are

terminal characters have smaller indices than those which produce non-terminal characters,

because we append those rules whose productions are terminal characters, and no other rules,

to Q in the small loop at the beginning, before running the main loop in which those with

productions containing non-terminal characters are appended to Q. By design, as described

above, the empty word does not occur in any production in Q, and there is a Pr1Pr-type

ProdRule in Q if and only if wA is a single letter.

Lemma 2.11. The algorithm Quasinormalize SLP described by the flowcharts in Figures 2.4

and 2.5 runs in polynomial time in n, the length of the SLP which is input.

Proof. The operations that happen before entering the first small loop and before entering

the main loop, as well as the time required to determine whether or not i < n, do not depend

on n and so happen in constant time, say c1 steps. For each iteration of the first loop, the

time is independent of n, and so the number of steps is bounded by a constant, say c2. The

first loop runs n times, so the total number of steps before running the main loop is no more

than c1 + c2n, which is linear. The main loop also runs n times, and the time required for

each iteration is independent of n; say c3 is a bound for the number of steps each iteration

takes. The number of steps after running the main loop is also independent of n and therefore

runs in constant time, say c4 steps. Therefore the total number of steps required to run

Quasinormalize SLP is c1 + c2n+ c3n+ c4, which is linear in n. Because of Remark 2.3, this

29

Figure 2.4: Algorithm Quasinormalize SLP

30

Figure 2.5: Main Loop of Algorithm Quasinormalize SLP

31

time is not actually linear, but on the order of n log n. Therefore Quasinormalize SLP runs

in polynomial time.

Lemma 2.12. The length of the SLP produced by Quasinormalize SLP is no more than n,

where n is the length of the SLP which is input.

Proof. By construction, for each production rule of the SLP which is input into Quasinormal-

ize SLP, we create at most one new production rule, so the number of production rules may

decrease or stay the same, but it may not increase. Thus the length of B, the SLP we create

with the new production rules, is no more than the length of the SLP which was input.

Example 2.13. In this example we will consider how the algorithm Quasinormalize SLP

described by the flowcharts in Figures 2.4 and 2.5 works when we input a particular SLP,

and what output is produced in this case. For this example, let m = 5, and let the SLP

we input be called C and have the following attributes: gens = [‘a0’, ‘a1’, ‘a2’, ‘a3’, ‘a4’];

invgens = [‘A0’, ‘A1’, ‘A2’, ‘A3’, ‘A4’]; P, which we will describe in a table below; and

numbr = 34. We will use a table to illustrate the list P in order to allow the reader to easily

see the index of each entry. In the ProdRule columns of the table representing P below, a

string in single quotes indicates a ProdRule object with attribute wi equal to that string; a

single number indicates a ProdRule with wi being a Pr1Pr object having that number as its

idx1 attribute; and two numbers with a dot in between indicates a ProdRule with wi being a

Concat object having the first number as its idx1 attribute and the second number as its

idx2 attribute. Note that the string ‘ee00’ is the representation of the empty letter used in

our routines.

32

The list P

Index ProdRule Index ProdRule Index ProdRule Index ProdRule

0 ‘a0’ 8 ‘A3’ 17 ‘a0’ 26 ‘A4’

1 ‘a1’ 9 ‘A4’ 18 ‘a1’ 27 18

2 ‘a2’ 10 2 19 ‘a2’ 28 ‘ee00’

3 ‘a3’ 11 9 20 ‘a3’ 29 27 · 28

4 ‘a4’ 12 0 21 ‘a4’ 30 28 · 29

5 ‘A0’ 13 10 22 ‘A0’ 31 30 · 27

6 ‘A1’ 14 11 · 13 23 ‘A1’ 32 16 · 31

7 ‘A2’ 15 12 · 12 24 ‘A2’ 33 32

16 14 · 15 25 ‘A3’

There are three reasons that C is not in quasinormal form: the first is that the strings

representing the generators and their inverses all appear twice in the list of production

rules, with some of the them appearing after rules whose productions contain non-terminal

characters; the second is that the empty letter appears in the list of production rules; and the

third is that there are several Pr1Pr-type ProdRules. (Recall that a Pr1Pr-type ProdRule is

only allowed if the string produced by the SLP is a single letter.) The tree representing C

is drawn in Figure 2.6 below, with those characters whose productions are either a single

non-terminal character or the empty letter printed in red. As we proceed through the proof,

we will remark upon how the algorithm acts upon this example in particular.

We first discuss what happens during the first loop in our example. The first ten production

rules encountered are strings of the form ‘ar’ or ‘Ar’ for some r ∈ {0, 1, 2, 3, 4}, so at the

end of the loop when i = 9, the list L is [‘a0’, ‘a1’, ‘a2’, ‘a3’, ‘a4’, ‘A0’, ‘A1’, ‘A2’, ‘A3’,

‘A4’]. Furthermore, for i = 0, 1, . . . , 10, Q[i] is a ProdRule whose wi attribute is the same

as L[i]. In other words, we could represent Q as [‘a0’, ‘a1’, ‘a2’, ‘a3’, ‘a4’, ‘A0’, ‘A1’, ‘A2’,

33

C33

C32

C16

C14

C11

C9

a−14

a−14

C13

C10

C2

a2

C15

C12

C0

a0

a0

C12

C0

a0

a0

C31

C30

C28

ε

ε

ε

C29

C27

C18

a1

C28

ε

ε

C27

C1

a1

a1

a1

Figure 2.6: An SLP Not in Quasinormal Form

‘A3’, ‘A4’], with the understanding that we are using the same kind of representation for

ProdRules as we did with P in the table above. Additionally, q is now equal to 10, and

z2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,−1,−1, . . . ,−1]. The next seven production rules are ignored

by our loop, because their productions contain non-terminal characters. The following ten

have the same productions as the first ten, so L, Q, and q are unchanged, but z2 becomes

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, −1, −1, −1, −1, −1, −1, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, −1, −1,

−1, −1, −1, −1, −1]. For i = 27, the rule C27 → C18 is ignored, but for i = 28, the rule is

C28 → ‘ee00’. However, this is also ignored since the production is the empty letter. The

remaining 5 rules are also ignored because their productions contain non-terminal characters.

So in our example, at the end of the first loop, L = [‘a0’, ‘a1’, ‘a2’, ‘a3’, ‘a4’, ‘A0’, ‘A1’, ‘A2’,

‘A3’, ‘A4’]; Q = [‘a0’, ‘a1’, ‘a2’, ‘a3’, ‘a4’, ‘A0’, ‘A1’, ‘A2’, ‘A3’, ‘A4’]; q = 10, and z2 = [0, 1,

2, 3, 4, 5, 6, 7, 8, 9, −1, −1, −1, −1, −1, −1, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, −1, −1, −1, −1,

−1, −1, −1].

34

Let us now consider how the main loop of the algorithm acts upon C. (This is the part of

the routine illustrated in the flowchart in Figure 2.5.) The first ten rules encountered all

have non-empty terminal productions, and each is distinct, so each production is appended

to l in turn. At the end of the first ten steps, therefore, l = [‘a0’, ‘a1’, ‘a2’, ‘a3’, ‘a4’, ‘A0’,

‘A1’, ‘A2’, ‘A3’, ‘A4’]. The first ten items of z are set to 0, and all other variables are left

unchanged by the first ten steps through the main loop.

The next four rules we meet are C10 → C2, C11 → C9, C12 → C0, and C13 → C10. In these

steps z gets changed so that z[10] = 10−2+0 = 8, z[11] = 11−9+0 = 2, z[12] = 12−0+0 = 12,

and z[13] = 13 − 10 + 8 = 11. The value of k is increased at each of these four steps, so

that k = 4 at the end of them. Since the words produced by C10, C11, C12, and C13 are all

non-empty, oL is set to false and lP is set to the current value of i at each step, making

lP = 13 at the end of these four steps.

Next we encounter C14 → C11 ·C13, C15 → C12 ·C12, and C16 → C14 ·C15. None of these non-

terminal characters produces the empty word, so the corresponding rules are added to Q and

the corresponding values of z are changed: For C14 → C11 · C13, we have r = 11 and s = 13,

so we append Q[11− 2] ·Q[13− 11] = Q[9] ·Q[2] to Q, indicating the new rule D10 → D9 ·D2,

and we change z[14] to 4 since k = 4 at this point. Similarly, for C15 → C12 · C12, we append

Q[12 − 12] · Q[12 − 12] = Q[0] · Q[0] to Q, indicating the new rule D11 → D0 ·D0, and we

change z[15] to 4. For C16 → C14 · C15, we append Q[14− 4] ·Q[15− 4] = Q[10] ·Q[11] to Q,

indicating the new rule D12 → D10 ·D11, and we change z[16] to 4. At each of these three

steps, the value of CL[q] is set to 1, q is increased by 1, oL is set to false, and lC is set to the

current value of i. Thus at the end of these three steps, items 10, 11, and 12 of CL are 1 and

all other items are 0; q = 13, oL is false, and lC = 16.

For the sake of brevity we will not expound upon all seventeen remaining production rules,

but rather highlight a few points. At the end of the step for i = 26, k has increased by

10 and so is now 14, items 17 through 26 of z are set to 17, and no other variables have

35

changed further. When i = 27, z[27] is set to 26; k becomes 15, and lP is changed to 27.

When i = 28, the first production rule with an empty production is encountered, so e has its

first entry, the value 28, appended; z[28] is set to 29; and k increases to 16. When i = 29,

we encounter the rule C29 → C27 · C28, but since C28 produces the empty word, we change

z[29] to 29− 27 + 26 = 28, set lP to 29, and increase k to 17. Similarly, when i = 30, z[30]

is set to 30 − 29 + 28 = 29, lP increases to 30, and k becomes 18. At the end of the step

for i = 32, two more entries have been added to Q which indicate the rules D13 → D1 ·D1

and D14 → D12 · D13; items 13 and 14 of CL have been set to 1; q = 15; lC = 32; and

z[31] = z[32] = 18. The final step is for i = 33, during which k is increased to 19, lP is set to

33, and z[33] is changed to 19. Thus at the end of the main loop, lP = 33, lC = 32, q = 15,

oL = false, the list e has a single entry: e = [28], and the values of Q, z, and CL for each

index are given in the table below.

36

The lists Q, z, and CL

Index Q z CL Index Q z CL Index Q z CL

0 ‘a0’ 0 0 11 0 · 0 2 1 23 17 0

1 ‘a1’ 0 0 12 10 · 11 12 1 24 17 0

2 ‘a2’ 0 0 13 1 · 1 11 1 25 17 0

3 ‘a3’ 0 0 14 12 · 13 4 1 26 17 0

4 ‘a4’ 0 0 15 4 0 27 26 0

5 ‘A0’ 0 0 16 4 0 28 29 0

6 ‘A1’ 0 0 17 17 0 29 28 0

7 ‘A2’ 0 0 18 17 0 30 29 0

8 ‘A3’ 0 0 19 17 0 31 18 0

9 ‘A4’ 0 0 20 17 0 32 18 0

10 9 · 2 8 1 21 17 0 33 19 0

22 17 0

Now 34 − 1 = 33 does not occur in e, and lP = 33 > lC = 32. So we let i = 33 and

nr = 33− 19 = 14. Since CL[14] = 1, we truncate Q to 15 items so that D14, the character

associated with Q[14], is the root. Since oL is false, we create a new SLP D with the set Q of

production rules and then output D. The tree representing D is pictured in Figure 2.7.

We now review several simpler algorithms upon which our main algorithms are built.

Lemma 2.14. The algorithm Inverse SLP described by the flowchart in Figure 2.8 returns an

SLP in quasinormal form which produces the inverse of the word produced by the SLP which

is input.

Proof. We input an SLP A with production rule list P, and we create a list, Q, of length n,

setting each of its items to ε. We run the algorithm Get Length on A to find the length of wA

37

D14

D12

D10

D9

a−14

D2

a2

D11

D0

a0

D0

a0

D13

D1

a1

a1

D1

a1

a1

Figure 2.7: The Output of Quasinormalize in Example 2.13

by Lemma 2.4. We use this to determine whether or not any production rule points to only

one non-terminal character; since A is in quasinormal form, there is a Pr1Pr-type production

rule in P if and only if wA is a single letter. Each item in Q corresponds to a non-terminal

character, and we use the index q to step through the production rules of A one at a time,

starting with q = 0. Since A is in quasinormal form, the first production rules encountered

are those pointing to terminal characters. For these, if the rule is Aq → ar for some r, then

Q[q] is set to a−1r , which indicates the new production rule Bq → a−1r ; if the rule is Aq → a−1r

for some r, then Q[q] is set to ar, indicating the new rule Bq → ar. This has the effect of

producing the inverse of each letter in wA. If the production rule is of the type Aq → Ar,

then Q[q] is set to Q[r], indicating the new rule Bq → Br. All other production rules must

be of the form Aq → Ar · As. In this case, Q[q] is set to Q[s] ·Q[r], indicating the new rule

Bq → Bs · Br. This has the effect of producing letters in the reverse order of the letters

in wA. Now for every production rule of A pointing to a letter we have a new production

rule pointing to the inverse of that letter, and for every production rule pointing to two

non-terminal characters we have a new production rule pointing to the same characters but

in reverse order. We create a new SLP with this new set of production rules and run the

algorithm Quasinormalize SLP on it, so the new SLP is in quasinormal form by Lemma 2.10,

and the word produced by this new SLP is the inverse of the word produced by A.

38

Figure 2.8: Algorithm Inverse SLP

39

Lemma 2.15. The algorithm Inverse SLP described by the flowchart in Figure 2.8 runs in

polynomial time in n, the length of the SLP which is input.

Proof. The time it takes to run the algorithm Get Length is polynomial, say Q(n), by Lemma

2.5. The other operations that happen outside the main loop before quasinormalizing, as well

as the time required to determine whether or not q < n, do not depend on n and so happen

in constant time, say c1 steps. For each iteration of the main loop, the time is independent of

n, and so the number of steps is bounded by a constant, say c2. The main loop runs n times,

so the total number of steps before quasinormalizing is no more than Q(n) + c1 + c2n, which

is polynomial. By construction, the new SLP which is created has length n, the same length

as A. The time it takes to run the algorithm Quasinormalize SLP is polynomial, say p(n), by

Lemma 2.11. Adding Q(n) to the polynomial p(n) results in a new polynomial in n. This is

the time required to run Inverse SLP.

Lemma 2.16. The algorithm Reverse SLP described by the flowchart in Figure 2.9 inputs an

SLP A and returns an SLP in quasinormal form which produces wA in reverse.

Proof. This routine is very similar to the Inverse SLP algorithm, so we will merely recall the

main points of Inverse SLP and highlight the differences between it and Reverse SLP and

how they affect the outcome of the routine. As with Inverse SLP, we input an SLP A with

production rule list P, and we create a list, Q, of length n, setting each of its items to ε. We

do not need to find the length of wA as we did in Inverse SLP because this piece of Put In

Lexicographic Order is only encountered if wA has more than one letter; therefore we know

there are no Pr1Pr-type production rules in P. Each item in Q corresponds to a non-terminal

character, and we use the index q to step through the production rules of A one at a time,

starting with q = 0. Since A is in quasinormal form, the first production rules encountered

are those pointing to terminal characters. For these, unlike in Inverse SLP, we merely copy

them to Q, so unlike the output of Inverse SLP, the output contains the same letters as

40

Figure 2.9: Algorithm Reverse SLP

wA rather than the inverse of each letter. All other production rules must be of the form

Aq → Ar · As. In this case, as in Inverse SLP, Q[q] is set to Q[s] · Q[r], indicating the new

rule Bq → Bs ·Br. This has the effect of producing letters in the reverse order of the letters

in wA. Now for every production rule of A pointing to a letter we have a new production rule

pointing to that letter, and for every production rule pointing to two non-terminal characters

we have a new production rule pointing to the same characters but in reverse order. We

create a new SLP with this new set of production rules and run the algorithm Quasinormalize

SLP on it, so the new SLP is in quasinormal form by Lemma 2.10, and the word produced

by this new SLP is the word produced by A in reverse order.

Lemma 2.17. The algorithm Reverse SLP described by the flowchart in Figure 2.9 runs in

41

polynomial time in n, the length of the SLP which is input.

Proof. All of the steps in Reverse SLP are also in Inverse SLP (but not all of the steps in

Inverse SLP are in Reverse SLP). Since Inverse SLP runs in polynomial time by Lemma 2.15,

so does Reverse SLP.

Lemma 2.18. The algorithm Count the Occurrences described by the flowchart in Figure

2.10 inputs an SLP A and a nonnegative integer u < m and returns the total number of

occurrences of the generator au and its inverse a−1u in wA.

Proof. We input an SLP A, and a nonnegative integer u < m. We create a list, Q, of length

n, setting each list item to ε. Each item in Q corresponds to a non-terminal character, and we

use the index q to step through the production rules of A one at a time, starting with q = 0.

Since A is in quasinormal form, the first production rules encountered are those pointing to

terminal characters. For these, if the rule is Aq → au or Aq → a−1u , then Q[q] is set to au or

a−1u , respectively, which indicates the new production rule Bq → au or Bq → a−1u . If the rule

is Aq → a±1r for some r 6= u, then Q[q] is set to the empty letter ε, indicating the new rule

Bq → ε. This has the effect of removing every letter in wA from our new word except a±1u . All

other production rules are merely copied: If the production rule is of the type Aq → Ar, then

Q[q] is set to Q[r], indicating the new rule Bq → Br, and if the production rule is of the form

Aq → Ar ·As, then Q[q] is set to Q[r] ·Q[s], indicating the new rule Bq → Br ·Bs. We create

a new SLP B with this new set of production rules and run the algorithm Quasinormalize

SLP on it. By Lemma 2.10, the new SLP returned, NB, produces the same word as B and is

in quasinormal form. We then run Get Length on NB to find, by Lemma 2.4, the length k of

the word it produces. Since the only letters in this new word are au and a−1u , and since we

have exactly the same number of occurrences of each of these in the new word as there are in

wA, k is the total number of occurrences of au and a−1u in wA. We output k.

42

Figure 2.10: Algorithm Count the Occurrences

Lemma 2.19. The algorithm Count the Occurrences described by the flowchart in Figure 2.10

runs in polynomial time in n, the length of the SLP which is input.

Proof. The time it takes to run the operations that happen outside the main loop before

running Quasinormalize SLP, as well as the time required to determine whether or not q < n,

do not depend on n and so happen in constant time, say c1 steps. For each iteration of the

main loop, the time is independent of n, and so the number of steps is bounded by a constant,

say c2. The main loop runs n times, so the number of steps before quasinormalizing is no

more than c2n + c1. By construction, the new SLP, B, which is output to Quasinormalize

SLP, has length n. By Lemma 2.11, Quasinormalize SLP runs in polynomial time in n,

say p(n), and by construction returns an SLP NB of length no more than n. By Lemma

2.5, Get Length runs in polynomial time in n, say q(n). So adding q(n) to the polynomial

p(n) + c3n+ c4 gives us another polynomial in n. This is the time required to run Count the

43

Occurrences.

Lemma 2.20. The algorithm Combine SLPs described by the flowchart in Figure 2.11 inputs

two SLPs, A and B, and returns an SLP in quasinormal form which produces the concatenation

of the words produced by A and B (in that order).

Proof. We input two SLPs, A and B. We run the algorithm Get Length on A, and if the

length of wA is 0, we output B and exit the routine. Otherwise, similarly, we apply Get Length

to B, and if |wB| = 0, we output A and exit the routine. If both wA and wB have positive

length, we continue with the rest of the program. We create a list, Q, of length n+ p+ 1,

setting each list item to ε. Each item in Q corresponds to a non-terminal character, and we

use the index q to first step through the production rules of A one at a time, starting with

q = 0. For these, we merely copy each rule to Q: If the rule is of the form Aq → a±1r , then Q[q]

is set to a±1r , indicating the new production rule C1 → a±1r . If the rule is of type Aq → Ar,

we set Q[q] to Q[r], indicating the new rule Cq → Cr. And if the rule is Aq → Ar ·As, we set

Q[q] to Q[r] ·Q[s], which indicates the new production rule Cq → Cr · Cs.

We next reset q to 0 and step through the production rules of B one at a time, stacking these

on top of the rules we already have indicated in Q. If the rule is Bq → a±1r for some r, then

Q[n+ q] is set to a±1r , indicating the new production rule Cn+q → a±1r . If the production rule

is of the type Bq → Br, then Q[n+ q] is set to Q[n+ r], indicating the new rule Cn+q → Cn+r,

and if the production rule is of the form Bq → Br ·Bs, then Q[n+q] is set to Q[n+r] ·Q[n+s],

indicating the new rule Cn+q → Cn+r · Cn+s.

Once we have added all of the production rules from A and B, we add one final item to Q

indicating the final production rule: Q[n+ p] is set to Q[n− 1] ·Q[n+ p− 1], which indicates

Cn+p → Cn−1 ·Cn+p−1. This last rule effects the concatenation of the word produced by An−1

and the word produced by Bp−1; that is, of wA and wB. We create a new SLP C with this

new set of production rules and run the algorithm Quasinormalize SLP on it, then output

44

that SLP, NC, now in quasinormal form by Lemma 2.10. Since we have merely copied the

production rules of A and B and added a final production rule pointing to the concatenation

of the roots of A and B, NC will produce w(An−1) · w(Bp−1) = wA · wB.

Lemma 2.21. The algorithm Combine SLPs described by the flowchart in Figure 2.11 runs in

polynomial time in n + p, where n and p are the lengths of the two SLPs which are input.

Furthermore, the length of the SLP which is returned is no more than n+ p+ 1.

Proof. By 2.5, running Get Length to find the lengths of wA and wB takes polynomial time

in n for wA, say q1(n) steps, and in p for wB, say q2(p) steps. Thus running Get Length twice

at the beginning of the routine takes no more than q1 + q2(n+ p) steps. The time it takes to

run the other operations that happen outside the two loops before running Quasinormalize

SLP, as well as the time required to determine whether or not q < n or q < p, do not depend

on n or p and so happen in constant time, say c1 steps. For each iteration of the first loop,

the time is independent of n and p, and so the number of steps is bounded by a constant,

say c2. Similarly, for each iteration of the second loop, the time is independent of n and

p, and so the number of steps is bounded by a constant, say c3. Let c = max{c2, c3}. The

first loop runs n times, and the second loop runs p times, so the number of steps before

running the algorithm Quasinormalize SLP is no more than (q1 + q2)(n+ p) + cn+ cp+ c1,

which is polynomial in n+ p. The SLP C which is output to Quasinormalize SLP has length

n+ p+ 1 by construction. By Lemma 2.11, the number of steps required to quasinormalize

the new SLP is a polynomial in n + p + 1, which is also a polynomial in n + p. Adding

(q1 + q2)(n+ p) + cn+ cp+ c1 to this polynomial results in a new polynomial in n+ p. This

is the time required to run Combine SLPs. Furthermore, by Lemma 2.12, the length of the

SLP which is output by Combine SLPs is no more than n+ p+ 1.

The next two routines we discuss involve finding a particular subword of the word produced

by the SLP which is input. The first finds the leftmost subword of a given length and the

45

Figure 2.11: Algorithm Combine SLPs

46

second, which is very similar to the first, finds the rightmost subword of a given length.

Lemma 2.22. The algorithm Left Sub SLP described by the flowchart in Figure 2.12 inputs an

SLP A and a nonnegative integer g, and returns an SLP in quasinormal form which produces

wA[: g], the leftmost subword of length g.

Proof. Note that it may be helpful to refer to Figure 2.13 while considering this proof. In

the example in this figure, n− 1 = 13 and g = 12. At the beginning of the algorithm Left

Sub SLP, we input an SLP A, and a nonnegative integer g. We run the algorithm GetLength

to find the length L of wA, and we check to see if g > L. If so, an error message is printed to

the screen and A is returned. We check to see if g = L, and if so, A is returned. We also

check to see if g = 0, and if so, an empty SLP is created and returned. If L > g > 0, we

proceed with the rest of the routine.

We create two lists: Q, of length 2n − 1, with all list items set to ε; and prL, of length n,

with all list items set to 0. Each item in the two lists corresponds to a non-terminal character.

We use Q to store the new productions, and we use prL to store the lengths of the words

produced by each original production rule. We begin by stepping through the production

rules of A one at a time using the index q, starting with q = 0. In this loop we double the

indices of the characters, while at the same time storing lengths of words. (We will change

the items of Q with odd index later in the routine, as needed.) Consider the following three

cases. If the current production rule of A is Aq → a±1r for some r, we set prL[q] to 1, and we

set Q[2q] to a±1r . In the second case, the rule is of the form Aq → Ar, and we set prL[q] to

prL[r] and Q[2q] to Q[2r]. In the third case, the rule is Aq → Ar · As for some r and s, and

we set prL[q] to prL[r] + prL[s] and Q[2q] to Q[2r] ·Q[2s]. Thus prL[q] is the length of the

word produced by Aq for any q, and all of the original production rules (the ones involving

Aq for some q) have a corresponding new production rule indicated in Q, where the indices

are all doubled. The items of odd index in Q are still set to ε.

