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Abstract

A semigroup S is called inverse if for each s ∈ S, there exists a unique t ∈ S such that

sts = s and tst = t. A relation σ ⊆ X × Y is called full if for all x ∈ X and y ∈ Y there

exist x′ ∈ X and y′ ∈ Y such that (x, y′) and (x′, y) are in σ, and is called difunctional

if σ satisfies the equation σσ-1σ = σ. Inverse semigroups were introduced by Wagner and

Preston in 1952 [55] and 1954 [38], respectively, and difunctional relations were introduced

by Riguet in 1948 [39]. Schein showed in 1965 [45] that every inverse semigroup is isomorphic

to an inverse semigroup of full difunctional relations and proposed the following question:

given an inverse semigroup S, can we describe all of its representations by full difunctional

relations? We demonstrate that each such representation may be constructed using only S

itself.

It so happens that the full difunctional relations on a set X are essentially the bijections

among its quotients. This observation invites us to consider Schein’s question as fundamen-

tally a problem of symmetry, as we explain. By Cayley’s Theorem, groups are naturally

represented by permutations, and more generally, every permutation representation of a

group can be constructed using representations induced by its subgroups. Analogously, by

the Wagner-Preston Theorem, inverse semigroups are naturally represented by one-to-one

partial mappings, and every representation of an inverse semigroup can be constructed using

representations induced by certain of its inverse subsemigroups. From a universal algebraic

point of view the permutations and one-to-one partial functions on a set X are the automor-

phisms (global symmetries) of X and the isomorphisms among subsets (local symmetries)

of X, respectively. Inspired by the interpretation of difunctional relations as isomorphisms

among quotients, or colocal symmetries, we introduce a class of partial algebras which we

call inverse magmoids. We then show that these algebras include all inverse semigroups and

groupoids and play a role among difunctional relations analogous to that played by groups

among permutations and of inverse semigroups among one-to-one partial functions.
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Summary of Main Results

1. A class of partial algebras which we call inverse magmoids generalizes the classes of

inverse semigroups, groupoids, and posets under meet, and includes the set Dif(X) of

full difunctional relations on a fixed set X under composition. Moreover, every inverse

magmoid can be (weakly) embedded in Dif(X) for some set X.

2. Given an inverse magmoid M , a familyM = {Mx}x∈X of strong inverse submagmoids

of M which contain the idempotents, and a coset system H forM, we can construct

a difunctional representation of M which we say is induced by H.

3. Every difunctional representation of an inverse magmoid M is obtained by inflating a

representation of the form
∑

I ϕi where each ϕi is induced by a coset system.
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1 Introduction

Recall that a group is a set G with an associative binary operation · and an element e ∈ G

such that e · g = g · e = g for all g ∈ G and given g ∈ G, there exists an element g-1 ∈ G

such that g · g-1 = g-1 · g = e. Two fundamental results regarding groups are that (i) the set

Sym(X) of permutations on a set X is a group under composition and (ii) every group is

isomorphic to a group of permutations. This second result is named in honor of its discoverer

Arthur Cayley, who demonstrated that every group is in bijective correspondence with a set

of permutations of itself (as a set) in 1854 [6]. This was refined to an injective homomorphism

by Camille Jordan in 1870 [26, p.60]. In modern language Cayley’s Theorem may be stated

as follows.

Theorem 1.1 (Cayley). If G is a group, then the map ϕ : G→ Sym(G) given by ϕ(g)(a) =

ag-1 is an injective group homomorphism.

Permutations are concrete, computationally useful objects, while axiomatic groups are

usually not. On the other hand, it is typically more pleasant to prove theorems of sweeping

generality using an axiomatic approach. We thus have two vantage points from which to

view groups, each having its own merits, and Cayley’s Theorem allows us to move between

the two with no loss of generality. We exploit this equivalence between the concrete and

the abstract to great effect, particularly when we generalize from permutations on sets to

automorphisms on algebras in other varieties1 such as, say, lattices or vector spaces.

We can interpret Cayley’s Theorem in a slightly different way. Given a group G and a

set X, a permutation representation of G on X is a group homomorphism ϕ : G→ Sym(X).

If ϕ is injective, we say the representation is faithful. In this light Cayley’s theorem asserts
1With apologies to any algebraic geometers in the audience, for the next few dozen

pages the word algebra will mean universal algebra, viz., a set equipped with some finitary

operations. A variety is a class of algebras which all satisfy a given set of universally

quantified equations. More on universal algebra can be found in Grätzer [21].
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that every group has a faithful permutation representation. We can study permutation

representations as a class of structures of their own interest, complete with an appropriate

notion of isomorphism: two representations ϕ and ψ of G on X and Y , respectively, are

called isomorphic, denoted ϕ ∼= ψ, if there is a bijective map θ : X → Y such that for all

g ∈ G we have ψ(g) = θ ◦ ϕ(g) ◦ θ−1. Given a particular group G we might reasonably

ask: what are all of its permutation representations, up to isomorphism? For example, each

subgroup induces a permutation representation as follows.

Proposition 1.2. Let G be a group and H ≤ G a subgroup. Define a relation σH on G by

σH = {(a, b) | ab-1 ∈ H}.

(i) The relation σH is an equivalence on G, and if a, b, c ∈ G such that a σH b, then

ac σH bc (such relations are sometimes called right congruences). The classes of σH

are precisely the subsets of the form Ha with a ∈ G, which we call the cosets of H.

(ii) For each g ∈ G, the relation ϕ(g) = {(Ha,Hag-1) | a ∈ G} on G/σH is a permutation.

(iii) The mapping ϕ : G → Sym(G/σH) is a permutation representation of G, called the

coset representation induced by H.

In fact Cayley’s Theorem essentially concerns the coset representation induced by the

trivial subgroup H = 1. More generally, we can think of coset representations as the basic

pieces from which all other permutation representations are constructed, as outlined in the

following well-known result (cf. Hall [23, §5.3]).

Proposition 1.3. Let G be a group.

(i) If ϕi : G → Sym(Xi) is a family of permutation representations of G indexed by a

set I and
∐

I Xi =
⋃
I (Xi × {i}) is the disjoint union of the sets Xi, then the map∑

I ϕi : G → Sym(
∐

I Xi) given by (
∑

I ϕi)(g)(x, k) = (ϕk(g)(x), k) is a permutation

representation of G.

(ii) If ϕ : G → Sym(X) is a permutation representation and ε the relation on X such

that x ε y precisely when y = ϕ(g)(x) for some g ∈ G, then (1) ε is an equivalence,
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(2) if C is an ε-class of X, then the restriction ϕC : G → Sym(C) of ϕ(g) to C is a

permutation representation of G, and (3) ϕ ∼=
∑

C∈X/ε ϕC via θ : X →
⊔
A∈X/εA given

by θ(x) = (x, [x]ε).

(iii) A representation ϕ : G → Sym(X) is called transitive if for all x, y ∈ X, there exists

g ∈ G such that ϕ(g)(x) = y. If ϕ is transitive then there is a subgroup H ≤ G such

that ϕ ∼= ϕH , where ϕH is the coset representation of G induced by H. Specifically,

we may choose Hx = {g ∈ G | ϕ(g)(x) = x} for any x ∈ X, and the isomorphism is

then θx = {(y,Hxa) | y ∈ X, a ∈ G,ϕ(a-1)(x) = y}.

(iv) In particular, the representations ϕC in part (ii) are transitive. So every permutation

representation of G is isomorphic to
∑

I ϕHi
, where {Hi}I is a family of subgroups

indexed by a set I and ϕH is the coset representation induced by H.

Together these results demonstrate that permutations form a natural class of representa-

tion objects for groups because (i) every group has a faithful representation by permutations

and (ii) every permutation representation of a given group G can be explicitly built, in an

easily described manner, using only the subgroups of G and basic constructions on sets.

It is natural, then, to think of groups as encapsulating the notion of global symmetry ; that

is, the permutations of an object which preserve its structure (whatever that means). Indeed

historically the axiomatic definition of groups (by Dyck [54]) came after the interpretation

of permutations as symmetries. But of course there are situations where an object may have

interesting structure which is not detected by its global symmetries. As a simple example,

the symmetric group Sym(4) on four objects and the quaternion group Q8 have the same

automorphism group, namely Sym(4), and so are indistinguishable from this perspective. A

more visually dramatic example is the isometry groups of the square and of the figure known

commonly as the Sierpiński carpet, shown in Figure 1. Introduced by Wacław Sierpiński

in 1916 [50], this fractal is obtained from a solid square by removing the middle ninth and

recursing on the remaining eight smaller solid squares. Intuitively, a Sierpiński carpet is

vastly more self-similar than a square, and we would like for our mathematical notion of
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symmetry to reflect this. However these figures have the same isometry group, namely the

dihedral group of order 8.

