
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2012

Pointwise Schauder Estimates of Parabolic
Equations in Carnot Groups
Heather Arielle Griffin
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Numerical Analysis and Computation Commons, and the Partial Differential
Equations Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Griffin, Heather Arielle, "Pointwise Schauder Estimates of Parabolic Equations in Carnot Groups" (2012). Theses and Dissertations.
383.
http://scholarworks.uark.edu/etd/383

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.uark.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=scholarworks.uark.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=scholarworks.uark.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/383?utm_source=scholarworks.uark.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


POINTWISE SCHAUDER ESTIMATES OF PARABOLIC EQUATIONS IN CARNOT
GROUPS



POINTWISE SCHAUDER ESTIMATES OF PARABOLIC EQUATIONS IN CARNOT
GROUPS

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Mathematics

By

Heather Arielle Griffin
University of Arkansas

Bachelor of Science in Mathematics and Physics, 2004
University of Arkansas

Master of Science in Mathematics, 2008

May 2012
University of Arkansas



ABSTRACT

Schauder estimates were a historical stepping stone for establishing uniqueness and

smoothness of solutions for certain classes of partial differential equations. Since that time,

they have remained an essential tool in the field. Roughly speaking, the estimates state

that the Hölder continuity of the coefficient functions and inhomogeneous term implies the

Hölder continuity of the solution and its derivatives. This document establishes pointwise

Schauder estimates for second order “parabolic” equations of the form

∂tu(x, t)−
m1∑

i,j=1

aij(x, t)XiXju(x, t) = f(x, t)

where X1, . . . , Xm1 generate the first layer of the Lie algebra stratification for a Carnot

group. The Schauder estimates are shown by means of Campanato spaces. These spaces

make the pointwise nature of the estimates possible by comparing solutions to their Taylor

polynomials. As a prerequisite device, a version of both the mean value theorem and Taylor

inequality are established with the parabolic distance incorporated.
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1

0.1 Introduction

Schauder estimates are an essential tool in regularity theory for partial differential equa-

tions. Roughly speaking the Schauder estimates state that given a solution to an inhomoge-

neous equation where the coefficients of the operator as well as the inhomogeneous term are

both Hölder continuous, this regularity transmits through the operator to give Hölder conti-

nuity of the derivatives of the solution. These estimates were the key to showing uniqueness

and smoothness of solutions for certain classes of equations [36].

Juliusz Schauder is credited for the proof in the case of second order linear elliptic equa-

tions given in [39] and [40]. Though Caccioppoli also had a similar result around the same

time, his work was not as detailed [11]. Hölder continuity in the much simpler case of the

Laplacian is due to Hopf [30] a few years prior to Schauder’s result. Because of the usefulness

of the inequality, a common objective of showing these types of estimates for different types

of equations under more general conditions arose. As a result, many methods of proof have

emerged. Mentioned here are only a few most relevant to the work of this dissertation. A

more complete discussion on Hölder estimates and regularity of solutions can be found in

[26, Chapter 6] for elliptic equations or [34, Chapter 4] for parabolic equations.

One method of deriving Schauder estimates depends on having a representation of a

fundamental solution, explicitly computing derivatives, and relying on methods of singular

integrals to get the results. This is demonstrated in [26, Chapter 6] as well as Chapter 1 of

this manuscript. Another method is by means of the Morrey-Campanato classes, which are

equivalent to the Hölder spaces and can be seen in [24, Chapter 3] as well as [34, Chapter

4]. A third method is based on a scaling argument and approximation of solutions by Taylor
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polynomials. It can be found in [41, Section 1.7]. The proof for the Schauder estimates

given in this dissertation has aspects reminiscent of all these methods.

The main result of this paper is a generalization of the classic result in two ways. The

“pointwise” result requires only Hölder continuity of the coefficients and inhomogeneous term

at a single point in order to get the Hölder continuity of the solution and its derivatives at

that same point. This pointwise nature can be useful when the source term or coefficients

are not well behaved everywhere. It also allows an application to the study of nodal sets

[28]. The other generalization is the change from the Euclidean setting to the Carnot group

setting where derivatives are given by vector fields which may not necessarily commute.

Comparing the solution to its Taylor polynomial, a technique first popularized by Caf-

farelli in 1998 in his work on fully nonlinear equations [12], makes possible the pointwise

generalization of the estimate. Caffarelli’s approach was generalized to parabolic equations

by Wang in [43], and about a decade later, Han used this same method for proving pointwise

Schauder estimates for higher order parabolic and elliptic equations in [28] and [29]. His

interest was in the application to nodal sets. These results were extended by Capogna and

Han [15] to second order subelliptic linear equations over Carnot groups in 2003. The proof

contained in this dissertation follows the same method.

Global and local Schauder estimates have been explored in the group setting as well as

the more general case of Hörmander type vector fields. Though this list is not exhaustive,

see [5], [7], [9], [10], [27], and [44] for more details. However, the pointwise result contained

here seems to be new.

The outline of the paper is as follows. In Chapter 1, the classical Schauder estimates for

elliptic equations is discussed. In Chapter 2, we begin with basic definitions related to Carnot
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groups before proving the Schauder estimates for the sublaplacian in this setting. Chapter

3 begins the transition to the parabolic setting. Definitions regarding the product space of

a group and the real line are made. The main tools such as group polynomials, Campanato

classes, and Sobolev spaces are defined, and several lemmas regarding these items are shown.

The proof of the main theorem (stated below) is given in Chapter 4.

Before stating the main result, the operator of interest is given by

(0.1) HA = ∂t −
m1∑
i,j=1

ai,j(x, t)XiXj

where the vector fields X1, . . . , Xm1 generate the first layer of the Lie algebra stratification

for a Carnot group, and the matrix A = (aij) is Hölder continuous only at the origin.

Additionally there exist constants 1 < λ ≤ Λ <∞ such that

(0.2) λ|ξ|2 ≤
m1∑
i,j=1

aij(x, t)ξiξj ≤ Λ|ξ|2 for any ξ ∈ Rm1 .

The operator is a non-divergence form similar to the heat equation, but it is not truly

parabolic as the title suggests since m1 may be less than the dimension of the space.

Let Q denote the homogeneous dimension of the group G and S2,1
p denote the Sobolev

space containing two spatial derivatives and one time derivative. The exact definitions for

the Hölder and Campanato classes can be found in Section 3.3.
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Theorem 0.1. For Q+ 2 < p <∞, let u ∈ S2,1
p (Q1) and HAu = f in Q1 with

f ∈ Lp(Q1). Assume, for some α ∈ (0, 1) and some integer d ≥ 2, f ∈ Cα
p,d−2(0, 0) and

aij ∈ Cα
p,d−2(0, 0). Then u ∈ Cα

∞,d(0, 0) and

‖u‖∞,α,d (0, 0) ≤ C(‖u‖Lp(Q1) + ‖f‖p,α,d−2 (0, 0))

where C = C(G, p, d, α, A) > 0.

Section 4.1 gives bounds for the heat kernel associated to the constant coefficient equation

as well as a few lemmas regarding polynomial expansions of solutions. These are essential for

the constant coefficient a-priori estimates shown in Section 4.2. These estimates give specific

information about the bounds of the Sobolev norm of solutions, which is then used to give

a basic version of the Schauder estimates for the constant coefficient equation as a quick

corollary. The corollary is vastly useful because it allows us to transmit information from

the polynomials approximating the inhomogeneous term to the polynomial approximating

the solution. The freezing technique is then employed to give a-priori estimates for the

non-constant coefficient equation, and a weak version of the Schauder estimates is shown.

(It is weak in the sense that we still assume some amount of regularity on solutions and

inhomogeneous term.) Finally, by comparing the solution to its first order Taylor polynomial

and successively applying the a-priori estimates, the final result is obtained.
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CHAPTER 1

The Classical Schauder Estimates

In this chapter, the Schauder estimates for the Laplacian will be shown in detail following

the proof given in chapter 4 of [26]. These estimates can be used to get the same result for

the more general elliptic case. A description of this method is provided.

The symbols below will be used to notate Hölder continuity on a bounded set Ω where

α is always taken to be in (0, 1). By definition u ∈ Cα(Ω) is given by

[u]0,α,Ω = sup
x,y∈Ω

x 6=y

|u(x)− u(y)|
|x− y|α

<∞,

and if xo ∈ Ω, we will say u is Hölder continuous at xo if

[u]α,xo = sup
Ω

|u(x)− u(xo)|
|x− xo|α

<∞.

Similarly, u ∈ Ck,α(Ω) is defined to the space of functions u such that

[u]k,α,Ω = sup
|β|=k

sup
x,y∈Ω

x 6=y

|Dβu(x)−Dβu(y)|
|x− y|α

<∞.

Recall the fundamental solution to Laplace’s equation,

Γ(x− y) =


1

n(2−n)ωn
|x− y|2−n n > 2

1
2π
log|x− y| n = 2

.
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The proof of the Schauder estimates depends very heavily on the following upper bounds

of the fundamental solution, which result from direct computation.

(1.1) |DβΓ(x− y)| ≤ C(n, |β|) |x− y|2−n−|β| for |β| = 0, 1, 2, . . .

We will also make extensive use of Green’s representation formula.

(1.2) u(y) =

∫
∂Ω

(
u
∂Γ

∂ν
(x− y)− Γ(x− y)

∂u

∂ν

)
ds+

∫
Ω

Γ(x− y)∆udx, y ∈ Ω.

Lemmas 1.1 and 1.3 are stated to be true for the Newtonian potential of f, which is

by definition Γ ∗ f. However, the lemmas also apply for solutions of ∆u = f with compact

support since this would result in a vanishing boundary integral in Green’s formula.

Lemma 1.1. Suppose u is the Newtonian potential of f in Ω, where f is bounded and

Hölder continuous in Ω. Then u ∈ C2(Ω) and for every x ∈ Ω and i, j = 1, . . . , n,

(1.3) Diu(x) =

∫
Ω

DiΓ(x− y)f(y)dy

and

(1.4) Diju(x) =

∫
Ωo

DijΓ(x− y)(f(y)− f(x))dy − f(x)

∫
∂Ωo

DiΓ(x− y)νj(y)dSy

where Ωo contains Ω and supports the divergence theorem.

Proof. While (1.3) seems obvious, it requires some work. The singularity in Γ prevents

the use of the dominated convergence theorem, so begin by extending f to vanish outside of

Ω and defining v(x) =
∫

Ω
DiΓ(x− y)f(y)dy, which is well defined due to (1.1). Then take a
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cutoff function η(t) ∈ C1(R) with the following properties: 0 ≤ η ≤ 1, 0 ≤ η′ ≤ 2, η(t) = 0

for t ≤ 1, and η(t) = 1 for t ≥ 2.

For ε > 0 let

uε(x) =

∫
Ω

Γ(x− y)η

(
|x− y|
ε

)
f(y)dy,

and notice that uε = 0 when |x− y| < ε and uε = u when |x− y| > ε.

To show Diuε converges to v, look at the difference

|v(x)−Diuε(x)| =

∣∣∣∣∫
|x−y|≤2ε

Di

[
Γ(x− y)(1− η

(
|x− y|
ε

)
)

]
f(y)dy

∣∣∣∣
=

∣∣∣∣∫
|x−y|≤2ε

[
DiΓ(x− y)− Γ(x− y)Diη

(
|x− y|
ε

)]
f(y)dy

∣∣∣∣
≤ sup|f |

∫
|x−y|≤2ε

|DiΓ(x− y)|+ 2

ε
|Γ(x− y)|dy.

Finally,

|v(x)−Diuε(x)| ≤ sup|f |


2nε
n−2

n > 2

4ε(1 + log(2ε)) n = 2

.

The right hand side converges to 0 as ε→ 0. And since uε and Diuε converge in Ω to u and

v respectively, the implication gives u ∈ C1(Ω) as well as the first conclusion.

The second part of the proof continues in a similar fashion. Continuing with v = Diu,

let

vε(x) =

∫
Ω

DiΓ(x− y)η

(
|x− y|
ε

)
f(y)dy,

and differentiate.

Djvε(x) =

∫
Ω

Dj

[
DiΓ(x− y)η

(
|x− y|
ε

)]
f(y)dy
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=

∫
Ωo

Dj

[
DiΓ(x− y)η

(
|x− y|
ε

)]
(f(y)− f(x))dy

+f(x)

∫
Ωo

Dj

[
DiΓ(x− y)η

(
|x− y|
ε

)]
dy

=

∫
Ωo

Dj

[
DiΓ(x− y)η

(
|x− y|
ε

)]
(f(y)− f(x))dy

−f(x)

∫
∂Ωo

DiΓ(x− y)η

(
|x− y|
ε

)
νj(y)dSy.

The last equality follows from the divergence theorem.

Set g(x) =
∫

Ωo
DijΓ(x − y)(f(y) − f(x))dy − f(x)

∫
∂Ωo

DiΓ(x − y)νj(y)dSy. Then g(x)

is well defined by virtue of the bounds (1.1) and the Hölder continuity of f . Examining the

difference below will give the final conclusion.

|g(x)−Djvε(x)| = |
∫

Ωo

Dj

{
DiΓ(x− y)

[
1− η

(
|x− y|
ε

)]}
(f(y)− f(x))dy

−f(x)

∫
∂Ωo

[
1− η

(
|x− y|
ε

)]
DiΓ(x− y)νj(y)dSy|

= |
∫
|x−y|<2ε

Dj

{
DiΓ(x− y)

[
1− η

(
|x− y|
ε

)]}
(f(y)− f(x))dy|

≤ [f ]α,x

∫
|x−y|<2ε

|DijΓ(x− y)

[
1− η

(
|x− y|
ε

)]
||x− y|α

+|DiΓ(x− y)Djη

(
|x− y|
ε

)
||x− y|αdy

≤ [f ]α,x

∫
|x−y|<2ε

(
|DijΓ(x− y)|+ 2

ε
|DiΓ(x− y)|

)
|x− y|αdy

≤ C(n, α)[f ]α,x(2ε)
α

for ε < dist(x, ∂Ω). Consequently, the uniform convergence of Djvε to g(x) on compact

subsets and the convergence of vε to Diu in Ω gives the equality (1.4). �
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Remark 1.2. From the previous proof, it is easy to show that if u = Γ ∗ f , then ∆u = f.

To see this set Ωo = BR in (1.4), then for a sufficiently large R, one obtains

∆u =
1

nωnRn−1
f(x)

∫
|x−y|=R

νj(y)νi(y)dSy = f(x).

However, this solution is not unique. You can always add a harmonic function to u and have

another solution.

Lemma 1.3. Let B1 = BR(xo) and B2 = B2R(xo) be concentric balls in Rn. Suppose

f ∈ Cα(B̄2), and suppose u is the Newtonian potential of f in B2. Then u ∈ C2,α(B̄1) and

(1.5) sup
B1

|D2u|+Rα[D2u]α,B1 ≤ C(sup
B2

|f |+Rα[f ]α,B2)

where C = C(n, α).

Proof. Take x ∈ B1, formula (1.4) reads

Diju(x) =

∫
B2

DijΓ(x− y)(f(y)− f(x))dy − f(x)

∫
∂B2

DiΓ(x− y)νj(y)dSy.

Applying the bounds to the fundamental solution and using Hölder continuity of f , gives

the estimate

|Diju(x)| ≤ [f ]α,x
ωn

∫
B2

|x− y|α−ndy +
|f(x)|
nωn

R1−n
∫
∂B2

dSy

≤ 2n−1|f(x)|+ n

α
(3R)α[f ]α,x(1.6)

≤ C1(n, α)(|f(x)|+ [f ]]α,x).
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Choose another point x̄ ∈ B1 and use (1.4) again to get

Diju(x̄) =

∫
B2

DijΓ(x̄− y)(f(y)− f(x̄))dy − f(x̄)

∫
∂B2

DiΓ(x− y)νj(y)dSy.

To avoid singularities and examine the continuity of D2u, we write the difference in a

special way letting δ = |x− x̄| and ξ = 1
2
(x+ x̄).

Diju(x̄)−Diju(x) = f(x)I1 + (f(x)− f(x̄)I2 + I3 + I4 + (f(x)− f(x̄)I5 + I6

where the integrals are given by

I1 =

∫
∂B2

(DiΓ(x− y)−DiΓ(x̄− y))νj(y)dSy,

I2 =

∫
∂B2

DiΓ(x̄− y)νj(y)dSy,

I3 =

∫
Bδ(ξ)

DijΓ(x− y)(f(x)− f(y))dy,

I4 =

∫
Bδ(ξ)

DijΓ(x̄− y)(f(y)− f(x̄))dy,

I5 =

∫
B2/Bδ(ξ)

DijΓ(x− y)dy, and

I6 =

∫
B2/Bδ(ξ)

(DijΓ(x− y)−DijΓ(x̄− y))(f(x̄− f(y))dy.

