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Abstract

Outliers and structural breaks occur quite frequently in time series data. Whereas outliers

often contain valuable information about the process under study, they are known to have

serious negative impact on statistical data analysis. Most obvious effect is model

misspecification and biased parameter estimation which results in wrong conclusions and

inaccurate predictions. Structural time series consist of underlying features such as level,

slope, cycles or seasonal components. Structural breaks are permanent disruptions of one or

more of these components and might be a signal of serious changes in the observed process.

Detecting outliers and estimating the location of structural breaks has progressively

become monumental both as a theoretical research problem and an essential part of applied

data analysis. Among numerous applications include finance, industrial manufacturing,

medical informatics, severe weather prediction. Given that these data arrive rather

frequently and sequentially in time, fast reliable and accurate detection techniques are

required. We propose a model from class of state-space models of the form yt = f(Xt, ψ, vt)

and Xt = g(Xt−1, ψ, wt) where
{
Xt

}
t≥0 is a hidden Markov state process. The inference of{

Xt

}
t≥0 depends on the observation process {yt}t≥1 and the parameter vector ψ, whose

elements are usually unknown. The innovations vt and wt are conditionally Gaussian given

the precision parameter λ and auxiliary state ω. We employ sequential Monte Carlo

techniques to approximate the joint target distribution p(X0:t, ψ|y1:t). The posterior

estimates for the auxiliary states ω will be used to identify outliers and structural breaks.

The results prove that the algorithm is comparable to traditional and computationally

expensive MCMC and superior to regular techniques such as Exponentially Weighted

Moving Average (EWMA), Shewhart, and cumulative sum (CUSUM) control charts
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Chapter 1

Introduction

Time series analysis involves data - often continuous measurements - collected or observed

sequentially in time. We denote the univariate data by yt ∈ R where t ∈ T is the time

indexing when the data was observed. The time t ∈ T can be discrete in which case T = Z

or continuous time where now T = R. For a multivariate data we have yt ∈ Rm where yt =

(yt,1, yt,2, · · · yt,m ) . For simplicity of the analysis we will consider only discrete time series.

Examples of time series data include stock market returns, oil production see Figure 1.1,

data obtained from http://www.bp.com/en/global/corporate/about-bp/

statistical-review-of-world-energy-2013.html

The main aim of time series analysis is to create a mathematical model which will capture

the underlying features of the observed data and help increase the understanding of

generating probabilistic mechanisms and the dynamic of the observed series. Once the

model fits the data, the analyst most times may be interested also in parameter estimation

and forecasting. During the analysis, stochastic homogeneity of the data is assumed.

Disruptions of stochastic homogeneity of the data might be a signal of serious changes in

the process observed. Such changes therefore, need to be detected as soon as data is

obtained. Time series data are often faced with such abrupt disruptions, some of which are

temporary while others are permanent.

Structural time series model constitute of underlying states which include level, slope,

seasonal, cyclic and irregular random components. The trend component represent long

1
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Figure 1.1: Global oil production from 1965 to 2012

term trend and usually constitute slope and intercept components. The seasonal

component is the seasonal variation, cyclic component is repeated but non-periodic

fluctuations and the residual make up the irregular random components. Time series of UK

gas consumptions from 1960 to 1980 is displayed in Figure 1.2.
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Figure 1.2: UK Quarterly gas consumption, from 1960 to 1980 in Millions of therms

To demonstrate time series decomposition,the UK gas series is used broken down into

various components. Results are shown in Figure 1.3. The first chart is the observed data

process, a quarterly time series of length 108. The second chart is the trend of the data and

the third is the seasonal components. The last chart is the remaining components after the

trend and seasonal factors have been removed, usually referred to as irregular components.
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Figure 1.3: Time Series Decomposition

A basic structural time series model is of the form

yt = Tt + Ct + St + εt, ε ∼ N (0, σ2)

where T is the Trend, C is cyclic, and S is the seasonal component. Any structural times

series model can easily be represented in state space form (West & Harrison, 1989) and the

model could be formulated as a regression with time varying coefficients (Petris, Petrone, &

Campagnoli, 2009). Details of the state space representation are presented in Chapter 3.

Structural breaks (Harvey & Koopman, 2005) are permanent shifts which occur whenever

there is a change or disruptions in one or more of these components(Perron, 2006). Figure

1.4 shows permanent upward and downward shifts in a time series.
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Figure 1.4: Permanent upward shift (left) and downward shift (right) in a Time Series

These permanent disruptions might be a signal of serious changes in the observed process

and they are of considerable importance in the analysis of time series variables. The

structural breaks occurs for any number of reasons including economic crises, changes in

institutional arrangements, war, policy changes and regime shifts. For example, the

combined effects of the Iranian revolution and the Iraq-Iran War in 1979 and 1980 caused a

major drop in oil production in the Middle East, see Figure 1.1.

Figure 1.5 is plot of series of annual volume of discharge of the Nile River at Aswan from

1871 - 1970, given by (Cobb, 1978), which reveal a permanent drop of annual volume of

discharge of the Nile River at Aswan from the year 1899. This sudden drop was largely due

to the effect of Aswan dam, that was completed at that time

From the plot of UK quarterly gas consumption in Figure 1.2 there is a noticeable

disruptions in the quarterly or seasonal components in the third quarter of the year 1970.

Detecting and estimating the location of structural breaks in time series has become

5
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Figure 1.5: Annual volume of the Nile River from 1871 to 1970

increasingly important as both a theoretical research problem and a necessary component

of applied data analysis.

An outlier or anomalous data point is defined as an observation in a dataset which appears

to be inconsistent with the remainder of that set of data (Barnett & Lewis, 1994). Extreme

values in a series may or may not be outliers and may arise as a result of either gross errors

–due to faulty measurements, recording or typing errors –or they are true outliers.

Outliers occur frequently in measurement data and may have severe effects on model fitting

and parameter estimation, leading to a mistaken conclusion and inaccurate predictions. It

is therefore very important to identify them before modeling and analysis. Having said

that, it is also worthy noting that, outliers often contain valuable information about the

process under study or the data generating mechanisms. The outliers therefore require

careful investigation and before considering possibly removing them, the researcher ought

to understand why they occurred and the likelihood of their recurrence.

Outlier and structural break detection is a very important undertaking in many fields

6



especially in safety critical environments (Ardelean, 2012). An outlier may indicate

anomaly through which a significant flawed outcome may arise. In analysis of vital

variables of patients in intensive care for example, a small fault may lead to life threatening

consequences. In manufacturing industries it is important to detect flaw in production line.

While monitoring the usage of credit card, a sudden change in usage pattern may indicate

credit card fraud. Similarly, a sudden change in monitoring process of mobile phone usage

may indicate stolen mobile phone airtime. Other fields where outlier and structural breaks

detection methods have been suggested include finance (Andreou & Ghysels, 2009) clinical

trials (Penny & Jolliffe, 2001) and medical informatics (Laurikkala et al., 2000), voting

irregularity analysis, severe weather prediction (Zhao, Lu, & Kou, 2003), geographic

information systems (Shekhar, Lu, & Zhang, 2003), economics (Koop & Potter,

2000),(Perron, 2006).

In order to obtain a lucid statistical data analysis it is important, as an initial step, to

detect outlying observations and structural breaks, if any, in the data.

Most existing outlier and structural detection techniques, however, deal with static data or

are done off-line. There are different strategies to detect outlying observations including

clustering algorithms, regression based statistics, likelihood ratio test and cumulative sum

of observed residuals.

There is voluminous amount of work on structural breaks and outlier detection over the

last 50 years in the statistics and other related fields literature, although the on-line

approach - where the goal is to detect an outlier or whether a structural change has

occurred, in real time- is minimal.

In today’s world where, in most cases, data arrive rather frequently and sequentially in

time a fast, reliable and accurate detection methods are required for this online analysis.

Methods that can be able to handle any level of noise and provide robustness against

outliers. To that end, this dissertation’s focus is on sequential data and online detection of

outliers and structural break, and my main objectives was primarily to

7



� Design an algorithm to make inference sequentially for the model for outliers and

structural breaks. The model used is decribed in details in Chapter 5

� Implement the algorithm in a statistical software and

� To obtain good results in practice on simulated and real data.

The dissertation is organized as follows: Chapter 2, we discuss various method that are

available for detecting outliers and structural breaks in array of data and online. Chapter 3

emphasizes the State space models. We review the existing literature including the highly

celebrated Kalman filter and Forward Filtering Backward Sampling (FFBS) algorithms .

In Chapter 4 we discuss Sequential Monte Carlo methods, Chapter 5 we introduce the

model for structural breaks and outlier for online data, Chapter 6 we evaluate our

algorithm with simulated data and real data and provide some results. These results are

compared with output from MCMC algorithm and finally the dissertation ends with some

discussion in Chapter 7.
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Chapter 2

Outliers and Structural breaks: Review
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Figure 2.1: Time series data showing an outlier at time t= 100 and possible structural break
at time t = 153

Most studies on outliers classify them as either (i) additive outlier - where only one

observation is affected and after which the series return to its normal path, or

(ii)innovative outlier which influences subsequent observations from its initial position.

There are various strategies and approaches which has been developed to deal with outliers

and structural breaks in statistical data. Most of these methods are static batch-type

techniques which employs the full data set in detecting existence of outliers or breaks.
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Sequential detection methods have also been proposed in some analysis, albeit minimally.

Detection of outliers is simple when there is no serial dependence on the observations. In

this case the procedures that involves detecting instabilities in mean and variances are of

vital importance. The extreme observations -the very large or very small- are often treated

to be inconsistent with the assumed generating mechanism or distribution and hence

require to be tested for outlyingness. A number of outlier detection techniques over static

data have been proposed (Barnett & Lewis, 1984), (Hodge & Austin, 2004).
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Figure 2.2: Univariate data: The box plot identifies the outlying observations

The simplest and traditional statistical outlier detection technique is the use of the box

plots. They provide graphical representation that allows the researcher to identify outlying

observations in both univariate and multivariate data sets. The box plots make no

assumption of the distribution of the data and they plot, among others, the lower and

upper extreme values. The outliers are identified as observations beyond these two extreme

values. A univariate data set is displayed in Fig 2.2 by a skewed histogram and an overlaid

box plot from which the three outlying observations are clearly identifiable. Figure 2.3
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shows a basic scatterplot from bivariate data obtained from selected cities in US. A

negative correlation between mortality and education level is well captured and one of the

superimposed box plots clearly uncovers the presence of an outlier.
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Figure 2.3: Outlier in a bivariate data

The distance-based approaches (Knorr, Ng, & Tucakov, 2000) computes and utilizes

distance between two data points or examines the spatial proximity of each data point in

the data space and if its proximity deviates considerably from the proximity of the other

data then a data point is considered an outlier. These techniques do not make prior

assumptions of the data distribution model. They are simple to implement but, since they

are based on calculation of distances between all observations, they suffer from Curse of

Dimensionality ; that is, computational complexity increases as the dimension of data m

and number of observations T increases. The clustering algorithms such as k -Nearest

Neighbors heirechical and k-means algorithms features prominently in this approach.

Figure 2.4 shows some outliers from a popular dataset Iris using k -means clustering

approach.
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Figure 2.4: Outliers with k -Means Clustering

Statistical-based approach (Rousseeuw & Leroy, 2005), assume data follows a certain

statistical model. In this case, the probabilistic tests, based on the model, are carried out

and outliers are identified as say, points that have a low probability to be generated by the

overall distribution.

In many applications it is common for time series data to be serially dependent. There is

high interest in current time series research to incorporate structural dependence of the

observations in the analysis. This is the fundamental concept of this dissertation.

A significant literature exist which tests for structural breaks or non-linearity in time series.

As hypothesis testing problem for detecting structural breaks, the null is set up to describe

series with structural stability while the alternative contains one or more structural breaks.
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2.1 Statistical Process Control (SPC)

The study of structural breaks in time series stemmed from quality control, but is now an

integral part of a wide variety of fields. These applications include economics (Rodrigues &

Rubia, 2011) and finance (Severin & Schmid, 1998), education, medicine (Bottle & Aylin,

2008), health services (Woodall, 2006).

