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Abstract  

A time series is a set of random values collected at equal time intervals; this randomness makes 

these types of series not easy to predict because the structure of the series may change at any 

time. As discussed in previous research, the structure of time series may change at any time due 

to the change in mean and/or variance of the series. Consequently, based on this structure, it is 

wise not to assume that these series are stationary. This paper, discusses, a method of analyzing 

time series by considering the entire series non-stationary, assuming there is random change in 

unconditional mean and variance of the series. Specifically, this paper emphasizes financial time 

series. The main goal in this process is to break the series into small locally stationary time series 

on which stationary assumption applies. The most interesting part of this procedure is locating 

the break-points, where the unconditional mean and/or variance of the series change. After 

having found what the break-points are, we divide the series into smaller series according to the 

break points; the number of break-points determines how many small stationary time series we 

have. The analysis by this method considers each interval on which the series is stationary as an 

independent time series with its specific parameters. Hence, the overall time series that is 

naturally nonstationary is broken into small stationary time series that are easier to analyze. 

Afterwards, by using Bayesian Information Criterion (BIC) we are comparing the local 

stationary model to the model considering the entire series stationary. In a simulation study with 

known sample size, unconditional means and variances, for each small stationary series, the 

result shows that we can locate the exact true break-points when the sample size is greater than 

500. After our simulation study, this method is also applied to the real data, S&P 500 series of 

returns, which is a financial time series. The results obtained by using Maximum Likelihood 

Estimation (MLE) show that BIC is smaller for the locally stationary model. 
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Introduction   

Time series are generally series of random values observed at equally spaced intervals of time; 

this is because we are unsure what is going to happen in the future. Even if we can predict the 

future based on the historical information, our predictions are not exact; there is always a given 

uncertainty. This randomness becomes even more interesting when at some point in time there is 

a significant change in the structure of the series; which should get the attention of analysts 

because these structural changes make the series non-stationary. Some suggestions have already 

been given about how to solve this problem of nonstationarity; Starica and Granger(2005), 

proposed a method of detecting break-points in a time series by using a goodness of fit test to see 

if the observations in a given interval come from the same distribution or if they should be 

allowed to have different distributions. 

Other methods of modeling a nonstationary time series, by allowing certain intervals to have 

their own distributions were proposed in previous research on time series analysis. For example, 

Ozaki and Tong (1975), suggested that we can assume there is a change point in the series and 

use the likelihood function to estimate the location of the change-point, and apply final 

prediction error (FPE) method to assess the performance of model fitted to the entire dataset and 

the one fitted locally, considering two independent distributions in the series, so as to see which 

one is better.  

Fitting a model to a nonstationary time series by breaking it into locally stationary series is 

reasonable because in practice it is likely to have a time series whose structure may change over 

time. This is why we need more methods to detect the break-points in a time series.  
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In real life, we can observe this unpredictable significant change in mean and variance at any 

time, but in this paper we are focusing on financial time series, in which this structure is more 

observed due to the stochastic changes of the financial market. (Aue et al.,2011).  According to 

Starica and Granger (2005), the sample auto correlation function (ACF) of financial time series 

is likely to have a structure characterized by a slow decay for the first lags that ends up being 

stable at higher lags with positive correlation; they add that this structure is due to the change in 

unconditional mean and variance. Remember that this is the same structure we observe in non-

stationary time series. Two questions arise from this observation: either the ACF in financial 

time series indicates that there is a long-range dependence; in other words, there is a significant 

correlation at different lags in the series, or simply the series is not stationary. Mikosch and 

Satrica (2004) emphasize that it is strongly reasonable to say that the slow decay observed in the 

ACF is a result of change in mean and variance of the series rather than saying it is due to the 

strong correlation in the series.  

Aue and Horvath (2011) say that is not advisable to assume long-range dependence in a series 

based only on the slow decay observed in the ACF because the same structure can be observed in 

short memory processes with structural breaks. Consequently, the idea of considering financial 

time series stationary and assuming that the slow decay that stabilizes at higher lags is due to a 

long-range dependence in the series is dubious. Hence, there are strong reasons to consider 

financial time series as nonstationary due the structural change in time. 

From these previous works, considerable studies should be done to find different ways of 

analysis of financial time series that are not based on the ideas of long-range dependence in 

stochastic data like financial market data. 
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In this paper, based on real life financial market random feature, we are developing a new 

method to estimate the random changes in the structure of a time series, which means that we are 

dealing with nonstationary time series characterized by unpredictable changes in unconditional 

mean and variance. In this methodology, our first goal is to locate the break-points and divide the 

series into small intervals having the same mean, variance and with the same covariance; hence 

the assumption of stationarity will work on each interval which is going to make the analysis 

easy and gives more accurate results. After breaking the series into locally stationary intervals, 

we are calculating Bayesian Information Criterion (BIC) for the series without any break and the 

BIC for the series that is divided into small stationary series to see if dividing the series into 

locally stationary series gives smaller BIC. Finally, we are comparing the BIC for different 

models with different break-points to see which one is better.  

