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ABSTRACT

This work is based on a paper by Edgar Lee Stout, where it is shown that for every strictly

pseudoconvex domain D of class C2 in CN , the Henkin-Ramı́rez Kernel Function belongs to

the Smirnov class, Eq(D), for every q ∈ (0, N).

The main objective of this dissertation is to show an analogous result for the Cauchy

Kernel Function and for any strictly convex bounded domain in the complex plane. Namely,

we show that for any strictly convex bounded D ⊂ C of class C2 if we fix ζ in the boundary

of D and consider the Cauchy Kernel Function

K(ζ, z) =
1

2πi

1

ζ − z

as a function of z, then the Cauchy Kernel Function belongs to the Smirnov class Eq(D) for

every q ∈ (0, 1).
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INTRODUCTION

This work is based on a paper by Edgar Lee Stout, [16], where it is shown that for every

strictly pseudoconvex domain D of class C2 in CN , the Henkin-Ramı́rez Kernel Function

belongs to the Smirnov class, Eq(D), for every q ∈ (0, N).

The main objective of this dissertation is to show an analogous result for the Cauchy

Kernel Function and for any strictly convex bounded domain in the complex plane. Namely,

we show that for any strictly convex bounded D ⊂ C of class C2 if we fix ζ in the boundary

of D and consider the Cauchy Kernel Function

K(ζ, z) =
1

2πi

1

ζ − z
(0.1)

as a function of z, then the Cauchy Kernel Function belongs to the Smirnov class Eq(D)

for every q ∈ (0, 1).

It is important to point out that this work is influenced by Stout’s paper not only in

terms on the nature of the result we desire to obtain but also in terms of the method used to

accomplish it. In his paper Stout uses a local convexification of the domain, this allows him to

locally relate the Henkin-Ramı́rez Kernel Function of the domain D with the corresponding

Kernel Function of a ball, for which he proved the desired result directly. In this dissertation

we work with a strictly convex, bounded domain which allows us to proceed by a similar

argument, but in this case a global one.

An essential factor for determining the methods used to prove our result, was our interest to

develop a method that would allow us to extend this finding to the setting of several variables

in the case of a bounded, convex domain D ⊂ CN and to the Cauchy-Leray Kernel Function,

which is the higher dimensional analog of the classical Cauchy Kernel Function (0.1). While

the higher dimensional Cauchy-Leray Kernel will be a topic for future investigation, the need

to pursue an approach in the complex 1-dimension setting that could be later extended to

higher dimension was the main reason for our choice to avoid using conformal mapping in
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the present work.

This dissertation is organized as follows. The first chapter is devoted to some preliminaries

in R2, including the definition of two function spaces, the Hardy Space defined as in [8] and

the Smirnov Class. Both of these spaces are often referred to as the Hq space. In this work

we make the distinction between both spaces and at the end of the chapter we give a detailed

proof of the fact that for a bounded domain of class C2 in the complex plane, the Hardy

space is contained in the Smirnov Class for any q ∈ (0, 1). Results exploring the relationship

between these two spaces are known in the literature, for example, in [11] Lanzani showed

that for any bounded simply connected domain with Lipschitz boundary and any q ≥ 1 the

Smirnov Class coincides with the Hardy Space.

In the second chapter we concentrate in two specific examples of a strictly convex domain,

namely, a disc and an ellipse. Both of these cases will play a key role in the pursuit of our

objective.

In the case of the disc, we begin by exploring the instance of the unit disc centered at

zero. We quote results by Stout, [16] and Duren [4] that establish that the Cauchy Kernel

is in both the Smirnov and Hardy spaces of any disc. It is worth noting that Duren uses a

third definition of Hq space with harmonic marjorants, however, Stein shows in [15] that for

a domain of class C2 Duren’s definition of Hardy space is equivalent to the Smirnov Class,

and since we will be working exclusively with C2 smooth curves here, we will focus on the

Smirnov Class.

The disc will play a key roll on the proofs to follow, as an “osculating model domain”

that we will employ in a spirit similar to Stout.

The instance of the ellipse was used as a “toy example” to understand the main difficulties

when working with a strictly convex, bounded domain.

In the final chapter of this thesis we extend our result to strictly convex bounded domains

of class C2 by adapting the methods used in the ellipse case.
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Chapter 1

PRELIMINARIES

1.1 Preliminaries in R2.

Definition 1.1. Let D be a bounded domain R2, we say that D is of class Ck, k ∈ Z+ if

and only if there exists a neighborhood U of D̄ and a function ρ ∈ U(D̄)→ R such that

1. ρ ∈ Ck(U(D̄))

2. D = {z | ρ(z) < 0}

3. ∂D = {z | ρ(z) = 0}

4. ∇ρ(z) 6= 0 for every z ∈ ∂D

ρ is called a defining function for D.

See Chapter 2 of [13]

Lemma 1.2. If ρ1, ρ2 are two defining functions for a domain D of class Ck with k ≥ 1,

then there exists h ∈ Ck−1(U(D̄)), h : U(D̄)→ R so that h > 0 on U(D̄) and

ρ2(z) = h(z)ρ1(z) (1.1)

for all z ∈ U(D̄). Furthermore,

∇ρ2(ζ) = h(ζ)∇ρ1(ζ) (1.2)

for all ζ ∈ U ∩ ∂D.

Both this Lemma and its proof can be found in Chapter 2 of [13].
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Definition 1.3. Let A be a non-empty subset of R2 and x ∈ R2, define the distance from x

to the set A, by

d(x,A) = inf{|x− a| | a ∈ A} (1.3)

See Chapter 2 of [3].

Lemma 1.4. If D has a Ck-smooth, k ≥ 2 defining function ρ and p ∈ ∂D, then there is a

neighborhood U of p such that for all z ∈ U there is a unique point z′ ∈ ∂D ∩ U with

|z − z′| = dist(z, ∂D) (1.4)

Moreover, the function gp that assigns z′ to every z ∈ U is of class Ck−1.

This Lemma and its proof can be found in Chapter 1 of [10].

Lemma 1.5. If D is a bounded domain of class Ck with defining function ρ, then there exists

an open neighborhood U of ∂D and a function g : U → ∂D such that g is of class Ck−1 and

|z − g(z)| = dist(z, ∂D) (1.5)

Proof. By Lemma 1.4 for every p ∈ ∂D there exists Up an open neighborhood of p and a

function gp : Up → ∂D such that gp is of class Ck−1 and

|z − gp(z)| = dist(z, ∂D). (1.6)

Consider G =
⋃
p∈∂D Up, then clearly G is an open cover of ∂D and since ∂D is compact we

have that there is a collection {p1, · · · , pn} ∈ ∂D such that U =
⋃n
i=1 Upi is an open cover

for ∂D.

Let φ1, · · · , φn be a smooth partition of unity associated with the covering {Upi}, then it

suffices to define,

g(z) =
n∑
i=1

φi(z)gpi(z) (1.7)
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for any z ∈ U .

Lemma 1.6. Let f be a differentiable function in a region of R2 that contains a smooth

curve C given by ρ(x, y) = 0. Assume that f has a local extreme value (relative to values

of f on C) at a point P = (a, b) on C, then ∇f(a, b) is orthogonal to the line tangent to C

at p. Assuming ∇ρ(a, b) 6= 0, it follows that there is a real number λ (called the Lagrange

Multiplier) such that

∇f(a, b) = λ∇ρ(a, b) (1.8)

Both this Lemma and its proof can be found in Chapter 12 of [2].

Definition 1.7. Let a be a nonzero real number then, we define the function sign of a as

sgn(a) =
a

|a|
(1.9)

and we will take sgn(0) = 0.

See [6], Chapter 1.

The following Lemma and the outline of its proof can be found in Chapter 1 of [10]

Lemma 1.8. If D is a bounded domain with defining function ρ of class Ck, k ≥ 2, then the

signed distance function

ρ̃(z) = sgn(ρ(z))dist(z, ∂D) (1.10)

is a Ck function in a neighborhood U of ∂D, where U is as in Lemma 1.5 and sgn(ρ(z)) is

as in definition 1.7.

Proof. Let g and U be the function and neighborhood of ∂D defined in Lemma 1.5. For a

fixed z ∈ U , consider f(ζ) = |z − ζ|2, then by Lemma 1.6 where C = ∂D we know that if

ζ0 ∈ ∂D is a local extrema for f on ∂D we have that

∇f(ζ0) = λ∇ρ(ζ0) (1.11)
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Now, if z = (x, y) and ζ = (ζ1, ζ2), then

∂f

∂ζ1

= 2(x− ζ1)(−1) = −2(x− ζ1) (1.12)

and

∂f

∂ζ2

= 2(y − ζ2)(−1) = −2(y − ζ2) (1.13)

and so,

∇f(ζ) = −2(x− ζ1, y − ζ2) = −2(z − ζ) (1.14)

Substituting equation (1.14) in equation (1.11) we have that if ζ0 ∈ ∂D is a local extrema

for f then,

−2(z − ζ0) = λ∇ρ(ζ0) (1.15)

But by definition of g(z), for any point z ∈ U g(z) must be a minimum of |z − ζ|2, hence

we can substitute g(z) for ζ0 on equation (1.15). And so,

−2(z − g(z)) = λ∇ρ(g(z)). (1.16)

Call M = −λ/2, then the previous equation can be rewritten as

z − g(z) = M∇ρ(g(z)) (1.17)

Also,

(ρ̃(z))2 = (sgn(ρ(z))2(dist(z, ∂D))2 = dist(z, ∂D)2 (1.18)

= |z − g(z)|2 = (x− g1(z))2 + (y − g2(z))2

where z = (x, y) and g(z) = (g1(z), g2(z)).
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Differentiating the previous equation with respect to x we obtain,

2ρ̃(z)
∂ρ̃

∂x
=2(x− g1(z))

(
1− ∂g1

∂x

)
+ 2(y − g(z))

(
−∂g2

∂x

)
(1.19)

=2(x− g1(z))− 2(x− g1(z))
∂g1

∂x
− 2(y − g2(z))

∂g2

∂x

On the other hand, by looking at each coordinate of equation (1.17) we know that,

x− g1(z) = M
∂ρ

∂ζ1

(g(z)) (1.20)

and

y − g2(z) = M
∂ρ

∂ζ2

(g(z)) (1.21)

Substituting equation (1.20) on equation (1.19) we have that,

2ρ̃(z)
∂ρ̃

∂x
=2M

∂ρ

∂ζ1

(g(z))− 2M
∂ρ

∂ζ1

(g(z))
∂g1

∂x
− 2M

∂ρ

∂ζ2

(g(z))
∂g2

∂x
(1.22)