SPC methods are used to detect when a stable process- one with fixed mean level and fixed

variation- departs from stability. Most traditional diagnostics tools, like Shewhart control

charts, popular in Statistical Process Control are used to define a standard of quality for

manufacturing process and to determine whether the determined quality is being

maintained by the process. The most important factor is the variability in the quality of

the finished product. No matter how much attention is paid towards quality of a product,

a certain amount of variability is unavoidable and is a function of random forces and likely

to be beyond control. Other methods include Change point detection (CPD) models whose

goal is recognizing regime change events and adapting the predictive model appropriately.

The Bayesian change point analysis assume a change point model of the parameters,

integrating out the uncertainty in the parameters, rather than using a point estimate.

2.1.1 Quality Control Charts

The quality control charts, suggested by (Page, 1954) and detailed in (Hawkins & Olwell,

1998) and (Montgomery, 2007) were originally designed for industrial and manufacturing

processes to define a standard of quality and determine whether that standard is being

maintained by the process over time. The idea of standard control charts is to take the

individual quality measures or statistics- usually means- of subsamples of these measures

and plot them on a marked chart with control limits from the target value. It is on these

plots that the unusual patterns or departures from state of statistical control will be

discovered. We devote the next section to review some of the most common control charts.
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2.1.2 Shewhart charts

One of the most widely used is the Shewhart control charts (Shewhart, 1926) which

monitor the production process and detect any significant deviation from a chosen quality

characteristic of the products. A sample of fixed size is drawn at each regular time interval

and desired statistic is computed. A sequence of such statistics are represented graphically

in the form of a control chart. When a statistic falls outside of pre-determined control

limits e.g. ’three-sigma control limits’, the production process, at that time, is said to be

out-of-control and a warning sign is raised. See figure 2.5.

Shewhart charts are sensitive to large process shifts however the probability of these charts

detecting small shift fast is quite small.
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Figure 2.5: Mean QC Chart

2.1.3 Cumulative Sum (CUSUM) charts

Another most widely used control charts is the cumulative sum (CUSUM) (Page, 1954)

charts. They are procedures for mean and uses cumulative history, or the past information
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of the process, to help in detecting small systematic departures from its normal and stable

condition. These changes are detected easily and faster than in the standard Shewhart

charts, however for large, abrupt shifts Shewhart chart detect much faster. The CUSUM

are non-parametric and do not make use of a particular time series model fit.

The CUSUM charts are build on principles of Maximum Likelihood Estimation (MLE).

The standard CUSUM chart for controlling the process mean takes samples from the

process at a fixed interval and uses a control statistic based on cumulative sum of

differences between the sample mean and the target value. The procedure for CUSUM is as

follows: Suppose the quality measurements X1, X2, . . . are taken sequentially with time,

and assume that Xi is normally distributed with mean µ and variance σ2, that is

Xi ∼ N(µi, σ
2) i = 1, 2, . . . and the variance σ2 is known and remains constant. The idea

is that, if the process is in control then any mean µi is equal to the target mean µ0. This is

the condition that need be monitored.

The 2-sided CUSUM chart is based on the cumulative statistics, Si and Ti, i = 1, 2, . . .,

where

Si = max(0, Si−1 + Zi − k)

Ti = min(0, Ti−1 + Zi + k),

where Zi = (Xi−µ0)
σ

and k > 0. The cumulative sums is given by Ci =
∑i

j=1 Zj, i = 1, 2, . . .

As the number of measurements are taken the probability that the CUSUM value may

drift into extreme values increases. This is corrected by the reference value k = δσ
2

where δ

the amount of shift in the process mean that we wish to detect. The process is out of

control if either Si or Ti exceed the control limit determined by a value h > 0. The choice

of h is dependent on how sensitive the method is meant to be. The smaller it is the quicker

will any departure from target be detected but also the more likely a false alarm will occur.

In most cases h is chosen to be five times the process standard deviation or computed by
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h = σ
δ
ln
(
1−β
α

)
where α is the probability of false alarm and β is probability of failing to

detect a shift in the mean when it has actually occurred. The CUSUM is expected to

signal whenever SN ≥ h or TN ≤ −h. The value N is popularly known as the run length

and defined as the number of measurements between each false alarm when the process is

still in control. Its average value is known as the average run length (ARL).

Example 1 To illustrate this consider series of 20 observations whose first 15 are sampled

from standard normal distribution and the rest are drawn from a normal distribution with

mean µ = 1 and σ = 1. We want to detect the upward shift in mean, so δ = 1 and therefore

k = 0.5. From previous discussion h = 5

The simulated values are shown in the Table 2.1

The CUSUM chart for this data is shown in Figure 2.6 and it is clear that the

out-of-control signal is given after the 18th observation.
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Figure 2.6: CUSUM Chart
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Table 2.1: Simulated data and associated CUSUM statistics

i Xi Ci Si Ti

1 -2.15 -5.15 0.00 0.00
2 0.95 -1.20 0.45 0.00
3 1.43 2.38 1.38 0.00
4 0.40 1.83 1.28 0.00
5 0.49 0.89 1.27 0.00
6 1.42 1.91 2.19 0.00
7 0.02 1.45 1.72 0.00
8 -1.15 -1.13 0.06 -0.74
9 0.28 -0.87 0.00 -0.16
10 -1.24 -0.96 0.00 -0.14
11 0.07 -1.16 0.00 0.00
12 -0.48 -0.41 0.00 0.00
13 0.88 0.39 0.38 0.00
14 1.18 2.06 1.06 0.00
15 0.62 1.80 1.18 0.00
16 1.68 2.30 2.36 0.00
17 1.53 3.21 3.39 0.00
18 1.25 2.77 4.13 0.00
19 2.53 3.78 6.17 0.00
20 0.50 3.03 6.17 0.00
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2.1.4 Exponentially Weighted Moving Average (EWMA)

This control scheme, introduced by (Roberts, 1959), utilizes the statistic At,

At = φyt + (1− φ)At−1, 0 < φ ≤ 1, t = 1, 2, . . .

and some determined upper and lower limits. The sequentially observed data yt can be the

actual observed value or the sample mean from designed sampling strategy from the

process. A0 is often taken to be the process target value, µ0 . The control limits are

determined as follows:

µ0 ± Lσ

√
φ

(2− φ)
(1− (1− φ)2t)

where L is the width of the control limits. Both φ and L are chosen after specifying desired

ARL and the shifted anticipated. The EWMA have proved to be effective against small

shifts but, just like CUSUM, does not react quickly to large shifts as compared to

Shewhart chart. The comparison of the 3 charts is displayed in Figure 2.7.

Example 2 We use the same data as in Example 1, and let µ0 = 1, φ = 0.1, L = 2.7. The

results are displayed in Figure 2.7

In a serially dependent processes, parametric models are often used to describe explicitly

the structural dependence assumed in the data while at the same time seek potential

structural breaks. Most commonly used model are class of Autoregressive Moving Average

(ARMA) Tsay (1988) and Generalized Autoregressive conditional Heteroscedasticity

(GARCH)(Bollerslev, 1986) type models.
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Figure 2.7: (a)Shewhart,(b) CUSUM and (c) EWMA Chart

2.2 ARMA and GARCH models

The ARMA model for outliers proposed by Box and Tiao (1975) involves the unobservable

Zt related to observed series yt by the function

yt = f(t) + Zt

where f(t) is parametric function that represent exogenous disturbance of Zt, and the Zt is

modelled by ARMA model

φ(B)Zt = ϕ(B)at

where φ(B) = 1− φ1B − φ2B
2, . . . φpB

p and ϕ(B) = 1− ϕ1B − ϕ2B
2 . . . ϕqB

q are

Autoregressive and Moving Averages polynomials in B of degrees p and q respectively. B is

backwardshift operator such that BZt = Zt−1, {at} is a sequence of independent normally

distributed variables with mean zero and variance σ2
a

19



The function f(t) is designed

f(t) = ω0
ω(B)

δ(B)
ξ
(d)
t

where ω(B) = 1− ω1B − ω2B
2 − . . .− ωsBs and δ(B) = 1− δ1B − δ1B − . . .− δrBr are

polynomials in B with degrees s and r respectively. ω0 is the magnitude of the outlier or

the initial jump of the series and ξ
(d)
t , is an indicator variable that signifies the occurrence

of outlier or structural break at point d .

For an outlier (additive) model, ω(B) = δ(B)

ξ
(d)
t =


1, t = d

0, t 6= d

To detect a structural change, the δ(B) is taken to be equal to 1 and

ξ
(d)
t =


1, t ≥ d

0, t < d

Other special cases for ω(B)/δ(B) are discussed in (Box & Tiao, 1975) and (Tsay, 1988)

In most cases the parameters involved in these models are usually unknown and practically

they are estimated from the data. Outliers and structural breaks problems have been

considered as hypothesis tests with null describing the model with no outlier or breaks.

The alternative contains one or multiple outliers or breaks. Under null hypothesis, the

maximum likelihood estimates (MLE) are consistent, and often suggested, and can

therefore be used to estimate the parameters and to design relevant test statistics (Aue &

Horváth, 2013). These test statistics are used to identify outliers or structural breaks if

any. The Weighted Likelihood estimation method also provide efficient and robust

estimators for ARMA models. The idea of outlier detection using likelihood ratio test -
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when the location and the type is known- in autoregressive processes was first proposed by

(Fox, 1972)

(Ardelean, 2012) proposed the use of the (GARCH) process in detecting outliers and

structural breaks in time series. A real-valued discrete time stochastic process (Xt)t∈Z is a

GARCH(p,q) process if:

Xt|Ft−1 = σtεt,

σ2
t = (σt(ψ))2 = α0 +

p∑
i=1

αiX
2
t−i +

q∑
i=1

βiσ
2
t−i

where Ft denote the information set of the process up to time t, and the innovations εt is

sequence of i.i.d random variables from some distribution G with EG(εt) = 0 and

EG(ε
2
t = 1). ψ = (α0, α1, . . . α0, β1, . . . βq), α0 > 0, αi ≥ 0, i = 1, . . . p and βj ≥ 0, j = 1, . . . q

Following (Ardelean, 2012), both the outliers can be modeled as follows:

additive:

Yt = Xt + εIt(τ)

Xt|Ft−1 ∼ N(0, σ2
t−1)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
i=1

βiσ
2
t−i

innovational

Yt = Xt + εIt(τ)

Xt|Ft−1 ∼ N(0, σ2
t−1)

σ2
t = α0 +

p∑
i=1

αiY
2
t−i +

q∑
i=1

βiσ
2
t−i

where (Xt)t∈Z is the underlying and unobserved GARCH(1,1) process and (Yt)t∈Z is the
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observed process, ε ∈ R is the size of the outlier occurring at time time τ ∈ Z, and It(τ) is

an indicator function which is equal to 1 if τ = t and 0 otherwise. It is obvious from the

relation that GARCH(1,1) parameterizes the conditional variance in terms of ARMA(1,1)

To test for occurrence of outlier and structural breaks simultaneously the model is modified

such that

Yt = Xt + ε1It(τ)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
i=1

βiσ
2
t−i +

p∑
i=1

ε1+iIτ−i

where ε1 is the size of the outlier occurring at time τ and ε2, . . . εp+1 is the size of each

structural break. Due to the ARMA representation, the parameters in the model

ψ = (α0, α1, . . . αp, β1, . . . βq, ε1, . . . εp+1) can be estimated using MLE. By taking

ψ̂0 = (α̂0, α̂1, . . . α̂p, β̂1, . . . , β̂q) to be the restricted MLE and

ψ̂1 = (α̂0, α̂1, . . . α̂p, β̂1, . . . , β̂q, ε̂1, ε̂2, . . . , ε̂p+1) to be the unrestricted MLE, the likelihood

ratio test statistic, for testing the hypothesis of no outlier or break at time τ , that is

Ho : ε1 = ε2 = . . . = εp+1 = 0

can be computed, for every τ ≤ T , as

λτ = 2(logL(ψ̂0)− logL(ψ̂1)) ∼ χ2
(p+1)

2.3 Regression models

Regression models have also been used in modeling outliers and structural breaks.