47

When we are finished with that first loop, we initialize three new variables. We set the

variable h to g and will use h to store the number of letters we still need to include. We

create a new list, u, of length 2n− 1, with each list item set to 0. We will use u to keep track

of which production rules indicated in Q will actually get used in our new SLP. We also set

the variable tf to true. We will set tf to false at the right time during the main loop to allow

us to break out of that loop. Now we step through those production rules which may need

to be changed in order to cut the produced word off at g letters. Beginning with q = n− 1,

we consider the corresponding production rule of A. As we cycle through this main loop, q

becomes smaller and smaller. Once we reach the first production rule which is not of the

form Aq → Ar ·As, we break out of the main loop and proceed to the next step. So all of the

production rules considered in the main loop are of the form Aq → Ar ·As. For each of these

encountered, we first set the variable l to prL[r], the length of the word produced by Ar, and

then determine whether l > h, l = h, or l < h.

If l > h, this means that w(Ar) is longer than the subword we want, so we need a new

production rule producing a shorter word than the one produced by Ar. We create this

new production rule by setting Q[2q − 1] to Q[2r − 1], indicating the new production rule

B2q−1 → B2r−1. We also set u[2q − 1] and u[2r − 1] to 1, indicating that these production

rules will be used in the new SLP. We then set q to r, because we will next need to consider

the production rule for Ar, and we return to the beginning of the loop.

If l = h, this means that w(Ar) is exactly what we need to make our final subword g letters

long, so we need this production rule exactly as it is. Now Q[2r] is already set to the

production corresponding to that of Ar, so we set Q[2q − 1] to Q[2r], indicating the new rule

B2q−1 → B2r. We also set u[2q − 1] and u[2r] to 1 and tf to false, breaking us out of the

main loop to proceed to the next step.

If l < h, this means that w(Ar) is shorter than the subword we want, so we need to keep the

production rule for Ar as is and replace the production rule for As with a new one. Thus we

48

set Q[2q − 1] to Q[2r] · Q[2s− 1], indicating the new rule B2q−1 → B2r · B2s−1. We change

u[2q − 1], u[2r], and u[2s− 1] to 1, indicating their use in the new SLP. We also set q to s,

because the next rule to consider is the one for As. Finally, we set h to h− l because w(B2r)

has length l, so we only need h− l letters from w(As), and we return to the beginning of the

loop.

Perhaps a word needs to be said about why the loop terminates, since this loop is not

controlled by a counter to a given integer. There are two ways the loop can terminate – either

a production rule is encountered which is not of the form Aq → Ar · As, or a production rule

is encountered which produces a word of length l which is equal to the variable h at that

time. For the other two possibilities – that for the encountered rule l < h, and that for the

encountered rule l > h – the value of q is changed, providing a new production rule for the

next run through the loop. If l > h, then q is set to r, which must be less than the current

value of q, because A is in quasinormal form; similarly, if l < h, then q is set to s, which

is less than q. So each time the loop repeats, the value of q is less than the previous time.

Recall that in quasinormal form, the production rules for terminal characters have smaller

indices than those for non-terminal characters, so at some point q will be small enough that

the associated production rule will be for a terminal character, causing the loop to terminate,

if the loop has not terminated already.

Once we exit the main loop, we set a new variable, hu, to 0 and proceed to run through one

more little loop, using q as our index and letting it run from 0 to n− 1. We want hu to be

the highest index for which u is set to 1. To accomplish this, for each iteration of the loop

we check to see if u[q] = 1; if so, we set hu to q. Since q increases at each step of this loop,

after finishing the last iteration of the loop, hu is the highest index of all items of u set to 1.

Finally, we truncate Q so that it contains only its first hu+ 1 items, which indicate our new

production rules; this causes Bhu, which corresponds to Q[hu], to be the root.

Consider the production rules created by this process and how they are related to the

49

production rules of A. We begin by considering the rule corresponding to the root non-

terminal, An−1, so at the outset q = n− 1. Assume An−1 → Ar · As for some r and s. We

have three possibilities.

If the subword we want is exactly the word produced by Ar, we set Q[2q−1] to Q[2r], indicating

the new rule B2q−1 → B2r. This new rule is then used instead of the rule B2q → B2r · B2s,

which is our copy of Aq → Ar ·As, since we mark the rule indicated in Q[2q − 1] as used, but

not the one indicated in Q[2q]. No other rules are changed, so now w(B2q−1) = w(Ar). In

this case we exit the main loop.

Now the second possibility: If the subword we want is a proper subword of w(Ar), we set

Q[2q − 1] to Q[2r − 1] and set q to r so that that the next time through the loop, Q[2r − 1]

will be set to the appropriate value. By doing this and marking the rule indicated in Q[2q−1]

as used but leaving Q[2q] unmarked, the rule B2q−1 → B2r−1 will be included in our new SLP

instead of B2q → B2r ·B2s.

The final case is that the subword we want contains w(Ar) and a subword of w(As). In this

case, we do not change the rule for B2r, because we want all of w(B2r) in our produced word.

Rather, we set Q[2q− 1] to Q[2r] ·Q[2s− 1] and q to s so that the next time through the loop,

Q[2s− 1] will be set to the appropriate value. We also set h to the difference between h and

the length of w(Ar) so that now h indicates how many letters need to be produced by the

production Q[2s− 1]. By doing this and marking the rule indicated in Q[2q − 1] as used but

not Q[2q], we cause the rule B2q → B2r ·B2s to not be used, but the rule B2q−1 → B2r ·B2s−1

to be used instead.

Once we have done this for An−1, we repeat the process as needed on the next production

rule which must be considered. We should note here that when the process outlined above

is applied to non-terminals other than the root, it is certainly possible that one occurrence

(that is, the occurrence currently being considered) of Aq will correspond to B2q−1 in our

50

new rules but that another occurrence or occurrences of Aq will correspond to B2q. However,

only one occurrence of Aq will correspond to B2q−1, because the characters indexed by odd

numbers only occur on one branch of the tree, and there cannot be more than one occurrence

of any given character along one branch (since the indices strictly decrease as we move along

a branch from the root toward the leaves). It is fairly straightforward to see that if the main

loop is exited because the remaining part of the subword which we need is produced by Ar at

some step, then the word produced by B2q−1 is the subword of w(Aq) which we wanted. On

the other hand, if the loop is exited because a rule for a terminal character is encountered,

then we must only have needed one more letter, which is the letter produced by that rule.

We create a new SLP B with this new set of rules and run the algorithm Quasinormalize

SLP on it, then output that SLP, NB, now in quasinormal form by Lemma 2.10. NB will

now produce wA[: g].

Lemma 2.23. The algorithm Left Sub SLP described by the flowchart in Figure 2.12 runs in

polynomial time in n, the length of the SLP, A, which is initially input.

Proof. The time it takes to run the algorithm Get Length is polynomial in n by Lemma 2.5,

and checking to see if g > L, g = L, or g = 0 happens in constant time. The time required

to create an empty SLP is also bounded by a constant, so if g ≥ L or g = 0, the algorithm

Left Sub SLP runs in polynomial time, say q(n). The other operations that happen outside

the two loops before running Quasinormalize SLP, as well as the time required to determine

whether or not q < n or tf = true, do not depend on n and so happen in constant time,

say c1 steps. For each iteration of each of the three loops, the time is independent of n, so

the number of steps is bounded by a constant. Take the maximum of these three constants

and call it c2. The first and third loops run n times each, and the second loop runs no

more than 2n− 1 times, so before running Quasinormalize SLP, the algorithm Left Sub SLP

requires no more than q(n) + c1 + c2n+ c2(2n− 1) + c2n = q(n) + 4c2n+ c1 − c2 steps. So

before quasinormalizing the new SLP, B, Left Sub SLP runs in polynomial time in n. By

51

Figure 2.12: Algorithm Left Sub SLP

52

A13

A12

A8

A4

e

e

e

e

A7

A3

d

d

d

A6

A2

c

c

A5

A1

b

A4

e

A11

A7

A3

d

d

d

A6

A2

c

c

A5

A1

b

A4

e

A10

A6

A2

c

c

A5

A1

b

A4

e

A9

A5

A1

b

A4

e

A8

...

A11

A7

A3

d

A6

...

A10

...

ww�
B25

B23

B16

B8

e

e

e

e

B14

B6

d

d

d

B12

B4

c

c

B10

B2

b

B8

e

B21

B14

B6

d

d

d

B12

B4

c

c

B10

B2

b

B8

e

B19

B12

B4

c

c

B10

B2

b

B8

e

B18

B10

B2

b

B8

e

B16

...

B22

B14

B6

d

B12

...

B20

...

Figure 2.13: Producing a Left Subword of Length 12

53

construction, B has length no more than 2n. By Lemma 2.11, the number of steps required

to run Quasinormalize SLP on B is a polynomial in 2n, say p(2n). Now p(2n) is a polynomial

in n, so when we add q(n) + 4c2n+ c1 − c2 to p(2n), we get a new polynomial in n. This is

the time required to run the algorithm Left Sub SLP.

Lemma 2.24. The length of the SLP produced by Left Sub SLP is no more than 2n, where n

is the length of the SLP which is input.

Proof. If n is the length of the SLP which is input, then by construction, B has length no

more than 2n. By Lemma 2.12, applying Quasinormalize SLP to B produces an SLP which

is no longer than the length of B. Thus the SLP output by Left Sub SLP has length no more

than 2n.

Lemma 2.25. The algorithm Right Sub SLP described by the flowchart in Figure 2.14 inputs

an SLP A and a nonnegative integer f , and returns an SLP in quasinormal form which

produces wA[L − f :], the rightmost subword of length f , where A produces the word wA,

which has length L.

Proof. The algorithm Right Sub SLP is almost exactly the same as the algorithm Left Sub

SLP, so we will merely discuss the differences, all of which are immediately before or inside

the main loop. The name of the integer we input in Right Sub SLP is f , so we set h to f

rather than to g, as we did in Left Sub SLP. Because we want the rightmost subword now,

we set l to prL[s], the length of w(As), where we set l to prL[r], the length of w(Ar), in Left

Sub SLP. We still have the three possibilities of l > h, l = h, or l < h.

If l > h, we now set Q[2q − 1] to Q[2s − 1] rather than to Q[2r − 1], and q to s, not r.

Additionally, we set u[2q − 1] and u[2s− 1] to 1. In this way, the production rule for Ar will

not be used, and the one for As will be replaced with a production which produces a shorter

word. We then return to the beginning of the main loop.

54

If l = h, we set Q[2q− 1] to Q[2s] instead of to Q[2r], and we set u[2q− 1] and u[2s] to 1. As

in Left Sub SLP, we then exit the main loop.

In the case where l < h, instead of setting Q[2q − 1] to Q[2r] · Q[2s − 1], we set it to

Q[2r − 1] ·Q[2s], and we set q to r instead of to s. We also set u[2q − 1], u[2r − 1], and u[2s]

to 1, and we set the value of h to h− l. This results in the production rule for As being kept,

while the one for Ar will be considered next. We then return to the beginning of the loop.

The result of these changes is that we are now keeping and, when necessary, modifying the

production rules which produce the rightmost subwords of wA, rather than those which

produce the leftmost subwords. The length of the produced subword is f by construction.

Lemma 2.26. The algorithm Right Sub SLP described by the flowchart in Figure 2.14 runs in

polynomial time in n, the length of the SLP, A, which is initially input.

Proof. The differences between Right Sub SLP and Left Sub SLP do not affect the number

of steps involved in running the routines. Therefore, since Left Sub SLP runs in polynomial

time in n by Lemma 2.23, so does Right Sub SLP.

Lemma 2.27. The length of the SLP produced by Right Sub SLP is no more than 2n, where n

is the length of the SLP which is input.

Proof. If n is the length of the SLP which is input, then by construction, the produced SLP

has length no more than 2n. By Lemma 2.12, applying Quasinormalize SLP to that SLP

does not increase the length of the SLP. Thus the SLP output by Right Sub SLP has length

no more than 2n.

Lemma 2.28. The algorithm Find the Occurrence described by the flowchart in Figure 2.15

inputs an SLP A and integers p and u with p > −2, p 6= 0, and u > 0, and returns the

position of the pth occurrence of a±1u in the word produced by A, where p = −1 indicates the

last (rightmost) occurrence.

55

Figure 2.14: Algorithm Right Sub SLP

56

Proof. We first output A and u to the algorithm Count the Occurrences, which returns the

integer k. By Lemma 2.18, k is the number of occurrences of a±1u in wA. We check to see if

p > k, and if so, we return −1, indicating that there are not p occurrences of a±1u in wA, and

exit the program. If not, we check to see if p = −1, and if so, we change p to k so that the

pth occurrence of a±1u is the last, or rightmost, occurrence.

Regardless of whether or not p was originally −1, we proceed now by creating two lists: occs

and prL, both of length n, with all list items set to 0. Each item in the two lists corresponds

to a non-terminal character. We use occs to store the number of occurrences of a±1u in the

words produced by each production rule, and we use prL to store the lengths of the words

produced by each production rule.

We begin by stepping through the production rules of A one at a time using the index q,

starting with q = 0. In the first loop we find and enter the correct values for each item in

these two lists. Consider the following three cases. If the current production rule of A is

Aq → a±1r for some r, we set prL[q] to 1. We check to see if r = u, and if so, we set occs[q]

to 1; if not, we leave occs[q] set to 0. In the second case, the rule is of the form Aq → Ar,

and we set prL[q] to prL[r] and occs[q] to occs[r]. In the third case, the rule is Aq → Ar ·As

for some r and s, and we set prL[q] to prL[r] + prL[s] and occs[q] to occs[r] + occs[s]. Thus

for any q, prL[q] is the length of w(Aq), and occs[q] is the number of occurrences of a±1u in

w(Aq).

To begin the main loop we set q to n− 1 and initialize the variables j and tf to 0 and true,

respectively. We use j to keep track of the position of the rightmost letter which has been

determined to be left of the pth occurrence of a±1u , and we use tf to allow us to break out of

the main loop at the right time. Now we step through those production rules corresponding

to characters which lie along the branch leading to the pth occurrence of a±1u . Beginning with

q = n − 1, we consider the corresponding production rule of A. As we cycle through this

main loop, q becomes smaller and smaller. Once we reach the first production rule which is

57

not of the form Aq → Ar · As, we break out of the main loop and proceed to the next step.

So all of the production rules considered in the main loop, except for the last one, are of

the form Aq → Ar · As. For each of these encountered, we set the variable v to occs[r], the

number of occurrences of a±1u in w(Ar). There are two possibilities: v < p or v ≥ p.

If v < p, this means that the word produced by Ar does not contain the pth occurrence of a±1u ,

so the word produced by As must contain it. We set p to p− v because the first v occurrences

we need lie in w(Ar), so in the next step we will need only p− v more occurrences. We set

q to s because we need to consider the production rule for As in the next run through the

loop, and we set j to j + prL[q] since the pth occurrence must lie to the right of the rightmost

letter of w(Ar). We then return to the beginning of the main loop.

If v ≥ p, this means that w(Ar) contains the pth occurrence of a±1u , so we need to consider

the production rule for Ar in the next run through the loop. To do so, we set q to r and

leave p and j unchanged. We then return to the beginning of the main loop.

Once we reach the first production rule not of the form Aq → Ar · As, we set j to j + 1,

because by construction of the algorithm, w(Aq) must be the pth occurrence of a±1u . Before

this step, j was set to the position of the letter to the immediate left of w(Aq), so we add 1

to make j the position of the letter w(Aq) in wA. We then set tf to false, causing the main

loop to terminate.

Now the loop must terminate; we will eventually encounter a production rule which is not

Aq → Ar ·As for some r and s. This happens because at each step where the production rule

is Aq → Ar · As for some r and s, the value of q is changed to r or s for the next iteration

of the loop, and both r and s must be less than the current value of q, because A is in

quasinormal form. So each time the loop repeats, the value of q is less than the previous

time. Additionally, the production rules for terminal characters have smaller indices than

those for non-terminal characters, so at some point q will be small enough that the associated

58

production rule will be for a terminal character, causing the loop to terminate.

Once outside the main loop, we merely return j and exit the program.

Lemma 2.29. The algorithm Find the Occurrence described by the flowchart in Figure 2.15

runs in polynomial time in n, the length of the SLP, A, which is initially input.

Proof. The time it takes to run the algorithm Count the Occurrences is polynomial in n, say

p(n), by Lemma 2.19. The other operations that happen outside the two loops, as well as the

time required to determine whether or not q < n or tf = true, do not depend on n and so

happen in constant time, say c1 steps. For each iteration of each of the two loops, the time is

independent of n, so the number of steps is bounded by a constant; let the maximum of these

two constants be c2. The first loop runs n times, and the second loop runs no more than

n times, so the algorithm Find the Occurrence requires no more than p(n) + c1 + c2(n+ n)

steps, which is a polynomial in n.

The next two algorithms we discuss involve checking to see whether or not the rightmost

subword of one word is equal to the inverse of the leftmost subword of another word, and if

so, canceling those subwords. We use these routines when trying to put words into shortest

form. If the rightmost subword of length r of a word wA is the same as the inverse of the

leftmost subword of length r of a word wB, then the word wA · wB is equivalent as a group

element to the word wA[: L − r] · wB[r :], where L is the length of wA, so we perform this

cancelation to get a shorter form of the element. It is worth noting that the algorithm Do

They Cancel? is the one which uses Plandowski’s algorithm. (Our actual Python routine

does not use Plandowski’s algorithm, but the algorithm indicated by the flowchart does use

it.)

Lemma 2.30. The algorithm Do They Cancel? described by the flowchart in Figure 2.16 inputs

two SLPs, A and B, and a nonnegative integer r, and returns a value of true if the rightmost

subword of wA of length r is the inverse of the leftmost subword of wB of length r and a value

59

Figure 2.15: Algorithm Find the Occurrence

60

of false otherwise.

Proof. We first output A and r to the algorithm Right Sub SLP, which by Lemma 2.25

returns an SLP C which produces the rightmost subword of wA of length r, that is, wA[L−r :],

where L is the length of wA.

We next output B and r to the algorithm Left Sub SLP, which by Lemma 2.22 returns an

SLP D which produces the leftmost subword of wB of length r, that is, wB[: r]. Then we

output D to the algorithm Inverse SLP, which returns an SLP E. By Lemma 2.14, the word

produced by E is the inverse of the word produced by D, so wE = (wB[: r])−1.

Finally, we output C and E to Plandowski’s algorithm, which by [7] returns a value of true if

wC = wE and false otherwise. We input this value, h, and then return h and exit the routine.

Thus we return true if wA[L− r :] = (wB : r])−1 and false otherwise.

Lemma 2.31. The algorithm Do They Cancel? described by the flowchart in Figure 2.16 runs

in polynomial time in n+ p, where n and p are the lengths of the SLPs, A and B, which are

initially input.

Proof. There are no loops in this routine, just calls to four other routines and then outputting

the value h at the end. The time required to output information to and input information

from other routines is bounded by a constant, so say it takes c steps for all of the inputting

and outputting done in Do They Cancel?. By Lemmas 2.26, 2.23, and 2.15, the algorithms

Right Sub SLP, Left Sub SLP, and Inverse SLP all run in polynomial time in the size of the

SLPs which are input. So Right Sub SLP runs in polynomial time in n, say q(n), and Left

Sub SLP runs in polynomial time in p, say s(p). The length of C must be polynomial in n,

say t(n), since it is produced by Left Sub SLP, and the length of D is polynomial in p, say

u(p). Thus Inverse SLP runs in polynomial time in u(p), say v(u(p)), but composing two

polynomials results in a new polynomial, so v(u(p)) = f(p) for some polynomial f ; hence

61

Figure 2.16: Algorithm Do They Cancel?

62

Inverse SLP runs in polynomial time in p. Inverse SLP produces E, which therefore has

polynomial length, say g(p).

We output C, which has length t(n), and E, which has length g(p), into Plandowski’s

algorithm. By [7], Plandowski’s algorithm runs in polynomial time in t(n) + g(p), which

is polynomial in n + p, say F (n + p). If the polynomial indicating the number of steps

required by Plandowski’s algorithm is P , then the number of steps taken to run on C and E

is P (F (n+ p)), which is a new polynomial in n+ p, say Q(n+ p). Therefore the number of

steps required to run the algorithm Do They Cancel? is c+ q(n) + s(p) + f(p) +Q(n+ p),

which is again polynomial in n+ p.

The following routine performs the cancelation which Do They Cancel? checks for. The words

produced by the SLPs which are returned are the same as the words produced by the SLPs

which are input, but with the rightmost subword of the first and the leftmost subword of the

second truncated by the same amount. The number of letters to truncate is not the integer

which is input, however; the position of the leftmost letter to truncate in the first word is the

integer which is input. Understanding this may help clarify the statement of the following

lemma.

Lemma 2.32. The algorithm Cancel Them described by the flowchart in Figure 2.17 inputs

two SLPs, A and B, and a nonnegative integer s, and returns two SLPs ND and NE in

quasinormal form meeting the following conditions. The SLP ND produces the leftmost

subword of wA of length s − 1; that is, wND = wA[: s − 1]. If the length of wA is k1, then

the number of letters which occur in wA but not in wND, that is, the number of letters cut

from wA to get wND, is k1 − (s− 1). This is also the number of letters cut from wB to get

wNE. If k2 is the length of wB, then NE produces the rightmost subword of wB of length

k2 − (k1 − (s− 1)); that is, wNE = wB[k1 − (s− 1) :].

Proof. We first output A and then B to the algorithm Get Length, which by Lemma 2.4

63

returns k1 and then k2, the lengths of wA and wB, respectively. We assign to the variable

k the value k2 − (k1 − (s − 1)) = k2 − k1 + s − 1 because k1 − (s − 1) is the length of the

subword that was truncated from wA to get wD, and we want to truncate the same number

of letters from wB. If s > k1 or k > k2 then an error message is printed to the screen and A

and B are returned as the routine is exited; otherwise we proceed with the rest of the routine.

We next output A and s− 1 to the algorithm Left Sub SLP, which by Lemma 2.22 returns an

SLP D which produces the leftmost subword of wA of length s− 1, that is, wD = wA[: s− 1].

We want the length of the subword of wB that we keep to be k = k2 − (k1 − (s− 1)), and so

we output B and k to the algorithm Right Sub SLP, which returns an SLP E. By Lemma

2.25, the word produced by E is the rightmost subword of B of length k. In other words,

wE = wB[k1 − (s− 1) :].

Now wD and wE produce the words we want, but they might not be in quasinormal form,

so we output D and then E to the routine Quasinormalize SLP, which returns first ND and

then NE. By Lemma 2.10, ND and NE are SLPs in quasinormal form which produce the

same words as D and E, respectively. We return ND and NE and exit the routine.

Lemma 2.33. The algorithm Cancel Them described by the flowchart in Figure 2.17 runs in

polynomial time in n + p, where n and p are the lengths of the SLPs, A and B, which are

initially input. Furthermore, the sizes of the SLPs which are output are no more than 2n and

2p, respectively.

Proof. There are no loops in this routine, just calls to four other routines, one calculation,

and then outputting the new SLPs at the end. The time required to output information

to and input information from other routines is bounded by a constant, as is the time to

perform the one calculation and assign the result to a variable, so say it takes c steps for all

of the steps done outside of other routines in Cancel Them. By Lemma 2.5, the algorithm

Get Length runs in polynomial time, say Q(x), in the size of the SLP which is input. So the

64

Figure 2.17: Algorithm Cancel Them

65

first time Get Length is called in Cancel Them, it runs in Q(n) steps, and the second time it

runs in Q(p) steps.

By Lemmas 2.26 and 2.23, the algorithms Right Sub SLP and Left Sub SLP run in polynomial

time in the size of the SLPs which are input. So in Cancel Them, Left Sub SLP runs in

polynomial time in n, say q(n), and Right Sub SLP runs in polynomial time in p, say s(p).

The length of D must be no more than 2n, since it is produced by Left Sub SLP, and the

length of E is at most 2p, since it is produced by Right Sub SLP, by Lemmas 2.24 and 2.27.

Finally we quasinormalize each of these new SLPs. By Lemma 2.11, Quasinormalize SLP

runs in polynomial time, say v(x), in the size of the input. When D is input, then, Quasi-

normalize SLP requires v(2n) steps, and when E is input, Quasinormalize SLP requires

v(2p) steps. Therefore the number of steps required to run the algorithm Cancel Them is

c+Q(n) +Q(p) + q(n) + s(p) + v(2n) + v(2p), which is itself bounded by a polynomial in

n+ p.

Furthermore, since the size of D is at most 2n and the size of E is at most 2p, and since by

Lemma 2.12, Quasinormalize SLP produces an SLP no bigger than that which was input,

the length of ND is no more than 2n, and the length of NE is no more than 2p.