=2M
∂ρ

∂ζ1

(g(z))− 2M

[
∂ρ

∂ζ1

(g(z))
∂g1

∂x
+
∂ρ

∂ζ2

(g(z))
∂g2

∂x

]
=2M

∂ρ

∂ζ1

(g(z))− 2M
∂(ρ ◦ g(z))

∂x

But for all z ∈ U , g(z) ∈ ∂D and so ρ(g(z)) = 0, hence

∂(ρ ◦ g(z))

∂x
= 0 and

∂(ρ ◦ g(z))

∂y
= 0 (1.23)

Substituting this value on equation (1.22) we get,

ρ̃(z)
∂ρ̃

∂x
= M

∂ρ

∂ζ1

(g(z)). (1.24)

7



Similarly, we can show that

ρ̃(z)
∂ρ̃

∂y
= M

∂ρ

∂ζ2

(g(z)) (1.25)

Combining equations (1.24) and (1.25) we obtain,

ρ̃(z)∇ρ̃(z) = M∇ρ(g(z)) (1.26)

Also, taking absolute value of equation (1.17) we see that,

|z − g(z)| = |M ||∇ρ(g(z))| (1.27)

On the other hand,

ρ̃(z) = sgn(ρ(z))dist(z, ∂D) = sgn(ρ(z))|z − g(z)| (1.28)

Combining these last two equations,

ρ̃(z) = sgn(ρ(z))|M ||∇ρ(g(z))| (1.29)

Substituting equation (1.29) in equation (1.26) we have that,

sgn(ρ(z))|M ||∇ρ(g(z))|∇ρ̃(z) = M∇ρ(g(z)) (1.30)

Now, assume that z ∈ U \ ∂D, then sign(ρ(z)) 6= 0, also observe that since g(z) ∈ ∂D

and ρ is a defining function for D, we know that ∇ρ(g(z)) is also different from zero. Hence

we may divide by those quantities. Then from equation (1.30) we get,

8



∇ρ̃(z) =
M

|M |
1

sgn(ρ(z))

∇ρ(g(z))

|∇ρ(g(z))|
(1.31)

=
sgn(M)

sgn(ρ(z))

∇ρ(g(z))

|∇ρ(g(z))|

for all z ∈ U \ ∂D.

Now, we can assume without loss of generality that ∂D is positively oriented and that for

all ζ ∈ ∂D, ∇ρ(ζ) is the outer normal to ∂D at ζ. Hence if M satisfies equation (1.17) and

z ∈ U ∩D, then M must be negative while if z ∈ U \D then M > 0. Therefore if z ∈ U \ ∂D

we have that

sgn(M)

sgn(ρ(z))
= 1 (1.32)

And so, for all z ∈ U \ ∂D we have that,

∇ρ̃(z) =
∇ρ(g(z))

|∇ρ(g(z))|
(1.33)

Notice that since ρ is a defining function for D the right hand side of this equality is also

well defined on the boundary of D, hence the equality must hold on ∂D as well.

This result was published in 1981 by Krantz and Parks in [9] and later on in 1984 Foote

gave a coordinate free proof, this can be found in [5].

Definition 1.9. For a domain of class Ck and for each defining function ρ of D, we define

the set Dε(ρ) as

Dε(ρ) = {z ∈ R2 | ρ(z) < −ε} (1.34)

See [15] Chapter 1.

Lemma 1.10. Let D be bounded domain with ρ a Ck − smooth defining function, k ≥ 2 and

9



consider V an open neighborhood of ∂D,

V = {z ∈ R2 | dist(z, ∂D) < ε0} (1.35)

with ε0 small enough so that V ⊂ U where U is as in Lemma 1.5 and Lemma 1.8. Then for

Dε(ρ̃) = {z ∈ R2 | ρ̃(z) < −ε} (1.36)

where ρ̃ is the signed distance function defined in Lemma 1.8, we have that

1. ∂Dε(ρ̃) ⊂ V ∩D and Dε(ρ̃) ⊂ D.

2.
⋃
εDε(ρ̃) = D

3. Dε(ρ̃) is a domain of class Ck and ρ̃+ ε is a defining function for Dε(ρ̃)

for all 0 < ε < ε0.

Proof. 1. Let 0 < ε < ε0 and z ∈ ∂Dε(ρ̃), then sgn(ρ(z))dist(z, ∂D) = −ε which implies

that ρ(z) < 0 and dist(z, ∂D) = ε < ε0, then z ∈ D and z ∈ V .

For the second statement, let z ∈ Dε(ρ̃) then ρ̃(z) < −ε, so in particular ρ(z) < 0,

hence z ∈ D.

2. Let 0 < ε2 < ε1, and let z ∈ Dε1(ρ̃), then ρ̃(z) < −ε1 < −ε2, hence Dε1(ρ̃) ⊂ Dε2(ρ̃),

and since each Dε(ρ̃) ⊂ D, then
⋃
εDε(ρ̃) ⊆ D.

Now, let z ∈ D, then ρ(z) < 0, and D open implies that there exist ε > 0 such

that Dε(z) ⊂ D and so dist(z, ∂D) > ε, therefore sgn(ρ(z))dist(z, ∂D) < −ε, hence

z ∈ Dε(ρ̃), and so
⋃
εDε(ρ̃) = D.

3. If 0 < ε < ε0, then by Lemma 1.8 ρ̃ is a Ck function on V , and so ρ̃+ ε is Ck on V too.

Now, by definition

Dε(ρ̃) = {z ∈ R2 | ρ̃(z) < −ε} = {z ∈ R2 | ρ̃(z) + ε < 0}. (1.37)
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Finally, by equation (1.33) we know that for all z ∈ V

∇ρ̃(z) =
∇ρ(g(z))

|∇ρ(g(z))|
(1.38)

where g(z) is as in Lemma 1.5, and since for all z ∈ D we know that g(z) ∈ ∂D and ρ

is a defining function for D then ∇ρ(g(z)) 6= 0 and so for all z ∈ ∂Dε, ∇ρ̃(z) is well

defined and different from zero.

Lemma 1.11. Let D be a bounded domain of class Ck, k ≥ 2 with defining function ρ. Let

ρ̃ be the signed distance function for D as defined in Lemma 1.8. Then for all ε > 0 there

exists ε′ > 0 such that

Dε(ρ) ⊂ Dε′(ρ̃). (1.39)

Conversely for all α > 0 there exists α′ > 0 such that

Dα(ρ̃) ⊂ Dα′(ρ) (1.40)

Proof. Let ε > 0 and take z ∈ Dε(ρ) then ρ(z) < −ε < 0 and so z ∈ D. But D open

implies that there exists ε′ > 0 such that Dε′(z) ⊂ D, and so dist(z, ∂D) > ε′, therefore

sgn(ρ(z))dist(z, ∂D) < −ε′, hence z ∈ Dε′(ρ̃). Therefore Dε(ρ) ⊂ Dε′(ρ̃).

Now let α > 0 and take z ∈ Dα(ρ̃), then by definition sgn(ρ(z))dist(z, ∂D) < −α and

since dist(z, ∂D) ≥ 0 for all z we have that ρ(z) < 0 and dist(z, ∂D) > α in particular

ρ(z) < 0 implies that there exists α′ > 0 such that ρ(z) < −α < 0, and so z ∈ Dα′(ρ).

Therefore Dα(ρ̃) ⊂ Dα′(ρ).

Lemma 1.12. Let γ1 and γ2 be two closed curves in R2 and Λ : γ1 → γ2 a homeomorphism

between γ1 and γ2. Then

∫
z∈γ2

f(z)dσ(z) =

∫
w∈γ1

f(Λ(w))|λ′(w))|dσ(w) (1.41)
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for every f integrable on γ2

See [14].

1.2 Function Spaces

Definition 1.13. Let f be a continuously differentiable function on a domain D ⊂ C. We

say that f(z) is analytic in D if and only if

∂f

∂z̄
(z) = 0 for all z ∈ D. (1.42)

where
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

See [3].

We will denote the space of analytic functions on D by O(D).

Definition 1.14. Let D be a Ck domain with defining function ρ we define the Smirnov

class of D to be

Eq(D) =

f ∈ O(D) : sup
ε>0

∫
∂Dε(ρ)

|f(z)|q dσ(z) ≤ C <∞

 (1.43)

where Dε(ρ) is as in definition 1.9.

See [4] and [15].

It is clear from the definition that for any D bounded, if 0 < p < q < ∞, then

Eq(D) ⊂ Ep(D).

The following definition and two lemmas show that the Smirnov class of a domain D is

independent of the choice of defining function.

Definition 1.15. Let D be a domain and let u : D → R be a continuous function we say

12



that u is subharmonic if whenever Dr(z) ⊂ D,

u(z) ≤ 1

2π

2π∫
0

u(a+ reiθ) dθ (1.44)

See [3].

Lemma 1.16. If f(z) is an analytic function in a domain D and q > 0, then |f(z)|q is

subharmonic in D.

The proof of the Lemma can be found in [4].

Lemma 1.17. Let ρ1 and ρ2 be two defining functions for a domain D and f an analytic

function in D, then

sup
ε>0

∫
∂Dε(ρ1)

|f(z)|q dσ1(z) <∞ (1.45)

if and only if

sup
ε>0

∫
∂Dε(ρ2)

|f(z)|q dσ(z)2 <∞ (1.46)

for all q > 0.

The proof of the previous Lemma can be found in Chapter 1 of [15], in the special case

when u = |f(z)|q.

Definition 1.18. Let D ⊂ R2 be a bounded domain of class Ck, k ≥ 1 and p a point in ∂D.

We define the non-tangential approach region as

Γα(p) = {z ∈ D | |z − p| ≤ (1 + α)dist(z, ∂D)} (1.47)

See [15].

Lemma 1.19. For any bounded domain of class Ck, k ≥ 1 there exists a positive number

α = α(D) with the property that every point p ∈ ∂D admits a non-empty non-tangential

approach region Γα(p).
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p

Figure 1.1: Non-tangential approach region Γα(p) in the case where the domain D is a disc

See [11].

Definition 1.20. Let D ⊂ R2 be a bounded domain of class Ck, k ≥ 1 and f a function

defined in D. The Nontangential Maximal function of f , f ∗, is defined as follows,

f ∗(p) = sup
ζ∈Γα(p)

|f(ζ)| a.e., p ∈ ∂D (1.48)

See [11].

Definition 1.21. Let D be a domain of class Ck, k ≥ 1, we define the Hardy space of D as

Hq(D) = {f ∈ O(D) | f ∗ ∈ Lq(∂D)}. (1.49)

with 0 ≤ q ≤ ∞.

Lemma 1.22. Suppose D is a bounded domain of class C2 then Hq(D) ⊆ Eq(D).

Proof. Let ρ(z) be a defining function for D, then by definition ∇ρ(ζ) 6= 0 for all ζ ∈ ∂D, so

the normal direction is well defined for all ζ ∈ ∂D.