The estimation of each is fairly straight forward. For I1, take x̂ between x and x̄. Then

|I1| ≤ |x− x̄|
∫
∂B2

|DiΓ(x− y)−DiΓ(x̄− y)|
|x− x̄|

dSy

≤ |x− x̄|
∫
∂B2

|DDiΓ(x̂− y)|dSy

≤ |x− x̄|
∫
∂B2

|x̂− y|−ndSy
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≤ R−n|x− x̄|
∫
∂B2

dSy

≤ C1R
−1|x− x̄|

≤ C1

(
δ

R

)
≤ C1

(
δ

R

)α
.

The last inequality follows from δ < 2R.

|I2| ≤
∫
∂B2

|DiΓ(x̄− y)|dSy

≤ (nωn)−1R1−n
∫
∂B2

dSy

≤ C2.

For I3, we integrate over a slightly larger set.

|I3| ≤
∫
B3δ/2(x)

|DijΓ(x− y)||f(x)− f(y)|dy

≤ (ωn)−1[f ]α,x

∫
B3δ/2(x)

|x− y|−n|x− y|αdy

≤ C3

(
3δ

2

)α
[f ]α,x.

I4 is handled in exactly the same fashion to give

|I4| ≤ C4

(
3δ

2

)α
[f ]α,x.
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Using integration by parts,

|I5| = |
∫
∂B2/Bδ(ξ)

DiΓ(x− y)νj(y)dSy|

≤ |
∫
∂B2

DiΓ(x− y)νj(y)dSy|+ |
∫
∂Bδ(ξ)

DiΓ(x− y)νj(y)dSy|

≤ 2n−1 + (nωn)

(
δ

2

)1−n ∫
∂Bδ

dSy

≤ C5.

Finally,

|I6| ≤ |x− x̄|
∫
B2/Bδ(ξ)

|DDijΓ(x̂− y)||f(x̄)− f(y)|dy

≤ cδ

∫
|y−ξ|≥δ

|f(x̄)− f(y)|
|x̂− y|n+1

dy

≤ cδ[f ]α,x̄

∫
|y−ξ|≥δ

|x̄− y|α

|x̂− y|n+1
dy

≤ c′
(

3

2

)α
2n+1δ[f ]α,x̄

∫
|y−ξ|≥δ

|ξ − y|α−n−1dy

≤ C6δ
α[f ]α,x̄

since |x̄− y| ≤ 3/2|ξ − y| ≤ |x̂− y|.

Thus after collecting terms,

|Diju(x̄)−Diju(x)| ≤ C ′(R−α|f(x)|+ [f ]α,x + [f ]α,x̄)|x− x̄|α,

where C ′ is a constant depending only on n and α. Rewriting and taking the supremum

over B2 gives,

Rα[D2u]α,B1 ≤ C ′(|f(x)|+Rα[f ]α,B2).
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Combining this with (1.6) gives the conclusion. �

Now we consider solutions to Poisson’s equation ∆u = f . To make the equations more

compact, we introduce the following norms:

|u|k,α,Ω :=
k∑
j=0

sup
|m|=j

Ω

|Dmu|+ [Dku]α,Ω

and

|u|′k,α,BR :=
k∑
j=0

Rj sup
|m|=j
BR

|Dmu|+Rk[Dku]α,BR .

Theorem 1.4. Let Ω be a domain in Rn where n > 2 and let u ∈ C2(Ω) and for any

two concentric balls (as in Lemma 1.3) B1 and B2 completely contained in Ω, we have

(1.7) |u|′2,α,B1
≤ C(sup

B2

|u|+R2|f |′0,α,B2
)

where C depends only on n and α.

Proof. For x ∈ B2, decompose u as u(x) = v(x) + h(x) where v(x) is the newtonian

potential of f and h is a harmonic function. Gathering information we have on v;

sup
B1

|v| ≤ C1R
2 sup
B1

|f | by Green’s formula.

sup
B1

|Dv| ≤ C2R sup
B1

|f | by (1.1).(1.8)

|D2v|0,α,B1 ≤ C3|f |0,α,B2 by (1.3).

Together, these give the theorem for the case of v, the Newtonian potential.

Now, we examine h. By interior estimates of derivatives, see [26, Theorem 2.10] we have
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R sup
B1

|Dh|+R2|D2h|′0,α,B1
≤ C(n) sup

B2

|h|.

And clearly,

(1.9) sup
B2

|h| ≤ sup
B2

|u|+ sup
B2

|v| ≤ C(n)(sup
B2

|u|+R2 sup
B2

|f |).

Finally, by (1.8) and (1.9) the conclusion is reached.

|u|′2,α,B1
≤ |v|′2,α,B1

+ |h|′2,α,B1

≤ C(sup
B2

|u|+R2|f |′0,α,B2
).

�

With certain adaptations of the norms, we give a more general version of Theorem 1.4.

Let dx be the distance between x and ∂Ω and dx,y = min{dx, dy}. Now define

|u|∗k,α,Ω :=
k∑
j=0

sup
|m|=j
x∈Ω

djx|Dmu|+ sup
|m|=j
x,y∈Ω

dk+α
x,y

|Dku(x)−Dku(y)|
|x− y|α

and

|f |(2)
0,α,Ω := sup

x∈Ω
d2
x|f(x)|+ sup

x,y∈Ω
d2+α
x,y

|f(x)− f(y)|
|x− y|α

.

Theorem 1.5. (Interior Schauder Estimates for the Laplacian)

Suppose u ∈ C2(Ω) and f ∈ Cα(Ω) satisfy ∆u = f in an open set Ω of Rn. Then

(1.10) |u|∗2,α,Ω ≤ C(sup
Ω
|u|+ |f |(2)

0,α,Ω)

where C depends only on n and α.
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Proof. For x ∈ Ω, set R = 1
3
dx, B1 = BR(x) and B2 = B2R(x). Then it follows that

dx|Du|+ d2
x|D2u| ≤ 3R sup

B1

|Du|+ (3R)2 sup
B1

|D2u|

≤ C(sup
B2

|u|+R2|f |′0,α,B2
by (1.7)

≤ C(sup
Ω
|u|+ |f |(2)

0,α,Ω).

Now we choose x, y ∈ Ω such that dx ≤ dy. Then

d2+α
x,y

|D2u(x)−D2u(y)|
|x− y|α

≤ (3R)2+α[D2u]α,B1

+3α(3R)2(|D2u(x)|+ |D2u(y)|)

≤ C(sup
B2

|u|+R2|f |′0,α,B2
) + 6 sup

Ω
d2
x|D2u(x)| by (1.7)

≤ C(sup
Ω
|u|+ |f |(2)

0,α,Ω).

�

We will now allude to the proofs for the case of constant coefficient equations as well as

equations with Hölder continuous coefficients.

To get the Schauder estimates for a constant coefficient second order elliptic equation,

(for example Lou =
∑n

ij=1 aij∂xi∂xju = f), a simple linear transformation of the matrix with

entries aij is needed. Under this transformation, the operator is mapped to the Laplacian.

Keeping careful track of the effect of this transformation on both u and f as well as the

effect on the norms in Theorem 1.5, the same conclusion can be reached for the constant

coefficient equation. For details, see [26, Lemma 6.1].
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Consider now, L =
∑n

ij=1 aij(x)∂xi∂xj . Dealing with variable coefficients is usually done

by the freezing technique. Evaluating the coefficients at a specific point would give an

operator of the form Lo. Writing Lou = Lou − Lu + Lu and regrouping the terms allows

for the use of the constant coefficient result as well as the conditions on the continuity of

the coefficient functions. This method also relies on interpolation inequalities of the Hölder

norms and can be viewed in [26, Theorem 6.2].
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CHAPTER 2

Carnot Groups

2.1 Definitions and Examples

The setting for the sequel is a special type of Lie group with many structures allowing

computations to be done in a fashion similar to the Euclidean setting. Most essential to the

proof of the Schauder estimates is the extensive use of the homogeneity of Carnot groups.

However, care must be taken in the development of ideas such as scaling and distance. This

introduction to Carnot groups aims to make these notions clear and precise while pointing

out some of the difficulties of working in these groups, the most obvious of which is the fact

that the derivatives do not necessarily commute.

Before commencing, let it be known that in this document all vector fields can be written

as linear combinators of standard partial derivatives with smooth coefficient functions. That

is

X =
n∑
k=1

bk(x)∂xk where bk(x) ∈ C∞(Rn).

Definition 2.1. A Carnot group G of step r ≥ 1 is a connected and simply connected

nilpotent Lie group whose Lie algebra g admits a vector space decomposition into r layers.

g = V 1 ⊕ V 2 ⊕ · · · ⊕ V r

having the properties that g is graded and generated by V 1. Explicitly, [V 1, V j] = V j+1,

j = 1, . . . , r − 1 and [V j, V r] = 0, j = 1, . . . , r.
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Let mj = dim(V j) and let Xi,j denote a left-invariant basis of V j where 1 ≤ j ≤ r and

1 ≤ i ≤ mj. The homogeneous dimension of G is defined as Q =
∑r

k=1 kmk. For simplicity,

we will set Xi = Xi,1. We call {Xi} the horizontal vector fields and call their span, denoted

HG, the horizontal bundle. We call {Xi,j}2≤j≤r the vertical vector fields and refer to their

span, denoted VG, as the vertical bundle. Then g = HG ⊕ VG. In fact, the Lie algebra

spans the whole tangent space of the group (TG = g).

Because of the stratification of the Lie algebra, there is a natural dilation on g. If

X =
∑r

k=1 Xk where Xk ∈ V k, then the dilation can be defined by δs(X) =
∑r

k=1 s
kXk. It is

worth noting here that while dilation mappings are defined on the Lie algebra, the mapping

exp ◦ δs ◦ exp−1 gives the dilation on the group G. However, the same notation, δs, will be

used for both maps.

Recall the definition of the exponential of a vector field, X. Fix a point p ∈ G. Let γ(t) be

a curve such that γ(0) = p and d
dt
γ(t) = Xγ(t). (The existence of such a curve is guaranteed

by the theorem of existence and uniqueness of systems of ordinary differential equations.)

The exponential map is defined as expp(X) = γ(1), or more generally, expp(tX) = γ(t).

For Lie groups, p is taken as the identity element, and the exponential map provides a

means of relating the Lie algebra to the group itself.

exp : g→ G.

And in the special case of Carnot groups, the exponential map is an analytic diffeomor-

phism, and the Baker-Campbell-Hausdorff formula holds for all X and Y in g. For a proof

see [17, Theorem 1.2.1].
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The Baker-Campbell-Hausdorff formula (BCH) gives a more complete picture of how the

exponential map relates the algebra to the group. Take two vector fields in the Lie algebra,

X and Y . The BCH is given by explicitly solving for the vector field Z in the equation

exp(Z) = exp(X) · exp(Y ).

Z = log(exp(X) · exp(Y ))

= X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + · · ·(2.1)

The formula continues with higher order commutators. For nilpotent Lie groups, it is clear

the summation will eventually terminate.

Definition 2.2. Let {X1, . . . , Xn} be a basis for a nilpotent Lie algebra g, and consider

a map

Ψ : Rn → G

Ψ(s1, . . . , sn) = exp(s1X1 + . . .+ snXn).

The coordinates given by the map Ψ are called exponential coordinates or canonical coordi-

nates of the first kind.

Canonical coordinates of the second kind are defined similarly by taking

Ψ(s1, . . . , sn) = exp(s1X1) · · · exp(snXn).

The foundation has now been laid to give a few examples of Carnot groups.
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Example 2.3. The Heisenberg group, Hn, is a step 2 Carnot group whose underlying

manifold is R2n+1. Taking x, x′ ∈ R2n and t, t′ ∈ R, the group operation is given by

(x, t) · (x′, t′) = (x+ x′, t+ t′ + 2
n∑
i=1

(x′ixn+i − xix′n+i)).

The vector fields below form a left-invariant basis for the Lie algebra, h = V 1 ⊕ V 2.

Xi = ∂xi −
1

2
xn+i∂t, Xi+n = ∂xn+i

+
1

2
xi∂t for i = 1, . . . , n

and T = ∂t

The horizontal bundle is given by V 1 = span{X1, . . . , X2n}, and the vertical bundle is then

V 2 = span{T} leading to a homogeneous dimension of 2n+ 2.

Example 2.4. The Engel group, K3, is an example of a step 3 Carnot group with a

homogeneous dimension of 7. See [17] and [18] for more information. This group has an

underlying manifold of R4, and the group operation is given by

x · x′ = (x1 + x′1, x2 + x′2, x3 + x′3 + A3, x4 + x′4 + A4)

where

A3 =
1

2
(x1x

′
2 − x2x

′
1)

and

A4 =
1

2
(x1x

′
3 − x3x

′
1) +

1

12
(x2

1x
′
2 − x1x

′
1(x2 + x′2) + x2(x′1)2).

The Lie algebra can be graded as g = V 1 ⊕ V 2 ⊕ V 3 by letting V 1 = span{X1, X2}, V 2 =

span{X3}, and V 3 = span{X4}. Using the Baker-Campbell-Hausdorff formula, expressions
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for the vector fields can be found.

X1 = ∂x1 −
x2

2
∂x3 −

(x3

2
+
x1x2

12

)
∂x4

X2 = ∂x2 +
x1

2
∂x3 +

x2
1

12
∂x4

X3 = ∂x3 +
x1

2
∂x4

X4 = ∂x4

Notice that [X1, X2] = X3 and [X1, X3] = X4 and all other commutators are trivial.

For demonstrative purposes, return to the first Heisenberg group, H1. This group is of

great interest and widely studied not only because of its appearance in applications but also

because there are only two 3 dimensional simply connected nilpotent Lie groups: H1 and R3.

It is simple to check the left-invariance of the vector fields for H1. Let f(x, y, t) be a left

translation by (a,b,c).

f(x, y, t) = (x+ a, y + b, t+ c+ 1/2(ay − bx))

The differential is

(2.2) df =


1 0 0

0 1 0

−b/2 a/2 1

 .
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Consider first the vector field X1 = ∂x − (y/2)∂t =


1

0

−y/2

. If we are to first take the X1

derivative at a point p = (x, y, t) and then apply the left translation in the tangent space,

we get df ·X1 = ∂x + (−b/2− y/2)∂t. On the other hand, if we left translate the point and

then find the derivative at the translated point, we get X1 ◦ f(x, y, t) = ∂x + (−b/2− y/2)∂t.

Therefore f∗X1 = X ◦ f showing X1 is left-invariant. The same can be done for the other

vector fields. A nice derivation of the vector fields is given in [14].

For H1, the underlying manifold is R3, but X1 and X2 do not span all of the tangent

space. The commutator, T = ∂t, recovers the missing direction. This group is said to satisfy

Hörmander’s condition. In fact, Carnot groups in general satisfy Hörmander’s condition,

meaning that the basis of vector fields along with all of their commutators up to some finite

step will span the entire tangent space. This property is essential when considering Carnot

groups as sub-Riemannian manifolds because it ensures that any two points in the group

can be connected by a path that lies entirely in the span of V 1. This type of path is referred

to as a horizontal path. To be more precise, stated below is the fundamental theorem.

Theorem 2.5. (Chow’s Theorem) If a smooth distribution satisfies Hörmander’s condi-

tion at some point p, then any point q which is sufficiently close to p can be joined to p by a

horizontal curve.

Because the L2 energy required to travel only along directions in vertical bundle is infinite,

the horizontal vector fields give the so called “admissible" directions. Getting from one point

to another requires traveling along a horizontal curve, and Chow’s theorem alleviates any

concern that we might not be able to find an appropriate path. We will always be able to
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get there by moving along horizontal curves so long as the vector fields satisfy Hörmander’s

finite rank condition.

Carnot groups can also be viewed as sub-Riemannian manifolds, and it is always possible

to define g a Riemannian metric with respect to which the V j are mutually orthogonal.

A curve γ : [0, 1] → G is horizontal if the tangent vector γ′(t) lies in V 1 for all t. The

Carnot-Carathéodory distance (CC-distance) can now be defined.

Definition 2.6. Let p, q ∈ G.

dcc(p, q) = inf

∫ 1

0

(
m1∑
i=1

〈
γ′(t), Xi|γ(t)

〉2

g
dt

)1/2

,

where the infimum is taken over all horizontal curves γ such that γ(0) = p, γ(1) = q and

〈·, ·〉g denotes the left invariant inner product on V 1 determined by the metric g.

Chow’s Theorem gives the existence of the horizontal curve, γ. Another consequence of

his work is that the CC-distance is finite for connected groups.

The CC-distance is not a true distance in that it lacks the triangle inequality. However

it does satisfy the quasi-triangle inequality meaning there exists a positive constant, A,

depending on the group G such that

dcc(x, y) ≤ A(dcc(x) + dcc(y)).

We will also make use of the distance defined by the gauge norm. Let xi,k be the coor-

dinates for a point x ∈ G, then

(2.3) |x|2r! =
r∑

k=1

m1∑
i=1

|xi,k|2r!/k.
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For x, y ∈ G, we then let d(x, y) = |xy−1| as defined above.

The gauge distance is equivalent to the CC-distance but has the advantage of being a

Lipschitz function. We say they are equivalent due to the fact that there exists a constant,

a(G), dependent on the group such that

a−1dcc(x, y) ≤ d(x, y) ≤ adcc(x, y).