2.3 Algorithms, Part 2 – Preliminaries for Ordering Lexicographically

The next several algorithms we discuss involve finding the position or positions of a letter or

letters with certain attributes, such as the leftmost letter in a word which does not commute

with a particular list of generators. These are all used when putting a word into lexicographic

order. Recall that we do not consider a generator able to commute with itself or its inverse,

and that the global list R contains all pairs of indices corresponding to pairs of generators

which commute with each other.

66

Lemma 2.34. The algorithm Find Rightmost Noncommuting described by the flowchart in

Figure 2.18 inputs an SLP A and a nonnegative integer i < m and returns the index h and

position t of the rightmost letter a±1h in wA which does not commute with ai.

Proof. We input an SLP A, and a nonnegative integer i < m. We output A to the algorithm

Find Included Generators which, by Lemma 2.6, returns a list y which has each item y[j] set

to 1 if a±1j occurs in wA and set to 0 otherwise. In the first loop we modify y by changing

y[j] to 0 if it had been 1 and if aj commutes with ai. Then the only items in y set to 1 will

be those for which a±1j occurs in wA and aj does not commute with ai. We use the index j

to step through the items of y one at a time, starting with j = 0. For each j we check to see

if y[j] = 1; if not, we return to the beginning of the loop. For each y[j] set to 1 we check

to see if the pair (i, j) or the pair (j, i) is in R. If either pair is in R, we change y[j] to 0;

otherwise we leave y[j] unchanged. We then return to the beginning of the loop. We exit

this loop when j = m, the length of y.

We initialize the variables h and t to −1 and reset j to 0 before beginning the main loop. In

the main loop, we first check whether or not y[j] = 1; if not, we return to the beginning of

the loop. For each y[j] set to 1 we output A, −1, and j to the algorithm Find the Occurrence,

which returns the position s of the rightmost occurrence of a±1j , by Lemma 2.28. If s is

greater than the current value of t, we set t to s and h to j; otherwise we leave h and t

unchanged. We then return to the beginning of the main loop. Since we only run Find the

Occurrence for those values of j for which aj and ai do not commute, every value of s which

is returned is the position of a letter which does not commute with ai. And since we run Find

the Occurrence for every value of j for which a±1j occurs in wA and aj does not commute

with ai, the rightmost position of every letter in wA which does not commute with ai is given

by s at some point during the main loop. Now we only change the value of t to be that of

s if s > t, so at the end of the loop, unless t and h are still set to their initial values, t is

the position of the rightmost letter in wA which does not commute with ai. And because we

67

change the value of h to that of j only when we change t to be that of s, h is the index of

that letter. If t and h are both still −1, this indicates that wA contains no letter which does

not commute with ai. We return h and t.

Lemma 2.35. The algorithm Find Rightmost Noncommuting described by the flowchart in

Figure 2.18 runs in polynomial time in n, the length of the SLP which is input.

Proof. The time it takes to output information to and input information from other routines,

as well as the time required to determine whether or not j < m, do not depend on n and

so happen in constant time, say c1 steps. The algorithm Find Included Generators runs in

polynomial time in n, say p(n) steps, by Lemma 2.7. For each iteration of the first loop, the

time is independent of n, and so the number of steps is bounded by a constant, say c2. For

each iteration of the main loop, the number of steps outside of running Find the Occurrence

is bounded by a constant, say c3. By Lemma 2.29, Find the Occurrence runs in polynomial

time in n, say q(n). Each of the two loops runs m times, so the number of steps required to

run Find Rightmost Noncommuting is c1 + p(n) + c2m+m(c3 + q(n)), which is a polynomial

in n.

The routine we discuss next is very similar to the previous one, but instead of finding the

rightmost occurrence it finds the leftmost, and instead of only considering those letters which

do not commute with a particular generator, it considers all letters which fail to commute

with at least one generator in a list of indices of generators. For the sake of brevity, let us

refer to the letters whose indices appear in that list, iList, as iList letters.

Lemma 2.36. The algorithm Find Leftmost Noncommuting - List described by the flowchart

in Figure 2.19 inputs an SLP A and a list iList of nonnegative integers less than m and

returns the index h and position t of the leftmost letter a±1h in wA which fails to commute

with ai for at least one i in iList.

Proof. As in Find Rightmost Noncommuting, we begin by outputting A to the algorithm

68

Figure 2.18: Algorithm Find Rightmost Noncommuting

69

Find Included Generators which, by Lemma 2.6, returns a list y which has each item y[j] set

to 1 if a±1j occurs in wA and set to 0 otherwise. Before entering the first loop, we create a list

y2 of length m with each item set to 0, and we set the constant L to the length of iList. We

use y2 to indicate which generators fail to commute with at least one letter whose index is

in iList. In the first loop we modify y2 by changing y2[j] to 1 if y[j] is 1 and if aj fails to

commute with at least one iList letter. We use the index j to step through the items of y

one at a time, starting with j = 0. For each j we check to see if y[j] = 1; if not, we return

to the beginning of the loop. For each y[j] set to 1 we step through each item in the list

iList using the index i, which runs from 0 to L− 1. For each i, we check to see if the pair

(iList[i], j) or the pair (j, iList[i]) is in R. If neither pair is in R, we change y2[j] to 1 and

exit the smaller nested loop; otherwise we return to the beginning of the smaller nested loop.

When exiting the smaller loop, either y2[j] has been set to 1 or aj commutes with every iList

letter, in which case y2[j] is still 0. We then return to the beginning of the outer loop to

check the next j. We exit this loop when j = m, the length of y. Therefore as we exit the

first loop, each item y2[j] is 0 if a±1j occurs in wA and aj commutes with every iList letter,

and is 1 otherwise.

We next output A to the algorithm Get Length, which returns k, the length of wA, by Lemma

2.4. We initialize the variables h to −1 and t to k + 1 and reset j to 0 before beginning

the main loop. The main loop has three differences from the main loop in Find Rightmost

Noncommuting: we look at the list y2 instead of the list y, we output 1 instead of −1 as the

second value to Find the Occurrence, and we change the values of h and t when s < t rather

than when s > t. To begin the main loop, we first check whether or not y2[j] = 1; if not,

we return to the beginning of the loop. For each y2[j] set to 1 we output A, 1, and j to the

algorithm Find the Occurrence, which returns the position s of the leftmost occurrence of

a±1j , by Lemma 2.28. If s is less than the current value of t, we set t to s and h to j; otherwise

we leave h and t unchanged. We then return to the beginning of the main loop. Since we

only run Find the Occurrence for those values of j for which aj fails to commute with at least

70

one iList letter, every value of s which is returned is the position of a letter which fails to

commute with at least one iList letter. And since we run Find the Occurrence for every value

of j for which a±1j occurs in wA and aj fails to commute with some iList letter, the leftmost

position of every letter in wA which does not commute with some iList letter is given by s at

some point during the main loop. Now we only change the value of t to be that of s if s < t,

so at the end of the loop, unless t and h are still set to their initial values, t is the position of

the leftmost letter in wA which does not commute with some iList letter. And because we

change the value of h to that of j only when we change t to be that of s, h is the index of

that letter. Just before exiting we check to see if h = −1, and if so, we change t to be −1,

indicating that every letter in wA commutes with all of the iList letters; there is no letter

meeting the condition we want. Otherwise t is left unchanged. We return h and t.

Lemma 2.37. The algorithm Find Leftmost Noncommuting - List described by the flowchart

in Figure 2.19 runs in polynomial time in n, the length of the SLP which is input.

Proof. The time it takes for the operations outside of the called subroutines and the two loops

does not depend on n, and so they happen in constant time, say c1 steps. The algorithms

Find Included Generators and Get Length run in polynomial time in n, say p(n) steps total

for the two routines, by Lemmas 2.7 and 2.5. For each iteration of the first loop, including

running through the smaller nested loop up to L times, the time is independent of n, and so

the number of steps is bounded by a constant, say c2. For each iteration of the main loop, the

number of steps outside of running Find the Occurrence is bounded by a constant, say c3. By

Lemma 2.29, Find the Occurrence runs in polynomial time in n, say q(n). Each of the two

loops runs m times, so the number of steps required to run Find Leftmost Noncommuting -

List is c1 + p(n) + c2m+m(c3 + q(n)), which is a polynomial in n.

The only difference between the routine just discussed and the one next discussed is that

in the following one the list y2 which is created has items y2[j] set to 1 if aj commutes

71

Figure 2.19: Algorithm Find Leftmost Noncommuting - List

72

with all letters whose indices are in iList. This results in Find Leftmost Commuting - List

returning the index and position of the leftmost letter which commutes with all of the iList

letters, rather than the leftmost letter which fails to commute with at least one of the iList

letters.

Lemma 2.38. The algorithm Find Leftmost Commuting - List described by the flowchart in

Figure 2.20 inputs an SLP A and a list iList of nonnegative integers less than m and returns

the index h and position t of the leftmost letter a±1h in wA which commutes with ai for every

i in iList.

Proof. Because Find Leftmost Commuting - List is so similar to Find Leftmost Noncommut-

ing - List, we will merely discuss the differences and how they affect the outcome. In the

algorithm Find Leftmost Commuting - List, the list y2 of length m is initially set to be equal

to y, rather than setting each item to 0. We then modify y2 by changing y2[j] to 0 if y[j] is

1 and if aj fails to commute with at least one iList letter. So inside the smaller nested loop,

if neither the pair (iList[i], j) nor the pair (j, iList[i]) is in R for some i, we change y2[j] to 0

and exit the smaller nested loop. Hence when exiting the smaller loop, either y2[j] has been

set to 0 or aj commutes with every iList letter, in which case y2[j] is still 1. Therefore as

we exit the first loop, each item y2[j] is 1 if a±1j appears in wA and aj commutes with every

iList letter, and is 0 otherwise.

The rest of the algorithm is exactly the same as in Find Leftmost Noncommuting - List.

In Find Leftmost Commuting - List, we only run Find the Occurrence for those values of

j for which aj commutes with every iList letter, so every value of s which is returned is

the position of a letter which commutes with every iList letter. And since we run Find the

Occurrence for every value of j for which a±1j occurs in wA and aj commutes with all iList

letters, the leftmost position of every letter in wA which commutes with every iList letter is

given by s at some point during the main loop. Since t is set to s whenever s < t, when we

reach the end of the loop, t is the position of the leftmost letter in wA which commutes with

73

all of the iList letters, and h is the index of that letter, unless t and h are still set to their

initial values. Just before exiting we check to see if h = −1, and if so, we change t to be −1,

indicating that every letter in wA commutes with all of the iList letters; there is no letter

meeting the condition we want. Otherwise t is left unchanged. We return h and t.

Lemma 2.39. The algorithm Find Leftmost Commuting - List described by the flowchart in

Figure 2.20 runs in polynomial time in n, the length of the SLP which is input.

Proof. The only difference between this algorithm and Find Leftmost Noncommuting - List is

which items in y2 get set to 0 and which get set to 1, which does not affect the time required

to run the program. Therefore, since Find Leftmost Noncommuting - List runs in polynomial

time in n by Lemma 2.37, so does Find Leftmost Commuting List.

We discuss in the following lemma an algorithm very similar to the previous one. The

differences are that an ordering on the generators is input at the beginning, and instead of

finding the leftmost letter which commutes with a list, we find the leftmost letter which comes

after a given letter in the ordering which is input. The ordering is input as a list genord, with

each item genord[j] set to the position of aj in the ordering. For example, if genord is the

list [1, 3, 0, 2], this means that the generators a0, a1, a2, and a3 have been given the ordering

a2, a0, a3, a1: Since genord[2] = 0, a2 is in the 0th position, or first in the ordering; since

genord[0] = 1, a0 is second; and so on. We often refer to this ordering as a weight. In the

example just given, we say a2 is lighter than a0 and a1 is heavier than a3. By construction,

a generator’s inverse has the same weight as the generator, and two letters have the same

weight if and only if they are inverses of each other or are equal.

Lemma 2.40. The algorithm Find Leftmost Heavier described by the flowchart in Figure 2.21

inputs an SLP A, a list genord of nonnegative integers less than m, and an integer i < m

and returns the index h and position t of the leftmost letter a±1h in wA which is heavier than

ai in the ordering given by genord; that is, such that genord[h] > genord[i].

74

Figure 2.20: Algorithm Find Leftmost Commuting - List

75

Proof. Because Find Leftmost Heavier is so similar to the algorithm Find Leftmost Com-

muting - List, we will merely discuss the differences and how they affect the outcome. We

input an SLP A as in Find Leftmost Commuting - List, but instead of the list iList, we

input a list genord which gives an ordering of the generators and a nonnegative integer

i < m. For any two generators ak and al, ak comes before al in the ordering if and only if

genord[k] < genord[l]. In the algorithm Find Leftmost Heavier, the list y is modified itself,

rather than being copied to another list which is then modified. We do this by changing y[j]

to 0 if y[j] is 1 and if aj is lighter than or equal in weight to ai; that is, we set y[j] to 0 if

and only if y[j] is 1 at the beginning of this iteration of the loop and genord[j] ≤ genord[i].

Therefore as we exit the first loop, each item y[j] is 1 if a±1j appears in wA and aj is heavier

than ai, and is 0 otherwise.

The rest of the algorithm is exactly the same as in Find Leftmost Commuting - List, except

that the list y is used instead of y2. In Find Leftmost Heavier, we only run Find the

Occurrence for those values of j for which aj is heavier than ai, so every value of s which

is returned is the position of a letter which is heavier than ai. And since we run Find the

Occurrence for every value of j for which a±1j occurs in wA and aj is heavier than ai, the

leftmost position of every letter in wA heavier than ai is given by s at some point during the

main loop. Since t is set to s whenever s < t, when we reach at the end of the loop, unless t

and h are still set to their initial values, t is the position of the leftmost letter in wA which

is heavier than ai, and h is the index of that letter. Just before exiting we check to see if

h = −1, and if so, we change t to be −1, indicating that every letter in wA is lighter than or

weighs the same as ai; there is no letter meeting the condition we want. Otherwise t is left

unchanged. We return h and t.

Lemma 2.41. The algorithm Find Leftmost Heavier described by the flowchart in Figure 2.21

runs in polynomial time in n, the length of the SLP which is input.

Proof. The only differences between this algorithm and Find Leftmost Commuting List are

76

Figure 2.21: Algorithm Find Leftmost Heavier

77

that we use the list y itself rather than copying it to another list to use, there is no smaller

loop nested inside the first loop, and which items of y get set to 0 and which get set to 1 is

determined by comparing items in the list genord rather than checking for the occurrence

of certain items in R. None of these differences affect the time required to run the program.

Therefore, since Find Leftmost Commuting List runs in polynomial time in n by Lemma

2.39, so does Find Leftmost Heavier.

The next two lemmas involve the algorithm Find Rightmost Heavier, which is exactly the

same as Find Leftmost Heavier except that it finds the rightmost letter, rather than the

leftmost letter, in wA which is heavier than ai in the ordering genord which is input, where

A is the SLP which is input and i is the integer which is input.

Lemma 2.42. The algorithm Find Rightmost Heavier described by the flowchart in Figure

2.22 inputs an SLP A, a list genord of nonnegative integers less than m, and an integer

i < m and returns the index h and position t of the rightmost letter a±1h in wA which is

heavier than ai in the ordering given by genord; that is, such that genord[h] > genord[i].

Proof. Because Find Rightmost Heavier is so similar to the algorithm Find Leftmost Heavier,

we will merely discuss the differences and how they affect the outcome. The first loop is

exactly the same as in Find Leftmost Heavier; thus by the proof of Lemma 2.40, as we exit

the first loop, each item y[j] is 1 if a±1j appears in wA and aj is heavier than ai, and is 0

otherwise.

The only differences are that we do not run the algorithm Get Length, we initialize t to 0

rather than to k+ 1, we output −1 rather than 1 as the second value to Find the Occurrence,

and we do not check at the end to see if h = −1 or change t to −1. By Lemma 2.28, when

we call the algorithm Find the Occurrence in this routine, the position s of the rightmost

occurrence of aj in wA is returned. In Find Rightmost Heavier, we only run Find the

Occurrence for those values of j for which aj is heavier than ai, so every value of s which

78

is returned is the position of a letter which is heavier than ai. And since we run Find the

Occurrence for every value of j for which a±1j occurs in wA and aj is heavier than ai, the

rightmost position of every letter in wA heavier than ai is given by s at some point during

the main loop. Since t is set to s whenever s > t, when we reach the end of the main loop, t

is the position of the rightmost letter in wA which is heavier than ai, and h is the index of

that letter, unless t and h are still set to their initial values. If t and h are both still −1, this

indicates that wA contains no letter which is heavier than ai. We return h and t.

Lemma 2.43. The algorithm Find Rightmost Heavier described by the flowchart in Figure

2.22 runs in polynomial time in n, the length of the SLP which is input.

Proof. There are only a few differences between this algorithm and Find Leftmost Heavier.

We do not run the algorithm Get Length, we initialize t to 0 rather than to k + 1, we output

−1 rather than 1 as the second value to Find the Occurrence, and we do not check at the end

to see if h = −1 or change t to −1. Not calling Get Length and not checking to see if h = −1

or changing t to −1 decrease the number of steps it takes to run Find Rightmost Heavier

from the number of steps required to run Find Leftmost Heavier. The other differences do

not affect the time required to run the program. Therefore, since Find Leftmost Heavier runs

in polynomial time in n by Lemma 2.41, so does Find Rightmost Heavier.

Lemma 2.44. The algorithm Find First Occurrence Order described by the flowchart in Figure

2.23 inputs an SLP B and returns a list of indices of generators appearing in wB which

is ordered by the position of the leftmost occurrence of each generator or its inverse from

smallest (leftmost) position to largest (rightmost).

Proof. We begin by inputting an SLP B, creating an empty list fOL, and initializing the

variables bigO, short for ‘biggest occurrence’, and bigOg, short for ‘biggest occurrence

generator’, to −1. Each item fOL[i] in fOL will contain the position of the leftmost occurrence

in wB of the ith generator or its inverse; the purpose of the first loop is to accomplish this.

79

Figure 2.22: Algorithm Find Rightmost Heavier

80

We use i to step through the generators one at a time, starting with i = 0. We output B, 1,

and i to the algorithm Find the Occurrence, and by Lemma 2.28, the number indicating the

position of the first, or leftmost, occurrence of a±1i in wB is input. We assign this position

to the variable O. If O > bigO, then we set bigO to the value of O and i to bigOg. We

then return to the beginning of the loop. Therefore at the end of the first loop, fOL[i] is the

position of the leftmost occurrence of a±1i for every i = 0, 1, . . .m− 1; bigO is the largest of

all the values in fOL, and bigOg is the index in fOL of that value.

Before beginning the main loop, we create an empty list fOoL (short for ‘first occurrence

order list’) and a list didG of length m with each item set to 0. fOoL is the list we will return

at the end of the routine, and didG will allow us to keep track of which generators have

already been added to fOoL or which have been discovered to not appear in wB. For the

main loop, we again use i to step through the generators, starting with i = 0. We begin each

iteration of the main loop by letting Lo = bigO and Log = bigOg. We then enter a smaller,

nested loop in which we use j to step through the generators, starting with j = 0. This

smaller loop is used to find the smallest position fOL[j] for which j is not already in fOoL: In

each iteration, if fOL[j] < Lo and didG[j] = 0, then we let Lo = fOL[j] and Log = j. Then

we return to the beginning of the smaller loop. Thus after stepping through the smaller loop

m times, if Lo > −1, then Log is the index of the generator whose leftmost occurrence in wB

is left of the leftmost occurrence of all other generators whose indices are not yet in fOoL.

In this case, we append Log to fOoL. If Lo = −1, then Log is the index of a generator not

appearing in wB. Whatever the value of Lo, we set DidG[Log] to 1, so that we know that

aLog has been taken care of in the main loop, and return to the beginning of the main loop.

Now when we exit the main loop, the item fOoL[0] will be the index of the generator whose

leftmost occurrence in wB is farthest left (that is, which occurs as the leftmost letter of wB);

fOoL[1] will be the index of the generator whose leftmost occurrence in wB is farther left

than any other generator except afOoL[0]; and so on. We output fOoL.

81

Figure 2.23: Algorithm Find First Occurrence Order

82

Lemma 2.45. The algorithm Find First Occurrence Order described by the flowchart in Figure

2.23 runs in polynomial time in n, the length of the SLP which is input.

Proof. The only part of Find First Occurrence Order which depends on n in any way is the

call to the algorithm Find the Occurrence. This routine is called once for each iteration of

the first loop, so m times total in Find First Occurrence Order. By Lemma 2.29, Find the

Occurrence runs in polynomial time, say p(n) steps. Thus the number of steps required to

run Find First Occurrence Order is mp(n) + c, where c is the constant bound on the number

of steps outside of the call to Find the Occurrence. Since mp(n) + c is a polynomial in n,

Find First Occurrence Order runs in polynomial time.

2.4 Algorithms, Part 3 – Lexicographic Ordering

The algorithm we discuss next, Put In Lexicographic Order 2, is at the heart of putting

a given word into lexicographic order. It takes two SLPs, A and B, which produce words

in lexicographic order according to a list, which is also input, and returns the SLP which

produces the word which is similar to wA · wB and in lexicographic order according to that

list. It is a very complex algorithm which would not fit on a single one-page flowchart, so we

broke the flowchart into several pieces. All of the pieces which are not separate algorithms in

the Python routines, but just part of the Put In Lexicographic Order 2 routine, are discussed

within the proofs regarding Put In Lexicographic Order; only the flowcharts are separate.

We will indicate which flowchart accompanies a certain piece when we begin to address that

piece.

The list genord is used in Put In Lexicographic Order 2 as in some of the algorithms above,

with each item genord[j] set to the position of aj in the ordering. For example, if genord

is the list [1, 3, 0, 2], this means that the generators a0, a1, a2, and a3 have been given the

ordering a2, a0, a3, a1: The generator a2 is the lightest, a0 is second lightest; and so on.

83

Before delving into the proof of what the lemma does and how much time it requires, we

give an overview of what the algorithm Put In Lexicographic Order 2 does. The algorithm

acts upon the production rules, rather than the produced words, but in this overview we will

consider what happens to the words and individual letters in them. Let us call the first word

wA and the second wB. There is one large outer loop that may need to be repeated several

times.

For each step of that loop, using the algorithm Find First Occurrence Order discussed above,

we find the order in which the first occurrences of the generators appear in wB. We loop

through these generators, starting with the leftmost, moving to the second leftmost, and so

forth. This is a smaller, nested loop that we will call the main loop. In this main loop we

determine whether or not the leftmost occurrence of the current generator can and should

move, possibly as the leftmost letter of a block of letters, to a particular position in wA,

and if so, move each with its block to where it must land in wA in order for wA · wB to be

in lexicographic order. Following is a list of steps that may occur for each iteration of the

loop (not all of the steps occur in every iteration, and some or all may be repeated). We

will discuss the steps further in the proof of Lemma 2.46. It may help to refer to Figure

2.24.

1. Let the leftmost occurrence of the generator for the current step be c.

2. Create a list of all generators in wB which occur left of c and call the list LofcGens. If

c does not commute with every generator in LofcGens then c cannot move now; in this

case begin the loop again with the next generator.

3. Find the rightmost letter in wA which does not commute with c and call it b. Then c

cannot move left of b.

4. Find the leftmost letter in wA which is right of b and heavier than c; call it z. Now c

should move to the immediate left of z.

84

5. Find all generators which occur in wA to the right of z and call this list zRofzGens.

6. Create a list genlist which is the union of LofcGens and zRofzGens.

7. Find the leftmost letter in wB which is right of c and which fails to commute with at

least one generator in genlist. Let this letter be h. The rightmost letter of the block to

move must lie to the left of h in wB.

8. Find the leftmost letter between c and h which is heavier than z; call it e. Let g be the

letter to the immediate left of e. Now g is the rightmost letter in wB which could be

the rightmost letter of the block to move. However, there may be letters between c and

g which should move farther left than c moves; we do not want to include these in our

block.

9. Find all generators which occur to the right of b in wA; call this list RofbG.

10. Find the leftmost letter between c and g, including g but not c, which commutes with

b; let this letter be f . It is possible that f should move farther left than c does.

11. Find all generators occurring between c and f , including c but not f ; let this list be

cf1Gens.

12. Create a list chkGList which contains b, all of the generators in RofbG, and all of the

generators in cf1Gens. If f moves farther left than c does, f must commute with all of

the letters in cf1Gens.

13. Find the leftmost letter between f and g, including f and g, which commutes with all

of the generators in chkGList and call this letter newf . If no such newf exists, skip

ahead to step 17. If newf 6= f , let f = newf and return to step 11. If newf = f ,

proceed to the next step.

14. Find the rightmost letter left of b, or b itself, which is heavier than f . Call this letter d.

85

d b z c f g h

wA wB

Figure 2.24: Putting wA · wB into Lexicographic Order

If f moves farther left than c moves, then f must move left of d.

