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Abstract

In this dissertation, we studies Π-operators in different spaces using Clifford algebras.

This approach generalizes the Π-operator theory on the complex plane to higher

dimensional spaces. It also allows us to investigate the existence of the solutions to

Beltrami equations in different spaces.

Motivated by the form of the Π-operator on the complex plane, we first construct a

Π-operator on a general Clifford-Hilbert module. It is shown that this operator is an L2

isometry. Further, this can also be used for solving certain Beltrami equations when the

Hilbert space is the L2 space of a measure space. This idea is applied to examples of some

conformally flat manifolds, the real projective space, cylinders, Hopf manifolds and

n-dimensional hyperbolic upper half space.

It is worth pointing out that the proof for the L2 isometry of Π-operator on the unit

sphere is different from the idea mentioned above. In that idea, it requires the Dirac

operator and its dual operator commute to prove the L2 isometry of the Π-operator.

However, this is no longer true for the spherical Dirac operator. Hence, we use the

spectrum of spherical Dirac operator to overcome this problem. Since the real projective

space can be defined as a projection from the unit sphere, Π-operator theory in the real

projective space can be induced from the one on the unit sphere. Similarly, Π-operator

theory on cylinders (Hopf manifolds) is derived from the one on n-dimensional Euclidean

space via a projection map.

Classical Clifford analysis is centered at the study of functions on n-dimensional

Euclidean space taking values in Clifford numbers. In contrast, Clifford analysis in higher

spin spaces is the study of functions on n-dimensional Euclidean space taking values in

arbitrary irreducible representations of the Spin group. At the end of this thesis, we

construct an L2 isometric Π-operator in higher spin spaces. Further, we provide an

Ahlfors-Beurling type inequality in higher spin spaces to conclude the thesis.
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3.4 Möbius Transformations and Ahlfors-Vahlen Matrices . . . . . . . . . . . . . 18

3.5 Conformal Invariance of Dirac Operators . . . . . . . . . . . . . . . . . . . . 20

3.6 Clifford Analysis on the Unit Sphere . . . . . . . . . . . . . . . . . . . . . . 21

4 Π-Operator in Euclidean Space and on General Clifford-Hilbert Modules 23

4.1 Beltrami equation and the Π-Operator on the Complex Plane . . . . . . . . 23

4.2 Quasiconformal Maps on the Complex Plane . . . . . . . . . . . . . . . . . . 24

4.3 Π-Operator in Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Quasiconformal Mappings and Beltrami Equations in Higher Dimensional S-

paces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Π-operator on Clifford-Hilbert Modules . . . . . . . . . . . . . . . . . . . . . 29

5 Spherical Π-Type Operators 31

5.1 Spherical Π-Type Operator with Generalized Spherical Dirac Operator . . . 31

5.2 Application of Πs,0 to the Solution of a Beltrami Equation . . . . . . . . . . 39

5.3 Eigenvectors of Spherical Dirac Type Operators . . . . . . . . . . . . . . . . 44

6 Π-Operators on Real Projective Space 49

6.1 Dirac Operators on Real Projective Space . . . . . . . . . . . . . . . . . . . 50



6.2 Construction of a Π-Operator on the Real Projective Space . . . . . . . . . . 53

6.3 The Beltrami Equation on the Real Projective Space . . . . . . . . . . . . . 55

7 Π-Operators on Cylinders and Hopf Manifolds 56

7.1 Π-Operators on Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.1 Dirac Operator on the Cylinder . . . . . . . . . . . . . . . . . . . . . 57

7.1.2 Construction and Applications of the Π-Operator on Cylinders . . . . 59

7.2 Π-Operator on Hopf Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2.1 Dirac operators on the Hopf Manifolds . . . . . . . . . . . . . . . . . 61

7.2.2 Construction and Applications of the Π-Operator on Hopf Manifolds 62

8 A Π-Operator on the Hyperbolic Upper Half Space 64

8.1 Hyperbolic Dirac Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 Construction of the Hyperbolic Π-Operator . . . . . . . . . . . . . . . . . . . 69

9 Π-Operator in Higher Spin Spaces 71

9.1 Construction of the Higher Spin Π-Operator . . . . . . . . . . . . . . . . . . 73

9.2 Ahlfors-Beurling Type Inequality . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 82



1 Introduction

With the help of functional analytic methods, complex analysis has been used as a

powerful tool to study linear and nonlinear first order partial differential equations in the

complex plane. Some of the most important of these partial differential equations are

called the Beltrami equations. This is because of the fact that the theory of Beltrami

equations is connected with many problems in geometry and analysis, for instance,

• The general theory of linear and quasilinear elliptic system,

• Problems of conformal mappings of Riemannian manifolds,

• Related problems of conformal and almost complex structure on general Riemannian

manifolds,

• The classical theory of uniformization and the theory of Teichmüller spaces,

• Problems in the conformally invariant string theories in theoretical physics.

More details about the applications of Beltrami equations can be found in [11].

In one dimensional complex analysis, the Beltrami equation is given by

µ
∂ω

∂z
=
∂ω

∂z
,

where µ = µ(z) is a given complex function, and z ∈ C. The solutions to this Beltrami

equation are also called quasiconformal mappings. If we let

ω(z) = z + TΩh,

1



then we have

µ
∂ω

∂z
= µ(z)

∂(z + TΩh)

∂z
= µ(z)(I + ΠΩh),

∂ω

∂z
=
∂(z + TΩh)

∂z
=
∂TΩh

∂z
= h,

where TΩh(z) = − 1
π

∫
Ω
h(ζ)
ζ−z dζ1dζ2, ζ = ζ1 + iζ2, with∂(TΩh)

∂z
= h and

ΠΩh(z) =
∂TΩh

∂z
= − 1

πi

∫
Ω

h(ξ)

(ξ − z)2
dξ1dξ2.

Hence, the Beltrami equation is transformed to the fixed-point equation

µ(z)(I + ΠΩh) = h.

Here ΠΩ is called the complex Π-operator (also known as the Beurling-Ahlfors transform),

defined as a complex partial derivative of TΩ. Recall that

Theorem 1.1. (Banach Fixed Point Theorem)[24]

Let (X, d) be a non-empty complete metric space. A mapping T : X −→ X is called a

contraction mapping on X if there exists q ∈ [0, 1), such that d(T (x), T (y)) ≤ qd(x, y).

Such T admits a unique fixed-point x∗ in X, which means T (x∗) = x∗.

Hence, by the Banach fixed-point theorem, the unique solution of the Beltrami

equation exists if ‖µ‖ ≤ µ0 <
1
‖ΠΩ‖

, where µ0 is a constant. Indeed, this can be observed

easily from the inequalities below.

||µ(z)(I + ΠΩh1)− µ(z)(I + ΠΩh2)|| = ||µ(z)ΠΩ(h1 − h2)|| ≤ ||µΠΩ|| · ||h1 − h2||.

Therefore, the existence of the solution of the Beltrami equation turns to the estimate of

the complex Π-operator, and many results have already been established, for instance,

2



[9, 42].

From the description above, we notice that quasiconformal mapping is closely related

to Beltrami equations. Quasiconformal maps are special kind of complex homeomorphisms,

which are generalizations of the well known conformal maps. Conformal maps impose a

very strong condition on the differential (approximating linear map), whereas

quasiconformal maps relax this condition considerably. Indeed, every conformal map is also

a quasiconformal map. Quasiconformal maps retain many aspects of conformal maps.

They have many applications in areas of heat conduction, electrostatic potential and fluid

flow, and are also a valuable tool in the field of complex dynamics. However, the study of

quasiconformal maps can be extended to higher dimensions.

With the help of Clifford algebras, the classical Beltrami equation and Π-operator with

some well known results can be generalized to higher dimensions. Abundant results in

Euclidean space have been found. For instance, in [26], Gürlebeck, Kähler and Shapiro

considered a class of generalizations of the complex one-dimensional Π-operator in spaces

of quaternion-valued functions depending on four real variables. In [25], Gürlebeck and

Kähler provide a hypercomplex generalization of the complex Π-operator which turns out

to have most of the properties of its original in one dimensional complex analysis. Kähler

studied Beltrami equations in the case of quaternions in [28]. This gave an overview of

possible generalizations of the complex Beltrami equation in the quaternionic case and

their properties. In [10], the authors studied the Π-operator in Clifford analysis by the use

of two orthogonal bases of a Euclidean space. This allowed one to find expressions of the

jump of the generalized Π-operator across the boundary of a domain. The case of the

Π-operator and the Beltrami equation on the n-sphere has also been discussed in [15] with

most useful properties inherited from the complex Π-operator.

From the work of Π-operator theory mentioned above, we notice that Π-operator is

usually defined as D∗T , where D∗ is the dual of a Dirac type operator and T is an integral
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operator constructed via the fundamental solution of the Dirac type operator D. More

importantly, if D and D∗ commute, then this gives a L2 isometry property to our

Π-operator D∗T . This idea brings us to the definition of a Π-operator on a general

Clifford-Hilbert module. Hence, we actually complete the work of constructing an isometric

Π-operator on a general Clifford-Hilbert module. Further, a Beltrami equation can also be

constructed here when the Hilbert space is L2(X) for some measure space X, and the norm

estimate of our isometric Π-operator can solve this Beltrami equation. See more details in

Section 4.5. We apply this general setting to consider several practical examples on

conformally flat manifolds and hyperbolic upper half space in higher dimensions.

To generalize results to the unit sphere, we define two Π-operators related to the

conformally invariant spherical Dirac operator. The idea to consider the n-sphere is not

only motivated by being the classic example of a manifold and being invariant under the

conformal group, but also by the fact that in the case of n = 3 due to the recently proved

Poincaré conjecture there is a wide class of manifolds which are homeomorphic to the

3-sphere. This makes our results much more general and valid for any simply connected

closed 3-manifold. In particular, results on local and global homeomorphic solutions of the

spherical Beltrami equation carry over to such manifolds. The Π-operator theory in

Euclidean space, many authors use the commutativity of Dirac operator and its dual

operator to prove the L2 isometry property for the Π-operator. However, the spherical

Dirac operator Ds and its dual operator no longer commute. Hence, we introduce the

spectrum technique for the spherical Dirac operator and Cauchy transform to overcome

this problem. More details can be found in our paper [15].

Conformally flat manifolds are manifolds with atlases whose transition maps are

Möbius transformations. Some can be parametrized by U/Γ where U is a simply connected

subdomain of either Sn or Rn and Γ is a Kleinian group acting discontinuously on U .

Examples of such manifolds treated here include the real projective space RP n, cylinders

4



and Hopf manifolds S1 × Sn. More details for these conformally flat manifolds can be found

in [29, 30]. In our recent paper [16], we give the property of L2 isometry to the Π-operator

and generalize the results in the the complex plane, Euclidean space ([25]) and on the unit

sphere ([15]) to the previous conformally flat manifolds through some projection maps.

Hyperbolic function theory in the upper half space is a modification of standard

Clifford analysis. It is based on the hyperbolic metric rather than the Euclidean one.

Abundant results related to the hyperbolic Dirac operator in the upper half space have

already been found. For instance, the expression of the hyperbolic Dirac operator, Cauchy

integral formula, Borel-Pompeiu formula, etc. We refer the reader to [19, 20, 31, 38] for

more details. In [16] , we introduce a Beltrami equation on the upper half space and a

hyperbolic Π-operator that keeps the property of L2 isometry. This hyperbolic Π-operator

inherits many properties from the one dimensional complex analysis case.

Clifford analysis in higher spin spaces is the study of functions on n-dimensional

Euclidean space taking values in arbitrary irreducible representations of the Spin group. It

is first studied by Bures et al. in 2002, where they construct Rarita-Schwinger operator as

the generalization of the Dirac operator in higher spin spaces. With the idea we provide for

the Π-operator on a general Clifford-Hilbert module, we can construct an L2 isometric

Π-operator in higher spin spaces as well. As a result found during this work, an

Ahlfors-Beurling type inequality is also established.

1.1 Dissertation Outline

This dissertation is organized as follows:

In Section 2, we introduce Clifford algebras with some well known properties; we then

introduce some real subgroups in real Clifford algebras, in particular, the special orthogonal

group and Spin group which is the double covering group of the special orthogonal group.

In Section 3, we introduce the Dirac operator on the Euclidean space and some
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classical results, such as fundamental solutions, Cauchy’s integral formula, Cauchy’s

theorem and Borel-Pompeiu theorem. In order to construct the conformally invariant

spherical Dirac operator, Möbius transformations and Ahlfors-Vahlen matrices are

introduced. Then we use a Cayley transformation to induce the Dirac operator and those

integral formulas to the unit sphere.

Since the main topic of this thesis is constructing Π-operators in different spaces, some

well known results of Π-operator theory are introduced in section 4. We first give the

Π-operator on the 1-dimensional complex plane and its application to solve the complex

Beltrami equation. We also point out that the unique solution is a quasiconformal mapping

and an introduction of quasiconformal mappings is also provided. Then we extend the

results from the 1-dimensional case to higher dimensional spaces. In other words, the

Π-operator and the Beltrami equation on n+ 1-dimensional space are introduced. We also

give the explanation for quasiconformal mappings related to the solutions of the Beltrami

equation. At the end of this section, we demonstrate the construction of a Π-operator on

general Clifford-Hilbert modules.