Figure 1: A square and a Sierpiński carpet

Examples such as these seem to expose a limitation in the group-centric abstraction of

symmetry. A natural refinement is to consider isomorphisms among substructures of an

object; some authors have called these partial [31] or internal [62] symmetries, in contrast

with total or external symmetries. We will refer to an isomorphism between subsets of a set

(or more generally subobjects of an object) as a local symmetry.

Both Viktor Wagner [55, 56] and Gordon Preston [37] studied the set SymInv(X) of all

one-to-one partial mappings from a set to itself. A one-to-one partial mapping fromX to Y is

a subset ϕ ⊆ X×Y which is well-defined (if (x, y1), (x, y2) ∈ ϕ then y1 = y2) and one-to-one

(if (x1, y), (x2, y) ∈ ϕ then x1 = x2). This set is prototypical among a class of semigroups S

having the property that for every element x ∈ S, there is a unique element y ∈ S such that

xyx = x and yxy = y. Such semigroups are called inverse, and by analogy with Sym(X) the

set SymInv(X) is called the symmetric inverse semigroup on X. By ‘prototypical’ we mean

that (i) SymInv(X) is itself an inverse semigroup and (ii) every other inverse semigroup S

can be embedded in SymInv(S). This second result is called the Wagner-Preston Theorem

in honor of its co-discoverers, who published the result on opposite sides of the Iron Curtain

in 1952 [55] and 1954 [38], respectively.

Theorem 1.4 (Wagner-Preston). If S is an inverse semigroup, then ϕ : S → SymInv(S)

given by ϕ(s)(t) = ts-1 if t ∈ Ss-1s and undefined otherwise is an injective homomorphism

of inverse semigroups.
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A proof can be found in Howie [24, §5.1] or in Lawson [31, §1.5], which is also an excellent

source of historical notes. Every group is also an inverse semigroup, and in this case we see

that Wagner-Preston is a direct generalization of Cayley’s Theorem. In 1962 [48], Boris

Schein2 characterized the semigroups which can be embedded in an inverse semigroup; as

a corollary of this work we can deduce that analogues of 1.2 and 1.3 also hold for inverse

semigroups and one-to-one partial maps. We describe the proof here with just enough detail

to demonstrate the similarity to Theorem 1.3. A homomorphism ϕ : S → SymInv(X) is

called a representation of S by one-to-one partial functions on X. Two representations ϕ

and ψ of S on X and Y , respectively, are called isomorphic if there is a bijection θ : X → Y

such that for all s ∈ S we have ψ(s) = θ ◦ ϕ(s) ◦ θ-1. Every inverse semigroup S comes

equipped with a ‘natural’ partial order relation; given s, t ∈ S we say that s ≤ t if there

is an idempotent e ∈ S such that s = et. Given a subset H ⊆ S, the up-closure of H is

defined to be H↑ = {s | h ≤ s for some h ∈ H} and we say a subset is up-closed if H↑ = H.

Every inverse subsemigroup which is up-closed under the natural partial order induces a

representation by one-to-one partial mappings as follows.

Theorem 1.5 (Schein [48]). Let S be an inverse semigroup. Given an up-closed inverse

subsemigroup H ⊆ S, define a relation σH on S by σH = {(s, t) | st-1 ∈ H}.

(i) The relation σH is a partial equivalence (that is, symmetric and transitive) on S which

is reflexive precisely on the set DH = {s | ss-1 ∈ H}, and if a, b, c ∈ S with a σH b then

either ac σH bc or neither ac nor bc are in DH (such relations are sometimes called

partial right congruences). The classes of σH are precisely the sets (Hs)↑ with s ∈ S1.

(ii) The relation ϕ(s) = {(A, (As-1)
↑
) | A, (As-1)

↑ ∈ S/σH} is a one-to-one partial mapping

on S/σH .

(iii) The map ϕ : S → SymInv(S/σH) is a representation of S by one-to-one partial map-

pings, called the principal representation induced by H.
2Schein’s original paper is in Russian; treatments in English may be found in volume II

of Clifford and Preston’s book [7, §§7.2-7.3] and in Howie’s monograph [24, §5.8].
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The inverse subsemigroups of a group are precisely its subgroups, and every subgroup

is up-closed simply because the natural partial order on a group is trivial. In this case the

σH in Theorem 1.5 is the same as the σH in Theorem 1.2. We can think of the principal

representations of S as the basic pieces from which all other one-to-one partial representations

are constructed.

Theorem 1.6 (Schein [48]). Let S be an inverse semigroup.

(i) If ϕi : S → SymInv(Xi) is a family (indexed by I) of representations of S by one-to-one

partial mappings, then the map
∑

I ϕi : S → SymInv(
∐

I Xi) given by (
∑

I ϕi)(x, k) =

(ϕk(x), k) if x ∈ dom ϕk and undefined otherwise is a representation of S by one-to-one

partial mappings.

(ii) A representation ϕ : S → SymInv(X) is called effective if for every x ∈ X, there exists

an s ∈ S and y ∈ X such that ϕ(s)(x) = y. Any representation which is not effective

may be ‘cut down’ to an effective representation by tossing out those elements of X

which are not in the domain of any ϕ(s). If ϕ is effective, then (1) the relation ε on X

given by x ε y precisely when there exists s ∈ S such that ϕ(s)(x) = y is an equivalence,

(2) if C is a ε-class of X then then map ϕC : S → SymInv(C) such that ϕC(s) is the

restriction of ϕ(s) to C is an effective representation of S, and (3) ϕ ∼=
∑

C∈X/ε ϕC .

(iii) A representation ϕ : S → SymInv(X) is called transitive if for all x, y ∈ X, there exists

s ∈ S such that ϕ(s)(x) = y. If ϕ is effective and transitive, then there is an up-closed

inverse subsemigroup H ⊆ S such that ϕ ∼= ϕH .

(iv) In particular, the representations ϕC in (ii) are transitive. So every effective represen-

tation of S by one-to-one partial mappings is isomorphic to a representation of the form∑
I ϕHi

, where {Hi}I is a family of down-closed inverse subsemigroups of S indexed

by a set I and ϕH is the principal representation induced by H.

As we have described them, groups and inverse semigroups have certain features in com-

mon. In both cases, we have (i) an axiomatic class of algebras with (ii) a family of concrete
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instances, such that (iii) every abstract instance can be embedded in a concrete instance

and (iv) every such embedding of an abstract instance X can be described using only the

‘pieces’ of X. Most importantly, we have (v) an interpretation of the axioms as encapsulat-

ing some kind of symmetry. With groups, the interpretation is global symmetry, and with

inverse semigroups, local symmetry. The dual notion to local symmetry, what we call colocal

symmetry, is an isomorphism among quotient objects. Are the colocal symmetries of an

object the interpretation of some axiomatic class, in the above sense? Our primary goal is

to resolve this question in the affirmative.

In Chapter 2 we discuss difunctional relations, our basic computational objects and the

colocal analogues of permutations and one-to-one partial transformations. We deduce some

of the properties such relations share and use these as axioms to define a class of partial

algebras which we call inverse magmoids. In Chapter 3 we consider the representations

of an inverse magmoid by difunctional relations and prove colocal analogues of Theorems

1.4, 1.5, and 1.6, showing that every inverse magmoid M can be represented in an inverse

magmoid of difunctional relations and that every such representation is isomorphic to a

representation constructed using only the structure of M itself.

8



2 Difunctional Relations and Inverse Magmoids

A relation σ is any subset σ ⊆ X×Y , where X and Y are sets. We will write x σ y to mean

(x, y) ∈ σ, a convention which enables shorthand such as x σ y τ z if σ and τ are relations.

If σ ⊆ X×X we say σ is a relation on X. Any given set X has some distinguished relations:

the diagonal relation ∆X = {(x, x) | x ∈ X} and the entire relation ∇X = X ×X.

If σ and τ are relations, their composite is στ = {(x, z) | x σ y τ z for some y}. The

converse of σ is σ-1 = {(y, x) | (x, y) ∈ σ}. Certainly we have that (στ)ω = σ(τω),

(στ)-1 = τ -1σ-1, and (σ-1)
-1

= σ for all relations σ, τ , and ω. Moreover, if σ ⊆ τ then both

σω ⊆ τω and σ-1 ⊆ τ -1. If σ ⊆ X × Y is nonempty, then ∆Xσ = σ = σ∆Y .

