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ABSTRACT 

The latent growth curve model with piecewise functions is a useful analytics tool to 

investigate the growth trajectory consisted of distinct phases of development in observed 

variables. An interesting feature of the growth trajectory is the time point that the 

trajectory changes from one phase to another one. In this thesis, we propose a simple 

computational pipeline to locate the change point under the linear-linear piecewise model 

and apply it to the longitudinal study of reading and math ability in early childhood (from 

kindergarten to eighth grade). In the first step, we conduct the hypothesis testing to filter 

out the samples that do not exhibit a change point. For samples with significant change 

point, we use the maximum likelihood estimation(MLE) to determine the location of a 

change point. However, a small portion of samples contains abnormal observations, which 

makes the MLE method fail to identify the change point. To overcome this difficulty, we 

apply a Bayesian approach to locate the change point for these samples. By comparison of 

the change point distributions in math and reading, as well as students with different 

overall performance, we conclude that: (a) most students have change points between 

Spring-first grade and Spring-third grade; (b) students with overall better performance have 

change point at earlier stage; (c) compared with math, the change point distribution for 

reading is more concentrated between Spring-first grade and Spring-third grade. 
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1.INTRODUCTION 

This chapter reviews the research on longitudinal studies in different fields and the 

application of piecewise latent growth model. Modeling developmental processes have 

attracted a great deal of attention since the 1950s. The outcome measurements of interest are 

often formulated as a function of time. Longitudinal data is this type of data that are measured 

for same subjects repeatedly across time.  And researchers often use Longitudinal data to 

explore the developmental trajectory. 

Longitudinal studies have broad applications in many scientific domains (e.g., in psychology, 

medicine, and sociology). It allows researchers to investigate how individual’s performances, 

interests, and attitudes change over time. Longitudinal studies can yield valuable information in 

behavioral science studies. Researchers could explore developmental trends and individual 

trajectory differences over time. Longitudinal studies can assist researchers to identify whether 

the growth for one latent class greater than another one is due to the result of treatment effect 

(Shin, Davison, Long, Chan, & Heistad, 2013), or to decide whether covariates can predict the 

change process (Grimm, 2008; Jordan, Hanich, & Kaplan, 2003; Miles, & Miles, 1992). 

In many psychological and educational research, longitudinal processes exhibit distinct 

phases of development in observed repeated measurements (Kreisman, 2003; Paris, 2005; 

Silverman, Speece, Harring, & Ritchey, 2012). For example, Kreisman’s study on earlier 

childhood intervention elucidated that children with pre-intervention (as well as children 

without pre-intervention) have different academic growth pattern. However, past
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evaluations have implied that children with pre-intervention have homogenous growth 

pattern. In another example, where two distinct phases are found in the reading literature 

longitudinal study (Silverman, Speece, Harring, & Ritchey,2012). This study shows that most 

students’ ability to accurately and automatically decode may increase at the beginning of 

second grade, then change to a relatively slower rate in the middle of their third grade.  

In the past three decades, several statistical methods have been developed to analyze 

longitudinal data, such as mixed effects model (Laird, & Ware, 1982), multilevel models 

(Goldstein, 2003), as well as latent growth curve models (LGC model) (Meredith, & Tisak, 

1990). There are several advantages of the latent growth model. It allows the investigation 

of individual difference, as well as the causes and consequences of change. LGC model 

provides a straightforward method to compare growth difference in group-level. Last but 

not the least, it is a flexible model that could be adapted to different requirements. 

Depending on the characteristics of the data, one could specify different types of piecewise 

Latent Growth Models. For instance, if the trajectories in the first and second phases are 

both linear, a linear-linear piecewise LGC model could be adapted. Similarly, a quadratic-

linear or exponential-linear piecewise LGC model could be specified when the first phase 

has some curvature. In this paper, we will focus on the linear-linear piecewise LGC model.  

Piecewise growth models have become a prevailing tool in many different scientific 

domains due to its flexibility and computational tractability. Especially, the piecewise 

growth models have been widely applied in psychology. For instance, the development of 

cognitive function in old age is often non-linear, and the age when a change occurs may 

vary among individuals. Several researchers have investigated the properties of the change 
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point with two linear phases for each subject (Dominicus, Ripatti, Pedersen, & Palmgren, 

2008). And by fitting piecewise growth model, a study finds that the prevention program 

has a marginal effect on reducing the prevalence rate of cigarette use (Chou, Yang, Pentz, & 

Hser, 2004). 

When there exist two distinct unknown phases, piecewise LGC models could be utilized 

to evaluate a specified functional form of the overall change process and to the 

identification of different phases (Chou, Yang, Pentz, & Hser, 2004; Cudeck, & Harring, 

2010). In this respect, the piecewise latent growth model can summarize various functional 

forms in the different phases of development such that each phase follows its functional 

form. 

The rest of this paper is organized as follows: in Chapter 2, we briefly summarize the 

Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), and provide 

some background information through the development of latent growth model. In Chapter 

3, we propose the algorithms to filter out samples, as well as identify the location of change 

point. In Chapter 4, we apply the algorithms to K-8 Public-Use data and interpret the results 

from the analysis.  
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2.LITERATURE REVIEW 

2.1 Early Childhood Longitudinal Study, Kindergarten Class of 1998-99  

The ECLS-K is a large-scale longitudinal study (Tourangeau, Nord, Lê, Sorongon, & 

Najarian, 2009) and focused on children’s early school experiences beginning with 

kindergarten and following children through eighth grade. This program is conducted by 

National Center for Education Statistics (NCES). The children participated in ECLS-K come 

from both public and private schools and attend both full-day and part-day kindergarten 

programs. The participants are from diverse socioeconomic and racial backgrounds. The 

children’s parents, teachers, and schools across the United States also participate in this 

study.  

The ECLS-K collected information from children and their parents, teachers, and schools. 

A variety of methods were used to collect information, including one-on-one assessment, 

computer-assisted telephone interviews, self-administered paper- pencil questionnaires. It 

collected information about children’s reading and mathematics skills in each round of data 

collection, and their general knowledge (i.e., science and social studies) in kindergarten and 

first grade, and their science knowledge in third, fifth, and eighth grades (Tourangeau,et al., 

2009). A total of 21,409 kindergarteners throughout the nation participated. The data were 

collected in the fall and the spring of kindergarten (1998-1999), the fall and spring of 1st 

grade (1999-2000), the spring of 3rd grade (2002), the spring of 5th grade (2004), and the 

spring of 8th grade (2007), with a total of 7 round measurements (Table 1.1.1).   
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Data Collection Date of collection 

Fall-kindergarten Fall 1998 

Spring-kindergarten Spring 1999 

Fall-first grade Fall 1999 

Spring-first grade Spring 2000 

Spring-third grade Spring 2002 

Spring-fifth grade Spring 2004 

Spring-eighth grade Spring 2007 

Table 1.1.1 

The ECLS-K assessment frameworks were derived from national and state standards, 

including National Assessment of Educational Progress (NAEP), the National Council of 

Teacher of Mathematics, National Academy of Science, and some of from the state 

assessments (Tourangeau, et al., 2009). The ECLS-K assessments also included items that 

are specially created for ECLS-K study, and some items are from National Center for 

Education Statistics (NCES). 