Consider the general linear regression model

Yt = Xtβ + εt, εt
iid∼ N (0, σ2), t = 1, 2, . . . T.
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where Xt = (1, X1,t, . . . , Xp,t) is a vector of the intercept and p non-random explanatory

variables and β = (β0, β1, . . . , βp)
T are the regression coefficients.

These unknown coefficients are usually estimated by ordinary least-squares method

β̂ = (XTX)−1XTY, Y =


Y1
...

YT

 , X =


X1

...

XT


Outliers with respect to the explanatory variables are called the leverage points; they can

have adverse effect on the regression model. Leverage points do not necessarily correspond

to outliers and also their response variable need not be outliers.

The predicted or the fitted values, Ŷ are computed using the data matrix and the

estimated coefficients

Ŷ = Xβ̂

The ordinary residuals ε̂, is the difference between the predicted and the observed values

ε̂ = Y − Ŷ

are the widely used measures in identifying outliers in regression models. The techniques

available involve deleting rows with suspicious observation or leverage point and compute

statistics thereafter. Examination is then done on the effect of each row deletion on the

estimated coefficients and their estimated covariance structure, the predicted values, and

the residuals. Most common outlier diagnostics involve statistics mostly computed using

the estimated regression coefficients, are briefly discussed below
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2.3.1 Hat Matrix

The hat matrix denoted by H and defined as

H = X(XTX)−1XT

plays an important role in identifying outliers or leverage points. The diagonal elements hii

of H being the amount of leverage exerted by the ith observation on the ith fitted value.

The ith observation is an influential point when hii exceeds 2p/T , where p is the rank of the

X matrix.

2.3.2 Cook’s Distance

Cook’s Distance statistic proposed by (Cook, 1979)

Di =
(Ŷ(i) − Ŷ )T(Ŷ(i) − Ŷ )

ps2

follows Fp,T−p distribution, where Ŷ(i) = Xβ̂(i) with β̂(i) as the vector of estimated

regression coefficients with the ith row deleted, s2 is the estimator of σ2. The Di statistic

has a cut-off of 4/p and large values indicates an outlier or leverage point.

2.3.3 DFFITS

The DFFITSi is the difference between the fitted response variable, Ŷi from the full model

and the predicted values Ŷi(i) obtained after removing the ith observation from the dataset.

DFITTSi =
Ŷi − Ŷi(i)√
σ̂2
(i)hii

where hii is the ith diagonal element of the hat matrix, H. A value is considered suspicious

if |DFITTS| > 1 for small to medium data sets and for large data sets, if
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|DFITTS| > 2
√
p/T

2.3.4 DFBETAS

This is the change in the estimate of regression coefficients that would occur if the ith row

is removed.

DFBETASj(i) =
β̂j − β̂j(i)√
σ̂2
(i)(X

TX)−1jj

The cut-off value for DFBETAS for small to medium data set is 1 while in large data sets

a value |DFBETAS| > 2/
√
T is considered suspicious.

These numerical measures though effective in case of existence of single outlier, may fail if

more than one outliers exists. Moreover, when data is collected over time, serial

dependence is a significant component and therefore model assumption of independent

errors is violated and model can’t be used.

However if we allow for time-varying coefficients the now generalized regression, discussed

in Chapter 3, can be used to detect outliers and structural breaks in time series data.

2.4 Some Multivariate Outlier Detection Methods

2.4.1 Static data

In a multivariate data the classical approach in detecting outliers is to consider the

distance of a each observation as well as the shape and the size of the data. The shape and

size of multivariate data are expressed by the covariance matrix.

The basic statistical measure for outliers detection and which takes also into account the

covariance matrix is the Mahalanobis distance (Mahalanobis, 1936). The statistic is

computed using the estimate of multivariate location- usually the mean- and the sample

covariance matrix. If m-dimensional multivariate sample y = (y1, y2, . . . , yT ) is a random
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sample from multivariate normally distributed data with mean vector µ and covariance

matrix Σ, the Mahalanobis’ distance

MDt =
(
(yt − µ̂)TΣ̂−1(yt − µ̂)

) 1
2

identifies the observation that are very far from the centre of the data cloud or the

centroid. A test statistic for MDt is given by

(T −m)T

(T 2 − 1)m
MDt

which is approximate F distribution with degrees of freedom m and T −m.

Since the sample estimates µ̂ and Σ̂ are very sensitive to outliers, which the MDt is meant

to identify, they need to be estimated using a robust procedure in order to provide a

credible and reliable criterion. There is significant literature on robust estimation of MDt

(Franklin, Thomas, & Brodeur, 2000), (Peña & Prieto, 2001)

Due to calculations of the covariance matrix estimate, Σ̂, the Mahalanobis distance is

computationally expensive, with runtime O(T 2m), for large and high dimensional data sets.

Another popular statistical measure is the Euclidean distance

dx,y =

√√√√ T∑
i=1

(xi − yi)2

Both Mahalanobis and Euclidean distance measures are important ingredients in proximity

based techniques for outlier detection, such as clustering and k -Nearest Neighbors

algorithms.

2.4.2 Time series data

(Galeano, Peña, & Tsay, 2006) used m-dimensional vector Zt = (Z1,t, Z2,t, . . . , Zm,t)
T
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following the vector ARMA (VARMA)model

Φ(B)Zt = ϕ(B)at

where Φ(B) = 1− Φ1B − Φ2B
2 − . . .− ΦpB

p and ϕ(B) = 1−ϕ1B −ϕ2B
2 − . . .−ϕqBq

are m×m matrix polynomial of degrees p and q. B, like in the univariate case, is a

backward shift operator such that BZt = Zt−1 and at = (a1,t, a2,t, . . . am,t)
T is a sequence of

uncorrelated Gaussian random vectors with mean 0 and positive-definite covariance matrix

Σ Zt are related to the observed series Yt = (Y1,t, Y2,t, . . . , Ym,t)
T by the function

Yt = Zt +α(B)ωξ
(d)
t

where ω = (ω1, ω2, . . . , ωm)T is the size of the outlier, ξ
(d)
t is the indicator variable such that

ξ
(d)
t = 1 if t = d and zero otherwise. The matrix α(B) define the type of outlier with

α(B) = I indicating an additive outlier and if α(B) = ϕ(B)/Φ(B) indicates a multivariate

structural break. Other special cases of α(B) are discussed in (Galeano et al., 2006).

(Atkinson, Koopman, & Shephard, 1997) used the Gaussian State space model, details

given in Chapter 3, with regression variables through which shocks- outliers or breaks- were

introduced.
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Chapter 3

State Space Model

3.1 General State Space Model

State space models provide an effective basis for practical time series analysis and

forecasting (Durbin & Koopman, 2012), (Harrison & West, 1997), (Aoki, 1990).

The models are highly applicable in various fields and disciplines including computer vision

(i.e. tracking), control theory, econometrics, population dynamics. The state space model

involves two processes: the latent or unobserved Markov state process, {θt}t≥1, θt ∈ Rp

and the noisy observation process {yt; t ∈ N}, yt ∈ Rm that is related to the state process.

The state space model is specified through descriptions of the sampling distribution, the

state vector evolution, and the initialization of the state vector. See equations 3.1 and 3.2

The state vector contains all relevant information required to describe the system under

investigation. It may contain regression variables or components of time series such as level,

trend, seasonal or cyclic components. In tracking problems, for example, this information

could be related to the kinematic characteristics of the target object. In an econometric

problem, it could be related to monetary flow, interest rates, inflation, stock markets etc.

Conditional probability

The conditional probability of a variable a given b is defined

p(a|b) =
p(a, b)

p(b)
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from where Bayes’ rule follows quickly

p(a|b) =
p(b|a)p(a)

p(b)

or more conceptually

Posterior =
Likelihood× Prior

Marginal likelihood (evidence)

Conditional Independence

A variable a is conditionally independent of b given c, denoted by a⊥b | c, if

p(a | b, c) = p(a | c).

Let y1:t := (y1, y2 . . . , yt) represent all the data or information up to and including time t,

and θ0:t := (θ0, . . . ., θt) be state representation up to time t. The state space model are

based on two very important assumptions:

� conditional on the parameter ψ state process {θt}t≥0 is a Markov process; that is

p(θt|θ0:t−1, ψ) = p(θt|θt−1, ψ).

� yt depends only on θt and conditional on the state process {θt}t≥0, the {yt}’s are

independent. p(yt|θ0:t, y1:t−1) = p(yt|θt)

This conditional dependence is demonstrated in Figure 3.1.

The general state space model is defined by these two equations

yt|θt, ψ ∼ p(y|θt, ψ) (3.1)

θt|θt−1, ψ ∼ p(θt|θt−1, ψ) (3.2)

with initial density p(θ0|ψ) and the prior p(ψ) where ψ is a vector of parameters, usually

unknown.
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θ0 θ1

y1

θ2

y2

· · · θt−1

yt−1

θt

yt

θt+1

yt+1

· · ·

Figure 3.1: Structural dependence of state space model

The goal in statistical inference on state space models is, based on the available data, to

estimate the unobserved states and the unknown parameters in the model and predict the

states and/or future observations. The estimation of the state vector entails filtering and

smoothing problem. This inference is achieved by computing conditional and or marginal

distributions based on the joint distribution

p(θ0:t, ψ, y1:t) = p(ψ) p(θ0|ψ)
t∏

j=1

p(θj|θj−1, ψ)︸ ︷︷ ︸
p(θ0:t|ψ)

t∏
j=1

p(yj|θj, ψ)︸ ︷︷ ︸
p(y1:t|θ0:t,ψ)

(3.3)

Given data up to time t and assuming that ψ is known, the marginal distribution

{p(θt|y1:t)}t≥1 also known as the filtering density is obtained via Bayes’ rule as

p(θt|y1:t) =
p(yt|θt)p(θt|y1:t−1)

p(yt|y1:t−1)

To obtain an estimate of the states joint distribution p(θ0:t|y1:t), again, by Bayes’ rule we

have,

p(θ0:t|y1:t) =
p(θ0:t, y1:t)

p(y1:t)
=
p(yt|θt)p(θt|θt−1)p(θ0:t−1|y1:t−1)

p(yt|y1:t−1)

The marginal likelihood p(y1:t) can be obtained as

p(y1:t) =

∫
· · ·
∫
p(θ0:t, y1:t)dθ0:t

State smoothing involves going back in time and deriving the states values using all the

30



available data. The smoothing is achieved by the density p(θt|y1:T ) for t < T ,

p(θt|y1:T ) = p(θt|y1:t)
∫

p(θt+1|θt)
p(θt+1|y1:t)

p(θt+1|y1:T )dθt+1

For predicting or forecasting future states and observations, the k−steps (k ≥ 1) predictive

densities for the states and observation respectively, is given by

p(θt+k|y1:t) =

∫
p(θt+k|θt+k−1)p(θt+k−1|y1:t)dθt+k−1

p(yt+k|y1:t) =

∫
p(yt+k|θt+k)p(θt+k|y1:t)dθt+k

Parameter learning is achieved via the density p(ψ|y1:t).

For linear Gaussian models, all posteriors are Gaussian and the above quantities can be

computed analytically by using well established algorithms which include Kalman filter and

smoother (Kalman et al., 1960) and the Forward Filtering Backward Sampling (FFBS)

(Frühwirth-Schnatter, 1994). For non-linear and non-Gaussian models, computing the

above quantities in closed form is analytically intractable, and numerical approximation, in

particular Markov Chain Monte Carlo (MCMC), is required. However for online inferences

�where data arrive rapidly and frequently and hence fast and efficient updates of posterior

quantities is required �MCMC are ineffective.