A relation σ ⊆ X × Y is called total if ∆X ⊆ σσ-1, onto if ∆Y ⊆ σ-1σ, well-defined if

σ-1σ ⊆ ∆Y , and one-to-one if σσ-1 ⊆ ∆X . A relation which is both total and well-defined is

called a function or map, and functions which are also onto or one-to-one are called surjective

or injective, respectively. A function which is both injective and surjective is called bijective.

We will typically say f : X → Y rather than the clunkier “f ⊆ X × Y is a function”; in this

case X and Y are called the domain and codomain of f , respectively. If f : X → Y and

x ∈ X, then the unique y ∈ Y such that x f y is called the image of f at x and denoted f(x);

the image of f is the set of all f(x) where x ∈ X. By convention we compose functions from

right to left using an explicit operation ◦, so that if α and β are functions then β ◦ α = αβ

as sets.

A relation σ on X is called reflexive if ∆X ⊆ σ, symmetric if σ-1 ⊆ σ, antisymmetric

if σ ∩ σ-1 ⊆ ∆X , transitive if σσ ⊆ σ, an equivalence if it is simultaneously reflexive,

symmetric, and transitive, and a partial order if it is simultaneously reflexive, antisymmetric

and transitive. If ε is an equivalence on X and x ∈ X, the set [x]ε = {y ∈ X | x ε y} is

called the ε-class of x. The ε-classes of elements in X form a partition of X which we denote

X/ε. If ε is an equivalence on X then the map πε : X → X/ε given by πε(x) = [x]ε is called

the natural projection of X onto X/ε and is surjective. If X is a set and σ a partial order

on X, we say the pair (X, σ) is a poset.
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If f : X → Y , then the relation ker f = {(x1, x2) | f(x1) = f(x2)} is an equivalence on

X. In this case the relation F ⊆ X/(ker f) × Y given by Φ = {([x], ϕ(x)) | x ∈ X} is an

injective function, and in fact is the unique function X/(ker f)→ Y with the property that

F ◦ πker f = f . We will refer to this result as the First Isomorphism Theorem for sets.

A relation σ ⊆ X×Y is called full if it is both total and onto. If σ satisfies σσ-1σ = σ we

say it is difunctional, and if Y = X we say σ is difunctional on X. Clearly σ is difunctional

if and only if σ-1 is difunctional. In addition, the containment σ ⊆ σσ-1σ holds for any

relation, so to show that σ is difunctional it suffices to show that σσ-1σ ⊆ σ. Jaques Riguet

introduced difunctional relations in 1948 [39] and explored them further in his dissertation

in 1951 [40]; since then they have seen use in computer science and the theory of databases

[25, 49, 5], though we will not address these applications here. Given a set X we denote by

Dif(X) the set of all full difunctional relations on X.

From a universal algebraic point of view a set is an algebra with no operations. And so,

to generalize, given an algebra X of variety V we will let DifV(X ) denote the full difunctional

relations on the carrier of X which are also V-subalgebras of X × X . Many of our proofs

involving Dif(X) with X a set will generalize immediately to DifV(X ) with X a V-algebra.

However, in the interest of clarity we will focus our attention on difunctional relations on sets

and to relegate the generalization to other varieties to corollaries. We will see that DifV(X)

is not closed under composition in general; however, it is worth noting that this is true for

some values of V such as the variety of groups or of k-vector spaces.

As a set, Dif(X) essentially consists of the isomorphisms among quotients of X. Many

basic facts about difunctional relations were first proved by Riguet [39] and included in

Wagner’s monograph on relation algebras [58]; apparently neither of these documents has

been translated to English.

Theorem 2.1 (Riguet [39], Wagner [58]). Let X be a set and let σ be a full relation on X.

Then σ is difunctional if and only if there exist unique equivalence relations λ and ρ on X

and a unique bijection θ : X/λ→ X/ρ such that σ = πλθπ
-1
ρ .
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Theorem 2.1 is the historical justification of the name ‘difunctional’; such relations have

the form αβ-1 where α and β are functions having the same image.

Corollary 2.2.

(i) Dif(X) contains all permutations and equivalence relations on X.

(ii) (Wagner [58, 3.6]) If σ is a full relation on a set X, then σ is difunctional precisely

when there exist partitions A = {Ai}I and B = {Bi}I of X, indexed by a set I, such

that σ =
⋃
I Ai ×Bi. Moreover, A and B are unique.

(iii) If X is an algebra of variety V and σ a full relation on X , then σ is difunctional if

and only if there exist unique congruences λ and ρ on X and a unique isomorphism

θ : X/λ→ X/ρ such that σ = πλθπ
-1
ρ .

In the remainder of this section we will consider the elements of Dif(X) in more detail.

First, we give some examples to demonstrate that many of the properties we look for in

group-like structures do not hold in (Dif(X), ◦), at least over the variety of sets.

Example 2.3.

(i) Let σ = ({1, 2} × {1}) ∪ ({3} × {2, 3}). Then σ ∈ Dif(X) but σ2 /∈ Dif(X).

(ii) Now letting τ = ({1} × {2})∪({2, 3} × {1, 3}) and ω = ({1, 3} × {1})∪({2} × {2, 3}),

we have that στ and τω are difunctional, but στω is not.

(iii) If ε, δ, and η are the equivalences whose classes are {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}},

and {{1, 2, 3}, {4}}, respectively, then (εδ)η is difunctional but δη is not.

(iv) The equivalence relations ε and δ whose classes are {{1, 2}, {3}} and {{1}, {2, 3}},

respectively, are noncommuting idempotents.

So lots of ‘bad’ things can happen in Dif(X). Example (ii) is especially disturbing; usually

the most interesting algebras with a binary operation may also be viewed as categories, with

the elements acting as maps and multiplication as composition. This example demonstrates

that whatever structure Dif(X) has, it doesn’t behave like a category, at least in the usual
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sense. All is not lost, however; we can precisely describe the idempotents in Dif(X) (that

is, relations σ such that σσ = σ) and characterize the pairs (σ, τ) such that στ is again

difunctional.

Proposition 2.4. Let ε, δ, σ, τ ∈ Dif(X).

(i) The following are equivalent: (a) ε is idempotent, (b) ε is reflexive, (c) ε is transitive,

and (d) ε is an equivalence. [58]

(ii) If ε and δ are idempotent, then the following are equivalent: (a) εδ is difunctional,

(b) εδ is idempotent, (c) εδ is an equivalence, (d) εδ is symmetric, and (e) ε and δ

commute. [45]

(iii) The composite στ is in Dif(X) if and only if σ-1σ and ττ -1 commute.

Recall that Theorem 2.1 characterizes the difunctional relations on X as precisely those

relations of the form αβ-1 where α, β : X → Y are surjective functions on X having the

same codomain. With 2.4(iii), this allows us to give the following explicit characterization

of the difunctional composite of difunctional relations.

Proposition 2.5. Let σ and τ be difunctional relations on X; say σ = α1β
-1
1 and τ = α2β

-1
2 ,

where α1, β1 : X → Y1 and α2, β2 : X → Y2 are surjective. Note that σ-1σ = ker β1

and ττ -1 = ker α2. If στ is difunctional, then ω = (ker β1)(ker α2) is an equivalence. By

the First Isomorphism Theorem for sets, there exist unique mappings B1 : Y1 → X/ω and

A2 : Y2 → X/ω such that B1 ◦ β1 = πω = A2 ◦ α2; that is, unique B1 and A2 such that the

following diagram commutes.

X

α1   A
AA

AA
AA

X

β1||yyyyyyyy

α2 ""E
EEEEEEE

πω

��

X

β2~~}}
}}

}}
}

Y1

B1 !!C
CC

CC
CC

C Y2

A2}}{{
{{

{{
{{

X/ω

Then στ = α1B1A
-1
2 β

-1
2 .
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To summarize, composition is a partial binary operation and conversion a unary operation

on Dif(X) which satisfy the following properties: (i) if στ and τω are difunctional, then

if either of (στ)ω or σ(τω) is difunctional, then so is the other, and the two are equal;

(ii) (σ-1)
-1

= σ; (iii) σσ-1 and σ-1σ are difunctional; (iv) if στ is difunctional, then τ -1σ-1 is

difunctional and is equal to (στ)-1; (v) σ(σ-1σ) is difunctional and equals σ; and (vi) στ is

difunctional if and only if (σ-1σ)(ττ -1) and (ττ -1)(σ-1σ) are difunctional and equal.