Through sections 5-9, we investigate specific examples of constructing Π-operators on

different spaces following the idea given at the end of previous section.

In section 5, we create two spherical Π-operators. The first one is an L2 isometry up to

isomorphism. We give the application to solve the first type of spherical Beltrami equation.

Then we create the second type of spherical Π-operator with the idea given in Section 4.5.

This Π-operator is an L2 isometric operator. Since D∗sDs 6= DsD
∗
s , we use a spectrum

technique instead. At the end, we give the Beltrami equation and the condition to the

existence of the unique solution.

In section 6, we induce the Π-operator from the unit sphere to the real projective

space. In [29], the real projective space is a conformally flat manifold defined by

RP n = Sn/{±1}. Hence we induce the generalized spherical Dirac operator to the real

6



projective space and create the Π-operator on RP n. When we prove the property of L2

isometry, we use a projection technique by deriving the spectrum of Dirac operator over

the real projective space via the spectrum of the Dirac operator over the sphere. Finally,

we also show how to use ΠRPn to solve the Beltrami equation on RP n.

In [29], the Dirac operators with their fundamental solutions are induced to cylinders

and Hopf manifolds. In section 7, we induce the Π-operators to cylinders and Hopf

manifolds as well with similar arguments as in the previous section. The conditions to the

existence of the unique solutions of the Beltrami equations are also given.

The Dirac operator in the hyperbolic upper half space is defined with respect to the

hyperbolic metric given in [19, 20, 38]. Then we give the generalized hyperbolic Dirac

operator, some integral formulas and the construction of Π-operator in upper half space in

Section 8. The proof of L2 isometry of our Π-operator is also provided.

In the last section, we generalized the Π-operator to higher spin spaces with respect to

the Rarita-Schwinger operator. This is the generalization of the Dirac operator on the

higher spin spaces. We also give a uniform estimation of the generalized Cauchy

transformation on the higher spin spaces, which is called an Ahlfors-Beurling type

Inequality.

2 Clifford Algebras

2.1 Definitions and Properties

Clifford algebras are the algebras that form the basis of this thesis. They are naturally

associated with bilinear forms on vector spaces. A bilinear form can be considered as a

generalization of an inner product and is defined as follows:

Definition 2.1. Suppose V is a vector space over R. A bilinear form B is a map

B : V × V −→ R; (u, v) 7→ B(u, v),

7



which is linear in both arguments:

B(au1 + bu2, v) = aB(u1, v) + bB(u2, v);

B(u, av1 + bv2) = aB(u, v1) + bB(u, v2).

One can associate a matrix B = (aij)ij ∈ Rn×n to every bilinear form on an n-dimensional

vector space:

B(u, v) =
n∑
i=1

n∑
j=1

uiaijvj = uTBv,

where u, v ∈ V . If the matrix B is symmetric, the associated bilinear form is called

symmetric and if det(B) 6= 0, the associated form is called non-degenerate, i.e. for each

non-zero vector u ∈ V there exists a non-zero vector v ∈ V such that B(u, v) 6= 0.

Definition 2.2. If V is a real vector space equipped with a symmetric, non-degenerate

bilinear form B, then (V,B) is called a non-degenerate orthogonal space.

Note that with a proper choice of a basis for V , every non-degenerate orthogonal space

can be reduced to a space Rp,q with p+ q = n = dim(V ). (p, q) are called the signature of

the orthogonal space (V,B). The physical interpretation of the numbers p and q are the

number of time-like and space-like dimensions respectively. This means that there exist a

basis {e1, · · · , ep, ep+1, · · · , ep+q} such that:

B(ei, ej) = 0, if i 6= j;

B(ei, ei) = 1, if 1 ≤ i ≤ p;

B(ei, ei) = −1, if p+ 1 ≤ i ≤ p+ q.

For instance, the Minkowski space has signature (1, 3) or (3, 1), depending on the

convention, while the classical Euclidean space has signature (3, 0). We always assume that

the basis is orthonormal. In other words, the associated matrix B is diagonal and of the

8



type B = diag(1, · · · , 1,−1, · · · ,−1). We are now in a position to give a definition for a

Clifford algebra. First, the most general definition is given. Afterwards, a more useful

definition that we will continue using throughout this thesis will be given.

Definition 2.3. Suppose that B is a non-degenerate bilinear form on a real vector space

V . The Clifford algebra Cl(V,B) associated to the bilinear form B is a associative algebra

with unit 1 ∈ R defined as

Cl(V,B) := T (V )/I(V,B).

Here, T (V ) is the universal tensor-algebra

T (V ) :=
⊕
k∈N

(
k⊗
V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · ,

and I(V,B) is the two-sided ideal generated by all elements of the form u⊗ u− B(u, u)1,

with u ∈ V .

From now on, we will drop the tensor symbol u⊗ v, i.e. we will simply write uv

instead. Moreover, we will also drop the unit because we only work with fields R and C.

Earlier, we showed that real non-degenerate orthogonal spaces can be classified according

to their signature and that generates a universal real Clifford algebra. After a proper

choice for a basis for V , Cl(V,B) can be reduced to the Clifford algebra Cl(Rp,q,Bp,q).

Lemma 2.1. For every (p, q) with p+ q = n, a basis for Cl(Rp,q,Bp,q) is given by the set

{1, e1, · · · , en, e1,2, · · · , en−1,n, · · · , e12···n},

where ei1···ek is a shorthand for ei1 · · · eik .

If (V,B) = Rp,q, the associated Clifford algebra Cl(Rp,q,Bp,q) will be denoted by Clp,q.

An alternative and much more useful definition for this Clifford algebra is the following:

9



Definition 2.4. For all (p, q) ∈ N× N with p+ q = n, the algebra Rp,q is an associative

algebra (with unit) that is multiplicatively generated by the basis {e1, · · · , en} satisfying

the following multiplication rules:

e2
i = 1, if 1 ≤ i ≤ p;

e2
i = −1, if p+ 1 ≤ i ≤ p+ q;

eiej + ejei = 0, if i 6= j.

These are called the universal Clifford algebra for the space Rp,q with dimR(Clp,q) = 2n.

It is clear that a basis for the algebra is given by

Clp,q = Span{ei1···ik : 1 ≤ i1 < · · · < ek ≤ n}.

Let k ∈ N and A = {i1, · · · , ik} ⊂ {1, · · · , n}, then every element of Clp,q is of the form∑
A

aAeA with aA ∈ R. If A = ∅, we let e∅ = 1. Elements of a Clifford algebra are called

Clifford numbers. We usually use Cln as a shorthand notation for Cl0,n. We also define the

following spaces:

Definition 2.5. For all 0 ≤ k ≤ n, we define the space Cl(k)
p,q of k-vectors as:

Cl(k)
p,q := SpanR{eA : |A| = k},

with Cl(0)
p,q = R. In particular, the space of Cl(1)

p,q is called the space of vectors and the space

of Cl(2)
p,q is called the space of bivectors. Hence, we have

Clp,q = ⊕Cl(k).
p,q

10



The above decomposition can also be rewritten as

Clp,q = Clep,q ⊕ Clop,q

where Clep,q = ⊕Cl(2n)
p,q , and Clop,q = ⊕Cl(2n−1)

p,q . This tells us Clp,q is a Z2-graded algebra.

To conclude this section, we introduce some (anti-)involutions on Clp,q. We first define

them on the basis elements, the action on arbitrary Clifford numbers follows by linear

extension.

1. The inversion on Clp,q is defined as êi1···ik := (−1)kei1···ik .

2. The reversion on Clp,q is defined as ẽi1···ik := eik···i1 .

3. The conjugation on Clp,q is defined as ēi1···ik := ˜̄ei1···ik = (−1)
k(k+1)

2 ei1···ik .

In the rest of this thesis, we only deal with Cln over R unless otherwise specified.

2.2 Real Subgroups of Real Clifford Algebras

One of many applications of Clifford algebras Cln is the following: they can be used to

introduce some important groups which define double coverings of orthogonal group O(n)

and special orthogonal group SO(n). These groups are crucial in the study of the spinor

representations.

Definition 2.6. The orthogonal group O(n) is the group of linear transformations on Rn

which leave the bilinear form invariant, i.e.,

{ϕ ∈ End(Rn) : B(u, v) = B(ϕ(u), ϕ(v)), ∀u, v ∈ V } = {A ∈ Rn×n : ATA = Id}.

An important subgroup of O(n) is the special orthogonal group

SO(n) = {A ∈ O(n) : detA = 1}.
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Suppose a is a unit vector on the unit sphere Sn−1 ⊂ Rn and x ∈ Rn, if we consider axa, we

may decompose

axã = axa‖ ã+ axa⊥ ã = −xa‖ + xa⊥ .

So, the action axã describes a reflection Ra of x in the direction of a. These reflections are

the building blocks for the entire group O(n):

Theorem 2.2. (Cartan-Dieudonné)[23] Every element of O(n) is a composition of at

most n reflections with respect to hyperplanes in Cln, i.e. For any ϕ ∈ O(n), there exist

k ≤ n and a1, · · · , ak ∈ Sn−1, such that

ϕ = Ra1 ◦Ra2 ◦ · · · ◦Rak .

If k is even, then ϕ is a rotation and if k is odd then ϕ is an anti-rotation.

Hence, we are motivated to define

Pin(n) := {a = y1 · · · yp : p ∈ N and y1, · · · , yp ∈ Sn−1}

where for a ∈ Pin(n) we have axã = Oax for appropriate Oa ∈ O(n). Under Clifford

multiplication Pin(n) is a group. Further, we have a group homomorphism as follows.

θ : Pin(n) −→ O(n); a 7→ Oa.

We also define

Spin(n) := {a ∈ Pin(n) : for some q ∈ N, a = y1 · · · y2q}.

The Spin(n) group is a subgroup of Pin(n) and θ is also a group homomorphism from

Spin(n) to SO(n). Indeed, it can be shown that θ is surjective with Kerθ = {−1, 1}.

12



Thus, Pin(n) and Spin(n) are double covers of O(n) and SO(n) respectively. See more

details in [36].

3 Clifford Analysis

Now we have established Clifford algebras and some of their properties, we are concerned

with defining a differential operator and performing analysis with Clifford algebras.

3.1 Dirac Operators and Clifford Analyticity in Cln

We identify the Euclidean space Rn+1 with the direct sum Λ0Rn ⊕ Λ1Rn and Ω ⊂ Rn+1 is a

domain with a sufficiently smooth boundary Γ = ∂Ω. Then functions f defined in Ω with

values in Cln are considered. These functions can be written as

f(x) =
∑

A⊆{e1,e2,...en}

eAfA(x), x ∈ Ω, fA(x) ∈ R.

Properties such as continuity, differentiability, integrability, and so on, which are ascribed

to f have to be possessed by all components fA(x), (A ⊆ {e1, e2, ...en}). The spaces

Ck(Ω, Cln), Lp(Ω, Cln) are defined as right Banach modules with the corresponding

traditional norms. In particular, the space L2(Ω, Cln) is a right Hilbert module equipped

with a Cln-valued sesquilinear form

〈u, v〉 =

∫
Ω

u(η)v(η) dΩη.

Furthermore, W k
p (Ω, Cln), k ∈ N, 1 ≤ p <∞ denotes the Sobolev spaces as the right module

of all functionals whose derivatives belong to Lp(Ω, Cln), with norm

‖f‖Wk
p (Ω,Cln) :=

(∑
A

∑
‖α‖≤k

‖DαfA‖pLp(Ω,Cln)

)1/p
.
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The closure of the space of test functions C∞0 (Ω, Cln) in the W k
p -norm will be denoted by

◦
W k
p (Ω, Cln).

Definition 3.1. Consider Rn as a subset of Cln and write x ∈ Rn as x = x1e1 + · · ·+ xnen.

Then we define

Dx :=
n∑
j=1

ej∂xj

to be the Dirac operator for Rn, where ∂xj is the partial derivative with respect to xj.

Notice that D2
x = −∆ = −

n∑
i=1

∂2

∂x2
i

, where ∆ is the Laplacian in Rn. This definition

suggests we should also consider the following two differential operators in Cln

D0 := ∂x0 +
n∑
j=1

ej∂xj = e0∂x0 +Dx;

D0 := ∂x0 −
n∑
j=1

ej∂xj = e0∂x0 −Dx.

which have the property D0D0 = D0D0 = ∆n+1. D0 and D0 are also called the generalized

Dirac operator and the conjugate generalized Dirac operator, respectively. In particular,

when n = 1, this is the one complex variable case. This tells us that the Dirac operator is

the generalization of the Cauchy-Riemann operator in analysis of one complex variable to

higher dimensions.

Definition 3.2. A Cln-valued function f(x) defined on a domain Ω in Rn+1 is called left

monogenic if

Dxf(x) =
n∑
i=1

ei∂xif(x) = 0.