We tested our methodology on a simulation study by drawing observations from a normal 

distribution with the same mean and variance for each small interval, and compare the result with 

simulated data by considering same mean and variance for the entire series. We apply the 

method to the real data S&P 500 series of return to see if breaking the series into small locally 

stationary series gives a better model than assuming the whole series to be stationary. 

1. Understanding financial time series and stationarity 

1.1. Financial time series 

A time series in general, is a set of data collected at equally spaced intervals of time. It may be 

for instance, daily, weekly, monthly…data. Depending on the nature of the data, time series may 

have different characteristics, but structural change may occur in any time series. In this paper 
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we are considering the case of financial time series because it is one of the series where the 

structure is likely to change over time. 

As all time series, financial market data are generally random data due to the fact that it is not 

easy to predict how the market will be in the future, and we don’t know when the structure of the 

series may change. That is why the series of returns is random and its mean and/or variance may 

change at any time (Starica & Granger, 2005). So, when modeling time series of returns we 

should care not only about long range dependent and autocorrelation, but also about the 

structural change. Consequently, financial time series are most likely not to be stationary. In 

addition to the change in unconditional mean of the series, the plot of a financial time series does 

not generally have a consistent trend. Moreover, there is a high volatility, which is a measure of 

dispersion of return for a given security or market index, in financial market data; this implies 

that the unconditional variance is also unpredictable and changing over time (Mikosch and 

Starica, 2004). 

Financial data are generally presented in terms of returns such as stock returns, market index 

returns, and any other form of returns. For a better analysis of return time series, some 

transformations may be done, especially to make the series satisfy the assumption of normality in 

the data because the returns are not usually normally distributed. First, it is better to use absolute 

return to avoid having negative values of return, and then take the log of the absolute return 

because financial time series are heavy tailed; so this will make it approximately normal (Starica 

& Granger, 2005). 

This can be done mathematically as follows, 

Let 𝑟𝑡 be a series of return and 𝑋𝑡 the series after the two above transformations. 
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   𝑋𝑡 = log  | 𝑟𝑡|, the series of log of the absolute return. 

Considering two consecutive observations of a financial series, 𝑃𝑡 𝑎𝑛𝑑 𝑃𝑡−1, we can define the 

return as 

 𝑟𝑡 = 
𝑃𝑡 − 𝑃𝑡−1
𝑃𝑡−1

= 
𝑃𝑡
𝑃𝑡−1

 − 1 

Note that in the analysis of the series of return we will use the series 𝑋𝑡  , the series of log of 

absolute returns that satisfies the assumption of normality.                                        

1.2. Stationarity in financial time series 

 As explained by Aue and Horvath (2011), a time series is said to be second-order stationary if 

its statistical parameters, mean, variance and covariance, do not change in time. Based on this 

definition, it’s not advisable to assume that financial time series are stationary because they are 

characterized by random changes in unconditional mean and variance. 

But in fact, even if the entire time series is not likely to be stationary, there are some specific 

intervals on which the mean and variance are constant; the series is stationary on these small 

intervals. This means that despite the whole series being non-stationary, we can find intervals on 

which the series is stationary by breaking it into smaller series on which the mean and variance 

are constant; we call these intervals, intervals of homogeneity (Starica & Granger, 2005). 

Regardless of the complex nature of financial time series, considerable research has proven that 

there may be many ways to delimitate these small intervals of almost homogenous data, with 

constant mean and variance. The following methodology used in this paper describes well how 

to break the entire non-stationary time series into smaller stationary time series, and explains in 
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details how to use maximum likelihood estimation to locate the break points and estimate the 

parameters for each interval. 

I. Methodology 

1. Homogeneous intervals 

 Homogeneous intervals are small intervals on which the mean and variance remain 

approximately constant. The number of these homogeneous intervals depends on the structure of 

the data. Some series may have many or few intervals depending on how the unconditional mean 

of the series changes in time.  

Let X1:T be the entire series, T the total number of observations in the series. The series X1:Twill 

be   X1, X2,  X3,…XT−2, XT−1, XT . We need to locate the times at which the mean of the series 

changes, and we call these points, break-points. For i = 1,2 …k, where k is the number of break-

points, let us  denote 𝑡𝑖  any break-point; the series  X1, X2,  X3,…XT−2, XT−1, XT  can be written 

in interval form as    

X1:T =

{
 
 
 

 
 
 
x1, x2 …xt1 ,    𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 µ1 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎1

2

xt1+1, … xt2     𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 µ2 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎2
2

xt2+1…xt3   𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 µ3 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎3
2

.

.

.
xtk−1+1…xtk ,𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 µ𝑘 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎𝑘

2

          

With k number of break-points in a series, the series will have k+1 homogeneous intervals on 

which the mean and variance are constant. In other words, every time there is a significant 

change in the mean of the series, we have a new interval.  
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Assuming there is no linear dependence in the series on each homogeneous interval, the 

observations in every single interval of homogeneity are independent random variables with the 

same mean and variance. This also means that in every interval of homogeneity the series is 

stationary due to the fact that the mean and variance remain constant. 

To conclude, on each homogeneous interval we have a series of independent random variables 

with the same mean and variance.  