The K-8 Public-Use file we use in this paper is preprocessed by NCES so that it could be 

directly analyzed to explore children’s growth and development between kindergarten and 

eighth grade (Tourangeau, et al., 2009). NCES takes steps to minimize the likelihood that an 

individual school, teacher, parent, or child participating in this study can be identified, to 

protect the identity of individual respondents. This study was designed to provide 

comprehensive and reliable data that can be used to understand the children’s 
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development and experiences from elementary to middle school. The dataset used in this 

study is K-8 Public-Use data. The K-8 (from kindergarten [Fall 1998] to 8th grade [Spring 

2007]) full sample Public-Use data includes all children with at least one of the seven rounds 

of the data collection, from fall-kindergarten to spring- 8th grade. In K-8 full sample public 

use data file, the scores represent underlying ability (which is normally distributed at all 

rounds). The scores distribution range is approximately from -3 to 3 (Tourangeau, et al., 

2009). 

 

2.2 Latent Growth Curve Model (LGC) 

Latent growth curve modeling is a statistical technique that is often used in the 

structural equation modeling (SEM) framework to estimate growth trajectory over a period. 

Longitudinal models are stemming from the factor analysis tradition. LGC models assume 

that the overall change process over time in observed repeated measurements can be 

described by an underlying latent class (Meredith, & Tisak, 1990). Latent growth model 

permits straightforward examination of intraindividual (within-person) change over time as 

well as interindividual (between-person) variability in intraindividual change. Latent growth 

model allows researchers to adjust the model, as well as to investigate into antecedents 

and consequents of changes. (Preacher, Wichman, MacCallum, & Briggs, 2008). 

A regular LGC model contains a set of observed variables and a relatively small set of 

latent variables. The latent variables, often serving as the regression weights, are related to 

measured variables in certain forms. The measured variables can represent the latent 

variables in turn. The intercept factor represents the level of the outcome measurement 
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when time variable equals zero, and the slope factor represents the linear rate of change of 

the outcome. 

A typical application of latent growth models specifies a function describing a linear 

change process often composed of two latent growth factors: (a) an intercept that describes 

the initial status and (b) a slope that summarizes change over time. The intercept and slope 

parameters are assumed to be random, following a specific joint distribution (Duncan, 

Duncan, & Strycker, 2006). As to a fully specified latent growth curve model, the loadings 

from the intercept factor to each of the repeated measures are fixed to be 1, which means 

the intercept factor equally contributes to all repeated measures. For the slope factor, the 

loadings are either fixed to a particular value under the linear trajectory, or, can be used to 

dictate the individual growth in an unspecified trajectory latent growth curve model 

(Hancock, Harring, & Lawrence, 2013; Meredith, & Tisak, 1990).  

The basic formulation of an LGC model includes two components: (a) a measurement 

model to connect the observed indicators and the latent factors and (b) a structural 

regression model to describe the means and variances of the latent factors (Duncan, et al., 

2006): 

 

𝑦𝑖𝑗 = 𝜂1𝑖 + 𝜂2𝑖𝑡𝑗 + 𝜀𝑖𝑗                           (2.2.1) 

𝜂1𝑖 = 𝛼1 + 𝜍1𝑖                               (2.2.2) 

𝜂2𝑖 = 𝛼2 + 𝜍2𝑖                  (2.2.3) 
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 Eq. (2.2.1) is the measurement model of the latent growth model. Considering a set 

of repeated measures of a random variable 𝑦 for individual 𝑖 at a different time, 𝑦𝑖𝑗 refers 

to the measurement of a random variable 𝑦 (e.g., individual’s response to a certain 

character) for individual 𝑖 at time 𝑡𝑗. The responses are observed on a set of repeated 

measurement occasions 𝑡𝑗 = (1,… , 𝑇𝑗)
′, where 𝑇𝑗 is the total number of observations. And 

𝜂1𝑖 and 𝜂2𝑖 are the corresponding intercept and slope factors, 𝜀𝑖𝑗 refers to the random error 

or residual for individual ⅈ at 𝑗𝑡ℎ measurement, which is often assumed to be normally 

distributed with mean zero. 

 Eq. (2.2.2) and Eq. (2.2.3) are the structural regression models in the latent growth 

curve model. Structural regression models provide information about the mean as well as 

covariance for latent variables. In Eq. (2.2.2) and Eq. (2.2.3), 𝛼1, 𝛼2 refer to the mean value 

of intercept factor 𝜂1𝑖 and slope factor 𝜂2𝑖, and 𝜍1𝑖, 𝜍2𝑖 are individual random variation and 

covariation around these two latent growth components. As the observations in 

longitudinal data are collected repeatedly over time, these observations are assumed to be 

correlated, which could be described by the correlation of intercept  𝜂1𝑖  and slope 𝜂2𝑖. That 

is equivalent to the correlation of 𝜍1𝑖  and 𝜍2𝑖, and (
𝜍1𝑖
𝜍2𝑖
) is often assumed to be a bivariate 

normal distribution with zero mean vector. 

 

In LGC model, it is often assumed that the change rate over the entire process is 

constant. However, this assumption can be violated in the presence of two or more multiple 

growth phases. 
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2.3 Piecewise Latent Growth Curve Model  

The piecewise LGC model is an extension of the LGC model, which allows the 

specification of different growth phase to conform to a specified functional form of the 

overall change process (Chou, Yang, Pentz, & Hser, 2004; Cudeck, & Harring, 2010). For 

instance, in Kreisman’s study of evaluating academic outcomes of Head Start program, the 

analysis showed that there are two distinct developmental reading and mathematics 

achievement growth patterns for students with Head Start experience, as well as for 

students with no preschool experience (Kreisman, 2003). If for each phase, assume the 

development trajectory is a straight line, and the rate of change is different across phases, 

piecewise linear-linear LGC models could be used to allow the specification of each growth 

phase (Cudeck, & Harring, 2010).  

Compared with LGC models, the piecewise LGC models offer greater flexibility to model 

different development trajectories with various functional forms. For instance, a piecewise 

linear-linear LGC model specifies two straight lines for both first and second growth phases, 

a piecewise quadratic-linear model could define some curvature in the first stage while in 

the second stage the rate of change is constant. 

 An interesting feature of piecewise LGC models is the time point at which the response 

function transit from one phase to another, known as change point (Cudeck, 1996; Cudeck, 

& Klebe, 2002). Formulation of a piecewise linear–linear LGC model specifies a separate 

linear function for each of the two phases of development. The functional form at the time 

point 𝑗 is: 

𝑦𝑖 = 𝑓𝑖 + 𝜀𝑖 
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where 

𝑓𝑖𝑗 = {
𝜂1𝑖 + 𝜂2𝑖𝑡𝑗   𝑡𝑗 ≤ 𝛾.
𝜂3𝑖 + 𝜂4𝑖𝑡𝑗  𝑡𝑗 > 𝛾.