Similarly, f is called a right monogenic function if it satisfies

f(x)Dx =
n∑
i=1

∂xif(x)ei = 0.
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3.2 Integral Formulas and Fundamental Solutions for The Euclidean

Dirac Operator

In complex analysis, some of the most important properties of analytic functions are

Cauchy’s integral formula, Cauchy’s theorem and Borel-Pompeiu formula. Since analytic

functions can also be considered as solutions for the Cauchy-Riemann operator, as the

generalization of Cauchy-Riemann operator to higher dimensions, the Euclidean Dirac

operator also has such integral formulas.

Theorem 3.1. (Cauchy’s theorem) [18] Fix a domain Ω ⊂ Rn and Ω ⊆ Rn with its

boundary ∂Ω a C1 hypersurface. Suppose f, g : Ω −→ Cln are C1 and gDx = 0 = Dxf on

all of Ω. Then

∫
∂Ω

g(x)n(x)f(x)dσ(x) = 0,

where n(x) is the outer normal vector and dσ(x) is the surface measure on ∂V .

Define G : Rn\{0} −→ Rn\{0} by G(x) :=
x

||x||n
. Note that this function, considered

as a function to Cln, is left and right monogenic. Indeed, G(x− y) =
x− y
||x− y||n

is the

fundamental solution of Dx.

Theorem 3.2. (Cauchy’s Integral Formula) [18] Fix a domain Ω ⊂ Rn and Ω ⊆ Rn

with its boundary ∂Ω a C1 hypersurface. Suppose f : Ω −→ Cln is C1 and Dxf = 0 on all

of Ω. Then for y ∈ Ω, we have

f(y) =
1

ωn−1

∫
∂Ω

G(x− y)n(x)f(x)dσ(x),

where ωn−1 is the area of the (n− 1)-dimensional unit sphere Sn−1.

In analogy to complex analysis, the Clifford analysis version of Cauchy’s integral
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formula immediately gives one a great deal of results, such as the analyticity (interpreted

in the appropriate sense) of monogenic functions.

Now given f(x), a C1 function defined in a neighborhood of a bounded domain Ω, we

define its Cauchy transform by the convolution integral

TΩf(x) =
1

ωn

∫
Ω

G(x− y)f(y)dy.

Theorem 3.3. [27] Suppose f and Ω are as above. Then for each x ∈ Ω, it holds that

f(x) =
1

ωn−1

Dx

∫
Ω

G(x− y)f(y)dyn.

Here T is the generalization to Euclidean space of the Cauchy transform in the

complex plane, and it is the right inverse of Dx, that is DxT = I. Also, the non-singular

boundary integral operator is given by

F∂Ωf(x) =
1

ωn−1

∫
∂U

G(x− y)n(y)f(y)dσ(y).

We have the Borel-Pompeiu formula as follows.

Theorem 3.4. (Borel-Pompeiu formula)[27] For f ∈ C1(Ω, Cln), we have

f(x) =
1

ωn−1

∫
∂Ω

G(x− y)n(y)f(y)dσ(y) +
1

ωn−1

∫
Ω

G(x− y)Dyf(y)dy.

In particular, if f ∈ W k
0 (Ω, Cln), then

f(x) =
1

ωn−1

∫
Ω

G(x− y)Dyf(y)dy.
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Corollary 3.5. [27] Suppose f ∈ C∞0 (Rn, Cln). Then the previous theorem says that

DxTf = f, TDxf = f.

In this sense, D and T are inverses of each other over C∞0 (Rn, Cln).

3.3 Generalized Dirac Operators and Integral Formulas

If we identify the Euclidean space Rn+1 with the direct sum R⊕ Rn, we can derive basic

results for the generalized Dirac operator, which are similar to the previous section. Let Ω

be a bounded smooth domain in Rn+1 and f ∈ C1(Ω, Cln), G(x− y) =
x− y

‖x− y‖n+1
is the

fundamental solution of D0. Hence the Cauchy transform is defined as

TΩf(x) =
1

ωn

∫
Ω

G(x− y)f(y)dy,

where T is the generalization to Euclidean space of the Cauchy transform in the complex

plane, and it is the right inverse of D0, that is D0T = I. Also, the non-singular boundary

integral operator is given by

F∂Ωf(x) =
1

ωn

∫
∂Ω

G(x− y)n(y)f(y)dσ(y).

We have the Borel-Pompeiu formula as follows.

Theorem 3.6. For f ∈ C1(Ω, Cln), we have

f(x) =
1

ωn

∫
∂Ω

G(x− y)n(y)f(y)dσ(y) +
1

ωn

∫
Ω

G(x− y)D0f(y)dy,
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In particular, if f ∈ W k
0 (Ω, Cln), then

f(x) =
1

ωn

∫
Ω

G(x− y)D0f(y)dy.

Hence, D0 and T are inverse operators for function f ∈ W k
0 (Ω, Cln), which says

D0T = TD0 = I.

Similarly the fundamental solution of D0 is G(x− y) =
x− y

‖x− y‖n+1
. Using G(x− y) we

could define the conjugate of the Cauchy transform as follows:

TΩf(x) =
1

ωn

∫
Ω

G(x− y)f(y)dy,

which is the right inverse of D0. Also, the non-singular boundary integral operator is given

by

F ∂Ωf(x) =
1

ωn

∫
∂Ω

G(x− y)n(y)f(y)dσ(y).

For f ∈ W k
0 (Ω, Cln), D0T = TD0 = I.

3.4 Möbius Transformations and Ahlfors-Vahlen Matrices

In analysis of one complex variable, a function f sending a region in R2 = C into C is

conformal at z if it is complex analytic and has a non-zero derivative, f ′(z) 6= 0 (we only

consider sense-preserving conformal mappings). The only conformal transformations of the

whole plane C are affine linear transformations: compositions of rotations, dilations and

translations. The Möbius mapping

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0,
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is affine linear when c = 0; otherwise, it is conformal at each z ∈ C except z = −d
c

. The

Möbius mapping f sends C\{−d
c
} onto C\{a

c
}. If we agree that f(−d

c
) =∞ and

f(∞) =
a

c
, then f becomes a (one-to-one) transformation of C ∪∞, the complex plane

compacting by the point at infinity. These transformations are called Möbius

transformations of C ∪ {∞}. Möbius transformations are compositions of rotations,

translations, dilations and inversions. Möbius transformations send circles (and affine lines)

to circles (or affine lines). The derivative of a Möbius transformation is a composition of a

rotation and a dilation.

In the higher dimensional case, a conformal mapping preserves angles between

intersecting curves. Formally, a differomorphism φ : U −→ Rn is said to be conformal if for

each x ∈ U ⊂ Rn and each u,v ∈ TUx, the angle between u and v is preserved under Dφx.

When the dimension n > 2, Liouville’s Theorem states that any smooth conformal

mapping on a domain of Rn can be expressed as compositions of translations, dilations,

orthogonal transformations and inversions: they are Möbius transformations. Ahlfors and

Vahlen find a connection between Möbius transformations and a particular matrix group,

when the dimension m > 2. They show that given a Möbius transformation on Rn ∪ {∞}

it can be expressed as y(x) = (ax+ b)(cx+ d)−1 where a, b, c, d ∈ Cln and satisfy the

following conditions:

1. a, b, c, d are all products of vectors in Rn;

2. ab̃, cd̃, b̃c, d̃a in Rn;

3. ad̃− bc̃ = ±1.

The associated matrix

a b

c d

 is called a Vahlen matrix of the Möbius transformation

y(x) of Rn, see more details in [36]. All Vahlen matrices form a group under matrix

multiplication, the Vahlen group. Notice that
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y(x) = (ax+ b)(cx+ d)−1 = ac−1 + (b− ac−1d)(cx+ d)−1, this suggests that a conformal

transformation can be decomposed as compositions of translation, dilation, reflection and

inversion. This is called the Iwasawa decomposition for the Möbius transformation y(x).

3.5 Conformal Invariance of Dirac Operators

One important fact about the conformal mapping is that it preserves monogenic functions,

which also means the conformal invariance of the Dirac equation. This has been

established for many years, see [35, 39, 40].

Theorem 3.7. (Conformal invariance of Dirac equation)[27]

Assume f ∈ C1(Rn, Cln) and Dyf(y) = 0. If y = M(x) = (ax+ b)(cx+ d)−1 is a

Möbius transformation, then

Dx
c̃x+ d

||cx+ d||m
f(M(x)) = 0.

In other words, the kernel of the Dirac operator is invariant under Möbius transformations.

Further, we have intertwining operators for the Euclidean Dirac operator, i.e., it is

conformally invariant.

Proposition 3.8. [35] If y = (ax+ b)(cx+ d)−1, then we have

c̃x+ d

||cx+ d||m+2
Dyf(y) = Dx

c̃x+ d

||cx+ d||m
f((ax+ b)(cx+ d)−1).

We just reviewed the first order conformally invariant differential operator in classical

Clifford analysis with some properties. Recall that, in harmonic analysis, as a second order

differential operator, the Laplacian ∆ is also conformally invariant, and we already knew

that −∆ = D2
x. Hence, we expect that Dj

x is conformally invariant as well for j > 2. This

has been confirmed and similar results on fundamental solutions and intertwining operators
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have also been established. First, let y = M(x) = (ax+ b)(cx+ d)−1 be a Möbius

transformation, we denote

Gk(x) =
x

||x||n−2l
, if k = 2l + 1; Gk(x) = ||x||n−2l, if k = 2l;

Jk(M,x) =
c̃x+ d

||cx+ d||n−2l
, if k = 2l + 1, Jk(M,x) = ||cx+ d||n−2l, if k = 2l;

J−k(M,x) =
c̃x+ d

||cx+ d||n+2l
, if k = 2l + 1, Jk(M,x) = ||cx+ d||n+2l, if k = 2l.

Then we have

Proposition 3.9. [35](Intertwining operators for j-Dirac operator)

If y = M(x) = (ax+ b)(cx+ d)−1 is a Möbius transformation, then

J−k(M,x)Dj
yf(y) = Dj

xJk(M,x)f((ax+ b)(cx+ d)−1).

Notice that conformal invariance of the j-Dirac equation Dj
xf(x) = 0 can be deduced

from this easily.

Proposition 3.10. [35](Fundamental solutions for Dj
x)

The fundamental solution of Dj
x is Gj(x) (up to a multiplicative constant), where Gj(x)

is defined as above. However, when the dimension m is even, we require that j < m.

Notice that, for instance, when the dimension m is even and m = j, then the candidate

for the fundamental solution Gj(x) is a constant, which can not be a fundamental solution.

3.6 Clifford Analysis on the Unit Sphere

On the unit n-sphere [32], the spherical Dirac operator Ds is defined as follows:

Ds = x(Γ− n− 1

2
),
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where x ∈ Sn−1, Γ = −
n−1∑

i=1,j>i

eiejLi,j, and here the operators Li,j = xi∂xj − xj∂xi are called

the angular momentum operators. This Ds is the conformally invariant differential operator

corresponding to Dx. It can be derived from the Cayley transformation C : Rn −→ Cln,

where

C(x) = (en+1x+ 1)(x+ en+1)−1 = xs.

Here x ∈ Rn and en+1 is a unit vector in Rn+1 orthogonal to Rn, and xs ∈ Sn. The Cayley

transformation is a Möbius transformation, then intertwining operators of Ds are

J(C, x) =
x+ en+1

‖x+ en+1‖n
,

and

J−1(C, x) =
x+ en+1

‖x+ en+1‖n+2
.

We have the following intertwining relations of Dx and Ds as

J−1(C, x)Ds = DxJ(C, x).

It is well known that the fundamental solution of Ds is Gs(x, y) =
−1

ωn−1

x− y
‖x− y‖n−1

,

x, y ∈ Sn−1.

Assume Ω is a bounded smooth domain in Sn−1 and f ∈ C1(Ω, Cln). Similar as in the

Euclidean space, we can define a Cauchy transform with respect to Ds as follows ([32]).

TΩf(x) =

∫
Ω

Gs(x, y)f(y)dy = − 1

ωn−1

∫
Ω

x− y
‖x− y‖n−1

f(y)dy.

Here, TΩ is also a right inverse for Ds, which is DsT = I. Also, we have two non-singular
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boundary integral operators

F∂Ωf(x) =

∫
∂Ω

Gs(x, y)n(y)f(y)dσ(y).

Then the Borel-Pompeiu formula for Ds is stated as follows.

Theorem 3.11. ([32])(Borel-Pompeiu formula)

For f ∈ C1(Ω) ∩ C(Ω), we have

f(x) =

∫
∂Ω

Gs(x, y)n(v)f(v)dσ(y) +

∫
Ω

Gs(x, y)Dsf(y)dy,

in other words, f = F∂Ωf + TΩDsf . In particular, if f has compact support, then TDs = I.

