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Abstract

We present two different results on operator kernels, each in the context of its relationship to

a class of CR manifolds

M =
{

(z, w1, . . . , wn) ∈ Cn+1 : Imwi = φi(Re z)
}

where n ≤ 2 and φi(x) is subharmonic for i = 1, . . . , n. Such models have proven useful for

studying canonical operators such as the Szegő projection on weakly pseudoconvex domains of

finite type in C2, and may play a similar role in work on higher codimension CR manifolds in

C3.

Our study in Part II concerns the Szegő kernel on M for which the φi are subharmonic

nonharmonic polynomials. We wish to develop, for n = 2, an approach based on [36], Nagel’s

estimation of the Szegő kernel through an explicit integral formula when n = 1. After a careful

review of his methods and the related control geometry, we write out the analogous integral

formula in codimension two. For the “degenerate” case of M ⊂ C3 with φ2(x) = a φ1(x) for

a ∈ R, we prove a simple relationship between the Szegő kernel on M and the kernel on the

codimension one CR manifold defined by φ1(x).

Part III of the dissertation considers only n = 1. Identifying M with C × R with coordi-

nates (x, y, t) and taking a partial Fourier transform in the y and t directions, ∂̄b on L2(M) is

transformed to a two parameter family of differential operators D̄ητ = ∂x − η + φ′1τ on L2(R).

For τ > 0 we study D̄ητDητ and DητD̄ητ as real Schrödinger operators on L2(R). Using Auscher

and Ben Ali’s work [4] on reverse Hölder potentials, we obtain new upper bounds on the heat

kernels associated to these operators for a large class of φ1(x). In fact, our estimates apply to

the heat kernel of any Schrödinger operator on L2(Rn) whose potential satisfies a reverse Hölder

inequality. For Schrödinger operators with potentials in the supremum reverse Hölder class, we

also prove heat kernel lower bounds derived from van den Berg’s estimates [55] on the Dirichlet

Laplacian.
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3 The Szegő Kernel and Control Geometry in C2 14
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Chapter 1

Background on CR Manifolds

In Chapter 2 we will survey the contents of the dissertation. Here we prepare by giving some

background on CR manifolds, in particular those arising as smooth submanifolds of Cn. Such

M ⊂ Cn are characterized by the complex subbundle of CT (M) which is invariant under the

ambient complex structure. Study of the involutive properties of this subbundle then leads

naturally to the key notion of pseudoconvexity. We conclude the chapter by defining the tan-

gential Cauchy-Riemann complex ∂̄b on a CR manifold; the action of ∂̄b on functions motivates

everything that follows in Parts II and III.

1.1 Embedded CR manifolds

Our discussion throughout this chapter primarily follows the notes in Peloso [44], with Boggess

[10] as a reference. First, the definition of a CR manifold does not require an ambient complex

structure.

Definition 1.1. Let M be a smooth manifold of real dimension 2n+ k where n, k ≥ 1. We say

that M is a CR manifold of CR dimension n and CR codimension k if there exists a complex

subbundle L of the complexified tangent bundle CT (M) (that is, T (M) ⊗R C) such that three

conditions hold:

1. rankC L = n.

2. L ∩ L = {0}.

3. L is involutive (that is, closed under the Lie bracket of its sections.)

The complex subbundle L is called the CR structure of M ; and (M,L) is called a CR manifold

of type (n, k). A manifold of type (n, 1) is also said to be of hypersurface type.

The theory may then be based on just the intrinsic structure L and a Hermitian metric as-

sumed to exist on CT (M). We will, however, focus on CR manifolds which arise more concretely

in an ambient space Cn. Let us recall the the complex structure in this space.

2



Definition 1.2. Let Cn be identified with R2n via the map (z1, . . . , zn) 7→ (x1, y1, . . . , xn, yn).

Then for any point p ∈ Cn the tangent space Tp(Cn) is spanned by(
∂

∂x1

)
p

,

(
∂

∂y1

)
p

, · · ·
(

∂

∂xn

)
p

,

(
∂

∂yn

)
p

Define an R-linear map J from Tp(Cn) onto itself by

J

(
∂

∂xj

)
p

=

(
∂

∂yj

)
p

, J

(
∂

∂yj

)
p

= −
(

∂

∂xj

)
p

for all j = 1, . . . , n. Evidently J2 = −1, and J is called the complex structure on Cn.

The complex structure J extends to the whole complexified tangent space CTp(Cn) by setting

J(v⊗ α) = (Jv)⊗ α. Now for a real submanifold M ⊂ Cn of real dimension m, we focus on the

part of Tp(M) that is invariant under the complex structure on Cn.

Definition 1.3. Given a point p ∈M , the complex tangent space of M at p is the vector space

Hp(M) = Tp(M) ∩ J(Tp(M))

And the totally real part of Tp(M) is the quotient space

Xp(M) = Tp(M)/Hp(M)

It is an important fact that the dimensions of Hp(M) and Xp(M) need not be constant for

all points in M . But when they are, we have the following definition.

Definition 1.4. If M ⊂ Cn is a smooth real submanifold and dimRHp(M) is independent of p,

then M is called an embedded CR manifold. If the real codimension of M coincides with the CR

codimension, M is called generic.

To justify why such M are CR manifolds in the sense of Definition 1.1, consider that at each

p ∈ M , the complexified complex tangent space CHp is the orthogonal sum of the +i- and −i-

eigenspaces of J |CHp(M). These are denoted by H1,0
p (M) and H0,1

p (M), respectively; and because

dimRHp(M) is constant, we may define associated complex subbundles of CT (M).

3



Definition 1.5. The vector bundle CH(M) = ∪p∈MCHp(M) is called the complex tangent bundle

of M ; the vector bundle H1,0(M) = ∪p∈MH1,0
p (M) is called the holomorphic tangent bundle of

M ; and the vector bundle H0,1(M) = ∪p∈MH0,1
P (M) is called the antiholomorphic tangent bundle

of M .

Now take L in Definition 1.1 to be H1,0(M); and assume the basic condition

0 < rankCH
1,0(M) <

1

2
dimRM.

For condition (1) in Definition 1.1 we just let the CR dimension be rankCH
1,0(M). Next, since

H1,0(M) = H0,1(M), and these are eigenspaces of a linear map relative to different eigenvalues,

condition (2) is also satisfied. Finally we have H1,0(M) = T 1,0(Cn) ∩ CT (M), the intersection

of two involutive vector bundles. Hence condition (3) is also satisfied, and M is indeed a CR

manifold of type (rankCH
1,0(M), dimRM − 2 rankCH

1,0(M)).

1.2 Description in local coordinates and the Levi form

The embedded CR manifolds in this dissertation will all be generic, and defined globally by

smooth functions ρ1, . . . , ρk. That is,

M = {z ∈ Cn : ρ1(z) = · · · = ρk(z) = 0}

with dρ1 ∧ · · · ∧ dρm 6= 0 everywhere. Let us note a useful characterization of the holomorphic

and antiholomorphic tangent bundles in this case.

Lemma 1.6. Let M ⊂ Cd be an embedded CR manifold of type (n, k) defined by ρ1, . . . , ρk. Then

a global holomorphic vector field V =
∑d

j=1 vj∂zj belongs to H1,0(M) if and only if

V (ρl) =
d∑
j=1

vj∂zjρl ≡ 0 (l = 1, . . . , k)

Similarly an antiholomorphic vector field belongs to H0,1(M) if and only if it annihilates all the

defining functions of M . It follows that the complex dimension of H1,0(M) and H0,1(M) are both

d− k.
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Now, we have emphasized that H1,0(M) is involutive. But in general this is not true for

CH(M) = H1,0(M)⊕H0,1(M). (Indeed, if CH(M) is involutive, then M can be locally foliated

by a complex manifold whose complex tangent bundle is CH(M), see [44].) The Levi form

defined below measures “how much” the complex tangent space fails to be involutive at each

point in an embedded CR manifold M .

Definition 1.7. For each point p ∈M define the the projection map

πp : CTp(M) 7→ CTp(M)/Hp(M)

Then the Levi form at p is the map

Lp : H1,0
p (M)×H1,0

p (M) 7→ CTp(M)/Hp(M)

defined as

Lp(Zp,Wp) =
i

2
πp
(
[Zp,W p]

)
For a generic embedded CR manifold M ⊂ Cd defined by ρ1, . . . , ρk with |∇ρj| = 1 on M ,

the action of the Levi form on two vectors Zp =
∑d

j=1 aj∂zj and Wp =
∑d

j=1 bj∂zj is given in

coordinates by

Lp(Zp,Wp) =
k∑
l=1

(
d∑

i,j=1

∂2ρl(p)

∂zi∂z̄j
aib̄j

)
(J∇ρl(p)) (1.1)

We will not be directly concerned with the Levi form in what follows, but need it to state a

geometric notion that is central to analysis in Cn.

Definition 1.8. For a CR manifold M of hypersurface type, we say that M is pseudoconvex

(strongly psuedoconvex) at a point p ∈ M if the Levi form Lp is positive semidefinite (positive

definite) at this point; that is, if

d∑
i,j=1

∂2ρ(p)

∂zi∂z̄j
aiāj ≥ (>) 0 for all

d∑
j=1

aj∂zj ∈ H1,0
p (M)

If this condition holds uniformly in p, then M is pseudoconvex (strongly pseudoconvex.)

When pseudoconvex M is the boundary of a domain Ω ⊂ Cn, we say accordingly that Ω is

pseudoconvex. Such domains are the natural domains of definition for holomorphic functions in

Cn; see Range [47].
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1.3 The Cauchy-Riemann complex ∂̄b

Now let M ⊂ Cd as above be equipped with a Hermitian metric on CT (M) so that for each

p ∈ M , H1,0
p (M) and H0,1

p (M) are orthogonal. Writing Np(M) for the orthogonal complement

of Hp(M) in CTp(M), we then have

CT (M) = H1,0(M)⊕H0,1(M)⊕N(M)

and the pointwise metric on CT (M) induces a pointwise dual metric on the space of 1-forms

on M ; that is, on CT ∗M . Let {L1, . . . , Ln} be a basis for the smooth sections of H1,0(M),

{L̄1, . . . , L̄n} be a basis for the smooth sections of H0,1(M), and finally {T1, . . . , Tk} be a basis

for the smooth sections of N(M). The tangential Cauchy-Rieman complex is then defined relative

to a dual basis of 1-forms

{ω1, . . . , ωn, ω̄1, . . . , ω̄n, τ1, . . . , τk}

where the metric on CT ∗(M) is extended to the exterior algebra of forms in such a way that

{ωI ∧ τK ∧ ω̄J : |I|+ |K| = p, |J | = q, |K| = r}

is an orthonormal basis over all increasing multi-indices I, J,K such that p, q ≤ n and r ≤ k.

For a function f ∈ C∞(M), which is the only case that concerns us, ∂̄bf is the (0, 1)-form on

M given by

〈∂̄bf, L̄〉 = L̄(f)

for any smooth section L̄ of H0,1(M). This definition extends to a (0, q)-form φ by

〈∂̄bφ, (L̄1, . . . , L̄q+1)〉 =
1

q + 1

{
q+1∑
j=1

(−1)j+1L̄j〈φ, (L̄1, . . . ,
̂̄Lj, . . . , L̄q+1)〉

+
∑
i<j

(−1)i+j〈φ, ([L̄i, L̄j], L̄1, . . . ,
̂̄Li, . . . , ̂̄Lj, . . . , L̄q+1)〉

}

It can be proven that ∂̄2
b = 0, and because H0,1(M) is involutive the following sequence is a

complex.

0 −→ Λp,0(M)
∂̄b−→ Λp,1(M)

∂̄b−→ · · · ∂̄b−→ Λp,n−1(M) −→ 0.

6



Chapter 2

Overview of the Dissertation

2.1 The Szegő kernel on polynomial models

Given a domain Ω ⊂ Cn, the Bergman projection onto the nullspace of ∂̄ in L2(Ω) has funda-

mental connections to the geometry of ∂Ω and the regularity of the ∂̄ solution operator in Ω. In

Chapter 3 we recall the analogous projection for a CR manifold M ⊂ Cn, the Szegő projection

onto the nullspace of ∂̄b in L2(M). When M is of hypersurface type, the theory of the Szegő

projection often rivals in completeness the theory of the Bergman projection. But difficulties can

arise for M with codimension greater than one. For example, very little is known about the the

singularities of the distribution kernel of the Szegő projection on any codimension two M ⊂ C3

that is not a quadratic submanifold.

We contrast this especially with the case that M = ∂Ω is the boundary of a finite type

domain Ω ⊂ C2. There is an intrinsic “control metric” on M determined by the commutation

properties of the real and imaginary parts of its Levi vector field. The Szegő kernel on M is then

fully understood as a singular integral kernel with respect to the family of balls in the control

metric.

|S(u, v)| . |B(u, d(u, v))|−1

Nagel et al. proved this in [39], making crucial use of the prior work of Nagel et al. in [43] that

gave a tractable description of the control geometry on ∂Ω. We review the control geometry and

their work in the remainder of Chapter 3.

Nagel had discovered an early clue pointing toward the conclusions of [39] when as in [36] he

computed an explicit integral formula for the Szegő kernel on finite type domain boundaries

Mφ = {(z, w) ∈ C2 : Imw = φ(Re z)}

where φ is a subharmonic nonharmonic polynomial on R. His formula follows by identifying Mφ

with C×R and using a partial Fourier transform F and multiplication operator HΨ to write the

Szegő projection PS in terms of a similar projection P onto the nullspace of ∂
∂x

in an appropriate

7



weighted space L2(R, dω).

PS g = F−1HΨ−1PHΨF g

Estimates on the integral formula then provide direct insight into the Szegő kernel’s relationship

to the control geometry on Mφ. It is natural to ask what clues might be found in higher

codimension by using an analogous integral formula for the Szegő kernel on models

Mφ,ψ = {(z, w1, w2) ∈ C3 : Imw1 = φ(Re z) and Imw2 = ψ(Re z)} (2.1)

with φ and ψ subharmonic nonharmonic polynomials. Essentially Part II of the dissertation

consists of our struggle to find such clues.

The obvious first step is to understand the details of Nagel’s work on codimension one models.

After our review of the control geometry on ∂Ω in Chapter 3, we move in Chapter 4 to retrace

Nagel’s steps and estimate the Szegő kernel on Mφ through the integral formula∫ ∞
0

e−2πτ [(φ(x)+φ(q))+i(v−t)]
∫
R

e2πη[x+q+i(y−r)]∫
R e

4π[ης−τφ(ς)] dς
dη dτ (2.2)

Primarily we fill in certain details that are omitted in the literature. The heart of the estimate

involves scaling the coefficients of the convex polynomial τφ(ς) so that they belong to a compact

set. This characterizes the inner integral as the Fourier transform of a compact class of Schwartz

functions.

Chapter 5 contains our work on models Mφ,ψ given by (2.1). We write out the details of

extending Nagel’s work to obtain an integral formula for the codimension two Szegő kernel.

Compared to (2.2) we have on Mφ,ψ with degψ > deg φ the formula∫ ∞
0

e−2πτ [ψ(x)+ψ(q)+i(v−t)]
∫
R
e−2πσ[φ(x)+φ(q)+i(u−s)]

∫
R

e2πη[x+qi(y−r)] dη dσ dτ∫
R e

4π[ης−(σφ(ς)+τψ(ς))] dς
(2.3)

At first glance the formulas (2.2) and (2.3) look quite similar. Indeed, in Section 5.4 we show

that for the “degenerate” case ψ = aφ for a ∈ R, the codimension two kernel is just (2.2) times

a δ distribution. But the non-degenerate formula (2.3) actually presents a serious new technical

problem. The polynomial σφ(ς) + τψ(ς) in the exponent of the integrand of the denominator

integral need not be convex on R when σ < 0. This prevents us from using the scaling which

8



was so effective for estimating (2.2); and even for the kernel on Mx2,x4 , it is both unclear how to

proceed and hard to say what role, if any, the control geometry plays.

Let us now address our apparently inconsistent emphasis throughout Part II on the control

geometry and Nagel’s estimates. After all, the goal of the integral formula approach is to get

insight into phenomena which are likely very different than their codimension one analogues.

But even though we took only a very small step in this direction, it was still necessary to master

the technical details missing in [36] before we could begin.

2.2 Schrödinger operators with A∞ potentials

Schrödinger operators of the formH = −∆+V , defined for example on L2(Rn), are of tremendous

interest to physicists. Thousands of papers have been devoted to just the study of quantal

anharmonic oscillators; that is, H with potential V (x) = x2 + λx2m on L2(R), see [32]. In

Chapter 6 we give a several complex variables motivation for studying a large class of H on

L2(R). When a manifold Mφ from Part II is identified with C × R, the Kohn Laplacian on

L2(Mφ) goes over, under a partial Fourier transform, to a two-parameter family of Schrödinger

operators −∆ +Vητ on L2(R). Use of the Fourier transform in this general setting is well known

from the work of authors such as Christ ([14]) and Raich ([45]).

In the remainder of Part III we then focus on proving upper and lower bounds on heat kernels

p(x, y, t) that satisfy  (∂t +H)p(·, y, t) = 0 on Rn × (0,∞)

lim
t→0

p(·, y, t) = δ(· − y) in L2(Rn)
(2.4)

where H = −∆ + V is defined on L2(Rn) with n ≥ 1, and V ≥ 0 belongs to an appropriate

reverse Hölder class. The reverse Hölder class RHq, 1 < q ≤ ∞, consists of potentials in Lqloc(Rn)

which for all cubes Z satisfy a uniform estimate

(
1

|Z|

∫
Z

V q dx

)1/q

.
1

|Z|

∫
Z

V dx

(If q = ∞, the left hand side is the essential supremum over Q.) A key technical point is that

the class A∞ = ∪q>1RHq is exactly the class of Muckenhoupt potentials. It includes the singular

9



power weights |x|−α when α < n, as well as potentials with non-uniform end behavior such as

V (x1, x2, x3) = (x1x2x3)2.

Now with just this condition on V , it is not even immediate why H is well-defined on L2(Rn);

much less that there exists a heat kernel satisfying (2.4). Hence in Chapter 7 we review how H

is given meaning through its densely-defined quadratic form

Q(u, v) =

∫
Ω

∇u · ∇v + V uv dx

We show Q meets the Buerling-Deny conditions, and hence extends to a positive self-adjoint

H on L2(Rn). The Dirichlet form machinery also implies H generates a strongly continuous

semigroup e−Ht on L2(Rn). By leveraging the theory of the classical Laplacian, we furthermore

demonstrate e−Ht to be a contraction from L1(Rn) to L∞(Rn) for all t > 0. The existence of the

heat kernel then follows by a classical theorem in functional analysis.

This construction also yields a pointwise Gaussian bound on the heat kernel, holding for any

nonnegative V ∈ L1
loc(Rn),

p(x, y, t) ≤ (4πt)−n/2e−
|x−y|2

4t

So when studying upper bounds on p(x, y, t), the goal is to obtain extra-Gaussian decay in terms

of V , for as large a class of V as possible. Most notable is Davies’ work [16] that applies to H

with a continuous potential diverging at infinity. But to our knowledge there are not currently

published upper bounds which hold under just the assumption that V ∈ A∞ for all n ≥ 1. The

strongest result in this direction seems to come from Shen’s work on Schrödinger operators with

reverse Hölder potentials in [50]. Namely, in [31] Kurata built on Shen’s work to prove with

n ≥ 2 and V ∈ RHq with q ≥ n/2, that

p(x, y, t) ≤ c0

tn/2
e−c2

|x−y|2
t exp

{
−c1(1 +mV (x)2t)1/(2(k0+1))

}
(2.5)

were mV (x) is a size function measuring the effective growth of V near x ∈ Rn.

But in Chapter 8 we reuse Kurata’s argument to prove a heat kernel upper bound that does

apply for all n ≥ 1 and V ∈ A∞. Let us preview this argument at a high level. First, one notes

for fixed y ∈ Rn that p(·, y, t) is a weak subsolution to the heat equation (∂t −∆)u = 0 in any
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cylinder Q2r ⊂ Rn × (0,∞). So Moser’s work in [34] gives

sup
Qr/2

p ≤
(

C

rn+2

∫∫
Q2r/3

p2 dx dt

)1/2

(2.6)

Next one follows Shen’s ideas from [50], incorporating V ’s effect into the right-hand side by

iterating Caccioppoli and Fefferman-Phong inequalities over a sequence of cylinders {Qrj}kj=0

that increase from Q2r/3 to Qr.

Then a Caccioppoli inequality∫∫
Qrj

|∇p|2 + V p2 dx dt ≤ Ck
r2

∫∫
Qrj+1

p2 dx dt (2.7)

is easily obtained from the fact p(·, y, t) is a weak solution to (∂t +H)u = 0. On the other hand,

to get a viable Fefferman-Phong inequality, one must effectively reverse (2.7) for balls, proving

uniformly in Brj that

ωV (Brj)

r2

∫
Brj

p2 dx ≤ C

∫
Brj

|∇p|2 + V p2 dx (2.8)

for some weight ωV (Brj). This is far more subtle. But if it is accomplished, one easily iter-

ates successive applications of (2.8) and (2.7) over the sequence {Qrj}kj=0 and converts Moser’s

estimate (2.6) into

sup
Qr/2

p ≤ (Ck · ωV (Brj)
−1)k/2

(
C

rn+2

∫∫
Qr

p2 dx dt

)1/2

And as long as the growth of Ck in k is “not too fast”, this—combined with the standard Gaussian

bound on p—implies exponential decay of the heat kernel in ωV (Brj).

Shen proved a Fefferman-Phong inequality essentially of the form∫
Br

|∇p|2 + V |p|2 dx &
∫
Br

mV (x)2|p|2 dx

which holds as long as n ≥ 2 and V ∈ RHq with q ≥ n/2. Kurata used this inequality for

(2.8) in the preceding argument; evidently Shen’s restrictions on n and RHq explain his as well.

We simply take advantage of more recent work by Auscher and Ben Ali in [4]. They proved for

V ∈ A∞ with n ≥ 1 that any u ∈ H1(Rn) is subject on cubes Zr to a uniform estimate

mβ(r2avZrV )

r2

∫
Zr

|u|2 dx .
∫
Zr

|∇u|2 + V |u|2 dx (2.9)

11



The function mβ(x) is x for x ≤ 1, but for x ≥ 1 it is xβ with 0 < β < 1. Using (2.9) in place of

(2.8), we can then prove by the preceding argument

p(x, y, t) ≤ c0

tn/2
e−c2

|x−y|2
t exp

{
−c1mβ(t avZ√t(x)V )1/2

}
(2.10)

In the case that V is a power weight |x|α with α > 0, we obtain effectively the same order of

decay as did Kurata when x = y. However, sharp estimates such as Sikora’s in [51] show this is

not the right order of decay.