For a proof, as well as other properties of these metrics see [35].

2.2 Subelliptic Schauder Estimates

This section presents the proof of Schauder estimates by Chao-Jiang Xu [44] for subel-

liptic operators of the form

L =
m∑
j=1

X2
j .

We will keep the same notations from the preceding section on Carnot groups. However,

here the real smooth vector fields X1, . . . Xm satisfy Hörmander’s condition but have no

requirement related to the structure of commutators as was the case with Carnot groups.

It is by virtue of Rothschild and Stein’s theorems of lifting and approximation that

equations involving Hörmander vector fields are able to be studied so effectively. Their

result roughly states that the manifold can be lifted to a free group and that the difference

between the lifted vector fields and the generators of a free nilpotent Lie algebra is almost

negligible [37]. This is such an important result that it is worth stating explicitly.

Theorem 2.7. [37, Theorem 4]

Let X1, . . . , Xm be vector fields on a manifold M of dimension m such that the commu-

tators of length ≤ r span the tangent space at ξ ∈ M . Then in terms of new variables,
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tm+1, tm+2, . . . , tm̃, there exist smooth functions λkl(ω, t) defined in a neighborhood Ũ of

ξ̃ = (ξ, 0) ∈M × Rm̃−m = M̃ such that the vector fields {X̃k} given by

(2.4) X̃k = Xk +
m̃∑

l=m+1

λkl(ω, t)
∂

∂tl

are free up to step r at every point in Ũ .

Theorem 2.8. [37, Theorem 5]

Let X̃1, . . . , X̃n be vector fields on a manifold M̃, ξ̃o ∈ M̃ such that

(i) commutators of length ≤ r span the tangent space, and

(ii) {X̃k} is free up to step r at ξ̃o.

Choose {X̃jk}, commutators of length ≤ r, determining a system of canonical coordinates

(ujk) around ξ̃o by exp(
∑
ujkX̃jk) · ξ̃. Let N be the free Lie group of step r on n generators

and R its Lie algebra. Then there is a basis {Yjk} of R and neighborhoods Ṽ of ξ̃o ∈ M̃ and

U of 0 ∈ N with the following properties. On Ṽ × Ṽ consider the mapping to U

(2.5) θ(ξ̃, ω̃) = exp(
∑

ujkYjk) ∈ U,

where ω̃ = exp(
∑
ujkX̃jk)ξ̃. Then for each fixed ξ̃ the mapping

ω → θξ̃(ω̃) = θ(ξ̃, ω̃) = (ujk)

is a coordinate chart for V centered at ξ̃.
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In this coordinate system,

(2.6) X̃k = Yk +Rk, k = 1, . . . , n,

where Rk is a differential operator of local degree ≤ 0.

In the proof of the Schauder estimates, we will let Xjk denote a commutator of length

j. Using a canonical system of coordinates, we obtain a C∞ diffeomorphism from a neigh-

borhood about x, Vx ⊂M to a neighborhood of 0 in Rn in the following way. If y ∈ Vx and

y = exp(
∑
ujkXjk)x, define the mapping by θx(y) = u = (ujk).

The distance function used will be given by the gauge norm.

d(x, y) =
(∑

|ujk|2r!/j
)1/2r!

,

which is locally equivalent to the CC-distance. The base of the tangent space on Vxo will be

denoted {Xjk} (1 ≤ j ≤ r, k ≤ kj), then n =
∑

j≤r kj.

The proof is very similar to the Euclidean case, but we do not have an explicit formulation

of the fundamental solution resulting in the need for a few technical lemmas. For the sake

of brevity, these are given without proof.

Lemma 2.9. [44, Lemma 1.3]

(i) For every compact set, K ⊂⊂ Vxo, there exists a constant, C such that if x ∈ K and

δ < 1
2
δo, we have

(2.7) |B(x, 2δ)| ≤ C|B(x, δ)|
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(ii) For x ∈ K ⊂⊂ Vxo, 0 < δ < δo, we have

(2.8)
∫
B(x,δ)

d(x, y)α

|B(x, d(x, y))|
dy ≤ Cδα.

Lemma 2.10. [44, Lemma 1.4]

(i) For x, y ∈ Vxo, we have

(2.9) |XId(x, y)| ≤ Cd(x, y)1−|I|.

(ii) For all K ⊂⊂ Vxo , and K3ε = {x ∈ Rn; d(x, y) < 3ε, y ∈ K} ⊂ Vxo , there exists

Ψ ∈ C∞0 (K3ε), 0 ≤ Ψ ≤ 1, Ψ(x) = 1 on K such that for all k,

(2.10) |XIΨ| ≤ C(k)ε−|I|.

Lemma 2.11. [44, Lemma 3.1]

For n ≥ 3, there exists a Green’s kernel G(x, y) for the operator, L, and

(2.11) |XJG(x, y)| ≤ CJ
d(x, y)2−|J |

|B(x, d(x, y))|
,

where differentiations are taken in x or y. Also,

(2.12) −G(x, y) ≥ c
d(x, y)2

|B(x, d(x, y))|

near the diagonal of Ω× Ω.
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The existence of the Green’s kernel for this operator is due to Bony [4], and the bounds

can be found in [38].

The symbols below will be used to notate Hölder continuity on a set Ω = Vxo where α is

always taken to be in (0, 1). By definition

Cα
X(Ω) =

u ∈ C0(Ω̄); [u]Xα,Ω = sup
x,y∈Ω

x 6=y

|u(x)− u(y)|
d(x, y)α

<∞

 ,

and for k ∈ N,

Ck,α
X (Ω) =

{
u ∈ Cα

X(Ω);XJu ∈ Cα
X(Ω), for all |J | ≤ |k|

}
.

Set

[u]Xk,0,Ω = sup
x∈Ω

|J |=k

|XJu(x)|

and

[u]Xk,α,Ω = sup
|J |=k

[XJu(x)]Xα,Ω.

As in the Euclidean case, the norms are given analogously by

||u||Xk,α,Ω =
k∑
j=0

[u]Xj,0,Ω + [u]Xk,α,Ω.

Lemma 2.12. Suppose u =
∫

Ω
G(x, y)f(y)dy, where f is bounded and integrable in Ω.

Then u ∈ C1
X(B1) and for every x ∈ B1 and i = 1, . . . ,m,

(2.13) Xiu(x) =

∫
B1

Xx
i G(x− y)f(y)dy
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where the superscript x means Xi is acting on that variable, and

(2.14) |Xiu|0,B1 ≤ CR|f |0,B1 .

Proof. Let v =
∫
B1
Xx
i G(x− y)f(y)dy, and show it is well defined.

∫
B1

|Xx
i G(x− y)f(y)|dy ≤ |f |0,B1

∫
B1

|Xx
i G(x− y)|dy

≤ |f |0,B1

∫
B(x,2R)

d(x, y)

|B(x, d(x, y)|
dy by (2.11)

≤ CR|f |0,B1 by (2.8).

This inequality also shows (2.14) so long as Xiu(x) =
∫
B1
Xx
i G(x− y)f(y)dy, which will be

shown now.

Take a cutoff function η(t) ∈ C1(R) with the following properties: 0 ≤ η ≤ 1, 0 ≤ η′ ≤ 2,

η(t) = 0 for t ≤ 1, and η(t) = 1 for t ≥ 2. For ε > 0 let

uε(x) =

∫
B1

G(x, y)ηε(x, y)f(y)dy,

where ηε(x, y) = η
(
d(x,y)
ε

)
. Notice that uε = 0 when d(x, y) < ε, uε = u when d(x, y) > ε,

and uε ∈ C1(B1). To show Xiuε converges to v, look at the difference and observe that

∫
B1

Xx
i G(x− y)f(y)dy −Xiuε(x) =

∫
B(x,2ε)

Xx
i (G(x− y)(1− ηε)) f(y)dy.

Using Lemma 2.10, we have that |Xiηε| ≤ |η′ε
Xid(x,y)

ε
| ≤ C/ε.

|v(x)−Xiuε(x)| = |
∫
B(x,2ε)

[XiG(x, y)−G(x, y)Xiηε] f(y)dy|
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≤ |f |0,B1

∫
B(x,2ε)

|XiG(x, y)|+ C

ε
|G(x, y)|dy

≤ Cε|f |0,B1 by Lemma 2.11.

Concluding the proof, let ε→ 0, then uε and Xiuε converge respectively to u and v in B1. �

Lemma 2.13. Let f ∈ Cα
X(Ω) with supp f ⊂ B1, then u ∈ C2

X(B1) and for x ∈ B1 we

have

(2.15) XiXju(x) =

∫
B1

Xx
i X

x
j G(x, y)(f(y)− f(x))dy + f(x)

∫
B2

Gij
o (x, y)dy

for i, j = 1, . . . ,m, where Gij
o (x, y) satisfies the estimate (2.11).

Proof. By the uniqueness theorem for the operator, L, we have supp u = supp f . Take

φ ∈ C∞o (B2) with φ(x) = 1 on B1 and |XJφ| ≤ CJ/R
|J |. Then set G̃(x, y) = φ(x)G(x, y)φ(y),

and denote w(x) by the right hand side of (2.15).

For x ∈ B1,

w(x) =

∫
B1

Xx
i X

x
j G̃(x, y)(f(y)− f(x))dy + f(x)

∫
B2

Gij
o (x, y)dy,

and from Lemma 2.12,

Xju(x) =

∫
B2

Xx
j G̃(x, y)f(y)dy, and

Xjuε(x) =

∫
B2

Xx
j

(
G̃(x, y)ηε(x, y)

)
f(y)dy.
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Clearly Xjuε ∈ C1(B1) and Xjuε → Xju in B1. Taking another derivative in x and using

the lifting and approximation theorems (Theorems 2.7 and 2.8), gives

XiXjuε(x) =

∫
B2

Xx
i X

x
j

(
G̃(x, y)ηε(x, y)

)
f(y)dy

=

∫
B2

Xx
i X

x
j

(
G̃(x, y)ηε(x, y)

)
(f(y)− f(x))dy

+f(x)

∫
B2

Xx
i X

x
j

(
G̃(x, y)ηε(x, y)

)
dy

=

∫
B2

Xx
i X

x
j

(
G̃(x, y)ηε(x, y)

)
(f(y)− f(x))dy

+f(x)

∫
B2

Ri
0R

j
0

(
G̃(x, y)ηε(x, y)

)
dy.

Define Gij
o = Ri

oR
j
oG̃, and now convergence of XiXjuε to w(x) will be shown.

|w(x)−XiXjuε(x)| ≤
∫
B2

|Xx
i X

x
j

(
G̃(x, y)(1− ηε)

)
||f(y)− f(x)|dy

+|f(x)|0,B1

∫
B2

|Gij
o (x, y)dy −Ri

0R
j
0

(
G̃(x, y)ηε(x, y)

)
|dy

≤ C

∫
B(x,2ε)

|Xx
i X

x
j

(
G̃(x, y)(1− ηε)

)
|d(x, y)α[f(x)]Xα,B1

dy

+|f(x)|0,B1

∫
B(x,2ε)

|Ri
0R

j
0

(
G̃(x, y)(1− ηε(x, y))

)
|dy

≤ C

∫
B(x,2ε)

d(x, y)α[f(x)]Xα,B1

|B(x, d(x, y)|
dy

+|f(x)|0,B1

∫
B(x,2ε)

d(x, y)2

|B(x, d(x, y)|
dy.

≤ Cεα||f ||Xα,B1,

proving convergence and the lemma. �
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Theorem 2.14. Let f ∈ Cα
X(Ω), with supp f ⊂ B1, α > 0, and u =

∫
B1
G(x, y)f(y)dy.

Then u ∈ C2,α
X (B1) and

(2.16) [u]X2,α,B1
≤ C[f ]Xα,B1

,

where C is independent of u and R.

Proof. Using Lemmas 2.13 and 2.11 and taking x ∈ B1, we have

|XiXju(x)| ≤ C[f ]Xα,B1

∫
B1

d(x, y)α|B(x, d(x, y))|−1dy

≤ C[f ]Xα,B1
Rα(2.17)

Choose another point x̄ ∈ B1, and set δ = d(x, x̄). Then take ξ ∈ B1 such that

d(x, ξ), d(x̄, ξ) ≤ δ
2
.

XiXju(x)−XiXju(x̄) = I1 + I2 + I3 + I4 + (f(x)− f(x̄)I5 + f(x̄)I6

where the integrals are given by

I1 =

∫
B(ξ,δ)

XiXjG̃(x̄, y)(f(x̄)− f(y))dy,

I2 =

∫
B(ξ,δ)

XiXjG̃(x, y)(f(x)− f(y))dy,

I3 =

∫
B1/B(ξ,δ)

XiXjG̃(x, y)(f(x̄)− f(y))dy,

I4 =

∫
B1/B(ξ,δ)

(XiXjG̃(x̄, y)−XiXjG̃(x, y))(f(y)− f(x̄))dy,

I5 =

∫
B2

Gij
o (x, y)dy, and
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I6 =

∫
B2

(Gij
o (x, y)−Gij

o (x̄, y))dy.

By the same argument used for (2.17), we have

|I1|+ |I2| ≤ Cδα[f ]Xα,B1
.

To estimate I3, consider first

I ′3 =

∫
B1/B(ξ,δ)

Xx
i X

x
j G̃(x, y)dy.

=

∫
B1/B(ξ,δ)

Xx
i R

j
0G̃(x, y)dy

−
∫
∂B(ξ,δ)

Xx
i

(
m∑
k=1

Xk(y, n̄)Rj
kG̃(x, y)

)
dSy.

|I ′3| ≤ C1R + C2

∫
∂B(ξ,δ)

d(x, y)

|B(x, d(x, y)|
dSy

≤ C1R + C2

∫
∂B(ξ,δ)

2d(ξ, y)

|B(ξ, 1
2
d(ξ, y)|

dSy

≤ C1R + C ′2δ
|∂B(ξ, δ)|
|B(ξ, 1

2
d(ξ, y)|

≤ C3.

Finally, this gives

|I3| ≤ |(f(x̄)− f(x)I ′3| ≤ C ′3δ
α[f ]Xα,B1

.
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To estimate I4, let x̂ ∈ B(ξ, (3/4)δ), then use

|XiXjG̃(x̄, y)−XiXjG̃(x, y)| ≤ 2d(x, x̄)
m∑
k=1

|XkXiXjG̃(x̂, y)|

to see

|I4| ≤ 2δ

∫
B2/B(ξ,δ)

m∑
k=1

|XkXiXjG̃(x̂, y)||f(y)− f(x̄)|dy

≤ 2δ

∫
B2/B(ξ,δ)

|f(y)− f(x̄)|
d(x̂, y)|B(x̂, d(x̂, y))|

dy

≤ 2δ[f ]Xα,B1

∫
B2/B(ξ,δ)

d(x̂, y)α

d(x̂, y)|B(x̂, d(x̂, y))|
dy.

Now y /∈ B(ξ, δ), hence

d(x̄, y) ≤ C(d(x̄, x̂) + d(x̂, y))

≤ C(d(x̂, y) + δ))

≤ 5Cd(x̂, y).

Using this same type of triangle inequality, one can see that

B(x̂,
1

4
δ) ⊂ B(ξ, δ) and B(xo, 2R) ⊂ B(x̂, 3R).

Integrating over this larger set gives

|I4| ≤ 2δ[f ]Xα,B1

∫
B(x̂,3R)/B(x̂,(1/4)δ)

d(x̂, y)α−1

|B(x̂, d(x̂, y))|
dy

≤ Cδ[f ]Xα,B1

((
1

4
δ

)α−1

− (3R)α−1

)
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≤ Cδα[f ]Xα,B1
.

For the estimates of I5 and I6, recall that Gij
o satisfies the same bound (2.11) as the

Green’s kernel in Lemma 2.11.

|f(x)− f(x̄)||I5| ≤ Cδα[f ]Xα,B1

∫
B2

|B(x, d(x, y)|dy ≤ Cδα[f ]Xα,B1

and in the same way for I6 we have

|f(x̄)||I6| ≤ |f |0,B1C.
′

Summing the integrals, gives the conclusion. �

The next theorem is given without proof because it follows in exactly the same way as

the proof of the Euclidean case (Theorem 1.4).

Theorem 2.15. Let u(x) ∈ Co(Ω) be a solution to Lu = f in Ω where f ∈ Cα
X(Ω) and

supp f ⊂ B1. Then

(2.18) ||u||′2,α,B1
≤ C(|u|0,B2 +R2||f ||′0,α,B2

)

where C is independent of f and R.

Note that the version of the theorem stated above is slightly different than in [44, Theo-

rem 3.7]. Both proofs still use the decomposition of solutions into u = u1 +u2 where Lu1 = 0

and u2 = G ∗ f . The difference is that Xu instead uses the hypoellipticity of the operator

(See [31]) to get bounds on u1 and all its derivatives. Specifically, since 0 ∈ C∞, u1 ∈ C∞X ,
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and

||u2||Xk,0,K ≤ C(k,X,K)|u1|L∞(Ω) =: Dk

for any compact set, K ∈ Ω. This gives

(2.19) ||u||X2,α,B1
≤ Dk + C||f ||0,α,B1

where Dk, C are constants independent of f .