15. Find all generators occurring between d and b, including d and b, and call this list

dbGens. If f commutes with every generator in dbGens, then reassign g to be the

letter just to the left of f and proceed to step 17. Otherwise, f moves with c, but a

letter to the right of f in the cg-block may not move with c, so proceed to step 16.

16. Find the leftmost letter right of f in the cg-block which commutes with all of the letters

in chkGList, reassign the variable f to this letter, and return to step 11.

17. Move the block of letters beginning with c and ending with g to the immediate left of

z, and call the new first word now containing this block wA and the new second word

no longer containing this block wB.

18. Get the next generator in the list, if there is one, and return to step 1.

Note that in the routine, c, b, z, and so forth are the indices of the specified generators, rather

than the letters themselves; we used c, b, z, and so forth for the letters in the explanation

above for the sake of readability. It remains to be seen that this process results in a new

word which is similar to wA · wB and in lexicographic order and that this process runs in

polynomial time in the sum of the sizes of A and B.

Lemma 2.46. The algorithm Put In Lexicographic Order 2 described by the flowchart in Figure

2.25 inputs two SLPs, A and B, both in lexicographic order according to the list genord,

which is also input, and it returns an SLP in quasinormal form which produces the word

which is similar to wA · wB and in the lexicographic order defined by genord.

86

Figure 2.25: Algorithm Put In Lexicographic Order 2

87

Proof. After inputting SLPs A and B and the list genord giving the lexicographic ordering,

we begin by initializing the variable tf to true. We will set tf to false when no more blocks

of letters in wB will move into wA, ending the large outer loop. The large outer loop is not

indexed by a counter; it merely repeats until tf is set to false. (The variable tf does not

appear in the flowchart because of lack of space, but the flowchart still indicates the way in

which tf controls the flow of the routine.)

After setting tf to true, we immediately enter the large outer loop. We begin each iteration

of the outer loop by outputting B to the algorithm Find First Occurrence Order, which by

Lemma 2.44 returns a list fOoL of generators ordered by their leftmost occurrence in wB. We

then initialize several variables, letting XMod = A, YMod = B, mo = false, and m2 be the

length of the list fOoL. For simplicity, we will use wX and wY to indicate the words produced

by XMod and YMod, respectively. XMod and YMod are copies of A and B which we will

use and modify throughout the routine, mo, short for ‘move occurred’, gets set to true if any

letters get moved from wY to wX at any point during the current iteration of the large outer

loop, and m2 is the number of iterations of the main loop which are performed during one

iteration of the outer loop.

In the main loop we step through the generators in fOoL, in the order they occur in fOoL,

using the index i, which runs from 0 to m2− 1. Because of this, the generator for step i is

not ai as in many of the other algorithms; rather, the generator for step i is the generator

whose index is fOoL[i]. We set c = fOoL[i], so ac is the generator for step i; this is step 1

in the overview above. We next output YMod and c to Count the Occurrences and input

numcs, which by Lemma 2.18 is the number of occurrences of a±1c in wY . Here we enter a

smaller loop, call it the numcs loop, inside the main loop. The numcs loop is repeated until

numcs = 0. We know that we will enter the numcs loop at this point, because the list fOoL

only contains the indices of those generators which occur in YMod, so numcs must be at

least 1.

88

Figure 2.26: A piece of Put In Lexicographic Order 2

89

As we enter the numcs loop, we enter the part of the routine illustrated in the flowchart in

Figure 2.26. We want to determine whether or not ac commutes with all of the generators

to its left in wY ; if not, then the leftmost occurrence of ac cannot move into wX . To this

end, we begin each iteration of the numcs loop by outputting 1 and c to the algorithm Find

the Occurrence and then inputting pos. By Lemma 2.28, cpos is the position of the first

occurrence of a±1c in wY . Next we output YMod and cpos − 1 to Left Sub SLP, which by

Lemma 2.22 returns an SLP Lofc which produces the leftmost subword of YMod having

length cpos − 1. We then output Lofc to Find Included Generators. This algorithm, by

Lemma 2.6, returns a list LofcGens which indicates which generators occur in the word

produced by Lofc. Thus LofcGens indicates those generators which occur to the left of ac in

wY ; we have finished step 2 in the list above.

Consider the first time we begin the numcs loop for the current c. Once we have the list

LofcGens of generators occurring left of ac in wY , we know that we have already applied the

main loop to every generator in LofcGens, because of the order in which we are applying this

loop to the generators. Therefore none of the generators in LofcGens will move left into wX .

Thus, in order for ac to be able to move into wX , ac must commute with every generator in

LofcGens; if not, we are finished with the main loop for this c. However, after the first time

through the loop for the current c, there may be some letter in LofcGens to which we have

not already applied the main loop, and which does not commute with ac. In this case we

move on to the next generator. However, it is possible that when we return to the larger

outermost loop and begin going through the generators again, that some occurrence of the

letter ac in wY may move into wX . This is why we must repeat the outer loop until no letters

move; that is the only way we know we are finished. This may cause concern about the

efficiency of the algorithm, but we will prove later that there is a polynomial limit on the

number of blocks that will move.

To determine whether or not ac commutes with every generator indicated in LofcGens, we

90

Figure 2.27: A piece of Put In Lexicographic Order 2

enter a small loop indexed by j in which we step through all of the generators, letting j run

from 0 to m − 1. For each iteration of this small loop, we check to see if LofcGens[j] = 1

(that is, if aj is indicated in LofcGens); if not, we return to the beginning of the loop to

check the next generator. If LofcGens[j] = 1, then we determine if either the pair (c, j) or

the pair (j, c) is in R; if so, we return to the beginning of the small loop. If neither pair is in

R, this means that there is some letter occurring to the left of ac in wY with which ac does

not commute. Thus no occurrence of ac can move left into wX during this iteration of the

large outermost loop. In this case, we set CanMove to false and exit both the small loop

and the numcs loop to return to the beginning of the main loop. This is the end of the part

of the algorithm illustrated in Figure 2.26.

If ac does commute with every generator in LofcGens, the next step (step 3 above) is to find

the rightmost generator in wX which blocks ac; we will call this generator ab. Then we know

that the farthest left ac can move in wX is just to the right of ab. This part of the algorithm

91

is shown in Figure 2.27. In order to find ab, we output XMod and c to Find Rightmost

Noncommuting, which by Lemma 2.34 returns the index b and position bpos of the rightmost

generator in wX which does not commute with ac, where b = bpos = −1 if no such generator

exists. Thus if b 6= −1, we know it is possible for ac to move just to the right of ab, but not

left of ab; if b = −1, ac can move all the way to the left in wX . However, we do not know if

ac should move all the way left to land next to ab; we just know that ac should move left of

any letter which is heavier than it (and lies to the right of ab).

Thus in step 4 we find the leftmost letter in wX which occurs to the right of ab and which is

heavier than ac; we will call this letter az. The first step of finding this letter is to create an

SLP Rofb which produces the subword of wX consisting of all of the letters to the right of ab.

Hence we first output XMod to Get Length and input, by Lemma 2.4, the length l1 of wX .

If b = −1, we let Rofb = XMod. Otherwise, we output XMod and l1− bpos to the routine

Right Sub SLP, which returns an SLP Rofb whose produced word is the rightmost subword

of wX of length l1− bpos, by Lemma 2.25. Thus this subword begins with the letter just to

the right of ab in wX and ends with the last letter of wX . This is the end of the part of Put

In Lexicographic Order 2 illustrated in Figure 2.27. In order to find the leftmost letter which

lies to the right of ab and is heavier than ac, we output Rofb and c to Find Leftmost Heavier.

By Lemma 2.40, this algorithm returns the index z and position zpos of the leftmost letter in

the word produced by Rofb which is heavier than ac, where z = zpos = −1 if no such letter

exists. If z = −1, then even though ac is able to, ac should not move left into wX , so we exit

the numcs loop and return to the beginning of the main loop; otherwise we proceed.

Now we know that for the word produced by the algorithm to be in lexicographic order, we

need for ac to move just left of az. The key to making this algorithm sufficiently efficient,

however, is to recognize that there may be a block of letters in wY beginning with ac which

should end up moving as a block to land just to the left of az; finding that block; and moving

the whole block at one time. Steps 5 through 15 all involve finding that block, and in step 17

92

Figure 2.28: A piece of Put In Lexicographic Order 2

we move the block.

Figure 2.28 illustrates the part of the algorithm we discuss now. We know that every letter

in the block that gets moved must commute with az and all of the letters between az and ac.

We already have a list, LofcGens, of generators in wY occurring to the left of ac, but we need

a list containing az and all of the generators in wX occurring to the right of az. We find that

list, zRofzGens, in step 5 above. To do this, we must first calculate the position rzpos of az

in wX ; zpos is the position of az in the subword of wX produced by Rofb. If bpos = −1, we

let rzpos = zpos; otherwise, we let rzpos = zpos− bpos. We use this to calculate the length

of the subword of wX beginning with az and ending with the last letter of wX : since l1 is the

length of wX , the length we want is l1− rzpos+ 1. So we output XMod and l1− rzpos+ 1 to

the algorithm Right Sub SLP, which by Lemma 2.25 returns an SLP ZRofz which produces

the rightmost subword of wX of length l1 − rzpos + 1. Next we output this SLP, ZRofz,

to Find Included Generators and, by Lemma 2.6, input a list zRofzGens indicating which

generators occur in the subword produced by ZRofz. This is the end of the part shown in

Figure 2.28.

93

In step 6 we combine zRofzGens and LofcGens to get a list called genlist which contains az

and all of the letters between az and ac. To do this, we create an empty list named genlist,

and we run a little loop using the index j to step through the generators, appending j to

genlist if and only if zRofzGens[j] = 1 or LofcGens[j] = 1. Thus after running the loop,

genlist contains the indices of every generator which is indicated in zRofzGens or LofcGens,

and no indices of generators indicated in neither list.

The next part of the algorithm is shown in Figure 2.29. Since every letter in the block which

gets moved with ac must commute with every generator in genlist, in step 7 we find the

leftmost letter ah which lies to the right of ac and which fails to commute with at least one

generator in genlist; then ac and every letter between ac and ah commute with all of the

letters in genlist, and neither ah nor any letter to the right of ah can be part of the block. In

order to accomplish this, we run the algorithm Get Length on YMod to get, by Lemma 2.4,

the length l2 of wY . Now l2− cpos+ 1 is the length of the subword of wY beginning with

ac and ending with the last letter of wY , the subword we want to check for such an ah. So

we output YMod and l2− cpos+ 1 to Right Sub and input CRofc, an SLP which produces

the subword of ac beginning with ac and ending with the last letter of wY . Next we output

CRofc and genlist to Find Leftmost Noncommuting - List. By Lemma 2.36, this returns the

index h and position hpos of the leftmost letter in the word produced by CRofc which fails

to commute with at least one generator in genlist. At this point any letters that may move

in the block with ac lie between ac and ah, or to the right of ac if no such ah exits. Just as

with ac itself, however, a letter should not move to the immediate left of az unless it is lighter

than az.

Therefore the next step, step 8, is finding the leftmost letter in the word produced by CRofc

which lies left of ah (if ah exists) and is heavier than az, and then assigning the letter to its

immediate left to ag, and the position of ag to gpos. The letter ag is potentially the rightmost

letter of the block which will move just to the left of az. Now by design of the algorithm,

94

Figure 2.29: A piece of Put In Lexicographic Order 2

95

we know that ac commutes with all of the generators in genlist, so hpos cannot be 1. If

hpos = −1, then ac and all letters to its right in wY commute with every generator in genlist,

so we let Lofh = CRofc. Otherwise hpos > 1, and in this case, we output CRofc and hpos− 1

to Left Sub SLP and input an SLP Lofh which produces the subword of wY beginning with

ac and ending with the letter to the immediate left of ah. After outputting Lofh, genord,

and z to Find Leftmost Heavier, by Lemma 2.40 we input the index e and position epos of

the leftmost letter between ac and ah, including ac, which is heavier than az. If epos = −1,

we then set gpos to 1, since in this case ac, the letter in position 1 of Lofh, is the rightmost

letter of the cg-block. Otherwise we set gpos to epos− 1. Although there is no need in the

algorithm to indicate this, we think of the letter to the immediate left of ae, or ac itself if

epos = −1, as ag. Now we know that ac, ag, and all of the letters between them will at some

point in the algorithm move left of az. However, some of the letters in the block beginning

with ac and ending with ag, that is, the cg-block, may need to be moved left of where ac

is moved to. At first thought, this may seem impossible since wY is in lexicographic order.

However, consider the following example.

Example 2.47. Let a0, a1, a2, and a3 be generators in lexicographic order; suppose the

generators all commute with each other except for a0 and a2; and suppose wA = a2a3 and

wB = a0a1. Let a0 be the letter ac in our discussion above. Then a2 is ab and a3 is az; a0

should move to be between a2 and a3. The letter a1, however, commutes with all of the

other letters and is lighter than a2, so a1 should move left of a2; the word which is similar to

wA · wB = a2a3a0a1 and in lexicographic order is a1a2a0a3.

At this point the block we want to move begins with ac and contains only letters that should

move with ac to land just left of az; we are trying to discover where that block ends. In

our example above, we would not want to move a1 with a0; we would move a1 later in the

algorithm. Thus we want to find the leftmost letter af between ac and ag, including ag,

which should end up moving farther left in wX than ac moves. First we need an SLP which

96

Figure 2.30: A piece of Put In Lexicographic Order 2

97

produces the cg-block, that is, the subword of wY beginning with ac and ending with ag.

Hence we output Lofh and gpos to Left Sub SLP and then input an SLP CGBlock which

produces the cg-block by Lemma 2.22. This ends the part of the routine illustrated in 2.29;

the next part is shown in 2.30.

Now all of the letters between ab and az are lighter than ac, because az was chosen to be the

leftmost letter right of ab which is heavier than ac. Furthermore, any letter in the cg-block

which should move farther left than ac moves must be heavier than ac since it commutes with

ac but lies to the right of ac in the lexicographically ordered word wY . Thus any such letter

is heavier than ac and so is also heavier than all of the letters between ab and where ac will

land. However, it should not move farther left than ac moves unless it is lighter than some

letter left of az to the left of which it may move. Therefore any letter which should move

left of ac must end up moving left of ab, and so must commute with ab and every letter to

the right of ab in wX . Thus in step 9, we create a list named RofbG containing all of the

generators which occur to the right of ab in wX , which we will use in step 12. This is done by

outputting Rofb to Find Included Generators, which returns a list RofbG indicating which

generators occur to the right of ab in wX .

Rather than first finding the leftmost letter af in the cg-block which commutes with all of

the letters to the right of ab in wX , however, we first find the leftmost letter lying to the right

of ac in the cg-block which commutes with ab; this is step 10. (Later we will combine RofbG

with a couple of other lists of generators to see if the letter with which we are concerned at

the time commutes with all of those generators.) To find such an af , we output CGBlock

and a list containing the single item b to Find Leftmost Commuting - List. By Lemma 2.38

we input the index f and position fpos of the leftmost letter in the cg-block which commutes

with ab. Now if no such af exists, that is, if f = −1 or fpos = −1, then there is no letter in

the cg-block which will move farther left than ac moves, and so we know now that ag is the

end of the block which will move with ac. In this case, we skip ahead to where we move the

98

cg-block (step 17 in the list before this lemma); otherwise, we enter a smaller loop we will

call the f loop (still inside the numcs loop) which repeats until f = −1 or fpos = −1; we

will explain this as we continue discussing this algorithm.

We know that in order for af to need to move left of ab, some letter left of ab or ab itself must

be heavier than af , and af must be able to commute to land left of such a letter. If this is

not the case, then we want af to be included in the block with ac which gets moved in step

17, so we need to determine whether this is the case or not. We know that af commutes with

az and all of the letters between az and ac, but we must find out if af also commutes with

ac, the letters between ac and af , and the letters between ab and az. Hence in step 11 we

create a list cf1Gens of all generators occurring in the cg-block to the left of af . We do so in

the following way at the beginning of each iteration of the f loop. We first output CGBlock

and fpos− 1 to Left Sub SLP and input Cf1Block, an SLP producing the subword of the

cg-block beginning with ac and ending with the letter to the immediate left of af . Then we

output Cf1Block to Find Included Generators to get a list cf1G indicating which generators

occur in the subword produced by Cf1Block.

This still is not the entire list of generators with which af must commute if it is to move left

of ab, so in step 12 we create a list chkGList containing ab, the generators in RofbG, and the

generators in cf1Gens. To accomplish this, we first create an empty list called chkGList and

then run through a small loop using j to step through the generators. In each iteration of

the loop, we append j to chkGList if and only if RofbG[j] = 1 or cf1Gens[j] = 1 or j = b.

Hence as we exit the loop, chkGList contains the indices of all the generators with which af

must commute in order for it to be able to move left of ab.

For the sake of efficiency, rather than just checking to see if f commutes with every generator

in chkGList, we find the leftmost letter in the fg-block which commutes with every generator

in chkGList. To do so we first output CGBlock and gpos− fpos+ 1 to Right Sub SLP to

get the SLP FgBlock which produces the subword of wY beginning with af and ending with

99

ag, and then we output FgBlock and chkGList to Find Leftmost Commuting - List to get

the index newf and position newfpos of the leftmost letter in the fg-block which commutes

with all of the generators in chkGList. Now if newfpos = −1, then there is no letter in the

cg-block which moves left of where c will land, so we want to skip ahead to step 17. We do

so by letting fpos = −1 in order to exit the f loop and move on to the next part of the

algorithm. If newf 6= −1 then newf is the leftmost letter in the cg-block which possibly

moves left of b. If newf = f , then we continue with the rest of the steps in the f loop;

otherwise we let f = newf and fpos = newfpos − fpos + 1, the position of anewf in the

cg-block rather than the fg-block, and return to step 11; that is, we return to the beginning

of the f loop.

If newf = f , we still need to check and see if there is a letter left of ab, or ab itself, which is

heavier than af and to the left of which af can commute; if not, then af will move in the block

with ac. Thus in step 14, we find the rightmost letter left of ab, or ab itself, which is heavier

than af . Although we have not yet finished the part of the routine illustrated in Figure 2.30,

we enter a smaller part which is illustrated in Figure 2.31. In order to find such a letter,

we first set fMovesLofb to true and then output XMod and bpos to Left Sub SLP, which

returns an SLP BLofb that produces the subword of wX starting at the beginning of wX and

ending with ab. Next we output BLofb, genord, and f to Find Rightmost Heavier, which by

Lemma 2.42 returns the index d and position dpos of the rightmost generator in the word

produced by BLofb which is heavier than af . If dpos = −1, then no such generator exists,

so we set fMovesLeftofb to false; otherwise, we continue with the steps in the following

paragraph.

If such an ad does exist, then we need to know if af can commute to be left of it. We know

af can commute as far left as just to the left of ab, but we need to know which generators

are between ad and ab and whether or not af commutes with all of them and with ad. Thus

in step 15, we create a list dbGens of all the generators occurring in the db-block. To do

100

Figure 2.31: A piece of Put In Lexicographic Order 2

101

so, we first output BLofb and bpos − dpos + 1 to Right Sub SLP, which gives us an SLP

DbBlock; the word produced by DbBlock is the block beginning with ad and ending with ab,

that is, the db-block. Next we output DbBlock to Find Included Generators to get the list

dbGens, which indicates which generators occur in the db-block. We then enter a little loop

(still inside the f loop) in which we use the index j to step through the generators, beginning

with j = 0. In each iteration of the loop, we begin by checking whether or not dbGens[j] = 1;

if not, we increase j by 1 and return to the beginning of the loop. If dbGens[j] = 1, then

aj occurs in the db-block, so we check to see if either of the pairs (aj, af) and (af , aj) is in

R. If so, then af commutes with that letter aj, so we return to the beginning of the loop

to check the next generator. If neither (aj, af) nor (af , aj) is in R, we exit the loop and set

fMovesLeftofb to false. If we finish the little loop without setting fMovesLeftofb to false,

then af is able to commute just to the left of ad.

If at this point in the routine fMovesLeftofb is true then since af will move farther left

than ac, we do not want af to move in the block with ac. We chose af to be the leftmost

letter in the cg-block which might possibly move farther left than ac, so we know that all of

the letters between af and ac will move with ac to land just to the left of az; none of them

should move farther. While we do not know the index of the generator lying just to the left

of af , its position is fpos− 1, and we know that the subword of the cg-block beginning with

ac and with the letter to the immediate left of af is the block that will get moved in this

iteration of the main loop. Thus we set the variable gpos to fpos− 1 and the variable fpos

to −1. Letting fpos = −1 will allow us to break out of the f loop. Although we do not set g

to the index of the generator just to the left of af (because we do not know it and do not use

it during the remainder of the routine), let us call this letter ag and the block beginning with

ac and ending with this letter the cg-block.

If, on the other hand, fMovesLeftofb is false, then while we know that af will move with

ac, there may be a letter to the right of af in the cg-block which will move left of ab. We

102

know that any other occurrence of the generator af will not move left of ab, so we append f

to chkGList and then in step 16 we find the leftmost letter right of af in the cg-block which

commutes with all of the generators in chkGList. Recall that a generator is not considered

able to commute with itself; we have no occurrence of (ak, ak) for any k in R. Thus the leftmost

letter in the cg-block right of af which commutes with all of the generators in chkGList will

not be any occurrence of the current af or any previous af (since those, too, will have been

appended to chkGList). We first output CGBlock and gpos− fpos to Right Sub SLP, which

returns an SLP F1gBlock that produces the subword of the cg-block beginning with the letter

to the immediate right of af and ending with ag. We output F1gBlock and chkGList to Find

Leftmost Commuting - List and input the index f2 and position f2pos of the leftmost letter

right of af which commutes with all of the generators in chkGList. We then reassign f by

setting it to the value of f2, and we set fpos to f2pos+ fpos so that fpos is the position of

this new af in the cg-block, rather than in the subword produced by F1gBlock.

Whether fMovesLeftofb was true or false, we now exit the part of the routine shown in

Figure 2.31 and return to the part shown in Figure 2.30. We return to the beginning of the

f loop, checking whether either f = −1 or fpos = −1; if either is true we exit the f loop;

otherwise we proceed through it again. Once we exit the f loop we have finished with the

part of the routine shown in Figure 2.30. At this point we know the position gpos of the

rightmost letter which will move in a block with ac to land just to the left of az; it remains

to move that block, which is step 17 in the list above.

When we say we move the block, what we mean is that we create an two SLPs: The first

produces a concatenation of the subword of wX beginning with the first letter of wX and

ending with the letter just to the left of az; the block to move; the subword of wX beginning

with az and ending with the last letter of wX ; and the subword of wY beginning with the

leftmost letter and ending with the letter to the immediate left of ac. The second produces

the subword of wY beginning with the letter just to the right of ag and ending with the last

103

ad ab az ac af ag ah

wX wY

⇓
ad ab ac ag az ah

new wX new wY

Figure 2.32: Moving the cg-Block

Figure 2.33: A piece of Put In Lexicographic Order 2

letter of wY . See Figure 2.32 for an illustration of this.

We now enter the part of the routine illustrated in Figure 2.33. To create the first SLP, we

begin by outputting Lofh and gpos to Left Sub SLP to get an SLP which produces the new

cg-block. We reassign the variable CGBlock by setting it equal to this SLP. Next we output

XMod and rzpos− 1 to Left Sub SLP and input as a result an SLP Lofz which produces the

subword of wX beginning with the first letter of wX and ending with the letter just to the left

of az. Next we output Lofz and CGBlock to the algorithm Combine SLPs. By Lemma 2.20,

104

Figure 2.34: A piece of Put In Lexicographic Order 2

we input an SLP XModL which produces the concatenation of the word produced by Lofz

and the word produced by CGBlock. We then output ZRofz and Lofc to Combine SLPs and

input an SLP XModR, which produces the concatenation of the words produced by ZRofz

and Lofc. Finally, we concatenate the words produced by XModL and XModR by outputting

these two SLPs to Combine SLPs. We reassign XMod to the SLP which we input as a result

of this last call to Combine SLPs. This is the end of the part of the routine shown in Figure

2.33.

We proceed to the part illustrated in Figure 2.34. We begin the process of forming the second

new SLP by letting rgpos = gpos+ cpos− 1 so that rgpos is the position of ag in wY rather

than in the word produced by Lofh. We also set mo to true, because a cg-block is moving

in this iteration of the larger outermost loop. Next we output YMod and l2 − rgpos to

Right Sub SLP, which returns an SLP Rofg that produces the subword of wY beginning with

the letter to the immediate right of ag and ending with the last letter of wY . Finally, we

set YMod equal to this new SLP. Before returning to the beginning of the numcs loop, we

output YMod and c to Count the Occurrences, which, by Lemma 2.18, returns the number

of occurrences of ac in the new wY ; we set numcs to this number. This is the end of the part

shown in Figure 2.34.