We can assume without loss of generality that ∂D is positively oriented, so ∇ρ(ζ) defines

the outer normal direction to ∂D at ζ.

We will denote

n(ζ) = − ∇ρ(ζ)

|∇ρ(ζ)|
(1.50)
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to the inner unit normal vector to ∂D at ζ.

By Lemma 1.8 there is a neighborhood V of D such that ρ̃(z) = sgn(ρ(z))dist(z, ∂D) is

of class Ck on V .

Let ε0 be small enough so that for all 0 < ε < ε0

∂Dε(ρ̃) = {z ∈ R2 | ρ̃(z) = −ε} ⊂ V ∩D (1.51)

See Lemma 1.10.

For such ε0 there exists N0 ∈ N such that 1/N0 < ε0. For all j ∈ N consider

D 1
N0+j

(ρ̃) =

{
z ∈ R2 | ρ̃(z) < − 1

N0 + j

}
(1.52)

and define Λj : ∂D → ∂D 1
N0+j

(ρ̃) by

Λj(ζ) =
1

N0 + j
n(ζ) + ζ (1.53)

Now, D of class C2 means ∇ρ(ζ) is of class C1 and hence Λj(ζ) is itself of class C1 on

∂D.

Also, for all ζ ∈ ∂D and for all j ∈ N,

|ζ − Λj(ζ)| =
∣∣∣∣ζ − ( 1

N0 + j
n(ζ) + ζ

)∣∣∣∣ =

∣∣∣∣ζ − 1

N0 + j
n(ζ)− ζ

∣∣∣∣ =

∣∣∣∣− 1

N0 + j
n(ζ)

∣∣∣∣ (1.54)

=
1

N0 + j
|n(ζ)| = 1

N0 + j

and so, for all j ∈ N,

sup
ζ∈∂D

|ζ − Λj(ζ)| = 1

N0 + j
(1.55)

and then,

lim
j→∞

sup
ζ∈∂D

|ζ − Λj(ζ)| = lim
j→∞

1

N0 + j
= 0 (1.56)
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Note that since ∂D is compact this convergence is uniform.

Now, Λj(ζ) ∈ ∂D1/N0+j so, ρ̃(Λj(ζ)) = −1/(N0 + j), then dist(Λj(ζ), ∂D) = 1/(N0 + j) =

|ζ − Λj(ζ)|. So for all α, we have that,

|ζ − Λj(ζ)| ≤ (1 + α)dist(Λj(ζ), ∂D) (1.57)

and so, Λj(ζ) ∈ Γα(ζ) for all ζ ∈ ∂D.

Hence, if f ∈ O(D) is such that f ∈ Hq(D). We have that,

|f(Λj(ζ))| ≤ sup
w∈Γα(ζ)

|f(w)| (1.58)

and then |f(Λj(ζ))| ≤ f ∗(ζ).

Call h(ζ) = |∇ρ(ζ)|, then h(ζ) 6= 0 for all ζ ∈ ∂D. We can write Λj(ζ) as

Λj(ζ) = (F j
1 (ζ), F j

2 (ζ)) (1.59)

where

F j
k (ζ) = − 1

N0 + j

1

h(ζ)

∂ρ

∂xk
+ xk (1.60)

with k = 1, 2.

and since ρ is of class C2, we may compute
∂

∂x

[
F j
k (ζ)

]
and

∂

∂y

[
F j
k (ζ)

]
where ζ = (x, y).

∂

∂x

[
F j

1 (ζ)
]

= − 1

N0 + j

(
1

h(ζ)

∂2ρ

∂x
(ζ)− 1

h2(ζ)
h′(ζ)

∂ρ

∂x
(ζ)

)
+ 1 (1.61)

and

∂

∂x

[
F j

2 (ζ)
]

= − 1

N0 + j

(
1

h(ζ)

∂2ρ

∂y∂x
(ζ)− 1

h2(ζ)
h′(ζ)

∂ρ

∂x
(ζ)

)
(1.62)
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and then,

lim
j→∞

∂

∂x

[
F j

1 (ζ)
]

= lim
j→∞

[
− 1

N0 + j

(
1

h(ζ)

∂2ρ

∂x
(ζ)− 1

h2(ζ)
h′(ζ)

∂ρ

∂x
(ζ)

)
+ 1

]
(1.63)

= 1

while

lim
j→∞

∂

∂x

[
F j

2 (ζ)
]

= lim
j→∞

[
− 1

N0 + j

(
1

h(ζ)

∂2ρ

∂y∂x
(ζ)− 1

h2(ζ)
h′(ζ)

∂ρ

∂x
(ζ)

)]
(1.64)

= 0

Similarly,

lim
j→∞

∂

∂y

[
F j

1 (ζ)
]

= 0 (1.65)

and

lim
j→∞

∂

∂y

[
F j

2 (ζ)
]

= 1 (1.66)

So if, JΛj(ζ) denotes the jacobian matrix of Λj(ζ), we have that

lim
j→∞

JΛj(ζ) = lim
j→∞

∂F j1
∂x

∂F j1
∂y

∂F j2
∂x

∂F j2
∂y

 =

limj→∞
∂F j1
∂x

limj→∞
∂F j1
∂y

limj→∞
∂F j2
∂x

limj→∞
∂F j2
∂y

 (1.67)

=

1 0

0 1


Hence, limj→∞ det(JΛj (ζ)) = 1, and again since ∂D is compact this convergence is uniform

on ∂D. Then det(JΛj(ζ)) converges to 1 on Lq(∂D), for all 0 ≤ q ≤ ∞.

So finally, by Lemma 1.12 if f ∈ Hq(D), we have

∫
z∈∂D1/(N0+j)

(ρ̃)

|f(z)|qdσj(z) =

∫
ζ∈∂D

|f(Λj(ζ))|qdet(JΛj(ζ))dσ(ζ) (1.68)
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and since det(Jλj(ζ)) → 1 on Lq, then det(JΛj(ζ)) is bounded by some constant M > 1.

Therefore,

∫
ζ∈∂D

|f(Λj(ζ))|qdet(JΛj(ζ)dσ(ζ) ≤
∫

ζ∈∂D

Mf ∗(ζ)qdσ(ζ) = M

∫
ζ∈∂D

f ∗(ζ)qdσ(ζ) (1.69)

≤ C <∞

Hence,

sup
j∈N

∫
z∈∂D1/(N0+j)

(ρ̃)

|f(z)|qdσj(z) ≤
∫

ζ∈∂D

f ∗(ζ)qdσ(ζ) < C. (1.70)

Then,

sup
0<ε<ε0

∫
z∈∂Dε(ρ̃)

|f(z)|q dσε(z) ≤
∫

ζ∈∂D

f ∗(ζ)dσ(ζ) < C (1.71)

and by Lemma 1.17 we have that

sup
0<ε<ε0

∫
z∈∂Dε(ρ)

|f(z)|q dσε(z) <∞ (1.72)

Therefore, f ∈ Eq(D).
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Chapter 2

TWO MODEL DOMAINS: THE DISC AND THE ELLIPSE

2.1 The Cauchy Kernel function for a planar domain

Definition 2.1. Let ζ, z ∈ C, we define the Cauchy Kernel as

C(ζ, z) =
1

2πi

dζ

ζ − z
(2.1)

and for each ζ fixed in C we call the scalar part of the Cauchy Leray Kernel viewed as a

function of z:

K(ζ, z) =
1

2πi

1

ζ − z
(2.2)

with ζ, z ∈ C and ζ 6= z the Cauchy Kernel function.

2.2 The Cauchy Kernel function of a disc

The object of this section is to show that the Cauchy Kernel function belongs to Hq and Eq

of any disc in the complex plane provided that q ∈ (0, 1), as well as to revisit some classical

results for both spaces of a disc.

We begin with the case when the disc is the unit disc centered at the origin. We will

denote by Dr(p) the disc of radius r centered at p and D to the unit disc centered at 0.

Lemma 2.2. If f(z) =
∑
anz

n ∈ E1(D), then an → 0 as n→∞.

This Lemma and its proof can be found in Chapter 3 of [4].

Lemma 2.3. Let f(z) =
∑
anz

n be in O(D) then f ∈ E2(D) if and only if
∑
|ak|2 <∞.

The proof of Lemma 2.3 can be found in Chapter 1 of [4].

19



Lemma 2.4. For each fixed ζ0 ∈ ∂D, we have that the Cauchy Kernel function ( 2.2) belongs

to Eq(D) if and only if 0 < q < 1. Moreover, it belongs to Eq(D) uniformly in ζ. That is

there is a constant C such that

sup
ε>0

∫
∂Dε

1

|ζ − z|q
dσ(z) < C (2.3)

for every ζ ∈ ∂D.

Here Dε is as in definition 1.9.

Proof. The proof of the first statement is as in [16]. We first show that the Cauchy Kernel

Function is in Eq(D) if 0 < q < 1.

We begin considering the case in which ζ0 = 1.

Let f(z) = K(1, z) = 1
1−z .

Take f(z)q/2 =
1

(1− z)q/2
and consider its power series expansion about zero.

f(z)
q
2 =

1

(1− z)q/2
=
∞∑
k=0

(−1)k
(
−1

2
q

k

)
zk (2.4)

=
∞∑
k=0

(−1)k
Γ(− q

2
+ 1)

Γ(k + 1)Γ(− q
2
− k + 1)

zk

where Γ denotes the Gamma function.

For more about the Gamma Function, see [1].

Now, k is an integer, so Γ(k + 1) = k!. Therefore

f(z)
q
2 =

1

(1− z)q/2
=
∞∑
k=0

(−1)k
Γ(− q

2
+ 1)

k!Γ(− q
2
− k + 1)

zk (2.5)
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Also, observe that

Γ(−q
2

+ 1) = Γ((−q
2
− k + 1) + k) (2.6)

= −q
2

(−q
2
− 1)(−q

2
− 2) · · · (−q

2
− k + 1)Γ(−q

2
− k + 1)

Hence,

(
−1

2
q

k

)
=

Γ(− q
2

+ 1)

k!Γ(− q
2
− k + 1)

(2.7)

=
− q

2
(− q

2
− 1)(− q

2
− 2) · · · (− q

2
− k + 1)Γ(− q

2
− k + 1)

k!Γ(− q
2
− k + 1)

=
− q

2
( q

2
+ 1)( q

2
+ 2) · · · ( q

2
+ k − 1)

k!

Then,

f(z)q/2 =
∞∑
k=0

akz
k (2.8)

where

ak =
(−1)k+1 q

2
( q

2
+ 1)( q

2
+ 2) · · · ( q

2
+ k − 1)

k!
(2.9)

Then,
∞∑
k=0

|ak|2 =
| q
2
|2

1
+
| q
2
|2| q

2
+ 1|2

1 · 2 · 1 · 2
+
| q
2
|2| q

2
+ 1|2| q

2
+ 2|2

1 · 2 · 3 · 1 · 2 · 3
· · · (2.10)

which is the hypergeometric series F (q/2, q/2, 1, 1) − 1, see [17], and F (q/2, q/2, 1, 1)

converges if Re(q/2 + q/2− 1) < 0, that is when q < 1.