                                                        (2.3.1) 

 

In Eq. (2.3.1), the two functions joint when 𝑡𝑗 = 𝛾 , known as the change point for a 

repeated measurement of variable 𝑦 for individual 𝑖. In Eq. (2.2.1), 𝑦𝑖 refers to a set of 

measurements of the variable of 𝑦 for individual 𝑖 ,  𝜂1𝑖, 𝜂2𝑖 refer to the intercept and the 

slope growth factor of the first phase, respectively, and 𝜂3𝑖, 𝜂4𝑖 refer to the intercept and 

slope growth factor for the second phase, respectively.  When the two functions intersect at 

𝑡𝑗, one of the four parameters become redundant; then we have three free parameters. For 

example, the intercept in the second phase could be written as ( 𝜂1𝑖 + 𝜂2𝑖𝛾 − 𝜂4𝑖𝛾), in this 

case, 𝑓𝑖 can be rewritten as (Cudeck, & Harring, 2010): 

 

                                         𝑓𝑖 = {
𝜂1𝑖 + 𝜂2𝑖𝑡𝑗                           𝑡𝑗 ≤ 𝛾

𝜂1𝑖 + 𝜂2𝑖𝛾 + 𝜂4𝑖(𝑡𝑗 − 𝛾)  𝑡𝑗 > 𝛾
                                       (2.3.2) 

 

In Eq. (2.3.2), 𝛈𝒊=(𝜂1𝑖 , 𝜂2𝑖 , 𝜂4𝑖)’ is used to represent the growth factors for individual 𝑖. 

And vector 𝛈𝒊 can be thought of including a fixed effect and a random effect, 𝛈𝑖 = 𝜶 + 𝝇𝑖. 

The distribution of 𝝇𝑖 and 𝜀𝑖 are often assumed to be multivariate normal: 

 

𝝇𝑖~𝑁(𝟎,𝚿)                                                                       (2.3.3) 

𝜀𝑖~𝑁(0,𝚯𝑖)                                                                       (2.3.4) 
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(

𝜂1𝑖
𝜂2𝑖
𝜂4𝑖
) = (

𝛼1
𝛼2
𝛼4
) + (

𝜍1𝑖
𝜍2𝑖
𝜍4𝑖
)                                                         (2.3.5) 

 

Where 𝚯𝑖 denotes the random effect, and 𝚿 denotes the variance-covariance matrix for 

the random effects. Note that there is a subscript for 𝚯𝑖, but no subscript for 𝚿. The reason 

is that for Piecewise linear-linear model, the underlying assumption is that all individuals 

share the same change point location.  

Even though the piecewise LGC model allows more flexibility to capture the character of 

developmental growth trajectory compared with LGC model, the assumption inherent to 

them that all individual from the same population has the same functional form of growth is 

not practical, especially when considering data come from a mixture of unknown 

subpopulations.  

 

2.4 Piecewise Linear-linear Latent Growth Mixture Models (LGMMs) 

Statistical analysis conducted without considering the heterogeneous population 

structure may fail to reflect the accurate relationship within the subgroups. In response to 

the demand of analyzing the developmental trajectories of unobserved subgroups, 

piecewise linear-linear latent growth mixture model was proposed as a more flexible model. 

LGMMs infuse the latent classes into piecewise linear-linear LGC model. Within each latent 

class, there is a distinct piecewise linear-linear growth trajectory. Therefore, LGMMs allow 

researchers to identify distinct growth trajectories for various latent classes. 
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To formulate the LGMM, suppose the repeated data are collected from 𝐾 

subpopulations (𝑘=1, …, 𝐾), where 𝑘 refers to the latent class, 𝑛 observed repeated 

measurements, 𝑗 = 1,… , 𝑛 for each individual 𝑖. The assumption of this model is that the 

location of unknown change point is fixed to be the same for all subjects, but potentially 

different across classes. Assuming there are two classes, the model is specified as: 

 

𝑦𝑖𝑗𝑘 = {
𝜂1𝑖𝑘 + 𝜂2𝑖𝑘𝑡𝑗 + 𝜀𝑖𝑗𝑘    𝑡𝑗 ≤ 𝛾𝑘
𝜂3𝑖𝑘 + 𝜂4𝑖𝑘𝑡𝑗 + 𝜀𝑖𝑗𝑘     𝑡𝑗 > 𝛾𝑘

                                      (2.4.1) 

 

For 𝑖=1, …, 𝑁; 𝑗 = 1,… , 𝑛 and 𝑘 = 1,2. 

 

In Eq. (2.4.1), 𝑦𝑖𝑗𝑘 is the observed response of the individual 𝑖 in the 𝑘𝑡ℎ class at time 𝑗. 

𝑡𝑗 represents the measurement time; 𝜂1𝑖𝑘 and 𝜂2𝑖𝑘 represent the intercept and slope for 

the first developmental phase in the 𝑘𝑡ℎ class, respectively; 𝜂3𝑖𝑘and 𝜂4𝑖𝑘 represent 

intercept growth factor and slope growth factor for the second developmental phase. 𝛾𝑘  

represent the location of change point for the 𝑘𝑡ℎ class, and 𝜀𝑖𝑗𝑘 represent the random 

error, which is assumed to be normally distributed with mean zero and covariance matrix 

𝜣𝑖𝑘. It is assumed that the residuals are independent with a constant variance,  𝜎𝜀
2 , across 

time, 𝜣𝑖𝑘 = 𝜎𝜀
2𝐈𝑛.  Since LGMMs assume that all observations within a class share the same 

change point, there is no subscript ‘𝑖’ for 𝛾𝑘  . 

In Eq. (2.4.1), there are four growth factors. However, given each class has its change 

point, 𝛾𝑘, one of the four growth factors could be eliminated. For instance, 𝜂3𝑖𝑘 = 𝜂1𝑖𝑘 +

(𝜂2𝑖𝑘 − 𝜂4𝑖𝑘)𝛾𝑘. Therefore, the structural model component can be specified as: 
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(

𝜂1𝑖𝑘
𝜂2𝑖𝑘
𝜂4𝑖𝑘

) = (

𝛼1𝑘
𝛼2𝑘
𝛼4𝑘

) + (

𝜍1𝑖𝑘
𝜍2𝑖𝑘
𝜍4𝑖𝑘

)                                                (2.4.1) 

 

Where 𝜶𝑘 = (𝛼1𝑘, 𝛼2𝑘 , 𝛼3𝑘) 
𝑇 is a vector of growth factor, and vector 𝝇𝑖𝑘 represents the 

random effect on growth factors. Vector 𝜼𝑖𝑘 is often assumed to be normally distributed 

with a variance-covariance matrix 𝚿𝑘, 

 

𝚿𝑘 = (

𝜎𝜂1
2 𝜎𝜂1𝜂2

2 𝜎𝜂1𝜂4
2

𝜎𝜂2
2 𝜎𝜂2𝜂4

2

𝜎𝜂4
2

). 

 

There are three underlying assumptions with linear-linear PGMMs: 

 (a) residuals and the latent growth factors are uncorrelated, ( cov(𝜀𝑖𝑘 , 𝜼𝑖𝑘
′  )=0); 

 (b) residuals and the latent factor residuals are uncorrelated, ( cov(𝜀𝑖𝑘 , 𝝇𝑖𝑘
′  )=0);  

 (c) residuals are uncorrelated with residuals, ( cov(𝜀𝑖𝑘 , 𝜀𝑖′𝑘)=0 for ⅈ ≠ 𝑖′).  
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3.METHODOLOGY 

In the ECLS-K data, there are totally seven-time points of data collection. In this article, 

we only consider the samples without missing values at these seven-time points. Out of the 

21,409 children participated in this study, 2,145 samples have complete data for reading 

ability assessment, and 2913 samples have complete data for mathematical ability 

assessment. 