Xu’s version has the disadvantage of not making specific the dependence on u and R in

the constant, but has the advantage that the right hand side does not need to be on a larger

set.

In either case, we wish to now get rid of the compact support condition on f . To that

end, stated here without proof is a technical lemma, which is used in the construction of an

appropriate cut-off function to give the final result.

Lemma 2.16. [44, Lemma 3.8]

Let φ(t) be a non-negative bounded function on [To, T1] with 0 ≤ To < T1. Assume that for

any To ≤ t < s < T1 we have

(2.20) φ(t) ≤ θφ(s) +
A

(s− t)β
+B

with 0 < θ < 1, and A,B, β ≥ 0. Then we have

(2.21) φ(t) ≤ C

[
A

(s− t)β
+B

]

for all To ≤ t < s ≤ T1, where C(β, θ).
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Theorem 2.17. Let Bt = B(xo, tR) and Bs = B(xo, sR). Let f ∈ Cα
X(Ω) and u ∈ C0(Ω)

be a solution to Lu = f . Then for all xo ∈ Ω there exists R > 0 such that

(2.22) ||u||X2,α,Bt ≤ D + C||f ||X0,α,Bs + C̃(|f |0,B1 + |u|0,B1)((s− t)R)−rα

for all 0 < t < s ≤ 1, where D, C and C̃ are independent of f .

Proof. Taking for granted, the property of the quasi-distance, d(x, y), which says for

any small compact subset K ⊂M , there exists a constant c > 0 such that for any x, y ∈ K,

c−1|x− y| ≤ d(x, y) ≤ c|x− y|1/r

where r is the smallest length of the commutators needed to satisfy Hörmander’s condition.

This property allows us to see that

dE(∂Bs, Bt) ≥ |Rs−Rt| ≥ c−1d(Rs,Rt)r ≥ c−2((s− t)R)r.

By use of Lemma 2.16, there exists a function ζ ∈ C∞o (Bs) such that ζ(x) = 1 on Bt and

(2.23)
∑
|J |=k

|XJζ|0,Bs + ((s− t)R)rα[Xkζ]Xα,Bs ≤ Ck((s− t)R)−rk.

Applying Theorem 2.15 to ζu on Bs, where

L(ζu) = ζ(Lu)−
m∑
j=1

2(Xjζ)(Xju)− (Lζ)u,

gives the final conclusion. �
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CHAPTER 3

The Parabolic Setting

3.1 Parabolic Distance, Balls, and Cylinders

Throughout this paper, the relevant space is G × R, where x is reserved as a space

variable in G and t is thought of as a time variable in R. This is also a Carnot group

where time derivatives appear in the first layer of the stratification. However, homogeneity

considerations of the operator would dictate the time derivative should have weight 2, and

a different dilation mapping would be needed rather the natural one given previously. An

alternative viewpoint is the one given by Rothschild and Stein. In [37], they referred to

this situation (where the algebra is generated by a vector field in the second layer, Xo, in

addition to the vector fields X1, . . . , Xm1 in the first layer) as a type II stratified group.

This document mostly keeps to the viewpoint of separately dealing with G and R to get

results on the product space. Therefore we define a new dilation mapping δ′s : G×R→ G×R

given by

δ′s(x, t) = (δs(x), s2t).

With that being said, the parabolic distance is defined.

Definition 3.1. Let (x, t), (y, s) ∈ G× R. The parabolic distance is

dp((x, t), (y, s)) = (d(x, y)2 + |t− s|)1/2.
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Because G is stratified, one can always find such a homogeneous norm d(x, y) and a

dilation mapping δs(x) such that d(δs(x), δs(y)) = sd(x, y). Both the gauge distance and

CC-distance fulfill this requirement.

This is the appropriate distance for the dilation chosen since

dp(δ
′
s(x, t)) = (d(δsx)2 +

∣∣s2t
∣∣)1/2 = sdp(x, t)

as desired. For sake of simplicity, we will use |(x, t)(y, s)−1| to denote the parabolic distance

between the points (x, t) and (y, s), and |(x, t)| to be the parabolic distance between (x, t)

and the origin.

Using the quasi-triangle inequality for d(x, y) on the group (with constant A), the ana-

logue can be shown for dp with the same constant.

Proposition 3.2. There exists a constant, A depending on the group, G, such that for

all points (x, t), (y, s), (z, τ) ∈ G× R the inequality holds.

(3.1) |(x, t)(y, s)−1| ≤ A
(
|(x, t)(z, τ)−1|+ |(z, τ)(y, s)−1|

)
.

Proof. If we can show that

d(x, y)2 + |t− s| ≤ C
(
d(x, z)2 + |t− τ |+ d(z, y)2 + |τ − s|

)
,

then we are done since

d(x, y)2 + |t− s| ≤ C
(
d(x, z)2 + |t− τ |+ d(z, y)2 + |τ − s|

)
≤ C(d(x, z)2 + |t− τ |+ 2

√
d(x, z)2 + |t− τ |

√
d(z, y)2 + |τ − s|
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+d(z, y)2 + |τ − s|)

= C
(√

d(x, z)2 + |t− τ |+
√
d(z, y)2 + |τ − s|

)2

.

Taking the square root of both sides, would give the desired inequality

√
d(x, y)2 + |t− s| ≤

√
C
(√

d(x, z)2 + |t− τ |+
√
d(z, y)2 + |τ − s|

)
.

If A2 > 1 in the quasi-triangle inequality for d(x, y), we get

d(x, y)2 + |t− s| ≤ A2d(x, z)2 + |t− τ |+ A2d(z, y)2 + |τ − s|

= A2
(
d(x, z)2 + |t− τ |+ d(z, y)2 + |τ − s|

)
+(1− A2)|t− τ |+ (1− A2)|τ − s|

≤ A2
(
d(x, z)2 + |t− τ |+ d(z, y)2 + |τ − s|

)
.

If A2 < 1, we actually have a true triangle inequality by adding positive additional terms

(1− A2)d(x, z)2 and (1− A2)d(z, y) to the right hand side. �

We also use the following form of reverse triangle inequality,

(3.2) |(x, t)| − A|(y, s)| ≤ A|(x, t)(y, s)−1|.

Definition 3.3. Choosing d(x, z) to be the gauge distance defined earlier, the set

Qr(x, t) =
{

(z, τ) : |t− τ | < r2 and d(x, z) < r
}
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is known as the parabolic cylinder.

Let Br(x) denote the CC-ball on G, then it is easy to see that |Qr(x, t)| = rQ+2 |B1(0)|

where the measures indicated are Lebesgue measures. A simple computation gives |Br(x)| =

|B1(0)|rQ, and consequently |Qr(x, t)| = rQ+2 |B1(0)|. The Jacobian determinant of δr : G→

G is simply rQ, so the calculation follows by a change of variable. See [2] for this calculation

and other properties of the CC-balls. Properties of the parabolic balls and parabolic cylinders

are nicely explained in [7].

Sometimes it is convenient to use the notation Qr(x, t) = Br(x) × Λr(t) where Λr(t) =

{τ ∈ R : |t− τ | < r2} .

We can also define a parabolic ball to be the set

Bp((xo, to), r) :=
{

(y, s) : |(xo, to)(y, s)−1| < r
}
.

Its size is comparable to the parabolic cylinder, but they are not the same set.

3.2 Group Polynomials

In this section, definitions and terminology regarding group polynomials are given fol-

lowed by several results regarding Taylor polynomials. For more details see [21].

Let l ∈ N and consider a multi-index, I = [(i1, k1), (i2, k2), . . . , (il, kl)], where 1 ≤ kj ≤ r

and 1 ≤ ij ≤ kmj . Derivatives of a smooth function, f , defined in G will be denoted as

XIf = Xi1,k1Xi2,k2 . . . Xil,klf
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where the order of the derivative is |I| =
∑l

j=1 kj. Throughout this paper, we are only

concerned with derivatives appearing in the first layer of the stratification meaning the order

will simply be the number of vector fields applied to the function.

Definition 3.4. A group polynomial on G × R is a function that can be expressed in

exponential coordinates as

P (x, t) =
∑
I,β

aI,βx
Itβ

where I = (ij,k)
k=1...r
j=1...mk

and β and aI,β are real numbers, and

xI =
∏

j=1...mk;k=1...r

x
ij,k
j,k ,

or equivalently,

P (x, t) =
∑
d

aI,β(x, t)d

where (x, t)d = xItβ and |I|+ 2β = d.

The homogeneous degree of the monomial xI is given by

|I| =
r∑

k=1

mk∑
j=1

kij,k,

and the homogeneous degree of (x, t)d is (as expected) d = |I|+ 2β. We will notate the set

of polynomials of homogeneous degree not exceeding d as Pd. To avoid tedious language,

the homogeneous degree will simply be called the degree of the polynomial.

Definition 3.5. If h ∈ C∞0 (G×R) and k is a positive integer, then the kth order Taylor

polynomial Pk of h at the origin is the unique polynomial of homogeneous order at most k
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such that

XIDl
tPk(0, 0) = XIDl

th(0, 0)

for all |I|+ 2l ≤ k.

We will need several results regarding Taylor polynomials and their remainders. The

upcoming three of which appear in [21, pp.33-35].

Theorem 3.6. (Stratified Mean Value Theorem) Let G be stratified. There exists

constants c > 0 and b > 0 such that for every f ∈ C1 and for all x, y ∈ G,

|f(xy)− f(x)| ≤ c|y| sup
|z|≤b|y|

1≤j≤m1

|Xjf(xz)|

where Xj is in the first layer of the stratification, and | · | is a homogeneous norm on G.

Theorem 3.7. (Stratified Taylor Inequality) Let G be stratified. For each positive

integer k, there exists a constant ck > 0 such that for every f ∈ Ck and for all x, y ∈ G,

|f(xy)− Px(y)| ≤ ck|y|k sup
|z|≤bk|y|
|I|=k

|XIf(xz)−XIf(x)|

where Px(y) is the left Taylor Polynomial of f at x of homogeneous degree k and b is as in

the Stratified Mean Value Theorem.

Corollary 3.8. If k ≥ 1, then there exists positive constants Ck and b (independent of

k) such that for every f ∈ Ck+1(G) and all x, y ∈ G there holds

|f(xy)− Px(y)| ≤ Ck|y|k+1 sup
|z|≤bk|y|
|I|=k+1

|XIf(xz)|

where Px(y) is the kth order left Taylor polynomial of f at the point x.
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Now results analogous to those above will be provided, incorporating the time derivatives

and the parabolic distance. To this end, we will first define some special classes of functions.

We will say that f ∈ C0
∗(Ω) if f is continuous on the open set Ω ∈ G × R with respect to

the parabolic distance, and we define

C1
∗(Ω)=

{
f ∈ C0

∗(Ω) : Xif ∈ C0
∗(Ω) for i = 1, . . . ,m1 and

|f(x, t)− f(x, τ)|
|t− τ |1/2

<∞, t 6= τ

}
.

For any positive integer k ≥ 2, we define

Ck
∗ (Ω) =

{
f ∈ Ck−1

∗ (Ω) : Xif ∈ Ck−1
∗ (Ω) for i = 1, . . . ,m1 and Dtf ∈ Ck−2

∗ (Ω)
}
.

Roughly speaking, a function in the set Ck
∗ (Ω) will have continuous derivatives up to

order k (with respect to the parabolic distance) as well as “half” derivatives in the t variable

up to order k−1 in keeping with the idea that one time derivative is equivalent to two spatial

derivatives.

Lemma 3.9. Suppose g ∈ C1
∗(G × R), then for all (y, s) ∈ G × R/(0, 0) there exists a

positive constant C such that

|g(y, s)− g(0, 0)| ≤ C|(y, s)| sup
|(z,τ)|≤b|(y,s)|
i,=1,...,m1

|Xig(z, τ)|).

Proof. Notice first that |g(y, s)− g(0, 0)| ≤ |g(y, s)− g(y, 0)|+ |g(y, 0)− g(0, 0)|.

The first term can be estimated using the “half” derivative while the second term requires

the Stratified Mean Value Theorem. Together we get the following:

|g(y, s)− g(0, 0)| ≤ C1|s|1/2 + C|y| sup
|z|≤b|y|

i,=1,...,m1

|Xig(z, 0)|



45

where 0 < τ < s.

Here |s| is referring to the Euclidean distance and |y| is any homogeneous norm on G.

Clearly, |s|1/2 ≤ |(y, s)| and |y| ≤ |(y, s)| giving

|g(y, s)− g(0, 0)| ≤ C|(y, s)| sup
|z|≤b|y|

i,=1,...,m1

|Xig(z, 0)|

Taking the appropriate supremum gives the conclusion. �

Now we give a parabolic version of the Stratified Taylor Inequality.

Theorem 3.10. Suppose G is stratified. For every positive integer k, there exists positive

constants C and b depending on k such that for all f ∈ Ck
∗ (G×R) and all (x, t), (y, s) ∈ G×R,

|f(y, s)− Pk(y, s)| ≤ Ck|(y, s)|k sup
|(z,τ)|≤bk|(y,s)|
|I|+2l=k

|XIDl
tf(z, τ)−XIDl

tf(0, 0)|

where Pk(y, s) is the kth order Taylor polynomial about the origin.

Proof. The method of proof is similar to the proof of the Stratified Taylor Inequality

in [21].

Fix a (y, s) ∈ G × R and let g(x, t) = f(x, t) − Pk(y, s). By definition of the Taylor

Polynomial for all |I|+ 2l ≤ k,

XIDl
tg(0, 0) = XIDl

tf(0, 0)−XIDl
tPk(y, s) = 0.

By induction on n, we will show for all 0 < n ≤ k

(3.3) |XJDp
t g(y, s)| ≤ Cn|(y, s)|n sup

|(z,τ)|≤bn|(y,s)|
|I|+2l=k

|XIDl
tf(z, τ)−XIDl

tf(0, 0)|
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where |J |+ 2p = k − n. The case n = k will give the conclusion.

To begin, we will see the case n = 0 is trivial since |J |+ 2p = k and

|XJDp
t g(y, s)| = |XJDp

t f(y, s)−XJDp
tPk(y, s)|

= |XJDp
t f(y, s)−XJDp

t f(0, 0)|

≤ sup
|(z,τ)|≤|(y,s)|
|I|+2l=k

|XIDl
tf(z, τ)−XIDl

tf(0, 0)|.

Suppose (3.3) is true for n = k − 1, and consider the case n = k. Using Lemma 3.9, we

have

|g(y, s)− g(0, 0)| = |g(y, s)|

≤ C|(y, s)| sup
|z|≤b|y|

i,=1,...,m1

|Xig(z, τ)|.

Using the n = k − 1 case,

|g(y, s)| ≤ C|(y, s)|k sup
|(z,τ)|≤b|(y,s)|
|I|+2l=k

|XIDl
tg(z, τ)|

= C|(y, s)|k sup
|(z,τ)|≤b|(y,s)|
|I|+2l=k

|XIDl
tf(z, τ)−XIDl

tf(0, 0)|.

�
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Corollary 3.11. Suppose G is stratified. For every positive integer k, there exists

positive constants C and b depending on k such that for all f ∈ Ck+2
∗ (G × R) and all

(x, t), (y, s) ∈ G× R,

|f(y, s)− Pk(y, s)| ≤ C|(y, s)|k+1 sup
|(z,τ)|≤b|(y,s)|
|I|+2l=k+1

|XIDl
tf(z, τ)|

where Pk(y, s) is the kth order Taylor Polynomial about the origin.

Proof. Simply apply Lemma 3.9 to Theorem 3.10. �

3.3 Campanato Spaces and Embeddings

The Pointwise Schauder estimates are proved by means of the Morrey-Campanato norms.

In this section we will establish the relationship between the Campanato classes and the

Folland-Stein Hölder spaces.

First we will adapt the Folland-Stein Hölder norm to include the parabolic distance as

||f ||Γα(xo,to) = sup
(x,t)6=(xo,to)

(x,t)∈Ω

|f(x, t)− f(xo, to)|
|(x, t)(xo, to)−1|α

where Ω is an open set in G× R and 0 < α < 1.

f : Ω → R is in the Hölder Space Γα(Ω) if and only if for all (x, t) ∈ Ω there exists a

constant C such that ||f ||Γα(x,t) ≤ C(f,Ω, α) <∞, and define

||f ||Γα(Ω) = sup
Ω
|f |+ sup

(x,t)6=(y,s)

(x,t),(y,s)∈Ω

|f(x, t)− f(y, s)|
|(x, t)(y, s)−1|α

where Ω is an open set in G× R and 0 < α < 1.
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||f ||Γk+α(Ω) =
k∑
j=0

sup
|I|+2l=j

Ω

|XIDl
tf |+ sup

(x,t)6=(y,s)∈Ω

|I|+2l=k

|XIDl
tf(x, t)−XIDl

tf(y, s)|
|(x, t)(y, s)−1|α

We can also define the local Hölder spaces.