Several authors (notably Leech [32] and FitzGerald [18]) have discussed full difunctional

relations as dual partial symmetries, typically as a dual (in the categorical sense) of the

symmetric inverse semigroup. However, the nonclosure of composition on Dif(X) complicates

matters. One way to handle this complication is to ‘fix’ composition so that it becomes total

and makes Dif(X) into an inverse semigroup. Indeed this can be done; define • on Dif(X)

by σ • τ =
⋂
{ω ∈ Dif(X) | σ ◦ τ ⊆ ω}. As is shown by FitzGerald in [14] and Bredikhin

in [4], now (Dif(X), •) is an inverse semigroup and • extends ◦ in the sense that if σ ◦ τ is

difunctional then σ • τ = σ ◦ τ . Extending composition in this way is quite natural and leads

to some interesting mathematics; cf. [15, 16, 18, 17, 11, 10, 9, 30, 34, 8, 12].

Another way to handle the nonclosure of composition on Dif(X) is to wear the hair

shirt, so to speak, and accept the fact that composition does not behave nicely. This is

the point of view we will take. There are practical reasons to prefer plain composition ◦

over the extended composition •; notably, from a computational point of view, it is more

difficult in general to compute a difunctional closure than a composite. In addition there

are a priori model-theoretic differences, as the theory modeled by relation composition ◦ is

finitely axiomatizable [46] while the closure • is not definable in first-order logic. From a more

philosophical perspective, as Schein argues in [43, 41] (and elsewhere), relation composition

is a fundamental binary operation in algebra, and relation algebras (even partial algebras)

are frequently interesting. In the sequel we will define a class of partial algebras which

attempt to capture the ‘essential nature’ of Dif(X) under composition, and would like to

avoid imposing unnecessary structure on these algebras. Most saliently we will consider
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Dif(X) as a partial algebra because our results do not require otherwise.

We use the equational laws satisfied by Dif(X) to define a class of partial algebras.

Definition 2.6. LetM be a set, · a partial binary operation onM , and -1 a unary operation

on M . The pair (M, ·) is called a magmoid.

• A magmoid (M, ·) is called quasiassociative if for all s, t, u ∈M we have the following:

(M1) if s · t and t · u exist, then if either of (s · t) · u or s · (t · u) exist, then so does the

other, and the two are equal.

• If (M, ·) is a quasiassociative magmoid, we say that (M, ·, -1) is an involuted magmoid

if in addition we have the following for all s, t ∈ M : (M2a) (s-1)
-1

= s, (M2b) s · s-1

and s-1 · s exist, and (M2c) if s · t exists, then t-1 · s-1 exists and is equal to (s · t)-1.

• An involuted magmoid is called inverse if in addition we have the following for all

elements s, t ∈ M : (M3a) s · (s-1 · s) exists and equals s and (M3b) s · t exists if and

only if (s-1 · s) · (t · t-1) and (t · t-1) · (s-1 · s) exist and are equal.

We will refer to · as the partial product and -1 as inversion. A magmoid element s is

called idempotent if s · s exists and equals s; an inverse magmoid in which every element is

idempotent is called a semilattoid. We say that two elements s and t commute if both s · t

and t · s exist and the two are equal.

We have several examples of inverse magmoids: Dif(X), of course, but also every inverse

semigroup and every groupoid is an inverse magmoid, as is every poset under the partial

operation “greatest lower bound” (which we call the inverse magmoid induced by the poset).

Recall that a semigroup S is called inverse if for every s ∈ S, there exists a unique element

s-1 ∈ S such that ss-1s = s and s-1ss-1 = s-1, and that a poset is a set P equipped with a

relation ≤ which is reflexive, antisymmetric, and transitive. A groupoid is a small category

in which every morphism is invertible. Perhaps then it would be better to call these the

inverse ‘semigroupoid’ axioms; however this term is already in use, first by Wagner explicitly

in [60, 61] and in spirit in [57, 59], by his student Pavlovskĭı [35, 36], and more recently by

others [27, 13], denoting a category with some identity morphisms removed.
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Inverse semigroups were introduced by Wagner in 1952 and Preston in 1954 as an ax-

iomatization of the algebra of one-to-one partial maps on a set under composition and con-

version; there are several other equivalent definitions, some of which appear in [33] and [42].

Groupoids were introduced (as partial algebras) in 1926 [1, 2] by Heinrich Brandt, who was

interested in extending the work of Gauss on quadratic forms [29, 19]. We will think of inverse

magmoids as simultaneously generalizing the classes of inverse semigroups and groupoids.

Many properties which hold in any inverse semigroup generalize more or less immediately

to any inverse magmoid. We will merely state those properties which will be needed; proofs

are straightforward and can be found in most texts on inverse semigroups.

Proposition 2.7. If M is an inverse magmoid with s, t ∈ M , then (i) s · s-1 and s-1 · s are

idempotent, (ii) (s · s-1)
-1

= s · s-1, (iii) (s · s-1) · s exists and equals s, and (iv) s · t exists if

and only if s · (t · t-1) exists if and only if (s-1 · s) · t exists.

Inverse magmoids behave very much like inverse semigroups. This is to be expected,

because our inspirational example, Dif(X), may always be embedded in an inverse semigroup.

That is not to say that inverse magmoids are subsumed by inverse semigroups; while every

inverse magmoid can be embedded in an inverse semigroup, neither the inverse semigroup

nor the embedding is unique in general. Also, it is not known if such an embedding can be

achieved without appending new elements toM , though we can think of an inverse magmoid

as an inverse semigroup from which some information has been tossed out.

Proposition 2.8. Let e ∈M be idempotent. Then we have the following: (i) e-1 is idempo-

tent, (ii) e-1 = e, (iii) e-1 · e = e · e-1 = e, (iv) if s ∈M such that s · e exists, then e · s-1 exists,

and s · (e · s-1) exists and is idempotent, (v) if f is idempotent and e · f exists, then f · e

exists and equals e · f , and (vi) if f is idempotent and e · f exists, then e · f is idempotent.

Corollary 2.9. Given an inverse magmoid M the set E(M) of idempotents in M is a

semilattoid, called the semilattoid of idempotents of M .
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We define a relation κ on E(M) by e κ f if and only if e · f exists. Certainly κ is both

reflexive and symmetric; we will say M is κ-transitive if κ is also transitive. Evidently M is

an inverse semigroup precisely when κ = ∇E(M) and a groupoid precisely when κ = ∆E(M),

and M is a semilattoid precisely when E(M) = M . We can think of inverse magmoids

as simultaneously generalizing inverse semigroups and groupoids, with these two subclasses

consisting of somehow extreme examples. Analogously, an inverse semigroup S is a group

precisely when E(S) contains only one element and a semilattice (i.e. commutative semigroup

in which every element is idempotent) precisely when E(S) is all of S, and a groupoid G is

a group precisely when E(G) contains only one element and a small discrete category (i.e.

category whose class of objects is a set and having no morphisms other than the identities)

precisely when E(G) = G. Small discrete categories are not tremendously interesting, though

it is of note that a set-indexed categorical product (coproduct) is the limit (colimit) of a

functor from a small discrete category. A given semilattoid is not necessarily induced by a

poset (for example, there are five posets with three elements but six semilattoids) but can

be embedded in a semilattoid so induced. We can visualize the relationships among these

classes of partial algebras as in Figure 2, using arrows to indicate containment.

Inverse semigroups // Inverse magmoids

Semilattices

88ppppppppppp
// Semilattoids (Posets)

55kkkkkkkkkkkkkk

Groups //

OO

Groupoids

OO

1

OO

//

77ppppppppppppp
Small discrete categories

OO

55kkkkkkkkkkkkkk

Figure 2: Relationships among certain classes of inverse magmoids

As Example 2.3 shows, in general the inverse magmoid Dif(X) is not an inverse semigroup,

groupoid, or semilattoid. Upon noting that inverse magmoids generalize inverse semigroups

16



and groupoids our instinct is to try to generalize some of the basic tools used to study those

structures. This will be our aim for the remainder of this chapter.

There is a ‘natural’ partial order relation on an inverse semigroup; we say s ≤ t precisely

when there is an idempotent e such that s = et. This relation was first defined by Wagner

[56] (who also found several equivalent definitions) and has proven to be an indispensable tool

in the study of inverse semigroups. If we naïvely carry this notion over to inverse magmoids,

it turns out that many of the useful properties the natural partial order enjoys on an inverse

semigroup still hold, and the proofs generalize easily.