3.2 Dynamic Linear Model (DLM)

Also known as Gaussian State Space Model, DLM is a class of state space models where

equations (3.1) and (3.2) both are linear and Gaussian (West & Harrison, 1989), (Harrison

& West, 1991) (Harrison & West, 1997). The model is specified by initial distribution
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θ0 ∼ N (m0, C0) and the equations

yt = Ftθt + vt vt ∼ N (0, Vt) (3.4)

θt = Gtθt−1 + wt wt ∼ N (0,Wt) (3.5)

where Ft and Gt are known m× p and p× p transition matrices. The possible

time-dependent quantities Ft, Gt, Vt and Wt may depend on a parameter vector ψ.

By allowing for time-varying coefficients we can show that DLM is a generalization of

linear regression model,

yt = Xtβt + εt, εt
iid∼ N (0, σ2

t ), t = 1, 2, . . . , T

where Xt = (1, X1,t, . . . , Xp,t) is a vector of the intercept and p non-random explanatory

variables and βt = (β0,t, β1,t, . . . , βp,t)
T and we model evolution of coefficients

βj,t = βj,t−1 + wj,t, j = 0, 1, . . . , p

which is a DLM with Ft = [Xt], θt = [β0,t, β1,t, . . . , βp,t]
T, Vt = σ2

t , and G = Ip, identity

matrix. (Petris et al., 2009)

The random walk plus noise also known as the local level model

yt =γt + vt vt ∼ N (0, V )

γt =γt−1 + wt wt ∼ N (0,W )

is the simplest DLM with m = p = 1 hence F = G = 1 and θ = γ and ψ = (V, W )
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3.2.1 Structural Time Series

Structural time series model is a linear combination of a random error component, ε �with

zero mean and a constant variance σ2
�and at least one of the three structural components,

namely; the trend (T), cycle (C), and seasonal (S) components.

The basic structural time series model is shown below

yt = Tt + Ct + St + εt, εt ∼ N (0, σ2) t = 1, . . . , T

Any structural model can be represented as DLM. For example, the locally linear trend

model which is of the form

yt = Tt + εt, εt ∼ N (0, σ2) t = 1, . . . , T (3.6)

and the linear trend is quickly derived from the deterministic function

Tt = Tt−1 + ρt−1 + ϑt (3.7a)

ρt = ρt−1 + ξt (3.7b)

where the innovations ϑt with zero mean and variance σ2
ϑ account for vertical or the

upward and downward shift of the trend. The innovations ξt have zero means and variance

σ2
ξ and they account for the trend’s change in slope. These innovations ϑt and ξt as well as

εt are mutually uncorrelated.

Using the equations (3.6), (3.7a) and (3.7b) we have a DLM with

G =

1 1

0 1

 , θt =

Tt

ρt

 , F =

(
1 0

)
, W =

σ2
ϑ 0

0 σ2
ξ

 , V = σ2

and ψ = (σ2, σ2
ϑ, σ

2
ξ )
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3.2.2 ARMA representation

A significant number of state space representations for ARMA models exist. For detailed

discussion on these representations, see (Petris et al., 2009), (Brockwell & Davis, 2009),

(Kitagawa & Gersch, 1996), (Kedem & Fokianos, 2002). To illustrate, lets consider the

data yt = xt + vt, vt ∼ N(0, Vt) where xt is unobserved autoregressive process of order p ;

xt =
∑p

i=1 φixt−i + εt, with εt ∼ N(0, σ2
εt). This is a DLM with

Gt =



φ1 φ2 φ3 · · · φp−1 φp

1 0 0 · · · 0 0

0 1 0 · · · 0 0

...
...

...
. . . 0

...

0 0 · · · · · · 1 0


, θt =



xt

xt−1

xt−2
...

xt−p+1


, wt =



εt

0

0

...

0


Ft = [1, 0, 0, . . . , 0, 0]

and ψ = (φ1, φ2, . . . , φp, Vt, σ
2
εt)

Since many linear models including ARMA models admit state space representation, the

statistical inference on state space models can be applied to both stationary and

non-stationary data. Moreover, the state space models provides components that are easier

to interpret unlike those from ARMA models.

When DLM is fully specified the state estimation, smoothing and or predictions as well as

observation predictions, can be carried out by using the Kalman Filter and Smoother and

FFBS algorithms. However when ψ is unknown, numerical methods �and in particular the

Monte Carlo methods�are required.
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3.2.3 Kalman Filter

Given the information available at time t, the Kalman filter(Kalman et al., 1960) is a set

of recursion equations- the predictions and updating equations- for determining optimal

estimates of the state vector θt.

First, let mt = E(θt|y1:t) be the optimal estimator of θt based on information up to time t,

and Ct = E[(θt −mt)(θt −mt)
′ |y1:t] be the mean square error (MSE) matrix of mt.

The prediction step takes place prior to arrival of the data at time t, and involves

predicting the states

p(θt|y1:t−1) =

∫
p(θt−1|y1:t−1)p(θt|θt−1)dθt−1

Given, at time t− 1, that θt−1 ∼ N(mt−1, Ct−1), then from (3.4) and (3.5), it follows

quickly that the parameters for the predictive distribution of θt, given the information up

to time t− 1, will be

p(θt|y1:t−1) ∼ N (m∗t , C
∗
t )

where

m∗t = E(θt|y1:t−1) = Gtmt−1

C∗t = E[(θt −mt−1)(θt −mt−1)
T|y1:t−1]

= GtCt−1G
T
t +Wt
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and the corresponding optimal predictor of yt given all the information up to time t− 1 is

yt|t−1 = E(yt|y1:t−1) = Ftm
∗
t

= FtGtmt−1

Once the new observation yt become available, the prediction error

et = yt − yt|t−1 = yt − FtGtmt−1 and its MSE

E(ete
T
t ) = Qt = FtC

∗
t F

T
t + Vt

and the states updating step is defined, by Bayes formula

p(θt|y1:t) =
p(yt|θt)p(θt|y1:t−1)

p(yt|y1:t−1)

∝ N (θt|mt, Ct)

with optimal predictor of θt and its MSE matrix computed as follow:

mt = m∗t + C∗t F
T
t Q

−1
t et

Ct = C∗t − C∗t FT
t Q

−1
t FtC

∗
t

3.2.4 Forward Filtering Backward sampling (FFBS)

Given all the data up to time t = T , we may be interested in computing p(θ0:T |y1:T ).

� Forward Sampling

This is achieved through Kalman Filter and computes the normal distribution

p(θt|y1:t) at each t = 1, 2, . . . , T

� Backward-sampling:
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At time t = T : we sample θ∗T from p(θT |y1:T )

For t = T − 1, T − 2, . . . , 0 : sample θ∗t from normal distribution p(θt|y1:t, θ∗t+1)

The desired output from the FFBS is the sequence θ∗T , θ
∗
T−1, . . . , θ

∗
0

3.2.5 MCMC in DLM

Inference on DLM with unknown parameters can be carried out by using MCMC approach.

Again we let ψ, be the vector of unknown parameters in the DLM. The inference will be

based on the posterior distribution p(θ0:T , ψ|y1:T ) whose decomposition is as follows

p(θ0:T , ψ|y1:T ) = p(θ0:T |y1:T , ψ)p(ψ|y1:T )

It is logical, therefore, to use Gibbs sampling technique to sample iteratively from this

posterior distribution,

� starting with prior ψ = ψ∗

� Apply FFBS algorithm to draw smoothed state vector Θ∗ = (θ∗T , θ
∗
T−1, . . . , θ

∗
0) from

p(θ0:T |ψ∗, y1:T )

� Draw new value of ψ∗ from p(ψ|Θ∗, y1:T )

� Iterate for large number of times.
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Chapter 4

Sequential Monte Carlo (SMC) Methods

In many time series the data do arrive rather frequently and sequentially in time and one is

interested in estimating recursively, in real time, the evolving posterior distribution.

Markov Chain Monte Carlo (MCMC) methods, though useful for off-line or batch

inferences, are ineffective or of limited use for online inferences.

SMC are Monte Carlo technique that have been developed to deal with sequential or online

inferences (Doucet, De Freitas, Gordon, et al., 2001). SMC techniques have been developed

in a wide range of disciplines (e.g. missile tracking, stock market, medical monitoring) and

go under many names: Particle filtering, Bootstrap filtering, the condensation algorithm,

Interacting particle approximations, Survival of the fittest among others.

SMC is a ’divide and conquer’ approach that evaluates the full posterior by dividing it up

into one time step at a time. That is, we want to compute p(θ0:t, ψ|y1:t) sequentially in time

t. First we compute p(θ0:1, ψ|y1) at time t = 1, then p(θ0:2, ψ|y1:2) at time t = 2 and so on.

Each target distribution is approximated by weighted Monte Carlo samples known as

particles. This relation is denoted as

{
θ
(i)
0:t, ψ

(i), w
(i)
t

}N
i=1
∼ p(θ0:t, ψ|y1:t)

where N � 1, w
(i)
t > 0,

∑i=1
N w

(i)
t = 1.

The idea is that the empirical distribution of this collection converges asymptotically to p
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as N →∞. That is, for any p-integrable function Φt : Rt×p → R

N∑
i=1

w
(i)
t Φt(θ

(i)
0:t)

a.s−→ Ep(Φt) =

∫
Φt(θ0:t)p(θ0:t|y1:t)dθ0:t (4.1)

as N →∞.

This strategy makes SMC technique fast and thus ideal for online inferences where fast and

efficient updates of posterior quantities and forecasts are necessary to deal with high

frequency incoming data.

The fundamental concepts in SMC are Bayesian inference, Monte Carlo samples,

importance sampling, and resampling.

We now briefly describe two fundamental concepts in SMC; the importance sampling and

the resampling technique. The mechanisms through which the particles evolve.

4.1 Importance sampling

It is generally impossible to sample from p(.) therefore we approximate our target

distribution p(.) with a proposal density q(.), also called the importance density, which is

easy to sample from. The goal is to approximate the expected value of an arbitrary

function g(x) using the underlying probability density p(.) and the proposal density.

Assume that at time t-1, we have particles {θi0:t−1} which have been sampled from a

proposal density qt−1(θ0:t−1). Since they are not samples from the target density, they are

weighted with weights given by

w
(i)
t−1 ∝

pt−1(θ
(i)
0:t−1)

qt−1(θ
(i)
0:t−1)
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Assume we are interested in finding the expected value of an arbitrary function g(θ), with

respect to p(θ). By definition

Ep(θ)[g(θ)] =

∫
g(θ)p(θ)dθ =

∫
g(θ)

p(θ)

q(θ)
q(θ)dθ (4.2)

=Eq(θ)[g(θ)ŵ(θ)] (4.3)

≈ 1

N

N∑
i=1

g(θ(i))ŵ(i) (4.4)

where θ(i), i = 1, . . . , N is drawn from q(θ) and ŵ(θ) = p(θ)
q(θ)

is the importance weights

function. The importance weights function is usually known up to proportionality

constant, w̄(θ) = kŵ(θ) where k is independent of θ

k =

∫
kp(θ)dθ

=

∫
w̄(θ)q(θ)dθ

=Eq(x)[w̄(θ)]

Now we can re-write equation (4.3) as

Ep(θ)[g(θ)] =Eq(θ)[g(θ)
w̄(θ)

k
] =

Eq(θ)[g(θ)w̄(θ)]

Eq(x)[w̄(θ)]

≈
∑N

i=1 g(θ(i))w̄(i)∑N
i=1 w̄

(i)

=
N∑
i=1

g(θ(i))w(i)

where w = w̄(i)/
∑N

j=1 w̄
(j).

A good approximation of p(θ) is therefore

p̂(θ) =
N∑
i=1

w(i)δθ(i) (4.5)
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where δx is the Dirac delta mass at x.