2. Delimitation of homogeneous intervals and parameter estimation 

The main goal in this section is to explain in detail how to locate the break-points and find 

estimates of the parameters in each local stationary interval.  

Let    X1, X2,  X3,…XT−2, XT−1, XT be the entire non-stationary series with T total number of 

observations. 

Let k be the number of break-points, which gives us k+1 homogeneous intervals. 

Let ti with i =1,2,…k denote the break-points. The number of observations in each homogeneous 

interval is calculated as follows: 

The first interval contains 𝑛1 observations 

The last interval contains T -𝑡k observations 

The middle interval contains ti − ti−1 observations.                                                                                                                                   

As we discussed before the series of log absolute return is approximately normal, in each local 

stationary interval, the observations are independent approximately normally distributed random 

variables with the same mean and variance, which enables us to assume that the probability 
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distribution function (pdf) on each homogeneous interval is that of the normal distribution with 

specific mean and variance.  

Let 𝑓𝑖 with i =1,2,…k+1, be the pdf for the observations in each homogeneous interval; since all 

of the observations xt of the series are independent and normally distributed, for every interval  i, 

with i= 1,2,3,…k+1,   𝑓𝑖 is defined as follows:  

f(X(ti−1+1):ti) =  (
1

2𝜋𝜎𝑖
2
)

𝑛𝑖
2
𝑒𝑥𝑝 {−

1

2𝜎𝑖
2
∑ (𝑋𝑡  − 𝜇𝑖)

2𝑡𝑖

𝑡=𝑡𝑖−1+1
} , 

with ni = ti − ti−1, the number of observations in each interval i and the corresponding mean 

and variance  𝜇𝑖 and 𝜎𝑖
2 respectively.  

Note that 𝑡0 = 0 and  tk+1 =  T . 

In order to locate the break points and estimate all of the means and variances from each interval, 

the maximum likelihood estimation is used. 

3. Bayesian Information Criterion (BIC) and parameter estimation 

3.1. Bayesian Information Criterion (BIC) 

BIC is a model selection tool that is used to select the best model for a given dataset among a 

finite number of models. It is defined in terms of the likelihood function, but with a penalty term 

for the number of parameters. Since the penalty term increases with the number of parameters, it 

avoids overfitting.  

 BIC is given by the following formula: 



9 

 BIC = -2*𝑙 +Ω*log (n), where Ω is the total number of parameters, 𝑙 =  is the maximized 

loglikelihood, and n the sample size. In our case, n = T, Ω = 2*(k+1) + k where k is the number 

of break-points and (k+1) the number of homogeneous intervals. So, the BIC is given by 

BIC = -2*𝑙  + (3*k+2)*log (T). When using BIC as a model selection tool, among all the 

candidates, we choose the model that gives the lowest BIC.   

3.2. Parameter estimation 

The best estimates for our parameters, break-points, is a set of break-points that give the 

minimum BIC. Let θ be the set of all parameters to be estimated, local means and variances 

and all break-points. Since the data from each interval is an independent set of random variables, 

the overall likelihood function is a product of local likelihood functions. This overall likelihood 

is denoted by L(θ; X1:T ) 

Of all possible values of the parameters the estimates of the parameters obtain from maximum 

likelihood estimation are those for which the likelihood function is the largest. 

Mathematically, the overall likelihood function is obtained by multiplying all the local 

probability distributions f(X(ti−1+1):ti│θ). 

L(θ; X1:T ) =∏(
1

2𝜋𝜎�̂�
2)

𝑛𝑖
2

𝑒𝑥𝑝 {−
1

2𝜎�̂�
2 ∑ (𝑋𝑡  − 𝜇�̂�)

2

𝑡𝑖

𝑡=𝑡𝑖−1+1

} ,

𝑘+1

𝑖=1

 

                                                 =∏ (
𝟏

𝜎�̂�
2)

𝒏𝒊
𝟐
𝑒𝑥𝑝 {−

1

2𝜎�̂�
2∑ (𝑋𝑡  − 𝜇�̂�)

2𝑡𝑖

𝑡=𝑡𝑖−1+1
} 𝒌+𝟏

𝒊=𝟏 , 2𝜋 is dropped 

because it is a constant. 
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For a given set of break-points, the log likelihood function can be maximized in closed form with 

respect to 𝜇𝑖 and 𝜎𝑖
2 , I = 1 ,2 …k+1. 