Γαloc(Ω) = {f : Ω→ R| gf ∈ Γα(Ω) for some g ∈ C∞o (Ω)} .

We now give the definition of the Campanato Spaces and Morrey-Campanato norm as

in [21], and [15]. These classes are equivalent to the Hölder classes. Recall that Pd refers to

the set of group polynomials of homogeneous degree less than or equal to d.

Definition 3.12. Suppose Ω is open in Rn+1, α ≥ 0, d ∈ N, and 1 ≤ p ≤ ∞. Then

Cα
p,d(xo, to) is the set of all functions u ∈ Lploc(Q1(xo, to)) such that

[u]p,α,d(xo, to) = sup
0<r<1

inf
P∈Pd

r−α
(

1

|Qr(xo, to) ∩ Ω|

∫
Qr(xo,to)∩Ω

|u− P |p(x, t)dxdt
)1/p

<∞.

If p =∞, the L∞ norm should be used in place of the Lp norm.

It is worth noting that if the polynomial P exists, then it is unique, and consequently,

when d = 0 the classical definition of the space of bounded mean oscillation is recovered in

that the constant, P , would be the average of u over Qr(xo, to) ∩ Ω.

While the above is only a semi-norm, we will define and make use of the following true

norm.

(3.4) ‖u‖p,α,d (xo, to) =
d∑

|I|+2l=0

|XIDl
tu(xo, to)|+ [u]p,α,d(xo, to).



49

For the purposes of this paper, we will select (xo, to) = (0, 0), and all results will hold for

a general point by left invariance.

Theorem 3.13. Suppose α > 0, 1 ≤ p ≤ ∞, and d ∈ N. If f ∈ Cα
p,d(xo, to), then for all

k < α (|I|+ 2l = k), XIDl
tf is continuous in Qr(xo, to) and XIDl

tf ∈ Γα−k(Qr(xo, to)).

The proof given in [21, Proposition 5.17] is only for a stratified group, but it works just

the same for the parabolic setting because it relies only on the Mean Value Theorem and

Taylor inequality, which we have shown in the previous section. The original proof is actually

due to Krantz [32] and [33]. The case d = 0 will be shown here in a slightly different manner

below and depends on a geometric property of the cylinders.

Definition 3.14. An open set Ω ∈ Rn+1 is said to have the the A-property if there exists

a constant A > 0 such that |Qr(x, t) ∩ Ω| ≥ A|Qr(x, t)|.

Remark 3.15. Parabolic cylinders satisfy the A-property. This is easy to see using the

fact that Carnot-Carathéodory balls have the analogous A-property [13], meaning that there

exists a positive constant A′ such that |Br(x)∩BR(xo)| ≥ A′|Br(xo)|. This geometric property

ensures there are no infinitely sharp cusps on the boundary. We see that

|Qr(x, t) ∩QR(xo, to)| = |(Br(x)× Λr(t)) ∩ (BR(xo)× ΛR(to))|

= |(Br(x) ∩BR(xo))× (Λr(t) ∩ ΛR(to))|

= |Br(x) ∩BR(xo)||Λr(t) ∩ ΛR(to)|

≥ A′C|Br(x)||Λr(t)|

= A|Br(x)× Λr(t)|

= A|Qr(x, t)|.
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Proposition 3.16. If an open set Ω ∈ Rn+1 has the A-property, then Cα
p,0(Ω) ⊂ Γα(Ω)).

Proof. The proof is similar to the Euclidean case in [25] given the appropriate definition

of the A-property as above. Throughout this manuscript, diam(Ω) will be the diameter of

Ω with respect to the parabolic distance, and note that on compact sets, for every α, there

is a positive constant Ro such that 0 < αr < Ro. The average of u over a parabolic cylinder

will be

u(x,t),r =

∫
Qr(x,t)
− u(z, τ)dzdτ =

1

|Qr(x, t)|

∫
Qr(x,t)

u(z, τ)dzdτ.

Given this notation, we have u ∈ Cα
p,0(Ω) if and only if

∫
Qr(x,t)∩Ω

− |u(z, τ)− u(x,t),r|pdzdτ ≤ Crαp

for all (x, t) ∈ Ω and all 0 < r < min {Ro, diam(Ω)}. Now, we will fix r and R so that

0 < r < R < min {Ro, diam(Ω)}, and see that

|u(x,t),r − u(x,t),R|p ≤ C

[∫
Qr(x,t)∩Ω

− |u(z, τ)− u(x,t),r|pdzdτ +

∫
Qr(x,t)∩Ω

− |u(z, τ)− u(x,t),R|pdzdτ
]

≤ C

[
rαp +

|QR(x, t) ∩ Ω|
|Qr(x, t) ∩ Ω|

1

|QR(x, t) ∩ Ω|

∫
QR(x,t)∩Ω

|u(z, τ)− u(x,t),R|pdzdτ
]

≤ C

[
rαp +

|QR(x, t) ∩ Ω|
|Qr(x, t) ∩ Ω|

Rαp

]
.

Using the A-property and |QR(x, t) ∩ Ω| ≤ |QR(x, t)|, we have

|QR(x, t) ∩ Ω|
|Qr(x, t) ∩ Ω|

≤ RQ+2

ArQ+2
,
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and then

|u(x,t),r − u(x,t),R| ≤ C

(
R

r

)Q+2
p

Rα.

Let Ri = 2−iR and 0 < k < h. It follows that

(3.5) |u(x,t),Rh − u(x,t),Rk | ≤
h−1∑
l=k

|u(x,t),Rl+1
− u(x,t),Rl | ≤ CRα

k ,

and hence,
{
u(x,t),Rk

}
k∈N is a Cauchy sequence. As k →∞, u(x,t),Rk → u(x, t) a.e. in Ω, and

(3.5) gives

(3.6) |u(x, t)− u(x,t),Rk | ≤ CRα
k

implying that u is continuous.

In order to show that u ∈ Γαloc(Ω), we will now show that |u(x, t) − u(xo, to)| < CRα.

Begin by choosing (xo, to) ∈ Ω such that 0 < R = dp((x, t), (xo, to)) <
1
2
min {Ro, diam(Ω)} .

We need only use (3.6) and estimate |u(x,t),2R − u(xo,to),2R| to obtain the result since

|u(x, t)− u(xo, to)| ≤ |u(x, t)− u(x,t),2R|+ |u(x,t),2R − u(xo,to),2R|+ |u(xo, to)− u(xo,to),2R|.

Notice that |u(x,t),2R − u(xo,to),2R|

≤ C

[(∫
Q2R(x,t)∩Ω

− |u(z, τ)− u(x,t),2R|pdzdτ
)1/p

+

(∫
Q2R(xo,to)∩Ω

− |u(z, τ)− u(xo,to),2R|pdzdτ
)1/p

]
.

As before, we use the fact that u ∈ Cα
p,0(Ω) to get that

|u(x,t),2R − u(xo,to),2R| ≤ CRα.
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�

Remark 3.17. There is an important consequence of Theorem 3.13 as it relates to Taylor

polynomials. Suppose f ∈ Cα
p,d(0, 0) for α > d, then f is d times differentiable with Hölder

continuous derivatives. (The reverse also holds.) Let the Hölder exponent for the highest

order derivative be αo = α−d. This implies that we can take the dth order Taylor expansion

of f , and by Theorem 3.10, |f − Pd| ≤ Crd+αo. In other words, if α is large enough (or if

we know f is differentiable to some order d ≤ α), we get that the Taylor expansion satisfies

the decay requirements of the Campanato space definition with α replaced with αo + d. This

point will be exploited later to give bounds on the derivatives of solutions and inhomogenous

terms.

3.4 Sobolev Spaces and Embeddings

The following notations and estimates will be used extensively throughout this paper.

In particular, the Lp estimates are essential for the pointwise result. Whereas in the clas-

sical proof as well as the group case proof of the Schauder estimates, the Lp estimates are

not necessary. We start by giving the well known results for the constant coefficient case,

then prove a version for the non-constant coefficient equations with only pointwise Hölder

continuity assumed. Let us first define the relevant operators.

(3.7) HA = ∂t −
m1∑
i,j=1

aij(x, t)XiXj
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Letting A = (aij)i,j=1...m1 denote the positive definite, symmetricm1×m1 real-valued matrix.

Explicitly, there exists a constant, Λ, such that

(3.8) Λ−1|ξ|2 ≤
m1∑
i=1

aij(x, t)ξiξj ≤ Λ|ξ|2 for any ξ ∈ Sm1−1 ⊂ Rm1 .

Also assume that aij ∈ Γα(0, 0). The frozen operator is given by

(3.9) HA(0) = ∂t −
m1∑
i,j=1

aij(0, 0)XiXj.

Now the appropriate Sobolev spaces are defined.

Definition 3.18. We say f is in the Sobolev space, Sk,lp (Ω), if and only if

||f ||Sk,lp (Ω) :=
k∑
I=0

||XIf ||Lp(Ω) +
l∑

j=0

||Dj
tf ||Lp(Ω) <∞.

The well known Sobolev embedding theorem still holds in the parabolic setting. This

result can be found in [20, Theorem 5.15] for groups. We give now a parabolic version.

Theorem 3.19. Suppose HAu = f in Q1 and f ∈ Lp(Qr). For p > Q+2
2

, S2,1
p (Qr(0, 0)) ⊂

Γα(Qr(0, 0)) where α = 2− Q+2
p

.

Proof. The theorem is shown in [23] for solutions to HA(0)u = g. They actually show

that for α = 2− Q+2
p
,

||u||Γα(Qr) ≤ C||g||Lp(Qr).

Apply their result to

HA(0)u = HAu(0)−HAu+HAu
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=

m1∑
ij=1

(aij(x, t)− aij(0, 0))XiXju+ f.

Then

||u||Γα(Qr) ≤ C(rα||XiXju||Lp(Qr) + ‖f‖Lp(Qr)),

which is finite for fixed r under the conditions of the theorem. �

Now we are ready to give the interior Lp estimates.

Lemma 3.20. [37, Theorem 18] Suppose f ∈ Lploc(G×R) and 1 < p <∞. If HA(0)u = f

on G× R, then for any a, b ∈ C∞o (G× R)

(3.10) ||au||S2,1
p (G×R) ≤ C(||bf ||Lp(G×R))

for some positive constant C = C(p,G, a, b).

Before moving to the case of variable coefficients where the coefficient functions are Hölder

continuous only at a single point, we will localize the above lemma using the technique given

in [26]. This proof can also be found in [6, section 5].

Lemma 3.21. If f ∈ Lp(Q2r(x, t)) and HA(0)u = f on Qr, then for any r > 0 the

following result holds with k = |I|+ 2l

(3.11)
2∑

k=0

rk||XIDl
tu||Lp(Qr(x,t)) ≤ C(||u||Lp(Q2r(x,t)) + r2||f ||Lp(Q2r(x,t)))

for some positive constant C = C(p,G, r, aij(0, 0)).
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The method of proof relies heavily on the existence of a test function with certain bounds

on its derivatives (for the construction see [6, Lemma 5]) as well as an interpolation inequality

[6, Theorem 12].

Through the coefficient freezing technique, we obtain the following lemma for the operator

with pointwise Hölder continuous coefficients.

Lemma 3.22. If f ∈ Lp(G× R) with compact support and HAu = f on G× R, then for

any r > 0 the following result holds

(3.12)
2∑

k=0

rk||XIDl
tu||Lp(Qr) ≤ C(||u||Lp(Q2r) + r2||f ||Lp(Q2r))

for some positive constant C = C(p,G, r, A).

Proof. Begin by first considering u with compact support

HA(0)u = HA(0)u−HAu+HAu

=

m1∑
ij=1

(aij(0, 0)− aij(x, t))XiXju(x, t) + f.

Apply Lemma 3.20.

(3.13) ||u||S2,1
p (G×R) ≤ C

(
m1∑
ij=1

sup
Qr
|aij(0, 0)− aij(x, t)|||XiXju||Lp(G×R) + ||f ||Lp(G×R)

)

Choosing r small enough (say Crα < 1/2), the second derivative term gets absorbed into

the left hand side giving

(3.14) ||u||S2,1
p (G×R) ≤ C||f ||Lp(G×R)



56

For functions without compact support, apply this equation to a product of a cutoff function

with a solution, u, and use the same localization argument as in Lemma 3.21. �

By the Sobolev embedding (Theorem 3.19), we gain as a quick corollary, that u ∈ Γα(Qr)

with α = 2− Q+2
p

, and so it is essentially bounded.

Corollary 3.23. If f ∈ Lp(Q2r(x, t)) and HAu = f on Qr(x, t), and additionally, if

Q+2
2

< p <∞, then for any r > 0

(3.15) ||u||L∞(Qr(x,t)) ≤ C(||u||Lp(Q2r(x,t)) + ||f ||Lp(Q2r(x,t)))

for some positive constant C = C(p,G, r).
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CHAPTER 4

The Pointwise Schauder Estimates

4.1 Preliminaries

In this chapter, we first explore the heat kernel for the group setting as well as the

existence and properties of a fundamental solution. For easy access, the operators of interest

as well as the necessary conditions on the coefficients are given here again.

(4.1) H = ∂t −
m1∑
i=1

X2
i ,

whereX1, . . . , Xm1 generate the first layer of the Lie algebra stratification for a Carnot group,

and

(4.2) HA = ∂t −
m1∑
i,j=1

aij(x, t)XiXj.

Letting A = (aij)i,j=1...m1 denote the positive definite, symmetricm1×m1 real-valued matrix,

the ellipticity condition states that for all (x, t) ∈ G×R there exists a constant, Λ such that

(4.3) Λ−1|ξ|2 ≤
m1∑
i=1

aijξiξj ≤ Λ|ξ|2 for any ξ ∈ Sm1−1 ⊂ Rm1 .

We will also make use of the frozen operator,

(4.4) HA(0) = ∂t −
m1∑
i,j=1

aij(0, 0)XiXj.
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When establishing the a-priori estimates leading up to the Schauder estimates, the proofs

are done for the operator H. These proofs will also apply to HA(0) by making use of a linear

transformation. This will be discussed in more detail in Section 4.3.

There is a rich history behind the study of fundamental solutions. Given here are only

a few results that are most relevant to the cause of this paper. In reference [3], the authors

prove uniform Gaussian estimates on the associated heat kernel of H and HA. The bounds

listed below are given in [3, Theorem 5.3]. Building on this work, the same authors later

constructed the fundamental solution, Γ, for the general operator, HA, under the additional

assumption that the enries of A are Hölder continuous [1, Theorem 1.2]. In [8], these same

results were extended from the setting of stratified groups to the case of Hörmander vector

fields by means of the Rothschild and Stein lifting and approximation theorems (Theorems

2.7 and 2.8).

The subsequent theorem is essentially Theorems 1.1 and 1.2 of [1]. However, we only

need the result for the constant coefficient equation, H.

Theorem 4.1. Consider the operator H given above. Then there exists a fundamental

solution Γ for H with the properties listed below.

(i) Γ is a continuous function away from the diagonal of RN+1 ×RN+1. Moreover, for every

fixed ζ ∈ RN+1, Γ(·; ζ) ∈ Γ2+α
loc (RN+1/{ζ}), and we have

H(Γ(·; ζ)) = 0 in RN+1/{ζ}.

(ii) Γ(x, t; y, s) = 0 for t ≤ s. Moreover, there exists positive constants b and (for every
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T > 0) a positive constant C such that for 0 < t− s ≤ T the following estimates hold:

(4.5) |Γ(x, t; y, s)| ≤ C(t− s)−Q/2exp
(
−b
(
d(x, y)2

(t− s)

))

and

(4.6) |XIDl
tΓ(x, t; y, s)| ≤ C(t− s)−(Q+|I|+2l)/2exp

(
−b
(
d(x, y)2

(t− s)

))

The constants C and b depend on G, T, A, I, and l

(iii) For every f ∈ C∞0 (RN+1), the function

w(z) =

∫
RN+1

Γ(z; ζ)f(ζ)dζ

belongs to the class Γ2+α
loc (RN+1), and we have

Hw = f in RN+1.

The Gaussian bounds (4.5) for Γ(x, t) = Γ(x, t; 0, 0) gives the following estimates for

(x, t) away from the singularity at the origin, which will be of great use in the next section.

|Γ(x, t)| ≤ C|t|−Q/2exp
(
−b
(
d(x, 0)2

|t|

))
=

C

|(x, t)|Q

[
|(x, t)|Q

|t|Q/2
exp

(
−b
(
d(x, 0)2

|t|

))]
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Observing the term in brackets is bounded for (x, t) 6= (0, 0), we have

(4.7) |Γ(x, t)| ≤ C

|(x, t)|Q
.

Similarly, for derivatives we have the estimate

|XIDl
tΓ(x, t)| ≤ C|t|−(Q+|I|+2l)/2exp

(
−b
(
d(x, 0)2

|t|

))
=

C

|(x, t)|Q+|I|+2l

[
|(x, t)|Q+|I|+2l

|t|(Q+|I|+2l)/2
exp

(
−b
(
d(x, 0)2

|t|

))]
,

which gives

(4.8) |XIDl
tΓ(x, t)| ≤ C

|(x, t)|Q+|I|+2l
.