So by Lemma 2.3 f(z)q/2 ∈ E2(∂D, dσ) if q < 1. Which implies that f(z) ∈ Eq(D) if

q < 1.

On the other hand observe that for q = 1 we have that

f(z) =
1

1− z
=
∞∑
k=0

zk. (2.11)
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Therefore ak = 1 for every k, and then by Lemma 2.2 we know that,

f(z) =
1

1− z
=
∞∑
k=0

zk (2.12)

cannot be in E1(D).

Also, we know that for any domain D, we have that Eq(D) ⊂ Es(D) for s < q. Hence

Eq(D) ⊂ E1(D) for all q > 1 and since f(z) /∈ E1(D) then f(z) /∈ Eq(D) for every q > 1.

For the second assertion we notice that the fact that f(z) belongs to Eq(D) for 0 < q < 1

implies that ∫
∂Dε

1

|1− z|q
dσ(z) < M0 (2.13)

for all ε > 0.

Fix ζ 6= 0 ∈ ∂D. Then we can express ζ = eiθ, with θ ∈ (0, 2π) and so,

∫
∂Dε

1

|ζ − w|q
dσ(w) =

∫
∂Dε

1

|eiθ − w|q
dσ(w) =

∫
∂Dε

1

|eiθ|q|1− w
eiθ
|q
dσ(w) =

∫
∂Dε

1

|1− w
eiθ
|q
dσ(w)

(2.14)

Let z = w/eiθ. Then |w| = |z/eiθ| = |z|, so w ∈ ∂Dε if and only if z ∈ ∂Dε, and

dw = dz/eiθ, so |dw| = |dz| as well.

Hence, ∫
∂Dε

1

|ζ − w|q
dσ(w) =

∫
∂Dε

1

|1− z|q
dσ(z) < M0 (2.15)

and so M0 is independent of the choice of ζ, therefore K(ζ, z) as a function of z is in

Eq(D) uniformly for any ζ ∈ ∂D.

The following two corollaries establish that the Cauchy Kernel Function is in Eq of any

disc.

Corollary 2.5. K(ζ, z) belongs to Eq(DR(0)) for q ∈ (0, 1) for every fixed R ∈ R.
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Proof. Fix as in proof of (2.15), ζ ∈ ∂DR(0) and z ∈ DR(0). Again we can consider the

particular case when ζ = R. Then

lim
r→R

∫
1

|R− z|q
dσ(z) =

∫
1

|R|q|1− z
R
|q
dσ(z) (2.16)

Take w = z
R

. Observe that this is well defined since given that R ∈ ∂DR(0) and z ∈ DR(0)

we have that R 6= z. Also w ∈ D1(0)

Now, if w = z
R

then dw = 1
R
dz and if r → R then r

R
→ 1.

And so we have by equation (2.16) that

lim
r→R

∫
1

|R− z|q
dσ(z) = lim

r
R
→1

∫
1

|1− w|q
dσ(w) <∞ (2.17)

if q ∈ (0, 1) by Lemma 2.4.

Corollary 2.6. K(ζ, z) belongs to Eq(DR(z0)) with q ∈ (0, 1) for all fixed R ∈ R and all

z0 ∈ C.

Proof. Let ζ ∈ ∂DR(z0) and z ∈ DR(z0). Once again we can consider without loss of generality

ζ = z0 +R.

Take w = z − z0 then z = w + z0 and dw = dz and clearly w ∈ DR(0). Hence,

lim
r→R

∫
∂Dr(z0)

1

|z0 +R− z|q
dσ(z) = lim

r→R

∫
∂DR(0)

1

|z0 +R− (w + z0)|q
dσ(w) (2.18)

= lim
r→R

∫
∂Dr(0)

1

|R− w|q
dσ(w) <∞.

We end this section with a Lemma that explores the relation between the Smirnov Class

with the Hardy Space of a disc.
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Lemma 2.7. For any disc DR(z0) ⊂ C and for any q > 0 we have that Hq(DR(z0)) =

Eq(DR(z0)).

For the proof of previous Lemma see Chapter 10 of [4].

Observe that as a Corollary of the past Lemma and Lemma 2.4 we can conclude that

the Cauchy Kernel Function is in Hq(DR(z0)) for any ball in the complex plane if and only if

and only if q ∈ (0, 1) and then, we have that the following statement is true.

For any fixed ζ ∈ ∂D ∫
z∈∂D

[K∗(ζ, z)]q dσ(z) < C <∞ (2.19)

if and only if q ∈ (0, 1)

2.3 The Cauchy Kernel function of an Ellipse

The goal of this section is to show that for any ellipse in the complex plane the Cauchy

Kernel Function is both in the Smirnov Class and the Hardy space of its interior for any

q ∈ (0, 1). In addition we show that if q ≥ 1 then K(ζ, z) 6∈ Hq of the interior of the ellipse.

Like mentioned in the introduction we will do this by relating the Cauchy Kernel Function

of the ellipse with the one of a disc, for which we already have the result.

We begin by considering the case where the ellipse is centered at the origin.

Let E be the interior of any ellipse centered at 0, then we can parametrize its boundary,

∂E , as

∂E = a cos t+ ib sin t, where t ∈ [0, 2π) (2.20)

with a > 0, b > 0. We assume that a 6= b since the case where a = b is a circle, and that case

was dealt with in the previous section.

Without loss of generality we will assume for the rest of the section that a > b.

Throughout this section we will denote R = a2/b.

We want to relate the Cauchy Kernel Function of the ellipse with the Cauchy Kernel

Function of a disc, for that we need to construct for every fixed point p ∈ ∂E a circumference
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with radius R such that this circumference is tangent to ∂E at p and E ⊂ DR.

Notice that if we parametrize ∂E as in equation (2.20) then, any fixed point p has tangent

vector τ(t) = −a sin t+ ib cos t. Since we want the circumference to be tangent to the ellipse,

then we know that the center to this circumference lies in the line generated by the normal

vector to ∂E at p on the inside of E , and since the given parametrization has counterclockwise

direction, we need to rotate τ(z) by π/2. Then the unit inner normal vector is given by

iτ(t0)

|τ(t0)|
=
−b cos t0 − ia sin t0√
b2 cos2 t0 + a2 sin t0

(2.21)

Translating this vector to p and making the distance between p and the center of the disc R,

we see that the center of the circumference we are looking for a fixed point p = a cos t0+ib sin t0

is given by,

c(z) = a cos t0 −
Rb cos t0√

b2 cos2 t0 + a2 sin2 t0
+ i

(
b sin t0 −

Ra sin t0√
b2 cos2 t0 + a2 sin2 t0

)
(2.22)

Lemma 2.8. For each fixed p ∈ ∂E we have,

E \ {p} ⊂ DR(c(p)) (2.23)

Furthermore p ∈ ∂DR(c(p)) and ∂E and ∂DR(c(p)) are tangent at p.

Proof. We begin with the proof of the first statement.

Let p ∈ ∂E , then p can be expressed as p = a cos t0 + ib sin t0 with t0 fixed in [0, 2π).

Observe that to prove that E ⊂ DR(c(p)), it is enough to prove that ∂E ⊂ DR(c(p)).

Let z be a point in ∂E , then z = a cos t+ ib sin t for some t ∈ [0, 2π). We need to show

that |z − c(p)|2 < R2. But,
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|z − c(p)|2 =

(
a cos t+

bR cos t0√
b2 cos2 t0 + a2 sin2 t0

− a cos t0

)2

(2.24)

+

(
b sin t+

aR sin t0√
b2 cos2 t0 + a2 sin2 t0

− b sin t0

)2

and so,

|z − c(p)|2 = a2 cos2 t+ b2 sin2 t+
2abR cos t0 cos t√
b2 cos2 t0 + a2 sin2 t0

− 2a2 cos t0 cos t (2.25)

+
2abR sin t0 sin t√
b2 cos2 t0 + a2 sin2 t0

− 2b2 sin t0 sin t+R2 − 2abR√
b2 cos2 t0 + a2 sin2 t0

+ a2 cos2 t0 + b2 sin2 t0

= (a cos t− a cos t0)2 + (b sin t− b sin t0)2 +R2

+
2abR√

b2 cos2 t0 + a2 sin2 t0
[cos(t0 − t)− 1]

so finally,

|z − c(p)|2 = |z − p|2 +R2 +
2abR√

b2 cos2 t0 + a2 sin2 t0
[cos(t0 − t)− 1] (2.26)

Hence, it is enough to prove that,

|z − p|2 ≤ 2abR√
b2 cos2 t0 + a2 sin2 t0

[1− cos(t0 − t)] (2.27)

Notice that b < a implies that

b ≤
√
b2 cos2 t0 + a2 sin2 t0 ≤ a (2.28)

and then,

2b ≤ 2ab√
b2 cos2 t0 + a2 sin2 t0

≤ 2a (2.29)
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So,

2a2 ≤ 2abR√
b2 cos2 t0 + a2 sin2 t0

(2.30)

Therefore it suffices to prove that,

|z − p|2 ≤ 2a2[1− cos(t0 − t)] (2.31)

Now,

|z − p|2 =(a cos t0 − a cos t)2 + (b sin t0 − b sin t)2 (2.32)

=a2(cost0 − cos t)2 + b2(sin t0 − sin t)2

and then,

|z − p|2 ≤ a2
[
(cos t0 − cos t)2 + (sin t0 − sin t)2

]
(2.33)

But (cos t0 − cos t)2 + (sin t0 − sin t)2 = |S −Q|2 where S and Q are two points in the

unit circle, and we know,

|S −Q|2 =|S|2 + |Q|2 − 2Re(SQ̄) (2.34)

=|S|2 + |Q|2 − 2 cos(t0 − t) = 2− 2 cos(t0 − t)

=2[1− cos(t− t0)]

Combining equations (2.33) and (2.34) we get,

|z − p|2 ≤ 2a2[1− cos(t0 − t)] (2.35)

Which is what we wanted to prove.