We also prove in Chapter 9 a lower bound for the heat kernel of H with potential in the

supremum reverse Hölder class, RH∞. For a uniform 0 < κ < 1 we have

p(x, y, t) ≥


c0
tn/2

exp{−c1t avZ√t(x)V } |x− y| < κ
√
t

c0
tn/2

e−c3
|x−y|2

t exp
{
−c1t(c

|x−y|2
t

2 avZt/|x−y|(x)V )
}

|x− y| ≥ κ
√
t

These bounds are an application of van den Berg’s estimates in [55] on the heat kernel of the

Dirichlet Laplacian. The tools needed are a maximum principle for weak solutions of parabolic

Schrödinger equations, the semigroup property of p(x, y, t), and a lemma on doubling measures.

Notice our on-diagonal lower bound is satisfactory when compared to (2.10), while the off-

diagonal estimates are weaker. A possible way to improve the off-diagonal estimates would be

transplanting into the context of the parabolic Schrödinger equation ideas from Aizenman and

Simon’s proof in [1] of their Harnack inequality for Schrödinger operators.
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Part II

The Szegő Kernel on Polynomial Models
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Chapter 3

The Szegő Kernel and Control Geometry in C2

In this chapter we introduce the Szegő projection onto the nullspace of ∂̄b, and begin to develop

background for our study of the Szegő kernel on codimension two polynomial models in C3. Our

first goal is to understand Nagel’s estimates for the Szegő kernel on domain boundaries of the

form

Mφ = {(z, w) ∈ C2 : Imw = φ(Re z)} (3.1)

where φ is a subharmonic nonharmonic polynomial. In this setting the Szegő kernel is given by

an integral formula and estimates may be made directly; we hope to reuse or modify some of his

techniques. But Nagel’s estimates are explained by the control geometry associated to a domain

of finite type in C2. Hence we take some time to recall this geometry, and only return our focus

to his integral formula in Chapter 4.

3.1 Background on the Szegő projection

Let us set the stage by mentioning the Szegő projection’s ∂̄ analogue, the Bergman projection.

Fix a smoothly bounded domain Ω ⊂ Cn. Write

A2(Ω) = {f ∈ L2(Ω) : f is holomorphic in Ω}.

Then the Bergman projection PB is the orthogonal projection from L2(Ω) onto A2(Ω), and (see

[30]) is given by integration against a unique kernel B(z, ζ), namely,

PB[f ] =

∫
Ω

B(z, ζ)f(ζ) dζ

This kernel plays a fundamental role in analysis on Cn.

Bergman proved in [7] that a biholomorphic mapping between two domains is an isometry

relative to Hermitian metrics defined in terms of the Bergman kernels of the domains. Fefferman

highlighted the importance of this metric invariant in [17] when he combined it with an on-

diagonal asymptotic expansion of the Bergman kernel to prove smoothness up to the boundary

of biholomorphic mappings between smooth strictly pseudoconvex domains. Estimates on the
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Bergman kernel are also valuable because they determine the mapping properties of the Bergman

projection, which are of inherent interest. For example, a result of Straube and Boas in [9] states

that regularity of the Bergman projection is equivalent to regularity of the ∂̄-Neumann operator

on bounded smooth pseudoconvex domains—and this holds at all form levels.

Since the projection onto the nullspace of ∂̄ is of such importance, it certainly interesting by

analogy to study the same for ∂̄b.

Definition 3.1. Let M be a CR manifold. Define H2(M) as

H2(M) = {f ∈ L2(M) : ∂̄bf = 0 as a distribution}

Then the Szegő projection for M is the orthogonal projection from L2(M) onto H2(M).

There has been considerable progress on the Szegő projection at the first level of Fefferman’s

hierarchy in [19]; that is, in understanding C∞ regularity of the projection operator. A major

result in this direction was Shaw and Wang’s work in [49] on regularity of the Szegő projection

operator in nonisotropic Hölder and Sobolev spaces when M is compact and satisfies condition

Y (1). For smooth compact M of hypersurface type in C2, Christ has even proved pointwise

bounds on the Szegő kernel in [13]; and these come with a corresponding theory of singular

integrals which yields Lp boundedness of the Szegő projection operator. Again for M ⊂ Cn

of hypersurface type, in [24] Harrington, Peloso, and Raich have very recently established that

regularity of the complex Green operator is equivalent to regularity of the Szegő projection

at all form levels; note the close analogy with Boas and Straube’s classical result relating the

∂̄-Neumann operator and Bergman projection.

Nonetheless, the final level of Fefferman’s hierarchy—derivation of sharp mapping properties

from a theory of singular integrals—appears in higher codimension to be far out of reach. There

is no theory of singular integrals generally appropriate for the distribution kernel of the Szegő

projection operator. Indeed, the Szegő kernel in higher codimension may be singular off the

diagonal, which precludes a standard Calderón-Zygmund type framework (see Stein’s concluding

remarks in [54]). Nagel et al. did very notably surmount this difficulty in the case of quadratic

surfaces of higher codimension, developing a theory of “flag kernels” for product spaces in [38].
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But even for a codimension two model such as

Mφ,ψ = {(z, w1, w2) ∈ C3 : Imw1 = φ(Re z) and Imw2 = ψ(Re z)}

where φ and ψ are subharmonic nonharmonic polynomials, there are no concrete estimates for

the Szegő kernel on M . (See Halfpap’s comments in [23].) Our original goal in this part of the

dissertation was to repair this absence. In any case, we proceed by recalling some well-known

results in codimension one; in particular, when M is a domain boundary.

3.2 The Szegő kernel on domain boundaries

Suppose that Ω ⊂⊂ Cn has C1 boundary, and let M = ∂Ω. Denote by A2(Ω̄) the algebra

of functions holomorphic on Ω and continuous on Ω̄. Now H2(M) is the L2(∂Ω) closure of

A2(Ω̄) restricted to the boundary (see again [30]). Indeed, functions f ∈ H2(M) are a.e. the

boundary values of their Poisson integrals P [f ], which allows the Szegő kernel for M to be simply

characterized in terms of Hilbert space representatives of the continuous functionals

Ψz : f → P [f ](z), f ∈ H2(M)

Specifically, if kz(ζ) is the H2(M) Hilbert space representative of Ψz, then the Szegő kernel is

given by S(z, ζ) = kz(ζ) . The Szegő projection on L2(M) thus acts as the integral operator

f 7→
∫
∂Ω

f(ζ)S(z, ζ) dσ(ζ)

In particular, both the Bergman and the Szegő projections fix vectors from A2(Ω̄) as restricted

to their respective domains.

Hence we see the geometric considerations inherent to ∂̄ and the Bergman projection (e.g.

pseudoconvexity) must also be central for the Szegő projection on a domain boundary. Begin-

ning with Kohn’s insights in [28], a tremendous amount of work has been done on the precise

connection between boundary geometry and the Szegő projection for domains Ω ⊂⊂ C2. Of

special significance for us is the work of Nagel et al. [39], wherein they gave a complete account

of the Szegö and Bergman kernels on smoothly bounded pseudoconvex domains Ω ⊂ C2 that

satisfy a finite type hypothesis. Let us recall the meaning of a (global) finite type hypothesis.
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Definition 3.2. Suppose Ω is as above with a global tangential antiholomorphic vector field L̄ =

X1+iX2. Fix a smooth vector field T on ∂Ω so that {X1, X2, T} everywhere spans the real tangent

space to ∂Ω; define for each k-tuple (i1, . . . , ik) with ij ∈ {1, 2} a corresponding smooth function

λi1,...,ik on ∂Ω by requiring λi1,...,ik be the T -component of the commutator [Xik , [. . . [Xi2 , Xi1 ] . . .]]

in the {X1, X2, T} basis. For l ≥ 2, let Λl on ∂Ω be the sum

Λl(p) =

 ∑
(i1,...,ik)

|λi1,...,ik(p)|2
1/2

, 2 ≤ k ≤ l

Then Ω is of finite commutator type m if for every point p ∈ ∂Ω there is n ≤ m such that

Λ2(p) = · · · = Λn−1(p) = 0 but Λn(p) 6= 0

That is, Ω is finite type if it has a tangential antiholomorphic vector field whose real and

imaginary parts X1 and X2, along with a finite number of their iterated commutators, span the

real tangent space at every point of the boundary. (This vector field need not be globally defined

for Nagel et al.’s work, but will always be for the domains that concern us.) For finite type Ω one

also defines, using the notation of Definition 3.2, the “higher Levi-invariant” Λ on the boundary

by

Λ(p, δ) =
m∑
j=2

Λj(p)δ
j

To state precisely the significance of this geometry for the Szegő kernel, we must know how the

vector fields {X1, X2} induce a control metric on ∂Ω. In [42] Nagel and Stein summarized the

idea elegantly: “The distance in the control metric between two points is the infimum of the

times required to flow from one point to the other along absolutely continuous curves whose

tangent, almost everywhere, is a bounded linear combination of the vector fields X1 and X2.”

We will spell this out exactly in the next section.

But for now, Nagel et al.’s result on the Szegő kernel was that for finite type pseudoconvex

domains in C2, the Szegő kernel on ∂Ω×∂Ω is a singular integral kernel with respect to the balls

given by the control metric. That is,

S(p, q) . |B(p, d(p, q))|−1 p, q ∈ ∂Ω (3.2)
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where d(p, q) is the control distance between p and q, and the indicated ball is in the control

geometry. Recall at the beginning of this chapter we said Nagel provided an elementary path to

study the Szegő kernel on domain boundaries of the form

Mφ = {(z, w) ∈ C2 : Imw = φ(Re z)}

These are clearly boundaries of finite type domains, so in fact (3.2) applies. This motivates

us to understand the control geometry in some detail. We proceed with this task, taking the

Heisenberg group in C2 as a concrete example.

3.3 Control metrics and the case of the Heisenberg group

One might wonder if the control metric as summarized above is even finite between every two

points of ∂Ω, since X1 and X2 cannot span the tangent space. But as W. Chow first proved in

[12], one does obtain a finite metric from the precise construction. Even more interesting is how

the metric reflects the commutation properties of X1 and X2. Essentially, the greater the length

of the iterated commutator required to reach a direction in the tangent space, the greater the

“cost” to move in that direction. Nagel, Stein, and Wainger made this explicit in an equivalent

formulation of the control metric on the boundary of a domain of finite type m. (We will use

this formulation as our definition of the control metric; see [43] for more historical context and

the proof of equivalence.)

Theorem 3.3 (Nagel, Stein, Wainger). Using the notation of Definition 3.2, let {Y1, . . . , Yq} be

some enumeration of the vector fields X1, X2, and all their iterated commutators of length less

than or equal m. Define the “degree” of each vector field Yj by

d(Yj) = length of the iterated commutator that forms Yj

Now let the distance between p, q ∈ ∂Ω be the infimum of δ > 0 such that there is an absolutely

continuous map γ : [0, 1] 7→ ∂Ω with γ(0) = p, γ(1) = q so that for almost all t ∈ (0, 1)

γ′(t) =

q∑
j=1

aj(t)Yj (γ(t)) , |aj(t)| < δd(Yj)

This distance function defines a metric equivalent to the control metric on ∂Ω.
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Let us make two comments. First, taking δ < 1, Theorem 3.3 shows how the metric “con-

trols costs” by increasingly penalizing higher-order commutators. Second, the restriction to a

three-dimensional manifold ∂Ω is obviously artificial; and Nagel et al.’s work in [43] on metrics

constructed from vector fields actually holds in great generality. But apart from an easy ex-

tension for codimension two models in Chapter 5, Theorem 3.3 is all we will need, so we have

chosen simplicity over generality. To make things even more concrete, it is valuable to see how

this geometry plays out on the boundary of Siegel upper half space in C2, namely the Heisenberg

group H1, where

H1 = {(z, w) ∈ C2 : Imw = |z|2}

Our treatment of the control geometry on the Heisenberg group interleaves abridged versions of

Nagel’s exposition from both [36] and [37].

The control metric on H1

First we consider the antiholomorphic vector field L̄ on C2 given by

L̄ =
∂

∂z̄
− 2iz

∂

∂w̄

This is clearly tangential to the upper half space defined by ρ(z, w) = |z|2− Imw. Restricting L̄

to H1 and using coordinates z = x+ iy and w = t+ iv, we have

2L̄ = 2

(
∂

∂z̄
− iz ∂

∂t

)
=

(
∂

∂x
+ 2y

∂

∂t

)
+ i

(
∂

∂y
− 2x

∂

∂t

)
= X1 + iX2

Furthermore the commutator of the real and imaginary parts of L̄ is

[X1, X2] = 4
∂

∂t
= 4T

And since [T,X1] = 0 = [T,X2], all further commutators vanish.

The higher Levi-invariant at each (x, y, t) ∈ H1 is therefore

Λ ((x, y, t), δ) = Λ2 ((x, y, t), δ) = 4δ2
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In particular, H1 is of finite type of degree two and has a finite control metric. We now obtain

a much more explicit description of this control metric and the geometry that results when it

is combined with surface measure on H1. Take, as in Theorem 3.3, an absolutely continuous

mapping γ(r) : [0, 1] 7→ H1. Suppose its (x, y, t) components are (φ(r), η(r), τ(r)), respectively.

Then wherever γ′(r) exists, the tangent vector is given by

γ′(r) = φ′(r)X1|γ(r) + η′(r)X2|γ(r) + [τ ′(r)− 2(φ′(r)η(r)− η′(r)φ(r))]T

Since d(T ) = 2, Theorem 3.3 says the distance between points p, q ∈ H1 is less than δ > 0 if and

only if they are connected by such γ where for almost every r ∈ (0, 1)

|φ′(r)| < δ and |η′(r)| < δ and |τ ′(s)− 2(φ′(r)η(r)− η′(r)φ(r))| < δ2

With this observation and a connection of points p = (x, y, t) and q = (u, v, s) by curves of the

form γ(r) = (u+ r(x− u), v+ r(y− v), s+ r(t− s)), we can prove the following proposition (see

[37] for complete details.)

Proposition 3.4 (Nagel, Stein, Wainger). Define a pseudometric d ((x, y, t), (u, v, s)) on H1 by

d ((x, y, t), (u, v, s)) = sup
{
|x− u|, |y − v|, |t− s+ 2(yu− xv)|1/2

}
Then d is equivalent to the control metric ρ on H1.

Notice that writing z = x + iy and w = u + iv, one has yu − xv = Im w̄z. So in particular

the control metric requires

|t− s+ 2Im w̄z| < δ2 = Λ(p, δ)

if (x, y, t) and (u, v, s) are to be closer than δ. We will see that this relationship, in which the

control metric restricts movement in a “twist” of the totally real direction through the higher

Levi-invariant, generalizes to polynomial models such as (3.1).

Size of the control balls on H1

To make sense of the volume of control balls on H1, we view H1 as an embedded manifold in

C2 and recall the following fact (see [36].) For any domain Ω ∈ C2 with polynomial defining
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function ρ(ζ) : C2 7→ R

ρ(ζ) =
∑

aαβζ
αζ̄β,

the polarization R : C2 × C2 7→ C given by

R(ζ, χ) =
∑

aαβζ
αχ̄β

defines by R(·, χ) = 0, for χ ∈ ∂Ω, a holomorphic hypersurface tangent to ∂Ω at χ. In particular,

{ζ ∈ C2 : R(ζ, χ) = 0}

is the complex tangent space to ∂Ω at χ.

Now fix a point p = (z0, w0) in H1. From the preceding comments

TC,p = {(z, w) ∈ C2 : (w − w̄0 − 2izz̄0) = 0}

is the complex tangent space to H1 at p. Let q = (z, w) also be in H1. According to Proposi-

tion 3.4, if q in the control ball B(p, δ) then

|z − z0| < δ and |Re (w − w0) + 2(Im z · Re z0 − Re z · Im z0)| < δ2

Let us see what these inequalities imply for the distance from q to TC,p. This distance is essentially

|w − w̄0 − 2izz̄0|, and satisfies

|w − w̄0 − 2izz̄0| = |Re (w − w̄0) + i(|z|2 + |z0|2 − 2zz̄0)|

=
∣∣Re (w − w̄0 − 2iz0z̄) + i|z − z0|2

∣∣
≈ |z − z0|2 + |Re (w − w0 − 2iz0z̄)|

= |z − z0|2 + |Re (w − w0) + 2(Im z · Re z0 − Re z · Im z0)|

. δ2

We conclude that balls on H1 in the control metric are equivalent to “squashed cubes” of side

length δ in the complex directions X1 and X2, but side length δ2 in the orthogonal real direction

T . The next proposition states that what we have just demonstrated also generalizes to the

polynomial models we study in Chapter 4.
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Proposition 3.5 (Nagel, Stein, Wainger). For all (x, y, t) ∈ H1 and δ > 0,

|B ((x, y, t), δ) | ≈ δ · δ · δ2 ≈ δ2Λ(p, δ)

where B ((x, y, t), δ) is the control ball centered at (x, y, t) of radius δ.

The Szegő kernel on H1

For the sake of completeness, let us check that the Szegő kernel on H1 has the promised rela-

tionship to the control geometry. Our global tangential antiholomorphic vector field was

L̄ =
∂

∂z̄
− 2iz

∂

∂t

And using our same notation, {L, L̄, T} is a basis for the smooth sections of the complexified

tangent bundle TC(H1). In particular, L̄ is a basis of the conjugate complex subbundle of TC(H1)

and

H2(H1) = {f ∈ L2(H1) : ∂̄bf ≡ 0 as a distribution}

= {f ∈ L2(H1) : L̄f ≡ 0 as a distribution}

So the Szegő projection is the orthogonal projection from L2(H1) onto this subspace.

Building on Folland and Stein’s work in [21] on harmonic analysis on the Heisenberg group,

Nagel and Stein provide a calculation of the Szegő kernel of Hn for all dimensions n ≥ 1 in [40].

When n = 1 and coordinates are z = x+ iy and w = u+ iv this kernel is

S ((z, t), (w, s)) =
1

π2 [(t− s+ 2(yu− xv)) + i|z − w|2]2

Define δ = ρ ((z, t), (w, s)) to be the distance between (z, t) and (w, s) in the control metric.

Recalling Propositions 3.4 and 3.5, it follows that the Szegő kernel is indeed a singular integral

kernel with respect to the control balls on H1.

Proposition 3.6. Let (z, t) and (w, s) be points in H1. The Szegő kernel satisfies

|S ((z, t), (w, s)) | . inf{|t− s+ 2Im w̄z|−2, |z − w|−4} . |B ((z, t), δ) |−1

where B ((z, t), δ) is the control ball centered at (z, t) which just includes the point (w, s).
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3.4 Exponential balls

Let us summarize what we have observed about the balls in the control geometry on H1, in the

most general terms.

1. A control ball B((z0, w0), δ) ⊂ H1 has Euclidean size in the complex directions, so it

contains (z, w) only if |z − z0| < δ.

2. The Euclidean size ofB((z0, w0), δ) in the orthogonal real direction is restricted by Λ((z0, w0), δ);

and for R a polarization of ρ, this size is effectively captured by |R((z, w), (z0, w0))| given

that |z − z0| < δ.

So to directly generalize from H1 to boundaries of finite type domains we should have

Theorem 3.7 (Nagel, Stein, Wainger). Given a domain of finite type

Ω = {(z, w) ∈ C2 : ρ(z, w) < 0},

the control ball B((z0, w0), δ) ⊂ ∂Ω is equivalent, uniformly in (z0, w0) and δ, to

BP ((z0, w0), δ) = {(z, w) ∈ ∂Ω: |z − z0| < δ; |R((z, w), (z0, w0)| < Λ((z0, w0), δ)} (3.3)

where R is a polarization of ρ.

This characterization of the control geometry is very useful on polynomial models. The

general proof, however, is extremely technical. We now indicate where the technical difficulty

lies, as this will lead us to a final key theorem of Nagel et al., one which characterizes control

balls as the images of exponential maps. The ball (3.3) only directly uses information about

the commutators of X1 and X2 at its center, where Λ((z0, w0), δ) measures the size of their T -

components. The control metric, on the other hand, determines the distance between (z0, w0)

and some other point (z, w) ∈ ∂Ω by the sizes of the coefficients of commutators

{X1, X2, · · · , [Xik , [. . . [Xi2 , Xi1 ] . . .]], · · · }

as they form tangents of all absolutely continuous curves connecting (z0, w0) and (z, w). So the

control ball uses information about the commutators essentially everywhere! This asymmetry
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presents a serious obstacle to proving the balls given by (3.3) are equivalent to the control balls

on ∂Ω.

On H1, where [X1, X2] ≈ T , the obstacle vanishes. The machinery needed to overcome the

difficulties in the general case require, among other techniques, the Taylor series expansion of

exponential maps in canonical coordinates, and the Baker-Campbell-Hausdorff formula. See [43]

for details on the following key theorem.

Theorem 3.8 (Nagel, Stein, Wainger). Identify ∂Ω with C × R. Define the “exponential ball”

of radius δ > 0 centered at (x, y, t) ∈ ∂Ω to be the image of the box in R3

{
(α1, α2, τ) ∈ R3 : |αi| < δ (i = 1, 2) and |τ | < Λ((x, y, t), δ)

}
under the exponential mapping exp [α1X1 + α2X2 + τT ] (x, y, t) : R3 7→ ∂Ω. This family of expo-

nential balls is equivalent to the balls defined by the control metric.

Recall that the mapping exp [α1X1 + α2X2 + τT ] (x, y, t) in the theorem denotes the point

obtained by flowing for unit time along the integral curve of α1X1 + α2X2 + τT from an initial

point (x, y, t). Also recall that this exponential mapping, viewed as a diffeomorphism from

{
(α1, α2, τ) ∈ R3 : |αi| < δ (i = 1, 2) and |τ | < Λ((x, y, t), δ)

}
onto the exponential ball, has Jacobian the absolute value of det[X1, X2, T ]; this fact will be key

for us in the next chapter as we turn to polynomial models.
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Chapter 4

Nagel’s Integral Formula for Polynomial Models

We are now ready to investigate, in detail, an elementary method introduced by Nagel for

estimating the Szegő kernel S ((x, y, t), (q, r, s)) on the boundary of a domain

Ωφ = {(z, w) ∈ C2 : φ(Re z)− Imw < 0}

where φ(x) is a subharmonic nonharmonic polynomial of degree m. This is a pseudoconvex

domain of finite type m, and as discussed in Chapter 3 the general work of Nagel et al. applies

to give on ∂Ωφ × ∂Ωφ that

S ((x, y, t), (q, r, s)) . |B((x, y, t), δ)|−1 (4.1)

where δ is the distance between (x, y, t) and (q, r, s) in the control metric and B((x, y, t), δ)

denotes the control ball. But our purpose in this chapter is to recover the upper bound directly

from an integral formula for the Szegő kernel. Complete details are not readily available in the

literature and we provide them here, especially with the hope they might prove useful for work

on codimension two polynomial models in Chapter 5.