In this study, we assume that each sample can have at most one change point. It is 

possible that some participants did not have significant change points. For instance, 

students may have a stable developmental growth trajectory from kindergarten to eighth 

grade, or students may have a relatively steep developmental growth trajectory at an 

earlier stage, then the developmental growth trajectories become stable. Figure 1 shows 

two samples with different growth patterns. 

  

Figure 3.1.1 
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The workflow of our proposed methods can be illustrated as follows: 
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Use Bayesian method to 

locate the change point           
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Step 3 
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3.1 Sample Selection  

To examine whether there is a significant change point for a certain child, we fit a linear 

regression line for sample 𝑖 over the 7 time points (𝑡𝑗 = {𝑡1, 𝑡2,⋯ , 𝑡7} =

{0,0.5,1,1.5,3.5,5.5,8.5} , where j = 1, 2,⋯ ,7). Under the null hypothesis that no change 

point exists. Besides, we fit two linear regression lines for the first 𝑗′ time points and the 

remaining (7-𝑗′) time points for each sample 𝑖, (where 𝑗′ = 2, 3, 4, 5). For each regression 

line, calculate the corresponding sum of squared errors of prediction (𝑆𝑆𝐸). Each sample 

has its distinct 𝑗′, such that (𝑆𝑆𝐸𝑖𝑗′1 + 𝑆𝑆𝐸𝑖𝑗′2) is minimized. Introducing 𝛥, as the 

difference between the 𝑆𝑆𝐸 of no change point and the 𝑆𝑆𝐸 with change point. A larger 𝛥 

indicates a stronger evidence of change point, and a smaller 𝛥 indicates a weaker evidence 

of change point.  

(a) Under the assumption without change point: 

{
𝑦𝑖�̂� = 𝛽𝑖𝑜1̂ + 𝛽𝑖𝑜2̂𝑡𝑗

𝑆𝑆𝐸𝑖𝑜 = ∑ (𝑦𝑖𝑗 − 𝑦𝑖�̂�)
27

𝑗=1

, 

 where 𝑗 = 1, 2,⋯ ,7; 𝑖 = 1, 2,⋯𝑁 

In (a), we fit one regression line over all the seven time points, where 𝛽𝑖𝑜1̂and 𝛽𝑖𝑜2̂ 

refers to the estimated intercept and slope, respectively, with the assumption that there is 

no change point for individual 𝑖. We use 𝑦𝑖�̂� refers to the estimated response for individual 

𝑖 at time point 𝑗. And 𝑆𝑆𝐸𝑖𝑜  represents the sum of squared errors for prediction under no 

change point assumption.  

(b) Under the assumption with change point: 
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{
𝑦𝑖�̂� = 𝛽𝑖11̂ + 𝛽𝑖12̂𝑡𝑗

𝑆𝑆𝐸𝑖𝑗′1 = ∑ (𝑦𝑖𝑗 − 𝑦𝑖�̂�)
2𝑗′

𝑗=1

 ,  

where 𝑗 = 1,⋯ 𝑗′ 

 

{
𝑦𝑖�̂� = 𝛽𝑖13̂ + 𝛽𝑖14̂𝑡𝑗

𝑆𝑆𝐸𝑖𝑗′2 = ∑ (𝑦𝑖𝑗 − 𝑦𝑖�̂�)
27

𝑗=𝑗′+1

 ,  

where 𝑗 = 𝑗′ + 1,⋯, 7  

 

mⅈn
𝑗′
(𝑆𝑆𝐸𝑖𝑗′1 + 𝑆𝑆𝐸𝑖𝑗′2)                                         (3.1.1)  

      

    𝛥𝑖 = 𝑆𝑆𝐸𝑖𝑜 - mⅈn
𝑗′
(𝑆𝑆𝐸𝑖𝑗′1 + 𝑆𝑆𝐸𝑖𝑗′2)                               (3.1.2) 

Where 𝑖 = 1, 2,⋯𝑁 

                                  

In (b), under the assumption with change point, we fit two linear lines over the seven 

time points, where 𝛽𝑖11̂ and  𝛽𝑖12̂ refer to the estimated intercept and slope for individual 

𝑖 in the first developmental phase, respectively. And  𝛽𝑖13̂, 𝛽𝑖14̂ refer to the estimated 

intercept and slope for individual 𝑖 in the second developmental phase, respectively. And 𝑦𝑖�̂� 

refers to the estimated response for individual 𝑖 at time 𝑗 for two distinct growth phases. 

We use 𝑆𝑆𝐸𝑖𝑗′1  and 𝑆𝑆𝐸𝑖𝑗′2, (where 𝑗′ = 2, 3, 4, 5), to represent the sum of squared errors 

of prediction for the first and second phase. The mⅈn
𝑗′
(𝑆𝑆𝐸𝑖𝑗′1 + 𝑆𝑆𝐸𝑖𝑗′2) means that for 

individual 𝑖, over all the possible 𝑗′, choose the one yield minimum (𝑆𝑆𝐸𝑖𝑗′1 + 𝑆𝑆𝐸𝑖𝑗′2). And 
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𝛥𝑖 refers to the difference of 𝑆𝑆𝐸 under assumption without change point and 𝑆𝑆𝐸 under 

assumption with change point for individual 𝑖. 𝛥𝑖 can serve as an indicator of how likely 

individual 𝑖 would have a significant change point. Note that 𝛥𝑖 ≥ 0. 

(c) Estimate 𝜎2 

{
𝑦𝑘�̂� = 𝛽𝑘11̂ + 𝛽𝑘12̂𝑡𝑗

𝑆𝑆𝐸𝑘𝑗′1 = ∑ (𝑦𝑘𝑗 − 𝑦𝑘�̂�)
2𝑗′

𝑗=1

 , 

where 𝑗 = 1,⋯ 𝑗′ 

 

{
𝑦𝑘�̂� = 𝛽𝑘13̂ + 𝛽𝑘14̂𝑡𝑗

𝑆𝑆𝐸𝑘𝑗′2 = ∑ (𝑦𝑘𝑗 − 𝑦𝑘�̂�)
27

𝑗=𝑗′+1

 , 

where 𝑗 = 𝑗′ + 1,⋯, 7  

 

mⅈn
𝑗′
(𝑆𝑆𝐸𝑘𝑗′1 + 𝑆𝑆𝐸𝑘𝑗′2)  

Where 𝑘 ∈ 𝐴. 