At time t, the weighted Monte Carlo approximation to p(θ0:t, ψ|y1:t) is given by

p̂(θ0:t, ψ) =
N∑
i=1

w
(i)
t δ(θ(i)0:t,ψ

(i))

where:

w
(i)
t = w̄

(i)
t /
∑N

j=1 w̄
(j)
t and w̄t =

p(θ
(i)
0:t,ψ

(i)|y1:t)
q(θ

(i)
0:t,ψ

(i)|y1:t)

If we use a structured proposal distribution, and assuming that ψ is known

qt(θ0:t|y1:t) = q0(θ0)q1(θ1|θ0, y1)q2(θ2|θ1, θ0, y1:2), . . . , qt(θt|θ0:t−1, y1:t)

= qt−1(θ0:t−1|y1:t−1)qt(θt|θ0:t−1, y1:t)

Since θ
(i)
0:t−1|y1:t−1 ∼ qt−1(θ0:t−1|y1:t−1) is available, then we only need to sample

θ
(i)
t |θ

(i)
0:t−1, y1:t ∼ qt

(
θt|θ(i)0:t−1, y1:t

)
to obtain θ

(i)
0:t|y1:t ∼ qt(θ0:t|y1:t)

and the un-normalized weights, w̄
(i)
t are updated according to

w̄
(i)
t =

p(θ
(i)
0:t|y1:t)

q(θ
(i)
0:t|y1:t)

=
p(yt, θt|θ0:t−1, y1:t−1)p(θ0:t−1|y1:t−1)
qt|t−1(θt|θ0:t−1, y1:t)qt−1(θ0:t−1|y1:t−1)

= w
(i)
t−1

p(yt|θt)p(θt|θt−1)
qt|t−1(θt|θt−1, y1:t)

4.2 Resampling and auxiliary index

One major problem with particle filter is particle degeneracy. After a few iterations, most

particles have negligible weight and the weight is concentrated on few particles only. The

other problem is the loss of diversity or sample impoverishment where particles with high
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weight are selected more and more often while the others die out slowly. To counter these

problems resampling of the particles is recommended. The technique involves sampling

new particles, with replacement from a weighted empirical measure related to the current

particles. Resampling eliminates particles with low weights and chooses more particles in

high probability regions of the state space.

Resampling too often will decreases the number of distinct particles and do increase the

Monte Carlo variance of the estimator. However, resampling also reduces the variances of

estimates at a later stage. It is important therefore to resample but do so only when it is

absolutely necessary. Deciding when to resample is a crucial part of the algorithm and its

usually determined by assessing the quality of the current particles. The resampling is done

whenever this criterion is above or below a certain predetermined threshold. By doing this,

a reasonable number of contributing particles is maintained.

The most commonly used criterion is the effective sample size(ESS). This approach was

originally proposed in (Kong, Liu, & Wong, 1994) with idea that the need of resampling

increases with increase of the variance of importance weights. Since this variance is

unknown, the ESS is used in its place. ESS provides an approximation of the number of

independent samples from the target distribution that would be required to provide an

estimate of comparable variance.

The simplest way to perform resampling consists of sampling the N new particles from the

weighted distribution p̂Nt ; the resulting NN
t are distributed according to a multinomial

distribution of parameters wNt .

Other sampling schemes include Stratified resampling (Kitagawa, 1996) and residual

resampling (Douc & Cappé, 2005). These reduce the variance of NN
t relatively to that of

the multinomial scheme.
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4.3 Convergence results

Numerous convergence results are available for SMC methods (Crisan & Doucet, 2002)

(Del Moral, 2004).

Again we take Φt : Rt×p → R

Φ̄t = Ep(Φt) =

∫
Φt(θ0:t)p(θ0:t|y1:t)dθ0:t

Φ̂t =

∫
Φt(θ0:t)p̂(θ0:t|y1:t)dθ0:t =

N∑
i=1

w
(i)
t Φt(θ

(i)
0:t)

Under very week assumptions, there exists a constant C such that for any r > 0

E[|Φ̂t − Φ̄t|r]1/r ≤
Ct√
N

and

lim
N→∞

√
N(Φ̂t − Φ̄t)⇒ N (0, σ2

t )

These results are however weak since C grows exponentially with time t, in which case we

will have to use a time-increasing N to achieve a fixed precision. Stronger convergence

results arises when exponential stability is assumed. If the model has properties where for

any θ1, θ
′
1 ∈ Φ

∫
|p(θt|y1:t, θ1)− p(θt|y1:t, θ

′

1)|dθt ≤ ρt−1

with 0 ≤ ρ < 1, there exist constants D and M <∞, exponential in dim(θt), such that for
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any r > 0

E[|Φ̂t − Φ̄t|r]1/r ≤
M√
N

and

lim
N→∞

√
N(Φ̂t − Φ̄t)⇒ N (0, σ2

t )

where σ2
t ≤ D

4.4 Particle Filters

Different Particle fileter algorithms exists and simply differ in the way the importance

function q(θt|θt−1) is chosen.

4.4.1 Bootstrap Filter (BF)

Among the most popular filters is the bootstrap filter (BF), also known as the sequential

importance sampling with resampling (SISR) filter,(Gordon, Salmond, & Smith, 1993).

The filter uses the state equation (3.2) for state prediction and then the particles are

resampled using observation equation (3.1). The algorithm can be summarised as

� Prediction:

To approximate the density p(θt|y1:t−1) =
∫
p(θt|θt−1, y1:t−1)p(θt−1|y1:t−1)dθt−1

particles θ̃
(i)
t are drawn from p(θt|θ(i)t−1) for i = 1, 2, . . . , N

Here we realise that the importance function is chosen as the prior density of the

hidden state.

� Update:

The particles {θ̃(i)t }Ni=1 are resampled with weights proportional to their likelihoods,

i.e. w
(i)
t ∝ p(yt|θ̃(i)t )
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4.4.2 Auxiliary Particle Filter (APF)

Proposed by Pitt and Shephard (1999), the filter resamples previous particles with weights

proportional to the proposal density p(yt|g(θt)) for some function g- mean or mode of

p(θt|θ(i)t−1)

� Draw {θ̃(j)t−1}Nj=1 from {θ(i)t−1}Ni=1 with weights wt ∝ p(yt|g(θ
(i)
t )), where

g(θ
(i)
t ) = E(θt|θt−1)

� Draw {θ(i)t }Ni=1 from p(θt|θ̃(i)t−1)

� Resample with weights

wt ∝ p(yt|θ(i)t )

p(y|g(θ(j)t ))

4.4.3 The Auxiliary Particle filter with parameter estimation

Proposed by (Liu & West, 1999), this popular filter assumes that for a fixed parameter

vector ψ, the set of i.i.d particles {θt, ψ(i)} approximate p(θt, ψ|y1:t) such that p(ψ|y1:t) can

be approximated by

p(ψ|y1:t) ≈
N∑
i=1

fN(ψ;m(i), h2Σ)

Where h2 is smoothing factor associated with shrinkage factor a, such that h2 = (1− a2)

and m and Σ are defined in the summary below:

For t = 1, 2, . . .

Input: Monte Carlo sample (θ
(i)
t−1, ψ

(i)
t−1) and weights w

(i)
t−1, i = 1, 2, . . . , N

� Compute ψ̄,Σ, the posterior mean and variance matrix of ψ, respectively, from ψ
(i)
t−1

and w
(i)
t−1

� Compute g(θ
(i)
t ) = E(θt|θ(i)t−1, ψ

(i)
t−1) and m(i) = aψ

(i)
t−1 + (1− a)ψ̄
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� sample integer k ∈ {1, 2 . . . , N} with probability

Pr(i) ∝ w
(i)
t−1p(yt|g(θ

(i)
t ),m(i))

� sample ψ
(i)
t ∼ N(.|m(k), h2Σ)

� sample θ
(i)
t ∼ p(.|θ(k)t−1, ψ

(i)
t )

� evaluate weights: wt ∝ p(yt|θ(i)t ,ψ
(i)
t )

p(yt|g(θ(k)t ),m(k))

4.4.4 Particle filtering and learning using sufficient statistics

The distribution of parameter in many models depends on a low dimensional set of

conditionally sufficient statistics St such that p(ψ|θ0:t, y1:t) is equivalent to p(ψ|St), where

St is easily updated recursively by St = S(St−1, θt, yt) . This approach have been used in

SMC methods in class of state-space models to learn sequentially the parameter vector

(Storvik, 2002), (Fearnhead, 2002), (Carvalho, Johannes, Lopes, & Polson, 2010),

(Polson, Stroud, & Müller, 2008)

By decomposing the joint conditional distribution

p(θ0:t, ψ|y1:t) ∝ p(θ0:t, ψ, yt|y1:t−1)

= p(yt|θt, ψ)p(θt|θ0:t−1, y1:t−1, ψ)p(ψ|θ0:t−1, y1:t−1)p(θ0:t−1|y1:t−1)

= p(yt|θt, ψ)p(θt|θt−1, ψ)p(ψ|St−1)p(θ0:t−1|y1:t−1)

the general idea of this approach is to sample the parameter vector ψ from p(ψ|St−1), then

θt form p(θt|θt−1, ψ) and re-weight with weights being proportional to p(yt|θt, ψ) and finally

update the sufficient statistics.

In summary:

for i in 1, . . . , N

� Sample ψ(i) from p(ψ|S(i)
t−1)
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� Draw θ
(i)
t form p(θt|θ(i)t−1, ψ(i))

� Resample with weights w
(i)
t ∝ p(yt|θ(i)t , ψ(i))

� Update sufficient statistics S
(i)
t = S(S

(i)
t−1, θ

(i)
t , yt)
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Chapter 5

Model for structural breaks and Outliers

5.1 Fat-tailed t-distribtution & Mixture of Normals

The class of conditionally linear Gaussian state-space models offers a general and

convenient framework for parameter learning, state filtering and detection of outliers and

structural breaks(Petris et al., 2009) The state-space representations of such model is a

linear dynamic mixture models, in the sense that it is linear, conditional on a vector of

latent random variables and scale parameters.

To account for outliers and structural breaks, we modify the DLM by using heavy-tailed

Student-t distribution (Petris et al., 2009; Shephard, 1994).The Student-t-distribution

admits representation of scale mixture of Normal distribution and can also accommodate,

through its degree of freedoms parameter, different degrees of heaviness in the tails.

Replace the Gaussian distribution of vt and wt in equations (3.4) and (3.5) respectively,

with Student-t distribution with scale parameter λ−1 and degrees of freedom ν as shown

below.

Letting νy,tωy,t ∼ χ2
νy,t and Z ∼ N (0, λ−2y ) and expressing vt as

vt =
Z
√
ωy,t
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then vt follows Student-t distribution with scale parameter λ−1y and degrees of freedom νy;

vt|λyνy,t ∼ tνy(0, λ
−1
y )

Consequently, conditional on λy and ωy,t, vt is now Gaussian with Vt = (λyωy,t)
−1

vt|λyωy,t ∼ N (0, (λyωy,t)
−1) (5.1)

Using the same argument as above, we have also that wt,j is conditionally Gaussian given

λθ,j and ωθ,j,t with Wt,j = (λθ,jωθ,j,t)
−1

wt,j|λθ,jωθ,j,t ∼ N (0, (λθ,jωθ,j,t)
−1), j = 1, ...p. (5.2)

From now the parameter vector will be presented as

ψ =

(
ay, by, πy, λy, (aθ,j , bθ,j , πθ,j , λθ,j ; j = 1...p)

)

and state vector,

Xt =

(
νy,t, ωy,t, (νθ,j,t , ωθ,j,t , θj,t ; j = 1, ...p)

)

In the modified Vt and Wt,j, the parameter λ represent precision of observation and state

evolution respectively. The expected value of ω = 1 if there is no outlier or structural break

in the series. The posterior mean of the latent variable, ω can be used to flag possible

outliers and /or structural breaks.

Small values of ωy,t correspond to large variances Vt, making a large innovations vt to be

accounted for by the model. A small value of ωy,t will signal an outlier in the series.

Similarly a small value of ωθ,j,t correspond to a large variance Wt,j ( the jth diagonal

element of Wt) and therefore a small value of ωθ,j,t will flag a break or a jump in the jth
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component of the state vector.

In summary, a p−dimensional state space model can be expressed as

yt = Ftθt + vt vt|λyωy,t ∼ N (0, Vt)

θt = Gtθt−1 + wt wt|λθωθ,t ∼ N (0,Wt)

where Vt = (λyωy,t)
−1 and Wt,j = (λθ,jωθ,j,t)

−1 j = 1, . . . , p such that

Wt =



Wt,1

Wt,2

. . .