4.1 Control geometry on polynomial models

As before we denote the boundary of Ωφ by Mφ ⊂ C2. This is the embedded three-dimensional

CR manifold defined by

ρ(z, w) = φ(Re z)− Imw

and one readily checks that

D̄ =
∂

∂z̄
− iφ′ ∂

∂w̄

is a global tangential antiholomorphic vector field. Now identify Mφ with C×R using coordinates

(x, y, t). The restriction of D̄ to Mφ is, under the identification,

D̄ =
1

2

∂

∂x
+
i

2

[
∂

∂y
− φ′ ∂

∂t

]
=

1

2
(X1 + iX2)
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Thus L̄ = 2D̄ is a basis for the conjugate complex subbundle of TC(Mφ); and the Szegő projection

on Mφ is onto the space

H2(Mφ) = {f ∈ L2(Mφ) : L̄f = 0 as a distribution}

So we want tractable descriptions of the control geometry on Mφ generated by the vector

fields X1 = Re, L̄ and X2 = Im L̄, namely

X1 =
∂

∂x
and X2 =

∂

∂y
− φ′(x)

∂

∂t

We will broadly follow Nagel in [36], describing the control metric by an equivalent pseudometric

that is implied by Theorem 3.7; and then describing the volume of the control balls in terms of

the equivalent family of exponential balls from Theorem 3.8.

A pseudometric equivalent to the control metric

The first fundamental object is the higher Levi-invariant Λ((x, y, t), δ) on Mφ. It is clear that all

possibly non-zero commutators of X1 and X2 have the form

Yk = [

k − 1 times︷ ︸︸ ︷
X1, [X1, · · · , [X1, X2] · · · ]] = −φ(k)(x)

∂

∂t
(2 ≤ k ≤ m)

Hence (see Definition 3.3) we have

Λ((x, y, t), δ) = Λ(x, δ) =
m∑
k=2

|φ(k)(x)|δk

Now we use the characterization in (3.3) of control balls in terms of a polarization of ρ(z, w).

In our case ρ(z, w) is a polynomial, explicitly

ρ(z, w) = φ

(
1

2
(z + z̄)

)
− 1

2i
(w − w̄)

Let us abuse notation slightly and denote by φ
(

1
2
(ζ + χ̄)

)
the complex polynomial on C2 that

restricts to our original φ : R 7→ R on the diagonal χ = ζ. Then a polarization of ρ is given by

R((z, w), (z0, w0)) = w − w̄0 − 2i φ

(
1

2
(z + z̄0)

)
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Or, fixing z̄0 and considering the right-hand term as a polynomial in z, the Taylor expansion

about z = z0 yields

R((z, w), (z0, w0)) = w − w̄0 − 2i
m∑
k=0

φ(k)(Re z0)

2kk!
(z − z0)k

Now take two points in Mφ, say (z, w) = ((q, r), (v, φ(q))) and (z0, w0) = ((x, y), (t, φ(x))).

Theorem 3.7 says that (z, w) being of distance less than δ from (z0, w0) in the control metric is

equivalent to the pair of inequalities

|z − z0| . δ ⇔ |q − x| . δ and |r − y| . δ

and∣∣∣w − w̄0 − 2i
∑m

k=0
φ(k)(x)

2kk!
(z − z0)k

∣∣∣ . Λ(x, δ)

Of course the second inequality is also equivalent to Λ(x, δ) dominating the size of both the real

and imaginary parts of the left-hand term. The real part of this term relates a “twist” in the

totally real direction, which we denote in these coordinates by T q,rx,y as below

v − t+ 2Im
m∑
k=1

φ(k)(x)

2kk!

(
q − x+ i(r − y)

)k
= v − t+ T q,rx,y

And the imaginary part of w − w̄0 − 2i
∑m

k=0
φ(k)(x)

2kk!
(z − z0)k is

φ(q) + φ(x)− 2

(
φ(x) +

1

2
φ′(x)(q − x) + Re

m∑
k=2

φ(k)(x)

2kk!

(
q − x+ i(r − y)

)k)

= φ(q)− φ(x)− φ′(x)(q − x)− 2Re
m∑
k=2

φ(k)(x)

2kk!

(
q − x+ i(r − y)

)k
=

m∑
k=2

φ(k)(x)

k!
(q − x)k − 2Re

m∑
k=2

φ(k)(x)

2kk!

(
q − x+ i(r − y)

)k
But if |x− q| < δ and |y − r| < δ then both summations are clearly dominated by Λ(x, δ).

We conclude that asserting the control distance between (x, y, t) and (q, r, v) is less than δ is

equivalent to asserting

|q − x| . δ and |r − y| . δ and |v − t+ T q,rx,y | . Λ(x, δ)

where the implied constants are independent of all coordinates. For x ∈ R fixed, let us write the

inverse of Λ(x, ·) as µ(x, ·). Then the control metric is globally equivalent to the pseudometric

d((x, y, t), (q, r, v)) = sup{|x− q|, |y − r|, µ(x, |v − t+ T q,rx,y |)} (4.2)
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The proof in Section 4.3 of the Szegő kernel estimate (4.1) will be broken into cases, one for each

regime of this pseudometric.

Volume of the exponential balls

Writing T = ∂
∂t

, it is clear that {X1, X2, T} form a global basis for the tangent space at every

point of Mφ. Fix a point (x, y, t) ∈ Mφ. For our tangent basis, the exponential ball from

Theorem 3.8 that centered at (x, y, t), of radius δ > 0, is the image of the box

Zδ,x = {(α1, α2, τ) ∈ R3 : |αi| < δ (i = 1, 2); and |τ | < Λ(x, δ)}

under the mapping (α1, α2, τ) 7→ exp[α1X1 + α2X2 + τT ](x, y, t). But the Jacobian of this

mapping is

|det[X1, X2, T ]| = abs

∣∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 φ′(x) 1

∣∣∣∣∣∣∣∣∣∣
= 1

Hence the volume of the exponential ball is given by the volume of the box in Zδ,x ⊂ R3. In

particular, the volume of the control ball B((x, y, t), δ) ⊂Mφ is

|B((x, y, t), δ)| ≈ δ2Λ(x, δ) (4.3)

with constants independent of (x, y, t) and δ.

Final geometric preliminaries

Given the fundamental nature of Λ(x, δ) =
∑m

k=2 |φ(k)(x)|δk and its inverse µ(x, λ), we will need

two further observations on these objects. First,

Λ(x, δ) ≈ Λ(q, δ) whenever δ ≥ |x− q| (4.4)

with constants independent of x and q. To see this we simply write the coefficients of Λ(x, δ) in

Taylor expansions about x = q.

Λ(x, δ) =
m∑
k=2

|φ(k)(x)|δk =
m∑
k=2

∣∣∣∣ m∑
l=k

φ(l)(q)

(l − k)!
(x− q)l−k

∣∣∣∣δk ≤ m∑
l=2

l∑
k=2

|φ(l)(q)|δl . Λ(q, δ)
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Second, using ≈ to denote uniform comparability in x and λ, we have the following characteri-

zation of the size of the inverse µ(x, λ):

λ =
m∑
k=2

|φ(k)(x)|µ(x, λ)k ≈ sup
2≤k≤m

|φ(k)(x)|µ(x, λ)k

So that in fact

sup
2≤k≤m

|φ(k)(x)|
λ

µ(x, λ)k ≈ 1

This yields

µ(x, λ) ≈ inf
2≤k≤m

λ1/k |φ(k)(x)|−1/k

And similarly

µ(x, λ)−1 ≈ sup
2≤k≤m

λ−1/k |φ(k)(x)|1/k ≈
m∑
k=2

∣∣λ−1φ(k)(x)
∣∣1/k (4.5)

One last geometric detail is relevant. In [36] Nagel works with smooth versions of the higher

Levi-invariant and its inverse, namely

Ξ(x, δ) =
m∑
k=2

|φ(k)(x)|2δ2k

and its inverse ν(x, ξ). The definitions of these objects makes it clear that

Ξ(x, δ) ≈ Λ(x, δ)2 and ν(x, ξ) ≈ µ(x,
√
ξ)

More details are available in [42].

4.2 Derivation of the integral formula

The point in [36] is that projection onto H2(Mφ) is similar to projection onto the constants in an

appropriate weighted space L2(R, dω). Let us see how this works, following Nagel’s exposition.

Because the variable coefficients in

L̄ =
∂

∂x
+ i

[
∂

∂y
− φ′ ∂

∂t

]
depend only on x, we take a partial Fourier transform in the y and t variables. Given g =

g(x, y, t) ∈ L2(Mφ), identifying Mφ with R3, define

Fg = ĝ(x, η, τ) =

∫∫
R2

e−2πi(yη+tτ)g(x, y, t) dy dt
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so that

g(x, y, t) = F−1ĝ =

∫∫
R2

e2πi(yη+tτ)ĝ(x, η, τ) dη dτ

F is an isometry of L2(Mφ), and on the transform side

ˆ̄L = FL̄ =
d

dx
− 2πη + 2πφ′(x)τ

Using the notation

Ψ = Ψ(x, η, τ) = e−2π(xη−φ(x)τ) and MΨ[f ] = Ψ · f

We can then express L̄ as an interleaving of d
dx

by multiplication operators and Fourier transforms.

L̄g = F−1MΨ−1

∂

∂x
MΨFg

The key point is that

MΨ : L2(R3, dx dη dτ) 7→ L2(R3, e4π(xη−φ(x)τ)dx dη dτ)

and

MΨ−1 : L2(R3, e4π(xη−φ(x)τ)dx dη dτ) 7→ L2(R3, dx dη dτ)

are isometries. Thus L̄ on L2(Mφ) is similar to ∂
∂x

acting on functions which satisfy∫∫∫
R3

|g(x, η, τ)|2e4π(xη−φ(x)τ) dx dη dτ < +∞

Now the kernel of ∂
∂x

consists of functions g(η, τ) such that∫∫
R2

|g(η, τ)|2
[∫

R
e4π(xη−φ(x)τ) dx

]
dη dτ < +∞

Certainly the support of such functions must be in the set

Σ =

{
(η, τ) ∈ R2 : Cη,τ =

∫
R
e4π(xη−φ(x)τ) dx < +∞

}
Hence the projection operator P onto the kernel of ∂

∂x
in L2(R3, e4π(xη−φ(x)τ)dx dη dτ) must vanish

for (η, τ) /∈ Σ. On the other hand, if (η, τ) ∈ Σ, then P acts by projecting a function g(x, η, τ) =
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gη,τ (x) onto the space of constants in L2(R, e4π(xη−φ(x)τ) dx). Let us denote this projection by

Pη,τ ; it is given by the integral operator

Pη,τg(x) =
〈g, 1〉
〈1, 1〉

=

∫
R
g(q)C−1

η,τ e
4π(qη−φ(q)τ) dq

So set

Kη,τ (x, q) =

 C−1
η,τ e

4π(qη−φ(q)τ) if (η, τ) ∈ Σ

0 otherwise

Using this kernel, we may extend the above integral formula for Pη,τ to all (η, τ)

Pη,τg(x) =

∫
R
g(q)Kη,τ (x, q) dq

And writing the Szegő projection operator PS on L2(Mφ) as

PS g = F−1MΨ−1PMΨF g

It then follows

PSf(x, y, t) =

∫∫∫
R3

f(q, r, v)S
(
(x, y, t); (q, r, v)

)
dq dr dv

where the kernel obtained from a careful combination of like terms is

S((x, y, t), (q, r, v)) =

∫∫
R2

e2πi[(y−r)η+(t−v)τ ]e2π[(x−q)η−(φ(x)−φ(q))τ ]Kη,τ (x, q) dη dτ

=

∫∫
Σ

C−1
η,τ e

−2πτ [(φ(x)+φ(q))+i(v−t)] dη dτ

Since φ(x) is a subharmonic nonharmonic polynomial, this can be simplified further. Indeed,

Σ = {(η, τ) ∈ R2 : τ > 0} and we conclude

S((x, y, t), (q, r, v)) =

∫ ∞
0

e−2πτ [(φ(x)+φ(q))+i(v−t)]
∫
R

e2πηi(y−r)∫
R e

4π[η(ς−x+q
2

)−τφ(ς)] dς
dη dτ (4.6)

where we have expanded C−1
η,τ as the denominator integral, and moved the e2πη(x+q) factor from

numerator to denominator. Now we will prove estimate (4.1); that is,

|S((x, y, t), (q, r, v))| . δ−2Λ(x, δ)−1

where δ = d((x, y, t), (q, r, v)) is the distance between (x, y, t) and (q, r, v) in the pseudometric

equivalent to the control metric given in (3.3). Several technical lemmas will be used; their proofs

appear in Section 4.4.
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4.3 Szegő kernel estimates from Nagel’s formula

The length of the formula for S((x, y, t), (q, r, v)) makes it useful to abbreviate some of the

arguments. We will write a0 = xq, a1 = φ(x) + φ(q), b0 = y − r, and b1 = v − t. So the kernel is∫ ∞
0

e−2πτ [a1+ib1]

∫
R

e2πi(η·b0)∫
R e

4π[η(ς−a0
2

)−τφ(ς)] dς
dη dτ

Shifting ς 7→ ς + a0
2

, this reads∫ ∞
0

e−2πτ [a1+ib1]

∫
R

e2πi(η·b0)∫
R e

4π[ης−τφ(ς+
a0
2

)] dς
dη dτ

Note that when we write φ(ς + a0
2

) in a Taylor expansion about ς = 0, the integral in the

denominator is∫
R
e4π[ης−

∑m
k=0 τ

φ(k)(
a0
2 )

k!
ςk] dς =

∫
R
e4π[−τφ(

a0
2

)+(η−τφ′(a0
2

)ς−
∑m
k=2 τ

φ(k)(
a0
2 )

k!
ςk] dς

So shifting η 7→ η + τφ′(a0
2

) and collecting like terms, the kernel is∫ ∞
0

e−2πτ [(a1−2φ(
a0
2

)+i(b1−b0φ′(a02 ))]

∫
R

e2πi(η·b0)∫
R e

4π[ης−
∑m
k=2 τ

φ(k)(
a0
2 )

k!
ςk] dς

dη dτ

The crucial step follows. Define a scaling µ̆ = µ̆(a0, τ) by the requirement

m∑
k=2

∣∣∣∣τ φ(k)(a0
2

)

k!
µ̆k
∣∣∣∣2 = 1

The relationship to µ(x, ·) as defined in Subsection 4.1 is key; µ̆ here is essentially

µ̆(
x+ q

2
, τ) ≈ ν(

x+ q

2
, τ−2) ≈ µ(

x+ q

2
, τ−1)

in that notation. Now writing ck = τ
φ(k)(

a0
2

)

k!
µ̆k for k = 2, . . . ,m and scaling ς 7→ µ̆ς and

η 7→ µ̆−1η, we have∫ ∞
0

e−2πτ [(a1−2φ(
a0
2

)+i(b1−b0φ′(a02 ))]µ̆−2

∫
R

e2πi(η·b0µ̆−1)∫
R e

4π[ης−
∑m
k=2 ckς

k] dς
dη dτ

Because φ(x) is convex, so is the mapping ς 7→
∑m

k=2 ckς
k for any ~c = (c2, . . . , cm) obtained in

this way. Let us write

C =

{
(c2, . . . , cm) ∈ Rm−1 :

m∑
k=2

|ck|2 = 1 and ς 7→
m∑
k=2

ckς
k is convex

}
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And for ~c ∈ C, define

θ~c(η) =

{∫
R
e4π[ης−

∑m
k=2 ckς

k] dς

}−1

The set of all such functions—call it SC—is a compact class of Schwartz functions, which we prove

in Lemma 4.2 by establishing the Schwartz seminorms supy∈R |y|n|θ̂
(j)
~c (y)| change continuously

with the choice of ~c.

All told, the preceding transformations have led us from (4.6) to

S((x, y, t), (q, r, v)) =

∫ ∞
0

e−2πτ [(a1−2φ(
a0
2

))+i(b1−b0φ′(a02 ))]µ̆−2θ̂~c
(
b0µ̆
−1
)
dτ (4.7)

We now prove the estimate (4.1) in each of the three regimes of the pseudometric in (4.2).

The |x− q| regime

First suppose that d((x, y, t), (q, r, v)) = |x− q|. By compactness of SC, the expression θ̂~c
(
b0µ̆
−1
)

in (4.7) is bounded uniformly in ~c. Also note that by the estimate in (4.5) and the fact µ̆(x+q
2
, τ) ≈

µ(x+q
2
, τ−1) it follows

µ̆−1 ≈
m∑
k=2

∣∣∣∣φ(k)(
a0

2
)τ

∣∣∣∣1/k
Let us now write ∆φ(x, q) = φ(x) + φ(q) − 2φ(x+q

2
). Bringing absolute values inside the kernel

formula (4.7), we obtain

|S
(
(x, y, t); (q, r, v)

)
| .

m∑
k=2

|φ(k)(
x+ q

2
)|2/k

∫ ∞
0

τ 2/ke−2πτ∆φ(x,q) dτ

. ∆φ(x, q)−1

m∑
k=2

∣∣∣∣φ(k)(x+q
2

)

∆φ(x, q)

∣∣∣∣2/k ∫ ∞
0

τ 2/ke−2πτ dτ

. ∆φ(x, q)−1

m∑
k=2

∣∣∣∣φ(k)(x+q
2

)

∆φ(x, q)

∣∣∣∣2/k
It is easy to see that the division by ∆φ(x, q) makes sense. For suppose without loss that x < q.

Then if ∆φ(x, q) = 0 we have

φ(q)− φ(
x+ q

2
) = φ(

x+ q

2
)− φ(x)

and in particular the slope of the secant line from (x, φ(x)) to (x+q
2
, φ(x+q

2
)) is the same as the

slope of the secant line from (x+q
2
, φ(x+q

2
)) to (q, φ(q)). But the slopes of secant lines to the graph
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of a convex function are increasing (see e.g. [48]). So φ is linear on (x+q
2
, q)—but this contradicts

our hypothesis that φ is a nonharmonic polynomial.

In fact the convexity of φ implies much more, namely that

∆φ(x, q)) ∼ Λ(
x+ q

2
, |x− q|)

This is proved in Lemma 4.1 below. We then need only observe that∣∣∣∣ φ(k)(x+q
2

)

Λ(x+q
2
, |x− q|)

∣∣∣∣ . |x− q|−k
And because Λ(x+q

2
, |x− q|) ≈ Λ(x, |x− q|) it follows from the preceding chain of inequalities

|S
(
(x, y, t); (q, r, v)

)
| . |x− q|−2Λ(x, |x− q|)−1

The |y − r| regime

Now we assume that d((x.y, t), (q, r, v)) = |y − r|. Write

S(a0, b0, a1, b1) =
1

b0

∫ ∞
0

e−2πτ [∆φ+i(b1−b0φ′(a02 ))]µ̆−1 · b0µ̆
−1θ̂~c(b0µ̆

−1) dτ (4.8)

For each ~c ∈ C and n ∈ N we have C~c,n such that

|y|n |θ̂~c(y)| ≤ C~c,n|y|−n whenever y 6= 0 (4.9)

This is true in particular for n = 1; as well as for n large enough that∫ ∞
Λ(x,|y−r|)−1

µ̆n−1 dτ

converges. (Since the slowest possible decay of µ̆ is essentially τ−1/deg φ, we may just take

n = deg φ+ 2.) For either n = 1 or n = deg φ+ 2, compactness of SC yields C > 0 so that (4.9)

holds uniformly in ~c with C in place of C~c,n.

So now we split (4.8) into two integrals, and bring absolute values inside to obtain with this

C > 0 and n = deg φ+ 2 the inequality

|S
(
(x, y, t); (q, r, v)

)
| ≤ C

|y − r|

[∫ Λ(x,|y−r|)−1

0

µ̆−1 dτ +

∫ ∞
Λ(x,|y−r|)−1

µ̆−1

(|y − r|µ̆−1)n
dτ

]
=

C

|y − r|
(A+B)
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The key observation is that

µ̆(
x+ q

2
,Λ(x, |y − r|)−1) ≈ µ(

x+ q

2
,Λ(x, |y − r|)) ≈ |y − r|

because |y − r| > |x− q| by choice of regime, and µ(x, ·) preserves comparability. Thus

|A| . |y − r|−1Λ(x, |y − r|)−1

since µ̆−1 is increasing.

Furthermore, by the proof of Lemma 4.3 we have −µ̆′ > µ̆
τ
. Hence the pointwise equality

∂

∂τ
[τ µ̆n−1] = (n− 1)τ µ̆n−2µ̆′ + µ̆n−1

and the fact n ≥ 4 imply the inequality∣∣∣∣∫ ∞
Λ(x,|y−r|)−1

∂

∂τ
[τ µ̆n−1] dτ

∣∣∣∣ = (n− 1)

∫ ∞
Λ(x,|y−r|)−1

τ µ̆n−2(−µ̆′) dτ +

∫ ∞
Λ(x,|y−r|)−1

µ̆n−1 dτ

≥
∫ ∞

Λ(x,|y−r|)−1

µ̆n−1 dτ

We conclude

|y − r|nB =

∫ ∞
Λ(x,|y−r|)−1

µ̆n−1 dτ

≤
∣∣∣∣∫ ∞

Λ(x,|y−r|)−1

∂

∂τ
[τ µ̆n−1] dτ

∣∣∣∣
. Λ(x, |y − r|)−1|y − r|n−1

Combining the inequalities for A and B yield the desired estimate of the Szegő kernel.

The µ(x, |v − t+ T q,rx,y |) regime

In the final case, we need to observe that our pseudometric in (4.2) is, for any n ∈ N, equivalent

to the pseudometric

dn((x, y, t), (q, r, v)) = sup{n |x− q|, n |y − r|, µ(x, |v − t+ T q,rx,y |)}

So it suffices to prove this section’s desired estimate

|S((x, y, t), (q, r, v))| . µ(x, |v − t+ T q,rx,y |)−2 |v − t+ T q,rx,y |−1

35



under the assumption dn((x, y, t), (q, r, v)) = µ(x, |v − t + T q,rx,y |) for some n that is independent

of all coordinates.

The term |t− v + T q,rx,y | does not appear explicitly in (4.7), but nonetheless

|v − t+ T q,rx,y | = |v − t+ 2Im
m∑
k=1

φ(k)(x)

2kk!