Consider now the kth order Taylor polynomial (in the x and t variables) of Γ(x, t; y, s)

with center at the origin given by

Γk(x, t; y, s) =
∑
|I|+2l=k

ckX
IDl

tΓ((y, s)−1)xItl.

Using the previous estimates, we see that

(4.9) |Γk(x, t; y, s)| ≤
∑
|I|+2l=k

ck
|x|I |t|l

|(y, s)|Q+|I|+2l
.

Making the first use of the fundamental solution, we prove two lemmas regarding H

applied to polynomials. These two results appear in [15] for the sublaplacian as Lemma 3.7

and Lemma 3.8, respectively. Here those proofs are reproduced to ensure they are still valid

for the operator H.
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Lemma 4.2. If Q is a group polynomial of degree d − 2, then we can always find a

polynomial P of degree d such that HP (x, t) = Q(x, t) in G× R.

Proof. Let Γ be the fundamental solution as before, and define

f(x, t) =

∫
Q1(0,0)

Γ((x, t)(y, s)−1)Q(y, s)dyds

so that Hf(x, t) = Q(x, t) in Q1. Consider the dth order Taylor polynomial Pd of f centered

at the origin. We can express f as the Taylor polynomial plus some remainder term. f =

Pd + Rd. We would like to show that HRd = 0 in Q1 so that Hf = HPd = Q in Q1 and

thus in all of G× R.

By definition, for f ∈ C∞o (G×R), we haveXIDl
tPd(0, 0) = XIDl

tf(0, 0) for all |I|+2l ≤ d.

This implies XIDl
tRd(0, 0) = 0 for all |I| + 2l ≤ d. Additionally, by degree consideration

XIDl
tHRd(0, 0) = 0 for all |I|+ 2l ≤ d− 2 giving, HXIDl

tRd(0, 0) = XIDl
tHRd(0, 0)

= 0 for |I|+ 2l ≤ d− 2.

Now consider the expansion of f̃(x, t) = HRd(x, t) as P̃d−2(x, t) + R̃d−2(x, t). Again, we

have thatXIDl
tf̃(0, 0) = XIDl

tP̃d−2(0, 0) for all |I|+2l ≤ d−2. Consequently,XIDl
tR̃d(0, 0) =

0 for all |I|+ 2l ≤ d− 2, and XIDl
tHR̃d = 0 for all |I|+ 2l ≤ d− 2.

(4.10) XIDl
tf̃(0, 0) =


XIDl

tP̃d−2(0, 0) for |I|+ 2l ≤ d− 2

XIDl
tR̃d−2(0, 0) for |I|+ 2l > d− 2

However, by the expansion of f , we noted that XIDl
tHRd(0, 0) = 0 for all |I|+2l ≤ d−2,

so in fact, XIDl
tP̃d−2(0, 0) = 0 for all |I| + 2l ≤ d − 2. Then Pd−2(0, 0) has no terms with

degree less than or equal to d− 2, and Pd−2 is in fact equal to zero.
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By virtue of Corollary 3.11, we see

|f̃ − P̃d−2| ≤ cd|(y, s)|d−1 sup
|(z,τ)|≤b|(y,s)|
|J |+2p=d−1

|XJDp
t f̃(z, τ)|.

Making substitutions,

|R̃d−2| ≤ cd|(y, s)|d−1 sup
|(z,τ)|≤b|(y,s)|
|J |+2p=d−1

|XJDp
tHRd(z, τ)|.(4.11)

XJDp
tH is an operator of order d+1, so Pd is annihilated when the operator is applied giving

XJDp
tHRd = XJDp

tH(f − Pd) = XJDp
tHf = XJDp

tQ = 0

because Q is of degree d− 2 and XJDp
t is of order d− 1. Equation (4.11) now reads

|R̃d−2| = |HRd| ≤ 0.

�

Lemma 4.3. Let u(x, t) ∈ C∞(Q1(0, 0)) be a solution to Hu = 0 in Qr with |u| ≤ 1 on

∂Q1. If we write u(x, t) =
∑d

k=1 Pk(x, t) +Rd(x, t) where the Pk’s are the kth order terms of

the Taylor polynomial expansion at the origin and Rd is the remainder term, then for every

0 ≤ k ≤ d, 0 < r < 1, we have:

(i) HPk(x, t) = 0

(ii) Pk has universally bounded coefficients for all 0 ≤ k ≤ d.

Proof. By the argument given in the proof of Lemma 4.2, we know that HRd = 0.

Then Hu(x, t) =
∑d

k=1HPk(x, t) = 0, which implies that for each k, HPk(x, t) = 0. Degree
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considerations rule out the possibility of any terms canceling to get zero.

To prove (ii), we need an interior estimate on derivatives and Bony’s maximum principle

proved in [4]. Derivative estimates (found in [16]) give

|XIDl
tu(x, t)| ≤ Cr−k sup

Qr(xo,to)
|u(x, t)|

for all 0 < r < 1 and all |I| + 2l = k. Let M be the supremum on Qr(xo, to), and the

maximum principle gives u(x, t) ≤M for all (x, t) ∈ G×R giving a bound for |XIDl
tu(x, t)|.

Consequently, the coefficients for Pk are bounded. �

4.2 A-priori Estimates

Lemma 4.4. Suppose f ∈ Lp(Q1(0, 0)) and p > 1 + Q
2
. If for some constants γ > 0,

α ∈ (0, 1), and some integer d ≥ 2, f satisfies

(4.12) ‖f‖Lp(Qr) ≤ γrd−2+α+Q+2
p for all r ≤ 1,

then there exists a function u(x, t) ∈ S2,1
p (Q1) such that Hu = f(x, t) in Q1, and moreover

for k = |I|+ 2l,

(4.13)
2∑

k=0

rk
∥∥XIDl

tu
∥∥
Lp(Qr)

≤ Cγrd+α+Q+2
p for all r ≤ 1

where C is a positive constant depending on Q, p, andd.

Proof. The proof is in three steps. First, we will establish the existence of a solution.

During step 2, we will establish a particular estimate on this solution, which is vital to step

3 where we obtain (4.13).
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Without loss of generality, extend f to equal 0 outside of |(x, t)| > 1. With Γ being the

fundamental solution to H, we define

w(x, t) =

∫
|(y,s)|<1

Γ((x, t)(y, s)−1)f(y, s)dyds

and notice that Hw = f in Q1 by Theorem 4.1 . By interior estimates given in Lemma 3.20,

‖w‖S2,1
p (Q1) ≤ C ‖f‖Lp(Q1) ≤ Cγ.

Using the dth order Taylor expansion of Γ at the origin, we similarly define the function

v(x, t) =

∫
|(y,s)|<1

d∑
k=0

Γk(x, t; y, s)f(y, s)dyds.

By Lemma 4.3, HΓk = 0, and since the Γk’s are smooth and bounded, there is no issue with

moving the derivatives inside the integral giving Hv = 0 provided v(x, t) is well defined. In

fact, we can show that |v(x, t)| ≤ Cγ in Q1.

|v(x, t)| ≤
∫
|(y,s)|<1

d∑
k=0

|Γk(x, t; y, s)||f(y, s)|dyds

≤
d∑

k=0

ck

∫
|(y,s)|<1

|x||I||t|l

|(y, s)|Q+k
|f(y, s)|dyds

≤
d∑

k=0

ck

∞∑
i=0

∫
2−i≤|(y,s)|≤2−i+1

1

|(y, s)|Q+k
|f(y, s)|dyds

≤ C

d∑
k=0

∞∑
i=0

∫
2−i≤|(y,s)|≤2−i+1

(2i)Q+k|f(y, s)|dyds.
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Integrating over the larger set and using Hölder’s inequality
(

1
p

+ 1
p′

= 1
)
gives the estimation

desired.

|v(x, t)| ≤ C

d∑
k=0

∞∑
i=0

(2i)Q+k|Q2−i+1 |1/p′ ‖f(y, s)‖Lp(|(y,s)|≤2−i+1)

≤ C
d∑

k=0

∞∑
i=0

(2i)Q+k(2−i+1)(Q+2)/p′γ(2−i+1)d+α+Q+2
p
−2

≤ Cγ
d∑

k=0

∞∑
i=0

(2−i)d+α−k

≤ Cγ.

Let u = w − v. Then Hu = f . This establishes existence of a solution. To get u ∈ S2,1
p

with the appropriate estimates, we will first show that |u(x, t)| ≤ Cγ|(x, t)|d+α for |(x, t)| < 1
D

where D is a positive constant to be specified later.

Write u as u(x, t) = I1 − I2 + I3 where

I1 =

∫
|(y,s)|<D|(x,t)|

Γ((x, t)(y, s)−1)f(y, s)dyds,

I2 =

∫
|(y,s)|<D|(x,t)|

d∑
k=0

Γk(x, t; y, s)f(y, s)dyds, and

I3 =

∫
|(y,s)|>D|(x,t)|

[
Γ((x, t)(y, s)−1)−

d∑
k=0

Γk(x, t; y, s)

]
f(y, s)dyds.

We will show that each of these integrals is less than Cγ|(x, t)|d+α.

|I1| ≤
∫
|(y,s)|<D|(x,t)|

|Γ((x, t)(y, s)−1)||f(y, s)|dyds

≤
∫
|(y,s)|<D|(x,t)|

C

|(x, t)(y, s)−1|Q
|f(y, s)|dyds.
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Using a change of variables and properties of the quasi-norm,

|(z, τ)| = |(x, t)(y, s)−1| ≤ A(|(y, s)|+ |(x, t)|) ≤ A(D|(x, t)|+ |(x, t)|) ≤ K|(x, t)|,

we get the needed estimate for a positive constant K depending on the group G by means

of a dyadic decomposition and Hölder’s inequality.

|I1| ≤
∫
|(z,τ)|<K|(x,t)|

C

|(z, τ)|Q
|f(y, s)|dzdτ

≤
∞∑
i=0

C

(∫
K2−i|(x,t)|≤|(z,τ)|≤K2−i+1|(x,t)|

1

|(z, τ)|Qp′
dzdτ

)1/p′

‖f‖Lp(QK2−i+1|(x,t)|)

≤ Cγ
∞∑
i=0

(
2i

K|(x, t)|

)Q(
K|(x, t)|

2i−1

)Q+2
p′
(
K|(x, t)|

2i−1

)d+α−2+Q+2
p

≤ Cγ
∞∑
i=0

(2−i)d+α|(x, t)|d+α

≤ Cγ|(x, t)|d+α.

The final line is obtained by noting the convergence of the geometric series. I2 is handled

similarly.

|I2| ≤
∫
|(y,s)|<D|(x,t)|

d∑
k=0

|Γk(x, t; y, s)||f(y, s)|dyds

≤
d∑

k=0

∫
|(y,s)|<D|(x,t)|

Ck|x||I||t|l

|(y, s)|Q+k
|f(y, s)|dyds.
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Noticing that by binomial expansion |(x, t)|k ≥ |x||I||t|l, where |I|+ 2l = k gives,

|I2| ≤ C

d∑
k=0

∫
|(y,s)|<D|(x,t)|

|(x, t)|k

|(y, s)|Q+k
|f(y, s)|dyds

≤ C
d∑

k=0

∞∑
i=0

(∫
D2−i|(x,t)|≤|(y,s)|≤D2−i+1|(x,t)|

|(x, t)|k

|(y, s)|(Q+k)p′
dyds

)1/p′

‖f‖Lp(QD2−i+1|(x,t)|)

≤ Cγ

d∑
k=0

|(x, t)|k
∞∑
i=0

(
2i

D|(x, t)|

)Q+k (
D|(x, t)|

2i−1

)Q+2
p′
(
D|(x, t)|

2i−1

)d+α−2+Q+2
p

≤ Cγ
∞∑
i=0

(2−i)d+α|(x, t)|d+α

≤ Cγ|(x, t)|d+α.

|I3| ≤
∫
|(y,s)|≥D|(x,t)|

|Γ(x, t; y, s)−
d∑

k=0

Γk(x, t; y, s)||f(y, s)|dyds

Using Corollary 3.11,

|I3| ≤
∫
|(y,s)|≥D|(x,t)|

C|(x, t)|d+1 sup
z∈Q(0,b|(x,t)|)
|I|+2l=d+1

|XIDl
tΓ(y, s; z, τ)||f(y, s)|dyds

≤
∫
|(y,s)|≥D|(x,t)|

C|(x, t)|d+1 sup
z∈Q(0,b|(x,t)|)

|(z, τ)−1(y, s)|−d−1−Q|f(y, s)|dyds

Since |(z, τ)| ≤ b|(x, t)| and |(y, s)| ≥ |(x, t)|, we have by the reverse quasi-triangle

inequality,

|(z, τ)−1(y, s)| ≥ (1/A)|(y, s)| − |(z, τ)| ≥ (D/A)|(x, t)| − b|(x, t)|) ≥ C ′|(x, t)|.
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Now we can see that choosing D > Ab (whose dependence is determined by G and d), will

give a positive constant C ′ above.

|I3| ≤ C(|(x, t)|d+1

∫
|(y,s)|≥D|(x,t)|

|(x, t)|−d−1−Q|f(y, s)|dyds

≤ C|(x, t)|−Q
J∑
i=0

(∫
2−iD|(x,t)|≤|(y,s)|≤2−i+1D|(x,t)|

1dyds

)1/p′

‖f‖Lp(Q2−i+1|(x,t)|)

≤ Cγ|(x, t)|d+α

J∑
i=0

(2−i)d+α+Q

≤ Cγ|(x, t)|d+α

In the previous analysis, J ∈ N such that 2J−1D|(x, t)| ≤ 1 ≤ 2JD|(x, t)|. Using proper-

ties of logs, one can see that J = [−log2(D|(x, t)|)].

This completes step 2 of the proof. Before establishing the final conclusion, notice that

because we have |u(x, t)| ≤ Cγ|(x, t)|d+α in Q1, we obtain ‖u‖Lp(Qr(0)) ≤ Cγ|(x, t)|d+α+Q+2
p

by once again making use of dyadic decomposition.

Let ũ(x, t) = u(δrx, r
2t). Applying the operator to ũ(x, t) gives, Hũ(x, t) = r2Hu(x, t) =

r2f(x, t) on Qr. Now apply interior estimates (Lemma 3.21) to ũ(x, t) to get our final

conclusion.

‖ũ(x, t)‖S2,1
p (Q r

2
(0)) ≤ C(‖ũ(x, t)‖Lp(Qr(0)) + ‖Hũ(x, t)‖Lp(Qr(0))) for all r ≤ 1

2

≤ C(‖u(x, t)‖Lp(Q1(0)) + r2 ‖f(x, t)‖Lp(Qr(0))) for all r ≤ 1

2

≤ Cγrd+α+Q+2
p .
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The chain rule and a scaling argument completes the proof giving

2∑
k=0

rk
∥∥XIDl

tu(x, t)
∥∥
Lp(Qr)

≤ Cγrd+α+Q+2
p for all r ≤ 1.

�

Corollary 4.5. Suppose f ∈ Lp(Q1), p > 1 + Q
2
, satisfies

‖f‖Lp(Qr) ≤ γrd−2+α+Q+2
p for all r ≤ 1

for some positive constants γ > 0, α ∈ (0, 1), and some integer d ≥ 2. For any solution

u(x, t) ∈ S2,1
p (Q1) to Hu = f, there exists a polynomial Pd of degree no greater than d with

HPd = 0 such that

|u(x, t)− Pd(x, t)| ≤ C(γ + ‖u‖Lp(Q1))|(x, t)|
d+α for all (x, t) ∈ Q 1

2

where C > 0 is a constant depending only on Q,G, p, d, λ, and α.

Proof. By Lemma 4.4, there exists v ∈ S2,1
p (Q1) with Hv = f such that

|v(x, t)| ≤ Cγ|(x, t)|d+α for all (x, t) ∈ Q1/2

and

‖v(x, t)‖Lp(Q1) ≤ Cγ.
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Note that H(u− v) = 0, by Lemma 4.3 we can write the dth order Taylor expansion of

u− v as u− v = Pd +Rd. Moreover, using Corollary 3.11, we have a bound on Rd.

|Rd| ≤ C|(x, t)|d+1 sup
|(x,t)|≤ 1

2
|I|+2l=d+1

|XIDl
t(u− v)|

≤ C|(x, t)|d+1 sup
|(x,t)|≤ 3

4

|(u− v)|

≤ C|(x, t)|d+1 ‖u− v‖Lp(Q3/4) by Corollary 3.23

≤ C(γ + ‖u‖Lp(Q1))|(x, t)|
d+1.

The conclusion is reached by virtue of the above estimate and the previously mentioned use

of Lemma 4.4.

|u− Pd| = |v +Rd| ≤ |v|+ |Rd| ≤ C1γ|(x, t)|d+α + C2(γ + ‖u‖Lp(Q1))|(x, t)|
d+1.

Since α < 1 and |(x, t)| < 1, the smaller exponent gives the larger bound, and we reach the

conclusion,

|u− Pd| ≤ C(γ + ‖u‖Lp(Q1))|(x, t)|
d+α.