Proposition 2.10. Let M be an inverse magmoid, and let s, t ∈ M . Then the following

are equivalent. (i) There exists an idempotent e ∈ M such that e · t exists and equals s.

(ii) There exists an idempotent f ∈ M such that t · f exists and equals s. (iii) There exists

an idempotent e ∈M such that e ·t-1 exists and equals s-1. (iv) t ·s-1 exists and (t ·s-1) ·s = s.

(v) s-1 · t exists and s · (s-1 · t) = s. If any of these statements hold we say s 4 t. Moreover,

4 is a partial order, which we call natural.

If M is an inverse semigroup, groupoid, or a semilattoid (P,∧) induced by a poset, then

the natural order is simply ≤, equality, or the order on P , respectively. The natural order

on Dif(X) is the ⊇ relation. Using the natural order we can show that inverses in an inverse

magmoid are unique and (generalizing a result of Liber [33] on inverse semigroups) that the

set of 4-minimal elements forms a subgroupoid.

Green’s relations, noted first by Suškevič [51, 52, 53] (see also [20]) and reintroduced by

Green in 1951 [22], are fundamental tools of semigroup theory. In an inverse semigroup,

elements a and b are L-related if a-1a = b-1b, are R-related if aa-1 = bb-1, and are H-related

if they are both L and R related. Green’s relations on an inverse magmoid enjoy several

expected properties; every L and every R class contains a unique idempotent, two elements

in the same L class lie in R classes having the same cardinality (and vice versa, a result

known as Green’s Lemma), and LR = RL. A generalization of Green’s Lemma to sets with a

partial binary operation (what we have called magmoids) was also considered by Kapp [28].
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Next we discuss the action of an inverse magmoid on a set; Proposition 2.12 in particular

is used heavily in the proof of Theorem 3.2.

Definition 2.11. Let M be an inverse magmoid, X a set, and · a partial function from

X ×M to X. We say that M acts on X if the following hold: (i) x · (s · s-1) exists if and

only if x · s exists, and (ii) if x · s and s · t exist, then if either (x · s) · t or x · (s · t) exists,

then so does the other, and the two are equal.

We say an action is faithful if whenever s, t ∈M such that s · x exists if and only if t · x

exists and in fact s · x = t · x for all such x, then s = t. We have several examples of actions;

for instance, any inverse magmoid acts on itself by right multiplication (this is a restatement

of (M1) and 2.7(iv)). Using the natural order we see that this action is faithful.

If M acts on a set X, then we can sensibly multiply subsets of X by elements of M .

Proposition 2.12. Let M be an inverse magmoid acting on a set X. We define a setwise

product on the powerset of X by As = {a · s | a ∈ A and a · s exists}. This product has

the following properties for all A,B ⊆ X and s, t ∈ M : (i) if A ⊆ B, then As ⊆ Bs;

(ii) (As)s-1 = A(s · s-1); (iii) if x ∈ X such that x · s exists, then (x · s) · (s-1 · s) exists and

equals x · s; (iv) (A ∩ Xs)(s-1 · s) = A ∩ Xs; (v) if s · t exists, then X(s · t) ⊆ Xt; (vi) if

x ∈ Xs, then x · s-1 exists; and (vii) (A ∪B)s = As ∪Bs.

We conclude this chapter with a brief discussion about homomorphisms, submagmoids,

and one-sided congruences. On a partial algebra there are multiple competing versions of

these concepts (cf. Grätzer [21, ch2]).

Definition 2.13. Let M and N be inverse magmoids. A map ϕ : M → N is called a

homomorphism if for all s, t ∈M , if s · t exists in M , then ϕ(s) ·ϕ(t) exists in N and equals

ϕ(s · t). We say ϕ is strong if in addition whenever ϕ(s) · ϕ(t) exists, s · t also exists. A

homomorphism which is also injective is called an embedding, and a strong homomorphism

which is also bijective is called an isomorphism.
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If is clear that the identity map is a (strong) homomorphism, and that the composite of

(strong) homomorphisms is a (strong) homomorphism. Thus the classes of inverse magmoids

and their (strong) homomorphisms form a category which we denote InvMag; it is also clear

that InvMag contains the category of inverse semigroups and their homomorphisms as a

full subcategory. Indeed our Dif operator is functorial on the category AlgepiV of V-algebras

with surjective algebra homomorphisms. Thus if X and Y are isomorphic as V-algebras

then DifV(X ) and DifV(Y) are isomorphic as inverse magmoids (as expected). As for inverse

semigroup homomorphisms [31, p.30], preservation of the partial product implies preservation

of inverses, idempotents, and the natural order.

Theorem 2.14. If ϕ : M → N is a homomorphism of inverse magmoids, then we have the

following: (i) if e ∈M is idempotent, then ϕ(e) ∈ N is idempotent, (ii) ϕ(s-1) = ϕ(s)-1, and

(iii) if s 4 t then ϕ(s) 4 ϕ(t).

A subset of an inverse magmoidM which is closed under the partial product and inversion

operations is again an inverse magmoid, which we call a strong inverse submagmoid of

M . Given inverse magmoids N and M with N ⊆ M such that the operations on N are

contained in those on M , we might call N a weak inverse submagmoid of M . The difference

between a weak submagmoid and a strong submagmoid of M is that the multiplication

table of a weak submagmoid might have ‘forgotten’ some of the products among its elements

which exist in M , while a strong submagmoid is required to have all the products it can.

For example, (Dif(X), ◦) is a weak inverse submagmoid of (Dif(X), •). Presently we are

interested exclusively in strong submagmoids.

We will now briefly discuss strong one-sided congruences.

Definition 2.15. An equivalence ρ on M is called a strong right congruence if whenever

s ρ t and s · u exists, then t · u also exists and (s · u) ρ (t · u).

First, we show that if ρ is a strong right congruence on M , then M acts on the quotient

set M/ρ as one might expect.

19



Proposition 2.16. Let ρ be a strong right congruence on an inverse magmoidM and define

a relation µ ⊆ (M/ρ×M)×M/ρ by µ = {(([x], s), [x·s]) | x·s exists}. Then µ is well-defined

and gives an action of M on M/ρ.

Proof. First, note that if (([x], s), [x · s]) ∈ µ and x ρ y, then since ρ is strong we have that

y · s exists, so that (([y], s), [y · s]) ∈ µ. If (([x], s), [x · s]) and (([y], s), [y · s]) are in µ with

x ρ y, then since ρ is a strong right congruence, (x · s) ρ (y · s), and thus [x · s] = [y · s],

so µ is well-defined. Now µ([x], s) exists if and only if x · s exists, if and only if x · (s · s-1)

exists by 2.7(iv), if and only if µ([x], s · s-1) exists. Now suppose µ([x], s) and s · t exist; in

particular, x · s exists. If µ(µ([x], s), t) = µ([x · s], t) exists, then (x · s) · t exists and equals

x · (s · t), so µ([x], s · t) exists. That is, we have

µ(µ([x], s), t) = µ([x · s], t) = [(x · s) · t] = [x · (s · t)] = µ([x], s · t).

Conversely, suppose µ([x], s · t) exists. Then x · (s · t) exists and equals (x · s) · t, and we have

µ([x], s · t) = [x · (s · t)] = [(x · s) · t] = µ(µ([x], s), t) as needed.

Strong inverse submagmoids containing E(M) induce a class of strong right congruences.

Proposition 2.17. LetM be an inverse magmoid and letH ⊆M be an inverse submagmoid

which contains E(M). Then we have the following.

(i) H is down-closed under the natural partial order.

(ii) The relation σH on M given by σH = {(s, t) | s-1 · s = t-1 · t and s · t-1 ∈ H} is a strong

right congruence.

(iii) Every σH-class is of the form As, where A ⊆M is an L-class contained in H.

Proof. (i) If s 4 t with t ∈ H, then we have s = e ·t for some idempotent e. Since H contains

all idempotents and is a strong submagmoid, s ∈ H. (ii) For all s ∈ M , we certainly have

s-1 · s = s-1 · s and that s · s-1 ∈ H since E(M) ⊆ H. So σH is reflexive. If s σH t, then

s-1 · s = t-1 · t and s · t-1 ∈ H. Since H is closed under inversion, (s · t-1)
-1

= t · s-1 ∈ H, and of
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course t-1 · t = s-1 · s. So t σH s, and thus σH is symmetric. Now suppose s σH t and t σH u.