(
q − x+ i(r − y)

)k|
≤ |v − t+ φ′(x)(r − y)|+ 2

∣∣∣∣Im m∑
k=2

φ(k)(x)

2kk!
(q − x+ i(r − y))k

∣∣∣∣
And when we expand all φ(j) about x+q

2
we obtain

≤ |v − t+ φ′(
x+ q

2
)(r − y)|+

∣∣∣∣m−1∑
k=1

φ(k+1)(x+q
2

)

2kk!
(x− q)k(r − y)

∣∣∣∣
+ 2

∣∣∣∣Im m∑
k=2

φ(k)(x)

2kk!
(q − x+ i(r − y))k

∣∣∣∣
≤ |v − t+ φ′(

x+ q

2
)(r − y)|+ (N − 1) · Λ(x,max{|x− q|, |y − r|})

for some N ∈ N independent of all coordinates. But in the µ(x, |v − t + T q,rx,y |) regime of the

pseudometric dn((x, y, t), (q, r, v)), for n sufficiently large, we have

N · Λ(x,max{|x− q|, |y − r|}) ≤ Λ(x,max{n · |x− q|, n · |y − r|}),

Combined with the preceding inequality this says

|v − t+ T q,rx,y | . |v − t+ φ′(
x+ q

2
)(r − y)|

when dn((x, y, t), (q, r, v)) = µ(x, |v − t+ T q,rx,y |). We assume this holds for n as described.

Now |v − t + φ′(x+q
2

)(r − y)| = |b1 − φ′(a0
2

)b0| is exactly the size of the oscillation in the

τ -integral in (4.7). For brevity, set

λ = |v − t+ φ′(
x+ q

2
)(r − y)|

and still use our abbreviation ∆φ = ∆φ(x, q) = a1 − 2φ(a0
2

). So we wish to understand the size

of

S(a0, b0, a1, b1) =

∫ ∞
0

e−2πτ [∆φ+iλ]µ̆−2θ̂~c(b0µ̆
−1) dτ
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in terms of the size of its oscillation. Observe that the oscillation in the kernel S(a0, b0, a1, b1) is

beneficial only when τ > λ−1. So choose ζ(x) ∈ C∞c (R) such that ζ ≡ 1 on [−1, 1], supp(ζ) =

[−2, 2], and all of the derivatives of ζ are uniformly bounded. Now

S(a0, b0, a1, b1) =

∫ ∞
0

e−2πτ [Λφ+iλ]µ̆−2θ̂~c(b0µ̆
−1) dτ

=

∫ 2/λ

0

ζ(τλ)e−2πτ [∆φ+iλ]µ̆−2θ̂~c(b0µ̆
−1) dτ

+

∫ ∞
1/λ

(1− ζ(τλ))e−2πτ [∆φ+iλ]µ̆−2θ̂~c(b0µ̆
−1) dτ

= A+B

For A, bringing absolute values inside the integral yields

|A| ≤
∫ 2/λ

0

µ̆−2 dτ ≤ 2λ−1µ̆(
a0

2
, 2λ−1)−2 . λ−1µ(

a0

2
, λ)−2

For B, integrating by parts three times gives

−1

8π3[∆φ + iλ]3
·
∫ ∞

1/λ

e−2πτ [∆φ+iλ] d
3

dτ 3

[
(1− ζ(τλ))µ̆−2θ̂~c(b0µ̆

−1)
]
dτ

Simply by the product rule, we see the integral in B is the sum of two different pieces; one in

which (1−ζ(τλ)) gets no derivatives, and another in which the compact support of ζ’s derivatives

take effect.

The first piece is

B1 =
3∑
l=0

∫ ∞
1/λ

(1− ζ(τλ))e−2πτ [∆φ+iλ] d
l

dτ l
[
µ̆−2
] d3−l

dτ 3−l

[
θ̂~c(b0µ̆

−1)
]
dτ

By Lemma 4.3, for 1 ≤ l ≤ 3 we have∣∣∣∣ dldτ l [µ̆−1
]∣∣∣∣ . µ̆−1

τ l
so that

∣∣∣∣ dldτ l [µ̆−2
]∣∣∣∣. . µ̆−2

τ l

and it is Corollary 4.4 that ∣∣∣∣ d3−l

dτ 3−l

[
θ̂~c(b0µ̆

−1)
]∣∣∣∣ . τ l−3

Bringing absolute values inside the integral in B1, we thus obtain

|B1| .
∫ ∞

1/λ

τ−3µ̆−2 dτ

.

∣∣∣∣ ∫ ∞
1/λ

d

dτ
[τ−2µ̆−2] dτ

∣∣∣∣
. λ2µ(

x+ q

2
, λ)−2
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where the first integral on the right-hand side converges because the fastest growth of µ̆−1 is

essentially τ 1/2; and the second inequality follows as in the argument for the |y − r| regime.

The second piece of B, where the compact support of ζ’s deratives comes into play, is

B2 =
3∑
l=1

∫ 2/λ

1/λ

λlζ(l)(τλ)e−2πτ [(a1−2φ(
a0
2

))+iλ] d
3−l

dτ 3−l

[
µ̆−2θ̂~c(b0µ̆

−1)
]
dτ

Given a typical term of B2, bringing absolute values inside the integral and using the above

arguments, it follows

|B2,l| . λl
∫ 2/λ

1/λ

τ l−3µ̆−2 dτ . λl
∣∣∣∣ ∫ 2/λ

1/λ

d

dτ
[τ l−2µ̆−2] dτ

∣∣∣∣ . λ2µ(
x+ q

2
, λ)−2

So in conclusion

|B| ≤ |B1|+ |B2|
8π3|∆φ + iλ|3

. λ−3(|B1|+ |B2|)

. λ−1µ(
x+ q

2
, λ)−2

. µ(x, |v − t+ T q,rx,y |)−2 |v − t+ T q,rx,y |−1

where we have again used the facts that µ preserves comparability and is increasing. This

completes the main proof.

4.4 Proof of Lemmas 4.1–4.3

We now establish the technical lemmas used in the preceding argument. First we have the

characterization of ∆φ(x, q) that underlies work in the |x− q| regime.

Lemma 4.1. Let φ(x) be a subharmonic nonharmonic polynomial of degree m ≥ 2. Then the

two quantities

∆φ(x, q) = φ(x) + φ(q)− 2φ(
x+ q

2
) and Λ(

x+ q

2
, |x− q|) =

m∑
k=2

∣∣∣∣φ(k)(
x+ q

2
)

∣∣∣∣ |x− q|k
are equivalent; that is, there exists C > 0 so that

C−1∆φ(x, q) ≤ Λ(
x+ q

2
, |x− q|) ≤ C∆φ(x, q), ∀(x, q) ∈ R2
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Proof. Using the coordinates (γ, κ) = (x+q
2
, x− q) and expanding φ about x+q

2
gives

∆φ(x, q) =

m/2∑
l=1

c2l φ
(2l)(γ)|κ|2l

with c2l of course independent of γ, κ for l = 1, . . . ,m/2. And by definition

Λ(
x+ q

2
, |x− q|) =

m∑
k=2

|φ(k)(γ)| |κ|k

From these two sums ∆φ(x, q) . Λ(x+q
2
, |x− q|) is clear. We now consider the reverse bound.

First, for |γ| > M0 sufficiently large, φ(2l)(γ) ≈ |γ|m−k. So uniformly in large |γ|, we have

m/2∑
l=1

c2l φ
(2l)(γ)|κ|2l &

m/2∑
l=1

|γ|m−2l |κ|2l

and
m∑
k=2

|φ(k)(γ)| |κ|k .
m∑
k=2

|γ|m−k |κ|k

If k is odd, the k-th term in
∑m

k=2 |γ|m−k |κ|k is dominated by either the k−1
2

-th or k+1
2

-th term of∑m/2
l=1 |γ|m−2l |κ|2l, depending on the relative sizes of |γ| and |κ|. Thus the reverse bound holds

on {(γ, κ) ∈ R2 : |γ| > M0, κ ∈ R}.

Next, if |γ| ≤M0, there is a uniform upper bound on the size of the derivatives of φ. Taking

|κ| > M1 large enough, both sums are similar to |κ|m because φ(m) > 0, and ∆φ(x, q) also

dominates Λ(x+q
2
, |x− q|) on {(γ, κ) ∈ R2 : |γ| ≤M0, |κ| > M1}. The situation is less clear when

|κ| is small, for the low order derivatives of φ may vanish. So write the zeros of φ′′ as {γ1, . . . , γq},

assuming without loss that they lie within [−M0,M0], and enclose each zero in an arbitrarily

small neighborhood Np which will be shrunk as necessary.

Fix some zero, say γp. There is a smallest k, say kp, for which φ(kp)(γp) does not vanish.

Convexity of φ implies kp is even and φ(kp)(γp) > 0. Pick any d where 2 ≤ d < k0. Then

φ(d)(γ) =
m∑

j=k0

φ(j)(γp)

(j − d)!
(γ − γp)j−d.

And by shrinking Np enough we may conclude for γ ∈ Np

|φ(d)(γ)| ≤
m∑

j=kp

|φ(j)(γp)|
(j − d)!

|γ − γp|j−d . |γ − γp|kp−d
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where the implied constant is independent of p because there are only finitely many zeros. On

the other hand, taking |κ| < M2 sufficiently small, we also have in Np that

m∑
j=kp

|φj(γ)| |κ|j . |κ|kp

It follows directly
m∑
k=2

|φ(k)(γ)| |κ|k .

(
|κ|kp +

kp−1∑
k=2

|γ − γp|kp−k |κ|k
)

(4.10)

inside Rp = {(γ, κ) ∈ R2 : γ ∈ Np, |κ| < M2}.

Now look again at some φ(2d)(γ) in Np where 1 ≤ d < k0/2:

φ(2d)(γ) =
m∑

j=k0

φ(j)(γp)

(j − 2d)!
(γ − γp)j−2d.

Near γp it is clear that this sum is dominated by the term with |γ − γp|j−2d. Hence we also have

in Rp that
m/2∑
l=1

c2l φ
(2l)(γ)|κ|2l &

(
|κ|kp +

(kp−2)/2∑
l=1

|γ − γp|kp−2l |κ|2l
)

(4.11)

Comparing the summations on the right-hand sides of (4.10) and (4.11), we once again observe

the k-th term in
∑kp−1

k=2 |γ − γp|kp−k |κ|k is dominated by either the k−1
2

-th or k+1
2

-th term of∑(kp−2)/2
l=1 |γ − γp|kp−2l |κ|2l, depending on the relative sizes of κ and |γ − γp|. Combining (4.10)

and (4.11), we thus obtain the reverse bound of the lemma on the union of the Rp.

For γ ∈ [−M0,M0] \ {N1 ∪ · · · ∪Nq}, on the other hand, φ′′(γ) is positive and bounded away

from zero. Shrinking M2 as necessary, this implies both sums are similar to |κ|2 in

{(γ, κ) ∈ R2 : |γ| ∈ [−M0,M0] \ {N1 ∪ · · · ∪ nq}, |κ| < M2}

Thus we obtain the reverse bound on all of

{(γ, κ) ∈ R2 : |γ| ≤M0, |κ| < M2}

On the remaining compact set {(γ, κ) ∈ R2 : γ ≤ M0, M2 ≤ |κ| ≤ M1}, both ∆φ(x, q) and

Λ(x+q
2
, |x− q|) are continuous functions bounded away from zero, hence comparable. (Convexity

of φ ensures ∆φ(x, q) is strictly positive when x 6= q; see comments in Section 4.3.) This

establishes the reverse bound uniformly on R2.
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Compactness of SC in the Schwartz space

Next we prove that SC ⊂⊂ S(R). Note that if one naively brings absolute values inside the

integral formula before scaling, this essential information is lost.

Lemma 4.2. For even integer m ≥ 2, define a mapping on the compact subset of Rm−1

C =

{
~c = (c2, . . . , cm) ∈ Rm−1 :

m∑
k=2

|ck|2 = 1 and ς 7→
m∑
k=2

ckς
k is convex

}
by

~c 7→ θ~c(η) =

{∫
R
e4π[ης−

∑m
k=2 ckς

k] dς

}−1

This mapping is continuous on Rm−1 when composed with any Schwartz seminorm

sup
η∈R
|η|n |θ(j)

~c (η)|, (n ∈ N)

In particular, its image SC is a compact class of Schwartz functions on R.

Proof. For fixed ~c0 ∈ C, write p0(x) =
∑m

k=2 c0,k x
k and qη0(x) = ηx− p0(x). Then

θ0(η) =

{∫
R
e4πqη0 (x) dx

}−1

= g0(η)−1

is a function in SC. We first examine the concave polynomial qη0(x). Let x0 = x0(η) be its global

maximum; so η =
∑m

k=2 c0,k kx0
k−1 and

qη0(x0) =
m∑
k=2

c0,k (k − 1)x0
k.

It is clear we may choose M0 > 0 so large that for |η| > M0, we have |x0| ≈ |η|
1

m−1 and hence

|qη0(x0)| ≈ |η|
m
m−1 , where the implied constants are uniform in C.

Now suppose {~cn} is a sequence in C converging to ~c0. Let xn = xn(η) be the corresponding

sequence of global maxima of concave polynomials ηx−
∑m

k=2 cn,kx
k. The key point is that there

is a n0 ∈ N sufficiently large that the equivalences

|xn| ≈ |η|
1

m−1 and |qηn(xn)| ≈ |η|
m
m−1 (|η| ≥M0) (4.12)

also hold with constants independent of n, whenever n ≥ n0. Explicitly, choose n0 ∈ N large

enough that 2−1|c0,k| ≤ |cn,k| ≤ 2|c0,k| and 2−1|x0| ≤ |xn| ≤ 2|x0| for 2 ≤ k ≤ m, whenever

41



n ≥ n0. Then for η ≥M0 large enough, with n past n0 we have

|η| ≤
m∑
k=2

|cn,k| k|xn|k−1 ≤
m∑
k=2

2k|c0,k| k|x0|k−1 . |xn|m−1

and

|η| ≥ 2−mc0,mm|x0|m−1 −
m−1∑
k=2

2k|c0,kk|x0|k−1 & |xn|m−1

Similarly

|qηn(xn)| =
m∑
k=2

cn,k (k − 1)xn
k

≥ 2−(m+1)c0,m (m− 1)|x0|m −
m−1∑
k=2

2k+1|c0,k| (k − 1)|x0|k

& |η|
m
m−1

and

|qηn(xn)| ≤
m∑
k=2

2k+1|c0,k|(k − 1)|x0|k . |η|
m
m−1

We have been so explicit here just to emphasize that (4.12) holds with constants that depend

only on x0 and not at all on n once we are past n0.

These estimates will be directly applicable to gn(η) when we rewrite qηn(x) in its Taylor

expansion about x = xn and scale the resulting integral in the fashion of Section 4.3

gn(η) = e4πqηn(xn)

∫
R
e−4π

∑m
k=2

p
(k)
n (xn)
k!

(x−xn)k dx

= e4πqηn(xn)µ̃n(xn)

∫
R
e−

∑m
k=2 dn,k x

k

dx

where now dn,k = 4π p
(k)
n (xn)
k!

µ̃kn and µ̃n is defined by the requirement
∑m

k=2 |dn,k|2 = 1. Note that

the integral in this expression of gn(η) is bounded and bounded away from zero independent of

n, since the map ~dn →
∫
R e
−
∑m
k=2 dn,k x

k
dx is continuous and each ~dn belongs to the compact set

C ⊂ Rm−1.

From the preceding estimates on x0, and the fact µ̃0 ≈
{

supmk=2 |d0,k|1/k
}−1

, it is clear that

|µ̃0(x0)| ≈ |η|
2−m
2m−2 for |η| > M0. Then arguments entirely analogous to those used for (4.12) yield

|µ̃n(xn)| ≈ |η|
2−m
2m−2 (|η| > M0)
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with constants independent of n ≥ n0. It is now clear that e.g.

|θn(η)| . e−α|η|
m
m−1

(|η| ≥M0 and n ≥ n0)

with α > 0 depending only on ~c0. But to prove Schwartz estimates we will need to look more

closely at the form of the derivatives θ
(j)
n (η).

To this end, note for j ∈ N

g(j)
n (η) =

∫
R
(4πx)j · e4πqηn(x) dx

= e4πqηn(xn)

∫
R
(4πx)je−4π

∑m
k=2

p
(k)
n (xn)
k!

(x−xn)k dx

= e4πqηn(xn)µ̃(xn)j+1

∫
R
(4πx)je−

∑m
k=2 dn,k x

k

dx

with the integral again bounded and bounded away from zero. Now a simple induction shows

that θ
(j)
n (η) is a linear combination of terms of the form of the form∏l−1

p=1 g
(dp)
n (η)

gn(η)l
(l ≤ j + 1 and

l−1∑
p=1

dp = j)

which by the expression for gn
(j) are bounded (up to constants) by e−4πqηn(xn)µ̃n(xn)j−1. In

particular,

|θ(j)
n (η)| . e−αj |η|

m
m−1

(|η| > M0 and n ≥ n0)

where αj > 0 depends only on ~c0. This shows that SC belongs to S(R).

In fact this estimate also implies compactness of SC . For let

‖f‖j,N := sup
η∈R
|ηNf (j)(η)|

be a Schwartz seminorm. Fix ε > 0. From above, there are n0 ∈ N, M0 > 0, and αj > 0 so

that |θ(j)
n (η)| . e−αj |η|

m
m−1

whenever n ≥ n0 and |η| ≥ M0. Now choose M ≥ M0 so large that

MNe−αjM
m
m−1

< ε/2; and n1 ≥ n0 so that uniform convergence on [−M,M ] implies

sup
η∈[−M,M ]

|ηNθ(j)
n (η)− ηNθ(j)

0 (η)| < ε

whenever n ≥ n1. Clearly ‖θn − θ0‖j,N < ε whenever n ≥ n1.
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Derivatives of µ̆−1(x, τ)

Finally we establish some estimates on the τ -derivatives of µ̆−1(x, τ) which are needed in both

the |y − r| and µ(|v − t+ T q,rx,y |) regimes.

Lemma 4.3. Given φ(x) a subharmonic nonharmonic polynomial of degree m, define µ̆ = µ̆(x, τ)

by the requirement
m∑
k=2

∣∣∣∣τ φ(k)(x)

k!
µ̆k
∣∣∣∣2 = 1

Then for l = 1, 2, 3 ∣∣∣∣ ∂l∂τ l [µ̆−1]

∣∣∣∣ . µ̆−1

τ l

with implied constants independent of x.

Proof. Starting with the definition of µ̆, writing ck = |φ
(k)(x)
k!
|2, and taking three τ -derivatives,

we obtain the equalities
m∑
k=2

ck
(
τ µ̆2k + kτ 2µ̆2k−1µ̆′

)
= 0 (4.13)

m∑
k=2

ck
(
µ̆2k + 4kτ 2µ̆2k−1µ̆′ + k(2k − 1)τ 2µ̆2k−2(µ̆′)2 + kτ 2µ̆2k−1µ̆′′

)
= 0 (4.14)

m∑
k=2

ck
(
6kµ̆2k−1µ̆′ + 6k(2k − 1)τ µ̆2k−2(µ̆′)2 + 6kτµ̆2k−1µ̆′′

+ 3k(2k − 1)τ 2µ̆2k−2µ̆′µ̆′′ + k(2k − 1)(2k − 2)τ 2µ̆2k−3(µ̆′)3 + kτ 2µ̆2k−1µ̆(3)
)

= 0 (4.15)

where µ̆(l) ≡ ∂l

∂τ l
µ̆.

Now rearrange (4.13) as
m∑
k=2

ckτ µ̆
2k = −µ̆′

m∑
k=2

kτ 2µ̆2k−1

Note the left-hand side is τ−1; and multiplying both sides by µ̆ yields

µ̆

τ
= −µ̆′

m∑
k=2

kckτ
2µ̆2k

We conclude µ̆′ ≈ − µ̆
τ
. (And in particular −µ̆′ > µ̆

τ
.) This yields the l = 1 estimate of the lemma

because

d

dτ
[µ̆−1] =

−µ̆′

µ̆2
≈ µ̆−1

τ
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The l = 2 and l = 3 cases follow similarly. That is, rearranging (4.14) and balancing powers

of µ̆ implies ∣∣∣∣ µ̆′′µ̆
∣∣∣∣ . ∣∣∣∣ m∑

k=2

ckµ̆
2k

∣∣∣∣+

∣∣∣∣4τ µ̆′µ̆
m∑
k=2

kckµ̆
2k

∣∣∣∣+

∣∣∣∣τ 2 (µ̆′)2

µ̆2

m∑
k=2

k(2k − 1)ckµ̆
2k

∣∣∣∣
So |µ̆′′| . µ̆

τ2
from the estimate on µ̆′, and thus∣∣∣∣ d2

dτ 2
[µ̆−1]

∣∣∣∣ =

∣∣∣∣2(µ̆′)2µ̆−3 − µ̆′′µ̆−2

∣∣∣∣ . µ̆−1

τ 2

And rearranging (4.15)∣∣∣∣ µ̆(3)

µ̆

∣∣∣∣ . ∣∣∣∣6 µ̆′µ̆
m∑
k=2

kckµ̆
2k

∣∣∣∣+

∣∣∣∣6(µ̆′)2

µ̆2

m∑
k=2

k(2k − 1)ckµ̆
2k

∣∣∣∣+

∣∣∣∣6τ µ̆′′µ̆
m∑
k=2

kckµ̆
2k

∣∣∣∣+∣∣∣∣τ 2 (µ̆′)3

µ̆3

m∑
k=2

k(2k − 1)(2k − 2)ckµ̆
2k

∣∣∣∣+

∣∣∣∣3τ 2 µ̆
′µ̆′′

µ̆2

m∑
k=2

3k(2k − 1)ckµ̆
2k

∣∣∣∣
Then |µ̆(3)| . µ̆

τ3
from the estimates on µ̆′ and µ̆′′. Hence∣∣∣∣ d3

dτ 3
[µ̆−1]

∣∣∣∣ =

∣∣∣∣6µ̆′µ̆′′µ̆−3 − 6(µ̆′)3µ̆−4 − µ̆(3)µ̆−2

∣∣∣∣ . µ̆−1

τ 3

Corollary 4.4. Let θ̂~c be a compact class of Schwartz functions on R indexed by ~c, and b0 ∈ R.

Then with µ̆(x, τ) as in Lemma 4.3, we have for l = 1, 2, 3∣∣∣∣ ∂l∂τ l θ̂(b0µ̆
−1)

∣∣∣∣ . τ−l

with implied constants independent of b0 and x.