�

4.3 Pointwise Schauder Estimates

We now turn our attention to equations of the following form:

(4.14) HAu(x, t) = ∂tu(x, t)−
m1∑
i,j=1

aij(x, t)XiXju(x, t) = f(x, t)
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where the matrix A = (aij) satisfies for some α ∈ (0, 1) and 1 < λ ≤ Λ <∞

(4.15) aij ∈ Γα(0, 0)

and

(4.16) λ|ξ|2 ≤
m1∑
i,j=1

aij(x, t)ξiξj ≤ Λ|ξ|2 for any ξ ∈ Rm1 .

Since A = (aij(0, 0)) is positive definite, we can find a matrix B ∈ GL(m1) such that

BBT = A. The vector fields X̃i =
∑m1

j=1 bijXj for i = 1, . . . ,m1 and all their commutators

will still generate the complete Lie algebra, and consequently, Lemma 4.4 and Corollary 4.5

from the previous section will still hold for solutions to the frozen operator,

HA(0)u = ∂tu(x, t)−
m1∑
i=1

X̃2
i u(x, t) = ∂tu(x, t)−

m1∑
i,j=1

aij(0, 0)XiXju(x, t) = f(x, t).

Theorem 4.6. Let u ∈ S2,1
p (Q1) be a solution to HAu = f in Q1, with f ∈ Lp(Q1) and

Q/2 + 1 < p <∞. Assume the following:

1. There exists a homogeneous polynomial Q of degree d− 2 such that

(4.17) ‖f −Q‖Lp(Qr) ≤ γrd−2+α+Q+2
p .

2. There exists a constant β ∈ (0, 1] such that

(4.18) lim sup
r→0

‖u‖Lp(Qr)

rd−1+β+Q+2
p

<∞.
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Then there exists a constant C = C(G,A) such that

(4.19) ‖u‖Lp(Qr) ≤ C
(
‖u‖Lp(Q1) + ‖Q‖Lp(Q1) + γ

)
rd+Q+2

p

for any 0 < r ≤ 1. Moreover, there exists a homogeneous polynomial P of degree d such that

HA(0)P = Q,

(4.20) |P (x, t)| ≤ C
(
‖u‖Lp(Q1) + ‖Q‖Lp(Q1) + γ

)
|(x, t)|d,

and

(4.21) |u− P |(x, t) ≤ C
(
‖u‖Lp(Q1) + ‖Q‖Lp(Q1) + γ

)
|(x, t)|d+α

for any r ≤ R. (R is a constant to be fixed during the proof.)

Furthermore, for j = |I|+ 2l,

(4.22)
2∑
j=0

rj
∥∥XIDl

t(u− P )
∥∥
Lp(Qr)

≤ C
(
‖u‖Lp(Q1) + ‖Q‖Lp(Q1) + γ

)
rd+α+Q+2

p .

Proof. We will divide this proof into two steps. In the first step, we will show for a

fixed 0 < α1 ≤ α,

(4.23) Ck := sup
0<r≤1

‖u‖Lp(Qr)

rd−1+β+kα1+Q+2
p

<∞,

provided β + kα1 ≤ 1. Assumption 2 establishes the case k = 0, which gives

‖u‖Lp(Qr) ≤ Cor
d−1+β+Q+2

p .
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The proof will proceed by showing the case k = 1 follows from this assumption. We also

assume α+β < 1. During the induction argument, the construction of the polynomial P will

begin, but additional arguments to complete the estimates on P and u− P will be needed.

That will be the second step of the proof.

We begin step one by recalling the Lp estimates for the non-constant coefficient equation

in Lemma 3.22. For any 0 < r < 1/2,

2∑
j=0

rj
∥∥XIDl

tu
∥∥
Lp(Qr)

≤ C(‖u‖Lp(Q2r)
+ r2 ‖f‖Lp(Q2r)

)

≤ C(Cor
d−1+β+Q+2

p + r2(γrd−2+α+Q+2
p + ‖Q‖Lp(Q2r)

))

≤ C(Cor
d−1+β+Q+2

p + γrd+α+Q+2
p + rd+Q+2

p ‖Q‖Lp(Q1))

≤ C(Co + γ + ‖Q‖Lp(Q1))r
d−1+β+Q+2

p .

(4.24)

Taking HA(0) = ∂t −
∑m1

i,j=1 aij(0, 0)XiXj, we can use Lemma 4.2 to get a polynomial of

homogeneous degree d such that HA(0)P1 = Q. Since Q is assumed to be homogeneous, we

can choose P1 to be homogeneous as well. Observe that if we write HA(u− P1) = φ̃, we get

an estimate on φ̃;

φ̃ = f −HAP1 +HA(0)P1 −HA(0)P1

= f −Q+ (HA(0)−HA)(P1)

= f −Q+

m1∑
i,j=1

(aij − aij(0, 0))XiXjP1.
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Using the Hölder continuity and the Lp estimates on HA(0)P1 = Q, we have

m1∑
i,j=1

‖(aij − aij(0, 0))XiXjP1‖Lp(Qr) ≤ Crα ‖XiXjP1‖Lp(Qr)

≤ Crα
(
r−2 ‖P1‖Lp(Q2r)

+ ‖Q‖Lp(Q2r)

)
≤ C

(
‖P1‖Lp(Q1) + ‖Q‖Lp(Q1)

)
rd−2+α+Q+2

p .

(4.25)

The factors of rd, rd−2 come from the degrees of homogeneity of P1 and Q respectively.

Now the estimation of φ̃ can follow.

∥∥∥φ̃∥∥∥
Lp(Qr)

≤ ‖f −Q‖Lp(Qr) +

m1∑
i,j=1

‖(aij − aij(0, 0))XiXjP1‖Lp(Qr)

≤ γrd−2+α+Q+2
p + C

(
‖P1‖Lp(Q1) + ‖Q‖Lp(Q2r)

)
rd−2+α+Q+2

p

≤ C
(
γ + ‖P1‖Lp(Q1) + ‖Q‖Lp(Q1)

)
rd−2+α+Q+2

p .(4.26)

It is clear that (4.26) also holds for any q replacing p where 1 < q < p. Now apply Lp

estimates to HA(u− P1) = φ̃.

2∑
j=0

rj
∥∥XIDl

t(u− P1)
∥∥
Lp(Qr)

≤ C

(
‖(u− P1)‖Lp(Q2r)

+ r2
∥∥∥φ̃∥∥∥

Lp(Q2r)

)
≤ C ‖u‖Lp(Q2r)

+ C ′
(
‖P1‖Lp(Q1) + γ + ‖Q‖Lp(Q1)

)
rd−2+α+Q+2

p

≤ Cor
d−1+β+Q+2

p + C ′
(
‖P1‖Lp(Q1) + γ + ‖Q‖Lp(Q1)

)
rd−2+α+Q+2

p

≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1))r
d−1+β+Q+2

p .(4.27)
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Now define F = HA(0)(u − P1), so F = HA(0)(u − P1) − HA(u − P1) + HA(u − P1).

Explicitly,

F =

m1∑
i,j=1

(aij(x, t)− aij(0, 0))XiXj(u− P1) + φ̃,

and we can apply (4.26) and (4.27) to get an estimate on F that satisfies the hypothesis of

Corollary 4.5. The first term will be dealt with in such a way that we can see from where

α1 comes.

For any q with 1 + Q
2
< q < p we have

m1∑
i,j=1

||(aij(x, t)− aij(0, 0))XiXj(u− P1)||Lq(Qr)

≤
m1∑
i,j=1

||(aij(x, t)− aij(0, 0))||
L

pq
p−q (Qr)

‖XiXj(u− P1)‖Lp(Qr)

≤ C

m1∑
i,j=1

||(aij(x, t)− aij(0, 0))||
L

pq
p−q (Qr)

· (Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1))r
d−3+β+Q+2

p .

Now, we handle two cases. If p > 2(1 + Q
2

), take q = p/2 > 1 + Q
2
so that pq

p−q = p.

Therefore,

m1∑
i,j=1

||(aij(x, t)− aij(0, 0))XiXj(u− P1)||Lq(Qr)

≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1))r
d−3+β+α+Q+2

p .

(4.28)

If p ≤ 2(1 + Q
2

), take any q where 1 + Q
2
< q < p so that pq

p−q > p. Then,

m1∑
i,j=1

||(aij(x, t)− aij(0, 0))||
L

pq
p−q (Qr)

≤ C

m1∑
i,j=1

||(aij(x, t)− aij(0, 0))||
p−q
q

Lp(Qr)

≤ Cr(α+Q+2
p )·( p−qq ).
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Hence,

m1∑
i,j=1

||(aij(x, t)− aij(0, 0))XiXj(u− P1)||Lq(Qr)

≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1))r
d−3+β+

α(p−q)
q

+Q+2
p .

In either case, we have for any r ≤ 1/2,

m1∑
i,j=1

||(aij(x, t)− aij(0, 0))XiXj(u− P1)||Lq(Qr)

≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1))r
d−3+β+α1+Q+2

q

(4.29)

for some α1 = α(p−q)
q
≤ α and some q with 1 + Q

2
< q < p.

And finally,

(4.30) ‖F‖Lp(Qr) ≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1))r
d−3+β+α1+Q+2

p .

Applying Corollary 4.5 with α1 + β replacing α (which is acceptable since α1 + β < 1)

and d− 1 replacing d, we obtain a polynomial Po of degree d− 1 such that

(4.31) |u−P1−Po|(x, t) ≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1) + ‖u‖Lp(Q1))|(x, t)|
d−1+α1+β.

Now we are in a position to see that Po is in fact identically 0 through the following

argument.

|u− Po| = |u− Po − P1 + P1|

≤ |u− Po − P1|+ |P1|
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≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1) + ‖u‖Lp(Q1))|(x, t)|
d−1+α1+β + C̃|(x, t)|d

≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1) + ‖u‖Lp(Q1))|(x, t)|
d−1+α1+β.(4.32)

Thus,

(4.33) ‖u− Po‖Lp(Qr) ≤ C(Co+γ+‖Q‖Lp(Q1) +‖P1‖Lp(Q1) +‖u‖Lp(Q1))|(x, t)|
d−1+α1+β+Q+2

p .

And since

‖Po‖Lp(Qr) = ‖Po − u+ u‖Lp(Qr) ,

‖Po‖Lp(Qr) ≤ ‖u− Po‖Lp(Qr) + ‖u‖Lp(Qr)

≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1) + ‖u‖Lp(Q1))r
d−1+α1+β+Q+2

p

+Cor
d−1+β+Q+2

p

≤ Crd−1+β+Q+2
p .

(4.34)

Thus, ‖Po‖Lp(Q1) ≤ Crβ which implies Po ≡ 0. Looking back to equation (4.33), we see

that

‖u‖Lp(Qr) ≤ C(Co + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1) + ‖u‖Lp(Q1))|(x, t)|
d−1+α1+β+Q+2

p

Finally, this gives C1 <∞. Repeating the argument k times we obtain

(4.35) sup
0<r≤1

‖u‖Lp(Qr)

rd−1+β+kα1+Q+2
p

<∞,
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as long as β + kα < 1. By induction, the Ck’s are finite for all k, and we can use this

fact to complete the construction of a polynomial P with the bounds in the theorem. First

notice that in the last step of iteration (from k to k+ 1) there is a gain on the degree of the

polynomial obtained from d− 1 to d. To see this this, first notice that for some 0 < αo < 1,

1 + αo < β + (k + 1)α. For this value of k, we revisit (4.30) and see

(4.36) ‖F‖Lp(Qr) ≤ C(Ck + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1))r
d−3+(1+αo)+

Q+2
p .

Applying Corollary 4.5 again gives a polynomial P2 of degree d such that HA(0)P2 = 0

and

(4.37) |u− P1 − P2|(x, t) ≤
[
C(Ck + γ + ‖Q‖Lp(Q1) + ‖P1‖Lp(Q1)) + ‖u‖Lp(Q1)

]
|(x, t)|d+αo

for all (x, t) ∈ Qr. Set P = P1 + P2, so P is a homogeneous polynomial of degree d and

HA(0)P = Q.

Remark 4.7. The degree of P is clear, but to see that P is in fact homogeneous, we first

write P as the sum of homogeneous polynomials and discover that only the homogeneous part

with degree d is nonzero. Let P =
∑d

j=0 P̃j, and recall (4.18) and (4.37), which state

(4.38) |u− P |(x, t) ≤ C|(x, t)|d+αo

and

(4.39) ‖u‖Lp(Qr) ≤ Crd−1+β+Q+2
p .
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Then

∥∥∥∥∥
d∑
j=0

P̃j

∥∥∥∥∥
Lp(Qr)

= ‖P‖Lp(Qr) ≤ ‖u− P‖Lp(Qr) + ‖u‖Lp(Qr)

≤ (

∫
Qr
|(x, t)|p(d+αo)dxdt)1/p + Crd−1+β+Q+2

p

≤ Crd+αo+
Q+2
p + Crd−1+β+Q+2

p

≤ Crd−1+β+Q+2
p .

This implies
∥∥∥P̃j∥∥∥

Lp(Qr)
≤ Crd−1+β+Q+2

p for every j = 0, 1, . . . , d. By homogeneity and a

change of variable, we obtain

rj+
Q+2
p

∥∥∥P̃j∥∥∥
Lp(Q1)

≤ Crd−1+β+Q+2
p

and ∥∥∥P̃j∥∥∥
Lp(Q1)

≤ Crd−j+β−1.

The last estimate ensures P̃j = 0 unless j = d.

This completes step 1 of the proof. For the second step, we wish to remove the dependence

on P1 and Ck in the constants bounding u and P . To this end, we prove estimates under

the additional assumption that 0 < R < 1 is small enough that

sup
QR
|aij(x, t)− aij(0, 0)| ≤ η < 1/2

for some small η > 0 to be chosen later in the proof. This assumption can be made without

loss of generality. The general case can be recovered by applying the transformation (x, t)→
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(Rx,R2t) for a suitable R ∈ (0, 1). Let ψ = u− P and

δ = sup
0<r<R

‖ψ‖Lp(Qr)

rd+α+Q+2
p

.

From step 1 (4.37), we know δ is finite.

HAψ = HA(u− P )

= HAu−HA(0)P +HA(0)P −HAP

= f −Q+

m1∑
i,j=1

(aij(x, t)− aij(0, 0))XiXjP.

We apply Lp estimates again and get for any r ≤ R,

2∑
j=0

rj
∥∥XIDl

tψ
∥∥
Lp(Qr)

≤ C(‖ψ‖Lp(Q2r)
+ r2 ‖f −Q‖Lp(Q2r)

+ r2 ‖(HA(0)−HA)P‖Lp(Q2r)
)

≤ C(δ + γ + ‖P‖Lp(Q1))r
d+α+Q+2

p

Consider HA(0)ψ = F̃ written as F̃ = HA(0)ψ −HAψ +HAψ or alternatively,

F̃ =

m1∑
i,j=1

(aij(x, t)− aij(0, 0))XiXjψ +HAψ.

Then we see that

∥∥∥F̃∥∥∥
Lp(Qr)

≤ C[η(δ + γ + ‖P‖Lp(Q1))r
d−2+α+Q+2

p + (γ + ‖P‖Lp(Q1))r
d−2+α+Q+2

p ]

≤ C[η(δ + γ + ‖P‖Lp(Q1)) + (γ + ‖P‖Lp(Q1))]r
d−2+α+Q+2

p .(4.40)
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Using Corollary 4.5, there exists a polynomial P3 of degree d such that

(4.41)

‖ψ − P3‖Lp(Qr) ≤ C
(
ηδ + η(γ + ‖P‖Lp(Q1)) + γ + ‖P‖Lp(Q1) + ‖ψ‖Lp(Q1)

)
rd+α+Q+2

p .

By the same argument given for Po in step 1, P3 ≡ 0, and

δ ≤ C
(
ηδ + η(γ + ‖P‖Lp(Q1)) + γ + ‖P‖Lp(Q1) + ‖ψ‖Lp(Q1)

)
.

Choose η < 1/C so that 1− Cη is positive and

(1− Cη)δ ≤ C
(

(η + 1)(γ + ‖P‖Lp(Q1)) + γ + ‖P‖Lp(Q1) + ‖ψ‖Lp(Q1)

)
.

By designating a new constant C ′ whose dependence is the same as the old constant C,

we have

(4.42) δ ≤ C ′(γ + ‖P‖Lp(Q1) + ‖ψ‖Lp(Q1)).

Equivalently from the definition of δ, for |(x, t)| < R

‖ψ‖Lp(Qr) ≤ C(γ + ‖P‖Lp(Q1) + ‖ψ‖Lp(Q1))r
d+α+Q+2

p

≤ C(γ + ‖u‖Lp(Q1) + ‖P‖Lp(Q1))r
d+α+Q+2

p ,(4.43)

and by (4.40)

(4.44)
∥∥∥F̃∥∥∥

Lp(Qr)
≤ C(γ + ‖u‖Lp(Q1) + ‖P‖Lp(Q1))r

d−2+α+Q+2
p .
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This allows us to once again make use of Corollary 4.5 and get P̃ of degree d such that

(4.45) |ψ − P̃ | ≤ C(γ + ‖P‖Lp(Q1) + ‖u‖Lp(Q1))|(x, t)|
d+α in QR.