From standard calculation for normal samples, 

𝜇�̂� = 
1

𝑛𝑖
∑ 𝑋𝑡
𝑡𝑖
𝑡=𝑡𝑖−1+1

   and  𝜎�̂�
2 = 

1

𝑛𝑖
∑ (𝑋𝑡  − 𝜇�̂�)

2𝑡𝑖

𝑡=𝑡𝑖−1+1
; then it follows that  

 the maximized log likelihood is 𝑙(θ̂; X1:T) = log L(θ̂; X1:T) 

= log (∏ (
𝟏

𝜎�̂�
2)

𝒏𝒊
𝟐
𝑒𝑥𝑝 {−

1

2𝜎�̂�
2∑ (𝑋𝑡  − 𝜇�̂�)

2𝑡𝑖

𝑡=𝑡𝑖−1+1
} 𝒌+𝟏

𝒊=𝟏 ) 

= ∑ ( log (
𝟏

𝜎�̂�
2)

𝒏𝒊
𝟐
𝑒𝑥𝑝 {−

1

2𝜎�̂�
2∑ (𝑋𝑡  − 𝜇�̂�)

2𝑡𝑖

𝑡=𝑡𝑖−1+1
}  )𝑘+1

𝑖=1   

= ∑ (−
𝑛𝑖

2
log(𝜎�̂�

2) −
1

2𝜎�̂�
2∑ (𝑋𝑡  − 𝜇�̂�)

2𝑡𝑖

𝑡=𝑡𝑖−1+1
 )𝑘+1

𝑖=1  

= ∑ (−
𝑛𝑖

2
log(𝜎�̂�

2) −
𝑛𝑖

2
 )𝑘+1

𝑖=1  

 = ∑ (−
𝑛𝑖

2
(log 𝜎�̂�

2 + 1 )𝑘+1
𝑖=1    

= −∑ (
𝑛𝑖

2
(1 + log 𝜎�̂�

2 )𝑘+1
𝑖=1 . 

Hence, 𝑙(θ̂; X1:T ) = −∑ (
𝑛𝑖

2
(1 + log 𝜎�̂�

2 )𝑘+1
𝑖=1 ,  

 with ni  the number of observations and 𝜎�̂�
2
the variance in i homogeneous interval. 

To find the break-points we need to maximize 𝑙(θ̂; X1:T ) over 𝑡1 , 𝑡2 , …𝑡𝑘  by using an 

optimization method that deals with discrete data because the break points are not continuous. 
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4. Simulated annealing 

We have seen that the number of all possible break-points depends on the structure and the size 

of the data; the bigger the size or the more the variability in the data, the larger the number of all 

possible break-points. With size larger than 100 data points generally, it’s not practically easy to 

explore all possible combinations of break points to see which one gives the best model for the 

data, small BIC. For example, with n=100, the number of possible combinations of two, three, 

and four break-points are 4851, 152096, and 3464840 respectively. In this paper we are using 

simulated annealing to solve this problem. 

As it is defined by Bertsimas and Tsitsiklis (1993), simulated annealing is a probabilistic strategy 

of locating a global minimum of a function that has many different local minima. In this process 

you start with an initial random solution and let it change to another solution, better or worse, to 

help explore a big range of solutions from which we can get one close to the optimal solution, 

since we cannot explore all possible solution to make sure that we have obtained the optimal 

solution. 

In our case, the function to be minimized is the BIC which is a function of the likelihood 

function; we also need a function that will propose the different number and positions of break-

points and observe how the BIC changes depending on the number of break-points and/or the 

position of break-points. 

How does simulated annealing work? 

Simulated annealing has its origin in metal work in which the goal is to obtain low energy states 

of a solid metal.  
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How does annealing of metals work? 

1. A metal is heated up in a heat bath until it melts; at this stage the energy level is very 

high. 

2. Then it is cooled gradually until it reaches the lowest energy state. This will alter the 

internal structure of the metal, which will change its physical properties.  But, this 

happens when the temperature is decreased slowly and carefully. 

3. To get the lowest energy state, we are decreasing the temperature, which causes the 

particles in the metal to move slowly and hence the energy reduces. So, the energy state 

of the metal depends on the temperature.  

For the algorithm to move from a high energy state to a lower energy state, which is our goal, 

there should be some conditions:  

Acceptance conditions: 

Here we are describing how we move from a current energy state to a neighbor energy 

state in order to reach the ground state. In other words, how do we decide which solution 

to accept! 

 First, the algorithm checks if the proposed solution is better than, or is the same as 

the current solution. If it is, accept it with no conditions. 

 If the proposed solution is worse than the current solution, we accept it with some 

probability depending on: 

 How worse the proposed solution is compared to the current solution 

and also depending on 

 The temperature of the system. 
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To make this clear, let xc be the current configuration and xp the proposed configuration, and T 

the temperature of the system. Recall that a better solution here means lower energy state.Then if 

g(xp) ≤ g(xc), we accept the proposed solution and it becomes the new solution. If however, g(xp) 

> g(xc), we will accept the proposed solution with probability 

α = exp {−
(g(xp)−g(xc))

T
}. Otherwise, keep the current solution. 

Note that in simulation annealing accepting some worse solutions enables the algorithm not to 

get stuck in the local minima. 

In the above formula if g(xp) > g(xc), we will always have a negative exponent and the value of α 

will depend on the difference between the two solutions and the temperature of the system. 

More explicit,  

 For high temperatures, the exponent in the above formula approaches zero, and the 

probability of accepting a worse solution approaches 1 

 As the temperature decreases to zero, the exponent in the above formula goes to - ∞, and 

the probability of accepting a worse solution goes to zero. So, we are less likely to accept 

a worse solution as the number of iterations increases.  