Then we have s-1 · s = t-1 · t = u-1 · u and s · t-1, t · u-1 ∈ H. Now s · u-1 exists, and moreover

we have

s · u-1 = (s · (s-1 · s)) · u-1 = (s · (t-1 · t)) · u-1 = (s · t-1) · (t · u-1) ∈ H

since H is closed under the partial product. So s σH u, and thus σH is transitive. Finally,

suppose s σH t and that s ·u exists. Now s-1 · s and u ·u-1 commute, and since s-1 · s = t-1 · t,

in fact t-1 · t and u · u-1 commute, so that t · u exists. Moreover, we have

(s · u)-1 · (s · u) = (u-1 · s-1) · (s · u) = (u-1 · (s-1 · s)) · u

= (u-1 · (t-1 · t)) · u = (t · u)-1 · (t · u)

and (s · u) · (t · u)-1 = (s · (u · u-1)) · t-1 4 s · t-1 ∈ H. Since H is down-closed we have

(s · u) σH (t · u) as desired.

(iii) Let B be a σH-class, and let s ∈ B. Note that if b ∈ B, then b-1 · b = s-1 · s. In

particular, b · s-1 exists for all b ∈ B. Moreover, since σH is a strong congruence, the set

Bs-1 = {b · s-1 | b ∈ B} is contained in some σH-class; say A. Note that s · s-1 ∈ A is

idempotent; since H contains all the idempotents inM and is a union of σH-classes, we have

A ⊆ H. Note also that if a ∈ A, then a ·s exists, and since s ·s-1 ∈ A and (s ·s-1) ·s = s ∈ B,

we have As ⊆ B. Define ϕs-1 : B → A by b 7→ b · s-1 and ϕs : A→ B by a 7→ a · s. Now

(ϕs ◦ ϕs-1)(b) = ϕs(b · s-1) = (b · s-1) · s = b · (s-1 · s) = b · (b-1 · b) = b

and, since a-1 · a = (s · s-1)
-1 · (s · s-1) = s · s-1 for all a ∈ A,

(ϕs-1 ◦ ϕs)(a) = ϕs-1(a · s) = (a · s) · s-1 = a · (s · s-1) = a · (a-1 · a) = a.

Thus ϕs-1 and ϕs are bijective, and we have B = As and A = Bs-1.
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3 Difunctional Representations

So far we have defined a class of partial algebras, inverse magmoids, which generalizes some

of the properties enjoyed by the set Dif(X) of full difunctional relations on a set X under

composition and inversion. Moreover the set Dif(X) has a natural interpretation as the set

of bijections among the quotients of X, which we call the colocal symmetries of X. In this

chapter we will strengthen the analogy between the role of Dif(X) among inverse magmoids

and that of Sym(X) among groups and SymInv(X) among inverse semigroups in the direction

suggested by Cayley’s Theorem and the Wagner-Preston Theorem. We begin by shifting our

attention from the class of all inverse magmoids to the class of difunctional representations

of a fixed inverse magmoid.

Definition 3.1. A difunctional representation of an inverse magmoid M in a nonempty set

X is a (not necessarily strong) homomorphism ϕ : M → Dif(X). If ϕ is injective, we say

the representation is faithful.

Schein [44] showed that every inverse semigroup has a faithful representation by difunc-

tional relations, and in fact his proof generalizes. In short, given an action of M on a set

X we construct a homomorphic image of M in Dif(P(X)). The action of M on itself by

right multiplication induces a faithful representation. An alternate embedding theorem for

inverse semigroups in difunctional relations was given by Bredikhin [3].

Theorem 3.2 (Schein). Let M be an inverse magmoid acting on a set X. For each s ∈M ,

define a relation σs on the powerset P(X) of X by σs = {(A,B) | (A ∩Xs-1)s = B ∩Xs}.

Then σs is a full and difunctional relation on P(X) and the mapping X : M → Dif(P(X))

given by X(s) = σs is a difunctional representation ofM (not necessarily strong). If X = M

and the action is right multiplication, then X is faithful.

This result is not a perfect analogue of 1.1 (Cayley) and 1.4 (Wagner-Preston); a group

G acting on a set X induces a permutation representation on X itself, while an inverse
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magmoid M acting on a set X induces a difunctional representation on P(X). However this

generalization is not without its advantages; P(X) has some natural structure of its own

which is also preserved by X. The following corollary is also generalized from a result of

Schein [44] on inverse semigroups.

Corollary 3.3. The relation X(s) preserves the following operations on P(X): finite union,

finite intersection, complement, symmetric difference, ∅, and X. Thus every inverse mag-

moid has a faithful representation in DifV(X ) for some algebra X where V is the variety

of sets (P(X )), groups, abelian groups, Z/(2)-vector spaces, (P(X ),∆), rings (P(X ),∩,∆),

lattices, Boolean algebras, or Heyting algebras (P(X ),∩,∪). Moreover, if M is finite, then

X may be chosen to be finite.

We will now turn our attention to the class of all difunctional representations of a fixed

inverse magmoid M . We know that a faithful representation always exists, and our ultimate

goal is to construct all of the difunctional representations of M in the spirit of Theorems 1.3

and 1.6. We begin by defining a gadget analogous to the cosets of a stabilizer under a group

action.

Definition 3.4. Given ϕ : S → Dif(X) and x, y ∈ X, we define Hx
y = {s ∈ S | x ϕ(s) y}.

We will refer to sets of this form as H-sets and think of Hx
y as the set of all s ∈M which

‘move’ x to y under ϕ, though this is a slight abuse as ϕ(s) is not itself a function. These

are tangentially related to the strong subsets of a semigroup introduced by Schein in [47].

Proposition 3.5. Let ϕ : M → Dif(X) be a representation. Then we have the following.

(i) Hx
x is a strong inverse submagmoid of M and contains E(M).

(ii) If y ∈ X and σx denotes the strong right congruence on M induced by Hx
x (cf. 2.17),

then Hx
y is a union of σx-classes.

(iii) s σx t if and only if s-1 · s = t-1 · t and for all y ∈ X, either s, t ∈ Hx
y or s, t /∈ Hx

y .
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Proof. (i) It is clear that E(M) ⊆M . If s ∈ Hx
x and t 4 s, then by 2.14(iii), ϕ(s) ⊆ ϕ(t), so

that x ϕ(t) x and thus t ∈ Hx
x . Certainly if s ∈ Hx

x , then s-1 ∈ Hx
x . Finally, suppose s, t ∈ Hx

x

and that s·t exists; then x ϕ(s) x ϕ(t) x, so that x ϕ(s · t) x and thus s·t ∈ Hx
x . (ii) Suppose

s ∈ Hx
y and t σx s; that is, x ϕ(s) y, s-1 ·s = t-1 · t, and s · t-1 ∈ Hx

x . Then y ϕ((s-1 · s) · t-1) x,

so that y ϕ((t-1 · t) · t-1) x, so that y ϕ(t-1) x, and thus x ϕ(t) y as desired. (iii) Suppose

s σx t. Certainly s-1 · s = t-1 · t. Suppose s ∈ Hx
y . By part (ii), we have t ∈ Hx

y . Conversely,

if t ∈ Hx
y then so is s. Now suppose we have s-1 · s = t-1 · t and that for all y, either

s, t ∈ Hx
y or s, t /∈ Hx

y . Now s · t-1 exists. Say y ∈ X such that x ϕ(s) y; then x ϕ(t) y, and

so x ϕ(s · t-1) x. Hence s · t-1 ∈ Hx
x as desired.

Next we define a class of morphisms among representations; we can think of a homomor-

phisms as a ‘change of basis’.

Definition 3.6. Let ϕ : M → Dif(X) and ψ : M → Dif(Y ) be representations. A mapping

ω : X → Y is called a homomorphism of representations (denoted ω̃ : ϕ→ ψ) if for all s ∈M

we have ω-1ϕ(s)ω ⊆ ψ(s). We say ω is saturated if equality holds for all s. We say that two

homomorphisms ω̃, η̃ : ϕ→ ψ are equal if for all s ∈M we have ω-1ϕ(s)ω = η-1ϕ(s)η.