For each sample 𝑖, we calculate the quantity 𝛥𝑖 . Assume sample yield the highest 30% 

𝛥s has a significant change point (shown in Figure 3.1.2). We use the samples produce the 

highest 30% 𝛥s to estimate the variance 𝜎2̂ with an additional assumption that this variance 

is the true variance 𝜎2 for samples with change point. Assume a set of 𝐴 = { 𝑘 = 1,… ,

|𝐴|: 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑦𝑖𝑒𝑙𝑑 𝑡𝑜𝑝 30% 𝛥}. The sample size of 𝐴 is |𝐴|, where |.|stands for the 

cardinality of the set. In (c), we calculate the minimized sum of squared error for each 

sample in set 𝐴. 
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Figure 3.1.2 

To filter samples with change point, we conduct a hypothesis testing. The null 

hypothesis for each sample 𝑖 is there is no change point, and the alternative hypothesis is 

there is a change point. The null hypothesis is equivalent to the trajectory of observed 

measurements is a straight line. Assume 𝑦𝑖𝑗 follows a normal distribution 𝑦𝑖𝑗  ~ 𝑁(𝐸(𝑦𝑖𝑗),

𝜎2 ). However, the population variance 𝜎2 is unknown. We assume that 𝜎2 = 𝜎2̂, where 𝜎2̂ 

is the estimated sample variance for the samples in set 𝐴. Because the estimated variance 

𝜎 2̂ is for samples with change points, the sum of 𝑆𝑆𝐸 is based on the two linear lines. To 

estimate the 𝑦𝑖�̂�, we only need four parameters for each sample. For all the samples in set 𝐴, 

there are totally 7|𝐴| parameters. Therefore, the variance,  𝜎2̂, is the sum of minimized 

(𝑆𝑆𝐸𝑖𝑗′1 + 𝑆𝑆𝐸𝑖𝑗′2) for 𝐼 subsamples divided by (7|𝐴| − 4|𝐴| ): 

𝜎2̂ = ∑ (mⅈn
𝑗′
(𝑆𝑆𝐸𝑘𝑗′1 + 𝑆𝑆𝐸𝑘𝑗′2))/(7|𝐴| − 4|𝐴|)𝑘∈𝐴                              (3.1.3) 
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Since we assume 𝑦𝑖𝑗 ~ 𝑁(𝐸(𝑦𝑖𝑗), 𝜎
2) for each sample, which is equivalent to 

(𝑦𝑖𝑗 − 𝐸(𝑦𝑖𝑗))
𝜎⁄ = 𝑧𝑖 ( 𝑧𝑖   ~𝑁(0,1)). And 𝑧𝑖 

2 follows a Chi-squared distribution. Because 

the number of free parameters under the null hypothesis is 7, and the number of free 

parameters under alternative hypothesis is 2. Therefore, 𝑧𝑖 
2 follows a Chi-squared 

distribution with (7-2) degree of freedom. We conduct the hypothesis testing at =0.05 for 

all the 𝑁 samples. For each sample, if the p-value is less than 0.05, then there is a significant 

evidence that this sample has a change point. Otherwise, we fail to reject the null 

hypothesis that there is no change point for individual 𝑖. 

(d) Hypothesis Testing 

  𝐻0: there is no change point for individual 𝑖 

  𝐻𝑎: there is a change point for individual 𝑖 

{
 

 
𝑦𝑖�̂� = 𝛽𝑖𝑜1̂ + 𝛽𝑖𝑜2̂𝑡𝑗

𝑆𝑆𝐸𝑖𝑜 =∑(𝑦𝑖𝑗 − 𝑦𝑖�̂�)
2

7

𝑗=1

 

where 𝑗 = 1, 2,⋯ ,7; 𝑖 = 1, 2,⋯𝑁. 

𝑧𝑖 
2 =∑

(𝑦𝑖𝑗 − 𝑦𝑖�̂�)
2

𝜎2

7

𝑗=1

=
𝑆𝑆𝐸𝑖𝑜
𝜎2

 

Test Statistic:                                𝑇𝑖 = 𝑆𝑆𝐸𝑖𝑜  𝜎2̂⁄                                                      (3.1.4) 

where  𝑇𝑖~  𝜒7−2
2 . 



21 
 

Another alternative way to conduct the hypothesis testing is based on 𝐹- 

distribution, which could avoid the assumption that the estimated variance,  𝜎2̂, is equal to 

the true variance 𝜎2. If there are two independent random variables, 𝑈1 and 𝑈2 followed 

Chi-squared distributions with 𝑑1 and 𝑑2 degrees of freedom, respectively. Then variable 

F, F =
𝑈1 𝑑1⁄

𝑈2 𝑑2⁄
, follows the 𝐹- distribution with degrees of freedom 𝑑1 and 𝑑2. 

The null hypothesis for each sample 𝑖 is that there is no change point, and the 

alternative hypothesis is that there is a change point. Assume 𝑦𝑖𝑗 independently follows a 

normal distribution 𝑦𝑖𝑗 ~ 𝑁(𝐸(𝑦𝑖𝑗), 𝜎
2 ), where 𝑖 = 1, 2,⋯𝑁, and 𝐸(𝑦𝑖𝑗) refers to the 

estimated response for individual 𝑖 at time 𝑗. The first Chi-squared distribution is for each 

sample. The 𝑆𝑆𝐸𝑖𝑜  is estimated based on fitting one liner line over 7 time points, then 

𝑆𝑆𝐸𝑖𝑜  𝜎2⁄  follows a Chi-squared distribution with (7-2) degree of freedom. The Second Chi-

squared distribution is for the samples in set 𝐴. The 𝑆𝑆𝐸 is the sum of minimized (𝑆𝑆𝐸𝑘𝑗′1 +

 𝑆𝑆𝐸𝑘𝑗′2) for |𝐴| samples.  

(e)  Hypothesis Testing  

  𝐻0: there is no change point for individual 𝑖   

𝐻𝑎: there is a change point for individual 𝑖 

{
 

 
𝑦𝑖�̂� = 𝛽𝑖𝑜1̂ + 𝛽𝑖𝑜2̂𝑡𝑗

𝑆𝑆𝐸𝑖𝑜 =∑(𝑦𝑖𝑗 − 𝑦𝑖�̂�)
2

7

𝑗=1

 

where 𝑗 = 1, 2,⋯ ,7; 𝑖 = 1, 2,⋯𝑁. 
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𝑇𝑖 = 𝑆𝑆𝐸𝑖𝑜  𝜎2⁄                                                       (3.1.5) 

 𝑇𝑖~  𝜒7−2
2  

and 

{
𝑦𝑘�̂� = 𝛽𝑘11̂ + 𝛽𝑘12̂𝑡𝑗

𝑆𝑆𝐸𝑘𝑗′1 = ∑ (𝑦𝑘𝑗 − 𝑦𝑘�̂�)
2𝑗′

𝑗=1

 , 

where 𝑗 = 1,⋯ 𝑗′  

 

{
𝑦𝑘�̂� = 𝛽𝑘13̂ + 𝛽𝑘14̂𝑡𝑗

𝑆𝑆𝐸𝑘𝑗′2 = ∑ (𝑦𝑘𝑗 − 𝑦𝑘�̂�)
27

𝑗=𝑗′+1

 , 

where 𝑗 = 𝑗′ + 1,⋯, 7  

 

mⅈn
𝑗′
(𝑆𝑆𝐸𝑘𝑗′1 + 𝑆𝑆𝐸𝑘𝑗′2) 