But by the same argument used before, this new polynomial is zero as well, and

(4.46) |ψ| ≤ C(γ + ‖P‖Lp(Q1) + ‖u‖Lp(Q1))|(x, t)|
d+α in QR.

We are now in a position to establish the estimates for P and u− P . By the definition of ψ

and using the fact that ‖P‖Lp(Q1) ≤ C||P ||L∞(Q1), we see

|P (x, t)| ≤ |u(x, t)|+ |(u− P )(x, t)|

≤ |u(x, t)|+ C(γ + ‖u‖Lp(Q1) + ||P ||L∞(Q1))|(x, t)|d+α.

And interior estimates (Corollary 3.23) imply that

(4.47) |u(x, t)| ≤ C(γ + ‖Q‖Lp(Q1) + ‖u‖Lp(Q1)) in QR.

The implication follows as

|P (x, t)| ≤ C(γ + ‖Q‖Lp(Q1) + ‖u‖Lp(Q1)) + C ′(γ + ‖u‖Lp(Q1) + ||P ||L∞(Q1))|(x, t)|d+α

≤ C(γ + ‖Q‖Lp(Q1) + ‖u‖Lp(Q1)) + C ′′||P ||L∞(Q1)|(x, t)|d+α in QR.
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Suppose P restricted in {(ex, et) ∈ G × R; |(ex, et)| = 1} attains its maximum at (z, τ).

Choose x = |(x, t)|z and t = |(x, t)|2τ . By the homogeneity of P ,

|P (x, t)| = |(x, t)|dP (z, τ) = ||P ||L∞(Q1)|(x, t)|d,

and we see that

||P ||L∞(Q1)|(x, t)|d ≤ C(γ + ‖Q‖Lp(Q1) + ‖u‖Lp(Q1)) + C ′′||P ||L∞(Q1)|(x, t)|d+α in QR.

Choosing (x, t) small enough, this implies

||P ||L∞(Q1) ≤ C(γ + ‖Q‖Lp(Q1) + ‖u‖Lp(Q1)).

Equivalently,

|P (x, t)| ≤ C(γ + ‖Q‖Lp(Q1) + ‖u‖Lp(Q1))|(x, t)|
d

establishing estimate (4.20). Using the same argument on (4.46), we get (4.21), and (4.19)

follows from these two results. The estimate (4.22) follows from the interior estimates.

�

Theorem 4.8. For Q
2

+ 1 < p < ∞, let u ∈ S2,1
p (Q1) be a solution to HAu = f in Q1

satisfying hypothesis (4.15) and (4.16) and f ∈ Lp(Q1). Assume d ≥ 2 and that f and u

satisfy the following:

(4.48) lim sup
r→0

‖u‖Lp(Qr)

rd+Q+2
p

<∞
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and

(4.49) lim sup
r→0

‖f‖Lp(Qr)

rd−2+Q+2
p

<∞.

If for some l ∈ N and α ∈ (0, 1), one has f ∈ Cα
p,d−2+l(0, 0) and aij ∈ Cα

p,l(0, 0), then

u ∈ Cα
∞,d+l(0, 0). Moreover,

(4.50)
d+l∑

|I|+2h=0

|XIDh
t u(0, 0)|+[u]∞,α,d+l ≤ C

‖u‖Lp(Q1) +
d−2+l∑

|J |+2m=d−2

|XJDm
t f(0, 0)|+ [f ]p,α,d−2+l


where C = C(G, p, d, l, α, A) > 0.

Proof. The proof is given by induction on l. If l = 0, the result is given by Theorem

4.6. To see this, first we need to show that we can apply the theorem by showing there exists

a homogeneous polynomial Q of degree d− 2 such that ‖f −Q‖Lp(Qr) ≤ γrd−2+α+Q+2
p . The

hypothesis on u is immediate by taking β = 1 in Theorem 4.6.

The assumption f ∈ Cα
p,d−2(0, 0) means that there exists a polynomial of degree d − 2,

Q, such that

‖f −Q‖Lp(Qr) ≤ [f ]p,α,d−2 r
α+d−2+Q+2

p ,

and (4.49) gives ‖f‖Lp(Qr) ≤ Crd−2+Q+2
p . This information actually tells us that Q is homo-

geneous of degree d − 2. If d = 2, there is nothing to show because Q would be constant,

so take d > 2. (Additionally, notice that the d− 2 order Taylor expansion of f satisfies the

decay requirements. We choose Q to be the Taylor polynomial centered at the origin so that

we can obtain the derivatives of f at the origin. See Remark 3.17.)
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‖Q‖Lp(Qr) ≤ ‖f −Q‖Lp(Qr) + ‖f‖Lp(Qr)

≤ C1[f ]p,α,d−2r
d−2+α+Q+2

p + C2r
d−2+Q+2

p

≤ C[f ]p,α,d−2r
d−2+Q+2

p .

Using the familiar trick of writing Q as a sum of homogeneous polynomials of degree j, gives

rj+
Q+2
p ‖Qj‖Lp(Q1) ≤ C[f ]p,α,d−2r

d−2+Q+2
p

for each j = 0, 1, 2, . . . , d− 2. Now in

‖Qj‖Lp(Q1) ≤ C[f ]p,α,d−2r
d−2−j,

the right hand side vanishes unless j = d− 2 leaving Q = Qd−2. Applying Theorem 4.6 with

γ = C[f ]p,α,d−2 gives the existence of Pd, a homogeneous polynomial of degree d such that

HA(0)Pd = Qd−2 with the following properties:

(4.51) ‖u‖Lp(Qr) ≤ C
(
‖u‖Lp(Q1) + ‖Qd−2‖Lp(Q1) + [f ]p,α,d−2

)
rd+Q+2

p ,

(4.52) |Pd| ≤ C
(
‖u‖Lp(Q1) + ‖Qd−2‖Lp(Q1) + [f ]p,α,d−2

)
|(x, t)|d,

(4.53) |u− Pd| ≤ C
(
‖u‖Lp(Q1) + ‖Qd−2‖Lp(Q1) + [f ]p,α,d−2

)
|(x, t)|d+α, and
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(4.54)
2∑
|I|=0

r|I|
∥∥XI(u− Pd)

∥∥
Lp(Qr)

≤ C
(
‖u‖Lp(Q1) + ‖Qd−2‖Lp(Q1) + [f ]p,α,d−2

)
rd+α+Q+2

p .

Equation (4.53) gives u ∈ Cα
∞,d(0, 0) and [u]∞,α,d ≤ C

(
‖u‖Lp(Q1) + ‖Qd−2‖Lp(Q1) + [f ]p,α,d−2

)
.

Additionally, since we choose Qd−2 to be the Taylor polynomial of f , ‖Qd−2‖Lp(Q1) ≤

C|XJDm
t f(0, 0)| for |J |+ 2m = d− 2. We have

(4.55)
2∑

|I|+2m=1

|XIDm
t u(0, 0)|+ [u]∞,α,d ≤ C

‖u‖Lp(Q1) +
∑

|J |+2k=d−2

|XJDk
t f(0, 0)|+ [f ]p,α,d−2

 .

On the left hand side, we were able to add the derivatives of u at the origin because the

assumption on u in fact implies that the the derivatives up to order d are zero.

The case l = 1 follows from Theorem 4.6 in much the same way. Begin by noticing that

the assumptions on f ensure the existence of homogeneous polynomials Qd−2 and Qd−1 with

respective degrees d− 2 and d− 1 such that

(4.56) ‖f −Qd−2 −Qd−1‖Lp(Qr) ≤ C[f ]p,α,d−1(0, 0)rd−1+α+Q+2
p .

To see this, we notice from the l = 1 assuptions, that there exists a polynomial Q with

degree at most d− 1 such that

(4.57) ‖f −Q‖Lp(Qr) ≤ [f ]p,α,d−1r
d−1+α+Q+2

p

From the hypothesis, ‖f‖Lp(Qr) ≤ Crd−2+Q+2
p .

Write Q as the sum of homogeneous polynomials Q =
∑d−1

j=0 Qj,

‖Q‖Lp(Qr) ≤ ‖f −Q‖Lp(Qr) + ‖f‖Lp(Qr)



87

≤ C1[f ]p,α,d−1r
d−1+α+Q+2

p + C2r
d−2+Q+2

p

≤ C[f ]p,α,d−1r
d−2+Q+2

p .

Using the homogeneity and a change of variables,

rj+
Q+2
p ‖Qj‖Lp(Q1) ≤ C[f ]p,α,d−1r

d−2+Q+2
p

for each j = 0, 1, 2, . . . , d− 2. Now in the inequality

‖Qj‖Lp(Q1) ≤ C[f ]p,α,d−1r
d−2−j,

the right hand side vanishes unless j = d− 2 or j = d− 1 leaving Q = Qd−1 +Qd−2.

Similarly, the hypothesis on aij gives the existence of a homogeneous polynomial a(1)
ij of

degree 1 such that

(4.58)
∥∥∥aij(x, t)− aij(0, 0)− a(1)

ij

∥∥∥
Lp(Qr)

≤ C[aij]p,α,1(0, 0)r1+α+Q+2
p for i, j = 1 . . . ,m1.

From the l = 0 case, we have the existence of a homogeneous polynomial Pd of degree d

such that (4.20) and (4.21) hold and HA(0)Pd = Qd−2. In particular, we get

(4.59) |Pd(x, t)| ≤ C
(
‖u‖Lp(Q1) + ‖Qd−2‖Lp(Q1) + [f ]p,α,d−2(0, 0)

)
|(x, t)|d

and

(4.60) |u− Pd|(x, t) ≤ C
(
‖u‖Lp(Q1) + ‖Qd−2‖Lp(Q1) + [f ]p,α,d−2(0, 0)

)
|(x, t)|d+α.
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Let ψ = u − Pd, and write HAψ = HAu − HA(0)Pd + HA(0)Pd − HAPd. Then HAψ =

f −Qd−2 +
∑m1

i,j=1(aij(x, t)− aij(0, 0))XiXjPd, or alternatively,

HAψ = f −Qd−2 −Qd−1 +Qd−1 +

m1∑
i,j=1

(aij(x, t)− aij(0, 0))XiXjPd ≡ f̃ .

Notice that Q̃ = Qd−1 +
∑m1

i,j=1 a
(1)
ij XiXjPd is homogeneous of degree d − 1, and f̃ − Q̃ =

f −Qd−2 −Qd−1 +
∑m1

i,j=1(aij(x, t)− aij(0, 0)− a(1)
ij )XiXjPd.

(4.61)
∥∥∥f̃ − Q̃∥∥∥

Lp(Qr)
≤ ([f ]p,α,d−1(0, 0) + C ‖Pd‖L∞(Q1))r

d−1+α+Q+2
p .

This holds for all r ≤ 1. By (4.22), we have

lim sup
r→0

‖ψ‖Lp(Qr)

rd+α+Q+2
p

<∞.

Now we can apply Theorem 4.6 with ψ, d + 1, f̃ , and Q̃ replacing u, d, f , and Q

respectively to get a homogeneous polynomial Pd+1 of degree d+1 such that HA(0)Pd+1 = Q̃,

and

|Pd+1|(x, t) ≤ C∗|(x, t)|d+1 for all (x, t) ∈ Q1/2

|ψ(x, t)− Pd+1(x, t)| ≤ C∗|(x, t)|d+1+α for all (x, t) ∈ Q1/2

where C∗ ≤ C([f ]p,α,d−1 + ‖ψ‖Lp(Q1/2) + ‖Pd‖L∞(Q1) +
∥∥∥Q̃∥∥∥

Lp(Q1)
). Using the expressions for

ψ and Q̃, we have

C∗ ≤ C([f ]p,α,d−1 + ‖u− Pd‖Lp(Q1/2) + ‖Pd‖L∞(Q1) + ‖Qd−1‖Lp(Q1)).
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We can eliminate Pd by using (4.59) and (4.60) to notice that on Q1

‖Pd‖L∞(Q1) ≤ C(‖u‖Lp(Q1) + ‖Qd−2‖Lp(Q1) + [f ]p,α,d−2).

Then

C∗ ≤ C([f ]p,α,d−1 + [f ]p,α,d−2(0, 0) + ‖u‖Lp(Q1) + ‖Qd−2‖Lp(Q1) + ‖Qd−1‖Lp(Q1)).

Finally,

C∗ ≤ C([f ]p,α,d−1 + ‖u‖Lp(Q1) +
d−1∑

|J |+2k=d−2

|XJDk
t f(0, 0)|).

This completes the proof for l = 1. �

Theorem 4.9. For Q + 2 < p < ∞, let u ∈ S2,1
p (Q1) be a solution of HAu = f in

Q1 ⊂ G×R with f ∈ Lp(Q1). Assume, for some α ∈ (0, 1) and integer d̃ ≥ 2, f ∈ Cα
p,d̃−2

(0, 0)

and aij ∈ Cα
p,d̃−2

(0, 0). Then u ∈ Cα
∞,d̃(0, 0) and

(4.62) ‖u‖∞,α,d̃ ≤ C(‖u‖Lp(Q1) + ‖f‖p,α,d̃−2)

where C = C(G, p, d̃, l, α, A) > 0.

Proof. Let P∗ be the 1st order Taylor polynomial expansion of u at the origin. We can

apply Theorem 3.10 and get

|u(x, t)− P∗(x, t)|
|(x, t)|1+α

≤ C|(x, t)|−α sup
|(z,τ)|≤bk|(x,t)|
i=1,...,m1

|Xiu(z, τ)−Xiu(0, 0)|

= C ‖Xiu‖Γα(Q1/2) .
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By Theorem 3.19, S2,1
p (Q) ⊂ Γα

′

loc(Q) for α′ = 2 − Q+2
p

. Here we must account for the

derivative and get α = 1− Q+2
p

, hence

‖Xiu‖Γα(Q1/2) ≤ C ‖u‖S2,1
p (Q1/2)

≤ C(‖u‖Lp(Q1) + ‖f‖Lp(Q1))

for all |(x, t)| < 1/2. The previous line is obtained by using the estimates of Lemma 3.22.

Observe by the definition of Taylor polynomial and Lemma 3.22, we also have

|P∗(0, 0)|+
m1∑
i=1

|XiP∗(0, 0)| ≤ C(‖u‖Lp(Q1) + ‖f‖Lp(Q1)).

The goal now is to successively apply Theorems 4.6 and 4.8 with d = 2 and u = u − P∗.

To see that the hypotheses of Theorem 4.6 are satisfied, first notice that HA(u − P∗) = f

because P∗ is of order 1 and is annihilated by HA. By the above arguments, we know that

|u − P∗| ≤ C̃r1+α = C̃r2−Q+2
p . Using this and a dyadic decomposition, we can get that

‖u− P∗‖Lp(Qr) < Cr2 for all r ∈ (0, 1).

‖u− P∗‖Lp(Qr) =

(∫
Qr
|u− P∗|pdxdt

)1/p

≤
(∫
Qr

(C̃|(x, t)|2−
Q+2
p )pdxdt

)1/p

≤ C̃
∞∑
j=0

∫
Q r

2j
/Q r

2j+1

|(x, t)|2p−Q−2dxdt

1/p

≤ C̃

∞∑
j=0

( r

2j+1

)2−Q+2
p
( r

2j

)Q+2
p

≤ C̃r2

∞∑
j=0

(
1

2j

)2
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≤ Cr2.

Since Q+2
p

< 1,

‖u− P∗‖Lp(Qr)

r1+β+Q+2
p

≤ Cr2

r1+β+Q+2
p

≤ Cr1−β−Q+2
p → 0 as r → 0

for some β chosen small enough. Since f ∈ Cα
p,0(0, 0), f ∈ Γα(0, 0) by Proposition 3.16, and

so |f | ≤ Crα on Qr. Then

‖f‖Lp(Qr) ≤ Crα+Q+2
p .

This is exactly what is needed to satisfy hypotheses in Theorem 4.6. The conclusion

(4.63) ‖u− P∗‖Lp(Qr) ≤ Cr2+Q+2
p

gives enough of a decay gain to satisfy hypothesis on u − P∗ in Theorem 4.8 where d = 2.

We also need to satisfy the hypothesis on f . To do this, we once again use

‖f‖Lp(Qr) ≤ Crα+Q+2
p ≤ Cr

Q+2
p .

Now Theorem 4.8 reads that if f ∈ Cα
p,l(0, 0) and aij ∈ Cα

p,l(0, 0), then u−P∗ ∈ Cα
∞,2+l(0, 0).

Moreover,

2+l∑
|I|+2h=1

|XIDh
t (u− P∗)(0, 0)|+ [u− P∗]∞,α,2+l ≤ C(‖u− P∗‖Lp(Q1) +

l∑
|J |+2m=0

|XJDm
t f(0, 0)|+ [f ]p,α,l(0, 0))(4.64)

Let l = d̃− 2 to get the final result. �
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