4 Π-Operator in Euclidean Space and on General Clifford-Hilbert Modules

In this section, we will first recall some basic results for Beltrami equation and Π-operator

on the complex plane. A geometric explanation for quasiconformal mappings is also

provided here. Then, we investigate these in higher dimensional Euclidean space. At the

end, we introduce our L2 isometric Π-operator on a general Clifford-Hilbert module with

its application to a Beltrami equation defined over a Clifford-valued Hilbert space

L2(X, Cln), where X is some measure space. This motivates the constructions of

Π-operator in the next several sections.

4.1 Beltrami equation and the Π-Operator on the Complex Plane

The Π-operator is one of the tools used to study smoothness of functions over Sobolev

spaces and to solve the Beltrami equation. In one dimensional complex analysis, the

Beltrami equation, is the partial differential equation given by

∂w

∂z
= µ

∂w

∂z
,
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where z ∈ C, w = w(z) is a complex function in some open set U ⊆ C with derivatives that

are locally L2, and µ = µ(z) is a given complex function in L∞(U), ‖µ‖ < 1, called the

Beltrami coefficient. The solution of the Beltrami equation relies on a singular integral

operator defined on Lp(C) for all 1 < p <∞, which is called the Beurling transform–the

complex Π-operator,

ΠΩh(z) =
∂

∂z

1

π

∫
Ω

h(ξ)

‖ξ − z‖
dξ = − 1

πi

∫
Ω

h(ξ)

(ξ − z)2
dξ.

This singular integral operator is a conformally invariant operator and acts as an isometry

from L2(C) to L2(C). The Beltrami equation shares the same solution with the singular

integral equation h = q(z)(I + ΠΩ)h. By the Banach fixed point theory, h = µ(z)(I + ΠΩ)h

has a unique solution when ‖µ‖ < µ0 <
1

‖Π‖
, where µ0 is a constant. More details could be

found in the Introduction.

4.2 Quasiconformal Maps on the Complex Plane

In one dimensional complex analysis, a quasiconformal mapping is a generalized conformal

mapping and named by Ahlfors ([4]). It is a homeomorphism between plane domains,

which to first order maps small circles to small ellipses of bounded eccentricity. More

specifically, if we let f : Ω1 −→ Ω2 be a function between bounded plane domains in

complex space, f = u(x, y) + iv(x, y) is differentiable in the real sense, which means all the

partial derivatives ux, uy, vx, vy are continuous in an open subdomain U ⊆ Ω1. Let

z0 = x0 + iy0, z0 ∈ Ω1, and z ∈ Ω1, z → z0, we have the formula

f(z) = f(z0) + ∂f(z0)(z − z0) + ∂f(z0)(z − z0) + o(z − z0).

Consider the function L̃(z − z0) = ∂f(z0)(z − z0) + ∂f(z0)(z − z0). The norm of L̃(z − z0)

represents the distance between f(z) and f(z0) when z is sufficiently close to z0. Hence,
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L̃(z) = ∂f(z0)z + ∂f(z0)z maps the distance between z and z0 to the distance between f(z)

and f(z0). Further, when the Jacobian J(z0) = |∂f(z0)|2 − |∂f(z0)|2 ≥ 0, L̃ is

sense-preserving, which means J(z0) > 0 and |∂f(z0)| ≥ |∂f(z0)|.

Let ∂f(z0) = |∂f(z0)|eiα = Aeiα, ∂f(z0) = |∂f(z0)|eiβ = Beiβ, and z = reiθ, then

L̃(z) = A(z +
B

A
z) = Aei(α+β

2
)r
(
ei(θ−

β
2

) +
|B|
|A|

e−i(θ−
β
2

)
)
.

Thus if we let g(z) = Aei(θ−
β
2

) · z, h(z) = Beiβ · z. Both maps g and h are simiply rotations.

Let Lµ(z) = z + µz = (1 + µ)x+ i(1− µ)y. It maps x to (1 + µ)x and y to (1− µ)y, which

is an expansion in the x-direction and a compression in the y-direction. Therefore, we have

that

L̃(z) = g ◦ L‖µ‖ ◦ h.

If f satisfies the Beltrami equation
∂f

∂z
= µ

∂f

∂z
, it is easy to see, f maps an infinitesimal

circle centered as z0 to an infinitesimal ellipse centered at f(z0), and the ratio of the major

axis to the minor axis of the infinitesimal ellipse is

K̃f (z0) =
1 + |µ(z0)|
1− |µ(z0)|

=
|∂f(z0)|+ |∂f(z0)|
|∂f(z0)| − |∂f(z0)|

.

K̃f (z0) is the ratio of the maximum stretch to the minimum stretch of an infinitesimal

circle around z0 under f . Let f : Ω1 −→ Ω2, if there exists a constant K ≥ 1,

K̃f = supz∈Ω1
K̃f (z) ≤ K, we call f K−quasiconformal.

4.3 Π-Operator in Euclidean Space

It is well known that in complex analysis, the Π-operator can be realized as the

composition of ∂z̄ and the Cauchy transform. Hence, the generalization of Π-operator in
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higher dimensional Euclidean space via Clifford algebra can be defined as follows.

Definition 4.1. The Π-operator in Euclidean space Rn+1 is defined as

Π = D0T.

In [25, 26], we have an integral expression of Π as follows.

Theorem 4.1. Assume f ∈ W p
0 (Ω)(1 < p <∞), then we have

Πf(z) = − 1

ωn+1

∫
Ω

(n− 1) + (n+ 1) ζ−z2

‖ζ−z‖2

‖ζ − z‖n+1
f(ζ)dζ +

1− n
1 + n

f(z).

The following are some well known properties for the Π-operator.

Theorem 4.2. ([25]) Suppose f ∈ W p
0 (Ω)(1 < p <∞), then

1. D0Πf = D0f,

2. ΠD0f = D0f −D0F∂Ωf,

3. F∂ΩΠf = (Π− TD0)f,

4. D0Πf − ΠD0f = D0F∂Ωf.

The following is the decomposition of L2(Ω, Cln), see more details in [25].

Theorem 4.3. (L2(Ω, Cln) Decomposition)

L2(Ω, Cln) = L2(Ω, Cln)
⋂

KerD0

⊕
D0(W 1,2

0 (Ω, Cln)),

and

L2(Ω, Cln) = L2(Ω, Cln)
⋂

KerD0

⊕
D0(W 1,2

0 (Ω, Cln)).
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Notice that

Π(L2(Ω, Cln)
⋂

KerD0) = L2(Ω, Cln)
⋂

KerD0,

Π(D0(W 1,2
0 (Ω, Cln))) = D0(W 1,2

0 (Ω, Cln)).

Hence, Π-operator maps from L2(Ω, Cln) to L2(Ω, Cln).

One key property of the Π-operator is that it is an L2 isometry. In other words,

Theorem 4.4. ([25]) For functions in L2(Ω, Cln), we have

Π∗Π = I.

To complete this section, we introduce the application of the Π-operator to solve the

Beltrami equation. Let Ω ⊆ Rn+1, q : Ω→ Cln and ω : Ω→ Cln be a sufficiently smooth

function. The generalized Beltrami equation

D0ω = qD0ω

has a solution ω = Th+ φ, where φ is an arbitrary monogenic function. Substitute such w

into the Beltrami equation, we have the following

D0w = D0(Th+ φ) = h

= qD0(φ+ Th) = q(D0φ+ Πh).

Therefore, we transform the Beltrami equation into an integral equation h = q(D0φ+ Πh).

By the Banach fixed point theorem, this equation has a unique solution if ‖q‖ ≤ 1

‖Π‖
, see

[25] and the Introduction. This tells us that the existence of a unique solution to the

Beltrami equation depends on the norm estimate for Π-operator. By [42], we have
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‖Π‖Lp(Rn+1) ≤ (n+ 1)(p∗ − 1), where p∗ = max(p, p/(p− 1)).

4.4 Quasiconformal Mappings and Beltrami Equations in Higher

Dimensional Spaces

Similarly as the case in C, we extend the case from the complex plane to the

(n+ 1)−dimensional space. Let f : Ω1 −→ Ω2 be a paravector-valued function, that is

f =
n∑
i=0

fiei, where Ω1,Ω2 ⊆ Rn+1. We shall discuss the quasiconformal structure induced

by f(x) in the neighborhood of x = 0. By Taylor’s series expansion, for x→ 0,

f(x) = f(0) +
n∑
i=0

xi∂xif(0) + o(‖x‖2).

Let L̃(x) =
∑n

i=0 xi∂xif(0), then ||L̃(x)|| represents the distance between f(x) and f(0)

when x is sufficiently close to the origin. We have

L̃(x) =
n∑
i=0

xi∂xif(0) =
(x+ x)

2
· (D +D)

2
f(0) +

(x− x)

2
· (D −D)

2
f(0)

=
1

2
(x ·Df(0) + x ·Df(0)).

If f is a solution of the Beltrami equation Df = qDf , where q is a measurable function, we

defined

K̃f (0) =
||L̃(x)||max
||L̃(x)||min

=
‖Df(0)‖+ ‖Df(0)‖
‖Df(0)‖ − ‖Df(0)‖

=
1 + ‖q(0)‖
1− ‖q(0)‖

.

Let x be on a sphere centered at 0 with radius ‖x‖. When x→ 0, f maps the

infinitesimal sphere to an infinitesimal elliptical sphere centered at f(0) with radius

‖L̃(x)‖. The ratio of the maximum stretch to the minimum stretch of the ellipse around

f(0) is K̃f (0). Similarly we could define the K−quasiconformal of the paravector-valued

function f , if there exists a K ≥ 1, such that K̃f = sup
z∈Ω1

K̃f (z) ≤ K.

From the argument above, we notice that every solution to the Beltrami equation is a
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quasiconformal mapping, the existence of solutions to the Beltrami equations becomes an

important topic for studying quasiconformal mapping.

4.5 Π-operator on Clifford-Hilbert Modules

In this section, we will provide a Π-operator defined on a general Clifford-Hilbert module.

This Π-operator also has an isometry property. It motivates the definitions of Π-operators

in different conformally flat manifolds in the following several sections.

Let H be a real Hilbert space with inner product 〈 , 〉, then H ⊗ Cln is a

Clifford-Hilbert module. More details for Clifford-Hilbert module can be found in [10, 34].

Let E be a dense subspace of H, and f, g ∈ E ⊗ Cln. Suppose an operator D acts on

E⊗Cln, which also satisfies D∗D = DD∗ where D∗ is the dual operator of D in the sense of

〈Df, g〉 = 〈f,D∗g〉.

Let T bs an operator acting on E ⊗ Cln. It is called the inverse of D if it satisfies

DT = TD = I.

Definition 4.2. The Π-operator on E ⊗ Cln is defined as

Π = D∗T.

On the unit sphere Sn, the spherical Π operator is defined as Πs = DsT , [15]. By

Theorem 9 in [15], D∗s = −Ds.

Recall that E is dense in H, so we can induce a Π-operator on H ⊗ Cln immediately.

The Π-operator defined above also possesses an important property that it has in one

dimensional complex analysis. That is

Theorem 4.5. The operator Π = D∗T is an isometric operator on H ⊗ Cln.

29



Proof.

〈Πf,Πg〉 = 〈D∗Tf,D∗Tg〉 = 〈Tf,DD∗Tg〉

= 〈Tf,D∗DTg〉 = 〈DTf,DTg〉 = 〈f, g〉.

We next show that our generalized Π-operator can be used to solve certain Beltrami

equations. More specifically, if we let H be L2(X), where X is a measure space with a

measure η. Hence, we can define a Beltrami equation over H ⊗ Cln i.e., L2(X, Cln) as

follows.

Df = qD∗f,

where q ∈ L∞(X, Cln), which is defined similarly as in Euclidean space with the essential

supremum norm with respect to η. By the substitution f = φ+ Th where φ is a solution

for Dφ = 0, we transform the Beltrami equation in the following way.

D(φ+ Th) = h = qD∗(φ+ Th) = q(D∗φ+ Πh).

Hence, if h is the unique solution of the equation

h = q(D∗φ+ Πh),

f = φ+ Th is the unique solution of the Beltrami equation. The Banach fixed point theory

tells us this equation has a unique solution if ‖q‖ ≤ q0 <
1

‖Π‖
, with q0 being a constant.

Hence, as in the classical case, the problems of the existence of the solution to the Beltrami

equation becomes the norm estimate of our Π-operator.
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As special cases of this general Hilbert space approach, one has the L2 isometry of the

usual Π-operator in one complex variable and the Π-operator in Rn described in [10, 25, 26]

and elsewhere. The next sections describe the Π-operator acting over L2 spaces over other

manifolds.

5 Spherical Π-Type Operators

5.1 Spherical Π-Type Operator with Generalized Spherical Dirac

Operator

Let {e0, e1, · · · , en} be the standard orthogonal basis of Rn+1 with e2
0 = 1 and

e2
i = −1, i = 1, · · · , n. We should use the generalized Dirac operator

D0 = e0
∂

∂x0

+
n∑
j=1

ej
∂

∂xj
= e0

∂

∂x0

+Dx.