Where 𝑘 ∈ 𝐴  

𝑇2 =  ∑ mⅈn
𝑗′
(𝑆𝑆𝐸𝑘𝑗′1 + 𝑆𝑆𝐸𝑘𝑗′2)/𝜎

2
𝑘∈𝐴                                   (3.1.6) 

where 𝑇2~  𝜒7|𝐴|−4|𝐴|
2  

Then, 

 

Test Statistic:        

                         
𝑇𝑖

𝑇2
 = 

𝑆𝑆𝐸𝑖𝑜  𝜎2⁄

∑ min
𝑗′
(𝑆𝑆𝐸𝑘𝑗′1+ 𝑆𝑆𝐸𝑘𝑗′2)/𝜎2𝑘∈𝐴

= 
𝑆𝑆𝐸𝑖𝑜

∑ min
𝑗′
(𝑆𝑆𝐸𝑘𝑗′1+ 𝑆𝑆𝐸𝑘𝑗′2)𝑘∈𝐴

              (3.1.7) 

where 𝐹𝑖 =
𝑇𝑖

𝑇2
  ~ 𝐹(𝑑1 = 5, 𝑑2 = 3|𝐴|)  
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For each sample at =0.05, if the p-value is less than 0.05, then there is a significant 

evidence that this sample has a change point. Otherwise, we fail to reject the null 

hypothesis. Note that the test statistic does not rely on the true variance.  

Because lⅈm
𝑑2→∝

𝐹𝑑1,𝑑2 = 𝜒
2
𝑑1, when there are sufficient samples in set 𝐴, the Chi-squared 

test and the 𝐹 test would return similar p-values. 

3.2 Inference for Change Point 

Through hypothesis testing, the 𝑁 samples could be separated into two groups: with 

change point and without change point. For those samples with significant change point, 

there are two possibilities. Suppose for one sample, the observation 𝑗′ satisfies 

mⅈn
𝑗′
(𝑆𝑆𝐸𝑖𝑗′1 + 𝑆𝑆𝐸𝑖𝑗′2), then fit a linear regression line for the first 𝑗′ observations, and a 

linear regression line for (𝑗′ + 1)𝑡ℎ,⋯,  7𝑡ℎ observations. Then, two scenarios could appear：

(A) the point of intersection falls in (𝑡𝑗′ 𝑡𝑗′+1); (B) the point of intersection falls outside (𝑡𝑗′, 

𝑡𝑗′+1). The scenario (B) indicates that the observation has outlier(s). 

 

Figure 3.2.1 
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When scenario (A) happens, the change point could be directly located as the 

intersection point of the two lines. However, when scenario (B) happens, even though the 

intersection of the two lines are outside the interval (𝑡𝑗′, 𝑡𝑗′+1), the intersection point is not 

necessarily the most likely location for change point. Figure 3.2.1 presents these two cases. 

Therefore, in this paper, we propose two different algorithms to identify the location for 

these two cases. 

Because algorithms of identifying the location for these two cases are different, we split 

the samples with change point into two parts: samples without outlier (scenario A) and 

samples with outlier(s) (scenario B). For every sample has change point, repeat the 

algorithm in (c) to identify the 𝑗′. The developmental trajectories could be modeled as a 

linear line for the first 𝑗′ measurement time and a linear line for the last (7- 𝑗′) 

measurement time. For each sample, identify the location of the intersection point, (𝑡𝑐𝑖, 𝑦𝑐𝑖), 

where 𝑡𝑐𝑖 and 𝑦𝑐𝑖 refer to the coordinates of the intersection point for individual 𝑖. Split 

samples with change point into two parts based on whether 𝑡𝑐𝑖 ∈ (𝑡𝑗′ , 𝑡(𝑗′+1)) or not. 

For case (A), where the intersection point for a sample within (𝑡𝑗′, 𝑡(𝑗′+1)), the change 

point is the intersection point for the two linear regression lines. It is trivial to prove that 

the intersection point is the maximum likelihood estimate for the change point. For case (B), 

where the intersection point for a sample falls outside of the interval (𝑡𝑗′ , 𝑡(𝑗′+1)) , we 

apply the Bayesian method to understand how likely would a given point be the change 

point. Given a time point 𝑡𝑐, where 𝑡𝑐 ∈ (0, 8.5), find the probability of the time point 𝑡𝑐 be 

the change point (𝑡𝑐 refers to the time point for change point) for individual 𝑖.   
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When we apply the Bayesian method, there are two parameters of interest 𝑡𝑐 and 𝑦𝑐, 

where 𝑦𝑐 refers to the corresponding observed measurement of time 𝑡𝑐. For each sample, 

the given value for 𝑡𝑐 can separate 7 data pairs into two parts, which are the corresponding 

time point(s) less than 𝑡𝑐 and time point(s) large than 𝑡𝑐.  For these two parts, we can fit 

two linear regression lines for each of these two parts, and make the two lines to go 

through a point (𝑡𝑐, 𝑦𝑐). When the sum of 𝑆𝑆𝐸 for these two regression lines become 

smaller, it is more likely for (𝑡𝑐, 𝑦𝑐) to be the change point. Since the goal is to identify the 

change point location, compared with the value for 𝑦𝑐, we are more interested in the value 

for 𝑡𝑐. Even though, we need 𝑦𝑐 to evaluate 𝑆𝑆𝐸. 

For a certain individual, the observed measurement 𝑦𝑖𝑗 and measurement time 𝑡𝑗 and 

the fitted two regression lines must go through the point (𝑡𝑐, 𝑦𝑐). Suppose the slope of the 

first line and second line are 𝑙1 and  𝑙2, respectively. The two regression lines can be 

formulated as:  

{
𝑦 − 𝑦𝑐 = 𝑙1(𝑥 − 𝑡𝑐)
𝑦 − 𝑦𝑐 = 𝑙2(𝑥 − 𝑡𝑐)

, 

The 𝑆𝑆𝐸 for the two lines: 

𝑆𝑆𝐸𝑖1 = ∑ (𝑦𝑖𝑗 − 𝑦𝑖�̂�)
2𝑗′

𝑗=1  ; 𝑆𝑆𝐸𝑖2 = ∑ (𝑦𝑖𝑗 − 𝑦𝑖�̂�)
27

𝑗=𝑗′+1 , 

For the first line:        𝑦𝑖�̂� = 𝑙1(𝑡𝑗 − 𝑡𝑐) + 𝑦𝑐  

For the second line:       𝑦𝑖�̂� =  𝑙2(𝑡𝑗 − 𝑡𝑐) + 𝑦𝑐. 