We can illustrate by example how the probability of accepting a neighbor solution depends on 

the temperature and how much worse the neighbor solution is in the following table: 
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Table1: Probability of accepting a neighbor solution in simulated annealing.  

 

 

Temperature 

Probability of accepting a neighbor solution 

g(xp)-g(xc) = 1 g(xp)-g(xc) = 2 g(xp)-g(xc) = 3 

10 0.9 0.82 0.74 

1 0.37 0.14 0.05 

0.25 0.018 0.0003 0.000006 

0.1 0.00005 2×10-9 9×10-14 

 

From the above table we observe that: 

 For a fixed temperature, the probability of accepting a worse solution decreases as the 

proposed solution gets farther from the current solution,  

 And for a fixed difference in solution, the probability of accepting a worse solution 

decreases as temperature also decreases. 

Remark: the algorithm stops after a fixed number of iterations. 

In optimization problem we simulate this process, where we have a random variable that changes 

at each stage to propose a new solution and follow the same acceptance conditions in order to 

reach the global minimum of our function. 

 

In this paper, our state variable is a set of break-points we propose and calculate the BIC. Each 

time we randomly select a new set of beak-points and calculate the value of BIC.  
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If the proposed set of break-points gives a smaller than, or equal to the current value of BIC, we 

accept it with no conditions. But if the proposed set of break-points gives a higher value for BIC, 

we accept it with the probability we described above.   

4.1. How to change the break-points and their positions 

The idea here is trying to explore many possible positions of break-points. To minimize the BIC 

we need an initial set of break-points, which will be randomly changed to get different values for 

BIC until we reach the minimum value. These changes are either positions or the number of the 

break-points. Here we are using three ways to obtain a new set of break-points. 

 First, adding one more random  break-point if you haven’t reached the max 

possible number of break-points, 

 Second, delete one break-point if there are at least two of them 

 Third, keep the same number of break-points and propose to move a random 

break-point to a new position. 

Generally, give the same chance to delete or insert a new break-point; and slightly more chance 

to change the position since we want to explore many different positions to locate where may be 

a break-point in the series.  

The initial set of break-points may be any break points less than the maximum possible number 

of break-points, but we have observed that starting with one initial random break-point gives 

more accurate solution and is easier to choose. 

Remark: The maximum number of break-points is (T-2)/2 if n is even, and (T-3)/2 if n is odd. 

Therefore, the initial or any other set of break-points cannot be bigger than these values. So, to 
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get a reasonable set of break-points there are some restrictions when proposing a new set of 

break points by changing the number or positions. 

4.2. Reasonable break-points 

5. For any dataset, it is not reasonable to propose a break-point at the first and last position 

in the series. 

6. When inserting a break-point between two other break-points, make sure that the 

difference between their positions is at least five, and check if after inserting a break-

point, the difference between all consecutive break-points is at least two. 

Note: We should avoid constructing an interval containing only one observation because we are 

not considering the distribution of a single observation. 

With all of the above conditions satisfied, every change made in the break-points, change of 

position or number, the main function to be minimized, BIC, returns a different value. Therefore, 

we can find which of these values is the smallest, and then note the corresponding number of 

break-points and their positions, which give us the best model. 

Remember that the goal of this paper is to develop a methodology to find the break-points in a 

given times series that exhibits structural change behavior. 

We are using Monte Carlo simulation study to analyze the distribution of the outcome, which 

enables to assess the properties of the estimation process.  



17 

II. Monte Carlo method and Simulation study 

1. Simulation study 

Since the log absolute return has approximately a normal distribution, in this simulated study we 

are considering a series from a normal distribution with known means and variances.   

Consider a series with specified break-points, with known means, variance and size for each 

homogeneous interval. 

To make calculations not too complicated, let k, the number of break-points, be 5. So, we will 

have k+1 homogeneous intervals of size ni, which gives us 6 intervals with 6 different means 

and variances. It is better to consider homogeneous intervals with different sizes.  

Let us choose the sizes for the first to the last interval to be:        

 𝑛1 =90, 𝑛2 = 85, 𝑛3 = 70, 𝑛4 =   75,= 𝑛5 =  80, 𝑛6 = 100. 

Note that in this paper we are using the size greater or equal to 500 to increase the penalty term 

in BIC. 

Let  𝜇1, 𝜇2, 𝜇3,  𝜇4 , 𝜇5 , 𝜇6 , the mean for each interval be 25,35,45,40,30,25 respectively, and 

variances 𝝈1
2, 𝝈2

2,  𝝈3
2 , 𝝈4

2, 𝝈5
2,  𝝈6

2, be 1.5, 2, 2.5, 0.8, 1.5, 1 respectively. Means and 

variances do not have any specific restrictions as long as  the chosen choose values are not very 

close to each other. This simulation gives a series with five break-points and six homogeneous 

intervals with specified different means and variances 

Let us summarize our simulation in the following table: 
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Table2:  Simulation study summarized 