For the proof of the second statement we start by showing that p ∈ ∂DR(c(p)). Substituting
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p = a cos t0 + ib sin t0 for z in equation 2.24 we get,

|p− c(p)|2 =

(
a cos t0 +

bR cos t0√
b2 cos2 t0 + a2 sin2 t0

− a cos t0

)2

(2.36)

+

(
b sin t0 +

aR sin t0√
b2 cos2 t0 + a2 sin2 t0

− b sin t0

)2

=

(
bR cos t0√

b2 cos2 t0 + a2 sin2 t0

)2

+

(
aR sin t0√

b2 cos2 t0 + a2 sin2 t0

)2

= R2

Therefore |p− c(p)| = R, and then p ∈ ∂DR(c(p)). Now, to show that ∂DR(c(p)) and ∂E

are tangent, we parametrize ∂DR(c(p)) as

∂DR(c(p)) = γ(s) = x(s) + iy(s) = R cos(s) + c1(p) + i(R sin(s) + c2(p)) (2.37)

=

(
R cos(s) + a cos(t0)− Rb cos(t0)√

b2 cos2(t0) + a2 sin2(t0)

)

+ i

(
R sin(s) + b sin(t0)− aR sin(t0)√

b2 cos2(t0) + a2 sin2(t0)

)

Then there is s0 ∈ [0, 2π) such that

p =

(
R cos(s0) + a cos(t0)− Rb cos(t0)√

b2 cos2(t0) + a2 sin2(t0)

)
(2.38)

+ i

(
R sin(s0) + b sin(t0)− aR sin(t0)√

b2 cos2(t0) + a2 sin2(t0)

)

On the other hand p ∈ ∂E and so p = a cos(t0) + ib sin(t0). We need to find s0 that satisfies,

a cos(t0) =
a2

b
cos(s0) + a cos(t0)− a2 cos(t0)√

b2 cos2(t0) + a2 sin2(t0)
(2.39)
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and

b sin(t0) =
a2

b
sin(s0) + b sin(t0)− a3 sin(t0)

b
√
b2 cos2(t0) + a2 sin2(t0)

(2.40)

Observe that since the Ellipse is symmetric with respect to both the x-axis and the y-axis,

we can assume that 0 ≤ t0 ≤ π/2, and then, from (2.39) we can conclude that

s0 = cos−1

(
b cos(t0)√

b2 cos2(t0) + a2 sin2(t0)

)
(2.41)

Using the definition of trigonometric functions in a right triangle and Pythagoras theorem

is easy to show that this choice of s0 satisfies equation (2.40) and that

s0 = cos−1

(
b cos(t0)√

b2 cos2(t0) + a2 sin2(t0)

)
= sin−1

(
a sin(t0)√

b2 cos2(t0) + a2 sin2(t0)

)
(2.42)

Using equations (2.37) we get, that for any z the tangent vector to DR(c(p)) at z is given

by,

T∂DR(c(p)) = −R cos(s) + iR sin(s) (2.43)

Considering a convenient restriction of domain for sin(t) and cos(t) and using equation

(2.42) we see that the tangent vector to ∂Dr(c(p)) at p is

T∂DR(c(p))(p) =−R sin

(
sin−1

(
a sin(t0)√

b2 cos2(t0) + a2 sin2(t0)

))
(2.44)

+ iR cos

(
cos−1

(
b cos(t0)√

b2 cos2(t0) + a2 sin2(t0)

))

=−R a sin(t0)√
b2 cos2(t0) + a2 sin2(t0)

+ iR
b cos(t0)√

b2 cos2(t0) + a2 sin2(t0)

While the normal vector to ∂E at p is given by,
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T∂E(p) = −b cos(t0)− ia sin(t0) (2.45)

Hence

T∂DR(c(p))(p) =−R a sin(t0)√
b2 cos2(t0) + a2 sin2(t0)

+ iR
b cos(t0)√

b2 cos2(t0) + a2 sin2(t0)
(2.46)

=
−R√

b2 cos2(t0) + a2 sin2(t0)
(a sin(t0)− b cos(t0))

=
−R√

b2 cos2(t0) + a2 sin2(t0)
T∂E(p)

Hence T∂DR(c(p))(p) and T∂E(p) are parallel, so ∂DR(c(p)) and ∂E are tangent at p.

c(p)

p

(a)

c(p) p

(b)

c(p)

p

(c)

Figure 2.1: Ellipse centered at the origin and the ball DR(c(p)) for three different choices of p

Lemma 2.9. Let p ∈ ∂E be an arbitrarily fixed point, p = a cos t0 + ib sin t0, define

Ap = ∂E ∩ DR/2(p) = {z ∈ ∂E : |z − p| < R/2} (2.47)

and the projection λp : Ap → ∂DR(c(p))

λp(z) = R
z − c(p)
|z − c(p)|

+ c(p) (2.48)

then
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0 < b ≤ |λ′(p)| ≤ a <∞ (2.49)

where λ′(p) denotes d
dt
λ(z) evaluated at t = t0.

Proof. First observe that regardless of our choice of p, the point c(p) is not in E, since

|c(p)− p| = R, and then λp is a C∞ function since |z − c(p)| never vanishes in E.

Now, to calculate λp(p), we recall that p = a cos t0 + ib sin t0 and using equation (2.22)

we obtain,

p− c(p) = R
b cos t0√

b2 cos2 t0 + a2 sin2 t0
+ iR

a sin t0√
b2 cos2 t0 + a2 sin2 t0

(2.50)

so,

|p− c(p)| =R

√
b2 cos2 t0

b2 cos2 t0 + a2 sin2 t0
+

a2 sin2 t0
b2 cos2 t0 + a2 sin2 t0

(2.51)

=R

Then,

λp(p) = R
p− c(p)

R
+ c(p) = p− c(p) + c(p) = p (2.52)

If we call I(t0) =
√
b2 cos2 t0 + a2 sin2 t0, then we can express c(p) as,

c(p) =

(
−R
I(t0)

b cos t0 + a cos t0

)
+ i

(
−R
I(t0)

a sin t0 + b sin t0

)
(2.53)

= c1(p) + c2(p)
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Then for any z ∈ E with z = a cos t+ ib sin t = z1 + iz2 we have that,

z − c(p) =(z1 − c1(p)) + i(z2 − c2(p)) (2.54)

=

(
a cos t+

R

I(t0)
b cos t0 − a cos t0

)
+ i

(
b sin t+

R

I(t0)
a sin t0 − b sin t0

)

and so,

|z − c(p)| =

√(
a cos t+

R

I(t0)
b cos t0 − a cos t0

)2

+

(
b sin t+

R

I(t0)
a sin t0 − b sin t0

)2

(2.55)

Call,

ψ(t) =

(
a cos t+

R

I(t0)
b cos t0 − a cos t0

)2

+

(
b sin t+

R

I(t0)
a sin t0 − b sin t0

)2

(2.56)

Then we can rewrite |z − c(p)| = [ψ(t)]1/2 hence,

λp(z) =u(t) + iv(t) + c(p) (2.57)

=R

(
z1 − c1(p)

[ψ(t)]1/2

)
+ iR

(
z1 − c1(p)

[ψ(t)]1/2

)
+ c(p)

=R

[
a cos t+ R

I(t0)
b cos t0 − a cos t0

[ψ(t)]1/2

]
+ iR

[
b sin t+ R

I(t0)
a sin t0 − b sin t0

[ψ(t)]1/2

]
+ c(p)

Then,

|λ′p(p))| =
√

[u′(t0)]2 + [v′(t0)]2 (2.58)

To calculate u′(t) and v′(t), we first observe that R, I(t0),a,b,cos t0 and sin t0 are constants

with respect to t.
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Using the left hand side of equation (2.57) we obtain,

u′(t) = R

[
−a sin tψ(t)1/2 − 1

2
ψ(t)−1/2ψ′(t)(a cos t+ R

I(t0)
b cos t0 − a cos t0)

ψ(t)

]
(2.59)

= R

[
ψ(t)−1/2[−a sin tψ(t)− 1

2
ψ′(t)(a cos t+ R

I(t0)
b cos t0 − a cos t0)]

ψ(t)

]

= R

[
−a sin tψ(t)− 1

2
ψ′(t)(a cos t+ R

I(t)
b cos t0 − a cos t0)

ψ(t)3/2

]

=
R

ψ(t)3/2

[
−a sin tψ(t)− 1

2
ψ′(t)(a cos t+

R

I(t0)
b cos t0 − a cos t0)

]

Similarly,

v′(t) =
R

ψ(t)3/2

[
b cos tψ(t)− 1

2
ψ′(t)(b sin t+

R

I(t0)
a sin t0 − b sin t0)

]
(2.60)

We need to calculate ψ′(t). From equation (2.56) we have that,

ψ′(t) = 2(a cos t+
R

I(t0)
b cos t0 − a cos t0)(−a sin t) (2.61)

+ 2(b sin t+
R

I(t0)
a sin t0 − b sin t0)(b cos t)

Evaluating ψ′(t) and ψ(t) at t0,

ψ′(t0) = 2(a cos t0 +
R

I(t0)
b cos t0 − a cos t0)(−a sin t0) (2.62)

+ 2(b sin t0 +
R

I(t0)
a sin t0 − b sin t0)(b cos t0)

= 2(−a2 cos t0 sin t0 −
R

I(t0)
ab cos t0 sin t0 + a2 cos t0 sin t0)

= 2(b2 cos t0 sin t0 +
R

I(t0)
ab cos t0 sin t0 − b2 sin t0 cos t0)

= 0
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while,

ψ(t0) = (a cos t0 +
R

I(t0)
b cos t0 − a cos t0)2 (2.63)

+ (b sin t0 +
R

I(t0)
a sin t0 − b sin t0)2

=
R2

I2(t0)
(b2 cos2 t0 + a2 sin2 t0)

=
R2

I2(t0)
I2(t0) = R2

Combining this calculations with formulas (2.59) and (2.60) we obtain,

u′(t0) =
R

(R2)3/2

[
−a sin t0R

2 − 1

2
(0)(a cos t0 +

R

I(t0)
b cos t0 − a cos t0)

]
(2.64)

=
R

R3
(−R2a sin t0)

= −a sin t0

Similarly,

v′(t0) = b cos t0 (2.65)

and so,

|λ′p(p))| =
√

[u′(t0)]2 + [v′(t0)]2 =
√
a2 sin2 t0 + b2 cos2 t0 = I(t0) (2.66)

and since we are assuming that a > b we have,

b ≤ |λ′p(p))| ≤ a (2.67)

Proposition 2.10. For any ellipse E in C, and for any fixed p ∈ ∂E, the Cauchy Kernel
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Function

K(p, z) =
1

2πi

1

p− z
(2.68)

is in Hq(E) for any q ∈ (0, 1). Furthermore,

∫
z∈∂E

K∗(p, z)q dσ(z) ≤ c

∫
z∈∂E

|K(p, z)|q dσ(z) ≤ C

∫
ζ∈∂DR(c(p))

K∗(p, ζ) dσ(ζ) (2.69)

Proof. We first show that, ∫
z∈∂E

|K(p, z)|q dσ(z) (2.70)

is integrable.