105

Once numcs reaches 0 for this ac, we exit the numcs loop and return to the beginning of

the main loop in order to begin the process again with the next generator in list fOoL. After

progressing through the main loop for every generator in fOoL, we check to see if mo = true.

This is the case if and only if step 17 occurred for any generator. If mo = true, we let

A = XMod and B = XMod, and we return to the beginning of the main loop to the repeat

the entire process for any generators occurring in the latest wY .

When mo = false, we exit the main loop. We want to create an SLP which produces the

word wX ·wY , where wX and wY are now the words produced by the most recent assignment

of XMod and YMod, respectively. Therefore we output XMod and YMod to Combine SLPs

and input an SLP Lex which is in quasinormal form and produces the word wX · wY . The

SLP Lex is the SLP we output at the end of Put In Lexicographic Order 2. Let wL be the

word produced by Lex.

The first time a cg-block is moved, the part of wY which lies to the left of the cg-block is

removed from wY and concatenated to the end of wX . Since wY was in lexicographic order

before the block was moved, any subword of wY is in lexicographic order. Thus the new wY ,

which is a rightmost subword of the previous wY , is in lexicographic order. Thus every time a

cg-block is moved, the new wY is in lexicographic order. Furthermore, by construction, each

cg-block is moved to the place in wX such that the concatenation of the words produced by

Lofz, CGBlock, and ZRofz is in lexicographic order. Since the subword of wY produced by

Lofc is in lexicographic order and contains no letters which should move into wX , the word

which results from concatenating the word produced by Lofc to the end of the concatenation

of the words produced by Lofz, CGBlock, and ZRofz is in lexicographic order. In other

words, by construction, for every letter wL[i] in wL, all of the letters between wL[i] and the

rightmost letter left of wL[i] with which wL[i] does not commute weigh less than wL[i] in the

lexicographic ordering given by genord. Thus, by Lemma 1.2, the word produced by L is in

lexicographic order.

106

Before we can prove that the algorithm Put in Lexicographic Order 2 runs in polynomial

time, we must prove several facts about the number of cg-blocks that move when Put in

Lexicographic Order 2 is run. The first three of these together provide a bound for the

number of subwords that move from the original wB into the original wA. These lemmas

and definitions which we discuss before showing that Put in Lexicographic Order 2 runs in

polynomial time are all included in the context of the algorithm Put in Lexicographic Order

2. Whenever we speak of where a subword is or lies, we are speaking of the position of the

subword in the original wA or wB, before any subwords are moved. When a subword moves,

we say it lands in its new position.

Lemma 2.48. Suppose x and c are two distinct generators of a RAAG, with x < c. Assume

that x1 and x2 are two occurrences of x in wA, with x1 left of x2, and that c1 and c2 are two

occurrences of c in wB, with c1 left of c2. Finally, suppose that during the algorithm Put In

Lexicographic Order, a subword of wB with c1 as its leftmost letter moves into wA and lands

to the immediate right of x1, and that a subword of wB with c2 as its leftmost letter moves

into wA and lands to the immediate right of x2. Then before either block is moved, there is

an occurrence of a letter v between x1 and x2, and there are letters dk, dk−1, . . . , d1(k ≥ 1)

occurring in the indicated order (but possibly with other letters intermingled) between c1 and

c2 such that the following hold:

• [v, dk] /∈ R

• [di, di+1] /∈ R, i = 1, . . . , k − 1

• [d1, c] /∈ R.

Note our slight abuse of notation in that the di are (possibly) distinct letters, whereas c1 and

c2, as well as x1 and x2, are distinct occurrences of the letters c and x, respectively.

107

Proof. We first note several conditions which must hold before either block is moved.

1. In order for c1 to move just right of x1, c must commute with x and all letters between

x1 and x2.

2. The letter, say z, just right of x1 must be heavier than c lexicographically; otherwise c1

would not move left of it. Similarly, the letter, say z′, occurring just right of x2 must

also be heavier than c.

3. Since wB is in lexicographic order, c2 does not move left of x2, and c commutes with

every letter occurring between x1 and x2, there must be some letter d 6= c occurring

between c1 and c2 with which c does not commute and which lands between z and x2.

(If every letter occurring between c1 and c2 with which c does not commute lands to

the left of z, then since c is lighter than z, c2 would also land to the left of z.) Let d1

be such a letter, and choose it to be the one which lands farthest to the right. Now

d1 6= x, because c commutes with x but c does not commute with d1. Also, since d1

moves left of x2, [d1, x] ∈ R.

4. Let u be the leftmost letter in w1 to the left of which d1 moves; then u occurs between

z and z′. Since d1 moves left of u, d1 and u must commute. And since c commutes

with every letter between x1 and x2 and every letter which lands to the right of d1, it

must be the case that u and every letter between u and z′ are lighter than c; otherwise

c2 would move left of x2.

5. Since d1 is lighter than u and u is lighter than c, d1 is lighter than c lexicographically.

Furthermore, c is lighter than z, so d1 is also lighter than z.

Let D be the set of all chains d1, d2, . . . , dk, k ≥ 1 of letters which occur in wB in the order

dk, dk−1, . . . , d1 such that [c, d1] /∈ R and [di, di+1] /∈ R, i = 1, . . . , k− 1. Note that d1 is fixed,

but d2, . . . , dk may represent different letters in different chains. (Since wB has finite length,

108

this must be a finite set.) We claim that for some chain in D there is a letter v between x1

and u which blocks dk.

Consider any chain d1, d
′
2, . . . , d

′
k in D. Since d1 lands to the left of u and since no d′i can

move left of d′i+1, every d′i in the chain must move left of u. If every di in every chain is

lighter than z, and there is no letter between x1 and u blocking any dk, then every di in every

chain would move left of z, including d1, which we have already seen cannot happen.

Now by way of contradiction suppose that there is no letter v occurring between x1 and u

blocking dk for any chain in D. Then there must be some chain in D containing a letter d′j,

j > 1, such that d′j is heavier than z: d1 < u < c < z < d′j. Since every letter in every chain

in D moves left of u, there must be some letter t, which occurs between x1 and u which is

heavier than every letter in every chain in D. (It cannot be the case that t = u because

u < d′j < t). Now by our assumption, there are no letters between x1 and u which block

dk in any chain in D, and so by construction of D there are no letters between x1 and u

which block any di in any chain in D. Therefore every di in every chain in D moves left of t.

Therefore d1 moves left of t, contradicting our choice of u as the leftmost letter in w1 to the

left of which d1 moves.

Therefore there is some letter v occurring between x1 and u which blocks dk for some chain

in D.

In the situation of the lemma above, let v be the rightmost letter occurring between x1 and

u which blocks dk for some chain in D. Choose a shortest chain in D which is blocked by v

and call this a blocking chain for the subword of wA starting with x1 and ending with x2 and

the subword of wB starting with c1 and ending with c2. Let us refer to any pair of subwords

where the first is a subword of wA beginning and ending with x and the second is a subword

of wB beginning and ending with c, and where the first and second occurrences of c in the

second subword land to the immediate right of the first and second occurrences, respectively,

109

of x in the second subword as an xc-pair of subwords. In general, if we do not know the

beginning and ending letters of such a pair of subwords, we refer to the pair as a bonding

pair, the letter with which the first subword begins and ends as the left bond letter, and the

letter with which the second subword begins and ends as the right bond letter.

Lemma 2.49. A chain is a blocking chain for only one xc-pair of subwords. Furthermore, if a

chain beginning with dk is a blocking chain for one xc-pair, then no chain beginning with dk

is a blocking chain for any other xc-pair.

Proof. By Lemma 2.48, every bonding pair of subwords has a blocking chain. Suppose a

chain beginning with dk is a blocking chain for an xc-pair of subwords. That blocking chain

cannot move left of the rightmost letter, say v, with which dk does not commute, so v must

lie between x1 and x2, the first and last letters of the first subword of the xc-pair. Any other

xc-pair must lie left of that xc-pair, but that one letter v prevents any chain beginning with

dk from moving further left, so no other chain beginning with dk will be able to move far

enough left to act as the blocking chain for any other xc-pair.

Lemma 2.50. The number of subwords that move from the original wB into the original wA

in the algorithm Put in Lexicographic Order 2 is no more than m3/2.

Proof. By Lemma 2.49, there is only one possible bonding pair of subwords having a blocking

chain beginning with dk. Suppose such a blocking chain exists and that it is a blocking chain

for an xc-pair. Then dk 6= x, since dk moves left of x2. Therefore there are no more than

m− 1 possible generators which can play the role of dk for a given xc-pair, and so there are

no more than m− 1 xc-pairs in wA ·wB. Thus there are no more than m subwords beginning

with c which land immediately right of an occurrence of x.

Now there are at most m/2 generators which can play the role of left bond letter in a bonding

pair: Given two generators x′ and c′, either x′ < c′ or c′ < x′. If x′ < c′ and [x′, c′] ∈ R, then

there can be x′c′-pairs, but no c′x′-pairs. If [x′, c′] /∈ R, then there are no x′c′- or c′x′-pairs;

110

there is at most one block in wB beginning with either x′ or c′ which lands to the immediate

right of a block in wA beginning with either c′ or x′. Once we have chosen a left bond letter,

there are no more than m− 1 generators which can serve as its right bond letter, since the

left and right bond letters must be distinct. Thus there are m(m − 1)/2 possible distinct

bonding pairs of subwords in wA · wB, where by distinct we mean that the left bond letters

or the right bond letters are distinct.

Therefore, since for each distinct bonding pair there are no more than m subwords beginning

with the right bond letter which land immediately right of an occurrence of the left bond

letter, there are at most m

(
m(m− 1)

2

)
=
m3 −m2

2
subwords which belong to bonding

pairs which move from wB into wA in Put in Lexicographic Order 2.

Consider those subwords which move from wB to wA which do not belong to any bonding

pair. Say there is only one subword beginning with c′ which lands to the immediate right

of an occurrence of x′, so that there is no x′c′-pair. There are two cases: [x′, c′] ∈ R or

[x′, c′] /∈ R. If x′ and c′ do not commute, then the leftmost occurrence of either in wB will be

blocked by the rightmost occurrence of either in wA. By assumption the leftmost occurrence

of c′ in wB is blocked by the rightmost occurrence of x′ in wA, so there is no subword of wB

beginning with x′ which lands to the immediate right of an occurrence of c′ in wA. If, on the

other hand, x′ and c′ do commute, then by our assumption, it must be the case that x′ < c′.

thus no occurrence of x′ in wB will land to the immediate right of an occurrence of c′ in wA.

Thus, in either case, if there is only one subword beginning with c′ in wB which lands to the

immediate right of an occurrence of x′ in wA, it is not possible for a subword in wB beginning

with x′ to land to the immediate right of an occurrence of c′ in wA. Thus there are at most

m2/2 subwords not belonging to bonding pairs which move from wB into wA.

Together, then, there are at most
m3 −m2

2
+
m2

2
=
m3

2
subwords which move from wB into

wA in Put in Lexicographic Order.

111

For the following lemmas we will need several definitions. Let a subword that moves as a

cg-block within the original wB be called a block. Suppose that a subword C0 of w2 contains

a letter with which the initial letter of a block C1 fails to commute. Suppose further that C0

is initially right of, but moves left of, some letter z1 in wB, and that after C0 moves, without

requiring any other blocks to move, C1 moves to the immediate left of z1. Then we say that

C0 releases C1 to move within wB. In this situation, we call the letter z1 the magnet letter

for the block C1. We will generally use Ci to denote blocks, ci to denote the initial letter of

Ci, and zi to denote the magnet letter of Ci.

For a given subword C0 of wB which moves into wA, suppose that moving C0 into wB releases

the block C1 to move within wB, and that for i > 1 moving Ci−1 within wB releases Ci

to move within wB. Then we call the sequence C1, C2, . . . , Ck a branch of blocks with root

C0 and nodes C1, C2, . . . , Ck. Since wB is of finite length, k <∞. When we are discussing

the blocks of a particular branch moving, there may be other letters in wB to the left of,

between, and to the right of the blocks. These letters do not move when the blocks of the

given branch move; we call these non-moving letters, although they may belong to blocks for

a different branch. For a given branch C1, C2, . . . , Cj, Cj+1, . . . , Ck with root C0, if there is

another branch C1, C2, . . . , Cj, Cj+1, . . . , Cl with root C0, we say that Cj is a branching node

of these two branches, that C1, C2, . . . , Cj is a parent subbranch of these two branches, and

that these two branches extend from Cj.

Notice that by definition, and because wB is originally in lexicographic order, no block in a

given branch can move into or to the left of any block in that branch which lies to its left in

wB. Also, for a given branch, there must be at least one block between zi and Ci for all i;

otherwise wB would not be in lexicographic order. And since Ci moves left of zi, any blocks

between zi and Ci, as well as Ci itself, must move left of zi and must therefore commute

with zi and any other non-moving letters between zi and Ci. Furthermore, since wB is in

lexicographic order, any non-moving letters between some block Ci−1 and Ci (the leftmost

112

block right of Ci−1) must be lighter than Ci in the lexicographic ordering.

Suppose blocks C1, C2, . . . , Ck lying in a given branch in the order indicated all have the same

magnet letter; they all land between z1 = z2 = · · · = zk (all representing the same occurrence

of the same letter) and the letter immediately left of z1 in wB. Suppose further that the

rightmost block left of C1 and the leftmost block right of Ck each have a different magnet

letter than C1, C2, . . . , Ck. Then we call the sequence Λ = C1, C2, . . . , Ck a cluster of blocks

and denote their magnet letter with ζi. Notice that because of our comment at the beginning

of this paragraph, and by the definition of a cluster, C1, C2, . . . , Ck are consecutive blocks

in the branch; there are no other blocks in the branch lying between C1 and Ck. We will

generally use Λi to denote clusters and ζi to denote their associated magnet letters. Because

all of the blocks in Λi land to the left of ζi, ζi commutes with and is heavier than all of the

letters in all of the blocks in Λi. Note that is possible for a cluster to consist of a single block.

We will denote the initial block of a cluster Λi by Ci,1, the second block in Λi by Ci,2, and so

on. The initial letter of Ci,1, and therefore of Λi, is denoted ci,1.

Let Λ1,Λ2, . . . ,Λr be consecutive clusters in a given branch such that c1,1 < ζ1 < c2,1 <

ζ2 < · · · < cr,1 < ζr. Then we call the sequence Λ1,Λ2, . . . ,Λr a gang. Suppose there

is another gang Λ′1,Λ
′
2, . . . ,Λ

′
r to the right of Λ1,Λ2, . . . ,Λr in the same branch such that

c′1,1 = c1,1, c
′
2,1 = c2,1, . . . , c

′
r,1 = cr,1. Then we say that Λ1, . . . ,Λr and Λ′1, . . . ,Λ

′
r are similar

gangs. Notice that for two gangs in a given branch to be similar, the only requirement is

that the initial letter of the initial block of each cluster in one gang is the same as the initial

letter of the initial block of each corresponding cluster in the second gang.

We have already shown that the number of blocks which move from wB into wA is bound

by m3/2. In order to show a constant bound on the number of subwords of wB which move

within wB, we will begin by showing a constant bound on the number of blocks in a given

branch and then proceed to show a limit on the number of branches for a given root. The

following two lemmas give us building blocks to be used in the third lemma below.

113

Lemma 2.51. For any sequence Λ1,Λ2, . . . ,Λr of consecutive clusters such that ζr lies to the

left of Λ1, r ≤ m2/2.

Proof. By definition, Λi and Λi+1 land separately for all i in {1, 2, . . . , r}. So for any given

pair Λi,Λi+1, either ζi < ci+1,i or there is a letter ki+1 between ζi and ζi+1, or which is ζi

itself, such that ki+1 commutes with c1,1, c2,1, . . . , ci,1 and ki+1 blocks ci+1,1. Let us refer to

any such ki as a blocker. Thus for any i, j ∈ {1, 2, . . . , r − 1} such that i 6= j and blockers

ki+1, kj+1 exist, ki+1 and kj+1 are distinct, and the three initial letters ci,1, ci+1,1, and cj+1,1

are distinct. Therefore there are no more than m initial letters ci,1 in the sequence of clusters

which fail to commute with a blocker, and there are no more than m − 1 blockers for the

clusters in the sequence.

Suppose kl1 and kl2 are two blockers and there are no blockers between kl1 and kl2 . Then kl1

blocks cl1,1 and kl2 blocks cl2,1. Since there are no blockers in between these two, we must have

ζi < ci+1,1 for all i ∈ {l1, l1 + 1, . . . , l2 − 1}. Therefore, since every magnet letter is heavier

than its associated cluster, the compound inequality cl1,1 < ζl1 < cl1+1,1 < ζl1+1 < · · · <

cl2−1,1 < ζl2−1 holds. Thus no more than m/2 clusters land between kl1 and kl2 . Similarly, no

more than m/2 clusters in the sequence of clusters land left of the leftmost blocker, and no

more than m/2 clusters in the sequence of clusters land to the right of the rightmost blocker.

It follows that there are no more than m/2 + (m − 2)m/2 + m/2 = m2/2 clusters in the

sequence.

Lemma 2.52. For any cluster of blocks C1, C2, . . . , Cs, s ≤ (m2 +m)/2.

Proof. By definition, C1, C2, . . . , Cs land together. Since they are separate blocks, therefore,

each pair of consecutive blocks must be separated by at least one non-moving letter before

moving. Recall that all of the letters in each Ci must commute with the magnet letter ζ

and every non-moving letter between ζ and itself. Thus for every i ∈ {1, 2, . . . , r − 1}, either

there is a letter pi+1 between Ci and Ci+1 such that ci < pi+1 < ci+1 or there is a letter qi+1

114

between Ci and Ci+1 such that ci > qi+1 < ci+1 and qi+1 fails to commute with some letter in

Ci. Let us refer to such pi+1 as weight separators and such qi+1 as blocking separators.

Let qi+1 and qj+1 be two blocking separators for blocks in the cluster C1, C2, . . . , Cs, with

i < j. Then qi+1 blocks some letter in Ci and qj+1 blocks some letter in Cj, but since Ci

and Cj land together, qi+1 must commute with every letter in Cj. Hence qi+1 and qj+1 are

distinct. Since this holds for any two blocking separators for blocks in the given cluster, there

can be no more than m blocking separators between C1 and Cs.

Let ql1 and ql2 be two blocking separators for the given cluster with no blocking separators

between them. Then for every i ∈ {l1, l1 + 1, . . . , l2 − 1} we must have a weight separator

pi+1 between Ci and Ci+1, so ci < pi+1 < ci+1. This means that ql1 < cl1 < pl1+1 <

cl1−1 < · · · < pl2−1 < cl2−1. Thus there are no more than m/2 blocks in the given cluster

between ql1 and ql2 . Similarly, there are no more than m/2 blocks in the given cluster

which lie left of the leftmost blocking separator and no more than m/2 blocks in the cluster

which lie right of the rightmost blocking separator. All together, then, there are no more

m/2 + (m− 1)m/2 +m/2 = (m2 −m)/2 blocks in the cluster C1, C2, . . . , Cs.

Lemma 2.53. There are no more than m4/4−m3/2 clusters in any given branch of wB.

Proof. Fix a branch with root C0 and a gang Λ1, . . . ,Λr in that branch. Suppose there are

exactly θ other gangs in the branch which are similar to Λ1, . . . ,Λr, and that Λ1, . . . ,Λr is

the leftmost of all θ + 1 of these similar gangs. Denote the second leftmost of these gangs by

Λ′1, . . . ,Λ
′
r, the third leftmost by Λ′′1, . . . ,Λ

′′
r , and so on, with the rightmost of these gangs

being Λ
(θ)
1 , . . . ,Λ(θ). We first provide a bound on the number of clusters between and including

Λ1 and Λ
(θ)
r .

Let Cs,t be the leftmost block in the branch right of the magnet letter ζ
(θ)
r . Then ζ

(θ)
r < cs,t,

so we have c1,1 < ζ1 < c2,1 < ζ2 < · · · < cr,1 = c
(θ)
r,1 < ζ

(θ)
r < cs,t < ζs. Now by the

definition of magnet letter, ζ
(θ)
r must lie left of Λ

(θ)
r . Furthermore, it is not possible for

115

ζ
(θ)
r to lie between two blocks in one of clusters in one of the gangs: If ζ

(θ)
r lies between

C
(α)
i,j and C

(α)
i,j+1 for some i ∈ {1, 2, . . . , r}, where α ∈ {0, 1, . . . , θ}, then we would have

ζ
(θ)
r < ci,j+1 < ζi < ci+1,1 < ζi+1 < · · · < cr = c

(θ)
r < ζ

(θ)
r , which is not possible. Similarly, if

ζ
(θ)
r lies between two clusters Λ

(α)
i−1 and Λ

(α)
i in one of the gangs, then ζ

(θ)
r < ci+1,1 < ζi+1 <

ci+2,1 < ζi+2 < · · · < cr = c
(θ)
r < ζ

(θ)
r , which is also a contradiction. Thus ζ

(θ)
r lies either to

the left of Λ1 or between Λ
(α)
r and Λ

(α+1)
0 for some α ∈ {0, 1, . . . , θ − 1}, where Λ

(α+1)
0 is the

rightmost cluster left of Λ
(α+1)
1 .

Therefore, by definition of Cs,t, Cs,t lies either left of Λ1 or between Λ
(α)
r and Λ

(α+1)
1 . If Cs,t

lies left of Λ1, then ζ
(θ)
r is also left of Λ1, and so by Lemma 2.51, the number of clusters

between and including Λ1 and Λ
(θ)
r in the given branch is no more than m2/2. Otherwise,

Cs,t is right of Λr, and since ζ
(θ)
r is left of Cs,t, the number of clusters in the branch between

and including Cs,t and Λ
(θ)
r is bounded by m2/2.

Let Cj1,k1 be the leftmost block which lies to the right of ζs, the magnet letter for Cs,t.

Then ζs < cj1,k1 < ζj1 , so combining that with the inequality involving ζs above gives us

c1,1 < ζ1 < c2,1 < ζ2 < · · · < cr,1 = c
(θ)
r,1 < ζ

(θ)
r < cs,t < ζs < cj1,k1 < ζj1 . Similar to the case

for ζ
(θ)
r above, ζs is either left of Λ1 or between Λ

(α)
r and Λ

(α+1)
0 for some α ∈ {0, 1, . . . , θ− 1}.

If ζs lies left of Λ1, then by Lemma 2.51, the number of clusters in the given branch between

and including Λ1 and Cs,t is no more than m2/2. Combining this with the bound on the

number of clusters between and including Cs,t and Λ
(θ)
r , we see that there are no more than

2m2/2 = m2 clusters between and including Λ1 and Λ
(θ)
r in the branch. If ζs is to the right of

Λr, then since ζs is left of Cj1,k1 , there are, by Lemma 2.51, no more than m2/2 clusters in

the given branch between Cj1,k1 and Cs,t, including the cluster containing Cj1,k1 . Therefore,

since the number of clusters between and including Cs,t and Λ
(θ)
r is no more than m2/2, there

are at most 2m2/2 = m2 clusters between and including Cj1,k1 and Λ
(θ)
r .

We proceed to show by induction that for all i > 0, if we let Cji+1,ki+1
be the leftmost block

right of ζji in the given branch, then the following hold:

116

1. c1,1 < ζ1 < c2,1 < ζ2 < · · · < cr,1 = c
(θ)
r,1 < ζ

(θ)
r < cs,t < ζs < cj1,k1 < ζj1 < · · · <

cji+1,ki+1
< ζji+1

;

2. Either Cji+1,ki+1
lies between Λ

(α)
r and Λ

(α+1)
1 for some α ∈ {0, 1, . . . , θ − 1} or Cji+1,ki+1

lies left of Λ1;

3. If Cji+1,ki+1
lies left of Λ1, then the number of clusters in the given branch between and

including Λ1 and Λ
(θ)
r is no more than (i+ 1)m2/2; and

4. If Cji+1,ki+1
is not left of Λ1, then there are at most (i+ 1)m2/2 clusters between and

including Cji+1,ki+1
and Λ

(θ)
r in the given branch.

Suppose these hypotheses hold for all i ∈ {1, 2, . . . , u − 1} for some u > 0. We will show

that they hold for u as well. We let Cju+1,ku+1 be the leftmost block right of ζju , and so

ζju < cju+1,ku+1 < ζju+1 . Combining this with the inequality above for i = u − 1 gives

c1,1 < ζ1 < c2,1 < ζ2 < · · · < cr,1 = c
(θ)
r,1 < ζ

(θ)
r < cs,t < ζs < cj1,k1 < ζj1 < · · · < cju,ku < ζju <

cju+1,ku+1 < ζju+1 .