Proof. This is easily seen by writing out the first three τ -derivatives of θ̂(b0µ̆
−1) and then applying

the estimates of Lemma 4.3.
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Chapter 5

Observations and Difficulties in Codimension Two

In this chapter we finally consider the Szegő kernel for CR manifolds of the form

Mφ,ψ = { (z, w1, w2) ∈ C2 : Imw1 = φ(Re z) and Imw2 = ψ(Re z) }

where φ(x) and ψ(x) are convex polynomials of degree at least 2. By reasoning parallel to

Nagel’s in Chapter 4, we provide an integral formula for the Szegő kernel on Mφ,ψ×Mφ,ψ. When

φ(x) = ψ(x) = x2 this kernel simplifies to a δ function times the Szegő kernel for Mx2 ; in

Section 5.4 we show that a similar relationship holds whenever ψ(x) = aφ(x) for a ∈ R. The

remainder of the chapter, through special study of Mx2,x4 , indicates the technical difficulties that

arise when working with the integral formula on general Mφ,ψ. We also discuss the possible

significance of the control metric on Mφ,ψ.

5.1 Extension of Nagel’s integral formula

Suppose φ(x) and ψ(x) are as above, with maximum degree m. Then Mφ,ψ is defined by

ρ1(z, w) = φ(Re z)− Imw1 and ρ2(z, w) = ψ(Re z)− Imw2

And it is easy to check that

D̄ =
∂

∂z̄
− iφ′ ∂

∂w̄1

− iψ′ ∂
∂w̄2

is a global tangential antiholomorphic vector field for Mφ,ψ. We now identify Mφ,ψ with C× R2

with coordinates (x, y, s, t). Under the identification 2D̄ is

L̄ =
∂

∂x
+ i

[
∂

∂y
− φ′ ∂

∂s
− ψ′ ∂

∂t

]
= (X1 + iX2)

So the Szegő projection is onto the kernel of L̄ in L2(Mφ,ψ).

Now what follows is completely analogous to Section 4.2, but we repeat certain steps to fix

notation. For u(x, y, s, t) ∈ L2(R4) define the partial Fourier transform F by

Fu = û(x, η, σ, τ) =

∫∫∫
R3

e−2πi(yη+sσ+tτ)u(x, y, s, t) dy ds dt
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so that

u(x, y, s, t) = F−1û =

∫∫∫
R3

e2πi(yη+sσ+tτ)û(x, η, σ, τ) dη dσ dτ

And writing

MΨ[g] = Ψ · g with Ψ = e−2π(xη−φ(x)σ−ψ(x)τ)

we obtain the formula

L̄u = F−1MΨ−1

d

dx
MΨFu.

As before, we can analyze L̄ on Mφ,ψ by investigating ∂
∂x

acting on functions that satisfy∫∫∫∫
R4

|g(x, η, σ, τ)|2e4π(xη−φ(x)σ−ψ(x)τ)dx dη dσ dτ < +∞.

The kernel of ∂
∂x

here consists of functions g(η, σ, τ) such that∫∫∫
R3

|g(η, σ, τ)|2
[∫

R
e4π(xη−φ(x)σ−ψ(x)τ)dx

]
dη dσ dτ <∞.

Because these functions must vanish when
∫
R e

4π(xη−φ(x)σ−ψ(x)τ)dx = +∞, the projection operator

P on the kernel of ∂
∂x

has nontrivial behavior only in the region

Σ =

{
(η, σ, τ) ∈ R3 :

∫
R
e4π(xη−φ(x)σ−ψ(x)τ)dx < +∞

}
.

When (η, σ, τ) ∈ Σ, the action of P is to project g(x, η, σ, τ) onto the space of constants in

L2(e4π(xη−φ(x)σ−ψ(x)τ)dx). Denote this projection operator Pη,σ,τ ; writing

Cη,σ,τ =

∫
R
e4π(ςη−φ(ς)σ−ψ(ς)τ)dς

we then have

Pη,σ,τg(x) =

∫
R
g(q)C−1

η,σ,τ e
4π(qη−φ(q)σ−ψ(q)τ)dq

And setting

Kη,σ,τ (x, q) =

 C−1
η,σ,τ e

4π(qη−φ(q)σ−ψ(q)τ) if (η, σ, τ) ∈ Σ

0 otherwise.

We obtain P as an integral operator on L2(e4π(xη−φ(x)σ−ψ(x)τ)dx) with kernel Kη,σ,τ (x, q).

Finally, because the Szegő projection operator PS is given by

PS = F−1MΨ−1PMΨF ,
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we conclude that

P [f ](x, y, s, t) =

∫∫∫∫
R4

f(q, r, u, v)S((x, y, s, t), (q, r, u, v)) dq dr du dv

where the Szegő kernel is

S((x, y, s, t), (q, r, u, v)) =∫∫∫
Σ

C−1
η,σ,τe

−2πσ[(φ(x)+φ(q))+i(u−s)]e−2πτ [(ψ(x)+ψ(q))+i(v−t)]e2πη[(x+q)+i(y−r)] dη dσ dτ (5.1)

5.2 A comment on the control metric

Since on a finite type domain boundary in C2 the Szegő kernel is governed by the control metric,

we may naturally ask whether the same holds on a codimension two CR manifold. It is easy to

extend the notion of finite type; we simply require that the real and imaginary parts of L̄, X1

and X2, along with a finite number m of their iterated commutators, span the real tangent space

at every point of Mφ,ψ. Then the definition of the control metric is the same as in Theorem 3.3,

with ∂Ω, with replaced by Mφ,ψ.

Definition 5.1. With notation as above, let {Y1, . . . , Yq} be some enumeration of the vector fields

X1, X2, and all their iterated commutators of length less than or equal m. Define the “degree”

of each vector field Yj by

d(Yj) = length of the iterated commutator that forms Yj

Now let the distance between p, q ∈Mφ,ψ be the infimum of δ > 0 such that there is an absolutely

continuous map γ : [0, 1] 7→Mφ,ψ with γ(0) = p, γ(1) = q so that for almost all t ∈ (0, 1)

γ′(t) =

q∑
j=1

aj(t)Yj (γ(t)) , |aj(t)| < δd(Yj)

This distance function defines the control metric on Mφ,ψ.

The great difficulty here lies in formulating a tractable description of the metric. Indeed,

even on a domain boundary Mφ, a serious amount of work is required to prove the equivalence

of the control metric to the pseudometric (4.2) discovered by Nagel et al. (We essentially hid

all this work in Chapter 4 by taking as a fact the characterization of control balls in terms of a
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polarization in Theorem 3.7.) As for the volume of the control balls on Mφ,ψ, the closest thing

to (4.3) is another of Nagel et al.’s theorems in [43].

Theorem 5.2 (Nagel, Stein, Wainger). With {Y1, . . . , Yq} as above, the volume of the control

ball of radius δ > 0 centered at (x, y, s, t) ∈Mφ,ψ is, with uniform constants, given by

|B((x, y, s, t), δ)| ≈
∑

(i1,i2,i3)

|det[Yi1 Yi2 Yi3 ]| δd(Yi1 )+d(Yi2 )+d(Yi3 ) (5.2)

where all determinants are evaluated at (x, y, s, t) and (i1, i2, i3) range over all increasing triplets

from the set {1, . . . , q}.

For general φ(x) and ψ(x), it is not necessarily obvious what to make of this expression either.

But on Mx2,x4 the formula (5.2) is quite tractable, and we will return to it in Section 5.5. Before

doing this, however, we study some particularly simple manifolds which are not of finite type.

5.3 Calculations with quadratic defining functions

The very simplest manifold meeting our description is Mx2,x2 . The crucial set Σ introduced in

Section 5.1, namely

Σ =

{
(η, σ, τ) ∈ R3 : Cη,σ,τ =

∫
R
e4π(xη−φ(x)σ−ψ(x)τ)dx < +∞

}
is now seen to be

Σ = { (η, σ, τ) ∈ R3 : σ + τ > 0 }

Where inside Σ we may compute

Cη,σ,τ =

∫
R
e4π[xη−x2(σ+τ)] dx =

1

2

e
πη2

σ+τ

√
σ + τ

We now use this formula, and the fact the Fourier transform of a Gaussian is another Gaussian,

to compute the Szegő kernel explicitly.

As usual, certain abbreviations will be necessary. Take

Fx,q,s,u(σ) = e−2πσ[(x2+q2)+i(u−s)] and Fx,q,t,v(τ) = e−2πτ [(x2+q2)+i(v−t)]

The kernel S((x, y, s, t), (q, r, u, v)) as in (5.1) is then

2

∫
R
Fx,q,t,v(τ)

∫ ∞
−τ

√
σ + τFx,q,s,u(σ)

∫
R
e−

πη2

σ+τ · e2πη[(x+q)+i(y−r)] dη dσ dτ
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And the inner integral can again be computed∫
R
e−

πη2

σ+τ · e2πη[(x+q)+i(y−r)] dη =
√
σ + τe(σ+τ)·π[(x+q)+i(y−r)]2

Using the additional abbreviation

Gx,q,y,r,t,v(τ) = eτπ[(x+q)+i(y−r)]2Fx,q,t,v(τ)

= eτπ[(x+q)+i(y−r)]2 · e−2πτ [(x2+q2)+i(v−t)]

= e−τπ
(

(x−q)2+(y−r)2+2i[(v−t)−(x+q)(y−r)]
)

and re-expanding Fx,q,u,s(σ), this leads us to the expression for 1
2
S((x, y, s, t), (q, r, u, v))∫

R
eτπ[(x+q)+i(y−r)]2Fx,q,t,v(τ)

∫ ∞
−τ

(σ + τ)e−σπ
(

2[(x2+q2)+i(u−s)]−[(x+q)+i(y−r)]2
)
dσ dτ

=

∫
R
τGx,q,y,r,t,v(τ)

∫ −∞
−τ

e−σπ
(

2[(x2+q2)+i(u−s)]−[(x+q)+i(y−r)]2
)
dσ dτ

+

∫
R
Gx,q,y,r,t,v(τ)

∫ ∞
−τ

σe−σπ
(

2[(x2+q2)+i(u−s)]−[(x+q)+i(y−r)]2
)
dσ dτ

=

∫
R
τGx,q,y,r,t,v(τ)

∫ ∞
−τ

e−σπ
(

(x−q)2+(y−r)2+2i[(u−s)−(x+q)(y−r)]
)
dσ dτ

+

∫
R
Gx,q,y,r,t,v(τ)

∫ τ

−∞
σeσπ

(
(x−q)2+(y−r)2+2i[(u−s)−(x+q)(y−r)]

)
dσ dτ

= A+B

For both A and B, the inner integrals converge absolutely away from the diagonal and may

be computed. First,

A =
(
π[(x− q)2 + (y − r)2] + 2πi[(u− s)− (x+ q)(y − r)]

)−1·∫
R
τGx,q,y,r,t,v(τ) · eτπ

(
(x−q)2+(y−r)2+2i[(u−s)−(x+q)(y−r)]

)
dτ

= C−1
x,q,y,r,s,u ·

∫
R
τe2πiτ [(u−s)−(v−t)] dτ

understood in the sense of tempered distributions. Similarly,

B = −C−1
x,q,y,r,s,u ·

∫
R
τe2πiτ [(u−s)−(v−t)] dτ + C−2

x,q,y,r,s,u ·
∫
R
e2πiτ [(u−s)−(v−t)] dτ

Hence

A+B = C−2
x,q,y,r,s,u ·

∫
R
e2πiτ [(u−s)−(v−t)] dτ = δ

(
(u− s)− (v − t)

)
· C−2

x,q,y,r,s,u
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in the sense of distributions.

We conclude that

S((x, y, s, t), (q, r, u, v)) =
2δ
(
(u− s)− (v − t)

)(
π[(x− q)2 + (y − r)2] + 2πi[(s− u)− (x+ q)(y − r)]

)2

On the other hand, the same sort of calculations yield for Mx2 that

S((x, y, t), (q, r, v)) =

∫ ∞
0

e−2πτ [(x2+q2)+i(v−t)]
∫
R

e2πη[(x+q)+i(y−r)]∫
R e

4π[ης−τς2] dς
dη dτ

=
2(

π[(x− q)2 + (y − r)2] + 2πi[(u− s)− (x+ q)(y − r)]
)2

Evidently the Szegő kernel on Mx2,x2 is just the kernel on Mx2 multiplied by an appropriate delta

distribution. We next generalize this relationship to any case where ψ(x) is a constant multiple

of φ(x).

5.4 The Szegő kernel on Mφ,ψ not of finite type

With the integral formulas from Sections 4 and 5.1 in hand, we can identify the general relation-

ship between Mφ and Mφ,aφ.

Proposition 5.3. With notation as above, let Sφ((x, y, s), (q, r, u)) denote the Szegő kernel on

Mφ; for a ∈ R, let Sφ,aφ((x, y, s, t), (q, r, u, v)) be the Szegő kernel on Mφ,aφ. Then we have

Sφ,aφ((x, y, s, t), (q, r, u, v)) = δ
(
(t− v)− a(s− u)

)
· Sφ((x, y, s), (q, r, u)) (5.3)

Proof. We know the kernels Sφ and Sφ,aφ are given by appropriate integrals over, respectively,

the regions

Σ1 =

{
(η, µ) ∈ R2 : Cη,µ =

∫
R
e4π(ςη−φ(ς)µ) dς < +∞

}
and

Σ2 =

{
(η, σ, τ) ∈ R3 : Cη,σ,τ =

∫
R
e4π[ςη−φ(ς)(σ+aτ)] dς < +∞

}
In particular, Σ1 = {(η, µ) ∈ R2 : µ > 0} and Σ2 = {(η, σ, τ) ∈ R3 : σ+ aτ > 0}. It is also clear

that Cη,σ,τ = Cη,σ+aτ .

Now recall the abbreviation from Section 5.3

Fx,q,y,r(η) = e2πη[(x+q)+i(y−r)]
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Then from Section 4 we know

Sφ((x, y, s), (q, r, u)) =

∫ ∞
0

e−2πµ[(φ(x)+φ(q))+i(u−s)]
∫
R
C−1
η,µFx,q,y,r(η) dη dµ

And we calculate

Sφ,aφ((x,y, s, t), (q, r, u, v))

=

∫∫∫
Σ2

C−1
η,σ,τFx,q,y,r(η)e−2πσ[(φ(x)+φ(q))+i(u−s)]e−2πτ [(a·φ(x)+a·φ(q))+i(v−t)] dη dσ dτ

=

∫∫∫
Σ2

C−1
η,σ,τFx,q,y,r(η)e−2π(σ+aτ)[φ(x)+φ(q)]e−2πi[σ(u−s)+τ(v−t)] dη dσ dτ

=

∫∫∫
Σ2

C−1
η,σ,τFx,q,y,r(η)e−2πiτ [(v−t)−a(u−s)]e−2π(σ+aτ)[(φ(x)+φ(q))+i(u−s)] dη dσ dτ

=

∫
R
e2πiτ [(t−v)−a(s−u)]

∫ ∞
−aτ

e2π(σ+aτ)[(φ(x)+φ(q))+i(u−s)]
∫
R
C−1
η,σ+aτFx,q,y,r(η) dη dσ dτ

Upon shifting σ 7→ σ − aτ , this gives

Sφ,aφ((x,y, s, t), (q, r, u, v))

=

∫
R
e2πiτ [(t−v)−a(s−u)]

∫ ∞
0

e−2πσ[(φ(x)+φ(q))+i(u−s)]
∫
R
C−1
η,σFx,q,y,r(η) dη dσ dτ

= S1

(
(x, y, s); (q, r, u)

) ∫
R
e2πiτ [(t−v)−a(s−u)] dτ

Which is exactly (5.3) in the sense of distributions.

Connection to the control geometry

Note that Mφ,aφ does not satisfy a finite type hypothesis. Indeed, with X1 = ∂
∂x

and X2 =

∂
∂y
− φ′ ∂

∂s
− aφ′ ∂

∂t
, every potentially non-zero commutator is of the form

Yk = [

k − 1 times︷ ︸︸ ︷
X1, [X1, · · · , [X1, X2] · · · ]] (2 ≤ k ≤ m)

That is,

Yk = −φ(k)(x)
∂

∂s
− aφ(k)(x)

∂

∂t

And evidently {X1, X2, Yk1 , Yk2} is limited to the (1, a) subspace of the ∂
∂s
, ∂
∂t

directions for any

choice of k1, k2. So the real tangent space is never spanned, at any point of Mφ,aφ, and {X1, X2}

do not generate a finite control metric.
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Nonetheless we may talk about the control distance on Mφ,aφ. This distance is, we recall,

finite and less than some δ > 0 if and only if there exists an absolutely continuous curve γ :

[0, 1] 7→Mφ,aφ such that

γ′(ς) = a0(ς)X1 (γ(ς)) + a1(ς)X2 (γ(ς)) +
m∑
k=2

ak(ς)Yk (γ(ς))

with |a0(ς)|, |a1(ς)| < δ and |ak(ς)| < δk for almost all ς ∈ (0, 1). Given our previous comments,

such a curve γ(ς) = (γ1(ς), γ2(ς), γ3(ς), γ4(ς)) can only exist if γ′4(ς) = aγ′3(ς) for almost all

ς ∈ (0, 1). And then of course u− s
v − t

 =

∫ 1

0

 p3
′(ς)

ap3
′(ς)

 dς

so that (v − t) = a(u − s). Now recall (5.3). We see the Szegő kernel on Mφ,aφ is a singular

distribution supported on exactly the subspace where the control distance on Mφ,aφ is finite.

5.5 Obstacles from losing convexity

We were motivated in Chapter 4 by our hope that the technical ingredients for Nagel’s Szegő

kernel estimates on Mφ could be could be reused in codimension two. Let us now evaluate this

prospect in the general case where deg(φ) 6= deg(ψ). Suppose without loss that m0 = deg(φ) <

deg(ψ) = m1. Then

Σ =

{
(η, σ, τ) ∈ R3 : Cη,σ,τ =

∫
R
e4π[xη−φ(x)σ−ψ(x)τ)] dx <∞

}
is just the set in R3 with τ > 0. Writing a0 = x + q, a1 = φ(x) + φ(q), a2 = ψ(x) + ψ(q),

b0 = y − r, b1 = u− s, and b2 = v − t, the expression for the kernel is

S
(
(x, y, s, t); (q, r, u, v)

)
=

∫ ∞
0

e−2πτ [a2+ib2]

∫
R
e−2πσ[a1+ib1]

∫
R

e2πη[a0+ib0] dη dσ dτ∫
R e

4π[ης−(τψ(ς)+σφ(ς))] dς

Nothing prevents us from beginning in analogy to the methods of Section 4.2. Shifting ς 7→

ς+ a0
2

, expanding φ(ς+ a0
2

) and ψ(ς+ a0
2

) about ς = 0, and finally shifting η 7→ η+φ′(a0
2

)+ψ′(a0
2

)

yields a kernel S((x, y, s, t), (q, r, u, v)) equal to∫ ∞
0

e−2πτ [∆ψ+iλψ ]

∫
R
e−2πσ[∆φ+iλφ]

∫
R

e2πiη[b0] dη dσ dτ∫
R e

4π

[
ης−

(
σ
∑m0
k=2

φ(k)(
a0
2 )

k!
ςk+τ

∑m1
j=2

ψ(j)(
a0
2 )

j!
ςj
)]
dς

(5.4)
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where in direct analogy to the notation of Section 4.3 we have written

∆φ = φ(x) + φ(q)− 2φ(
x+ q

2
) ∆ψ = ψ(x) + ψ(q)− 2ψ(

x+ q

2
)

and

λφ = (u− s) + φ′(
x+ q

2
)(r − y) λψ = (v − t) + ψ′(

x+ q

2
)(r − y)

So, for example, Lemma 4.1 on ∆φ(x, q) could still be of value. But there is a major compli-

cation. The polynomial

ς 7→ σ

m0∑
k=2

φ(k)(a0
2

)

k!
ςk + τ

m1∑
j=2

ψ(j)(a0
2

)

j!
ςj (5.5)

in the denominator integral is no longer convex on all of R when σ < 0. Hence there is simply no

use in scaling the coefficients of (5.5) into a compact set via some ς 7→ µ̆(x, σ, τ)ς, since the size

of this µ̆ would have no predictable relationship to the total size of the denominator integral.

The case φ(x) = x2 and ψ(x) = x4

At this point we turn to the simplest possible example, namely Mx2,x4 . Supposing the control

geometry on Mx2,x4 still has some influence on the size of its Szegő kernel, we first consider the

volume of balls in the control metric. The relevant vector fields are

Y1 = X1 = ∂
∂x

Y2 = X2 = ∂
∂y
− 2x ∂

∂s
− 4x3 ∂

∂t

Y3 = [X1, X2] = −2 ∂
∂s
− 12x2 ∂

∂t
Y4 = [X1, [X1, X2]] = −24x ∂

∂t

Y5 = [X1, [X1, [X1, X2]]] = −24 ∂
∂t

From Theorem 5.2, we conclude that the volume of a control ball B((x, y, s, t), δ) is essentially

|B((x, y, s, t), δ)| ≈ |det[Y1 Y2 Y3 Y4]| δ7 + |det[Y1 Y2 Y3 Y5]| δ8

≈ |x| · δ7 + δ8 (5.6)

Next we observe an analogue to the “twisted distance” in the totally real direction that

appeared in Chapter 4. In that case, taking two points (x, y, t) and (q, r, v) in a codimension one

model Mφ, we may parameterize a path γ : [0, 1] 7→Mφ between them by

γ(α) = (x, y, t) + α · (q − x, r − y, v − t)
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So γ′(α) = (q − x, r − y, v − t) for all α ∈ [0, 1]. Now we need to form this tangent vector

as a linear combination of the vector fields Z1 = ∂
∂x

, Z2 = ∂
∂y
− φ′(x) ∂

∂t
, and all their iterated

commutators. Evidently the coefficient of Z1 in this linear combination must be must be (q−x),

and the coefficient of Z2 must be (r−y). So the remaining commutators in the linear combination

must have components that sum to yield v − t+ φ′(x)(r − y) in the totally real direction.

Now, recall that the expression v − t+ φ′(x+q
2

)(r − y) was equivalent to the twisted distance

in the totally real direction, so it may be worthwhile to consider a similar exercise on Mx2,x4 .

Connecting (x, y, s, t) and (q, r, u, v) by

γ(α) = (x, y, s, t) + α · (q − x, r − y, u− s, v − t)

it follows that the coefficient of Y1 above is (q− x), the coefficient of Y2 is (r− y), the coefficient

of Y3 is −1
2
(u− s+ 2x(r− y)); and thus Y4 and Y5 must be combined to yield a total component

of v − t + 4x3(r − y) − 6x2(u − s + 2x(r − y)) in the second totally real direction. Indeed, this

term suggests a particular transformation in the integral formula for the Szegő kernel on Mx2,x4 .