Homogeneous 

intervals 

Number of observations 

in each interval 

Mean Variance 

First interval  𝑛1 =  90 𝜇1= 25 𝝈1
2=1.5 

Second interval  𝑛2  = 85 𝜇2=35 𝝈2
2=2 

Third interval   𝑛3 =    70 𝜇3=45 𝝈3
2=2.5 

Forth interval   𝑛4 =   75 𝜇4=40 𝝈4
2=0.8 

fifth interval   𝑛5 =     80 𝜇5=30 𝝈5
2=1.5 

Sixth interval   𝑛6 =    100 𝜇6=25 𝝈6
2=1 

 

The main goal in this simulation study is to see if we can use the method described above, using 

simulated annealing, to recover the proposed break-points. We know in advance that the data 

contains five break-points located at the following positions  where there is a change in mean and 

variance of the series: 

                                                                   𝑡1     = 𝑛1 = 90  ,            

                                                            𝑡2  =  𝑡1 + 𝑛2  = 175, 

𝑡3  =  𝑡2  + 𝑛3 = 245, 

 𝑡4    = 𝑡3 + 𝑛4  = 320, 

𝑡5  = 𝑡4 + 𝑛5 = 400. 

𝑡𝑖  is an i break-points with i =1,2…5.  
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𝑛𝑖  is the  number of observations in i interval, with  𝑛𝑖 = 𝑡𝑖+1 − 𝑡𝑖     , for middle intervals,  

𝑛6 = T - 𝑡5  for the last interval; T the total number of observations; T = 500. 

Graphically, our simulated data looks like this for each interval:  
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Figure1: plots of every local stationary time series  

The plots show that the series is stationary for each homogeneous interval, and the 

autocorrelation function (ACF) shows that the observations are independent on each interval. 
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Moreover, there is no slow decay in the ACF, which confirms that there is no sign of non-

stationarity over these homogeneous intervals. Next, let us look at the entire series consisting of 

the six stationary small series and their ACF. 

 

Figure2: A non-stationary time series composed by local stationary time series.  



23 

Above is the plot of the series, below is its autocorrelation function. The first graph in figure2, 

shows different structural breraks; it illustrates how the series is composed by small chunks that 

have their own specific distributions, and it clearly shows where the break-point on the graph is. 

From the graph we observe that there is a change in mean and variance of the series at some 

points, but it is not always easy to tell exactly from the graph what time that happened, especially 

when the change is not very significant; that is why we need some methods that locate the exact 

point where the structure of the series changed.  

The second graph in figure2 illustrates the structure of an ACF that is a typical example of an acf 

of a non-stationary time series. This means that when local stationary series are combined 

together they may result in a nonstationary time series, as it is the case on the graph above. 

Note: We know that the data was simulated randomly from a normal distribution; So, there is no 

assumption of linear dependence. As a result, the structure observed in the autocorrelation 

function is a result of structural break in the series. 

In conclusion, it is generally known that the structure of financial time series may change at any 

time causing the series to have different structures during some periods of time. This means that 

the acf that decays slowly  in financial time series should not be considered to be a result of 

linear dependence but it is caused by the change in the mean and variance of the series. 

2. Monte Carlo simulation 

Monte Carlo method or Monte Carlo simulation is a technique that is based on repeating random 

processes or other processes with uncertain outcomes to create a set of all possible outcomes of 

the experiment; generally, it is used to study the distribution of all outcomes (Harrison, 2010). 
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Monte Carlo simulation can be used in an optimization problem, forecasting, and other problems 

dealing with risk analysis. The most important feature of Monte Carlo simulation is that it 

provides not only possible outcomes of the experiment, but it also provides the likelihood of each 

outcome. This is very important in stochastic optimization problems where the output of the 

algorithm depends in an non-deterministic way on the starting value.  

In Risk analysis, Monte Carlo method provides possible results from your decision, and their 

respective likelihoods so that decision makers may consider the risks they have before making 

certain decisions. 

This is the same idea in forecasting; since we are estimating an uncertain value by using the 

historical values or based on the experience, to predict the future, there is some uncertainty but 

the model does not tell us how likely our estimate is. So we use Monte Carlo to provide a range 

of estimates with their likelihoods so that we may choose the one that is more likely, or just to 

know how likely our estimate is. There are many other ways Monte Carlo simulation may be 

applied; these were just some examples. 

So, this will help us build a frequency distribution of break-points to see how many times the 

minimum BIC corresponds to the true model, or to calculate the expected number of breaks and 

compare it to the true model. Recall that in simulation study we know the true model, the true 

number and position of the breaks-points. 

In addition, from Monte Carlo outcomes we can figure out how frequent the true model is 

obtained, which tells us about the performance of our methodology. For a better assessment of 

our methodology, we performed Monte Carlo simulation study using different sample size. 
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Furthermore, we can explore the distribution of BIC’s to see how frequent the model with breaks 

gives us smaller BIC compared to the model without breaks. 

3. Results of Monte Carlo method on simulated data 

In these results, we want to see how likely we are to locate the true break-points from the true 

model we defined above.  

Remark: In our simulation study, we have realized that in the optimization process using an 

initial vector with one break-point generally gives the smallest BIC compared to the BIC 

obtained by using an initial vector with a different number of break-points. This initial break-

point can be at any reasonable location of a break-point as defined earlier. 