Wt,p


, θt =



θt,1

θt,2
...

θt,p


and Ft and Gt are known transition matrices of order m× p and p× p respectively.

In this study only univariate observation data is considered and hence m = 1

5.2 Prior specifications

In this section we discuss and specify the prior for hierarchical structure of the observation

variances Vt = (λyωy,t)
−1 and each diagonal element, Wt,j = (λθ,iωθ,t,j), j = 1, . . . , p, of

state innovation variances Wt.

The precision parameter λ follows Gamma distribution with prior mean and variance equal

to a and b respectively drawn uniformly over a large interval. That is

ay ∼ Unif(0, Ay) aθ,j ∼ Unif(0, Aθ,j)

by ∼ Unif(0, By) bθ,j ∼ Unif(0, Bθ,j)

and

λy|ay, by ∼ Gam
(
a2y
by
, ay
by

)
λθ,j|aθ,j, bθ,j ∼ Gam

(
a2θ,j
bθ,j
,
aθ,j
bθ,j

)
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As noted previously, the latent variable ω follows a Chi-square distribution with ν degrees

of freedom, which is a special Gamma distribution. Therefore the prior for ω is Gamma

distribution with scale and shape parameters equal to ν/2.

ωy,t|νy,t ∼ Gam
(
νy,t
2
, νy,t

2

)
ωθ,j,t|νθ,j,t ∼ Gam

(
νθ,j,t
2
,
νθ,j,t
2

)

The auxiliary variable ν can take any positive real value, but for simplicity, we restrict its

range to a set of finite integers n = (n1, n2, . . . , nK) with corresponding probabilities

π = (π1, π2, . . . , πK).

νy,t ∼Multi(1;πy) νθ,j,t ∼Multi(1; πθ,j)

where the probabilities π are drawn from a Dirichlet distribution with specified parameters

ξ.

πy ∼ Dir(ξy) πθ,j ∼ Dir(ξθ,j), j = 1, . . . , p

5.3 Parameter Estimation

5.3.1 Kernel Mixture approximation

We extend Liu and West approach, in section(4.4.3), of kernel approximation to normal

distribution to other distributions of interest to approximate p(ϕ|y1:t)

p(ψ|y1:t) ≈
N∑
i=1

w
(i)
t fN(ψ;α(i), β(i))

The idea is to replace the delta masses see Equation 4.5 with continuous distribution of

interest, whose mean µ and variance σ2 are obtained respectively through shrinkage and
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smoothing modification as shown below

µ(ψ(i)) = rψ
(i)
t−1 + (1− r)ψ̄ = m(α(i), β(i)) (5.3)

σ2(i) = h2Σ = σ2(α(i), β(i)) (5.4)

where ϕ̄ is the posterior mean and Σ is the variance matrix of ϕ from ϕ
(i)
t−1 and w

(i)
t−1, that is

ψ̄ =
N∑
i=1

w
(i)
t−1ψ

(i)
t−1

Σ =
N∑
i=1

w
(i)
t−1(ψ

(i)
t−1 − ψ̄t−1)(ϕ

(i)
t−1 − ψ̄t−1)

′

r is the shrinkage parameter associated with smoothing parameter h such that r2 + h2 = 1

The parameter α and β required in this estimation are quickly obtained by solving

equations 5.3 and 5.4.

5.3.2 MCMC moves

Another approach to explore parameter space is to incorporate MCMC moves that target

the parameter posterior in the particle filter (Gilks & Berzuini, 2002). The idea is to build

a Markov kernel Kt(ψ, ψ
′
) such that

p(ψ
′ |θt, y1:t) =

∫
p(ψ|θt, y1:t)Kt(ψ, ψ

′
)dψ

With a properly designed Markov kernel, samples from the particle filter can be ’jittered’,

reducing degeneracy caused by successive resampling, restore variability and hence improve

quality of posterior estimates.
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5.3.3 Sufficient Statistics

In this approach we use low dimension set of conditionally sufficient statistics St such that

the distribution p(ψ|θ0:t, y1:t) is equivalent to p(ψ|St), where St is easily updated recursively

by St = S(St−1, θt, yt) (Storvik, 2002), (Fearnhead, 2002)

5.3.4 Hybrid of Kernel approximation and sufficient statistics approaches

In this study a hybrid of both kernel approximation method in section 5.3.1 and sufficient

statistics approach, section 5.3.3 was used. The parameter vector ψ is decomposed into two

vector components φ and ϕ

φ =
(
λy, λθ,j ; j = 1, ...p)

ϕ =

(
ay, by, πy, (aθ,j , bθ,j , πθ,j ; j = 1...p)

)

where, conditional on ϕ, φ admits recursive conditional sufficient statistics; that is

p(φ|X0:t, y1:t, ϕ) = p(φ|St, ϕ) and St is sufficient statistics which can be updated recursively

by

St = S
(
St−1, Xt, yt)

and the prior for ψ is given as follows

p(ψ) = p(φ, ϕ) = p(φ|X0, ϕ)p(ϕ)

= p(φ|S0, ϕ)p(ϕ)

The distribution p(ϕ|y1:t) is approximated by Kernel mixture approximation method. This

parameter decomposition decreases the number of parameters in the vector ϕ, thereby

reducing the Monte Carlo error in the kernel approximation.
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We now give the specific solutions of α and β required for the kernel approximation to

p(ϕ|y1:t) for all the elements in parameter vector ϕ

� Parameters a and b

The unknown parameters a and b are positive and sampled over large interval we rescale

them to interval (0, 1) and the respective ϕ̄ and Σ are computed thereafter. The idea of

rescaling is so that we can use standard distribution, beta say, which we are sure will

always give random variates in the interval (0, 1) and whose mean and variance are well

defined. By definition, for a beta distribution with mean m and variance σ2, and

parameters α and β,

m(i) =
α(i)

α(i) + β(i)

σ2(i) =
α(i)β(i)

(α(i) + β(i))2(α(i) + β(i) + 1)

Using the equations above and basic algebra we have;

α(i) =
(1−m(i))(m(i))2

σ2(i)
−m(i)

β(i) =
(1−m(i))2m(i)

σ2(i)
− (1−m(i))

The mixture obtained

N∑
i=1

wt−1B(ψ;α(i), β(i))

has mean ϕ̄ and variance Σ. Before they are used for inference, the values of a and b

obtained above must be scaled back to their original intervals.

� Parameter π

Since π is a probability vector whose elements sum to 1 and πk > 0, we use Dirichlet
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distribution

p(P = πk|αk) ∼ D(α1, . . . , αK) =
Γ(α0)∏K
k=1 Γ(αk)

K∏
k=1

παk−1k

where α0 =
∑K

k=1 αk, with αk > 0 for each k and whose mean

E(πk) =
αk
α0

(5.5)

and variance

V ar(πk) =
αk(α0 − αk)
α2
0(α0 + 1)

(5.6)

We need to estimate the parameter vector α = (α1, . . . , αK) using equations (5.5) and (5.6)

above, and the posterior mean ψ̄π and variance matrix Σπ of ψπ from ψ
(i)
t−1 and w

(i)
t−1. With

m
(i)
k and σ

2(i)
k computed as described previously, we then have

m
(i)
k =

α
(i)
k

α
(i)
0

(5.7)

σ
2(i)
k =

α
(i)
k (α

(i)
0 − α

(i)
k )

α
2(i)
0 (α

(i)
0 + 1)

=
m

(i)
k (1−m(i)

k )

(α
(i)
0 + 1)

(5.8)

It follows quickly from equations (5.7) and (5.8) that

α
(i)
k = m

(i)
k α

(i)
0

where

α
(i)
0 =

m
(i)
k (1−m(i)

k )

σ
2(i)
k
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5.4 State Estimation

The target density of interest p(Xt|X0:t−1, ψ, y1:t) can be decomposed

p(yt|θt, Vt)p(θt|θt−1, ωt, ψ)× p(ωt|νt, ψ)× p(νt|ψ)

In particular to estimate the p-dimensional states θt, we have the data yt = (y1, y2, . . . , yT );

yt ∼ N (Fθt, Vt), with Vt = (λyωy,t)
−1

which is a multivariate normal distribution, and the likelihood function p(yt|F, θt, V )

p(yt|F, θt, Vt) =
1

(2π)
T
2 |V | 12

exp
{
−1

2
(yt − Fθt)TV −1t (yt − Fθt)

}

where |V | is the determinant of covariance matrix Vt. The states

θt ∼ N (Gθt−1,Wt),with Wt = diagonal((λ1ωθ,1,t)
−1, . . . , (λpωθ,p,t)

−1)

p(θt|G, θt−1,Wt) =
1

(2π)
T
2 |W | 12

exp
{
−1

2
(θt −Gθt−1)TW−1

t (θt −Gθt−1)
}

∝ exp
{
−1

2
(θt −Gθt−1)TW−1

t (θt −Gθt−1)
}

The posterior distribution of the states θt can be determined by using Bayes theorem

p(θt|.) ∝ exp
{
−1

2
(y − Fθt)TV −1t (y − Fθt)

}
×

exp
{
−1

2
(θt −Gθt−1)TW−1

t (θt −Gθt−1)
}

∼ N (m,C)
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where

C = (W−1
t + FTV −1t Ft)

−1

m = C(FTV −1t yt +W−1
t Gtθt−1)

Clearly the posterior estimates of θt depends on ωy,t and ωθ,i,t, through Vt and Wt

respectively.

On the other hand the posterior estimates of ωy,t and ωθ,i,t depends on, among others, θt

and νt. For instance, the posterior estimate for ωy,t can be quickly derived,

p(ωy,t|y1:t, θ0:t, ψ) ∝ p(y1:t|θ0:t, ψ)p(ωy,t|νt, ψ)

∝
T∏
t=1

ωy,t exp
{
− ωy,tλy

2
(yt − Ftθt)2

}
× ω

νy,t
2
−1

y,t exp
{
ωy,t

νy,t
2

}
∝ ω

νy,t+1

2
−1 exp

{
− ωy,t

2
[λy(yt − Ftθt)2 + νy,t]

}
∼ Gam

(
νy,t + 1

2
,
λy(yt − Ftθt)2 + νy,t

2

)

Due to this dependence structure on these states in our model, we propose the following

importance sampling strategies to sample them.

5.4.1 Sequential Bridge Sampling

We propose the use, in our algorithm, of a nested sequential bridge sampling by utilizing a

SMC sampling approach which allows the partition of function of a

non-analytically-normalizable distribution p(X) to be estimated in an unbiased fashion

through a chain of Markov transitions.

For each particle i for i = 1, 2 . . . , N and at each time t we extend the state space X
(i)
t to a

sequence of distributions pk(X
(i)
t ) 0 ≤ k ≤ d , with pd(X

(i)
t ) = p(X

(i)
t ).

The sequence {pk(X(i)
t )}k≥0 forms a bridge of successive approximations from initial
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density p0(X
(i)
t ), which is diffuse and easier to sample from, to pd(X

(i)
t ) = p(X

(i)
t )

To obtain efficient IS for target pk+1, it is expected that, pk differs only slightly from pk+1.