The formula for the kernel on Mx2,x4 , after performing the transformations given up to (5.4)

and writing av = x+q
2

, is∫ ∞
0

exp

{
−2πτ

[
3(av)2(x− q)2 +

1

8
(x− q)4 + i(v − t+ 4(av)3(r − y))

]}
·
∫
R

exp

{
−2πσ

[
1

2
(x− q)2 + i(u− s+ 2(av)(r − y))

]}
·
∫
R

e2πiη(y−r) dη dσ dτ∫
R exp {4π [ης − σς2 − τ6(av)2ς2 − τ4(av)ς3 − τς4]} dς

And now our preceding comments suggest transforming σ 7→ σ − τ6(av)2, which yields∫ ∞
0

exp

{
−2πτ

[
1

8
(x− q)4 + i(v − t+ 4(av)3(r − y)− 6(av)2(u− s+ 2(av)(r − y)))

]}
·
∫
R

exp

{
−2πσ

[
1

2
(x− q)2 + i(u− s+ 2(av)(r − y))

]}
·
∫
R

e2πiη(y−r) dη dσ dτ∫
R exp {4π [ης − σς2 − τ2(av)ς3 − τς4]} dς

Note that this cleanly preserves the nonnegative real part of the exponential in τ , while giving

oscillation in the τ integral that is controlled by the analogue to the codimension one twisted
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distance. But it is still not at all clear how the inverse of the volume in (5.6) might be related

to a tangible estimate on this formula.
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Part III

Schrödinger Operators With A∞ Potentials
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Chapter 6

Motivation and Related Work

This part of this dissertation primarily concerns the heat kernels of Schrödinger operators

H = −∆ + V on L2(Rn), where nonnegative V ∈ L1
loc(Rn) satisfies a reverse Hölder inequality.

Nonetheless there still exists a connection to CR manifolds similar to those discussed in Part II.

For take with subharmonic φ the three-dimensional CR manifold

M = {(z, w, ) ∈ C2 : Imw = φ(z)}

Then the Kohn-Laplacian on M , under an identification of M with C×R and a partial Fourier

transform, goes over to a Schrödinger operator H = −∆ + V on L2(R). We motivate the partial

Fourier transform by discussing its use by several other authors in a more general setting; and

then introduce the reverse Hölder condition we will impose on V .

6.1 The Kohn-Laplacian heat equation

For any CR manifold the Kohn-Laplacian �b is defined by

�b = ∂̄∗b ∂̄b + ∂̄b∂̄
∗
b

where ∂̄∗b is the formal adjoint of ∂̄b in L2(M). The theory of �b when M is the boundary of a

weakly pseudoconvex domain of finite type in C2 has been developed through the work of many

authors, including Kohn [29], Fefferman [20], and Christ [13]. Of special interest to us are Nagel

and Stein’s results in [41] for the heat operator

L = ∂t +�b

Note that since �b acts as ∂̄∗b ∂̄b on functions and ∂̄b∂̄
∗
b on (0, 1)-forms, there are actually two

operators here. But, as Nagel and Stein point out, the bundle of (0, 1)-forms on M may be

identified with functions, so the analysis corresponding to ∂̄∗b ∂̄b is entirely analogous to that for

∂̄b∂̄
∗
b .

For example, when �b acts on functions, they prove that the semigroup of operators e−�bt

on L2(M) are given by integration against a distribution kernel H(t, p, q), and that for smooth
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data f the initial value problem L[F ]f(p, t) = 0 on M × (0,∞)

lim
t→0

F (·, t) = f(·) in L2(M)

is solved by F = e−�bt[f ]. Then a central result in [41] is that for p 6= q, the kernel H(t, p, q)

satisfies, for any N ∈ N,

H(t, p, q) ≤ CN
|B(p, d(p, q))|

[
tN

tN + d(p, q)2N

]
where d(p, q) is the control distance on M from p to q, and the ball in the denominator is

also in terms of the control geometry described in Chapter 3. In particular, when p 6= q, the

Kohn-Laplacian heat kernel decays rapidly in d(p,q)2

t
.

6.2 Analysis of F [�b] by Christ, and later work by Raich

For the particular case of M ⊂ C2 mentioned above, namely

M = {(z, w) ∈ C2 : Imw = φ(z)}

with φ subharmonic, several authors have used an alternative approach in analyzing �b. Identi-

fying M with C×R using coordinates (z, t), ∂̄b goes over to the global tangential antiholomorphic

vector field

L̄ =
∂

∂z̄
− iφz̄(z)

∂

∂t

Now a partial Fourier transform in the t variable yields ˆ̄Lτ = ∂z̄ + τφz̄ with L2-adjoint L̂τ =

−∂z + τφz. Hence one may study F [�b] on the transform side in terms of the operators ˆ̄Lτ L̂τ

and L̂τ
ˆ̄Lτ on L2(C).

In [14], Christ undertook this study under the assumption that τ > 0 and dV = τ∆φ is

a doubling Borel measure whose volume on balls of unit radius is uniformly bounded below.

He estimated, for example, the distribution kernel G(z, ζ) of the solution operator ( ˆ̄Lτ L̂τ )
−1,

obtaining bounds in terms of a smooth Riemannian metric ρ and a function %. The metric ρ

derives from partitioning C into disjoint cubes {Qj} such that dV (Qj) is essentially constant;

and then requiring that ρ measure the diameters of these Qj as uniformly comparable to 1. The
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function %(z), on the other hand, specifies radii such that dV (B(z, %(z)) ∼ 1 uniformly in z.

With these objects,

|G(z, ζ)| ≤ C

 log(2%(z)/|z − ρ|) for |z − ζ| ≤ %(z)

e−ερ(z,ζ) for |z − ζ| ≥ %(z)

where C > 0 and ε > 0 depend only on the doubling constant of dV . Note that the abstract

construction of ρ and % means we “lose track” of the transform parameter τ in these estimates. So

there is little hope of recovering information about �b on M by inverting the Fourier transform.

In a series of papers, Raich later surmounted this problem in the case that φ(z) is a subhar-

monic nonharmonic polynomial. First for τ > 0 he proved in [45] that the distribution kernel

Hτ (z, w, s) of the semigroup e−s
ˆ̄Lτ L̂τ satisfies∣∣∣∣ ∂n∂snY αHτ (z, w, s)

∣∣∣∣ ≤ c0

sn+ 1
2
|α|+1

e−
|z−w|2

32s e
−c1 s

µ(z,1/τ)2 e
−c1 s

µ(w,1/τ)2

where Y |α| is a product of |α| operators Y = ˆ̄Lτ or L̂τ when acting in z; or the complex conjugate

of these operators when acting in w. The function µ(·, δ) is the inverse of the higher Levi-invariant

from the control geometry on the polynomial model M , as described in Chapter 4. Then in [46]

Raich observed that ˆ̄Lτ L̂τ with τ < 0 is equivalent to L̂τ
ˆ̄Lτ with τ > 0, and proved compatible

estimates on the distribution kernel H̃τ (z, w, s) of the semigroup e−sL̂τ
ˆ̄Lτ . A representative

estimate is∣∣∣Y αH̃τ (z, w, s)
∣∣∣ ≤ c|α|e

−c |z−w|
2

s max

e
−c s

µ(z,1/τ)2 e
−c s

µ(w,1/τ)2

s1+ 1
2
|α|

,
e
−c |z−w|

µ(z,1/τ)2 e
−c |z−w|

µ(w,1/τ)2

µ(w, 1/τ)2+|α|


with notation analogous to that in the Hτ (z, w, s) estimate. Finally in [11], joint work with

Boggess, he combined these estimates with a characterization of functions whose Fourier trans-

forms have exponential decay to obtain Gaussian decay for the �b heat kernel H(α, β, s) on M ,

along with its derivatives in L and L̄.

|XJ
αX

J ′

β H(α, β, s)| ≤ C
e−c

d(α,β)2

s

d(α, β)|J |+|J ′||B(α, d(α, β))|
(6.1)

The geometry here is again the control geometry on M , and e.g. XJ
α denotes a product of |J |

operators, each either L or L̄, acting in the α coordinate of H. This estimate improves the rapid

decay of Nagel and Stein, and the development of (6.1) even suggests a strategy for obtaining

Gaussian decay of the �b heat kernel on finite type M .
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6.3 The case φ(z) = φ(x) and a reverse Hölder condition

As in Part II we will assume that φ(z) = φ(x). Let us see how this simplifies analysis of �b

under the Fourier transform. First, if for general φ(z) we write out ˆ̄Lτ L̂τ explicitly, we obtain

4 ˆ̄Lτ L̂τ = −∆ + τ∆φ+ τ 2|∇φ|2 + 2iτ (φx∂y − φy∂x)

Both Christ and Raich point out that the first order terms in this family of operators are a source

of tremendous complications. But under our assumption, ∂̄b is identified with global tangential

vector field

L̄ =
1

2

∂

∂x
+
i

2

[
∂

∂y
− φ′ ∂

∂t

]
which is now translation invariant in both t and y. As in Chapter 4, this suggests analyzing,

for example, ∂̄b∂̄
∗
b under a partial Fourier transform in both the y and t directions. With dual

variables η and τ respectively, we are now studying on the transform side a two-parameter family

of operators, given (up to a constant multiple) by

ˆ̄Lητ L̂ητ = −∆ + φ′′τ + (η − τφ′)2

That is, we have a two-parameter family of Schrödinger-type operators on L2(R).

There are at least two natural directions to take in the study of these operators. We could

assume that the underlying CR manifold M is the boundary of a weakly pseudoconvex domain

of finite type, giving good smoothness properties to the zero order terms of ˆ̄Lητ L̂ητ . Then we

would hope to follow one or more of Raich’s footsteps, first estimating derivatives of the heat

kernel of the semigroup e−s
ˆ̄Lητ L̂ητ while retaining explicit control of the transform parameters η

and τ . The second direction is to make assumptions on φ that ensure only mild regularity of the

zero order term, and obtain non-sharp estimates on the transform side. This is what we will do.

Precisely, we will require that the function

Vητ (x) = φ′′(x)τ + (η − τφ′)2

satisfy a reverse Hölder inequality. Let us recall what this means.
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Definition 6.1. For 1 < q ≤ ∞, nonnegative V ∈ Lqloc(Rn) belongs to the reverse Hölder class

RHq if there exists C > 0 such that for all cubes Q of Rn,(
1

|Q|

∫
Q

V q dx

)1/q

≤ C

|Q|

∫
Q

V dx

where for q =∞ the left hand side is the ess sup over Q. We write A∞ = ∪q>1RHq.

We have stated the definition for Rn, n ≥ 1, because our estimates will actually hold in this

generality. In particular, for H = −∆ + V on L2(Rn), we will obtain upper bounds on the heat

kernel of H with V ∈ A∞; and lower bounds on the heat kernel of H with V ∈ RH∞.

Typical examples of potentials in A∞ are the power weights |x|α with −n < α. The A∞ class

was originally discovered by B. Muckenhoupt in connection to his work in [35] on the Hardy-

Littlewood maximal function; it is exactly the class of weights ω such that the Hardy-Littlewood

maximal function is a bounded operator on Lp(dω) for some 1 ≤ p < ∞. (See Garćıa-Cuerva

and Rubio De Francia [22] or Stein [53] for the precise relationship between the RHq and Ap

classes.) We will use Muckenhoupt’s characterization of A∞ when considering the sharpness of

our upper bounds in the case that V is a power weight. It will also be important for us to note

that A∞ weights are doubling measures; Stein’s exposition of this fact in [53] includes examples

of doubling measures which are not A∞ weights.
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Chapter 7

Real Schrödinger Operators on L2(Rn)

In this chapter we give useful background for our work, recalling the quadratic form definition of

a Schrödinger operator H = −∆+V on L2(Ω) when Ω ⊆ Rn and V ∈ L1
loc(Ω) is nonnegative. We

review why H generates a strongly continuous symmetric semigroup e−Ht on L2(Rn), and recall

the existence of its heat kernel. We also indicate some classical sharp estimates on Schrödinger

heat kernels, noting that stronger assumptions than just V ∈ A∞ are required for these estimates.

(Detailed review of existing work with A∞ potentials is postponed to Chapter 8, since there we

will build on it directly to obtain our own upper bounds.) At the end of this chapter we compute

a heat kernel explicitly for later use in sharpness considerations.

7.1 Definition of −∆ + V with V ≥ 0 in L1
loc

Our aim is simply to recall the key results from Dirichlet form theory which motivate defining

H = −∆ + V through its quadratic form. After showing that this form meets the conditions

required of a Dirichlet form, we obtain a host of good properties for e−Ht. Our primary source is

[16] by Davies. Although the results we prove in Chapters 8 and 9 are all for Schrödinger operators

on L2(Rn), it will also be useful for us to know that, for smoothly bounded Ω ⊂⊂ Rn, we may

define H on L2(Ω) with Dirichlet boundary conditions and obtain the same good properties for

the heat kernel. Hence the results that follow are given for H on L2(Ω).

The Buerling-Deny conditions and symmetric Markov semigroups

In their paper [8] Beurling and Deny introduce the concept of a Dirichlet form Q on a measure

space (X,µ). Such a Q is a positive symmetric bilinear form defined on a dense subspace

D ⊂ L2(X,µ) which meets the following two conditions.

1. D under the inner product 〈u, v〉Q = 〈u, v〉L2(X,µ) +Q(u, v) is a real Hilbert space.

2. For all u ∈ D, v = min(u+, 1) also belongs to D, and Q(v) := 〈v, v〉Q ≤ Q(u).
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We will always take (X,µ) to be (Ω, dx); and in this case there are numerous equivalent formu-

lations for the Beurling-Deny conditions, as we will note below.

It is Theorem 1.2.1 in [16] that any positive symmetric bilinear Q which satisfies condition

(1) uniquely extends to a positive self-adjoint operator H on all of L2(Ω). Then if Q also satisfies

condition (2), the operator e−Ht defined on L2(Ω) through the functional calculus is known as a

symmetric Markov semigroup, and one has the following.

Theorem 7.1. If e−Ht is a symmetric Markov semigroup on L2(Ω) then L1 ∩ L∞ is invariant

under e−Ht, and e−Ht may be extended from L1 ∩ L∞ to a positive one-parameter contraction

semigroup Tp(t) on Lp for all 1 ≤ p ≤ ∞. These semigroups are strongly continuous if 1 ≤ p <

∞, and Tp(t)f = Tq(t)f when f ∈ Lp ∩ Lq.

This is Theorem 1.4.1 in [16], and will yield in particular the crucial property that e−Ht with

H = −∆ + V is strongly continuous on L2(Ω)—once we have verified that the quadratic form

defining −∆ + V is a Dirichlet form, of course.

Checking the Buerling-Deny conditions

The quadratic form corresponding to −∆ + V is

Q(u, v) =

∫
Ω

∇u · ∇v + V uv dx

well-defined on the domain

D = {f ∈ L2(Ω) : ∇f and V 1/2f ∈ L2(Ω)}

Evidently Q is symmetric, Q(u) ≥ 0, and D is dense in L2(Ω). To check Buerling-Deny condition

(1) we need to verify that D is a real Hilbert space under the norm

‖f‖D =
(
‖f‖2

2 + ‖∇f‖2
2 + ‖V 1/2f‖2

2

)1/2

But we may just note

‖f‖2
D = ‖f‖2

H1(Ω) + ‖f‖2
L2(Ω) + ‖f‖2

L2(Ω,dV 1/2)
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and since both Sobolev and weighted L2 spaces are well known to be Hilbert spaces, the right-

hand norms all satisfy the parallelogram law, and ‖f‖D does as well. Hence Q extends uniquely

to a positive self-adjoint operator H on L2(Ω).

Checking the second Buerling-Deny condition is more involved. We use an equivalent formu-

lation of the condition that is implied by Theorems 1.3.2 and 1.3.3 in [16], namely

Theorem 7.2. A closed positive symmetric bilinear form Q on L2(Ω) is a Dirichlet form if the

semigroup e−Ht generated by its associated operator H is positivity-preserving and a contraction

on L∞(Ω) for all t ≥ 0.

Let us write H0 = −∆ as the Laplacian on Ω, with Dirichlet boundary conditions if Ω ⊂⊂ Rn.

If Ω = Rn, then from the classical theory of the heat equation,

e−H0t =

(
(4πt)−n/2e−

|x−y|2
4t

)
∗ f

so we have the norm inequalities

‖e−H0t‖∞,1 ≤ (4πt)−n/2 and ‖e−H0t‖∞,∞ ≤ 1 (7.1)

And e−Ht is a contraction on L∞. Then it follows as in Theorem 2.1.6 of [16] that e−H0t for

Ω ⊂⊂ Rn satisfies the same inequalities. Now we may apply the Trotter product formula for

self-adjoint contraction semigroups (see [26]), that is

e−Htf = lim
n→∞

(e−H0t/ne−V t/n)nf f ∈ L2(Ω), ∀t ≥ 0 (7.2)

Hence e−Ht is the limit of positivity-preserving contractions on L∞, and by Theorems 1.2.2 and

1.2.3 in [16] possesses the same properties itself. We conclude by Theorem 7.2 that e−Ht is a

symmetric Markov semigroup. It is interesting to note that because C∞c (Ω) is dense in D in the

norm ‖ · ‖D (proved in Theorem 1.8.1 in [16]), it follows per Spina’s comments in [52] that we

would actually get the same operator by defining H : L2(Ω) 7→ S ′(Ω) in the sense of distributions.

The power of the Dirichlet theory is highlighted by the distance the latter definition would seem

to leave us from the conclusions of Theorem 7.1.
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7.2 Existence of the heat kernel and known estimates

The existence of the heat kernel now follows from the classical result (see e.g. [2]) that a bounded

operator from L1(Ω) to L∞(Ω) is given almost everywhere by integration against a kernel in

L∞(Ω× Ω). For, letting ‖A‖q,p be the operator norm of A : Lp(Ω) 7→ Lq(Ω), we have by taking

adjoints that

‖e−Ht‖∞,1 ≤ ‖e−Ht/2‖∞,2 · ‖e−Ht/2‖2,1 = ‖e−Ht/2‖2
∞,2 (7.3)

And observe that (7.2) implies ‖e−Ht‖∞,2 ≤ ‖e−H0t‖∞,2. Furthermore, by the Riesz-Thorin

interpolation theorem and (7.1) we know since V ≥ 0 that

‖e−H0t‖∞,2 ≤ ‖e−H0t‖1/2
∞,1 · ‖e−H0t‖1/2

∞,∞ ≤ (4πt)−n/4

which combined with (7.3) gives boundedness of e−Ht from L1 to L∞ for every t > 0. Hence

e−Htf =

∫
Ω

p(x, y, t)f(y) dy f ∈ L2(Ω), t ≥ 0

We say p(x, y, t) is the heat kernel associated to H.

In this generality we cannot actually conclude that p(·, y, t) is a classical solution to the

equation (∂t +H)u = 0 in Ω× (0,∞). This would mean that on every cylinder in Ω× (0,∞) of

the form

Qr(x0, t0) = B(x0, r)× It0,r = B(x0, r)× (t0 − r2, t0)

we would have p(·, y, t) ∈ C2,1(Qr(x0, t0)) and −∆p(·, y, t) = ∂tp(·, y, t) inside Qr(x0, t0). (For

a such a regularity result when V ∈ Cα
loc(Ω) satisfies a Hölder continuity hypothesis, see [33].)

Instead we can only say that p(·, y, t) is a weak solution of (∂t +H)u = 0 on every such cylinder,

in the sense defined below. This crucial conclusion follows because e−Ht is a strongly continuous

semigroup on L2(Ω); for a proof see [5] by J.M. Ball.

Definition 7.3. A real-valued function u(x, t) is a weak solution to (∂t +H)u = 0 in Qr(x0, t0)

if u ∈ L∞(L2(B(x0, r)); It0,r) ∩ L2(H1(B(x0, r)); It0,r) satisfies∫
B(x0,r)

u(x, t)φ(x, t) dx−
∫ t

t0−r2

∫
B(x0,r)

u(x, s)∂sφ(x, s) dx ds

+

∫ t

t0−r2

∫
B(x0,r)

(
∇u(x, s) · ∇φ(x, s) + V (x)u(x, s)φ(x, s)

)
dx ds = 0 (7.4)
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for t0 − r2 < t ≤ t0 and for every φ(x, s) ∈ C, where

C = {φ ∈ L2(H1(B(x0, r)); It0,r) and ∂sφ ∈ L2(L2(B(x0, r); It0,r);φ(x, r0 − r2)) = 0}

Notable estimates on heat kernels

Given existence of the heat kernel for H = −∆ + V , it follows directly from (7.2), taking f to

be a sequence of test functions converging to a point mass, that we have a pointwise Gaussian

bound

p(x, y, t) ≤ (4πt)−n/2e−
|x−y|2

4t

So the basic theme in work on upper bounds for p(x, y, t) is finding extra-Gaussian decay in

terms of V , for as large a class of potentials as possible. Significant here are Davies’ applications

of his theory of logarithmic Sobolev inequalities for second order partial differential operators.

For H as above with continuous potential diverging to infinity as |x| → ∞, he proves in [16] that

p(x, y, t) ≤ c(t)φ(x)φ(y) (7.5)

where φ is the L2-normalized ground state of H, and c(t) has an explicit description as t →

0. Davies has also proven, by extension of the same techniques, far more complicated upper

bounds holding even for potentials with local singularities—at least for H defined with Dirichlet

conditions on smoothly bounded domains in Rn, n ≥ 3.

For general V we clearly cannot have a global Gaussian lower bound on p(x, y, t). A precise

answer to the question of when such a bound exists was obtained in [57] by Zhang and Zhao for

potentials which belong to a local Kato class. They proved lower bounds of the form

p(x, y, t) ≥


c1
tn/2

e−c2KV+ (t) |x− y|2 ≤ t

c1
tn/2

e
−c2 |x−y|

2

t
[1+KV+ ( t2

|x−y|2
)] |x− y|2 ≥ t

(7.6)

where

KV (t) = sup
x

∫ t

0

∫
Rn

1

(t− s)n/2
e−c

|x−y|2
t−s |V (y)| dy ds

A direct implication for nonnegative V is that p(x, y, t) has a global Gaussian lower bound if and

only if V is Green-bound; i.e. its convolution with the fundamental solution of the Laplacian is

globally bounded.
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Note that neither (7.5) nor (7.6) applies to the situation we motivated in Section 6.3, when H

is defined on L2(R) with V ∈ A∞. Potentials in A∞ may have local singularities; and they need

not behave uniformly at infinity—consider V (x) = x2(1 + sin(|x|1/2)), for example. However,

Shen’s work in [50] on Schrödinger operators with A∞ potentials provides an excellent entry point

for our analysis, in particular as it was applied by K. Kurata in [31] to heat kernels of Schrödinger

operators. Both of these authors’ work actually pertains to a larger class of Schrödinger operators

with non-vanishing magnetic potentials such as

HM = (i−1∇− a(x))2 + V (x)

But in Chapter 8 we will only treat the case H = −∆ +V . Let us first pause to calculate a heat

kernel explicitly; this will afford us some direct perspective of the sharpness of the bounds we

obtain.