Table3: Monte Carlo results from simulation study with T = 500 

Number of 

breaks 

Set of breaks frequencies percent 

5 90 175 245 320 400             963 96.3% 

6 90 175 245 320 331 400        16 1.6% 

4 90 175 245 320 12 1.2% 

1 6,7,8 4 

2 

3 

 

.9% 

 

Since the true model was 𝑡1 =90, 𝑡2 = 175, 𝑡3 = 245, 41 = 320, 𝑡5 = 400, the above results shows 

that 96.3% of the time we can estimate correctly the true model. Also, with the true number of 

break-points being five, the expected number of break-points obtained by our method is 4.968, 

which is not really different from five we have in the true model.  

For T =300 and n= 400 we have the following results respectively: 

True model: 𝑡1   = 50 ,  𝑡2 = 115, 𝑡3  =   165, 𝑡4  =  200, 𝑡5 =  240 



26 

Table4: Monte Carlo results from simulation study with T = 300 

Number 

of breaks 

Set of break-point frequencies % 

1 6,7,8 15 1.5% 

6 50 115 165 168 200 240 3 0.3% 

7 50 115 165 168 200 213 240 

 

535 53.5% 

8 50 115 165 168 200 213 238 240 

50 115 165 168 200 214 238 240 

50 115 165 168 200 220 238 240 

227 

188 

27 

 

44.2% 

9 50 115 165 168 200 214 236 238 240 

 

3 0.3% 

10 50  66  68 115 165 168 200 213 238 240 

 

2 0.2% 

 

For n = 300, the expected number of break-points is 7.361 

 Table5: Monte Carlo results from simulation study with T= 400 

Number 

of breaks 

Set of breaks frequencies percent 

1 6,8,10 7 .7% 

4 80  165  235  300 3 .3% 

5 80 165  235  300  340 (true model) 214 21.4% 

6 80 103  107 165  235  300 18 1.8% 

7 80 103  107  165  235  300  340 570 57% 

8 42  45   80  103 107  165  235  300 17 1.7% 

9 42  45   80  103 107  165  235   300 340 165 16.5% 

11 42  45   75  77  80 103 107 165 235 300 

340 

6 6% 

 

For T = 400, the expected number of break-points is 6.829. 

Note:  in the above three tables the frequencies represent how many times each of those  set of 

break-points was found to be the one that minimize the BIC. Our purpose is to see how likely 

each set of break-points is to minimize the BIC. 
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Remarks: When keeping fixed means and variances but changing the number of data points in 

our simulation study, we realize that for samples of a size less than 500, The BIC is likely to 

choose the model with more break-points. For example with T = 300, T =400 we have the 

expected number of break-points 7.361 and 6.829 respectively. But with T≥ 500, the expected 

number of break-points is very close to five.  

Note that in all of the above cases, when the series is broken into homogeneous intervals the BIC 

is smaller than the one for the model that ignores the structural changes, and considers the entire 

series to be stationary. 

From the above results, we can deduce that: 

1. For a small sample size, the BIC is likely to select a model with more breaks; it prefers 

the model with more parameters. In this case, we can correctly estimate the time when 

there is a change in mean, but with additional change points that we did not have in the 

true model.  

2. With the sample of five hundreds and above, we can correctly estimate the true locations 

of the break-points without other additional break-points at more than 90%.  

3. With T ≥ 500, the expected number of parameters, break-points, is most of the time the 

same as the true model or almost the same; which means that with T≥ 500, this method 

is efficient in estimating the structural break in a time series. So, we can use it to estimate 

the time when there has been a change in mean and variance of a time series. 

4. According to the above percentages, with T ≥ 500 more that 85% we have obtained 

exactly the true model, and notice that with five breaks, the expected number of breaks is 

4.968 when   T =500 and 5.075 when T =1000. From the above results, we have 
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evidences that this method does a great job in estimating the time where there is a 

structural change in a time series. 

III.  Applying the methodology to the real data. 

The real data used in this paper is the S&P 500 returns given as percentages, collected from 500 

leading companies in leading industries in the economy of the United States of America. In this 

paper we are using a time series data from 2006-11-03 to 2016-10-18 containing 520 

observations that are weekly data from  Monday to Friday. The following is the plot of the data:  

Figure3: plots of the log of absolute return 

This figure shows that at some points, the structure of the series might have changed; either in 

the mean or in variance. So, we want to know how many times these changes have occurred and 
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when it occurred by using our method, which consist of simulated annealing optimization to find 

the minimum BIC and estimate the parameters. The following table illustrate the results: 

Table6: Summary of the real data results  

Number of breaks Set of breaks BIC frequencies 

1 More than 50 positions 784.25≤ BIC ≤ 

787.8128 

10.4% 

2 303  491 785.5484 8.6% 

3 100 109 159     759.5484 66.9% 

4 100 109 159 500 755.3354 9.9% 

5 100  109 159 477 494  

100  109  159 334 350 

757.8098 

755.1888  

4.2% 

 

Note: for the real data we repeated the process a thousand times by changing the initial starting 

point to see how simulated annealing performs starting at different locations. Recall that in our 

simulation study we have realized that the initial vector with one break-point gives a better 

solution than starting with many initial break-points. So, to find the results we have above for the 

real data, every time we started with one random initial break –point and repeated the process a 

thousand times.   