This is achieved by expressing

pk(X
(i)
t |ψ(i)) = p0(X

(i)
t |ψ(i))1−bkp(X

(i)
t |ψ(i))bk

∝ p0(X
(i)
t |ψ(i))p(yt|X(i)

t , ψ(i))bk

for 0 = b0 < b1 < . . . < bD = 1

A random draw of X
(i)
t is made by sequentially drawing X

(i)
t,(k)|ψ(i), 0 ≤ d ≤ D, and

equating X
(i)
t = X

(i)
t,(D)|ψ(i)

In summary, for each time t and for every particle i, i = 1, 2, . . . , N

� Draw X
(i)
t,0 from p0(X

(i)
t |ψ(i))

� Set wt,0 = 1

� Then for k = 1, 2, . . . , D

� Resample particle if ESS < R, a pre-determined threshold value, and set

wt,k−1 = 1/N

� Sample X
(i)
t,k from q(.|Xt,k−1, ψ

(i), yt)

� Compute weights wt,k ∝ wt,k−1
pk(X

(i)
t,k |ψ

(i)
t )Lk−1(X

(i)
k , X

(i)
k−1)

pk−1(X
(i)
t,k−1|ψ

(i)
t )qk(X

(i)
k−1, X

(i)
k )

where L() is an arbitrary backward Markov Kernel. If we choose

Lk−1(Xk, Xk−1) =
pk(X

(i)
t,k−1|ψ

(i)
t )qk(Xk−1, Xk)

pk(X
(i)
k |ψ

(i)
t )

then the weights above will be

wt,k ∝ wt,k−1
pk(X

(i)
t,k−1|ψ

(i)
t )

pk−1(X
(i)
t,k−1|ψ

(i)
t )

58



5.4.2 Scoring the data

We also propose an approach where the auxiliary states ν
(i)
t are selected uniformly from a

set of finite integers according to indicator variable Z
(i)
t

Z
(i)
t =

|yt − FtGtθ
(i)
t−1|√

λ
−1(i)
y

This stem from the well known concept of regular Z-scores where extreme values in a

normal distribution are associated with high Z-scores in absolute sense. Large values of Z
(i)
t

are assigned to the small values in the set and vice-versa.

Once ν
(i)
t is obtained, we draw ω

(i)
t ∼ p(ωt|ν(i)t , ψ(i)) and consequently

θ
(i)
t ∼ p(θt|yt, θ(i)t−1, ω

(i)
t , ν

(i)
t , ψ

(i))

Fixed interval smoothing

The idea is, with all the data up to the current time t, we go back in time for some fixed

steps, ` say, and infer the state vector {Xt−`:t}. In this case the smoothing distribution of

interest is defined by p(Xt−`:t|yt−`:t, ψ) which, we can approximate by using the following

decomposition

p(Xt−`:t|yt−`:t, ψ) = p(Xt|yt−`:t, ψ)
t−1∏
s=t−`

p(Xs|Xs+1:t, yt−`, ψ)

The approximation to p(Xt|yt−`:t, ψ) is given via particle filtering and following the

approach in (Godsill, Doucet, & West, 2004) we have

p(Xs|Xs+1:t, yt−`, ψ) ∝ p(Xs|yt−`:s)p(Xs+1|Xt)

and the smoothing algorithm can be summarized as follow

� with probability w
(i)
t obtain X̂t = X

(i)
t
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� for s = t− 1, t− 2, . . . , t− ` :

1. compute weights ws|s+1 ∝ w
(i)
s p(X̂s+1|X(i)

s , ψ(i))

2. with probability w
(i)
s|s+1 select X̂s = X

(i)
s

� set X̂t = (X̂t−`, X̂t−`+1, . . . , X̂t)

X̂t is the required approximation to p(Xt−`:t|yt−`:t, ψ)

5.5 Algorithm Summary

Our focus at each time t is to approximate the target distribution p(X0:t, ψ|y1:t). We can

decompose this joint posterior distribution as follows

p(X0:t, ψ|y1:t) = p(X0:t, ψ|y1:t)

∝ p(X0:t, φ, ϕ, yt|y1:t−1)

= p(yt|X0:t, y1:t−1, φ, ϕ)p(Xt|X0:t−1, y1:t−1, φ, ϕ)p(φ|X0:t−1, ϕ, y1:t−1)p(X0:t−1, ϕ|y1:t−1)

= p(yt|Xt, φ, ϕ)p(Xt|Xt−1, φ, ϕ)p(φ|St−1, ϕ)p(X0:t−1, ϕ|y1:t−1)

≈ p(yt|Xt, φ, ϕ)p(Xt|Xt−1, φ, ϕ)p(φ|St−1, ϕ)p̂(X0:t−1, ϕ)

=
∑

w
(i)
t−1p(yt|Xt, φ, ϕ)p(Xt|X(i)

t−1, φ, ϕ)p(φ|St−1, ϕ)fN(ϕ;m(i), h2Σ)δ
X

(i)
0:t−1

for i = 1, 2, . . . , N .

This decomposition will allow us to use a hybrid approach for parameter estimation

discussed in section 5.3.4

Our SMC algorithm is summarized as follows:

� We have particles
{

(X0:t−1, ϕt−1, φ, St−1, wt−1)
(i)
}N
i=1

approximating

p(X0:t−1, ϕ, φ|y1:t−1) at time t− 1

� Compute w̃
(i)
t ∝ w

(i)
t−1q

(
yt|g(X

(i)
t−1), µ(ϕ

(i)
t−1), φ

(i)
)

where

g(X
(i)
t−1) = E(Xt|X(i)

t−1, µ(ϕ
(i)
t−1), φ

(i))
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� Resample
{

(X0:t−1, ϕt−1, φ, St−1)
(i)}Ni=1 with the weights equal to w̃

(i)
t to get new set

{(X̃0:t−1, ϕ̃t−1, φ̃, S̃t−1)
(i)}Ni=1

� Draw the parameter vector ϕ̃
(i)
t ∼ q(µ(ϕ̃

(i)
t−1), h

2Σ) according to Kernel mixture

approximation detailed in section 5.3.4

� Draw states X̃
(i)
t according to one of the approaches discussed in section 5.4

X̃
(i)
t ∼ q(Xt|X̃(i)

t−1, ϕ̃
(i)
t , φ̃

(i), S̃
(i)
t−1, yt

)
and set X̃

(i)
0:t = (X̃

(i)
0:t−1, X̃

(i)
t )

� For example, using the indicator variable Z
(i)
t approach

(a) Draw ν̃
(i)
t from a set of finite integers according to Z

(i)
t

(b) Draw ω̃t given ν̃t

ω̃
(i)
y,t|ν̃

(i)
y,t ∼ Gam(

ν̃
(i)
y,t

2
,
ν̃
(i)
y,t

2
)

and similarly draw the two auxiliary, ν̃θj ,t and ω̃θj ,t states for the state

θj; j = 1, 2, . . . p

(c) Now with V
(i)
t = (ω̃

(i)
y,tλ̃

(i)
y,t−1)

−1 and W
(i)
t,j = (ω̃

(i)
θj ,t
λ̃
(i)
θj ,t−1)

−1 we draw the state

θ̃
(i)
t ∼ N (θt|yt, θ̃(i)t−1, V

(i)
t ,W

(i)
t )

� Compute the weights

w
(i)
t ∝

p(X̃0:t, ϕ̃
(i)
t , φ̃

(i)|y1:t)
q(X̃0:t, ϕ̃

(i)
t , φ̃

(i)|y1:t)

� Again as an example, having drawn the states X̃
(i)
0:t using approach outlined

above, the weights can be obtained explicitly as follows
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w
(i)
t ∝

p(yt|X̃(i)
t , ϕ̃

(i)
t , φ̃

(i))

p(yt|µ(ϕ̃
(i)
t−1), g(X̃

(i)
t−1), φ̃

(i))
×

∑K
k=1 Gam

(
ω̃
(i)
y,t;

ν
2
, ν
2

)
πy(ν)

Gam
(
ω̃
(i)
y,t ;

ν̃
(i)
y,t

2
,
ν̃
(i)
y,t

2

) ×

∏p
j=1

(∑K
k=1 Gam

(
ω̃(i)
θ,j,t

; ν
2
, ν
2

)
π
θ,j

(ν)

)
∏p

j=1

(
Gam

(
ω̃
(i)
θ,j,t ;

ν̃
(i)
θ,t,j

2
,
ν̃
(i)
θ,t,j

2

))

� To account for the discrepancies between the target distribution p(.) and proposal

distribution q(.) we re-weight the particles to obtain the posterior draw. That is:

Draw the set {(Xt, ϕt, S
(i)
t−1)

(i)}Ni=1 from {(X̃t, ϕ̃t, S̃t−1)
(i)}Ni=1 with weights w

(i)
t

� With the posterior draw we update sufficient statistics S
(i)
t = S

(
S
(i)
t−1, ϕ

(i)
t , X

(i)
t , yt)

� Sample the parameter vector φ

φ
(i)
t ∼ p(φ|S(i)

t , ϕ
(i)
t )

� Smoothing, if needed

For a fixed interval `, we obtain an approximation to p(Xt−l:t|yt−l:t) based on

factorization

p(Xt−l:t|yt−l:t) = p(Xt|y1:t)
t−1∏
s=t−l

p(Xs|Xs+1:t, yt−l:t)
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Chapter 6

Application and Results

6.1 Nile River problem

The annual readings of volume discharge from the Nile River at Aswan, Egypt from 1871

to 1970 are given in (Cobb, 1978). Many time series studies have referred to this data.(See

time series for the data in Figure 6.1). Cobb used the data to demonstrate conditional

inference about change point and found that there was a permanent decline in volume in

1899, the year the first Aswan dam was completed. In his study though, he couldn’t

identify conspicuous outlier in the year 1913 nor the mild ones in year 1888 and 1964 .
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Figure 6.1: Annual volume of the Nile River from 1871 to 1970
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We fitted the data the model for structural breaks and outliers, summarized in page 50,

with one dimension state vector i.e. p = 1 and hence F = G = 1. The model is commonly

known as the local level model

yt = θt + vt vt|λyωy,t ∼ N (0, Vt)

θt = θt−1 + wt wt|λθωθ,t ∼ N (0,Wt)

where Vt = (λyωy,t)
−1 and Wt = (λθωθ,t)

−1.

We set the number of particles N = 20000 and fixed smoothing interval ` to be 5. The

results using both MCMC, off-line analysis, and the SMC approach are compared. Recall,

from our discussion in section 5.1, that the distribution of ωy,t and ωθ,t will be used to

identify, if any, outlying observations and structural breaks respectively.

The posterior estimates for ωy,t and ωθ,t from the MCMC output are displayed in Figure

6.2. It is quite clear, from the plot of ωy,t, that the outlying observation in the year 1913

has been captured. In the same figure, plot of the estimated values of ωθ,t indicate the

change in level of River Nile in the year 1899 with the value of ωθ at that time being very

close to zero, while all the others are at or very close to 1.

Results from the SMC approach shows comparable output. The plot of the Nile River

data, filtered and smoothed values of the states θt from 1891 to 1970 are shown in Figure

6.3. The change in level of the river from the year 1899 is very clear from plots of both

smoothed and filtered values of θt. The posterior estimates of the ωy,t and ωθ,t are shown in

Figure 6.4. From these plots, we can see that the extreme outlier in the year 1913 and mild

ones in the year 1888 and 1964 have been captured by both the filtered and smoothed

values of the ωy. The structural break in the year 1899 has been identified by the very

small smoothed value of ωθ at that time.
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Figure 6.2: Estimated ωθ (left) and ωy (right) using MCMC approach.
Small value of ωθ,1899 signal the break and small values of ωy in 1888 and 1964 signals outlying
observation at the time
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Figure 6.3: Plot of filtered and smoothed values from Nile River data using SMC algorithm
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Figure 6.4: Posterior estimates of ωθ (left) and ωy (right) from Nile River data using SMC
algorithm

6.2 Simulated data

6.2.1 Local level model

We use simulated data with 200 data points from a N (20, 4) which we manipulate in such

a way that there is a potential outlier and structural break. In particular the data is

shifted upwards from time t = 155 and a outlying observation created at time t = 100.
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Figure 6.5: Simulated time series with a potential outlier and structural break

We apply the SMC algorithm to the last 180 data points this data using the local level

model, where p = 1 hence F = G = 1, and the number of particles N set to 20000. The

first 20 data points were used in MCMC to generate the prior estimates for the particle

filter. The data used in this inference is plotted in Figure 6.5. The plot of the filtered

values of the states and smoothed values, see Figure 6.6, clearly indicate there is a huge

jump or structural break in the series.
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Figure 6.6: Plot of simulated data, filtered and smoothed values of the sates, θ, obtained via
SMC approach

To verify this observation, we plot the posterior estimates for the auxiliary variables ωy and

ωθ. See Figure 6.19. Obviously, from the plots we can see that the extreme value at time

t = 80 has been identified as an outlier. The plot of posterior estimates of ωθ, clearly shows

that the structural break at time t = 135 has been captured.
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Figure 6.7: Posterior estimates of ω’s from a simulated time series with a potential outlier
and structural break obtained using SMC approach

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150

50
00

10
00

0
15

00
0

20
00

0

Time

E
S

S

N/2: Threshold

Figure 6.8: Monitoring the Effective Sample Size

We diagnosed the efficiency of our particle filter by monitoring the ESS. The output is

shown in Figure 6.8
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To compare our results we employ MCMC approach on the same data set and the same

model. The number of Monte Carlo samples were set to 20500, the first 500 taken as

burn-in. The MCMC ran with all the 200 data points available, took approximately 40

minutes to complete. Our SMC approach took less than 12 minutes to produce the results

presented.