7.3 A calculation for quadratic potentials on R

Take V (x) =
∑2

i=0 aix
i with a2 > 0; we will compute the heat kernel p(x, y, t) associated to

H = −∆ + V on L2(R). Note that it suffices to treat the case a0 = 0, because

[
∂t −∆ + (a2x

2 + a1x+ a0)
]
u = e−a0t

[
∂t −∆ + (a2x

2 + a1x)
]
ea0tu. (7.7)

So if p0(x, y, t) is the heat kernel for the operator with potential V (x) =
∑2

i=1 aix
i, then

e−a0tp0(x, y, t) is directly checked to be the heat kernel when V (x) =
∑2

i=0 aix
i.

Several approaches to the calculation are possible. Interpreting p(x, y, t) as the transition

probability of a system from state x to state y in time t, the kernel is determined by a certain

path integral of the Lagrangian given by (−∆ +V ). For quadratic V this path integral can then

be computed using the van Vleck determinant (see [56] for details.) Another possibility is to

begin with the Mehler kernel of the harmonic oscillator (see again [16]) and study the behavior of

this kernel under appropriate scalings and translations of the harmonic oscillator. Our method,

requiring rather less theory than either of the above, is to take from [6] an ansatz proposed by

Beals:

p(x, y, t) = φ(t) exp

{
−1

2

(
α(t)x2 + γ(t)y2 + 2β(t)xy

)}
exp {−µ(t)x− ν(t)y} .
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We then simply attempt to enforce on this ansatz the two conditions
(∂t +H)p(·, y, t) = 0 on R× (0,∞)

lim
t→0+

p = δ(x− y) in L1(R)
(7.8)

The differential condition in (7.8) yields a system of six ODE’s in t.

α′ = −2α2 + 2a2 (7.9)

β′ = −2αβ (7.10)

γ′ = −2β2 (7.11)

µ′ = a1 − 2µα (7.12)

ν ′ = −2µβ (7.13)

φ′/φ = −α + µ2 (7.14)

These equations are solvable, in order, by elementary methods. The constants of integration

must be chosen according to the second condition in (7.8). For β(t) this is actually easy to do,

but in solving the remaining equations we set constants of integration to zero and identify their

true values only after the functional form of p(x, y, t) is known.

First, separating variables in (7.9) gives

α(t) =
√
a2 coth 2

√
a2t

Then we have with C ∈ R arbitrary

β(t) = C csch 2
√
a2t

Which implies

γ(t) =
C2

√
a2

coth 2
√
a2t

Given (7.8), we expect the exponentials in the ansatz to tend to a constant as t→ 0 when x = y.

This makes it natural to set C = −√a2, the value which satisfies

√
a2 +

C2

√
a2

+ 2C = 0
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(In any case this choice is justified by our later calculations.) It then follows

µ(t) =
a1

2
√
a2

coth 2
√
a2t and ν(t) =

−a1

2
√
a2

csch 2
√
a2t

And finally for some volume constant C > 0

φ(t) = C (csch 2
√
a2t)

1/2
e
a21
4a2

t
exp

{
− a1

2

(2
√
a2)3

coth 2
√
a2t

}
Now the singularity condition of (7.8) is equivalent to two properties. First,

lim
t→0

p(x, y, t) = 0

whenever x 6= y; and, second,

lim
t→0

∫
R
p(x, y, t) dy = 1

for any x ∈ R. For suppose both these properties hold. Then given ε > 0, the Gaussian is an

integrable function on R \Bε(x) that dominates p(x, y, t). It follows by the Lebesgue dominated

convergence theorem that

lim
t→0

∫
R\Bε(x)

p(x, y, t) dy = 0

for any ε > 0, so limt→0 p = δ(x− y) in L1(R).

To ensure the first property, we write the candidate kernel pa(x, y, t) in terms of (x − y)

wherever possible and obtain

pa(x, y, t) = C (csch 2
√
a2t)

1/2
e
a21
4a2

t
exp

{
− a1

2

(2
√
a2)3

coth 2
√
a2t

}
· exp

{
−
√
a2

2

(
(x− y)2 csch 2

√
a2t+ (x2 + y2)(coth 2

√
a2t− csch 2

√
a2t)

)}
· exp

{
− a1

2
√
a2

(
(x− y) csch 2

√
a2t+ x(coth 2

√
a2t− csch 2

√
a2t)

)}
Note that the difference (coth− csch)(t) converges to 0 as t→ 0. Hence, writing ε = (y− x), we

essentially have

pa(x, y, t) = Cf(x, y, t) · (csch 2
√
a2t)

1/2

· exp

{
−1

2
csch 2

√
a2t

(
√
a2 ε

2 − a1√
a2

ε+
a2

1

4(
√
a2)3

cosh 2
√
a2t

)}
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where limt→0+ f = 1 independent of x and y. Completing the square in ε, it follows

pa(x, y, t) = Cf(x, y, t) · (csch 2
√
a2t)

1/2

· exp

{
−1

2
csch 2

√
a2t

(
√
a2 (ε− a1

2a2

)2

)}
· exp

{
−1

2
csch 2

√
a2t

(
a1

2

4(
√
a2)3

(cosh 2
√
a2t− 1)

)}
So our first candidate for the kernel concentrates its mass at

y = (x + a1/2a2) as t → 0, instead of the desired y = x. We correct this by shifting

y 7→ (y + a1/2a2) and obtain

pb(x, y, t) = C (csch 2
√
a2t)

1/2
e
a21
4a2

t
exp

{
− a1

2

4(
√
a2)3

(coth 2
√
a2t− csch 2

√
a2t)

}
· exp

{
−
√
a2

2

(
(x− y)2 csch 2

√
a2t+ (x2 + y2)(coth 2

√
a2t− csch 2

√
a2t)

)}
· exp

{
− a1

2
√
a2

(
(x+ y)(coth 2

√
a2t− csch 2

√
a2t)

)}
It remains to fix the volume constant C > 0 so that

∫
R p(x, y, t) dy → 1 as t → 0, for any

x ∈ R. Integrating in y (which is simply a matter of integrating a Gaussian) we see∫
R
pb(x, y, t) dy = C

(
2π csch 2

√
a2t√

a2 coth 2
√
a2t

)1/2

e
a21
4a2

t

· exp

{
− a1

2

8(
√
a2)3

(coth 2
√
a2t− csch 2

√
a2t sech 2

√
a2t)

}
· exp

{
− a1

2
√
a2

x(coth 2
√
a2t− csch 2

√
a2t sech 2

√
a2t)

}
· exp

{
−
√
a2

2
x2(coth 2

√
a2t− csch 2

√
a2t sech 2

√
a2t)

}
And from l‘Hôpitals rule it is clear that limt→0

∫
R pb(x, y, t) dy = C (2π/

√
a2)1/2); so we choose

C = (
√
a2/2π)1/2. We conclude that in this setting the heat kernel is

p(x, y, t) =

(√
a2 csch 2

√
a2t

2π

)1/2

e

(
a21
4a2
−a0

)
t

· exp

{
− a1

2

4(
√
a2)3

(coth 2
√
a2t− csch 2

√
a2t)

}
· exp

{
−
√
a2

2

(
(x− y)2 csch 2

√
a2t+ (x2 + y2)(coth 2

√
a2t− csch 2

√
a2t)

)}
· exp

{
− a1

2
√
a2

(
(x+ y)(coth 2

√
a2t− csch 2

√
a2t)

)}
The symmetry in x and y was of course guaranteed by the theory of Section 7.2.
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Chapter 8

Upper Bounds for A∞ Potentials

We now continue our project to estimate the heat kernel of the operator H = −∆ + V on L2(R)

when V ∈ A∞. Our result is an upper bound that applies to the heat kernels of Schrödinger

operators with reverse Hölder potentials on any L2(Rn), and gives extra-Gaussian decay in terms

of a sub-linear function mβ of the time-scaled average of V over cubes.

p(x, y, t) ≤ c0

tn/2
e−c2

|x−y|2
t exp

{
−c1mβ(t avZ√t(x)V )1/2

}
(8.1)

We obtain the estimate by combining an iteration argument used in Kurata [31] with a Fefferman-

Phong inequality proved by Auscher and Ben Ali in [4]. The results of these authors are covered

in Sections 8.1 and 8.2; the proof in Section 8.3 is then a matter of verifying that Kurata’s

machinery still runs with an different motor.

8.1 Ingredients of Kurata’s estimates

In [31], Kurata draws on ideas of Shen to estimate the heat kernel of H on L2(Rn) when n ≥ 2

and V ∈ RHq with q ≥ n/2. He obtains upper bounds of the form

p(x, y, t) ≤ c0

tn/2
e−c2

|x−y|2
t exp

{
−c1(1 +mV (x)2t)1/(2(k0+1))

}
(8.2)

where mV (x) is a function measuring the effective growth of V near x. His argument uses three

inequalities: local boundedness of weak solutions to the equation (∂t +H)u = 0; a Caccioppoli-

type inequality; and a Fefferman-Phong inequality. When one considers the information flow

in these inequalities from the right perspective, an iteration argument combining them becomes

highly intuitive. In this section we carefully introduce each inequality as it appears in [31]. This

illuminates how the argument works, and in particular shows why Kurata’s results do not apply

to H = −∆ + V on L2(R) with V ∈ A∞.

Local boundedness of weak solutions

The starting point of the argument, per Section 7.2, is that for y ∈ Rn fixed, the heat kernel

p(·, y, t) is a weak solution to (∂t + H)u = 0, in any cylinder Qr(x0, t0) with 0 < r <
√
t0. The
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key result is then

Theorem 8.1 (Moser). Let u ≥ 0 be a weak solution of (∂t + H)u = 0 in Q2r(x0, t0). There

exists C > 0, depending only on n ≥ 1, such that

sup
Qr/2(x0,t0)

|u(x, t)| ≤
(

C

rn+2

∫∫
Q2r/3(x0,t0)

|u|2 dx dt
)1/2

(8.3)

Sketch of proof. We give a precise reference because this fact is so basic for us. SupposeQ2r(x0, t0) =

B2(0) × (0, 4). Note that because V ≥ 0, u is a weak subsolution of (∂t −∆)u = 0 in Q2(0, 4).

So subsolution estimates for the heat equation apply. In particular, a slight modification in the

geometry of Moser’s Theorem 1 in [34] (see especially pp. 124-125) establishes

sup
Q1/2(0,4)

|u(x, t)| ≤
(
C

∫∫
Q2/3(0,4)

|u|2 dx dt
)1/2

Translation invariance of the heat equation then implies the lemma with r = 1, and the result

for arbitrary r > 0 follows from invariance of the heat equation under the scaling x → rx,

t→ r2t.

A Caccioppoli-type inequality

Roughly speaking, a Caccioppoli inequality bounds the local energy of a weak solution to an

elliptic or parabolic equation by its L2 norm over a slightly larger set. (See the notes by J.

Hutchinson in [25].) The following standard result is Kurata’s Lemma 3, with the proof repeated

here for completeness.

Lemma 8.2. Fix σ ∈ (0, 1). If u is a weak solution to (∂t + H)u = 0 in Q2r(x0, t0), then there

exists C > 0 such that

sup
t0−(σr)2≤t≤t0

∫
B(x0,σr)

|u(x, t)|2 dx +

∫∫
Qσr(x0,t0)

(
|∇u|2 + V |u|2

)
dx ds

≤ C

(1− σ)2r2

∫∫
Qr(x0,t0)

|u|2 dx dt

The constant C depends only on n ≥ 1.
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Proof. First, the argument in §9 of [3] allows us to assume that u has a strong derivative ∂tu ∈

L2(Q2r(x0, t0)). Now choose nonnegative cutoff functions χ(x) ∈ C∞0 (B(x0, r)) and η(s) ∈

C∞(R), bounded above by 1 and satisfying

• χ(x) ≡ 1 on B(x0, σr), |∇χ(x)| ≤ C

(1− σ)r

• η(s) ≡ 0 for s ≤ t0 − r2, η(s) ≡ 1 for s ≥ t0 − (σr)2, |η′(s)| ≤ C

(1− σ)r2

Fix t ∈ [t0 − (σr)2, t0]. Note that the test function η2(s)χ2(x)u(x, s) belongs to the class C

specified in Definition 7.3. Hence we may use this function for φ(x, s) in (7.4). This yields, since

η(t) = 1,

∫
B(x0,r)

u2χ2 dx−
∫ t

t0−r2

∫
B(x0,r)

(u2(2η η′)χ2 + (u ∂su)η2χ2) dx ds

+

∫ t

t0−r2

∫
B(x0,r)

((∇u · ∇χ2)η2u+ |∇u|2η2χ2 + V u2η2χ2) dx ds = 0. (8.4)

Note that the second integral in (8.4) may be written as

∫ t

t0−r2

∫
B(x0,r)

1

2
∂s(u

2η2χ2) dx ds+

∫ t

t0−r2

∫
B(x0,r)

(u2(η η′)χ2 dx ds.

And by the bounded convergence theorem we may interchange integration and differentiation in

the first term above, so because η(t0 − r2) = 0 it follows

∫ t

t0−r2

∫
B(x0,r)

1

2
∂s(u

2η2χ2) dx ds =
1

2

∫
B(x0,r)

u2χ2 dx

Substituting these observations into (8.4), we obtain

1

2

∫
B(x0,r)

u2χ2 dx+

∫ t

t0−r2

∫
B(x0,r)

(
|∇u|2η2χ2 + V u2η2χ2

)
dx ds

=

∫ t

t0−r2

∫
B(x0,r)

(
u2χ2η η′ − (∇u · ∇χ2) η2u

)
dx ds (8.5)

Since t was arbitrary and V ≥ 0, we next conclude

sup
t0−(σr)2≤t≤t0

1

2

∫
B(x0,r)

u2χ2 dx ≤
∫∫

Qr(x0,t0)

(
u2|η′|+ |∇u|χ η2 |u||∇χ|

)
dx ds
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In the second term of the righthand integral we apply Cauchy’s inequality

ab ≤ a2

2
+ b2

2
, using a = |∇u|χ, b = |u||∇χ|. It follows

sup
t0−(σr)2≤t≤t0

1

2

∫
B(x0,r)

u2χ2 dx ≤
∫∫

Qr(x0,t0)

u2|η′| dx ds +

1

2

∫∫
Qr(x0,t0)

χ2η2|∇u|2 dx ds+
1

2

∫∫
Qr(x0,t0)

|u|2|∇χ|2η2 dx ds

And from the bounds on |∇χ|, η, and |η′|,

sup
t0−(σr)2≤t≤t0

∫
B(x0,r)

u2χ2 dx

≤ C

(1− σ)2r2

∫∫
Qr(x0,t0)

u2 dx ds +

∫∫
Qr(x0,t0)

χ2η2|∇u|2 dx ds (8.6)

To complete the proof we make another application of (8.5), this time with t = t0. The

positivity of the leftmost integral and the bounds on χ, η, and |η′| yield

∫∫
Qr(x0,t0)

(
|∇u|2χ2 η2 + V u2χ2η2

)
dx ds

≤ C

(1− σ)r2

∫∫
Qr(x0,t0)

u2 dx ds+

∫∫
Qr(x0,t0)

|∇u|χ η2 |u||∇χ| dx ds

And the above use of Cauchy’s inequality gives, after rearranging, absorbing terms, and possibly

increasing C,

∫∫
Qr(x0,t0)

χ2η2|∇u|2 dx ds+

∫∫
Qr(x0,t0)

V u2χ2η2 dx ds

≤ C

(1− σ)2r2

∫∫
Qr(x0,t0)

u2 dx ds (8.7)

Then we combine (8.6) and (8.7) to obtain

sup
t0−(σr)2≤t≤t0

∫
B(x0,r)

u2χ2 dx+

∫∫
Qr(x0,t0)

χ2η2|∇u|2 dx ds

+

∫∫
Qr(x0,t0)

V u2χ2η2 dx ds ≤ C

(1− σ)2r2

∫∫
Qr(x0,t0)

u2 dx ds.

Restricting the lefthand integrals to where the cutoff functions are unity yields the lemma. We

note that actually (8.7) is all that is required for the proof of Theorem 8.4.
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A Fefferman-Phong inequality

In [18], Fefferman’s exposition of his joint work with Phong on the uncertainty principle, there is

a “Main Lemma” for polynomial potentials V on Rn. Namely, for any cube Z ⊂ Rn of sidelength

R > 0, as long as avZV ≥ R−2 it holds∫
Z

|∇u|2 + V |u|2 dx & R−2

∫
Z

|u|2 dx (8.8)

for reasonable functions u(x), where the implied constant depends only on n and the degree of

V . Such inequalities, which locally bound a weighted L2 norm of a function by its energy, are

now commonly referred to as Fefferman-Phong inequalities.

Fundamental for Kurata is Shen’s work in generalizing (8.8) to reverse Hölder potentials

V ∈ RHq on Rn when n ≥ 2 and q > n/2. In [50] Shen defined the function

1

mV (x)
= sup

{
r > 0 :

r2

|B(x, r)|

∫
B(x,r)

V dy ≤ 1

}
And then proved that for any u ∈ C∞0 (Rn)∫

Rn
|∇u|2 + V |u|2 dx &

∫
Rn
mV (x)2|u|2 dx (8.9)

This is the final ingredient for Kurata in [31]; and in fact the limited range for n and RHq in the

definition of mV (x) is the only reason that Kurata’s results do not include the case we set out

to study in Section 6.3, with n = 1 and V ∈ A∞.

Structure of the iteration

Assume u is a nonnegative weak solution of (∂t + H)u = 0, and appropriate versions of the

preceding inequalities hold. Then we have the following steps toward an upper bound on u.

1. By Moser’s work, u is locally bounded by its L2 norm in a cylinder.

2. This L2 norm is dominated by the energy of u times a V -dependent weight, by the

Fefferman-Phong inequality.

3. And this energy is itself dominated by the solution’s L2 norm in a just larger cylinder, by

the Caccioppoli inequality.
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Since the last L2 norm in (3) is now dominated as in (2), the final two steps may be iterated

ad infinitum. Each iteration extends the L2 norm in our upper bound to a slightly larger cylinder,

and picks up another factor of a V -dependent weight. Now remember that if u(·, t) is the heat

kernel p(·, y, t), we already have a Gaussian bound on u, and hence control over the final L2

norm when our iteration ends. So it makes sense that this process could yield V -dependent

extra-Gaussian decay of the heat kernel; we will see the details momentarily in Section 8.3.

8.2 Auscher and Ben Ali’s work on A∞ potentials

In their wide-ranging work [4], Auscher and Ben Ali improved some of Shen’s results on Lp

estimates for Schrödinger operators. A key step was their development of the following Fefferman-

Phong inequality.

Theorem 8.3 (Auscher, Ben Ali). Suppose V ∈ A∞. Then there are constants C > 0 and

β ∈ (0, 1), depending only on n ≥ 1 and the A∞ constant of V , such that for any cube Z = Zr(x0)

and u ∈ C1(Rn) one has∫
Z

|∇u|2 + V |u|2 dx ≥ C
mβ(r2 avZV )

r2

∫
Z

|u|2 dx (8.10)

where mβ(x) = x for x ≤ 1 and mβ(x) = xβ for x ≥ 1. In particular, if V ∈ Ap, then one may

take β = 2
2+n(p−1)

.

As an aside, we note the inequality is stated for u ∈ C1(Rn), but a look at the proof shows

all that is required is that there exist ∇u ∈ L2
loc(Rn) such that

u(y)− u(x) =

∫ 1

0

∇u(x+ α(y − x)) · (y − x) dα x, y ∈ Q

holds almost everywhere. Since u ∈ H1(Rn) can be approximated in any L1
loc(Q) by smooth

functions whose derivatives also converge to ∇u in L1
loc(Q), Theorem 8.3 holds just as well for

weakly differentiable u. (Indeed, all of Auscher and Ben Ali’s own applications in [4] are to

functions differentiable in the weak sense.) This comment is important for us because we will

wish to apply the inequality to the heat kernel p(·, y, t) which is a priori only weakly differentiable.

Compared to (8.9), the size function mV (x) has been replaced in (8.10) by an explicit average

of V over cubes (foreshadowing the difference in how (8.1) and (8.2) specify extra-Gaussian
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decay.) In any case, if V is a nonnegative polynomial, Theorem 8.3 strengthens the original

Fefferman-Phong inequality when R2avZV > 1, since (8.8) essentially requires β = 0. When one

becomes aware of Auscher and Ben Ali’s work, it is natural to check whether Kurata’s arguments

can be modified to use (8.10).

8.3 Proof of the upper bound

We now prove the main result of this chapter.

Theorem 8.4. If V ∈ A∞, the heat kernel of the Schrödinger operator H = −∆ +V on L2(Rn)

satisfies

p(x, y, t) ≤ c0

tn/2
e−c2

|x−y|2
t exp

{
−c1mβ(t avZ√t(x)V )1/2

}
(8.11)

where mβ is as in Theorem 8.3, and ci > 0 for i = 0, 1, 2.

Proof. We will fix y ∈ Rn and work locally on the cylinder Qr(x, t), where r =
√
t/8. Write

u(·, s) = p(·, y, s) so that u is a weak solution to (∂s + H)u = 0 in Q2r(x, t). As described in

Section 2.2, the idea is improve Moser’s estimate (8.1) on u by iterating the Caccioppoli and

Fefferman-Phong inequalities over an increasing sequence of cylinders that starts with Q2/3r(x, t).

So choose k ∈ N; we construct an iteration of length k by defining

ρj =
2

3
+

(
j − 1

k

)
1

3
for j = 1, 2, . . . , k + 1

These ρ1, . . . , ρk+1 are a sequence of k scaling factors increasing from ρ1 = 2/3 to ρk+1 = 1.

For each j = 2, . . . , k + 1, also define nonnegative cutoff functions χj(z) ∈ C∞0 (B(x, ρjr)) and

ηj(s) ∈ C∞(R), bounded by 1 and satisfying

• χj ≡ 1 on B(x, ρj−1r), |∇χj| ≤
Ck

r

• ηj ≡ 0 for t ≤ t0 − (ρjr)
2, ηj ≡ 1 for t ≥ t0 − (ρj−1r)

2, |η′j| ≤
Ck

r2
.