Remark: As discussed above, using an initial vector with one break-point generally gives better 

results compared to the results obtained by using initial vector with a different number of break-

points. To obtain the above results in table5, we tried different initial positions to see which one 

gives the lowest BIC.  

Looking at the above table, we realize that the smallest BIC is 755.1888, which tell us that based 

on the values of BIC, the best model among all of the above candidates is the one with the 

following five break-points: t1  = 100, t2  = 109, t3  = 159,  t4  = 334,  t5  = 350, since it is 
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the one that gives the lowest BIC. Notice that if we ignore the change points in the model, and 

calculate the BIC, the BIC is always bigger than what we get with the model divided into locally 

stationary models. For this data, the BIC for the model with no break is 787.8128, which is 

significantly bigger than the model with two to five breaks.  

We can summarize our model in the following table:       

Table7:  Explicit real data results  

Homogeneous 

interval 

Homogeneous interval 

With the corresponding time 

Number of 

observations 

mean variance 

1 to 100 2006-11-03 to 2008-09-26 100 0.03339238 1.518884 

101 to 109 2008-10-03 to 2008-11-28 9 2.08091 0.2323811 

110 to 159 2008-12-05 to 2009-11-13 50 0.7478358 0.8301838 

160 to 334 2009-11-20 to 2013-03-22 175 -0.01794629 1.539549 

335 to 350 2013-03-29 to 2013-07-12 16 0.352495 0.182704 

351 to 520 2013-07-19 to 2016-10-14 170 -0.3011363 1.785894 

 

The purpose of the bove table is to show how the mean and/or variance changes from one 

interval to an other; this can  be seen by looking at the last two columns of this table. The results 

show that there have been a significant change in mean everytime we move from interval to 

another. Again, we can see that the variance has also changed even if the cahnge is not as big as 

the one occurred in mean.  
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V.I. Conclusion and direction on future researches 

1. Conclusion 

The main goal of this paper was to propose a new method to locate the break-points in a time 

series by using simulated annealing optimization process to find a set of break-points 

corresponding to the minimum BIC. 

We observed from our simulation study that with big samples, T ≥ 500, about 90% of time we 

can correctly locate the exact break-points, the true model. When we get a different set of break-

points than the true model, it’s most likely the true model with some additional breaks, or almost 

all of the break-points from the true model without one or two of them. With this big sample 

size, almost all of the time, the BIC is likely to choose the true model as the best model over the 

other models with less or more breaks. 

With a sample size less than 500, the BIC is biased; it is likely to choose a model with more 

break-points. So in this case, the BIC is smaller for models with more break-points. So, in 

general, when the size of the data is less than 500, BIC is not doing a good job as a model 

selection criterion. Hence, for small data sets it is not advisable to use BIC as a model selection 

criterion.  

On the other hand, if you are told in advance that the series has a certain number of break-points, 

you can estimate these change-points by only using the maximum likelihood estimation but this 

works only with small samples with few breaks because it is when we can explore all possible 

positions of these break-points. So, since in reality we do not know how many breaks we have, in 

this paper we used simulated annealing to give opportunity to any number of break-points to be a 

candidate to our solution, but it’s not the only way to find the minimum BIC. 
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The results we got from the real data, S&P500 weekly data on price index return, has shown that 

we can actually locate where the change in mean and /or in variance occurred. The results we 

have from table 5 show that the structure of the series has significantly changed over time 

especially in variance. Notice that even if by looking at the plot you may see some other times 

where the structure may seem to have changed, but if the change is not significant it’s not likely 

to be identified as a break-point.  

2. Directions on future research. 

Recall that the main purpose of this paper was to find the time when the structure of the series 

changes, which allows us to divide the series that is not stationary into smaller stationary series. 

This was done by minimizing the BIC. The issue with this is that the function we are 

minimizing, BIC, tends to produce models that include also spurious break-points, at least for 

small sample sizes.  

Notice that in this method AIC is worse than BIC, since it has a smaller penalty term in terms of 

parameters, so it will choose the model with more parameters than BIC does.  According to all of 

our results, more work is needed to find a model selection criterion that works for any size of the 

data. For future work, our suggestions to solve this problem of model selection is assessing the 

performance of these different models by comparing their predictive accuracy or use other model 

selection criterion such as Bayesian model selection. Bayesian model selection will give us the 

evidence from the data about a given number of break-points; in other words, we want to 

calculate posterior model probabilities: the probability of each model given the data, so we can 

choose the model that is more likely based on the data and not the one corresponding to the 

minimum BIC. In addition, we want to compare the model with no break-points, the non-
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stationary model, with the locally stationary model considering the structural change in the 

series, but this comparison cannot be accurate by using BIC because it is in favor of the locally 

stationary model, the one with more parameters.  
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