Our definition of ‘equal’ is strange enough to warrant a more thorough motivation. We

would like for our homomorphisms of representations to be induced by functions on the base

set X, so that two representations which are the same but for a renaming of the elements are

isomorphic, for example. However, it is possible that two distinct functions ω, η : X → Y

yield the same homomorphism in the sense that the ‘pointwise images’ of ω̃ and η̃ are

indistinguishable. Now ω̃ and η̃ are not equal as functions (for instance, for the purpose

of expressing a universal property), but are equal as homomorphisms. It is clear that if

ω̃ is saturated, then ω is surjective. Moreover 1̃X is a saturated homomorphism, and the

composite of (saturated) homomorphisms is a (saturated) homomorphism. Thus the classes

of representations of a fixed inverse magmoid M on algebras of a given variety V , together

with the class of morphisms among them, form a category DifRepV M . In this category,
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representations ϕ and ψ of M in X and Y , respectively, are isomorphic, denoted ϕ ∼= ψ, if

there exist morphisms ω̃ : ϕ → ψ and η̃ : ψ → ϕ such that η̃ ◦ ω̃ = 1̃X and ω̃ ◦ η̃ = 1̃Y .

Clearly in this case both ω and η are saturated. For example, if θ : X → Y is a bijection

such that θ̃ : ϕ→ ψ is a saturated homomorphism, then θ̃ is an isomorphism.

Definition 3.7. Let ϕ : M → Dif(X) be a difunctional representation. We say ϕ is deflated

if for all distinct y, z ∈ X, there exists x ∈ X such that Hx
y 6= Hx

z .

We can think of a representation as being deflated if it does not contain any redundant

information about X. As we show, if a representation is not deflated then there are some

elements y and z which cannot be distinguished by any elements of M ; in this case we might

as well toss one out, or, equivalently, identify y and z.

Proposition 3.8. If ϕ is a deflated representation of M in X, then
⋂
s∈M ϕ(s-1 · s) = ∆X .

Proof. (⊇) Each ϕ(s-1s) is an equivalence by (i) and (i), and so contains ∆X . (⊆) Suppose we

have y and z such that y
(⋂

s∈M ϕ(s-1 · s)
)
z. Let x ∈ X, and say s ∈ Hx

y . Now y ϕ(s-1 · s) z,

so that x ϕ(s · (s-1 · s)) z, and thus s ∈ Hx
z . Conversely, Hx

z ⊆ Hx
y , so that Hx

y = Hx
z for all

x ∈ X. Since ϕ is deflated, we have y = z, so that y ∆X z as desired.

For example, if ϕ : G → Dif(X) is a deflated representation of a group G, then

ϕ(g)ϕ(g)-1 = ∆X for all g ∈ G and thus ϕ is a permutation representation. As we show,

every representation has a deflated homomorphic image which is unique up to isomorphism.

Proposition 3.9. Let ϕ : M → Dif(X) be a representation. Define a relation ε on X by

y ε z precisely when for all x ∈ X we have Hx
y = Hx

z . Then we have the following.

(i) ε =
⋂
s∈M ϕ(s-1 · s) is a congruence.

(ii) The relation δ(s) = {([x], [y]) | x ϕ(s) t} on X/ε is full and difunctional.

(iii) The mapping δ : M → Dif(X/ε) is a deflated representation of M .

(iv) Letting π : X → X/ε denote the natural projection, π̃ : ϕ → δ is a saturated homo-

morphism.
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(v) If ψ : M → Dif(Y ) is a deflated representation of M and η̃ : ϕ → ψ a saturated

homomorphism, then ψ ∼= δ.

Proof. (i) (⊆) Suppose y ε z, and let s ∈ M . Since ϕ(s) is full, we have s ∈ Hw
y for some

w ∈ X, so that s ∈ Hw
z . That is, y ϕ(s-1) w ϕ(s) z, so that y ϕ(s-1 · s) z for all s as desired.

(⊇) Suppose y
⋂
s∈S ϕ(s-1 · s) z. Now let x ∈ X and let s ∈ Hx

y . Now x ϕ(s) y ϕ(s-1 · s) z,

so that s = s · (s-1 · s) ∈ Hx
z . Similarly, Hx

z ⊆ Hx
y , so that Hx

y = Hx
z for all x. Thus y ε z as

desired. In particular, ε is a congruence.

(ii) Note that if x1 ε x2, y1 ε y2, and x1 ϕ(s) y1, then x2 ϕ(s) y2, since

εϕ(s)ε ⊆ ϕ(s · s-1)ϕ(s)ϕ(s-1 · s) = ϕ(s).

Thus, if [x0], [y0] ∈ X/ε, then x ϕ(s) y for all x ∈ [x0] and y ∈ [y0] if and only if x0 ϕ(s) y0.

This enables us to define δ(s) = {([x], [y]) | x ϕ(s) y} on X/ε, confident that the choice

of a representative for each ε class does not matter. Now let [x] ∈ X/ε. Since ϕ(s) is

full, there exist y, z ∈ X such that y ϕ(s) x ϕ(s) z. Now [y] δ(s) [x] δ(s) [z], so δ(s) is

full. If [x] δ(s) [y] δ(s)-1 [z] δ(s) [w], then x ϕ(s) y ϕ(s)-1 z ϕ(s) w, so x ϕ(s) w, and thus

[x] δ(s) [w]. So δ(s) is difunctional.

(iii) Suppose s · t exists. Now [x] δ(s · t) [y] if and only if x ϕ(s · t) y, if and only if

x ϕ(s) z ϕ(t) y for some z, if and only if [x] δ(s) [z] δ(t) [y] for some z. So δ is a repre-

sentation. Now we show that δ is deflated; to this end, note that s ∈ Hx
y if and only if

x ϕ(s) y, if and only if [x] δ(s) [y], if and only if s ∈ H [x]
[y] ; in particular, H [x]

[y] = Hx
y . Now let

[y], [z] ∈ X/ε and suppose H [x]
[y] = H

[x]
[z] for all [x]. Then we have Hx

y = Hx
z for all x, and so

y ε z as desired.

(iv) If [x] π-1 x′ ϕ(s) y′ π [y], we have x ε x′ ϕ(s) y′ ε y, so that x ϕ(s) y, and thus

[x] δ(s) [y]. Conversely, if [x] δ(s) [y], then x ϕ(s) y, and so [x] π-1 x ϕ(s) y π [y]. So we

have π-1ϕ(s)π = δ(s) for all s ∈M as desired.

(v) Suppose ψ and η̃ exist. First, we claim that ε ⊆ ker η. To this end, suppose x ε y.
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Then x ε(s · s-1) y for all s ∈ M , and so η(x) η-1 x ε(s · s-1) y η η(y) for all s. Since η̃ is

saturated, we have η(x) ψ(s · s-1) η(y) for all s. By 3.8 we have η(x) = η(y) as desired. By

the First Isomorphism Theorem for sets, we have an injective mapping ηπ : X → Y such that

ηπ([x]) = η(x), regardless of the choice of representative. Since η̃ is saturated, η is surjective,

so that ηπ is bijective. Next we claim that η̃π : δ → ψ is a saturated homomorphism. To

this end, note that πηπ = η. Then for all s ∈ M , we have η-1
π δ(s)ηπ = η-1

π π
-1ϕ(s)πηπ =

η-1ϕ(s)η = ψ(s) as desired. Thus ψ ∼= δ.

In other words, if ϕ is a representation on X which is not deflated then we can ‘cut

down’ (or deflate) ϕ to an essentially unique deflated representation by identifying elements

of X which are indistinguishable by ϕ. This process is also reversible, as in the following

straightforward result.

Proposition 3.10. Let δ : M → Dif(X) be a deflated difunctional representation.

(i) Suppose θ : Y → X is a surjective map. Define ϕθ(s) = {(x, y) | θ(x) δ(s) θ(y)} on Y .

Then ϕθ(s) is a full difunctional relation on Y and ϕθ : M → Dif(Y ) a difunctional

representation of M . Moreover, the deflation of ϕθ is isomorphic to δ. In this case, we

say that ϕθ is the inflation of δ along θ.

(ii) If ϕ : M → Dif(X) is a difunctional representation with deflation δ : M → Dif(X/ε),

then there is a map θ : X → X/ε such that ϕ ∼= ϕθ. That is, every representation is

obtained by inflating a deflated representation along some map.

Next we construct sums of representations.

Proposition 3.11. Let ϕi : M → Dif(Xi) be a family of representations indexed by a set I.

Let
∐

I Xi denote the disjoint union of the sets Xi, and let ιk : Xk →
∐

I Xi denote the kth

canonical injection. For each s ∈ M , define Φ(s) on
∐

I Xi by Φ(s) =
⋃
i∈I ι

-1
i ϕi(s)ιi. Then

we have the following.