The spherical Dirac operator Ds on Sn is defined as follows.

xD0 =
n∑
j=1

e0ej(x0∂xj − xj∂x0)−
n∑

i=1,j>i

eiej(xi∂xj − xj∂xi) +
n∑
j=0

(xj∂xj).

Denote Γ0 =
n∑
j=1

e0ej((x0∂xj − xj∂x0))−
n∑

i=1,j>i

eiej((xi∂xj − xj∂xi)). Hence,

Ds =
x

‖x‖2
(Er + Γ0) = ξ(Dr +

Γ0

r
),

where rDr = Er and r = ‖x‖.

In particular, we have the conformally invariant spherical Dirac operator as follows,

Ds = w(Γ0 −
n

2
), w ∈ Sn.
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Similarly, we have Ds = ξ(Dr +
Γ0

r
), and since Ds is also conformally invariant, we

have Ds = w(Γ0 − n
2
), where

Γ0 = −
n∑
j=1

e0ej(x0∂xj − xj∂x0)−
n∑

i=1,j>i

eiej(xi∂xj − xj∂xi).

Lemma 5.1.

Γ0w = nw − wΓ0;

Γ0w = nw − wΓ0.

Proof. Since we have

D0w = n+ 2Er − wD0,

D0w = n+ 2Er − wD0,

then we have

Γ0w = (wD0 − Er)w = w(D0w)− Erw = nw + wEr −D0 = nw − wΓ0;

Γ0w = (wD0 − Er)w = w(D0w)− Erw = nw − wEr −D0 = nw − wΓ0.

Theorem 5.2.

Dsw = −wDs, Dsw = −wDs.

Proof. A straight forward calculation completes the proof. Indeed,

Dsw = w(Γ− n

2
)w = wΓw − n

2
= w(nw − wΓ)− n

2
= −ww(Γ− n

2
) = −wDs
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Dsw = w(Γw − n

2
w) = wΓw − n

2
= w(nw − wΓ)− n

2
= −ww(Γ− n

2
) = −wDs.

Theorem 5.3. Since Ds and Ds are both conformally invariant, we have their

fundamental solutions as follows:

DsGs(w − v) = Ds
1

ωn

w − v
‖w − v‖n

= δ(w − v),

DsGs(w − v) = Ds
1

ωn

w − v
‖w − v‖n

= δ(w − v).

Proof. First, we assume w 6= v. Since

||w − v||2 =
n∑
j=0

(wj − vj)2 =
n∑
j=0

w2
j +

n∑
j=0

v2
j − 2

n∑
j=0

wjvj = 2− 2〈w, v〉, by Ds = w(Γ− n
2
),

and Γ〈w, v〉 = wv − 〈w, v〉, we can have

Ds
w − v
‖w − v‖n

= w(Γ− n

2
)(w − v)(‖w − v‖2)−

n
2

= 2−
n
2

(
w(Γ− n

2
)w(1− 〈w, v〉)−

n
2 − w(Γ− n

2
)v(1− 〈w, v〉)−

n
2

)
= 2−

n
2

(
(nw − Γw − n

2
w)w(1− 〈w, v〉)−

n
2 − wΓ(1− 〈w, v〉)−

n
2 v +

n

2
wv(1− 〈w, v〉)−

n
2

)
= 2−

n
2

(
− Γ(1− 〈w, v〉)−

n
2 − wΓ(1− 〈w, v〉)−

n
2 v +

n

2
(1 + wv)(1− 〈w, v〉)−

n
2

)
= 2−

n
2

(
− n

2
(1− 〈w, v〉)−

n
2
−1(wv − 〈w, v〉)− n

2
(1− 〈w, v〉)−

n
2
−1(1− wv〈w, v〉)

+
n

2
(1 + wv)(1− 〈w, v〉)−

n
2

)
= 2−

n
2
−1[(−wv + 〈w, v〉 − 1 + wv〈w, v〉+ (1 + wv)(1− 〈w, v〉))](1− 〈w, v〉)−

n
2
−1

= 0
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Similarly, by Ds = w(Γ− n
2
) and Γ〈w, v〉 = wv − 〈w, v〉, we obtain that

Ds
w − v
‖w − v‖n

= w(Γ− n

2
)(w − v)(‖w − v‖2)−

n
2

= 2−
n
2

(
w(Γ− n

2
)w(1− 〈w, v〉)−

n
2 − w(Γ− n

2
)v(1− 〈w, v〉)−

n
2

)
= 2−

n
2

(
(nw − Γw − n

2
w)w(1− 〈w, v〉)−

n
2 − wΓ(1− 〈w, v〉)−

n
2 v +

n

2
wv(1− 〈w, v〉)−

n
2

)
= 2−

n
2

(
− Γ(1− 〈w, v〉)−

n
2 − wΓ(1− 〈w, v〉)−

n
2 v +

n

2
(1 + wv)(1− 〈w, v〉)−

n
2

)
= 2−

n
2

(
− n

2
(1− 〈w, v〉)−

n
2
−1(wv − 〈w, v〉)− n

2
(1− 〈w, v〉)−

n
2
−1(1− wv〈w, v〉)

+
n

2
(1 + wv)(1− 〈w, v〉)−

n
2

)
= 2−

n
2
−1[(−wv + 〈w, v〉 − 1 + wv〈w, v〉+ (1 + wv)(1− 〈w, v〉))](1− 〈w, v〉)−

n
2
−1

= 0

DsG(w − v) = Ds
w − v
‖w − v‖n

= 0, w 6= v.

Since we have the fact that for x ∈ Rn+1, ||x||α is weak differentiable if α > −n+ 2

with weak derivative ∂xi ||x||α = αxi||x||α−2, the calculation above is also true in the

distribution sense. Therefore,DsG(w − v) and DsG(w − v) both have only support at the

origin, since they both have degree −n and the only distribution having degree −n in Sn−1

is δ(x), this completes the proof.

Let Ω be a bounded smooth domain in Sn and f ∈ C1(Ω, Cln), we have the Cauchy

transforms for both Ds and Ds,

TΩf(w) =

∫
Ω

Gs(w − v)f(v)dv =
1

ωn

∫
Ω

w − v
‖w − v‖n

f(v)dv,

TΩf(w) =

∫
Ω

Gs(w − v)f(v)dv =
1

ωn

∫
Ω

w − v
‖w − v‖n

f(v)dv.
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Also, the non-singular boundary integral operators are given by

F∂Ωf(w) =

∫
∂Ω

Gs(w − v)n(v)f(v)dσ(v),

F ∂Ωf(w) =

∫
∂Ω

Gs(w − v)n(v)f(v)dσ(v).

Then we have Borel-Pompeiu Theorem as follows.

Theorem 5.4. (Borel-Pompeiu Theorem)

For f ∈ C1(Ω, Cln−1), we have

f(w) =

∫
∂Ω

Gs(w − v)n(v)f(v)dσ(v) +

∫
Ω

Gs(w − v)Dsf(v)dv,

in other words, f = F∂Ωf + TΩDsf . Similarly, f = F ∂Ωf + TΩDsf

f(w) =

∫
∂Ω

Gs(w − v)n(v)f(v)dσ(v) +

∫
Ω

Gs(w − v)Dsf(v)dv,

If f is a function with compact support, then TDs = TDs = I.

Since the conformally invariant spherical Laplace operator ∆s has the fundamental

solution Hs(w − v) = − 1

(n− 2)ωn

1

‖w − v‖n−2
, see [32]. We have factorizations of ∆s as

follows.

Theorem 5.5. ∆s = Ds(Ds + w) = Ds(Ds + w).
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Proof.

(Ds + w)
1

‖w − v‖n−2

= w(Γ− n

2
)(‖w − v‖2)−

n−2
2 + w(‖w − v‖2)−

n−2
2

= 2−
n−2

2 wΓ(1− 〈w, v〉)−
n−2

2 + (1− n

2
)w

2− 2〈w, v〉
‖w − v‖n

= (n− 2)w2−
n
2 (wv − 〈w, v〉)(1− 〈w, v〉)−

n
2 − (n− 2)w

1− 〈w, v〉
‖w − v‖n

= (n− 2)w
wv − 〈w, v〉
‖w − v‖n

− (n− 2)w
1− 〈w, v〉
‖w − v‖n

= −(n− 2)
w − v
‖w − v‖n

.

Hence, (Ds + w)Hs(w − v) =
1

ωn

w − v
‖w − v‖n

= Gs(w − v).

Similarly, (Ds + w)Hs(w − v) = Gs(w − v) by

(Ds + w)
1

‖w − v‖n−2

= w(Γ− n

2
)(‖w − v‖2)−

n−2
2 + w(‖w − v‖2)−

n−2
2

= 2−
n−2

2 wΓ(1− 〈w, v〉)−
n−2

2 + (1− n

2
)w

2− 2〈w, v〉
‖w − v‖n

= (n− 2)w2−
n
2 (wv − 〈w, v〉)(1− 〈w, v〉)−

n
2 − (n− 2)w

1− 〈w, v〉
‖w − v‖n

= (n− 2)w
wv − 〈w, v〉
‖w − v‖n

− (n− 2)w
1− 〈w, v〉
‖w − v‖n

= −(n− 2)
w − v
‖w − v‖n

.

We also have the duality of Ds as follows.

Theorem 5.6. D∗s = −Ds.
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Proof. Let f, g : Ω→ Cln−1 both have compact supports,

< Dsf, g >

= < w(Γ0 −
n

2
)f, g >

= < (Γ0 −
n

2
)f, wg >

= < Γ0f, wg > −
n

2
< f,wg >

= < f,Γ0wg > −
n

2
< f,wg >

= < f, (nω − ωΓ0)g > −n
2
< f,wg >

= < f,−w(Γ0 −
n

2
)g >

= < f,−Dsg > .

Definition 5.1. Define the generalized spherical Π-type operator as

Πs,0f = (Ds + w)Tf.

We have some properties of Πs,0 as follows.

Proposition 5.7.

DsΠs,0 = Ds − w,

Πs,0Ds = Ds + w.

Proof.

DsΠs,0 = Ds(Ds + w)T = (Ds − w)DsT = Ds − w,

Πs,0Ds = (Ds + w)TDs = Ds + w.
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From the proposition above, we can have decompositions of L2(Ω, Cln−1) as follows.

Theorem 5.8.

L2(Ω, Cln−1) = L2(Ω, Cln)
⋂

Ker(Ds − w)
⊕

Ds(W
1,2
0 (Ω, Cln)),

L2(Ω, Cln−1) = L2(Ω, Cln)
⋂

KerDs

⊕
(Ds + w)(W 1,2

0 (Ω, Cln)).

Notice that

Πs,0(L2(Ω, Cln)
⋂

Ker(Ds − w) = L2(Ω, Cln)
⋂

KerDs,

Πs,0Ds(W
1,2
0 (Ω, Cln)) = (Ds + w)(W 1,2

0 (Ω, Cln)).

Hence, Πs,0 operator is from L2(Ω, Cln) to L2(Ω, Cln). The proof is similar to Theorem 4.3.

Definition 5.2. We define the Π+
s operator as

Π+
s f = DsT

+f,

where T+f =

∫
Ω

G+(w − v)f(v)dv,

G+(w − v) = Gs(w − v) + wHs(w − v)− 2G(3)
s (w − v),

and

G(3)
s (w − v) =

1

(n− 2)(n− 4)ωn

w − v
‖w − v‖n−4

.

Notice that G
(3)
s (w − v) is actually the reproducing kernel of

D
(3)
s = (Ds − w)Ds(Ds + w) and the proof is similar as in [32].
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Proposition 5.9.

Πs,0(L2(Ω, Cln)
⋂

KerDs) = L2(Ω, Cln)
⋂

Ker(Ds − w),

Πs,0(Ds + w)(W 1,2
0 (Ω, Cln)) = Ds(W

1,2
0 (Ω, Cln)).

Theorem 5.10. Πs is an isometry on W 1,2
0 (Ω, Cln) up to isomorphism.

Proof. Let f ∈ L2(Ω, Cln), then

〈Πsf,Π
+
s g〉

= 〈(Ds + w)Tf,DsT
+g〉

= 〈Tf, (−Ds + w)DsT
+g〉

= −〈Tf, (Ds − w)DsT
+g〉

= −〈Tf,Ds(Ds + w)T+g〉

= 〈DsTf, (Ds + w)T+g〉 = 〈f, g〉.

5.2 Application of Πs,0 to the Solution of a Beltrami Equation

We have a Beltrami equation related to Πs,0 as follows. Let Ω ⊆ Sn be a bounded, simply

connected domain with sufficiently smooth boundary, q : Ω −→ Cln a measurable function.

Let f : Ω −→ Cln be a sufficiently smooth function. The spherical Beltrami equation is as

follows:

Dsf = q(Ds + w)f.
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By substitute f = φ+ Th, where φ is an arbitrary left-monogenic function such that

Dsφ = 0, we have

Ds(φ+ Th) = h = q(Ds + w)(φ+ Th) =
(
(Ds + w)φ+ Πs,0h

)
.

Therefore, the Beltrami equation is transformed into a singular integral equation as

h = q
(
(Ds + w)φ+ Πs,0h

)
.