Note in particular that suppχjηj ⊂ B(x, r)× [t0 − r2,∞).

The first step is to see how the Caccioppoli inequality in Lemma 8.2 applies on a given

cylinder Qρj+1r(x, t), where j = 1, . . . , k. We take the radius r in Lemma 8.2 to be our ρj+1r;
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and set σ =
ρj
ρj+1

. Substituting these values into (8.7), we obtain∫∫
Qρj+1r(x,t)

(
|∇u|2χ2

j+1η
2
j+1 + V u2χ2

j+1η
2
j+1

)
dz ds ≤ Ck2

r2

∫∫
Qρj+1r(x,t)

|u|2 dz ds

But from Cauchy’s inequality

|∇(ηj+1uχj+1)|2 ≤ 2|∇u|2η2
j+1χ

2
j+1 + 2|u|2|∇χj+1|2η2

j+1.

So using the bounds on |∇χj+1| and ηj+1 and increasing C as necessary, we also have∫ t

t−(ρj+1r)2

∫
Bρj+1r(x)

(
|∇(ηj+1uχj+1)|2 + V |u|2χ2

j+1η
2
j+1

)
dz ds

≤ Ck2

r2

∫∫
Qρj+1r(x,t)

|u|2 dz ds. (8.12)

And note we may apply the Fefferman-Phong inequality 8.10 to the integral in the space

directions on the left-hand side of this inequality. We do this on a cube containing the support

of χj+1, namely Z2r(x).∫
Bρj+1r(x)

(
|∇(ηj+1uχj+1)|2 + V |u|2χ2

j+1η
2
j+1

)
dz

=

∫
Z2r(x)

(
|∇(ηj+1uχj+1)|2 + V |u|2χ2

j+1η
2
j+1

)
dz

≥ C

r2
mβ(r2 avZ2r(x)V )

∫
Bρj+1r(x)

|ηj+1uχj+1|2 dz.

Combined with (8.12), this implies∫ t

t−(ρj+1r)2

mβ(r2 avZ2r(x)V )

r2

∫
Bρj+1r(x)

|ηj+1uχj+1|2 dz ds ≤
Ck2

r2

∫∫
Qρj+1r(x,t)

|u|2 dz ds,

and hence ∫∫
Qρj+1r(x,t)

|ηj+1uχj+1|2 dz ds ≤
Ck2

mβ(r2 avZ2r(x)V )

∫∫
Qρj+1r(x,t)

|u|2 dz ds.

We can now write precisely how the iteration relates the L2 norm of u at the the ρj scaling

to the ρj+1 scaling.∫∫
Qρjr(x,t)

|u|2 dz ds ≤
∫∫

Qρj+1r(x,t)

|ηj+1uχj+1|2 dz ds

≤ Ck2

mβ(r2 avZ2r(x)V )

∫∫
Qρj+1r(x,t)

|u|2 dz ds
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In particular, the j = 1 case of this inequality is∫∫
Q2r/3(x,t)

|u|2 dz ds ≤ Ck2

mβ(r2 avZ2r(x)V )

∫∫
Qρ2r(x,t)

|u|2 dz ds

So an iteration of k steps yields∫∫
Q2r/3(x,t)

|u|2 dz ds ≤ Ckk2k

mβ(r2 avZ2r(x)V )k

∫∫
Qr(x,t)

|u|2 dz ds

And substituting this inequality into Moser’s estimate (8.3), we obtain

sup
(z,s)∈Qr/2(x,t)

|u| . Ck/2kk

mβ(r2 avZ2r(x)V )k/2

(
1

rn+2

∫∫
Qr(x,t)

|u|2 dz ds
)1/2

(8.13)

with the suppressed constant independent of k.

It remains to exploit the fact that k is arbitrary in the above inequality. From Stirling’s

formula we know that

kk ∼ ekk!√
2πk

as k →∞,

so we may replace kk in (8.13) with ekk!. Then multiplying through in (8.13) by εk/k! for ε > 0

to be chosen sufficiently small, we obtain inequalities of the form

sup
(z,s)∈Qr/2(x,t)

|u| ·
(εmβ(r2 avZ2r(x)V )1/2)k

k!
. (εCe)k

(
1

rn+2

∫∫
Qr(x,t)

|u|2 dz ds
)1/2

.

Summing over all k ∈ N, it follows for ε < (Ce)−1 that

sup
(z,s)∈Qr/2(x,t)

|u| ≤ c0 exp
{
−c1mβ(r2 avZ2r(x)V )1/2

}( 1

rn+2

∫∫
Qr(x,t)

|u|2 dz ds
)1/2

,

and we have

p(x, y, t) ≤ c0 exp
{
−c1mβ(t avZ√

t/2
(x)V )1/2

}( 1

t(n+2)/2

∫∫
Q√

t/8
(x,t)

|p|2 dz ds
)1/2

, (8.14)

recalling the meaning of u and r.

Because A∞ potentials are doubling, in (8.14) we may replace the average of V over Z√
t/2

(x)

with its average over Z√t(x), scaling c1 appropriately. Now as the final step we incorporate the

Gaussian bound on the heat kernel

p(x, y, t) . t−n/2 exp(−|x− y|2/4t) (8.15)
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In particular, if |x − y| ≈
√
t, we lose nothing by using p . t−n/2 inside the integral in (8.14).

Because |Qr| ≈ rn+2, this gives

p(x, y, t) ≤ c0

tn/2
exp

{
−c1mβ(t avZ√t(x)V )1/2

}
(8.16)

On the other hand, if
√
t� |x− y| then p . t−n/2 is a very poor estimate. We would be better

off just using (8.15) directly. So the upper bound of the theorem is a compromise that follows

from writing

p(x, y, t) = p(x, y, t)1/2 · p(x, y, t)1/2

and then applying (8.15) to the first term in the product, (8.16) to the second.

8.4 Sharpness considerations

In this section we make some observations about the sharpness of Theorem 8.4 in two cases.

First, when V (x) =
∑2

i=0 aix
i is a nonnegative polynomial on R, we compare our upper bounds

to the explicit kernel calculated in Section 7.3. Second, when V (x) = |x|α (α > 0) is a power

weight on Rn, we compare our on-diagonal upper bounds to Kurata’s bounds, as well as to A.

Sikora’s estimates in [51]. The observations in this section deal only with orders of decay in the

space and time variables, and not in any way with the constants involved.

The Mehler kernel

When V (x) =
∑2

i=0 aix
i we have computed

p(x, y, t) =

(√
a2 csch 2

√
a2t

2π

)1/2

e

(
a21
4a2
−a0

)
t

· exp

{
− a1

2

4(
√
a2)3

(coth 2
√
a2t− csch 2

√
a2t)

}
· exp

{
−
√
a2

2

(
(x− y)2 csch 2

√
a2t+ (x2 + y2)(coth 2

√
a2t− csch 2

√
a2t)

)}
· exp

{
− a1

2
√
a2

(
(x+ y)(coth 2

√
a2t− csch 2

√
a2t)

)}
Now recall the following asymptotics

• csch(t) ∼ t−1 as t→ 0+ and csch(t) ∼ e−t as t→ +∞

• (coth(t)− csch(t)) ∼ t as t→ 0+ and (coth(t)− csch(t)) ∼ 1 as t→ +∞
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So a sharp upper bound should essentially be

p(x, y, t) .

 t−1/2e−c0
|x−y|2

t exp {−c1t(x
2 + y2)} t ≤ 1

e−c2t exp {−c3(x2 + y2)} t > 1
(8.17)

Let us rewrite our upper bound (8.1) to include an extra-Gaussian decay term in y by again

using the symmetry of p(x, y, t) in the space variables.

p(x, y, t) = p(x, y, t)1/2 · p(y, x, t)1/2

. t−1/2e−c1
|x−y|2

t exp
{
−c2

[
mβ(t avZ√t(x)V )1/2 +mβ(t avZ√t(y)V )1/2

]}
(8.18)

Taking n = 1 and using V (x) as above

avZ√t(x)V =
1√
t

∫ x+ 1
2

√
t

x− 1
2

√
t

V (z) dz = a2

(
x2 +

t

12

)
+ a1x+ a0.

Thus we see that (8.18) is no sharper than a bound of

p(x, y, t) . t−1/2e−c1
|x−y|2

t exp
{
−c2

[
mβ(t1/2|x|+ t) +mβ(t1/2|y|+ t)

]}
.

When all of the three terms {
√
t, |x|, |y|} are small, the Gaussian factor will essentially de-

termine the size of both the above, and of (8.17). But when t > 1 and say |x| is the dominant

term, our upper bound can be no sharper than exp
{
−c|x|2β

}
, while (8.17) will have decay of the

order exp {−cx2}. Hence the presence of the sublinear function mβ guarantees that sharp decay

is not attained. (Although if V (x) is a strictly positive polynomial, β may be taken arbitrarily

close to 1 since positive polynomials belong to RH∞; see [31] and our comments on β in the next

section.)

Power weights

We need to recall that in Auscher and Ben Ali’s Fefferman-Phong inequality (8.10), one may

take β = 2
2+n(p−1)

for any p such that V belongs to the Muckenhoupt class Ap. This is useful

when combined with the standard fact that |x|α ∈ Ap if and only if −n < α < n(p − 1); which

may be proved with some effort by elementary estimates, or in a few lines by taking advantage

of a factorization theorem for Ap weights, see [15]. In any case, for V (x) = |x|α (α > 0), our

upper bound (8.18) has β < 2
α+2

. Beyond assuming that V is a power weight, we now also focus
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on the diagonal x = y. Kurata’s results in this setting were, due to simplified expressions for

mV (x) with power weights,

p(x, x, t) . t−n/2 exp
{
−c0 (t+ t|x|α)

1
α+2

}
(8.19)

while Sikora proved in [51] the stronger bounds

p(x, x, t) .

 t−n/2 exp {−c0t|x|α} t ≤ (1 + |x|)1−α/2

e−c1t exp
{
−c2|x|1+α/2

}
t > (1 + |x|)1−α/2

(8.20)

in the case the potential V & |x|α on all of Rn.

Applying to (8.18) the inequality

avZ√t(x)|z|α dz . tα/2 + |x|α

we see that our estimate can be no sharper than

p(x, x, t) . t−n/2 exp
{
−c0

(
t1/2 + (t|x|α)

1
α+2

)}
In conclusion, we obtained essentially the same order of decay as did Kurata. The sharp estimates

(8.20), on the other hand, provide a measure of how the iteration argument “fails to recognize”

well-behaved potentials. It would be very interesting to see a single estimate which both applies

to A∞ potentials, and specializes to Sikora’s bounds in the case of nonsingular power weights.

83



Chapter 9

Lower Bounds for RH∞ Potentials

Since our heat kernel upper bounds in the previous chapter are not sharp, it is impossible to

obtain general lower bounds of the same form as (8.1). But if V ∈ RH∞, we prove in this chapter

that for fixed 0 < κ < 1 there is a lower bound

p(x, y, t) ≥


c0
tn/2

exp{−c1t avZ√t(x)V } |x− y| < κ
√
t

c0
tn/2

e−c3
|x−y|2

t exp
{
−c1t(c

|x−y|2
t

2 avZt/|x−y|(x)V )
}

|x− y| ≥ κ
√
t

(9.1)

For on-diagonal bounds (that is, when |x− y| .
√
t) this is actually a satisfactory companion to

(8.1). The idea of the proof is to establish a bridge between p(x, y, t) and the heat kernel of an

appropriate Dirichlet Laplacian, where van den Berg’s results in [55] can be applied. We do this

in Section 9.3 using the semigroup property of p(x, y, t) and a parabolic maximum principle; but

first recall the form of van den Berg’s estimates.

9.1 Estimates on the Dirichlet heat kernel

The statement of van den Berg’s results differs somewhat for the n = 1 and n ≥ 2 cases. In the

latter case we need the following definition.

Definition 9.1. Fix an open set D ⊂ Rn, where n ≥ 2. Given ε > 0, let Dε be the points in D

at least distance ε from the boundary; and let dε(x, y) for x, y ∈ D be the infimum of lengths of

arcs in Dε with endpoints x and y. When dε(x, y) < ∞, let γε be a minimal geodesic from x to

y and define

α(γε) =

∫
s : γε(s)∈Dε

∣∣∣∣d2γε(s)

ds2

∣∣∣∣ ds
In practice we will only choose D to be a ball, so that Dε is also a ball and

γε(s) = x+
s

|y − x|
(y − x)

Hence α(γε) will always vanish in our applications of the following theorem.
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Theorem 9.2 (van den Berg). Suppose D is an open set in Rn with n ≥ 2. Given ε > 0,

0 < δ ≤ ε, x ∈ D, y ∈ D such dε(x, y) <∞, it holds for all t > 0

ΓD(x, y, t) ≥ C

tn/2
e−

π2n2t
4ε2 exp

{
−
dε(x, y)2

(
1 + 2δα(γε)dε(x, y)

)
4t

}
where ΓD is the heat kernel of −∆ on D with Dirichlet boundary conditions and C < 1 is a

positive constant depending only on n.

When n = 1, van den Berg obtained a lower bound on ΓD from ingenious use of a special

function identity and the eigenfunction expansion of the Dirichlet heat kernel on an interval.

Namely,

Proposition 9.3 (van den Berg). Suppose D ⊂ R is an interval, and for some x < y and ε > 0

we have (x− ε, y + ε) ⊂ D. Then for all t > 0

ΓD(x, y, t) ≥ C

t1/2
e−
|x−y|2

4t (1− 2e−
ε2

t )

where ΓD is the heat kernel of −∆ on D with Dirichlet boundary conditions and C < 1 is a

positive constant depending only on n.

9.2 Some technical points

The above results for the Dirichlet Laplacian are by far the most sophisticated element of our

proof of (9.1). But some other introductory remarks are also helpful. The proof has two parts;

in the first, we establish lower bounds “on the diagonal”—that is, on a set where |x − y| is

uniformly small compared to
√
t. For this step a maximum principle for weak solutions of

parabolic equations is key. Then in the second part of the proof, we move off the diagonal by

combining the on-diagonal bounds with the fact that e−Ht is a semigroup and a lemma of Christ’s

that applies to doubling measures. Let us give a little more detail on these ideas.

A maximum principle

Our bridge between the heat kernel of H = −∆ + V and van den Berg’s results is the following

well-known maximum principle. Note that we need the boundedness of V implied by membership

in RH∞.
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Theorem 9.4. Suppose V ≥ 0 is bounded in a cylinder Q = Qr(x0, t0) and u ∈ C(Q) is a weak

solution of (∂t +H)u = 0 in Q. Then

sup
Q
u ≤ sup

∂Q
u+ and inf

Q
u ≥ inf

∂Q
u−

If u is only a weak supersolution of the same equation in Q, then we still have the second

conclusion.

Since we cannot assume u is a classical solution in Q, the proof is rather involved and best

accomplished through functional analytic machinery. Details may be found in [27]; see [52] for

other applications of Theorem 9.4 to Schrödinger heat kernels.

The semigroup property

Lemma 9.5. Let p(x, y, t) be the heat kernel of a Schrödinger operator H on L2(Rn) with locally

integrable nonnegative potential. Then

p(x, y, t+ s) =

∫
Rn
p(x, z, t) p(z, y, s) dz

for all x, y ∈ Rn and s, t > 0.

Here we have simply restated from Section 7.2 that e−Ht is a semigroup; but in the form in

which this fact appears in our proof of (9.1). For an off-diagonal estimate of p(x, y, t), we will

invoke Lemma 9.5 repeatedly to write p(x, y, t) as an iterated integral of many “copies” of itself

at earlier times. Our on-diagonal bounds will then apply to these copies when they are restricted

to appropriately small regions in space.

A lemma for doubling measures

The following is a lemma of Christ’s in [14] which we will need to compare the averages of V

over two cubes whose centers are some distance from each other.

Lemma 9.6. For any doubling measure ω on Rn, there exist positive C < ∞ and ε < 1 such

that for any cubes Z ′ ⊂ Z ∫
Z′
dω ≤ C

(
|Z ′|
|Z|

)ε ∫
Z

dω

where e.g. |Z| denotes the Euclidean measure of Z.
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9.3 Proof of the lower bound

We are now ready to obtain heat kernel lower bounds for Schrödinger operators with potentials

in the reverse Hölder supremum class.

Theorem 9.7. If V ∈ RH∞, the heat kernel of the Schrödinger operator H = −∆ + V on

L2(Rn) satisfies with 0 < κ < 1 fixed

p(x, y, t) ≥


c0
tn/2

exp{−c1t avZ√t(x)V } |x− y| < κ
√
t

c0
tn/2

e−c3
|x−y|2

t exp
{
−c1t(c

|x−y|2
t

2 avZt/|x−y|(x)V )
}

|x− y| ≥ κ
√
t

(9.2)

where ci > 0 for i = 0, 1, 2, 3.

Proof. First suppose |x− y| < 1
8

√
t. We consider the ball B = B√t(x). Let HB be the restriction

of the operator H to B with Dirichlet boundary conditions; and let pB(x, y, t) be the associated

heat kernel. Note that u(·, t) = p(·, y, t) − pB(·, y, t) is a weak solution to (∂t + H)u = 0 on

B × (0,∞), for any y ∈ B. And because pB(·, y, t) vanishes on ∂B, u is nonnegative on the

boundary, implying by the maximum principle that

p(x, y, t) ≥ pB(x, y, t) in B ×B × (0,∞) (9.3)

since the choice of y ∈ B was arbitrary.

Now we use again the hypothesis that V ∈ RH∞. With C > 0 the RH∞ constant of V , we

have for M = CavZ2
√
t(x)V that V ≤ M in B. Let HM

D be the operator (−∆ + M) restricted to

B with Dirichlet boundary conditions. As in (7.7), its heat kernel is just e−MtΓD, where ΓD is

the heat kernel of the Dirichlet Laplacian on B. Now for y ∈ B set

w(x, t) = pB(x, y, t)− e−Mt ΓD(x, y, t)

Then w ≡ 0 on ∂B × (0,∞), and inside B we have for any t > 0

(∂t +HM
D )w = (∂t −∆ +M)pB = (M − V )pB ≥ 0

So w is a supersolution of (∂t +HM
B ) in the cylinder Q = B× (0,∞), vanishing on the boundary,

and by the maximum principle satisfies

pB(x, y, t) ≥ e−Mt ΓD(x, y, t) in B ×B × (0,∞)
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since y ∈ B was arbitrary.

Applying either Proposition 9.3 or Theorem 9.2 with ε = 7
8

√
t, we obtain from the preceding

inequality and (9.3) that

p(x, y, t) ≥ c0

tn/2
exp

{
−c1t avZ2

√
t(x)V

}
(9.4)

where c0 < 1 is a positive constant depending only on n, and c1 is just the RH∞ constant of V .

Because V is doubling, we may also increase c1 and replace the cube Z2
√
t(x) with Z√t(x). These

on-diagonal bounds conclude the first part of the proof. Off-diagonal bounds will follow via an

argument similar to that used by Zhang and Zhao in [57]. So take |x− y| ≥ 1
8

√
t.

We begin by considering the line segment from x to y given by

l(s) = x+ s
y − x
|y − x|

, s ∈ [0, |y − x|]

We will partition this segment by a sequence of M +1 points {xi}Mi=0; the sequence is determined

by the requirement that |xi − xi+1| = |y−x|
M

, where M is the smallest integer satisfying

|y − x|
M

<
1

16

√
t

M
⇔ 256|y − x|2

t
< M (9.5)

Now directly from Lemma 9.5 we have

p(x, y, t) =

∫
Rn
p(x, z1, t/M)p(z1, y, (M − 1)t/M) dz1

And applying the semigroup property in the same way to the right-most integrand, (M − 1)

times, we get an iterated integral

p(x, y, t) =

∫
Rn
· · ·
∫
Rn
p(x, z1, t/M) · · · p(zM−1, y, t/M) dz1 · · · dzM−1

Upon restricting each dzi integral to Zi = Z
σ
√
t/M

(xi) with 0 < σ < 1 such that

zi ∈ Zi and zi+1 ∈ Zi+1 ⇒ |zi − zi+1| <
1

8

√
t/M

we then obtain

p(x, y, t) ≥
∫
Z1

· · ·
∫
ZM−1

p(x, z1, t/M) · · · p(zM−1, y, t/M) dz1 · · · dzM−1 (9.6)
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And now our on-diagonal lower bounds apply to each term in the integrand.

That is, we have for each i = 0, . . . ,M − 1 that

p(zi, zi+1, t/M) ≥ c0

(
M

t

)n/2
exp

{
−c1

t

M
avZ

σ
√
t/M

(zi)V

}
To assimilate these into a single lower bound for p(x, y, t), we use Lemma 9.6. In particular we

see that ∫
Z
σ
√
t/M

(zi)

V ≤ C

(
1

2n

)ε ∫
Z
2σ
√
t/M

(xi)

V

≤ C

∫
Zi

V

And iterating this inequality up to M times (if i = M − 1) we may even conclude∫
Z
σ
√
t/M

(zi)

V ≤ CM

∫
Z0

V = CM

∫
Z
σ
√
t/M

(x)

V

So in fact we have a lower bound, uniform in i, of

p(zi, zi+1, t/M) ≥ c0

(
M

t

)n/2
exp

{
−c1

t

M
CMavZ

σ
√
t/M

(x)V

}
It now just remains to apply this to each term in the integrand of (9.6).

This yields

p(x, y, t) ≥
M−1∏
i=0

c0

(
M

t

)n/2
exp

{
−c1

t

M
CM avZ

σ
√
t/M

(x)V

}
·
M−1∏
i=1

|Z
σ
√
t/M

(xi)|

≥ σ−1

tn/2
Mn/2(σc0)M exp

{
−c1t

(
CM avZ

σ
√
t/M

(x)V
)}

Because c0 < 1 and σ < 1, the factor Mn/2(σc0)M gives exponential decay in M ; and by (9.5), M

is comparable to |x−y|
2

t
. Increasing constants as necessary and using Christ’s lemma to replace

M with |x−y|2
t

yields (9.2) with κ = 1/8.
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[16] E. B. Davies. Heat Kernels and Spectral Theory. Cambridge University Press, 1989.

[17] C. Fefferman. The Bergman kernel and biholomorphic mappings of pseudoconvex domains.
Invent. Math., 26:1–65, 1974.

[18] C. Fefferman. The uncertainty principle. Bull. Amer. Math. Soc., 9:129–206, 1983.

90



[19] C. Fefferman. On Kohn’s microlocalization of ∂̄ problems. In T. Bloom, R. Gunning, and
J.J. Kohn, editors, Modern methods in complex analysis, pages 119–133. Princeton Univ.
Press, Princeton, NJ, 1995.
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