(i) Φ(s) is a full and difunctional relation for each s ∈M .
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(ii) The map Φ : M → Dif(
∐

I Xi) is a difunctional representation, denoted
∑

I ϕi.

(iii) ι̃k : ϕk →
∑

I ϕi is a homomorphism of representations.

(iv) If Ψ : M → Dif(Y ) is a representation and η̃ : ϕi → Ψ a family of homomorphisms

indexed by I, then there exists a unique homomorphism Θ̃ :
∑

I ϕi → Ψ such that

η̃k = Θ̃◦ ι̃k for each k ∈ I. That is, there is a unique Θ̃ such that the following diagram

commutes.

ϕk
ι̃k //

η̃k ##F
FF

FF
FF

FF
F

∑
I ϕi

Θ̃
��

Ψ

Proof. (i) Let (x, k) ∈
∐

I Xi. Since ϕk(s) is full, there exist elements y, z ∈ Xk such

that y ϕk(s) x ϕk(s) z. So (y, k) Φ(s) (x, i) Φ(s) (z, i), and thus Φ(s) is full. Now sup-

pose (x, k) Φ(s) (y, k) Φ(s)-1 (z, k) Φ(s) (w, k). Then x ϕk(s) y ϕk(s)
-1 z ϕk(s) w, so that

x ϕk(s) w, and thus (x, k) Φ(s) (w, k). So Φ(s) is difunctional.

(ii) Suppose s · t exists in M . Note that (x, k) Φ(s · t) (y, k) if and only if x ϕk(s · t) y,

if and only if x ϕk(s) z ϕk(t) y for some z, if and only if (x, k) Φ(s) (z, k) Φ(t) (y, k). In

particular, Φ(s)Φ(t) is difunctional and equal to Φ(s · t); so Φ is a representation. (iii) If

(x, k) (ιk)
-1 x ϕk(s) y ιk (y, k), then by definition we have (x, k) Φ(s) (y, k). Thus we have

(ιk)
-1ϕ(s)ιk ⊆ Φ(s) as desired.

(iv) Now suppose Ψ : M → Dif(Y ) and the family of η̃i : ϕi → Ψ exist. We have

ηi : Xi → Y . By the universal property of disjoint unions of sets, there exists a mapping

Θ :
∐

I Xi → Y given by Θ(x, k) = ηk(x). We claim that Θ̃ is a homomorphism. Indeed, for

all s ∈ M , if ηk(x) Θ-1 (x, k) Φ(s) (y, k) Θ ηk(y), then ηk(x) η-1
k x ϕk(s) y ηk ηk(y), so that

ηk(x) Ψ(s) ηk(y), and thus Θ-1Φ(s)Θ ⊆ Ψ(s) as required. Moreover, note that

ηk(x) η-1
k x ϕk(s) y ηk ηk(y)

if and only if

ηk(x) Θ-1 (x, k) ι-1k x ϕk(s) y ιk (y, k) Θ ηk(y);
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so η-1
k ϕk(s)ηk = Θ-1ι-1k ϕk(s)ιkΘ for all s ∈M , and thus Θ̃ ◦ ι̃k = η̃k.

Now if Ω̃ :
∑

I ϕi → Ψ is a homomorphism such that η̃k = Ω̃ ◦ ι̃k for all k ∈ I, then

Ω-1 (
∑

I ϕi)(s) Ω = Ω-1 (
⋃
I ι

-1
i ϕi(s)ιi) Ω =

⋃
I Ω-1ι-1i ϕi(s)ιiΩ

=
⋃
I η

-1
i ϕi(s)ηi =

⋃
I Θ-1ι-1i ϕi(s)ιiΘi

= Θ-1 (
⋃
I ι

-1
i ϕi(s)ιi) Θ = Θ-1 (

∑
I ϕi)(s) Θ,

so that Ω̃ = Θ̃ as desired.

This sum is the coproduct in the category of difunctional representations of M .

Definition 3.12. A representation ϕ : M → Dif(X) is said to be connected if for all

x, y ∈ X, we have a natural number k and elements zi ∈ X for 1 ≤ i ≤ k such that z1 = x,

zk = y, and Hzi
zi+1

is nonempty for each 1 ≤ i < k. We say that ϕ is transitive if for all

x, y ∈ X, the set Hx
y is nonempty.

Note that if M is an inverse semigroup, connected and transitive are equivalent. In fact

every representation is isomorphic to a sum of connected representations, and by abstract

nonsense this decomposition is unique up to a permutation of the summands.

Theorem 3.13. Let ϕ : M → Dif(X) be a representation. There is a family of connected

representations ϕi : M → Dif(Xi), indexed by a set I, such that ϕ ∼=
∑

I ϕi. Moreover, ϕ is

deflated if and only if the ϕi are deflated.

Proof. Define a relation ε on X by x ε y if and only if x ϕ(s1)ϕ(s2) · · ·ϕ(sk) y for some

elements si ∈ M , 1 ≤ i ≤ k. (Note that we do not demand that any products exist among

the si.) Clearly ε is an equivalence on X. Let I = X/ε, and define ϕA(s) = ϕ(s) ∩ (A× A)

for each A ∈ I. Evidently each ϕA is a representation of M in A, and in fact ϕ ∼=
∑

A∈I ϕA

via the map Ω : X →
∐

I A given by x 7→ (x, [x]ε).

We now consider families of subsets in an inverse magmoid which behave like the H-sets

of a representation.
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Definition 3.14. LetM be an inverse magmoid and letM = {Mx}x∈X be a family of strong

inverse submagmoids of M , each containing E(M). A coset system for M is a mapping

H : X ×X → P(M) such that the following hold.

(i) For each x ∈ X, the sets H(x, y) cover M .

(ii) For each x ∈ X we have H(x, x) = Mx.

(iii) For all x, y ∈ X and s, t ∈ M such that s · t exists, s · t ∈ H(x, y) if and only if

s ∈ H(x, z) and t ∈ H(z, y) for some z ∈ X.

(iv) For all x, y ∈ X, H(x, y)-1 = H(y, x).

Clearly if ϕ is a representation of M in X, then H(x, y) = Hx
y is a coset system which we

say is induced by ϕ. Conversely, given a coset system, we may construct a representation.

Proposition 3.15. Let M be an inverse magmoid and H a coset system of M indexed by

X. For each s ∈M , the relation ϕH(s) = {(y, z) | s ∈ H(y, z)} is a full difunctional relation

on H. Moreover, ϕH : M → Dif(X) is a representation of M , and under this representation,

H(x, y) = Hx
y .

In other words, the coset systems onM correspond to the H-sets of representations ofM .

In particular, we may thus speak of a coset system as being deflated, connected, or transitive.

Moreover, every deflated representation is isomorphic to the representation induced by its

H-sets.

Proposition 3.16. If ϕ : M → Dif(X) is a deflated representation then ϕ ∼= ϕH , where H

is the coset system induced by ϕ.

Proof. We have x ϕ(s) y if and only if s ∈ H(x, y), if and only if s ∈ Hx
y , if and only if

x ϕ(s) y; thus the identity on X is an isomorphism ϕ→ ϕH .

Combining these results, we have that every representation of an inverse magmoid M

may be obtained by inflating representations of the form
∑

i∈I ϕHi
, where the Hi are deflated

and connected coset systems on M . This result is almost analogous to 1.3 and 1.6; every
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difunctional representation of M can be constructed using only the structure of M itself.

However this proof is nonconstructive in the sense that we do not have an explicit description

of the coset systems for a givenM.

Specifically, given a family M of strong inverse submagmoids, each containing E(M),

can we construct the coset systems for M? We do have some partial results; for example,

H(x, y) has the form
⋃
A∈AAsA, where A is a set of σH(x,x)-classes, and H(x, y) is down-

closed. Certianly H(x, y) ⊆ {s | s-1H(x, x)s ⊆ H(y, y)}. These are open problems and a

clear avenue for future work.
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Conclusion

The difunctional relations Dif(X) on a set X are essentially the isomorphisms among quo-

tients of X, and thus have a clear interpretation as the colocal (dual partial) symmetries of

X. Under relative composition and conversion, Dif(X) is a concrete instance of a class of

partial algebras which we have called inverse magmoids, and every abstract inverse magmoid

M can be represented as an inverse magmoid of difunctional relations. Moreover, very such

representation is isomorphic to an inflation of a sum of representations induced by coset

systems on M .
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