Similar argument could be found in introduction. By the Banach fixed point theorem, this

equation has a unique solution in the case where

‖q‖ ≤ q0 <
1

‖Πs,0‖
,

with q0 being a constant. Hence, for the rest of this section, we will estimate the Lp norm

of Πs,0 with p > 1.

Since Ds = w(Γ− n
2
) = w(wD0 − Er − n

2
) = D0 − wEr − n

2
w, then

Πs,0f(w) = (Ds + w)Tf(w) = (DT + w(1− Ew)T − n

2
T )f(w).

It is easy to see that

∂

∂wj

∫
Sn

w − v
‖w − v‖n

f(v)dv =

∫
Sn

ej − n(wj − vj) w−v
‖w−v‖2

‖w − v‖n
f(v)dv + ωn

ej
n
f(v),

since

∂

∂wj

w − v
‖w − v‖n

=
ej − n(wj − vj) w−v

‖w−v‖2

‖w − v‖n
,
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and using Chapter IX § 7 in [41]

∫
S

w − v
‖w − v‖

cos(r, wj)dS = ωn
ej
n
,

where S is a sufficiently small neighborhood of w on Sn.

Hence, we have

DTf(w) =
1

ωn

∫
Sn

∑
ej

2 − n
∑

(wj − vj)ej w−v
‖w−v‖2

‖w − v‖n
f(v)dv +

∑
ej

2

n
f(v)

=
1

ωn

∫
Sn

(1− n)− n w−v2

‖w−v‖2

‖w − v‖n
f(v)dv +

1− n
n

f(v)

EwTf(w) =
1

ωn

∫
Sn

∑
wjej − n

∑
wj(wj − vj) w−v

‖w−v‖2

‖w − v‖n
f(v)dv +

∑
wjej
n

f(v)

=
1

ωn

∫
Sn

w − n < w,w − v > w−v
‖w−v‖2

‖w − v‖n
f(v)dv +

w

n
f(v).

Therefore, we have an integral expression of Πs,0 as follows.

Theorem 5.11.

Πs,0f(w) = (DT + w(1− Ew)T − n

2
T )f(w)

=
1

ωn

∫
Sn

1− n− w2

‖w − v‖n
f(v)dv +

n

ωn

∫
Sn

v − 〈w, v〉w
‖w − v‖n+1

· w − v
‖w − v‖

f(v)dv

+ (1− n

2
)
w

ωn

∫
Sn

w − v
‖w − v‖n

f(v)dv +
1− n
n

f(v).

Since

Πs,0 = (Ds + w)T = (w(Γ0 −
n

2
) + w)T = wΓ0T + (1− n

2
)wT,

where Γ0 = −
n∑
j=1

e0ej(x0∂xj − xj∂x0)−
n∑

i=1,j>i

eiej(xi∂xj − xj∂xi). To estimate the Lp norm

of Πs,0, we need the following result.

Theorem 5.12. Suppose p is a positive integer and p > 1, then ‖T‖Lp ≤
ωn−1

4
.
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Proof. Since

‖Tf‖pLp = (
1

ωn
)p
∫

Ω

‖
∫

Ω

Gs(w − v)f(v)dvn‖pdwn

= (
1

ωn
)p
∫

Ω

‖
∫

Ω

Gs(w − v)
1
qGs(w − v)

1
pf(v)dvn‖pdwn

≤ (
1

ωn
)p
∫

Ω

(
(

∫
Ω

‖Gs(w − v)‖dvn)
p
q ·
∫

Ω

‖Gs(w − v)‖‖f(v)‖pdvn
)
dwn

≤ (
1

ωn
)pC

p
q

1

∫
Ω

∫
Ω

‖Gs(w − v)‖‖f(v)‖pdvndwn

= (
1

ωn
)pC

p
q

1

∫
Ω

‖f(v)‖p(
∫

Ω

‖Gs(w − v)‖dwn)dvn

≤ (
1

ωn
)pC

p
q

+1

1

∫
Ω

‖f(v)‖p(
∫

Ω

‖Gs(w − v)‖dwn)dvn

= (
1

ωn
)pCp

1 ·
∫

Ω

‖f(v)‖pdvn

= (
1

ωn
)pCp

1 · ‖f‖
p
Lp

where p, q > 1 are positive integers and
1

p
+

1

q
= 1, where

C1 ≤
∣∣ ∫

Sn
‖Gs(w − v)‖dvn

∣∣ =
∣∣ ∫

Sn

1

‖w − v‖n−1
dvn
∣∣.

Due to the symmetry we can choose any fixed point w, hence we choose w = (1, 0, 0, ..., 0)

and v = (x0, x1, · · · , xn) ∈ Sn, i.e.
n∑
i=0

‖xi‖2 = 1. Let v = cos θe0 + sin θζ, where ζ is a
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vector on n− 1-sphere, then we have dvn = sinn−1 θdθ,

∫
Sn

1

[2(1− x1)]
n−1

2

dvn

= 2−
n−1

2

∫ π

0

1

(1− cos θ)
n−1

2

sinn−1 θdθ

= 2−
n−1

2

∫ π

0

(2 sin2 θ

2
)−

n−1
2 (2 sin

θ

2
cos

θ

2
)n−1dθ

=

∫ π

0

cosn−1 θ

2
dθ

= 2 · 1

2
·

Γ(1
2
)Γ(n

2
)

Γ(n−1
2

+ 1)

=
√
π

Γ(n
2
)

Γ(n+1
2

)
.

Since ωn =
2π(n+1)/2

Γ(n+1
2

)
, we have ‖T‖Lp ≤

ωn−1

4
.

Let G0 be the operator defined by

G0g(w) = − 1

(n− 1)ωn

∫
Sn

1

‖w − v‖n−1
g(v)dv, n ≥ 3,

and Rs = Γ0 ◦G0 is a Riesz transformation of gradient type (see [3]). Then we have,

Proposition 5.13. [3], The operator Rs is a Lp operator and the Lp norm is bounded by

π1/2

2
√

2
(

p

p− 1
)1/2Bp,

where Bp = CM,p + Cp, CM,p is the Lp norm of the maximal truncated Hilbert

transformation on S1, and Cp = cot π
2p∗
, 1
p

+ 1
p∗

= 1.
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Hence,

‖Γ0
1

ωn

∫
Ω

1

‖w − v‖n−1
· w − v
‖w − v‖

f(v)dv‖Lp

≤ (n− 1)
π1/2

2
√

2
(

p

p− 1
)1/2Bp‖f(v)‖Lp

= (n− 1)
π1/2

2
√

2
(

p

p− 1
)1/2Bp‖f(v)‖Lp . (1)

Recall that Πs,0f = (Ds + w)Tf = (w(Γ0 − n
2
) + w)Tf = wΓ0Tf + (1− n

2
)wTf ,

and by Theorem 5.12,

||(1− n

2
)wTf ||Lp = ‖(1− n

2
)
w

ωn

∫
Ω

w − v
‖w − v‖n

f(v)dv‖Lp ≤ (
n

2
− 1)

ωn−1

4
‖f‖Lp . (2)

By inequalities (1) and (2), we show that Πs,0 is a bounded operator mapping from Lp

space to itself, and

‖Πs,0‖Lp ≤ (n− 1)
π1/2

2
√

2
(

p

p− 1
)1/2Bp + (

n

2
− 1)

ωn−1

4
.

Remark: The spherical Π-type operator Πs,0 preserves most properties of the Π

operator in Euclidean space and more importantly, it is a singular integral operator which

helps to solve the corresponding Beltrami equation. Unfortunately, it is also only an L2

isometry up to isomorphism as shown in Theorem 5.10 . In the next section, we will use

the spectrum theory of differential operators to claim that there is a spherical Π-type

operator which is also an L2 isometry.

5.3 Eigenvectors of Spherical Dirac Type Operators

In this section, we will investigate the spectrums of several spherical Dirac type operators

and the spherical Laplacian. During the investigation, we will point out there is a spherical

Π-type operator which is an L2 isometry.
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Since Γ0 = xD0 − Er, it is easy to verify the fact that if pm is a monogenic polynomial

and is homogeneous with degree m, that is D0fm = 0 and Erfm = mfm, then

Γ0fm = −mfm, so fm is an eigenvector of Γ0 with eigenvalue −m. Similarly, if D0gm = 0,

gm is an eigenvector of Γ0 with eigenvalue −m.

Let Hk be the space of Cln-valued harmonic polynomials homogeneous of degree k and

Mk be the Cln-valued monogenic polynomials homogeneous of degree k, Mk is the Clifford

involution of Mk. By an Almansi-Fischer decomposition [13] and [17],

Hk =Mk

⊕
x̄Mk−1. Hence, for for all harmonic functions with homogeneity of degree k,

there exist pk ∈ KerD0, and pk−1 ∈ KerD0 such that hk = pk + x̄pk−1. Then, it is easy to

get that Γ0pk = −kpk and Γ0x̄pk−1 = (n+ k)x̄pk−1.

Let Hm denote the restriction to Sn of the space of Cln-valued harmonic polynomials

with homogeneity of degree m. Pm is the space of spherical Cln-valued left monogenic

polynomials with homogeneity of degree −m and Qm is the space of spherical Cln-valued

left monogenic polynomials with homogeneity of degree n+m, m = 0, 1, 2, .... Then we

have Hm = Pm
⊕

Qm ([8]). It is well known that L2(Sn) =
∞∑
m=0

Hm ([5]), it follows

L2(Sn) =
∞∑
m=0

Pm
⊕

Qm. If pm ∈ Pm, since Γ0pm = −mpm, it is an eigenvector of Γ0 with

eigenvalue −m, and for qm ∈ Qm, it is an eigenvector of Γ0 with eigenvalue n+m.

Therefore, the spectrum of Γ0 is σ(Γ0) = {−m,m = 1, 2, ...} ∪ {m+ n,m = 0, 1, 2, ...},.

Since Ds = w(Γ0 −
n

2
), the spectrum of Ds is σ(Ds) = σ(Γ0)− n

2
, which is

{−m− n
2
,m = 0, 1, 2, ...} ∪ {m+ n

2
,m = 0, 1, 2, ...}.

As mentioned in the previous section DsT = TDs = I, and we know that

Ds : Pm −→ Qm ([8]). Hence, we have T : Qm −→ Pm and the spectrum of T is the

reciprocal of the spectrum of Ds. It is

σ(T ) = { 1
m+n

2
,m = 0, 1, 2, ...}

⋃
{ 1
−m−n

2
,m = 0, 1, 2, ...}. Similar arguments apply for Ds

and T , in fact σ(Ds) = σ(Ds) and σ(T ) = σ(T ).

Now with a similar strategy as in [8], we consider the operator DsT which maps L2(Sn)
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to L2(Sn). If u ∈ C1(Sn) then u ∈ L2(Sn). It follows that

u =
∞∑
m=0

∑
pm∈Pm

pm +
−∞∑
m=0

∑
qm∈Qm

qm,

where pm and qm are eigenvectors of Γ0. Further the eigenvectors pm and qm can be chosen

so that within Pm they are mutually orthogonal. The same can be done for the eigenvectors

qm. Moreover, as u ∈ C1(Sn) then DsTu ∈ C0(Sn) and so DsTu ∈ L2(Sn). Consequently,

DsTu =
∞∑
m=0

∑
pm∈Pm

DsTpm +
∞∑
m=0

∑
qm∈Qm

DsTqm

=
∞∑
m=0

∑
qm∈Qm

Ds
1

m+ n
2

qm +
∞∑
m=0

∑
pm∈Pm

Ds
1

−m− n
2

pm

and

||DsTu||2L2 =
∞∑
m=0

(
1

m+ n
2

)2
∑

qm∈Qm

‖Dsqm‖L2 +
∞∑
m=0

(
1

−m− n
2

)2
∑

pm∈Pm

‖Dspm||L2

=
∞∑
m=0

(
1

m+ n
2

)2(m+
n

2
)2
∑

pm∈Pm

‖pm||L2 +
∞∑
m=0

(
1

−m− n
2

)( −m− n

2
)2
∑

qm∈Qm

‖qm||L2

=
∞∑
m=0

∑
pm∈Pm

||pm||L2 +
∞∑
m=0

∑
qm∈Qm

||qm||L2

= ||u||L2 .

The above proof shows

Theorem 5.14. DsT is an L2(Sn) isometry.
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By the help of the spectrum of T , we have the L2 norm estimate of the Πs,0, that is

‖Πs,0u‖L2 ≤ ‖DsTu‖L2 + ‖w‖L2‖Tu‖L2

= ‖u‖L2 + (
1

m+ n
2

)2(
∞∑
m=0

∑
pm∈Pm

‖pm‖L2 +
∞∑
m=0

∑
qm∈Qm

‖qm‖L2)

≤ (1 +
4

n2
)‖u‖L2 .

Hence we have ‖Πs,0‖L2 ≤ 1 +
4

n2
.

By Theorem 5.2, ∆s = Ds(Ds + w) = (Ds − w)Ds = Ds(Ds + w) = (Ds − w)Ds.