For the first line:    𝑆𝑆𝐸𝑖1 = ∑ (𝑦𝑖𝑗 − 𝑦𝑖�̂�)
2𝑗′

𝑗=1  
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=∑(𝑦𝑖𝑗 − 𝑙1(𝑡𝑗 − 𝑡𝑐) − 𝑦𝑐)
2

𝑗′

𝑗=1

 

To minimize 𝑆𝑆𝐸𝑖1,  we take the first derivative of 𝑆𝑆𝐸𝑖1 with respect to 𝑙1: 

𝑑(𝑆𝑆𝐸𝑖1)

𝑑𝑙1
= 2∑(𝑦𝑖𝑗 − 𝑙1(𝑡𝑗 − 𝑡𝑐) − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)

𝑗′

𝑗=1

 

= 2(∑(𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)

𝑗′

𝑗=1

− 𝑙1∑(𝑡𝑗 − 𝑡𝑐)
2

𝑗′

𝑗=1

) 

Set first derivative equal to zero: 

𝑑(𝑆𝑆𝐸1)

𝑑𝑙1
= 0 

𝑙1 =
∑ (𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)
𝑗′

𝑗=1

∑ (𝑡𝑗 − 𝑡𝑐)
2𝑗′

𝑗=1

 

 for second line:   

𝑙2 =
∑ (𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)
7
𝑗=𝑗′+1

∑ (𝑡𝑗 − 𝑡𝑐)
27

𝑗=𝑗′+1

 

Substitute 𝑙1 and 𝑙2 back to 𝑆𝑆𝐸𝑖1  and 𝑆𝑆𝐸𝑖2  to get the minimized summation of (𝑆𝑆𝐸𝑖1  

+ 𝑆𝑆𝐸𝑖2): 

mⅈn
𝑙1,𝑙2

(𝑆𝑆𝐸𝑖1  +  𝑆𝑆𝐸𝑖2) = ∑(𝑦𝑖𝑗 − 𝑙1(𝑡𝑗 − 𝑡𝑐) − 𝑦𝑐)
2

𝑗′

𝑗=1

+ ∑ (𝑦𝑖𝑗 − 𝑙2(𝑡𝑗 − 𝑡𝑐) − 𝑦𝑐)
2

7

𝑗=𝑗′+1
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= ∑ [(𝑦𝑖𝑗 − 𝑦𝑐)
2𝑗′

𝑗=1 − 2𝑙1(𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐) + 𝑙1
2(𝑡𝑗 − 𝑡𝑐)

2
]+ ∑ [(𝑦𝑖𝑗 − 𝑦𝑐)

27
𝑗=𝑗′+1 −

2𝑙2(𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐) + 𝑙2
2(𝑡𝑗 − 𝑡𝑐)

2
] 

= ∑(𝑦𝑖𝑗 − 𝑦𝑐)
2

𝑗′

𝑗=1

− 2
∑ (𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)
𝑗′

𝑗=1

∑ (𝑡𝑗 − 𝑡𝑐)
2𝑗′

𝑗=1

∑(𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)

𝑗′

𝑗=1

+
(∑ (𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)

𝑗′

𝑗=1 )
2

(∑ (𝑡𝑗 − 𝑡𝑐)
2𝑗′

𝑗=1 )
2 ∑(𝑡𝑗 − 𝑡𝑐)

2

𝑗′

𝑗=1

+ ∑ (𝑦𝑖𝑗 − 𝑦𝑐)
2

7

𝑗=𝑗′+1

− 2
∑ (𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)
7
𝑗=𝑗′+1

∑ (𝑡𝑗 − 𝑡𝑐)
27

𝑗=𝑗′+1

∑ (𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)

7

𝑗=𝑗′+1

+ 
(∑ (𝑦𝑖𝑗 − 𝑦𝑐)(𝑡𝑗 − 𝑡𝑐)

7
𝑗=𝑗′+1 )

2

(∑ (𝑡𝑗 − 𝑡𝑐)
27

𝑗=𝑗′+1 )
2 ∑ (𝑡𝑗 − 𝑡𝑐)

2
7

𝑗=𝑗′+1

 

 

mⅈn
𝑙1,𝑙2

(𝑆𝑆𝐸𝑖1  +  𝑆𝑆𝐸𝑖2) 

= ∑ (𝑦𝑖𝑗 − 𝑦𝑐)
27

𝑗=1 −
(∑ (𝑦𝑖𝑗−𝑦𝑐)(𝑡𝑗−𝑡𝑐)

𝑗′

𝑗=1 )
2

∑ (𝑡𝑗−𝑡𝑐)
2𝑗′

𝑗=1

−
(∑ (𝑦𝑖𝑗−𝑦𝑐)(𝑡𝑗−𝑡𝑐)

7
𝑗=𝑗′+1

)
2

∑ (𝑡𝑗−𝑡𝑐)
27

𝑗=𝑗′+1

                 (3.2.1)       

Even though 𝑡𝑐 ∈ (0, 8.5), we have no idea of 𝑦𝑐 to evaluate the 𝑆𝑆𝐸. For a given value 

of 𝑡𝑐, mⅈn
𝑙1,𝑙2

(𝑆𝑆𝐸𝑖1  +  𝑆𝑆𝐸𝑖2) could be treated as a function of 𝑦𝑐, Eq. (3.2.1). To find the 

value for 𝑦𝑐, we use an R package (Nash, 2014), optimx. In optimx function, set the upper 

and lower boundary for 𝑦𝑐, and use the ‘L-BFGS-B’ method. After finding the value for 𝑦𝑐, 

substitute it back to Eq. 3.2.1 to evaluate the value for mⅈn
𝑙1,𝑙2

(𝑆𝑆𝐸𝑖1  +  𝑆𝑆𝐸𝑖2). 
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For each given 𝑡𝑐, we can evaluate the corresponding 𝑦𝑐 by using optimx function. 

Among all the candidates for 𝑡𝑐, we use the Bayesian method to identify the one that has 

the highest probability to be the change point, in other words, is to identify the 

mⅈn
𝑙1 ,𝑙2

(𝑆𝑆𝐸𝑖1  +  𝑆𝑆𝐸𝑖2). 

We use a posterior probability curve to find the most likely change point. The likelihood 

is the probability of any time point 𝑡𝑐 between (0, 8.5) as the change point, 

𝑃(𝑑𝑎𝑡𝑎 | 𝑡𝑐 𝑎𝑠 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡). Based on the expert opinion, we could choose a prior 

such as normal, gamma, etc. Here for illustration purpose, we consider a uniform case. The 

posterior is the probability of 𝑡𝑐 being the change point given the observations for individual 

𝑖, 𝑃(𝑡𝑐 𝑎𝑠 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡 | 𝑑𝑎𝑡𝑎). Since we assumed 𝑦𝑖𝑗 ~ 𝑁(𝐸(𝑦𝑖𝑗), 𝜎
2 ). The 

likelihood for individual 𝑖:  

𝑃(𝑑𝑎𝑡𝑎 | 𝑡𝑐 𝑎𝑠 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡) =∏
1

√2𝜋𝜎2

7

𝑗=1

𝑒
−
(𝑦𝑖𝑗−𝑦𝑖�̂�)

2

2𝜎2  

       ∝ 𝑒
−
∑ (𝑦𝑖𝑗−𝑦𝑖�̂�)

27
𝑗=1

2𝜎2  

Given 𝑡𝑐 as the change point, for each sample, we fit two linear regression lines such 

that 𝑡𝑐 would be the intersection time point.  The likelihood for individual 𝑖 can be 

represented as: 

𝑃(𝑑𝑎𝑡𝑎 | 𝑡𝑐 𝑎𝑠 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡) ∝  𝑒
−
min
𝑙1,𝑙2

(𝑆𝑆𝐸𝑖1 + 𝑆𝑆𝐸𝑖2)

2𝜎2 . 

And prior is represented as: 
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𝑃( 𝑡𝑐 𝑎𝑠 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡)  ~ 𝑈𝑛𝑖𝑓(0 , 8.5). 