To do so, we observe that from previous Lemma we have that, in particular 0 6= |λ′p(p)|,

so there exists ρ > 0 such that λP is invertible in Dρ(p) ∩ Ap.

Let F the image of Dρ(p) ∩ Ap under λp, the we can define πp : F → Ap as

πp(ζ) = λ−1
p (ζ) (2.71)

Also by Lemma 2.9, we have that,

b ≤ |λ′p(p)| ≤ a (2.72)

and so by continuity there exists ε > 0 such that if

|z − p| < ε then b ≤ |λ′p(z)| ≤ a (2.73)

and without loss of generality we can choose 0 < ε < ρ.

Let A′p = Dε(p) ∩ ∂E then, observe that for all z ∈ A′p we have that

dist(z, ∂DR) = |z − ζ| (2.74)
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where ζ = λp(z), since z is in the ray connecting ζ with c(p).

And so for any α > 0 we have that,

|z − ζ| < (1 + α)dist(z, ∂DR(c(p))) (2.75)

hence, for any α > 0 and any z ∈ A′p we know that

z ∈ Γα(ζ) (2.76)

where ζ = λp(z)

Fix α > 0, then by last equation and recalling that πp(p) = p we have that,

|K(p, πp(ζ))| = |K(p, z)| ≤ sup
w∈Γα(ζ)

|K(p, w)| (2.77)

and by definition 1.20

sup
w∈Γα(ζ)

|K(p, w)| = K∗(p, ζ) a.e. (2.78)

hence, ∫
F ′

|K(p, πp(ζ))|q dσ(ζ) ≤
∫
F ′

[K∗(p, ζ)]q dσ(ζ) (2.79)

Where F ′ is the image of A′p under λp.

And by Corollary 2.6 we know that

∫
F ′

[K∗(p, ζ)]q dσ(ζ) < C (2.80)

Combining these two equations we have that

∫
F ′

|K(p, πp(ζ))|q dσ(ζ) < C (2.81)
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On the other hand,

∫
ζ∈F ′

|K(p, πp(ζ))|q dσ(ζ) =

∫
z∈A′p

|K(p, πp(λp(z)))|q|λ′(z)|dσ(z) (2.82)

=

∫
z∈A′p

|K(p, z)|q|λ′p(z)|dσ(z)

So, ∫
z∈A′p

|K(p, z)|q|λ′p(z)|dσ(z) < C (2.83)

and if z ∈ A′p, we know that b ≤ |λ′p(z)| ≤ a

Then, ∫
z∈A′p

|K(p, z)|qdσ(z) ≤ 1

b

∫
z∈A′p

|K(p, z)|q|λ′p(z)|dσ(z) <
1

b
C = C1 (2.84)

Now, to deal with the rest of the boundary observe that if |z − p| > ε, then

1

|p− z|q
<

1

εq
, (2.85)

and hence, ∫
z∈∂E\A′p

dσ(z)

|p− z|q
<

∫
∂E\A′p

1

εq
dσ <

∫
∂E

1

εq
dσ(z) =

1

εq
σ(∂E) (2.86)
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Combining all of the previous equations we have that,

∫
z∈∂E

|K(p, z)|q dσ(z) =

∫
z∈∂E\A′p

|K(p, z)|q dσ(z) +

∫
z∈A′p

|K(p, z)|q dσ(z) (2.87)

≤ 1

εq
σ(∂E) +

1

b

∫
z∈ A′p

|K(p, z)|q|λ′p(z)| dσ(z)

=
1

εq
σ(∂E) +

1

b

∫
ζ∈F ′

|K(p, πp(ζ))|q dσ(ζ)

≤ 1

εq
σ(∂E) +

1

b

∫
ζ∈F ′

[K∗(p, ζ)]q dσ(ζ)

= M +
1

b

∫
ζ∈∂DR

[K∗(p, ζ)]q dσ(ζ)

Hence, ∫
z∈∂E

|K(p, z)|q dσ(z) ≤ C

∫
ζ∈∂DR(c(p))

[K∗(p, ζ)]q dσ(ζ) (2.88)

and since by equation (2.19) we know that there is a constant M0 such that,

∫
z∈∂DR(c(p))

[K∗(ζ, z)]q dσ(z) < M0 <∞ (2.89)

we have that,

∫
z∈∂E

|K(p, z)|q dσ(z) ≤ C

∫
ζ∈∂DR(c(p))

[K∗(p, ζ)]q dσ(ζ) ≤M0 (2.90)

Finally, take w ∈ Γα(z), then by definition

|w − z| < (1 + α)dist(w, ∂E) (2.91)

but p ∈ ∂E implies

dist(w, ∂E) ≤ |w − p| (2.92)
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therefore |w − z| ≤ (1 + α)|w − p|, and hence

|p− z| ≤ |p− w|+ |w − z| ≤ |p− w|+ (1 + α)|p− w| = (2 + α)|p− w| (2.93)

Therefore,
1

|p− w|
≤ (2 + α)

|p− z|
and then

sup
w∈Γα(p)

|K(p, w)| ≤ (2 + α)|K(p, z)| (2.94)

and then ∫
z∈∂E

[K∗(p, z)]q dσ(z) ≤ (2 + α)q
∫
z∈∂E
|K(p, z)|q dσ(z) (2.95)

Combining equation (2.90) and (2.95) we get

∫
z∈∂E

[K∗(p, z)]q dσ(z) ≤ (2 + α)q
∫

z∈∂E

|K(p, z)|q dσ(z) ≤ C

∫
ζ∈∂DR(c(p))

[K∗(p, ζ)]q dσ(ζ) ≤M0

(2.96)

Hence K(p, z) ∈ Hq(E) for all q ∈ (0, 1).

Corollary 2.11. For any ellipse E ∈ C and for any fixed p ∈ ∂E, the Cauchy Leray Kernel

function.

K(p, z) =
1

2πi

1

p− z
(2.97)

is in Eq(E) for every q ∈ (0, 1).

Proof. The proof of this Corollary is an immediate consequence of previous proposition and

Lemma 1.22

We show now that Proposition 2.10 fails if q ≥ 1.

Theorem 2.12. For any ellipse E in C, and for any fixed p ∈ ∂E, the Cauchy Kernel

Function

K(p, z) =
1

2πi

1

p− z
(2.98)
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is in Hq(E) if and only if q ∈ (0, 1)

Proof. The proof that the statement is true for any q ∈ (0, 1) is Proposition 2.10. It remains

to show that if q ≥ 1 then K(p, z) is not in Hq(E). We proceed by contradiction.

Let 1 ≤ q ≤ ∞ and suppose that K(p, z) ∈ Hq(E), then there is a positive constant M

such that ∫
z∈∂E

[K∗(p, z)]q dσ(z) ≤M (2.99)

Consider πp : ∂DR(c(p))→ ∂E to be

πp = λ−1
p (2.100)

where λp is defined as in equation (2.48) and recall that by equation (2.49), we have that

b ≤ |λ′p(p)| ≤ a (2.101)

So,

1

a
≤ |π′p(p)| ≤

1

b
(2.102)

By continuity of π′p we know that there exists ε > 0 such that if

|z − p| < δ then
1

2a
≤ |π′p(z)| ≤ 1

2b
(2.103)

Then using the same methods that the ones used to obtain equation (2.88) we can show

that ∫
ζ∈∂Dr(c(p))

|K(p, ζ)|qdσ(ζ) ≤
∫

z∈∂E

[K∗(p, z)]qdσ(z) < 2bM < C (2.104)

And using a similar argument to the one in proposition 2.10 that for a fixed α > 0

∫
ζ∈∂DR(c(p))

[K∗(p, ζ)]q dσ(ζ) ≤ (2 + α)q
∫

ζ∈∂DR(c(p))

|K(p, ζ) dσ(z) (2.105)
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Combining these last two equations, we get

∫
ζ∈DR(c(p))

[K∗(p, ζ)]q dσ(ζ) ≤ (2 + α)qC1 <∞ (2.106)

and hence K(p, ζ) ∈ Hq[DR(c(p))] which is a contradiction by Lemma 2.4
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Chapter 3

C STRICTLY CONVEX DOMAINS

The goal of this section is to extend the results obtained in Proposition 2.10 and Theorem

2.12 for any strictly convex, bounded domain in C.

To do so, we will use similar approach to the one used for the ellipse case, although we

will use a local argument in this case. That is, we will relate the Kernel Function, K(p, z), of

the domain D to the one of a disc that locally contains our domain.

In order to be able to construct such ball, we need to first study the concept of signed

curvature.

3.1 Signed Curvature

All of the definitions and lemmas in this section can be found in [6].

Definition 3.1. Let z, w be in C. We define,

z · w = Re(zw̄) (3.1)

and

P (z) = iz (3.2)

Using the definition is easy to show that P and · have the following properties

P ◦ P = −I ,where I is the identity. (3.3)

P (z) · P (w) = z · w (3.4)
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P (z) · z = 0 = z · P (z) (3.5)

P (wz) = wP (z) (3.6)

Definition 3.2. Let α : (a, b) → C be a curve. Then the velocity of α is the function

α′ : (a, b) → C. We call the function v defined by v(t) = ||α′(t)|| the speed of α. The

acceleration of α is α′′.

Definition 3.3. A curve γ is said to be regular if there is a parametrization α : (a, b)→ C

that is differentiable and its velocity, α′, is everywhere non-zero. If ||α′(t)|| = 1 for all

a < t < b then α is said to have unit speed.

Definition 3.4. Let α : (a, b) → C and β : (c, d) → C be differentiable curves. Then β is

said to be a positive reparametrization of α provided that there exists a differentiable function

h : (c, d)→ (a, b) such that h′(t) > 0 for all c < t < d and β = α ◦ h. Similarly β is called a

negative reparametrization of α if h′(t) < 0 for all c < t < d.

Definition 3.5. Let α : (a, b)→ C be a regular parametrization for the curve γ. The signed

curvature skα of α at z = α(t) is given by the formula,

skα(t) =
α′′(t) · P (α′(t))

|α′(t)|3
(3.7)

where P (z) and · are as in Definition 3.1.