Now it is not possible for ζju to lie between two blocks in one of clusters in one of the gangs:

If ζju lies between C
(α)
v,w and C

(α)
v,w+1 for some v ∈ {1, 2, . . . , r}, where α ∈ {0, 1, . . . , θ}, then

ζju < c
(α)
v,w+1 = cv,w+1. Thus by the inequality just shown, we would have ζ

(θ)
r < cju,ku < ζju <

cv,w+1 < ζv < cv+1,1 < ζv+1 < · · · < cr = c
(θ)
r < ζ

(θ)
r , which is not possible. Similarly, if ζju

lies between two clusters Λ
(α)
v−1 and Λ

(α)
v in one of the gangs, then ζ

(θ)
r < cju,ku < ζju < cv,1 <

ζv < cv+1,1 < ζv+1 < · · · < cr = c
(θ)
r < ζ

(θ)
r , which is also a contradiction. Thus ζju lies either

to the left of Λ1 or between Λ
(α)
r and Λ

(α+1)
0 for some α ∈ {0, 1, . . . , θ − 1}. Hence, by our

definition of Cju+1,ku+1 , Cju+1,ku+1 is either left of Λ1 or between Λ
(α)
r and Λ

(α+1)
1 for some α.

If ζju lies left of Λ1, then by Lemma 2.51, the number of clusters in the given branch between

and including Λ1 and Cju,ku is no more than m2/2. Combining this with the bound um2/2

on the number of clusters between and including Cju,ku and Λ
(θ)
r given in the induction

117

hypothesis, we see that there are no more than um2/2+m2/2 = (u+1)m2/2 clusters between

and including Λ1 and Λ
(θ)
r in the branch. If ζju is not left of Λ1, then since ζju is left of

Cju+1,ku+1 , there are, by Lemma 2.51, no more than m2/2 clusters in the given branch between

Cju+1,ku+1 and Cju,ku , including the cluster containing Cju+1,ku+1 . Therefore, since the number

of clusters between and including Cju,ku and Λ
(θ)
r is no more than um2/2, there are at most

(u+ 1)m2/2 clusters between and including Cju+1,ku+1 and Λ
(θ)
r .

Now that we know that the conditions above hold for all i > 0, we are able to complete the

proof. Notice that the inequality c1,1 < ζ1 < c2,1 < ζ2 < · · · < cr,1 = c
(θ)
r,1 < ζ

(θ)
r < cs,t < ζs <

cj1,k1 < ζj1 < · · · < cjx,kx < ζjx is an inequality containing 2r + 2 + 2x distinct letters. We

have only m distinct letters to use, so 2r + 2 + 2x ≤ m, which means that x ≤ m/2− r − 1.

Therefore ζji must lie left of Λ1 for some i ≤ m/2− r − 1, and it follows that there are at

most [(m/2−r−1)+1]m2

2
= m3

4
− m2r

2
clusters between and including Λ1 and Λ

(θ)
r in the given

branch. Now r ≥ 1, so there are no more than m3/4−m2/2 clusters between and including

Λ1 and Λ
(θ)
r in the given branch.

Consider now the number of possible collections of gangs. We know that there are no more

gangs similar to Λ1, . . . ,Λr than the θ + 1 gangs we discussed above. In fact, by allowing a

gang to consist of a single cluster Λ1, we have taken into account all gangs beginning with

c1,1. There are m distinct letters, so there are at most m collections of similar gangs which

begin with distinct letters. Since every cluster is part of a gang, therefore, there are no more

than m(m3/4−m2/2) = m4/4−m3/2 clusters in the given branch.

Lemma 2.54. The total number of subwords that move when the algorithm Put in Lexicographic

Order 2 is run once is no more than
m3

2

1 +

(m6−2m5−m4)/8∑
i=0

mi

.

Proof. Combining Lemmas 2.52 and 2.53, we see that there are no more than m2+m
2
· m4−2m3

4
=

m6−2m5−m4

8
blocks in any branch in wB. Next we consider the number of possible branches.

118

A given subword C0 can release at most m blocks to move within wB: Suppose C0 releases a

block C1 to move within wB. Let C ′1 be any block right of C1 with the same initial letter as

C1, c1 = c′1. Then there is some letter between c1 and c′1 with which c′1 does not commute;

otherwise since wB is in lexicographic order, c′1 would be immediately to the right of c1 and

thus be in the same block as c1. Therefore C0 cannot release C ′1; the letter between c1 and

c′1 with which c′1 does not commute cannot lie in C0, which lies left of C1. Therefore any

subword can release at most one block with a given initial letter.

This means that the root and every node in a branch can branch at most m times. So the root

has no more than m parent subbranches extending from it; each initial node of these parent

subbranches has at most m branches extending from it; and so on. Since no branch has

more than (m6 − 2m5 −m4)/8 nodes, this means that there are at most
∑(m6−2m5−m4)/8

i=0 mi

branches total from any given root.

By Lemma 2.50, there are no more than m3/2 subwords which move from wB into wA; that is,

there are no more than m3/2 roots in wB. Therefore there are at most m3

2

∑(m6−2m5−m4)/8
i=0 mi

blocks in wB.

Adding to this the number of possible roots, there are at most

m3

2
+
m3

2

(m6−2m5−m4)/8∑
i=0

mi =
m3

2

1 +

(m6−2m5−m4)/8∑
i=0

mi

subwords in wB which move, either into wA or within wB.

Lemma 2.55. The algorithm Put In Lexicographic Order 2 described by the flowchart in Figure

2.25 runs in polynomial time in n+ p, where n and p are the lengths of the SLPs which are

input.

Proof. We will first see that the number of steps required for each iteration of the large outer

loop is polynomial in n+ p, and then we will show that the number of iterations of the outer

119

loop is bounded by a polynomial in n+ p as well.

The time it takes to run the algorithm Find First Occurrence Order is polynomial in p by

Lemma 2.45, say q1(p) steps, and assigning values to variables before entering the main loop

happens in constant time, say c1 steps. So before entering the main loop, the time required

is q1(p) + c1.

Checking to see whether or not i < m and assigning values to the variables c and CanMove

are done in constant time, say c2 steps. Count the Occurrences runs in polynomial time in p,

say q2(p) steps, by Lemma 2.19. So for each iteration of the main loop, q2(p) + c2 steps are

required before entering the numcs loop.

Consider the part of the routine shown in Figure 2.26, which happens at the beginning of the

numcs loop. The routines Find the Occurrence and Left Sub SLP both run in polynomial

time in p by Lemmas 2.29 and 2.23. Now by Lemma 2.24, the length of the SLP Lofc

produced by Left Sub SLP is no more than 2p. This is the SLP output to Find Included

Generators, so by Lemma 2.7, Find Included Generators runs in polynomial time in 2p. A

polynomial in 2p is a polynomial in p, and the sum of three polynomials in p is a polynomial

in p, so these three routines together run in polynomial time in p, say q3(p) steps. The little

loop which checks to see if ac commutes with all of the generators in LofcGens has m or fewer

iterations, and the steps in each iteration are bounded by a constant, so the total number of

steps required by the loop is bounded by a constant. The other operations which occur in

the part of the numcs loop illustrated in 2.26 are also bounded by a constant. Thus the part

of the routine shown in 2.26 is done in q3(p) + c3 steps.

Now checking to see if CanMove = true happens in constant time; let us include this time in

our calculation of the number of steps required by the part of the numcs loop illustrated in

Figure 2.27. By Lemmas 2.35, 2.5, and 2.26, the algorithms Find Rightmost Noncommuting,

Get Length, and Right Sub SLP each run in polynomial time in n, say q4(n) steps altogether.

120

The other operations in the part of the numcs loop shown in Figure 2.27 happen in constant

time, so the part of the routine shown in Figure 2.27 runs in q4(n) + c4 steps.

By Lemma 2.27, the length of Rofb is no more than 2n, so by Lemma 2.40, when we apply

the algorithm Find Leftmost Heavier to Rofb, it runs in polynomial time in 2n, and thus in

polynomial time in n, say q5(n). Determining whether or not zpos = −1 happens in constant

time, say c5 steps, so this little part of the routine that happens between the parts shown in

Figures 2.27 and 2.28 requires q5(n) + c5 steps.

Consider the part of the numcs loop shown in Figure 2.28. Right Sub SLP runs in polynomial

time in n and produces an SLP of length 2n or less. Thus Find Included Generators runs in

polynomial time in 2n, which is polynomial in n. These two algorithms together therefore

run in polynomial time in n, say q6(n) steps. The other operations that happen in the part

illustrated in Figure 2.28 happen in constant time, say c6 steps. Hence q6(n) + c6 is the

number of steps for the part in Figure 2.28.

The steps required to create the list genlist run in constant time since the little loop runs m

times, and none of the steps in the loop depend on n or p. Let us include this time in the

number of steps taken in the part of the numcs loop pictured in Figure 2.29. The algorithms

Get Length and Right Sub SLP each run in polynomial time in p, and by Lemmas 2.27, 2.37,

and 2.23, Find Leftmost Noncommuting - List and Left Sub SLP run in polynomial time in

2p. Furthermore, Lemmas 2.24, 2.41, and 2.23 imply that Find Leftmost Heavier and Left

Sub SLP each run in polynomial time in 4p. For future reference, note that the length of

CGBlock is no more than 8p. Altogether then, these six routines run in polynomial time in

p, say q7(n) steps. The operations that happen outside of these routines in the part shown in

Figure 2.29 run in constant time, say c7 steps. Therefore this part of the numcs loop runs in

q7(p) + c7 steps.

We continue to the part illustrated in Figure 2.30. As we saw earlier, the length of Rofb is

121

no more than 2n; thus Find Included Generators runs in polynomial time in 2n and hence

in n. Now CGBlock has 8p or fewer production rules, so Find Leftmost Commuting - List

runs in polynomial time in 8p and thus in p. Adding a polynomial in n to one in p gives

a polynomial which is bounded by a polynomial in n+ p; say q8(n+ p) is a bound for the

number of steps in these two algorithms together. The other operations outside of the f loop

run in constant time, say c8 steps, so the number of steps in the part in Figure 2.30 outside

of the f loop is q8(n+ p) + c8.

We now enter the f loop. For each iteration of the f loop, we begin by applying Left Sub

SLP to CGBlock; this runs in polynomial time in 8p and so in p, and it produces an SLP

Cf1Block of length 16p or less. Therefore Find Included Generators runs in polynomial time

in 16p, so in p. The steps required to create the list chkGList run in constant time since

the little loop runs m times, and none of the steps in the loop depend on n or p. When we

output CGBlock to Right Sub SLP, the routine runs in polynomial time in 8p, so in p, and

returns an SLP FgBlock of length no more than 16p. Hence Find Leftmost Commuting - List

runs in polynomial time in 16p, so in p. Let us say that these routines together require q9(p)

steps. The other operations inside the f loop which happen outside of the part illustrated in

Figure 2.31 run in constant time, say c9 steps. Thus, outside of the part shown in Figure

2.31, each iteration of the f loop runs in q9(p) + c9 steps.

Similarly, in the part shown in Figure 2.31, the first four routines called, Left Sub SLP,

Find Rightmost Heavier, Right Sub SLP, and Find Included Generators, together run in

polynomial time in n. The last two routines called, Right Sub SLP, and Find Leftmost

Commuting - List run in polynomial time in p. The operations outside these routines in the

part shown in Figure 2.31 run in constant time. Therefore the number of steps required for

the part in this flowchart is bounded by a polynomial in n+ p, say q10(n+ p).

Recall that in the f loop we determine whether or not there is an af in the cg-block which can

and should move left of ab. We find our first af that may end up moving left of ab by finding

122

the leftmost letter in the cg-block which commutes with ab. If we determine that af will

not end up moving left of ab, we append f to chkGList and find the next af by finding the

leftmost letter in the cg-block lying to the right of the previous af which commutes with all of

the generators in chkGList. Now there are at most m−1 generators which can commute with

ab (recall that ab does not commute with itself), which is in chkGList, and we append each

f to chkGList before finding the next af , which must therefore commute with the previous

af and so be a different generator than any previous af . Therefore there are at most m− 1

letters in the cg-block which will get assigned to the variable af . Thus the f loop has no more

than m− 1 iterations, and so running the f loop requires (m− 1)[q9(p) + c9 + q10(n+ p) + c10]

steps, which is bounded by a polynomial in n+ p. Add to this bound the number of steps

occurring in Figure 2.30 outside of the f loop – that is, q8(n+p)+ c8 – to get that the number

of steps required for the part of the numcs loop in Figure 2.30 is bounded by a polynomial

in n+ p, say q11(n+ p).

The algorithm Combine SLPs runs in polynomial time in the sum of the lengths of the two

SLPs which are input, by Lemma 2.21. So, for the same reasons as with other parts of

the numcs loop, the algorithms called in the part of the routine represented in Figure 2.33

together run in polynomial time in n+ p, say q12(n+ p) steps. Similarly, the three algorithms

and one other operation which happen in the part illustrated in Figure 2.34 together run in

polynomial time in p, say q13(p) steps.

For reasons we will soon explain, the total number of times that the numcs loop can be run

during the entire algorithm Put In Lexicographic Order 2 (not only in a single iteration of

the main loop, or in a single iteration of the large outer loop, but in all of the iterations of

these loops together) is bounded by a constant; let us call it C. This means that the product

of the number of iterations of the main loop and the number of iterations of the outer loop is

bounded by C, and so the number of iterations of the outer loop is also no more than C.

Therefore the total number of steps occurring in the numcs loop for the entire duration of

123

the algorithm is no more than C[q3(p) + c3 + q4(n) + c4 + q5(n) + c5 + q6(n) + c6 + q7(p) + c7 +

q8(n+ p) + c8 + q9(p) + c9 + q10(n+ p) + q11(n+ p) + q12(n+ p) + q13(p)], which is bounded

by a polynomial in n+ p, say Q1(n+ p). The total number of steps occurring in the main

loop outside of the numcs loop for the entire duration of the algorithm is no more than

C[q2(p) + c2] = Q2(p), and the total number of steps occurring in the outer loop outside of

the main loop for the entire duration of the algorithm is no more than C[q1(p) + c1] = Q3(p).

The sum Q1(n+ p) +Q2(p) +Q3(p) is the total number of steps in the entire algorithm, and

it is bounded by a polynomial in n+ p. It remains to for us to show that the total number

of times the numcs loop is run during the entire duration of the algorithm is bounded by a

constant; we address this next.

By Lemma 2.54, there are no more than m3

2

[
1 +

∑(m6−2m5−m4)/8
i=0 mi

]
cg-blocks which move

during one run of Put in Lexicographic Order 2. Let us call this constant C ′. Every time the

numcs loop is run, either it is determined that no block beginning with ac will move into

wX , in which case we exit back out to the main loop, or a cg-block will move. Thus for a

single iteration of the main loop, there is only one iteration of the numcs loop for which a

cg-block does not move. For every iteration of the large outer loop there are no more than m

iterations of the main loop, so for every iteration of the large outer loop, there are no more

than m iterations of the numcs loop for which a cg-block does not move. The large outer

loop is repeated only as long as at least one cg-block moves during the previous iteration. For

every cg-block that moves, therefore, there must be no more than m iterations of the numcs

loop for which a cg-block does not move, if we do not include the last iteration of the large

outer loop. Thus there are no more than mC ′ +m iterations of the numcs loop altogether,

where adding m at the end takes into account the last iteration of the large outer loop. Since

C = mC ′ + m is a constant, the number of times the numcs loop is run during the entire

duration of the algorithm is bounded by a constant, and this completes our proof. We note

that this proof also implies that the length of the SLP output by Put in Lexicographic Order

2 is also a polynomial in n+ p.

124

The algorithm we discuss next, Put in Lexicographic Order, takes an SLP A and returns

an SLP which produces the word which similar to wA but in lexicographic order. In order

to solve the word problem for the automorphism group of a RAAG, it is not necessary to

put a word into shortlex form; we only need to put a φ(ai) into shortest form to see if it

equals ai. However, we use lexicographic ordering in order to put words into their shortest

forms. There may be ways of putting a word into shortest form without using lexicographic

ordering, but our way has the additional benefit of providing a normal form for words and a

polynomial-time algorithm for finding that normal form.

Lemma 2.56. The algorithm Put in Lexicographic Order described by the flowchart in Figure

2.35 inputs an SLP A, an index u, and an indicator fr, set to either ‘f ’ or ‘r’, and it returns

an SLP in quasinormal form which produces the word which is similar to wA and in forward

(if fr = ‘f ’) or reverse (if fr = ‘r’) lexicographic order, where au is set to be the heaviest

generator and for all i ∈ {0, 1, . . . , u− 2, u+ 1, ldots,m}, ai < ai+1.

Proof. After inputting A, u, and fr, although it is not indicated in the flowchart, we find

the length of wA, and if |wA| < 2, we return A and exit the routine. Otherwise, we create

a list Genord of length m with each item set to the value m− 1 and initialize the variable

S2O, short for ‘SLP to order’, to A. Each item Genord[j] in Genord will set to the position

of aj in the ordering; the purpose of the first loop is to accomplish this.

We use i to step through the generators one at a time, starting with i = 0. For each iteration

of this first little loop, we check to see if i = u. If not, we set Genord[i] to q and increase

q by 1. If i = u, we do nothing before returning to the beginning of the loop to check the

next generator. Thus Genord[u] remains set to its initial value of m− 1, but all of the other

generators are weighted consecutively. This way Genord contains the lexicographic ordering

in which au is the heaviest generator and for all i ∈ {0, 1, . . . , u− 2, u+ 1, ldots,m}, ai < ai+1.

Before beginning the main loop, we check to see if fr = ‘r’, and if so, we output A to the

125

algorithm Reverse SLP, which by Lemma 2.16 returns an SLP producing the reverse of wA.

We reassign S2O to this SLP. If fr 6= ‘r’ then there is no need to do anything to S2O at this

point. We also reset q to 0, let n be the number of production rules in S2O, and create a list

SLPList of length n with each item set to 0 before entering the main loop.

For the main loop, we use q to step through the the production rules of S2O one at a time,

starting with q = 0. For simplicity, let us denote the nonterminal characters of S2O by Si.

We begin each iteration of the main loop by checking to see if the current production rule is

of the form Sq → Sr · Ss. If not, we return to the beginning of the main loop to continue

with the next production rule. If the current production rule is of the form Sq → Sr · Ss, we

consider SLPList. If SLPList[r] = 0, then we have not changed its value yet, so we know that

the production of Sr is a letter. Hence we output the ProdRule for Sr to Letter to SLP and

set SLPList[r] to the SLP which is returned. By Lemma 2.8, this SLP produces the letter

w(Sr). Similarly, if SLPList[s] = 0, we output the ProdRule for Ss to Letter to SLP and set

SLPList[s] to the SLP which is returned, which produces the letter w(Ss). If SLPList[r] 6= 0,

then we do not change its value; similarly we leave SLPList[s] unchanged if its value is not 0.

Whether or not we changed the value of SLPList[r] or SLPList[s], we set the variables SLPr

and SLPs to SLPList[r] and SLPList[s], respectively. We then output SLPr, SLPs, and

Genord to Put in Lexicographic Order 2, which by Lemma 2.46 returns an SLP producing

a lexicographically ordered word similar to w(Sr) · w(Ss), according to the ordering given

in Genord. We then return to the beginning of the main loop to deal with the next

production rule. Hence, at the end of each step of the main loop, SLPList[q] contains an

SLP in quasinormal form which produces the lexicographically ordered word similar to w(Sq).

Therefore, after completing the main loop, the last entry in SLPList, that is, SLPList[n− 1],

contains an SLP in quasinormal form which produces the lexicographically ordered word

similar to wS. So after completing the main loop, we set OrdSLP to SLPList[n− 1] and B to

OrdSLP.

126

We must check again to see if fr = ‘r’. If so, we again run Reverse SLP, this time on OrdSLP,

and set B to the SLP which is returned. In this case, since we reversed the word, ordered

it lexicographically, and reversed it again, wB is similar to wA but in reverse lexicographic

order, that is, with the lightest letters as far right as possible instead of as far left as possible.

Finally, we run the algorithm Quasinormalize SLP on B, so the new SLP is in quasinormal

form by Lemma 2.10, and the word produced by this new SLP is similar to the word produced

by A but in forward or reverse (if and only if fr = ‘r’) lexicographic order, with au given the

heaviest weight.

Lemma 2.57. The algorithm Put In Lexicographic Order described by the flowchart in Figure

2.35 runs in polynomial time in n, the length of the SLP which is input.

Proof. The operations that happen before the first loop, as well as the time required to

determine whether or not i < n, do not depend on n and so happen in constant time, say c1

steps. For each iteration of the first loop, the time is independent of n, so the number of steps

is bounded by a constant, say c2. Running Reverse SLP the first time happens in polynomial

time in n, say q(n) by Lemma 2.17. The other steps that occur before entering the main loop

happen in constant time, say c3 steps. The first loop runs m times, so the number of steps

occurring before the main loop is no more than c1 +mc2 + q(n) + c3, a polynomial in n.

Inside the main loop, all of the operations other than running other algorithms happen in

constant time, say c4 steps. Letter to SLP runs in constant time as well, say c5 steps, by

Lemma 2.9. In each iteration of the main loop, the algorithm Put in Lexicographic Order 2

is run on two SLPs. Each of these two SLPs was produced by either Letter to SLP or Put

in Lexicographic Order 2. Those produced by Letter to SLP have size m + 1; by Lemma

2.55, those produced by Put in Lexicographic Order 2 have a size which is polynomial in the

size of the two SLPs which were input to produce it, each of which was created in a previous

iteration of the main loop. The main loop runs n times, so the size of each of the final two

127

Figure 2.35: Put In Lexicographic Order

128

SLPs to be input into Put in Lexicographic Order 2 is bounded by a polynomial in n, say

p1(n) and p2(n). Now by Lemma 2.55, Put in Lexicographic Order 2 runs in polynomial time

in the sum of the sizes of the SLPs which are input, so if we call that polynomial q′, then

during the last iteration of the main loop, Put in Lexicographic Order 2 requires no more

than q′(p1(n) + p2(n)) steps, and this is a polynomial in n. Therefore each iteration of the

main loop requires no more than c4 + 2c5 + q′(p1(n) + p2(n)) steps; let us call this polynomial

p(n).

After the main loop, Reverse SLP and Quasinormalize SLP each runs in polynomial time in

the size of OrdSLP, and the size of OrdSLP is a polynomial in p1(n) + p2(n), and therefore a

polynomial in n. Say together they require p3(n) steps. The other operations that happen

after the main loop run in constant time, say c6 steps.

Thus the number of steps required by Put in Lexicographic Order is no more than c1 +mc2 +

q(n) + c3 + np(n) + p3(n) + c6, which is a polynomial in n. Furthermore, the length of the

SLP produced by Put in Lexicographic Order is also bounded by a polynomial in n.

Lexico and Count, the next routine, is a key piece of the Make It Shortest 2 routine, which is

the only algorithm in which it is called.

Lemma 2.58. The algorithm Lexico and Count described by the flowchart in Figure 2.36

inputs two SLPs, A and B, and an index u, and it returns two SLPs, XLex and YLex, and

two integers, C1 and C2, meeting the following conditions. XLex and YLex are in quasinormal

form and produce, respectively, the word wX which is similar to wA and in lexicographic order

and the word wY which is similar to wB and in reverse lexicographic order, where au is set

to be the heaviest generator and for all i ∈ {0, 1, . . . , u− 2, u+ 1, ldots,m}, ai < ai+1. The

values C1 and C2 are the number of occurrences of a±1u in wX and wY , respectively.

Proof. After inputting A, B, and u, we output A, u, and ‘f’ to the algorithm Put in Lexi-

cographic Order, which by Lemma 2.56 returns an SLP XLex producing the word which is

129

similar to wA and in lexicographic order, with au given the heaviest weight. We then output

XLex and u to Count the Occurrences, which by Lemma 2.18 returns the number C1 of

occurrences of a±1u in wX , the word produced by XLex.

We repeat this process with B, but with ‘r’ rather than ‘f’ so as to get reverse lexicographic

order: We output B, u, and ‘r’ to Put in Lexicographic Order, which returns YLex, an SLP

producing the word which is similar to wB and in reverse lexicographic order, with au given

the heaviest weight. We then output YLex and u to Count the Occurrences, which returns

the number C2 of occurrences of a±1u in wY , the word produced by YLex.

Finally, we return XLex, YLex, C1, and C2 and exit the routine.

Lemma 2.59. The algorithm Lexico and Count described by the flowchart in Figure 2.36 runs

in polynomial time in n+ p, where n and p are the lengths of the SLPs which are input.

Proof. There are no loops in this routine, just four calls to other algorithms. The first time

we call Put in Lexicographic Order, by Lemma 2.57 it runs in polynomial time in n, say P1(n)

steps, where n is the size of A. The returned SLP, XLex, has size which is polynomial in n, say

q1(n). So by Lemma 2.19, the first time we call Count the Occurrences it runs in polynomial

time in q1(n), which is another polynomial in n, say Q1(n) steps. Similarly, the second time

we call Put in Lexicographic Order, it runs in polynomial time in p, say P2(p) steps, where p

is the size of B. Then YLex has polynomial size in p, say q2(p), so the second time we call

Count the Occurrences it runs in polynomial time in q2(p), which is another polynomial in

p; call it Q2(p) steps. Thus Lexico and Count runs in P1(n) +Q1(n) + P2(p) +Q2(p) steps.