Since Ds = w(Γ0 −
n

2
), Ds = w(Γ0 −

n

2
), a straightforward calculation shows us that

∆s = −(Γ0 −
n

2
)2 − ww(Γ0 −

n

2
) = −Γ2

0 + (n− 1)Γ0 − (
n2

4
− n

2
)

= −(Γ0 −
n

2
)2 − ww(Γ0 −

n

2
) = −Γ0

2
+ (n− 1)Γ0 − (

n2

4
− n

2
).

Since for 0 < r < 1, any harmonic function hm ∈ B(0, r) = {x ∈ Rn : ||x|| < r} with

homogeneity degree m, we have hm = fm + gm, where fm ∈ KerD0 and gm ∈ D0, they are

both homogeneous with degree m (see Lemma 3 [21]). Consequently,

∆sfm = (−Γ2
0 + (n− 1)Γ0 − (

n2

4
− n

2
))fm = (−m2 −m(n− 1)− (

n2

4
− n

2
))fm,

and

∆sgm = (−Γ0
2

+ (n− 1)Γ0 − (
n2

4
− n

2
))gm = (−m2 −m(n− 1)− (

n2

4
− n

2
))gm.
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Hence

∆shm = ∆s(fm + gm) = (−m2 −m(n− 1)− (
n2

4
− n

2
))(fm + gm)

= (−m2 −m(n− 1)− (
n2

4
− n

2
))hm.

Since for any function u ∈ L2(Sn) : Ω 7→ Cln, u =
∞∑
m=0

hm, where hm ∈ Hm, it follows that

∆s has spectrum σ(∆s) = {−m2 −m(n− 1)− (n
2

4
− n

2
) : m = 0, 1, 2, ...}.

In order to preserve the property of isometry of the Π-operator on the sphere, we define

the isometric spherical Π-operator as Πs,1 as Πs,1 = DsT , which is an isometry in L2 space.

We can solve the Beltrami equation related to Πs,1 as follows.

Let Ω ⊆ Sn be a bounded, simply connected domain with sufficiently smooth boundary,

and q, f : Ω −→ Cln−1, q is a measurable function, and f is sufficiently smooth. The

spherical Beltrami equation is as follows:

Dsf = qDsf.

Substitute f = φ+ Th where φ is an arbitrary left-monogenic function such that Dsφ = 0,

we have

Ds(φ+ Th) = h = qDs(φ+ Th) = q(Dsφ+ Πs,1h).

Therefore, we transform the Beltrami equation to the integral equation

h = q(Dsφ+ Πs,1h).

If h is the unique solution of the previous equation, then f = φ+ Th is the unique solution

of the Beltrami equation. Similar argument could be found in Introduction. By the Banach
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fixed point theorem, the previous integral equation has a unique solution in the case of

‖q‖ ≤ q0 <
1

‖Πs,1‖

with q0 being a constant. Hence, we can use the estimate of the Lp norm of Πs,1 with

p > 1, where

‖Πs,1‖Lp ≤ (n− 1)
π1/2

2
√

2
(

p

p− 1
)1/2Bp +

n

2

ωn−1

4
.

Notice that the spherical Π-operator constructed in this section does not satisfy some basic

identities as it does in the Euclidean space, see Theorem 4.2. In Euclidean space, these

identities rely on the fact that the Euclidean Dirac operator and its dual operator

commute. However, this is not true for the spherical Dirac operator, and hence, our

spherical Π-operator no longer satisfies these identities.

6 Π-Operators on Real Projective Space

Recall the construction of our Π-operator in the previous section, if we let X to be the real

projective space RP n with the measure η by pushing forward the Lebesgue measure on Sn.

Then, H = L2(RP n,R) becomes a real Hilbert space, and H ⊗ Cln is a Clifford-Hilbert

module with the inner product

〈f, g〉 =

∫
V ′
fgdη(x),

where V ′ is a subset of real projective space with V ′ inclosed and f, g : V ′ −→ Cln.

Therefore we can obtain the Π-operator theory on real projective space as a special case of

Section 4. More details are as follows.
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6.1 Dirac Operators on Real Projective Space

We know that the real projective space RP n is defined as Sn/Γ, where Sn is the

n-dimensional unit sphere and Γ = {±1}. This implies that Π-operator theory on real

projective space should be generalized from the Π-operator theory on the unit sphere.

Notice that there is a projection map p : Sn −→ RP n, such that for each x ∈ Sn,

p(±x) = x′. If Q is a subset of Sn, we denote p(±Q) = Q′. Firstly we consider the bundle

E1 by making the identification of (x,X) and (−x,X) where x ∈ Sn and X ∈ Cln.

Now we change the generalized spherical Cauchy kernel Gs(x, y) = − 1

ωn

x− y
‖x− y‖n

,

x, y ∈ Sn into a kernel which is invariant with respect to {±1}. We obtain a kernel

GRPn1 (x, y) = Gs(x, y) +Gs(−x, y) for RP n ([29]).

Suppose S is a suitably smooth hypersurface lying in the northern hemisphere of Sn

and V is also a domain lying in the northern hemisphere sphere that S bounds a

subdomain W of V . If f : V −→ Cln is a left spherical monogenic function and y ∈ W , then

f(x) =

∫
S

(
Gs(x, y) +Gs(−x, y)

)
n(y)f(y)dσ(y),

where ωn is the surface area of Sn and n(y) is the unit outer normal vector to S at x lying

in the tangent space of Sn at y. Now we use the projection map p : Sn −→ RP n to note

that this projection map induces a function f ′ : V ′ −→ E1. We have ([29])

f ′(x′) =

∫
S′
GRPn1 (x′, y′)dp(n(y))f ′(y′)dσ′(y′),

where x′ = p(x), y′ = p(y), and S ′ = p(S). This projection induces a measure σ′ on S ′ from

the measure σ on S. Now we will assume the domain V is such that −x ∈ V for each

x ∈ V , and the function f is two fold periodic, so that f(x) = f(−x) and S = −S. Now

the projection map p give rise to a well defined domain V ′ on RP n and a well defined

function f ′(x′) : V ′ −→ E1 such that f ′(x′) = f(±x). As the function is spherical
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monogenic, which is Dsf(x) = 0, we could induce a Dirac operator on RP n and

DRPn1 f
′(x′) = 0. In this case ([29]),

2f ′(x′) =

∫
S′
GRPn1 (x′, y′)dp(n(x))f ′(y′)dσ′(y′).

Similarly, we have the conjugate of the Dirac operator DRPn1 induced by Ds, and the kernel

of DRPn1 is GRPn1 (x, y) = Gs(x, y) +Gs(−x, y).

Now we induce the Cauchy transform and its conjugate from Sn to RP n as follows.

TV ′1f
′(x′) =

∫
V ′
GRPn1 (x′, y′)f ′(y′)dy′,

TV ′1f
′(x′) =

∫
V ′
GRPn1 (x′, y′)f ′(y′)dy′.

Also, the non-singular boundary integral operator and its conjugate are given by

FS′f
′(x′) =

∫
S′
GRPn1 (x′, y′)dp(n(y′))f ′(y′)dσ′(y′),

FS′f
′(x′) =

∫
S′
GRPn1 (x′, y′)dp(n(y′))f ′(y′)dσ′(y′).

Hence, the Borel-Pompeiu formula is stated as follows.

Theorem 6.1. For f ′ ∈ C1(V ′, Cln) ∩ C(V̄ ′), we have

2f ′(x′) =

∫
S′
GRPn1 (x′, y′)dp(n(y))f ′(y′)dσ′(y′) +

∫
V ′
GRPn1 (x′, y′)DRPn1 f

′(y′)dy′.

In particular, if f ′ has compact support, then

2f ′(x′) =

∫
V ′
GRPn1 (x′, y′)DRPn1 f

′(y′)dy′,

from which we could obtain TDRPn1 = 2I.
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Since the domain V = −V , if we restrict it on the northern hemisphere, the Dirac

operator DRPn1 is locally homeomorphic to Ds. We project it on the domain V ′ on RP n

and we have

DRPn1

∫
V

Gs(x, y)f(y)dy = f(x).

Now, for the whole domain V , after projection on the domain V ′on RP n, we obtain

DRPn1

∫
V ′

(
Gs(x, y) +Gs(−x, y)

)
f ′(y′)dy′ = 2f ′(x),

that is DRPn1 T = 2I. Similarly, we have DRPn1 T = TDRPn1 = 2I.

In the rest of this section, we will study the spectrums of our operators DRPn1 and T .

This will helps us to show that our Π-operator (defined in Section 3.2) also possesses the

L2 isometry property. The Dirac operator DRPn1 is induced by the spherical monogenic

functions. Since DsD
∗
sf = −DsDsf 6= −DsDsf = D∗sDsf (see [15]), we have

DRPn1 D
∗
RPn1

f ′ 6= D∗RPn1 DRPn1 f
′ also. In order to prove the property of L2 isometry we are

using the method of spectrum. Similar argument can be found on the spherical Π-operator,

see [15].

Let Hm denote the space of Cln-valued harmonic polynomials with homogeneity of

degree m restricted to Sn. It is well known that L2(Sn) =
∑∞

m=0 Hm, see [5]. Now we

consider a function f(x) which is defined on an open domain V ⊆ Sn such that −x ∈ V for

each x ∈ V and f(x) = f(−x). Such a function f could be projected on the real projective

space RP n by p(±x) = x′. Since
∑∞

m=0 h2m(x) = f(x) = f(−x) =
∑∞

m=0 h2m(−x), we

should have f(x) =
∑∞

m=0 h2m(x). Then by the projection map we have

f ′(x′) =
∑∞

m=0 h
′
2m(x′). Hence, L2(RP n) =

∑∞
m=0 H

′
2m with the spinor bundle E1, where

H ′2m is H2m projected on the real projective space.

Assume that Pm is the space of spherical Cln-valued left monogenic polynomials with

homogeneity of degree −m and Qm is the space of spherical Cln-valued left monogenic
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polynomials with homogeneity of degree n+m, m = 0, 1, 2, .... We have already known

that Hm = Pm ⊕Qm on Sn ([8]), that is for each hm(x) ∈ Hm(Sn) there exists

pm(x) ∈ Pm(Sn) and qm(x) ∈ Qm(Sn) such that hm(x) = pm(x) + qm(x). Hence

hm(−x) = pm(−x) + qm(−x). However, from the discussion given in the previous

paragraph, there are only even degree polynomials in the decomposition of L2(RP n) when

RP n has the spinor bundle E1. Therefore, by the projection map, we have a decomposition

on the real projective space as h′2m(x′) = p′2m(x′) + q′2m(x′). In other words,

L2(RP n) =
∑∞

m=0 P
′
2m ⊕Q′2m. As we know that Ds(P2m) = Q2m and Ds(Q2m) = P2m, we

also have DRPn1 (P ′2m) = Q′2m and DRPn1 (Q′2m) = P ′2m. Hence DRPn1 maps L2(RP n) to itself,

similarly for DRPn1 . Similar as the case on the unit sphere, we have the spectrum of the real

projective Dirac operator as follows.

σ(DRPn1 ) = σ(DRPn1 ) = {−2m− n

2
,m = 0, 1, 2, ...} ∪ {2m+

n

2
,m = 0, 1, 2, ...}.

Since we previously mentioned that DRPn1 T = TDRPn1 = 2I, and T : Q′m −→ P ′m and

T : P ′m −→ Q′m. The spectrums of T and its conjugation T on the real projective space are

σ(T ) = σ(T ) = { 2

2m+ n
2

,m = 0, 1, 2, ...} ∪ { 2

−2m− n
2

,m = 0, 1, 2, ...}.

6.2 Construction of a Π-Operator on the Real Projective Space

We first give the definition for the Π-operator on the real projective space as follows.

Definition 6.1. Define the Π-operator on the real projective space as

ΠRPn1 =
1

2
(DRPn1 )T.

Here, the constant 1
2

allows ΠRPn1 to be L2 isometric, we will see more details below.

Notice that ΠRPn1 maps L2(RP n) to L2(RP n). Further, we can prove that ΠRPn1 is an
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L2-isometry on RP n as follows.

Theorem 6.2. ΠRPn1 is an L2(RP n) isometry.

Proof. Hence, we assume the function u ∈ C1(RP n) ⊂ L2(RP n), since C1(RP n) is dense in

L2(RP n). For such a function u, we have the decomposition

u =
∞∑
m=0

∑
p′2m∈P ′2m

p′2m +
−∞∑
m=0

∑
q′2m∈Q′2m

q′2m.

Hence, with similar arguments as in [15], we have

||1
2
DRPn1 Tu||

2
L2

=
∞∑
m=0

(
1

2m+ n
2

)2
∑

q′2m∈Q′2m

‖DRPn1 q
′
2m‖L2 +

∞∑
m=0

(
1

−2m− n
2

)2
∑

p′2m∈P ′2m

‖DRPn1 p
′
2m||L2

=
∞∑
m=0

(
1

2m+ n
2

)2(2m+
n

2
)2

∑
p′2m∈P ′2m

‖p′2m||L2

+
∞∑
m=0

(
1

−2m− n
2

)2(−2m− n

2
)2

∑
q′2m∈Q′2m

‖q′2m||L2

=
∞∑
m=0

∑
p′2m∈P ′2m

||p′2m||L2 +
∞∑
m=0

∑
q′2m∈Q′2m

||q′2m||L2 = ||u||L2 .