The posterior distribution for individual 𝑖 is represented as: 

 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑃𝑟𝑖𝑜𝑟 

𝑃(𝑡𝑐 𝑎𝑠 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡 | 𝑑𝑎𝑡𝑎)  ∝  𝑒
−
min
𝑙1,𝑙2

(𝑆𝑆𝐸𝑖1 + 𝑆𝑆𝐸𝑖2)

2𝜎2 . 

 

Here, we assume 𝜎2 = 𝜎2̂. Therefore, every individual has a sequence of possible 

values for 𝑡𝑐, as well as a sequence of corresponding values for 𝑒
−
min
𝑙1,𝑙2

(𝑆𝑆𝐸𝑖1 + 𝑆𝑆𝐸𝑖2)

2𝜎2  to reflect 

the probability of being the change point. 
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4.RESULTS AND DISCUSSION 

4.1 Results 

The K-8 Public-Use data contains information about children’s reading, mathematics and 

general knowledge (science and social studies). In this thesis, we only concern the reading 

and math abilities. 

Samples with missing values for reading and mathematics were removed. The sample 

sizes for math and reading in the final sets are 2,305 and 2,145, respectively. For these two 

datasets, we first split the data into two parts: samples with change point and samples 

without change point. We use the samples that yield the top 30% 𝛥𝑠 to estimate the 

variance σ2 and then conduct a Chi-squared test by treating the estimated σ2 as true 

variance. Alternatively, we can use an F-test without the need of true variance. As the 

denominator degree freedom for F-distribution becomes large, the F-distribution goes close 

to a Chi-squared distribution, therefore the two methods will generate similar p-values. Due 

to the large sample size in this study (df2>600), we simply use the Chi-squared distribution 

to test whether a certain sample contains a change point. For samples with change points, 

we further split them into two subgroups depending on whether they have outliers in 

observations. The results we get from reading and mathematics samples are shown in Table 

4.1.1. 
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 Reading Mathematics 

Total sample size 2,145 2,305 

Number of samples used to estimate σ2 644 692 

Cutoff for top 30% 𝛥𝑠  1.282 0.863 

Estimated variance σ2 0.040 0.031 

Number of samples with change point 2045 2151 

Observations with outliers 571 628 

Observations without outliers 1,474 1523 

Number of samples without change point 100 154 

Table 4.1.1 

For samples with outliers, we use the Bayesian method. For samples’ do not have 

outliers, we can directly fit two linear regression lines, such that the sum of 𝑆𝑆𝐸 for the two 

lines could be minimized. Notice that the Bayesian method could also be applied to locate 

the change points for samples have no outliers. In Figure 4.1.1 and Figure 4.1.2, we 

randomly choose one sample has no outliers, and one sample has outliers for Reading and 

Mathematics, respectively. And fit two linear lines, as well as applying the Bayesian method 

for each sample. As the Figure 4.1.1 and Figure 4.1.2 show, for samples have no outliers, the 

Bayesian method works as good as we fit the two linear regression lines.  
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Figure 4.1.1 
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Figure 4.1.2 
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We can find the location of change points for all the samples in Reading and 

Mathematics. It is interesting to compare the change points distributions for the samples 

have outliers and for samples have no outliers. In addition, we can compare the change 

point distributions between reading and mathematics. Figure 4.1.3 shows the change point 

distribution comparison of the two subjects for samples that have no outliers. Figure 4.1.4 

shows the change point distribution comparison of the two subjects for samples with 

outliers. Figure 4.1.5 shows the change point distribution comparison for all samples.  

 

 

Figure 4.1.3 
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Figure 4.1.4 
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Figure 4.1.5 

 

In Figure 4.1.3, except for the peak appears around 2.1, another significant peak 

appears around 0.5. While in Figure 4.1.4, except for the peak appears around 1.9, another 

significant peak appears around 3.5. Compared Figure 4.1.3 and Figure 4.1.4, except for 

samples have no outliers in math (green curve in Figure 4.1.3), change points for samples 

have outliers are more likely to happen at the later stage. Because samples have no outliers 

are approximately three times of the samples have outliers for both subjects, in Figure 4.1.5, 

the distribution is influenced strongly by samples have no outliers. From these three Figures, 

we can conclude that compared with math, the change point distribution for reading is 

more concentrated between spring-first grade and spring third grade. 
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Figure 4.1.6 

For most of the samples, children’s developmental trajectories jump to another 

stage at the last three or four rounds. In this paper, we take the average for the last four 

rounds. Those students with higher average values indicate overall better performance. The 

change point distribution of students with different overall performance (0-25%, 25-50%, 

50-75%, 75-100%) were compared (Figure 4.1.6). 

It is shown in Figure 4.1.6 that students with better performance (black curve and 

green curve) are more likely to have change point at the earlier stage (around 0.5, Spring 

kindergarten). Besides, most students’ change point happens between Spring-first grade 
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and Spring-third grade. Students with poor performance (blue curve and red curve) are 

more likely to have change point at the later stage (around 4, between spring-third grade 

and spring-fifth grade). 

 

Figure 4.1.7 
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Figure 4.1.8 

There are three peaks of the change point distributions: around 0.5, around 2, and 

around 4. For reading and mathematics dataset, we conduct a subgroup analysis to explore 

the developmental trajectories for different groups. Figure 4.1.7 and Figure 4.1.8 shows 

three groups of samples with change points located at 0.5, 2, and 4. The green curve is the 

average trajectory for each group. These two figures illustrate the underlying 

developmental trajectories for different groups. 
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4.2 Discussion 

The first step of our proposed computational pipeline is a hypothesis testing to filter 

out samples without change point. When applying the hypothesis testing to filter out 

samples do not have change points, to be more precisely, the test statistics should follow 

the F-distribution. However, the Chi-squared distribution will yield similar results as the F-

distribution when the denominator degree of freedom goes to infinity. And it would be 

easier to implement the Chi-squared test.  In this paper, we use the Chi-squared test. 

An advantage of using the Bayesian method is that we can estimate the probability 

of any time point being the change point, and this method can be used for any sample with 

change point. Because the Bayesian method is more expensive computationally. For the 

samples with outliers, we directly fit two linear lines, where the 𝑆𝑆𝐸 for the two lines could 

be minimized. 

In this work, we consider at most one change point for each sample in ECLS-K 

dataset. However, for a longitudinal study that has more time points, a sophisticated 

method should be proposed to explore the locations for change points. Moreover, for some 

other cases where their first phrases have some curvature, instead of linear-linear 

piecewise models, the quadratic-linear or exponential-linear piecewise model could be 

considered. 

In this thesis, we analyze the dataset for two subjects. The results could provide 

some insight for researchers in early education. Even though most of the students have 

change points, for some students, they may have a relatively stable developmental 
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trajectory from kindergarten to eighth-grade. For those students have change points, most 

of the change points appear between Spring-first grade and Spring third grade (the 

corresponding time points are 1.5，3.5). Students have better performance at the later 

stage are more likely to have change points at the early stage. And students have poor 

performance at a later stage are more likely to have change points at a later stage. In 

addition, for those students with similar change point, they share a similar developmental 

trajectory. The reasons lead to the above phenomena would be worth to do further study. 
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