To determine computational cost for online inference, a sequential MCMC was run. That

is, starting with the first observation we run an MCMC, and thereafter a new MCMC was

run each time the next observation was included in the data until all 200 data points were

included. Despite taking more than 39 hours to run the entire data set, the results, which

are shown in Figure 6.9 & 6.10, are quite comparable to our SMC approach.
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Figure 6.9: Plot of simulated data, filtered and smoothed values of the sates, θ, obtained
using sequential MCMC
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Figure 6.10: Posterior estimates of ω’s from a simulated time series with a potential outlier
and structural break obtained using sequential MCMC

Again we compare our approach to other regular outlier detection techniques. The plots

from Shewhart, CUSUM and EWMA charts are shown in Figure 6.11. From these plots we

can see that Shewhart is able to capture the outlier at t = 80 but not the break at t = 135.

The CUSUM on the other hand is able to detect the jump in the series but after 7 time

steps. However it is not able to capture the outlier at time t = 80. The EWMA is more

sensitive and it is able to capture the break, much faster than CUSUM, after the third time

step. The results prove that these techniques are not effective for online detection of

outliers and structural break.

71



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150

16
18

20
22

24

(a)

Upper Limit

Lower Limit

break

●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●

●
●●●

●

●●●●●
●

●

●●
●
●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●●●●●●●
●
●

●●●●●●●
●
●●●●●●

●
●●●●●●●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●●●
●

●

●●
●

●
●

●

●
●

●

●●
●

●
●
●
●

0 50 100 150

10
15

20
25

30
35

40
45

(b)

C
um

ul
at

iv
e 

Su
m

●

●●

●●
●

●●
●
●●
●●
●●
●●●●

●

●●
●

●

●
●

●●
●●

●●●●●●●●●
●●
●●

●
●●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●●●

●
●

●
●

●

●●

●

●

●●
●
●●

●●

●
●
●

●

●

●●

●
●

●
●
●

●
●●

●●

●
●
●●

●

●

●●●

●

●
●●●●●●

●
●

●

●
●

●●

●●

●
●●●

●
●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●

Upper cusum

Lower cusum

break
Si
Ti

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

0 50 100 150

19
20

21
22

(c)

break

Figure 6.11: Detection of breaks and outliers from simulated data using (a)Shewhart,(b)
CUSUM and (c) EWMA Chart

6.2.2 Linear trend model

For a high order polynomial, we use a data with linear trend simulated from ARIMA(1,1,1)

which was manipulated to include a break. The data which consist of 40 observations and

break at time t = 26 is shown Figure 6.12
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Figure 6.12: Simulated data with linear trend and possible structural break

To account for both the upward and downward shift of the trend and for the trend’s

change in slope, we employed a second order model, p = 2, detailed on page 33

yt = Ftθt + vt vt|λyωy,t ∼ N (0, Vt)

θt = Gtθt−1 + wt wt|λθωθ,t ∼ N (0,Wt)

where Vt = (λyωy,t)
−1 and Wt,j = (λθ,jωθ,j,t)

−1 j = 1, 2.

Wt =

Wt,1 0

0 Wt,2

 , θt =

θt,1
θt,2

 , G =

1 1

0 1

 , F =

[
1 0

]

The state elements θt,1 and θt,2 correspond to intercept and slope components, respectively,

of the series. The ωθ,t,1 in the variance Wt,1 will flag, if any, structural break in the

intercept component while the ωθ,t,2 in the variance Wt,2 will flag, if any, structural break in

the slope component of the state vector. As usual, ωy,t will identify any outlier in the series.
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Figure 6.13: Plot of simulated data, filtered and smoothed values

The plot in Figure 6.13 shows that the slope if fairly stable and that there is a downward

shift in the trend at time t = 26. We expect the ωθ,t,1 to capture this break.
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Figure 6.14: Posterior estimates of (a)ωy,t, (b) ωθ,t,1 and (c) ωθ,t,2

From Figure 6.14 we can see that the both the smoothed and filtered values of ωθ,t,1

confirms a break in the intercept component of the state vector. The smoothed values of
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the slope component are quite stable, as expected. Also the smoothed value at t = 26

confirms a false alert by the filtered value.

6.3 An outlier or structural break?

Assuming that, through sequential data update, we obtain a data value that is extreme. It

would be very important for us to know if this data point is actually an outlier or a

structural break has really occurred. Would the model distinguish between the presence of

an outlier and an occurrence of structural break? If it is a structural break, how long do we

have to wait to really tell? To answer these question, we will examine three different

scenario and study the behaviour of the posterior estimate of the ω’s. In all the three cases

we will use the simplest model, the local level

6.3.1 Scenario 1

We use simulated data and considered a case where the most current, at time t = 181 1,

data value recorded is an extreme or a potential outlier. See Figure 6.15

The posterior estimates of the auxiliary variables ω’s from this series are shown in Figure

6.16. From this graph, it is very clear from the plot of ωy that the two ’serious’ outliers, at

time t = 80 and t = 181 have been captured. On the other hand, the posterior estimates of

ωθ do not signal any structural break, as logically expected.

1The number 181 is an arbitrary choice with no practical or statistical significance attached
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Figure 6.15: Filtered and smoothed values of a time series with two potential outliers, one
at the current time t = 181
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Figure 6.16: Posterior estimates of ωy,t (left) and ωθ,t (right) from a time series with distinct
outliers at time t = 80 and the current time t = 181

The same plot as in Figure 6.16 but including probability interval is shown in Figure 6.17
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Figure 6.17: Posterior estimates of ωy,t (left) and ωθ,t (right) from a time series with distinct
outliers at time t = 80 and the current time t = 181

6.3.2 Scenario 2

We use the entire data from section 6.3.1 and assume we have a new data now received, at

time t = 182, which is within the range of other data values. The filtered and smoothed

values from this series are shown in Figure 6.18
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Figure 6.18: Filtered and smoothed values of a time series with current at time t = 182
within the expected level

The posterior estimates for the auxiliary variables ωy and ωθ are displayed in Figure 6.19.

Obviously, from the plots we can see that the two extreme values at time t = 80 and

t = 181 have been identified as outliers. The posterior estimates of ωθ, on the other hand

are quite stable as expected.
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Figure 6.19: Posterior estimates of ωy,t (left) and ωθ,t (right) from a time series with distinct
outliers at time t = 80 and at time t = 181.
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Figure 6.20: An elaborate plot of posterior estimates of ωy,t showing presence of outliers at
time t = 80 and time t = 181

The same plot as in Figure 6.19 but including probability interval is shown in Figure 6.21
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Figure 6.21: Posterior estimates of ωy,t (left) and ωθ,t (right) from a time series with distinct
outliers at time t = 80 and at time t = 181.

6.3.3 Scenario 3

Again, we use the entire data set from section 6.3.1 and assume this time that the new

data currently received, that is at time t = 182, is also an extreme. So in this case we have

two consecutive extreme data values. This may be interpreted as either two consecutive

outliers or onset of structural break at the previous time step. The filtered and smoothed

values from this series are shown in Figure 6.22
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Figure 6.22: Filtered and smoothed values of a time series with the two most current values
( t = 181, 182) far from their expected values

The posterior estimates of the auxiliary variable ω from this series are plotted in Figure

6.23. From the graph, the model strongly suggest a structural break in the series at time

t = 181. The estimate for ωθ at that time is conspicuously low. Unlike in scenario two, the

model this time indicate presence of outlier only at time t = 80.

These results shows that our algorithm is able to distinguish between the outlier and

structural break, and in this data set we only have to wait one time step to do that.
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Figure 6.23: Posterior estimates of ωy,t (left) and ωθ,t (right) from a time series with distinct
outlier at time t = 80 and two most current values ( t = 181, 182) far from their expected
values
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Figure 6.24: An elaborate plot of posterior estimates of ωθ,t showing potential structural
break at time t = 181

The same plot as in Figure 6.23 but including probability interval is shown in Figure 6.25
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Figure 6.25: Posterior estimates of ωy,t (left) and ωθ,t (right) from a time series with distinct
outlier at time t = 80 and two most current values ( t = 181, 182) far from their expected
values
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Figure 6.26: Top: A plot of filtered, smoothed and data from a time series with potential
outlier at t= 80, and two most current data far from their expected values
Bottom left: Posterior estimates of ωy,t showing a distinct outlier at time t = 80
Bottm right: Posterior estimates of ωθ,t indicate a potential structural break at time t = 181
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Chapter 7

Discussion

When our particle filter is employed in the model for outliers and structural breaks, and

with large number of particles, it can estimate jointly the model parameters and filter the

states. The results also prove that the algorithm is accurately able to flag possible

observation outliers and structural breaks in real time.

From both the design of observation variance Vt and the results shown, we realise that the

further the observation is from the rest of the data, the larger the value of Vt is and

consequently the smaller the value of ωy,t. Therefore, the closer the value of ωy,t is to zero,

the more the outlyingness on observation yt. The threshold value of ωy,t, for an observation

to be considered serious outlier, is still under study but a value less than 0.7 is significant.

When there is no outlying observations in the data, the values of ωy are expected to be

equal to 1. Similarly when there is no structural break in the series, the values of ωθ,j,t are

expected to be 1. Value of ωθ,j,t less than 1 indicate a structural break in the jth

component of the state vector at time t, and the smaller the value is the larger the break.

It is worth noting that, like many other statistical inferences, the more data we have the

more effective the model is. We expect better results from data set of length 100, say, as

compared to data set of length 10. Similarly the output from the smoothing density, which

utilizes ` number of most current observations at a time, is more accurate than results from

the filtering density which utilizes only the most current observation.

Both the computational complexity and memory requirements for the particle filter is
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O(N) whereas that of MCMC is O(tN). Every time a new data value is observed requires

an update of posterior distribution, that is a move from p(X0:t−1, ψ|y1:t−1) to p(X0:t, ψ|y1:t).

Consequently, a new MCMC run will be required which make the MCMC approach

impractical for online inferences. The results from the SMC algorithm are comparable with

those from MCMC output. However, the SMC algorithm is quite fast while the running

time for MCMC is unbearable, especially as the of length the data set and the dimension of

state-space increases

Again, our results outperform those from regular outlier detection strategies such as the

Shewhart, CUSUM and EWMA. The Shewhart chart were unable to detect any structural

break, but are good in detecting large outlying observations. The CUSUM charts are able

to detect the break but after a substantial delay. The EWMA is more sensitive to small

jumps in the series than CUSUM and thus able to detect the jump much faster although

one or two time steps after our SMC approach. Also, the parameters involved in EWMA

procedure requires very careful choice or need to be estimated from the data. This may be

challenging and requires a lot of expertise. Lastly, when it comes to structural time series

of higher order, i.e. p > 1, these techniques will not be able to identify structural breaks, if

any, in individual components in the state space.

The beauty of our model is being able to distinguish between an outlier and structural

break. Once an observation arrive and it is far from its expected value, logically we have to

wait for at least one more observation to certainly determine if it is an outlier or if it is an

onset of a structural break in the series. This was demonstrated by results in section 6.3.

From the data used, the onset of structural break was confirmed after our second

observation, from where the break occurred, was received. Prior to getting the second

observation, the data value where the break occurred was flagged as an outlier. This is

important in keeping the analyst alert of likely possibility of a structural break. The

sensitivity of SMC to changes in prior specifications is still under study and left as future

work.
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