Lemma 3.6. Let γ be a curve and α : (a, b)→ C and β : (c, d)→ C two regular parametriza-

tions of γ. Write β = α ◦ h where h : (c, d)→ (a, b) is differentiable, then

skβ(t) = sign(h′(t))skα(h(t)) (3.8)

Note, that since α and β are regular, then h′(t) 6= 0 for every t and so sign(h′(t)) is

well defined for every t and it will take the constant value 1 or −1. This shows that the
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signed curvature of a curve is up to sign independent of parametrization, furthermore if β is

a positive reparametrization of α then

skβ(t) = skα(h(t)) (3.9)

Proof. The fact that β = α ◦ h yields

β′ = (α′ ◦ h)h′, (3.10)

and

β′′ = (α′′ ◦ h)(h′)2 + (α′ ◦ h)h′′, (3.11)

and by equation (3.6) we have that,

P (β′) = P ((α ◦ h)h′) = h′P (α′ ◦ h). (3.12)

So,

skβ(t) =
β′′(t) · P (β′(t))

|β′(t)|3
(3.13)

=
[(α′′ ◦ h)(t)(h′(t))2 + (α′ ◦ h)(t)(h′′(t)] · P [(α′ ◦ h)(t)h′(t)]

|(α′ ◦ h)(t)h′(t)|3

=
[α′′(h(t))(h′(t))2 + α′(h(t))h′′(t)] · h′(t)P (α′(h(t))

|α′(h(t))h′(t)|3

=
α′′(h(t))h′(t)3 · P (α′(h(t))) + [α′(h(t)h′′(t)h′(t)] · P (α′(h(t)))

|α′(h(t))|3|h′(t)|3

=
α′′(h(t))h′(t)3 · P (α′(h(t)))

|α′(h(t)|3|h′(t)|3
+

[α′(h(t))h′′(t)h′(t)] · P (α′(h(t)))

|α′(h(t))|3|h′(t)|3

=
h′(t)3

|h′(t)|3
α′′(h(t)) · P (α′(h(t)))

|α′(h(t))|3
+

[α′(h(t))h′′(t)h′(t)] · P (α′(h(t)))

|α′(h(t))|3|h′(t)|3

and by equation (3.5) we know that α′(h(t)) · P (α′(h(t))) = 0 and so the second term on

the last equation is zero. Hence,
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skβ(t) =
h′(t)3

|h′(t)|3
α′′(h(t)) · P (α′(h(t)))

|α′(h(t))|
(3.14)

=sign(h′(t)3)skα(h(t))

=sign(h′(t))skα(h(t))

As a consequence of this past Lemma if z = α(t) is a point in the curve γ we can use

without any ambiguity sk(z) or sk(t) to denote the signed curvature at z.

Lemma 3.7. If γ is a regular curve with parametrization α : (a, b) → C where α(t) =

x(t) + iy(t), then the signed curvature sk(t) is given by

sk(t) =
x′(t)y′′(t)− x′′(t)y′(t)
([x′(t)]2 + [y′(t)]2)3/2

(3.15)

Proof.

sk(t) =
(x′′(t) + iy′′(t)) · P (x′(t) + iy′(t))

|x′(t) + iy′(t)|3
(3.16)

=
Re ((x′′(t) + iy′′(t))(−y′(t)− ix′(t)))

[(x′(t))2 + (y′(t))2]3/2

=
x′(t)y′′(t)− x′′(t)y′(t)
[(x′(t))2 + (y′(t))2]3/2

.

Corollary 3.8. Suppose now that the curve γ is the graph of a twice differentiable function,

f(t), then sk(z) at z = t+ if(t) is given by

sk(t) =
f ′′(t)

[1 + (f ′(t))2]3/2
(3.17)

45



Proof. Let t = x(t) and f(t) = y(t), the result follows immediately from Lemma 3.7 with

this assignation of x(t) and y(t).

Next, we will show that the signed curvature of a curve γ is independent of the the position

of γ in the plane, i.e. that signed curvature is invariant under rotations and translations. We

begin by defining several classes of transformations.

Definition 3.9. Let A : R2 → R2 be a nonsingular linear map. We say that

i) A is orientation preserving if det(A) is positive, or orientation reversing if det(A) is

negative.

ii) A is called an orthogonal transformation if

A(p) · A(q) = p · q (3.18)

iii) A rotation of R2 is an orientation preserving orthogonal transformation.

Lemma 3.10. Let B : R2 → R2 be an orthogonal transformation. Then

det(B) = ±1 (3.19)

Definition 3.11. Let p ∈ R2

i) An affine transformation of R2 is a map F : R2 → R2 of the form

F (p) = A(p) + q (3.20)

for all p ∈ R2, where A is a linear transformation of R2. We call A the linear part of

the affine transformation F . An affine transformation F is orientation preserving if

det(A) = 1 and orientation reversing if det(A) = −1.
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ii) A translation of R2 is an affine map Tq(p) : R2 → R2 of the form

Tq(p) = p+ q (3.21)

for all p ∈ R2.

iii) An Euclidean Motion of R2 is an affine transformation whose linear part is an orthogonal

transformation.

iv) An isometry of R2 is a map F : R2 → R2 that preserves distance, that is,

||F (p)− F (q)|| = ||p− q|| (3.22)

Lemma 3.12. Any Euclidean motion is the composition of a translation and an orthogonal

transformation.

Lemma 3.13. A map F : R2 → R2 is an isometry of R2 if and only if it is a composition of

a translation and an orthogonal transformation of R2. Thus the group of Euclidean motions

of R2 coincides with the group of isometries of R2.

It follows from last lemma that since an Euclidean motion preserves distance, it cannot

deform a curve in the plane and hence the curvature should be invariant up to a sign under

Euclidean motions. We know quote the desired result.

Lemma 3.14. The signed curvature is preserved by an orientation preserving Euclidean

motion of R2 and changes sign under an orientation reversing Euclidean motion.

3.2 The Cauchy Kernel Function of a strictly convex domain of class C2

All throughout this section we will be working with bounded strictly convex domains of class

C2. Using the concepts of the previous section we can now give a definition of what we will,

in this work, understand by strictly convex domain.
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Definition 3.15. Let D be a bounded domain of class C2. We say that D is strictly convex if

sk(z) > 0 for all z ∈ ∂D, whenever ∂D is parametrized along the counterclockwise direction.

Observe that the fact that D is of class C2 implies by Definition 3.5 that sk(z) is a

continuous function on ∂D and since ∂D is a compact set, sk(z) attains a maximum and a

minimum, while the fact that D is strictly convex means that the minimum is strictly greater

than zero. We will denote m∂D and M∂D to said minimum and maximum, namely, for all

z ∈ ∂D we have that

0 < m∂D ≤ sk(z) < M∂D <∞ (3.23)

We now construct the osculatory ball to our domain.

Lemma 3.16. For all p ∈ ∂D there exist R > 0, a point c(p) and a neighborhood U of p

such that U ⊂ DR(c(p)).

Proof. Fix p ∈ ∂D, then we can choose linear coordinates in C so that, p is at the origin, the

x-axis is the tangent line to ∂D at p and the y-axis is the normal line.

Furthermore there exist an open interval (−a, a) about 0 such that ∂D is locally the

graph of a function f : R→ R with f(0) = 0 and f ′(0) = 0.

Note: For all the previous assertions about choice of coordinates see [7].

We will denote Ep to the piece of boundary described above, that is,

Ep = {z ∈ ∂D | z = x+ if(x)} = {x+ if(x) | x ∈ (−a, a)} (3.24)

Observe that D strictly convex guarantees that Ep is totally contained in the upper half

plane, i.e. f(x) > 0 for all x ∈ (−a, a).

To achieve our goal we wish to construct a function g such that,

1. The image of g is part of a circumference contained totally in the upper half plane.

2. The image of g is tangent to Ep at the origin.
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3. There is an interval (−δ, δ) such that f(x) ≥ g(x) for all x ∈ (−δ, δ).

We proceed with the construction of such a function.

By equation (3.23) there exists a real number m such that

0 < m < sk(z) (3.25)

for all z ∈ ∂D, and by Lemma 3.14 we know that this inequality is satisfied for all z ∈ Ep.

Fix α ∈ (0, 1), and consider R = 1/(αm). We define g : (−R,R)→ R as

g(x) = −
√
R2 − x2 +R (3.26)

and denote

F = {x+ ig(x) | (−R,R)} (3.27)

then clearly F is the lower half of a circumference with center in iR and radius R, and so F

is totally contained in the upper half plane. We now show that F is tangent to Ep at 0.

We begin by observing that g(0) = 0 and so 0 ∈ F ∩ Ep, Now let TEp(x) denote the

tangent vector to Ep at x and TF (x) the tangent vector to F at x, then we have that

TEp(x) = 1 + f ′(x) (3.28)

while,

TF (x) = 1 + g′(x) (3.29)

but,

g′(x) =
x√

R2 − x2
(3.30)

and so, g′(0) = 0, and by choice of coordinates we also know that f ′(0) = 0. Hence

TEp(0) = 1 = TF (0) (3.31)
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Therefore Ep and F are tangent at 0.

Next, we would like to construct an interval (−δ, δ) such that f(x) ≥ g(x) for all

x ∈ (−δ, δ).

By Taylor’s theorem we know that, for all x ∈ (−a/2, a/2)

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +Rf

2(x) (3.32)

where Rf
2(x) ∈ o(x2) while,for all x ∈ (−R/2, R/2)

g(x) = g(0) + g′(0)x+
1

2
g′′(0)x2 +Rg

2(x) (3.33)

with Rg
2(x) ∈ o(x2).

Take ε = min{(m−mα)/2, a/2, R/2}, and observe that Rf
2(x) and Rg

2(x) in o(x2) means

that for such ε there exists δ0 > 0 small enough so that δ0 < ε and if |x| < δ0 then,

|Rf
2(x)| < ε

4
x2 (3.34)

and

|Rg
2(x)| < ε

4
x2 (3.35)

We prove now that for all x ∈ (−δ0, δ0) with δ0 chosen as above, we have that f(x) ≥ g(x).

First observe that δ0 < a/2 and δ0 < R/2 implies that equations (3.32) and (3.33) hold in

(−δ0, δ0) and then, for all x ∈ (−δ0, δ0)

f(x)−g(x) = f(0)+f ′(0)x+
1

2
f ′′(0)x2+Rf

2(x)−
(
g(0) + g′(0)x+

1

2
g′′(0)x2 +Rg

2(x)

)
(3.36)

But recall that f(0) = 0 = f ′(0) and g(0) = 0 = g′(0), substituting these quantities in
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equation (3.36) we get,

f(x)− g(x) =
1

2
f ′′(0)x2 +Rf

2(x)− 1

2
g′′(0)x2 −Rg

2(x) (3.37)

1

2
x2(f ′′(0)− g′′(0)) +Rf

2(x)−Rg
2(x)

And simple calculations show that,

g′′(x) =
R2

(R2 − x2)3/2
(3.38)

and so,

g′′(0) =
1

R
(3.39)

On the other hand by formula (3.17) we have,

sk(0) =
f ′′(0)

(1 + [f ′(0)]2)3/2
= f ′′(0) (3.40)

Substituting equations (3.39) and (3.40) on equation (3.37) we get,

f(x)− g(x) =
1

2
x2

(
sk(0)− 1

R

)
+ (Rf

2(x)−Rg
2(x)) (3.41)

=
1

2
x2 (sk(0)− αm) + (Rf

2(x)−Rg
2(x)

But m is such that m ≤ sk(z) for all z ∈ ∂D, hence,

f(x)− g(x) =
1

2
x2 (sk(0)− αm) + (Rf

2(x)−Rg
2(x)) (3.42)

≥1

2
x2(m− αm) + (Rf

2(x)−Rg
2(x))

>εx2 + (Rf
2(x)−Rg

2(x))

To bound the difference of the residues of the Taylor’s expansion, observe that combining
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equations (3.34) and (3.35) we obtain,

Rf
2(x)−Rg

2(x) > −ε
2
x2 (3.43)

Combining equations (3.42) and (3.43) we see that

f(x)− g(x) >εx2 + (Rf
2(x)−Rg

2(x)) (3.44)

>εx2 − ε

2
x2 =

ε

2
x2 > 0

Hence for all x ∈ (−δ0, δ0) we have that f(x) ≥ g(x).