Now P1(n) +Q1(n) + P2(p) +Q2(p) is bounded by a polynomial in n+ p, so the number of

steps required to run Lexico and Count is bounded by a polynomial in n+ p.

130

Figure 2.36: Lexico and Count

131

2.5 Algorithms, Part 4 – Normal Form

The remaining routines involve putting a word into its shortest form, and the very last one,

ShortLex SLP, is the one to which we have been building all along. It takes an SLP and

returns the SLP which produces the same group element but in shortlex form. ShortLex SLP

uses, either directly or indirectly, all of the other routines discussed in this paper.

Lemma 2.60. The algorithm Make It Shortest 2 described by the flowchart in Figure 2.37

inputs two SLPs, A and B, and returns an SLP in quasinormal form which produces the word

which is similar to wA and in shortest form.

Proof. After inputting A and B, we begin by initializing the variables AL and BL to A and

B, respectively. In the large outer loop, we use u to step through the generators one at a

time, starting with u = 0. Each iteration of the outer loop begins with outputting AL, BL,

and u to the algorithm Lexico and Count, which returns two SLPs and two integers q1 and

q2. We reassign the variables AL and BL to these returned SLPs. By Lemma 2.58, AL and

BL now produce the words similar to wAL and wBL, respectively, and in lexicographic order

with au given the heaviest weight, where wAL and wBL are the words produced by AL and

BL before being reassigned to the returned SLPs. Furthermore, q1 and q2 are the number

of occurrences of a±1u in wAL and wBL, respectively. If q1 and q2 are both positive, then we

continue with the rest of the outer loop; otherwise we return to the beginning of the outer

loop to deal with the next generator.

If q1 > 0 and q2 > 0, then before entering the main loop, we initialize the following variables:

we set q to the minimum of q1 and q2, j to the least integer greater than or equal to q/2, l

and r to 0, and tf to true. We want to find the occurrence of the leftmost a±1u in wAL such

that the subword beginning with that letter and ending with the last letter of wAL is the

inverse of the subword of wBL beginning with the first letter of wBL and having the same

length as the subword of wAL. We will set l and r so that at each step we know that fewer

132

than l occurrences cancel and at least r occurrence cancel, and we set j to hold the current

occurrence we are testing, where we count j from the right end of wAL and the left end of

wBL. For example, if the current value of j is 3, we are considering the 3rd occurrence of au

from the right in wAL. Since q1 is the number of occurrences of au in wAL, the jth occurrence

of au from the right is the (q1 − j + 1)th occurrence of au from the left. The variable tf is

used to allow us to break out of the main loop at the proper time.

At the beginning of each iteration of the main loop, we output AL, q1 − j + 1, and u to

Find the Occurrence. By Lemma 2.28, the number s which is returned is the position of

the (q1 − j + 1)th occurrence of au (from the left) in wAL. If s = −1, this means there is no

(q1 − j + 1)th occurrence of au in wAL, so we set tf to false in order to exit the main loop

and return to the beginning of the outer loop to continue with the next generator.

If s 6= −1, then we output AL to Get Length, which by Lemma 2.4 returns the length of

wAL, which we assign to the variable k1. Now k1 − s+ 1 is the length of the subword of wAL

beginning with the jth occurrence of au from the right and ending with the rightmost letter

of wAL. We want to check whether or not this subword and the leftmost subword of the same

length in wBL are inverses, so we output AL, BL, and k1 − s+ 1 to Do They Cancel?. This

routine returns a true or false value which we assign to the variable d. By Lemma 2.30, d is

true if the rightmost subword of wAL of length k1− s+ 1 and the leftmost subword of wBL of

the same length are inverses and false otherwise.

If d = true, then we know that at least the rightmost j occurrences of au in wAL cancel with

corresponding occurrences in wBL, so we set r to j. Next we check to see if j = l− 1 or r = q.

If r = q, then q occurrences in wAL cancel with the corresponding occurrences in wBL, so

we do not need to check further, since q is the maximum possible number of occurrences to

cancel; either wAL or wBL contains only q occurrences of au. If j = l − 1, then while the jth

occurrence from the right does cancel, the lth occurrence does not, so again, we do not need

to check further. Thus if either j = l− 1 or r = q, we output AL, BL, and s to Cancel Them,

133

which by Lemma 2.32 returns two SLPs, the first the producing wAL[: s− 1] and the second

one producing wBL[k1 − (s− 1) :]. In other words, the two returned SLPs produce the words

wAL and wBL, but with the right subword of wAL and the left subword of wBL of length

k1− s+ 1 truncated. After running Cancel Them, we set tf to false so that we exit the main

loop and return to the beginning of the outer loop to move on to the next generator.

Now if d = true but j 6= l − 1 and r 6= q, then there may be more than j occurrences of

au which cancel, so after letting r = j we let j = r + d(l − r)/2e, putting j about halfway

between the current values of r and l, and let lasts = s, so that if we find out during the

next iteration of the main loop that no more than r occurrences of au cancel, we can cancel

those r occurrences without recalculating the value of s for j = r. We then return to the

beginning of the main loop.

If, on the other hand, d = false, then we know that fewer than j occurrences of au in wAL

cancel with corresponding occurrences in wBL. First we check to see if j = r+ 1 and r > 0. If

so, we know that since r > 0 occurrences do cancel, but r + 1 occurrences do not, we do not

need to check further, but we need to cancel the laststh letter and following in wAL, not the

sth letter and following, so we set s to lasts. Then we output AL, BL, and s to Cancel Them,

which returns two SLPs, the first the producing wAL[: s− 1] and the second one producing

wBL[k1 − (s− 1) :], and we set tf to false to exit the main loop and return to the beginning

of the outer loop.

If d = false but either j 6= r + 1 or r = 0, we next check to see if j = 1. If j = 1, then since

d = false, this means that the rightmost occurrence of au in wAL does not cancel with the

leftmost occurrence in wBL, so no occurrences of au cancel. Thus we set tf to false, exit the

main loop, and return to the beginning of the outer loop. If j 6= 1, then we know that fewer

than j occurrences of au in wAL cancel, but we still do not know exactly how many do cancel.

So we set l to j and j to r + d(l− r)/2e, putting j about halfway between the current values

of r and l, and return to the beginning of the main loop.

134

We see that each time we exit the main loop, it is either because no occurrences of the

current generator au in wAL cancel with any occurrences in wBL, or because we have run the

algorithm Cancel Them to effectively cancel those occurrences. Because in each iteration of

the outer loop we made au the heaviest generator and placed wAL and wBL in lexicographic

and reverse lexicographic order, respectively, when we there is no occurrence of any ai in wAL

which can cancel with any occurrence in wBL. If after exiting the outer loop there were an

occurrence of an ai in wAL and an occurrence of a−1i in wBL, then during the ith loop there

must have been some letter aj right of ai in wAL or left of a−1i in wBL with which ai does

not commute and which does not cancel with any occurrence of a−1j in the other word: If aj

commutes with ai, then it would not have been between ai and a−1i (thinking of wAL to the

left of wBL) in the ith step, since ai was made heaviest in that step. And if aj canceled with

an occurrence of a−1j in the other word, either it would have done so in the jth step, in which

case it would not have prevented ai and a−1i from canceling in the ith step.

Therefore, when we exit the outer loop after having considered all m generators, there are

no letters in wAL which can cancel with any in wBL. At this point we output AL and BL

to Combine SLPs, which returns C, an SLP in quasinormal form which, by Lemma 2.20,

produces the concatenation of wAL and wBL. Finally, we return C and exit the routine.

Lemma 2.61. The algorithm Make It Shortest 2 described by the flowchart in Figure 2.37

runs in polynomial time in n+ p, where n and p are the lengths of the SLPs which are input.

Furthermore, the length of the SLP which is returned is no more than 2m(n+ p) + 1.

Proof. Assigning values to variables before entering the outer loop, as well as checking to see

if u < m, is done in constant time, say c1 steps.

At the beginning of first iteration of the outer loop, Lexico and Count runs in polynomial

time in n+ p; each time after that, it runs in polynomial time in the sum of the sizes of AL

and BL, which we will see are linear in n and p, respectively. Thus in any iteration of the

135

Figure 2.37: Make It Shortest 2

136

outer loop, the number of steps required to run Lexico and Count is bounded by a polynomial

in n+ p. Let P1(n+ p) be the largest of these polynomials.

Assigning values to variables, checking to see if q1 and q2 are positive, and checking to see if tf

is true happen in constant time, say c2 steps. By Lemma 2.29, running Find the Occurrence

happens in polynomial time in the size of AL, which we will see is linear in n, so each time it

is run during the main loop, Find the Occurrence requires no more than P2(n) steps for some

polynomial P2. Similarly, Get Length runs in polynomial time in n, say no more than P3(n)

steps in any iteration of the main loop, by Lemma 2.5. By Lemma 2.31, the number of steps

required by Do They Cancel? is bounded by a polynomial in the sum of the sizes of AL and

BL, so by a polynomial in n+ p. Let P4(n+ p) be a polynomial such that each time Do They

Cancel? is run during the main loop, it runs in P4(n+ p) steps or fewer. Inside the main loop,

assigning values to variables and testing the values of variables all happen in constant time,

say c3 steps at most for any iteration of the main loop. The number of steps required to run

Cancel Them is, by Lemma 2.33, bounded by a polynomial in the sum of the sizes of AL and

BL, so by a polynomial in n+ p; say no more than P5(n+ p) steps are required for running

Cancel Them in any iteration of the main loop. Now, also by 2.33, the size of each of the

SLPs which are output by Cancel Them is no more than double the size of the corresponding

SLP which was input. Now before we get to Combine Them at the end, Cancel Them is the

only algorithm run which outputs new SLPs, so since the sizes of AL and BL at most double

each time Cancel Them is run, the sizes of AL and BL are at most a constant multiple of n

and p, respectively, at any point in the routine before we run Combine Them.

We consider next how many times the main loop is run. For a given iteration of the outer

loop, the main loop runs no more than log2 q times, since each time through we eliminate

the need to check half of the remaining occurrences about which we are uncertain. Recall

that q = min(q1, q2), where q1 and q2 are the number of occurrences of au in wAL and wBL,

respectively. Since each non-terminal character in an SLP has a production of at most 2,

137

there are no more than 2n letters in an SLP whose length is n. So the first time through

the main loop, there are no more than 2n letters in wAL and no more than 2p letters in

wBL; thus q1 ≤ 2n and q2 ≤ 2p, so q ≤ min(2n, 2p). Therefore, for u = 0, the main loop

runs no more than min(log2 2n, log2 2p) = min(n, p) times. For u = 1, it runs no more than

min(log2 22n, log2 22p) = min(2n, 2p), and for u = k in general, no more than min(2kn, 2kp)

times. Since u ranges from 0 to m− 1, the number of times the main loop runs in a single

iteration of the outer loop is never more than min(2m−1n, 2m−1p), which is bounded by

2m−1(n+ p), a linear function in n+ p.

Thus the number of steps for a single iteration of the outer loop is bounded by P1(n+p)+ c2 +

2m−1(n+ p)[P2(n) + P3(n) + P4(n+ p) + c3 + P5(n+ p)], which is bounded by a polynomial

in n+ p, say Q1(n+ p). The outer loop runs m times, so together all of the steps for all of

the iterations of the outer loop is at most mQ1(n+ p).

After exiting the outer loop, by Lemma 2.21, Combine SLPs runs in polynomial time in

the sum of the sizes of the SLPs being input. As discussed above, the sizes of AL and BL

when they are output to Combine SLPs are constant multiples of n and p – specifically, no

more than 2mn and 2mp, respectively. Thus the number of steps required to run Combine

SLPs is bounded by a polynomial in n + p, say Q2(n + p). Therefore there are at most

c1 +mQ1(n+ p) +Q2(n+ p) steps required to run Make It Shortest 2.

Since the sizes of AL and BL are no more than 2mn and 2mp, respectively, when they are

output to Combine SLPs, by Lemma 2.21, the size of the SLP which is output is no more

than 2m(n+ p) + 1, which is linear in n+ p.

Lemma 2.62. The algorithm Make It Shortest described by the flowchart in Figure 2.38 inputs

an SLP A and returns an SLP in quasinormal form which produces the word which is similar

to wA and in shortest form.

Proof. After inputting A, although it is not shown in the flowchart, we output A to Get

138

Length, and if the returned length is less than 2, we return A and exit the routine. Otherwise,

we begin by creating a list SLPList of length n with each item set to 0. In the main loop, we

use q to step through the production rules of A one at a time, starting with q = 0. We begin

each iteration of the main loop by checking to see if the current production rule is of the

form Aq → Ar · As. If not, we return to the beginning of the main loop to continue with the

next production rule. If the current production rule is of the form Aq → Ar · As, we consider

SLPList. If SLPList[r] = 0, then we have not changed its value yet, so we know that the

production of Ar is a letter. Hence we output the ProdRule for Ar to Letter to SLP and

set SLPList[r] to the SLP which is returned. By Lemma 2.8, this SLP produces the letter

w(Ar). Similarly, if SLPList[s] = 0, we output the ProdRule for As to Letter to SLP and set

SLPList[s] to the SLP which is returned, which produces the letter w(As). If SLPList[r] 6= 0,

then we do not change its value; similarly we leave SLPList[s] unchanged if its value is not 0.

Whether or not we changed the value of SLPList[r] or SLPList[s], we set the variables SLPr

and SLPs to SLPList[r] and SLPList[s], respectively. We then output SLPr and SLPs to

Make It Shortest 2, which by Lemma 2.60 returns an SLP producing a shortest form of the

word w(Ar) · w(As). We then return to the beginning of the main loop to deal with the next

production rule. Hence, at the end of each step of the main loop, SLPList[q] contains an SLP

in quasinormal form which produces a shortest form of the word w(Aq). Therefore, after

completing the main loop, the last entry in SLPList, that is, SLPList[n− 1], contains an SLP

in quasinormal form which produces a shortest form of the word wA. Thus after completing

the main loop, we set B to SLPList[n− 1] and output B.

Lemma 2.63. The algorithm Make It Shortest described by the flowchart in Figure 2.38 runs

in polynomial time in n, the length of the SLP which is input. Furthermore, the length of the

SLP which is returned is bounded by a linear function in n.

Proof. The operations that happen before the first loop, as well as the time required to

determine whether or not q < n, do not depend on n and so happen in constant time, say c1

139

Figure 2.38: Make It Shortest

140

steps. Inside the main loop, all of the operations other than running other algorithms happen

in constant time, say c2 steps. Letter to SLP runs in constant time as well, say c3 steps, by

Lemma 2.9. In each iteration of the main loop, the algorithm Make It Shortest 2 is run on

two SLPs. Each of these two SLPs was produced by either Letter to SLP or Make It Shortest

2. Those produced by Letter to SLP have size m + 1; by Lemma 2.61, those produced by

Make It Shortest 2 have a size which is linear in the sum of the sizes of the two SLPs which

were input to produce it, each of which was created in a previous iteration of the main loop.

The main loop runs n times, so the size of each of the final two SLPs to be input into Make

It Shortest 2 is bounded by a linear function in n, say p1(n) and p2(n). Now by Lemma 2.61,

Make It Shortest 2 runs in polynomial time in the sum of the sizes of the SLPs which are

input, so if we call that polynomial q1, then during the last iteration of the main loop, Make

It Shortest 2 requires no more than q1(p1(n) + p2(n)) steps, and this is a polynomial in n.

Therefore each iteration of the main loop requires no more than c2 + 2c3 + q1(p1(n) + p2(n))

steps; let us call this polynomial p(n).

The operations that happen after the main loop run in constant time, say c4 steps. Thus

the number of steps required by Make It Shortest is no more than c1 + np(n) + c4, which

is a polynomial in n. Furthermore, the length of the SLP produced by Make It Shortest is

bounded by a linear function in n.

Lemma 2.64. The algorithm Shortlex SLP described by the flowchart in Figure 2.39 inputs

an SLP A and returns an SLP in quasinormal form which produces the word which is similar

to wA and in shortlex form.

Proof. After inputting A, although it is not shown in the flowchart, we check to see if A is in

quasinormal form, and if not, we output A to Quasinormalize SLP and input by Lemma 2.10

an SLP which is in quasinormal form and which produces wA. We assign the variable A to

this new SLP. Whether or not we needed to quasinormalize A, we continue by outputting

A to Make It Shortest, which by Lemma 2.62 returns an SLP ShortA in quasinormal form

141

Figure 2.39: Shortlex SLP

producing a shortest form of the word wA. We then output ShortA, m− 1, and ‘f’ to Put in

Lexicographic Order, which by Lemma 2.56 returns an SLP ShortlexA in quasinormal form

which produces a lexicographically ordered word which is similar to w(ShortA) and therefore

to wA. Now lexicographically ordering a word does not change its length, so w(ShortlexA)

is still in shortest form. Therefore the word produced by ShortlexA is in shortlex form and is

similar to wA. We return ShortlexA.

Theorem 2.65. The algorithm Shortlex SLP described by the flowchart in Figure 2.39 runs in

polynomial time in n, the length of the SLP which is input.

Proof. The algorithm Make It Shortest runs in polynomial time in n, say p(n) steps, by

Lemma 2.63. Furthermore, also by Lemma 2.63, the length of the SLP which it returns is

linear in n, say l(n). By Lemma 2.57, Put in Lexicographic Order runs in polynomial time in

l(n), which is also polynomial in n. Thus Shortlex SLP requires p(n) + l(n) steps, which is a

polynomial in n.

142

CONCLUSION

We have demonstrated the existence of a polynomial-time algorithm which, given a straight

line program in Chomsky normal form, provides a straight line program which produces the

shortlex form of the word produced by the initial straight line program. This algorithm solves

the compressed word problem for right-angled Artin groups, thereby providing a solution

for the word problem for automorphism groups of RAAGs. One area of further study is

developing a similar algorithm for the word problem for the outer automorphism groups of

RAAGs.

143

APPENDIX: PYTHON CODE

The actual Python code used to create the algorithms discussed in the paper is shown

below.

class Concat(object):

def __init__(self, P, idx1, idx2):

self.P = P

self.idx1 = idx1

self.idx2 = idx2

self.pr1 = P[idx1]

self.pr2 = P[idx2]

def perform(self):

a = self.pr1.use()

b = self.pr2.use()

if a == 0:

return b

elif b == 0:

return a

else:

return a + b

class Pr1Pr(object):

def __init__(self, P, wi):

self.P = P

self.wi = wi

self.idx1 = self.wi

self.pr1 = P[self.idx1]

def perform(self):

if type(self.P[self.idx1].wi) == Pr1Pr:

a = self.P[self.idx1].wi.perform()

return a

else:

a = self.pr1.use()

return a

class ProdRule(object):

def __init__(self, wi):

self.wi = wi

def use(self):

s = self.wi

if type(s) == Concat or type(s) == Pr1Pr:

return s.perform()

else:

return s

def LetterToSLP(self):

QList = []

B = SLP(QList, false)

s = self.wi

if type(s) == str:

for i in range(0, m):

if s == B.gens[i]:

GenIdx = i

ProdI = ProdRule(B.gens[i])

QList.append(ProdI)

for i in range(0, m):

if s == B.invgens[i]:

GenIdx = m + i

ProdI = ProdRule(B.invgens[i])

QList.append(ProdI)

w = Pr1Pr(QList, GenIdx)

QList.append(ProdRule(w))

return SLP(QList, true)

else:

return B

class SLP(object):

def __init__(self, P, normform):

self.P = P

self.normform = normform

theGens = []

theInvgens = []

for i in range(m):

aNum = ’a’ + str(i)

theGens.append(aNum)

ANum = ’A’ + str(i)

theInvgens.append(ANum)

self.gens = theGens

self.invgens = theInvgens

self.numbr = len(P)

145

def evaluate(self): #returns the string produced by the SLP self

if self.numbr == 0:

return ’’

num = self.numbr - 1

thisP = self.P

finalP = thisP[num]

aANum = finalP.use()

if type(aANum) == Integer:

aANum = ’’

print ’This is an empty SLP.’

theStr = ’’

if m > 26:

print ’This program is not currently equipped to deal with more than

26 generators. The output will be incorrect.’

if m > 26, need a different approach to labeling the

generators & inverses

for i in range(0, len(aANum), 2):

nr = Integer(aANum[i+1])

if aANum[i] == ’a’:

ch = chr(nr + 97)

else:

ch = chr(nr + 65)

theStr = theStr + ch

return theStr

def length(self): #returns the length of the evaluated word

if self.numbr == 0:

return 0

thisP = self.P

n = self.numbr

prL = [0 for i in range(n)] #length of word produced by each prod rule

for i in range(n):

if type(thisP[i].wi) == Concat:

r = thisP[i].wi.idx1

s = thisP[i].wi.idx2

prL[i] = prL[r] + prL[s]

elif type(thisP[i].wi) == Pr1Pr:

r = thisP[i].wi.idx1

prL[i] = prL[r]

else:

prL[i] = 1

return prL[n - 1]

146

def FIG(self): #returns a list indicating which generators are

thisP = self.P #included in the string produced by self

n = self.numbr

z = [0 for i in range(m)]

if n == 0:

return z

for i in range(m):

z1 = [0 for j in range(n)]

for j in range(n):

if type(thisP[j].wi) != Concat:

letter = thisP[j].use()

if letter == self.gens[i] or letter == self.invgens[i]:

z1[j] = 1

else:

thiswi = thisP[j].wi

r = thiswi.idx1

s = thiswi.idx2

if z1[r] == 1 or z1[s] == 1:

z1[j] = 1

if z1[n - 1] == 1:

z[i] = 1

return z

def quasinormalize(self): #quasinormalizes the SLP self

thisP = self.P

n = self.numbr

QList = [] #new prod rules

LList = [] #list of letters used

z = [0 for i in range(n)]

z2 = [-1 for i in range(n)]

q = 0

onlyLetters = true #if no other prod rules, then make SLP

empty

for i in range(n): #put all the prod rules going to letters

if type(thisP[i].wi) == str: #at the beginning

letter = thisP[i].use()

if letter != emptyLetter:

if letter not in LList: #only add a letter once

LList.append(letter)

l = ProdRule(letter)

QList.append(l)

q = q + 1

z2[i] = LList.index(letter)

lList = [] #don’t repeat letters

eList = [] #list of prod rules --> ee00

lastConcat = -1 #position of last Concat kept

147

lastPr1Pr = -1 #position of last Pr1Pr

ConcatList = [0 for i in range(n)] #list of Concats

k = 0

for i in range(n):

if type(thisP[i].wi) == Pr1Pr:

w = thisP[i].wi

r = w.wi

z[i] = i - r + z[r]

k = k + 1

if r in eList:

eList.append(i)

else:

onlyLetters = false

lastPr1Pr = i

elif type(thisP[i].wi) == str:

letter = thisP[i].use()

if letter == emptyLetter:

k = k + 1

eList.append(i)

elif letter not in lList: #don’t increase k for new letter

lList.append(letter)

else:

k = k + 1

z[i] = i - z2[i]

else: #type must be Concat

r = thisP[i].wi.idx1

s = thisP[i].wi.idx2

if r in eList and s in eList:

eList.append(i)

z[i] = i + 1

k = k + 1

elif r in eList:

z[i] = i - s + z[s]

onlyLetters = false

lastPr1Pr = i

k = k + 1

elif s in eList:

z[i] = i - r + z[r]

onlyLetters = false

lastPr1Pr = i

k = k + 1

else:

w = Concat(QList, r - z[r], s - z[s])

QList.append(ProdRule(w))

ConcatList[q] = 1

q = q + 1

z[i] = k

148

onlyLetters = false

lastConcat = i

if n - 1 in eList:

onlyLetters = true

else:

if lastPr1Pr > lastConcat:

i = lastPr1Pr

nextrule = i - z[i]

if ConcatList[nextrule] != 0:

QList = QList[0:nextrule + 1]

else: #must have nextrule <= len(LList)

w = Pr1Pr(QList, nextrule)

QList.append(ProdRule(w))

if onlyLetters:

QList = []

B = SLP(QList, true)

return B

def LeftSub(self, g): #returns the SLP producing the leftmost subword

#of length w

if self.numbr == 0:

return self

n = self.numbr

N = n - 1

q = 0

QList = [ProdRule(emptyLetter) for i in range(0, 2*N + 1)]

L = self.length()

if g > L:

print ’Number of letters requested is ’ + str(g) + ’, which is more

than the number of letters (’ + str(L) + ’) in the string produced

by this SLP.’

return self

elif g == L:

return self

elif g == 0:

QList = []

return SLP(QList, true)

thisP = self.P

prL = [0 for i in range(n)] #length of word produced by each prod rule

while q < n:

if type(thisP[q].wi) == Concat:

r = thisP[q].wi.idx1

s = thisP[q].wi.idx2

prL[q] = prL[r] + prL[s]

w = Concat(QList, 2*r, 2*s)

QList[2*q] = ProdRule(w)

149

elif type(thisP[q].wi) == Pr1Pr:

r = thisP[q].wi.idx1

prL[q] = prL[r]

w = Pr1Pr(QList, 2*r)

QList[2*q] = ProdRule(w)

else:

prL[q] = 1

letter = thisP[q].use()

QList[2*q] = ProdRule(letter)

q = q + 1

q = N

h = g

used = [0 for i in range(2*N + 1)]

tf = true

while tf:

if type(thisP[q].wi) == Concat and tf == true:

r = thisP[q].wi.idx1

s = thisP[q].wi.idx2

l = prL[r]

if l > h:

w = Pr1Pr(QList, 2*r - 1)

QList[2*q - 1] = ProdRule(w)

used[2*q - 1] = 1

used[2*r - 1] = 1

q = r

elif l == h:

w = Pr1Pr(QList, 2*r)

QList[2*q - 1] = ProdRule(w)

used[2*q - 1] = 1

used[2*r] = 1

tf = false

else:

w = Concat(QList, 2*r, 2*s - 1)

QList[2*q - 1] = ProdRule(w)

used[2*q - 1] = 1

used[2*r] = 1

used[2*s - 1] = 1

q = s

h = h - l

else:

tf = false

hiUsed = 0

for i in range(2*N + 1):

if used[i] == 1:

hiUsed = i

QListNew = QList[0:hiUsed + 1]

B = SLP(QListNew, false)

150

NB = B.quasinormalize()

return NB

def RightSub(self, f): #returns the SLP producing the rightmost

if self.numbr == 0: #subword of length f

return self

n = self.numbr

N = n - 1

q = 0

QList = [ProdRule(emptyLetter) for i in range(0, 2*N + 1)]

L = self.length()

if f > L:

print ’Number of letters requested is ’ + str(f) + ’, which is more

than the number of letters (’ + str(L) + ’) in the string produced

by this SLP.’

return self

elif f == L:

return self

elif f == 0:

QList = []

return SLP(QList, true)

thisP = self.P

prL = [0 for i in range(n)] #length of word produced by each prod rule

while q < n:

if type(thisP[q].wi) == Concat:

r = thisP[q].wi.idx1

s = thisP[q].wi.idx2

prL[q] = prL[r] + prL[s]

w = Concat(QList, 2*r, 2*s)

QList[2*q] = ProdRule(w)

elif type(thisP[q].wi) == Pr1Pr:

r = thisP[q].wi.idx1

prL[q] = prL[r]

w = Pr1Pr(QList, 2*r)

QList[2*q] = ProdRule(w)

else:

prL[q] = 1

letter = thisP[q].use()

QList[2*q] = ProdRule(letter)

if q != 0:

QList[2*q - 1] = ProdRule(letter)

q = q + 1

q = N

h = f

used = [0 for i in range(2*N + 1)]

tf = true

151

while tf:

if type(thisP[q].wi) == Concat and tf == true:

r = thisP[q].wi.idx1

s = thisP[q].wi.idx2

l = prL[s]

if l > h:

w = Pr1Pr(QList, 2*s - 1)

QList[2*q - 1] = ProdRule(w)

used[2*q - 1] = 1

used[2*s - 1] = 1

q = s

elif l == h:

w = Pr1Pr(QList, 2*s)

QList[2*q - 1] = ProdRule(w)

used[2*q - 1] = 1

used[2*s] = 1

q = s

tf = false

else:

w = Concat(QList, 2*r - 1, 2*s)

QList[2*q - 1] = ProdRule(w)

used[2*q - 1] = 1

used[2*r - 1] = 1

used[2*s] = 1

q = r

h = h - l

else:

tf = false

hiUsed = 0

for i in range(2*N + 1):

if used[i] == 1:

hiUsed = i

QListNew = QList[0:hiUsed + 1]

B = SLP(QListNew, false)

NB = B.quasinormalize()

return NB

def BothSub(self, F, G): #returns the SLP producing the subword beginning

#at F & ending at G (so F = 5, G = 15 =>

B = self.LeftSub(G) #start with 5th letter, end with 15th, get a

C = B.RightSub(G - F + 1) #subword of length 11)

return C

def CountOccs(self, u): #(to count a0, put 0 in for letterIdx)

#Counts the number of times a letter & its

152

#inverse appear in the word produced by self

if u >= m:

print ’There are only ’ + str(m) + ’ letters in the alphabet, numbered

0 through ’ + str(m - 1) + ’.’

return 0

GLet = self.gens[u]

ILet = self.invgens[u]

q = 0

n = self.numbr

thisP = self.P

QList = [ProdRule(emptyLetter) for i in range(n)]

while q < n:

if type(thisP[q].wi) == str:

letter = thisP[q].use()

if letter == GLet or letter == ILet:

QList[q] = thisP[q]

else:

QList[q] = thisP[q]

q = q + 1

B = SLP(QList, false)

NB = B.quasinormalize()

k = NB.length()

return k

def Inverse(self): #returns the SLP which produces the inverse of self

if self.numbr == 0:

return self

thisP = self.P

n = self.numbr

q = 0

QList = [ProdRule(emptyLetter) for i in range(0, n)]

k = self.length()

while q < n:

if type(thisP[q].wi) == str:

letter = thisP[q].use()

if letter[0] == ’a’:

invletter = ’A’ + letter[1]

else:

invletter = ’a’ + letter[1]

w = ProdRule(invletter)

QList[q] = w

elif k > 1: #type must be Concat

r = thisP[q].wi.idx1

s = thisP[q].wi.idx2

w = Concat(QList, s, r)

QList[q] = ProdRule(w)

153

else:

QList[q] = thisP[q]

q = q + 1

B = SLP(QList, false)

NB = B.quasinormalize()

return NB

def FindTheOcc(self, p, u): #returns the position of the pth occurrence

k = self.CountOccs(u)

if p > k:

j = -1

return j

if p == -1:

p = k

thisP = self.P

n = self.numbr

q = 0

GLet = self.gens[u]

ILet = self.invgens[u]

occs = [0 for i in range(n)] #number of occurrences of u produced by each

prod rule

prL = [0 for i in range(n)] # length of word produced by each prod rule

while q < n:

if type(thisP[q].wi) == Concat:

r = thisP[q].wi.idx1

s = thisP[q].wi.idx2

occs[q] = occs[r] + occs[s]

prL[q] = prL[r] + prL[s]

elif type(thisP[q].wi) == Pr1Pr:

r = thisP[q].wi.idx1

occs[q] = occs[r]

prL[q] = prL[r]

elif type(thisP[q].wi) == str:

prL[q] = 1

letter = thisP[q].use()

if letter == GLet or letter == ILet:

occs[q] = 1

q = q + 1

q = n - 1

j = 0

tf = true

while tf:

if type(thisP[q].wi) == Concat and tf:

r = thisP[q].wi.idx1

154

s = thisP[q].wi.idx2

v = occs[r]

if v < p:

p = p - v

q = s

j = j + prL[r]

else:

q = r

else:

j = j + 1

tf = false

return j

def RmostNoncomm(self, i): #returns the number of the gen h & its pos t

#of the rightmost gen not commuting with the ith gen

y = self.FIG()

for j in range(m):

if y[j] == 1:

if (i, j) in R or (j, i) in R:

y[j] = 0

h = -1

t = -1

for j in range(m):

if y[j] == 1:

s = self.FindTheOcc(-1, j)

if s > t:

h = j

t = s

return (h, t)

def LmostNcomList(self, iList):

y = self.FIG()

y2 = [0 for j in range(m)]

L = len(iList)

for j in range(m):

if y[j] == 1:

for i in range(L):

if (iList[i], j) not in R and (j, iList[i]) not in R:

y2[j] = 1

break

k = self.length()

h = -1

t = k + 1

155

for j in range(m):

if y2[j] == 1:

s = self.FindTheOcc(1, j)

if s < t:

h = j

t = s

if h == -1:

t = -1

return (h, t)

def LmostComList(self, iList): #leftmost letter that commutes with

y = self.FIG() #everything in iList

y2 = y

for j in range(m):

if y[j] == 1:

for i in range(len(iList)):

if (iList[i], j) not in R and (j, iList[i]) not in R:

y2[j] = 0

break

k = self.length()

h = -1

t = k + 1

for j in range(m):

if y2[j] == 1:

s = self.FindTheOcc(1, j)

if s < t:

h = j

t = s

if h == -1:

t = -1

return (h, t)

def LmostHeavier(self, genord, i):

y = self.FIG()

for j in range(m):

if y[j] == 1 and genord[j] <= genord[i]:

y[j] = 0

k = self.length()

h = -1

t = k + 1

for j in range(m):

if y[j] == 1:

s = self.FindTheOcc(1, j)

if s < t:

156

h = j

t = s

if h == -1:

t = -1

return (h, t)

def RmostHeavier(self, genord, i):

y = self.FIG()

for j in range(m):

if y[j] == 1 and genord[j] <= genord[i]:

y[j] = 0

h = -1

t = -1

for j in range(m):

if y[j] == 1:

s = self.FindTheOcc(-1, j)

if s > t:

h = j

t = s

return (h, t)

def FindFirstOccOrd(self): #returns a list of gens, ordered by position

#of Lmost occs

firstocclist = [] #ith element holds position of leftmost occ of ith gen

biggestocc = -1

biggestoccgen = -1

for i in range(m):

occ = self.FindTheOcc(1, i)

firstocclist.append(occ)

if occ > biggestocc:

biggestocc = occ

biggestoccgen = i

firstoccOrdlist = [] #the list to be returned

didgens = [0 for i in range(m)]

for i in range(m):

LeftOcc = biggestocc

LeftOccGen = biggestoccgen

for j in range(m):

if firstocclist[j] < LeftOcc and didgens[j] == 0:

LeftOcc = firstocclist[j]

LeftOccGen = j

if LeftOcc > -1:

firstoccOrdlist.append(LeftOccGen)

didgens[LeftOccGen] = 1

157

return firstoccOrdlist

def Reverse(self): #returns the SLP which produces the reverse of self

thisP = self.P #only used during PILO

n = self.numbr

q = 0

QList = []

while q < n:

if type(thisP[q].wi) == str:

QList.append(thisP[q])

else: #type must be Concat b/c if k <= 1,

returned already in PILO

r = thisP[q].wi.idx1

s = thisP[q].wi.idx2

w = Concat(QList, s, r)

QList.append(ProdRule(w))

q = q + 1

B = SLP(QList, false)

NB = B.quasinormalize()

return NB

def PILO(self, u, fr): #returns the SLP which produces the word produced

by self in lex order, or reverse lex order if fr = ’r’,

with u the heaviest

k = self.length()

if k < 2:

return self

q = 0

GenOrd = [m - 1 for i in range(m)] #lex ordering of gens to use

for i in range(m):

if i != u:

GenOrd[i] = q

q = q + 1

GenOrd[u] = m - 1 #u is last to make u heaviest

if fr == ’r’: #reverse the order

SLPToOrd = self.Reverse()

else:

SLPToOrd = self

#main part

thisP = SLPToOrd.P

158

n = SLPToOrd.numbr

q = 0

SLPList = [0 for i in range(n)]

while q < n:

if type(thisP[q].wi) == Concat:

r = thisP[q].wi.idx1

s = thisP[q].wi.idx2

if SLPList[r] == 0: #then r points to a generator

SLPList[r] = thisP[r].LetterToSLP()

if SLPList[s] == 0:

SLPList[s] = thisP[s].LetterToSLP()

SLPr = SLPList[r]

SLPs = SLPList[s]

SLPList[q] = PILO2(SLPr, SLPs, GenOrd)

q = q + 1

OrdSLP = SLPList[n - 1]

#end of main part

if fr == ’r’ and OrdSLP.length() > 1: #reverse the order back

B = OrdSLP.Reverse()

else:

B = OrdSLP

NB = B.quasinormalize()

return NB

def MakeItShortest(self): #returns the SLP which produces

#the word produced by self in shortest form

if self.length() < 2:

return self

thisP = self.P

n = self.numbr

q = 0

SLPList = [0 for i in range(n)]

while q < n:

if type(thisP[q].wi) == Concat:

r = thisP[q].wi.idx1

s = thisP[q].wi.idx2

159

if SLPList[r] == 0: #then r points to a generator

SLPList[r] = thisP[r].LetterToSLP()

if SLPList[s] == 0:

SLPList[s] = thisP[s].LetterToSLP()

SLPr = SLPList[r]

SLPs = SLPList[s]

SLPList[q] = MIS2(SLPr, SLPs)

q = q + 1

B = SLPList[n - 1] #already in quasinormal form from MIS2.

return B

def Shortlex(self):

A = self

if not self.normform:

A = self.quasinormalize()

ShortSLP = A.MakeItShortest()

ShortlexSLP = ShortSLP.PILO(m - 1, ’f’)

return ShortlexSLP

def StrToSLP(str2use):

QList = []

TheSLP = SLP(QList, false)

L = len(str2use)

if L == 0:

return TheSLP

q = 0

for i in range(0, m):

ProdI = ProdRule(TheSLP.gens[i])

QList.append(ProdI)

q = q + 1

for i in range(0, m):

ProdI = ProdRule(TheSLP.invgens[i])

QList.append(ProdI)

q = q + 1

QGenIdx = [-1 for i in range(L)]

for i in range(L):

nr = ord(str2use[i])

if nr >= 97:

genNum = nr - 97

160

QGenIdx[i] = genNum

else:

invgenNum = nr - 65

QGenIdx[i] = m + invgenNum

if L > 2:

numLevels = ceil(log(L,2))

else:

numLevels = 1

QIdx = []

for j in range(1, numLevels + 1):

if L % 2 != 0: #L is odd

w = Pr1Pr(QList, QGenIdx[0])

startnum = 1

else:

w = Concat(QList, QGenIdx[0], QGenIdx[1])

startnum = 2

QList.append(ProdRule(w))

QIdx.append(q)

q = q + 1

for i in range(startnum, L, 2):

w = Concat(QList, QGenIdx[i], QGenIdx[i + 1])

QList.append(ProdRule(w))

QIdx.append(q)

q = q + 1

L = ceil(L/2)

QGenIdx = QIdx

QIdx = []

TheSLP = SLP(QList, false)

NormTheSLP = TheSLP.quasinormalize()

return NormTheSLP

def EmptyLetterSLP():

QList = []

B = SLP(QList, false)

q = 0

for i in range(0, m):

ProdI = ProdRule(B.gens[i])

QList.append(ProdI)

q = q + 1

for i in range(0, m):

ProdI = ProdRule(B.invgens[i])

QList.append(ProdI)

q = q + 1

w = ProdRule(emptyLetter)

161

QList.append(w)

w = Pr1Pr(QList, q)

QList.append(ProdRule(w))

C = SLP(QList, false)

return C

def CombineSLPs(A, B): #returns the SLP which produces the concatenation

#of the words produced by A & B

if A.length() == 0:

return B

elif B.length() == 0:

return A

n = A.numbr

p = B.numbr

QList = [ProdRule(emptyLetter) for i in range(0, n + p + 1)]

for q in range(n):

QList[q] = A.P[q]

P2 = B.P

for q in range(p):

if type(P2[q].wi) == str:

letter = P2[q].use()

QList[n + q] = ProdRule(letter)

elif type(P2[q].wi) == Pr1Pr:

r = P2[q].wi.idx1

w = Pr1Pr(QList, r + n)

QList[n + q] = ProdRule(w)

else: #must be Concat, since we quasinormalized it

r = P2[q].wi.idx1

s = P2[q].wi.idx2

w = Concat(QList, r + n, s + n)

QList[n + q] = ProdRule(w)

w = Concat(QList, n - 1, p + n - 1)

QList[n + p] = ProdRule(w)

C = SLP(QList, false)

NC = C.quasinormalize()

return NC

def DoTheyCancel(A, B, r): #determines if the last r letters in A

k1 = A.length() #& the first r letters in B form inverse

k2 = B.length() #words

if r > k1:

return false

elif r > k2:

return false

162

C = A.RightSub(r)

D = B.LeftSub(r)

E = D.Inverse()

if C.evaluate() == E.evaluate(): #this is where Plandowski’s

return true #algorithm would be used

else:

return false

def CancelThem(A, B, s): #cuts sth letter and following from A &

QList = [] # corresponding subword from B

k1 = A.length()

k2 = B.length()

k = k2 - k1 + s - 1 #k = k2 - (k1 - (s - 1)); k1 - (s - 1) is length of

string

cut from A; want to cut same from B

if s > k1:

print ’There are not ’ + str(s) + ’ letters in the first SLP; cannot

cancel.’

return (A, B)

elif k > k2:

print ’There are not ’ + str(k) + ’ letters in the second SLP; cannot

cancel.’

return (A, B)

D = A.LeftSub(s - 1)

E = B.RightSub(k)

ND = D.quasinormalize()

NE = E.quasinormalize()

return (ND, NE)

def PILO2(SLP1, SLP2, genord): #returns the SLP which puts the concatenation

#of the words produced by SLP1 & SLP2 in lex order, where genord gives

the

#ordering of the generators, assuming SLP1 and SLP2 already produce reps

#in that lex order

tf = true

while tf:

fOoL = SLP2.FindFirstOccOrd()

SLP1Mod = SLP1

SLP2Mod = SLP2

MoveOccurred = false

m2 = len(fOoL)

for i in range(m2):

c = fOoL[i]

CanMove = true

163

numcs = SLP2Mod.CountOccs(c)

while numcs > 0:

cpos = SLP2Mod.FindTheOcc(1, c)

#make sure c commutes with all letters to its left in SLP2Mod

Lofc = SLP2Mod.LeftSub(cpos - 1)

LofcGens = Lofc.FIG()

for j in range(m):

if LofcGens[j] == 1:

if (c, j) not in R and (j, c) not in R:

CanMove = false

break #breaks out of for loop

if CanMove:

(b, bpos) = SLP1Mod.RmostNoncomm(c)

l1 = SLP1Mod.length()

if bpos != -1:

Rofb = SLP1Mod.RightSub(l1 - bpos)

else:

Rofb = SLP1Mod

(z, zpos) = Rofb.LmostHeavier(genord, c)

if zpos == -1:

CanMove = false

break

if bpos != -1:

realzpos = zpos + bpos #pos in SLP1Mod, not Rofb

else:

realzpos = zpos

zRofz = SLP1Mod.RightSub(l1 - realzpos + 1)

zRofzGens = zRofz.FIG()

#want list of all gens in LofcGens & zRofzGens

genList = []

for j in range(m):

if LofcGens[j] ==1 or zRofzGens[j] == 1:

genList.append(j)

l2 = SLP2Mod.length()

cRofc = SLP2Mod.RightSub(l2 - cpos + 1)

(h, hpos) = cRofc.LmostNcomList(genList)

if hpos > 1:

Lofh = cRofc.LeftSub(hpos - 1)

(e, epos) = Lofh.LmostHeavier(genord, z)

else:

Lofh = cRofc

(e, epos) = Lofh.LmostHeavier(genord, z)

164

if epos == -1:

gpos = 1

else:

gpos = epos - 1

#see if anything in the c-g block moves left of b

cgBlock = Lofh.LeftSub(gpos)

#len(cgBlock.evaluate()) is gpos

if gpos > 1 and bpos != -1:

RofbGens = Rofb.FIG()

(f, fpos) = cgBlock.LmostComList([b])

while fpos != -1 and f != -1:

cf1Block = cgBlock.LeftSub(fpos - 1)

cf1Gens = cf1Block.FIG()

checkGenList = []

for j in range(m):

if RofbGens[j] == 1 or cf1Gens[j] == 1 or j == b:

checkGenList.append(j)

fgBlock = cgBlock.RightSub(gpos - fpos + 1)

(newf, newfpos) = fgBlock.LmostComList(checkGenList)

if newfpos == -1:

fpos = -1

elif newfpos == 1: #then f comm w/all in checkGenList

#check to see if something heavier than f left of b

(or b)

fMovesLofb = true

bLofb = SLP1.LeftSub(bpos)

(d, dpos) = bLofb.RmostHeavier(genord, f)

if dpos == -1:

fMovesLofb = false

else:

#len(bLofb.evaluate()) is bpos

dbBlock = bLofb.RightSub(bpos - dpos + 1)

dbGens = dbBlock.FIG()

for j in range(m):

if dbGens[j] == 1 and (j, f) not in R and (f,

j) not in R:

fMovesLofb = false

break

if fMovesLofb:

gpos = fpos - 1 #f doesn’t move with c now

fpos = -1

else:

checkGenList.append(f)

f1gBlock = cgBlock.RightSub(gpos - fpos)

165

(f2, f2pos) = f1gBlock.LmostComList(checkGenList)

f = f2

fpos = f2pos + fpos

else:

f = newf

fpos = newfpos + fpos - 1

#move the c-g block just left of z & move the boundary between

#SLP1Mod & SLP2Mod

cgBlock = Lofh.LeftSub(gpos)

Lofz = SLP1Mod.LeftSub(realzpos - 1)

SLP1ModLeft = CombineSLPs(Lofz, cgBlock)

SLP1ModRight = CombineSLPs(zRofz, Lofc)

SLP1Mod = CombineSLPs(SLP1ModLeft, SLP1ModRight)

realgpos = gpos + cpos - 1 #pos in SLP2Mod, not Lofh

MoveOccurred = true

Rofg = SLP2Mod.RightSub(l2 - realgpos)

SLP2Mod = Rofg

numcs = SLP2Mod.CountOccs(c)

else:

break #go to next generator; no more of this one can move now

if MoveOccurred:

SLP1 = SLP1Mod

SLP2 = SLP2Mod

else:

tf = false #nothing could move; finished

C = CombineSLPs(SLP1Mod, SLP2Mod)

return C

def LexicoAndCount(A, B, u): #Returns A in lex order w/uth generator

AL = A.PILO(u, ’f’) #heavier, B in reverse lex order w/uth gen

Count1 = A.CountOccs(u) #heavier, # of occurrences of uth gen in A

BL = B.PILO(u, ’r’) #& B

Count2 = B.CountOccs(u)

return (AL, BL, Count1, Count2)

def MIS2(A, B): #Returns the SLP producing a shortest rep

#of the concatenation of the words produced by A & B.

#Assumes A and B already produce shortest reps.

AL = A

BL = B

for u in range(m):

(AL, BL, q1, q2) = LexicoAndCount(AL, BL, u)

166

if q1 > 0 and q2 > 0:

q = min(q1, q2)

j = ceil(q/2)

l = q + 1

r = 0

lasts = 0

tf = true

while tf:

s = AL.FindTheOcc(q1 - j + 1, u)

if s == -1:

tf = false

else:

k1 = AL.length()

d = DoTheyCancel(AL, BL, k1 - s + 1)

if d:

r = j

if j == l - 1 or r == q:

(AL, BL) = CancelThem(AL, BL, s)

tf = false

else:

j = r + ceil((l - r)/2)

lasts = s

else:

if j == r + 1 and r > 0:

(AL, BL) = CancelThem(AL, BL, lasts)

tf = false

elif j == 1:

tf = false #none cancel

else:

l = j

j = r + ceil((l - r)/2)

C = CombineSLPs(AL, BL)

return C

#Global Variables

#------------------

emptyLetter = ’ee00’

R = [(0,1), (2,3), (1,4), (3,0), (0,2), (1,2)] #list of commutators;

should never contain (i,i) for any i

m = 5 #number of generators

167

BIBLIOGRAPHY

[1] I. Agol. The virtual Haken conjecture. arXiv: 1204.2810 [math.GT].

[2] R. Charney. An introduction to right-angled Artin groups. Geometriae Dedicata,
125:141–158, 2007.

[3] F. Haglund and D. Wise. Special cube complexes. Geom. Funct. Anal., 17(5):1551–1620,
2008.

[4] S. Hermiller and J. Meier. Algorithms and geometry for graph products of groups. J.
Algebra, 171(1):230–257, 1995.

[5] M. Laurence. A generating set for the automorphism group of a graph group. Journal
of the London Mathematical Society, Second Series 52(2):318–334, 1995.

[6] M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In
Computer Science – Theory and Applications.

[7] W. Plandowski. Testing equivalence of morphisms on context-free languages. In Algo-
rithms – ESA ’94.

[8] S. Schleimer. Polynomial-time word problems. Commentarii Mathematici Helvetici,
83(4):741–765, 2008.

[9] H. Servatius. Automorphisms of graph groups. Journal of Algebra, 126(1):34–60, 1989.

[10] L. VanWyk. Graph groups are biautomatic. J. Pure Appl. Algebra, 94(3):341–352, 1994.

168

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	8-2013

	The Word Problem for the Automorphism Groups of Right-Angled Artin Groups is in P
	Carrie Anne Whittle
	Recommended Citation

	tmp.1477344967.pdf.CHOMG