Observe that even though we only have a local inclusion of ∂D in DR(c(p)) this is still a

global result in the sense that the radius of this disc does not depend on our choice of p.

We now, construct our projection λ : Ep → F such that p = 0 is invariant under λ and

such that |λ′(0)| is bounded away from zero and infinity.

Lemma 3.17. Let

E = {z = x+ if(x) | x ∈ (−δ0, δ0)} (3.45)

Define λ : E → F as

λ(z) = R
z − iR
|z − iR|

+ iR (3.46)

Then

|λ(0)| = 0 and |λ′(0)| = 1 (3.47)

Proof. We first observe that iR is not in E so

|z − iR| 6= 0 for all z ∈ E, (3.48)
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and so λ is a C∞ function on E. Next we evaluate λ at 0,

λ(0) = R
0− iR
|0− iR|

+ iR = −iR + iR = 0 (3.49)

Therefore 0 is invariant under λ.

We now need to calculate |λ′(0)|. Observe that since any z ∈ E can be expressed as

z = x+ if(x) then λ(z) = λ(x+ if(x)) is really a function of x, with x ∈ (−δ0, δ0). Then we

can can express λ(x) as

λ(x) = u(x) + iv(x) =
Rx

I(x)
+ i

(
Rf(x)−R2

I(x)
+R

)
(3.50)

with

I(x) =
[
x2 + (f(x)−R)2

]1/2
(3.51)

and |λ′(0)| = |u′(0) + iv′(0)|. But

u′(x) =
RI(x)−RxI ′(x)

(I(x))2
(3.52)

and

v′(x) =
Rf ′(x)I(x)− (Rf(x)−R2) I ′(x)

(I(x))2
(3.53)

with

I ′(x) =
1

2

(
x2 + (f(x)−R)2

)−1/2
(2x+ 2(f(x)−R)f ′(x)) (3.54)

evaluating all of these quantities at zero we get,

I(0) = R and I ′(0) = 0 (3.55)

and so,

u′(0) =
RI(0)− 0

(I(0))2
=
R2

R2
= 1 (3.56)
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c(p)

p = 0

∂D

∂DR(c(p))

z

λp(z)

Figure 3.1: The projection λ from ∂D to ∂DR(c(p))

and recalling that f ′(0) = 0 we see that,

v′(0) =
Rf ′(0)I(0)− (Rf(0)−R2)I ′(0)

(I(0))2
= 0 (3.57)

and so, finally,

|λ′(0)| = |u′(0) + iv′(0)| = 1 (3.58)

Theorem 3.18. For any bounded strictly convex domain D of class C2 and fixed p ∈ ∂D,

the Cauchy-Leray Kernel function

K(p, z) =
1

2πi

1

p− z
(3.59)

is in Hq(D) if and only if q ∈ (0, 1).

Proof. Fix p ∈ ∂D and consider the change of coordinates as discussed in Lemma 3.16, and

let λ be the projection described in Lemma 3.17. Then, we know that |λ′(0)| = 1 6= 0, so

there is ρ > 0 so that λ is one-to-one in E ′ = Dρ(p) ∩ E. Let G be the image of of E ′ under

λ, then we can define π : G→ E ′ as π(ζ) = λ−1(ζ) for all ζ ∈ G.
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Just like in the case of Proposition 2.10 we begin by showing that

∫
z∈∂D

|K(0, z)|qdσ(z) < C (3.60)

By continuity of λ′ and Lemma 3.16 we can find ε > 0 small enough so that A = Dε(0)∩∂D

is contained in E ′ and for all z ∈ A we have that,

1

2
< |λ′(z)| < 2 (3.61)

Now, observe that If z ∈ A then

dist(z, ∂DR(iR)) = |z − λ(z)| = |z − ζ| (3.62)

and so for any α > 0 we have that

|z − λ(z)| ≤ (1 + α)dist(z, ∂DR(iR)) (3.63)

then for any α > 0 and any z ∈ A

z ∈ Γα(λ(z)) (3.64)

Fix α > 0, then by last equation and using the fact that π(0) = 0 we have,

|K(π(0), π(ζ))| = |K(0, z)| ≤ sup
w∈Γα(ζ)

|K(0, w)| (3.65)

and since

sup
w∈Γ(ζ)

|K(0, w)| = K∗(0, ζ) a.e. (3.66)
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hence,

∫
ζ∈F

|K(0, π(ζ)|qdσ(ζ) ≤
∫
ζ∈F

[K∗(0, ζ)]qdσ(ζ) ≤
∫

ζ∈∂DR(iR)

[K∗(0, ζ)]qdσ(ζ) (3.67)

and by Corollary 2.6 we know that

∫
ζ∈∂DR(iR)

[K∗(0, ζ)]qdσ(ζ) < M (3.68)

On the other hand, using a change of variables we know that,

∫
ζ∈F

|K(0, π(ζ))|qdσ(ζ) =

∫
z∈A

|K(0, π(λ(z)))|q|λ′(z)|dσ(z) (3.69)

=

∫
z∈A

|K(0, z)|λ′(z)|dσ(z)

Combinig equations (3.67) and (3.69) we have that

∫
z∈A

|K(0, z)|q|λ′(z)|dσ(z) ≤
∫

ζ∈DR(iR)

[K∗(0, ζ)]qdσ(ζ) < M (3.70)

but if z ∈ A then we know that 1/2 < |λ′(z)| < 2 and so,

∫
z∈A

|K(0, z)|qdσ(z) ≤ 2

∫
z∈A

|K(0, z)|q|λ′(z)|dσ(z) < 2M (3.71)

On the other hand if |z| ≥ ε then

1

|z|q
≤ 1

εq
(3.72)
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and hence,

∫
|z|≥ε

|K(0, z)|q dσ(z) ≤
∫
|z|≥ε

1

εq
dσ(z) ≤

∫
z∈∂D

1

εq
dσ(z) =

1

εq
σ(∂D) (3.73)

Combining equations (3.71) and (3.73) we get,

∫
z∈∂D

|K(0, z)|q dσ(z) =

∫
z∈∂D
|z|<ε

|K(0, z)|q dσ(z) +

∫
z∈∂D
|z|≥ε

|K(0, z)|q dσ(z) (3.74)

< 2M +
1

εq
σ(∂D) = C1

Therefore, ∫
z∈∂D

|K(0, z)|q < C1 <∞ (3.75)

Lastly, let z ∈ ∂D and take w ∈ Γα(z). Then by definition

|w − z| < (1 + α)dist(w, ∂D) (3.76)

but 0 ∈ ∂D implies

dist(w, ∂D) ≤ |w| (3.77)

therefore, |w − z| ≤ (1 + α)|w|, and hence

|z| ≤ |w|+ |w − z| ≤ |w|+ (1 + α)|w| = (2 + α)|w| (3.78)

So,

1

|w|
≤ 2 + α

|z|
(3.79)
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and then

K∗(0, z) = sup
w∈Γα(z)

|K(0, w)| = sup
w∈Γα(z)

1

|w|
(3.80)

≤ 2 + α

|z|
= (2 + α)|K(0, z)|

so,

∫
z∈∂D

K∗(0, z)q dσ(z) ≤ (2 + α)q
∫

z∈∂D

|K(0, z)|q dσ(z) ≤ (2 + α)C2 = C0 <∞ (3.81)

Hence, K is in Hq(D) for 0 < q < 1.

It remains to prove that K(p, z) 6∈ Hq(D) for q ≥ 1.

We proceed by contradiction. Suppose that K(p, z) ∈ Hq(D) for some q ≥ 1, then by

definition we have that, ∫
z∈∂D

[K∗(0, z)]q dσ(z) ≤ C1 (3.82)

By Lemma 3.17 we know that |λ′(0)| = 1 and so |π′(0)| = 0, then we know that by

continuity we know that there exists δ > 0 such that if

|ζ| < δ then
1

2
< |π′(ζ)| < 2 (3.83)

with ζ ∈ F ⊂ ∂DR(iR).

The by a similar argument that the one done previously we can show that

∫
ζ∈∂DR(iR)

|ζ|<ε

|K(0, ζ)|qdσ(ζ) ≤ 2

∫
ζ∈∂DR(iR)

|ζ|<ε

|K(0, ζ)|q|π′(ζ)|dσ(ζ) (3.84)

≤ 2

∫
z∈∂D

|K∗(0, z)|qdσ(z)
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and if |ζ| ≥ ε, then 1/|ζ|q ≤ 1/εq,and so,

∫
ζ∈∂DR(iR)

|K(0, ζ)|qdσ(ζ) ≤
∫

ζ∈∂DR(iR)

1

εq
dσ(ζ) =

1

εq
σ(∂DR(iR)) = C2 (3.85)

Therefore,

∫
ζ∈∂DR(iR)

|K(0, ζ)|qdσ(ζ) =

∫
ζ∈∂DR(iR)

|ζ|<ε

|K(0, ζ)|qdσ(ζ) +

∫
ζ∈∂DR(iR)

|ζ|≥ε

|K(0, ζ)|qdσ(ζ) (3.86)

≤2C1 + C2 < M

Finally, by a similar argument to the one used to obtain equation (3.79) we can show that

for any ζ ∈ ∂DR(iR)

[K∗(0, ζ)]q ≤ |K(0, ζ)|q (3.87)

and hence, ∫
ζ∈∂DR(iR)

[K∗(0, ζ)]q dσ(ζ) ≤
∫

ζ∈∂DR(iR)

|K(0, ζ)|q dσ(ζ) < M (3.88)

Therefore, K(0, ζ) ∈ Hq(DR(iR)) for some q ≥ 1 which is a contradiction of Lemma 1.22.

From which we conclude that if q ≥ 1 then K 6∈ Hq(D).

To conclude this work we combine 3.18 and 1.22

Corollary 3.19. Let D be a bounded strictly convex set in C, and p a fixed point in ∂D, then

for every q ∈ (0, 1) we have that the Cauchy Kernel Function K(p, z) belongs to Eq(D).
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