We can also assign another bundle E2 to RP n by identifying the pair (x,X) with

(−x,−X), where x ∈ Sn and X ∈ Cln. In this circumstance, the projection map p induces

a Cauchy kernel GRPn2 which is a antiperiodic with respect to Γ = {±1}. Hence

GRPn2 (x′ − y′) = Gs(x, y)−Gs(−x, y). In this case, a Clifford holomorphic function

f : V −→ Cln satisfying f(x) = −f(−x) will give a Clifford holomorphic function

f : V ′ −→ E2. Similarly, we could induce another Cauchy transform and its conjugate from
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Sn to RP n as follows.

TV ′2f
′(x′) =

∫
V ′
GRPn2 (x′ − y′)f ′(y′)dy′,

TV ′2f
′(x′) =

∫
V ′
GRPn2 (x′ − y′)f ′(y′)dy′.

With similar arguments as for DRPn1 , we can define DRPn2 on RP n with the bundle E2, and

the Π-operator is defined as ΠRPn2 = 1
2
DRPn2 TV ′2 . Similar arguments for ΠRPn1 shows that

ΠRPn2 also possesses the L2 isometry property. It is worth pointing out that on the bundle

E2 we only have odd degree eigenvectors for f(−x) = −f(x), hence the decomposition of f

is f =
∑∞

m=0Hm+1 =
∑∞

m=0 P
′
2m+1 ⊕Q′2m+1.

With similar arguments as for DRPn1 , we can define DRPn2 on RP n with the bundle E2,

and the Π-operator is defined as ΠRPn2 = 1
2
DRPn2 TV ′2 , which is also induced from Πs. Similar

arguments for ΠRPn1 shows that ΠRPn2 also possesses the L2 isometry property. It is worth

pointing out that on the bundle E2 we only have odd degree eigenvectors for

f(−x) = −f(x), hence the decomposition of f is f =
∑∞

m=0Hm+1 =
∑∞

m=0 P
′
2m+1 ⊕Q′2m+1.

6.3 The Beltrami Equation on the Real Projective Space

In this section, we will demonstrate how to use our Π-operator DRPn1 to determine the

existence of the solutions to the Beltrami equation on the real projective space.

Let V ′ ⊆ RP n be a bounded, simply connected domain with sufficiently smooth

boundary, and q, f ′ : V ′ −→ E1, q is a measurable function, and f ′ is sufficiently smooth.

The Beltrami equation on the real projective space is as follows:

DRPn1 f
′ = qDRPn1 f

′.

By substituting f ′ = φ+ 1
2
Th where φ is an arbitrary left-monogenic function such that
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DRPn1 φ = 0, we have

DRPn1 (φ+
1

2
Th) = h = qφ+

1

2
T (φ+

1

2
Th) = q(DRPn1 φ+ ΠRPn1 h).

Hence we transformed the Beltrami equation into an integral equation

h = q(DRPn1 φ+ ΠRPn1 h).

By the Banach fixed point theorem, the previous integral equation has a unique solution in

the case of

‖q‖ ≤ q0 <
1

‖ΠRPn1 ‖

with q0 being a constant. Therefore, the problem of the existence of the solutions to the

Beltrami equation becomes the estimation of the Lp norm of ΠRPn1 with p > 1. Similar

argument could be found in the Introduction.

Since the domain V = −V on Sn, this means if we restrict V to the northern

hemisphere as V ′, DRPn1 T is locally homeomorphic to Πs. Hence, if we project V to V ′ on

RP n, we have ‖ΠRPn1 ‖Lp = 1
2
‖Πs‖Lp . This allows us to use the estimate of ‖Πs‖Lp to obtain

‖ΠRPn1 ‖Lp =
1

2
‖Πs‖Lp ≤ (n− 1)

π1/2

2
√

2
(

p

p− 1
)1/2Bp +

n

2

ωn−1

4

where Bp = CM,p + Cp, CM,p is the Lp norm of the maximal truncated Hilbert

transformation on S1, and Cp = cot π
2p∗
, 1
p

+ 1
p∗

= 1. For more details, see [3, 15].

7 Π-Operators on Cylinders and Hopf Manifolds

Π-operator theory on cylinders and Hopf manifolds are special cases of Section 4. We let X

to be the cylinders Ck with the measure η by pushing forward the Lebesgue measure on

Rn+1 via the quotient map Rn+1 −→ Rn+1/Zk given in Section 6.1.1. Meanwhile,
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H = L2(Ck,R) is a real Hilbert space, and H ⊗ Cln is a Clifford-Hilbert module with the

inner product

〈f, g〉 =

∫
V ′
fgdη(x),

where V ′ is a subset of cylinder Ck with V ′ inclosed and f, g : V ′ −→ Cln. Therefore we can

construct the Π-operator theory on cylinders as demonstrated in Section 4.

Similarly, if we let X to be Hopf manifolds S1 × Sn with the pushforward measure

obtained via the quotient map defined below in Section 6.2.1, and H = L2(S1 × Sn,R) is a

Hilbert space. Then we can build the Π-operator theory on the Clifford-Hilbert module

H ⊗ Cln. More details are given below.

7.1 Π-Operators on Cylinders

7.1.1 Dirac Operator on the Cylinder

For integer k, 1 ≤ k ≤ n, we define the k-cylinder Ck to be the k-dimensional manifold

Rn+1/Zk where Zk = Ze0 + Ze1 + ...+ Zek−1. In particular, when k = n, Ck is the k-torus.

Each element in Ck has the form m0e0 + · · ·mk−1ek−1 for m0, · · · ,mk−1 ∈ Z and it is

denoted by t. For each k the space Rn+1 is the universal covering space of the cylinder Ck.

Hence, there is a projection map pk : Rn+1 −→ Ck.

Let U be a open subset of Rn+1. It is called k-fold periodic if for each x ∈ U we also

have x+ t ∈ U . Hence, U ′ = pk(U) is an open subset of Ck. Suppose that U ⊆ Rn+1 is a

k-periodic open set. f(x) is a Clifford valued function defined on U . We say that f(x) is a

k-fold periodic function if we have f(x) = f(x+ t) for each x ∈ U . Hence, the projection pk

induces a well defined function f ′ : U ′ −→ Cln, where f ′(x′) = f(x) for each x′ ∈ U ′ and x

is arbitrary representative of p−1
k (x′). Moreover, any function f ′ : U ′ −→ Cln lifts to an

k-fold periodic function f : U −→ Cln, where U = p−1
k (U ′).
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In ([30]) the spinor bundle over Ck is trivial on Ck × Cln. Other k spinor bundles E(l)

over Ck are given rise by making the identification (x,X) with

(x+m+ n, (−1)m0+m1+...+mlX), where l is an integer and 0 ≤ l ≤ k, m is in the lattice

Zl = Ze0 + Ze1 + ...+ Zel−1, and n is in the lattice Zk−l = Zel + Zel+1 + ...+ Zek−1.

Let G(x, y) =
x− y

||x− y||n+1
be the fundamental solution of the Euclidean Dirac

operator. Consider the series

cotk,0(x, y) =
∑
m∈Zk

G(x− y +m)

which converges on Rn+1 \Zk, for k < n− 1, see [29]. Then, the kernel of Dirac operator on

the cylinder Ck with the trivial bundle has the form cotk,0(x′, y′) which is defined on

(Ck × Ck) \ diagonal(Ck), where diagonal(Ck) = {(x′, x′) : x′ ∈ Ck}. More generally, For

k < n− 1 and l ≤ k, the kernel cotk,l(x
′, y′) of the Dirac operator on Ck with the bundle

E(l) is given rise by applying pk on

cotk,l(x, y) =
∑

m∈Zk,n∈Zk−l
(−1)m0+m1+...ml−1G(x− y +m+ n).

On the other hand, with the projection map pk, we can induce the Dirac operator on Rn+1

to Ck with the bundle E(l), which is denoted by Dl. Similar argument applies for the

conjugation Dl and its fundamental solution cotk,l(x′, y′). Furthermore, DlDl = DlDl = ∆l,

where ∆l is a spinorial Laplacian, see [29].

Suppose f : V −→ Rn+1 satisfying f(x+m+ n) = (−1)m0+m1+...ml−1f(x), where

m ∈ Zl, n ∈ Zk−l. Then, f can be lifted by the projection map pk to a function

f ′ : V ′ −→ E(l), where V ′ = p−1
k (V ). If Dlf

′ = 0, f ′ is called an E(l) left Clifford monogenic

function.

Using the fundamental solutions of the Dirac operators, we can define the Cauchy

transform on different bundles. If f ′ : V ′ −→ E(l), S ′ is a surface lying in V ′ and bounding
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a subdomain W ′. Suppose x′ ∈ W ′, then

TV ′f
′(x′) =

1

ωn

∫
V ′

cotk,l(x
′, y′)f ′(y′)dy′,

TV ′f
′(x′) =

1

ωn

∫
V ′

cotk,l(x′, y′)f
′(y′)dy′.

Also, the non-singular boundary integral operator and its conjugate are given by

FS′f
′(x′) =

1

ωn

∫
S′

cotk,l(x
′, y′)dp(n(y′))f ′(y′)dσ′(y′),

FS′f
′(x′) =

1

ωn

∫
S′

cotk,l(x′, y′)dp(n(y′))f ′(y′)dσ′(y′).

Hence, the Borel-Pompeiu formula is stated as follows.

Theorem 7.1. ( [30]) For f ′ ∈ C1(V ′, Cln) ∩ C(V ′), we have

f ′(x′) =
1

ωn

( ∫
S′

cotk,l(x
′, y′)dp(n(y))f ′(y′)dσ′(y′) +

1

ωn

∫
V ′

cotk,l(x
′, y′)Dlf

′(y′)dy′
)
.

Similar as the case in Euclidean space, for a function f ′ with compact support, we have

DlTV ′ = TV ′Dl = I, and DlTV ′ = TV ′Dl = I as well.

7.1.2 Construction and Applications of the Π-Operator on Cylinders

Now we define the Π-operator on the cylinder as follows.

Definition 7.1. Define the Π-operator on the cylinder as

Πl = DlT.

Since Πl is induced from the Π-operator in Euclidean space, we expect similar results

as in ([25]).
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Theorem 7.2. Πl is an L2(Ck) isometry operator.

Proof. The proof is similar to the proof of Proposition 5 in [25].

In this section, we will use the norm estimation of the Π-operator on the cylinder to

determine existence of the solution of Beltrami equation on the cylinder. First, we define

the Beltrami equation on the cylinder as follows.

Let V ′ ⊆ Ck be a bounded, simply connected domain with sufficiently smooth

boundary, and q, f ′ : V ′ −→ E(l), q is a measurable function, and f ′ is sufficiently smooth.

The Beltrami equation on the cylinder is as follows:

Dlf
′ = qDlf

′.

It could be transformed to an integral equation

h = q(Dlφ+ Πlh)

by f ′ = φ+ Th where φ is an arbitrary left-monogenic function such that Dlφ = 0. By the

Banach fixed point theorem, the previous integral equation has a unique solution in the

case of

‖q‖ ≤ q0 <
1

‖Πl‖

with q0 being a constant, we can use the estimate of the Lp norm of Πl with p > 1.

Suppose V =
⋃∞
i=1 Vi = p−1

k (V ′), such that pk(Vi) = V ′, i = 1, 2, · · · . f : Vi −→ Cln is a

piecewise continuous function with compact support, and f can be induced to

f ′ : V ′ −→ E. For the Π-operator on Rn+1, we have ‖Π‖Lp(Rn+1) ≤ (n+ 1)(p∗ − 1), where

p∗ = max(p, p/(p− 1)), see [42].

Recall that Πl = Dl cotq,k,0 ∗, where “ ∗ ” is the standard convolution. On each

subdomain Vi, we have ‖Dl cotq,k,0 ∗f ′(x′)‖Lp(Vi) = ‖DG ∗ f(x)‖Lp(Vi) ≤ (n+ 1)(p∗ − 1).
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Hence for the domain V =
⋃∞
i=1 Vi, we have

‖Dl cotq,k,0 ∗f(x)‖Lp(V ) = ‖DG ∗ f(x)‖Lp(V ) ≤ (n+ 1)(p∗ − 1). Applying the projection pk

on V , we could obtain

Theorem 7.3.

‖D′ cot′q,k,0 ∗f(x′)‖Lp(V ′) ≤ (n+ 1)(p∗ − 1),

which shows ‖Πl‖Lp(Ck) ≤ (n+ 1)(p∗ − 1), where p∗ = max(p, p/(p− 1)).

7.2 Π-Operator on Hopf Manifolds

7.2.1 Dirac operators on the Hopf Manifolds

A Hopf manifold is diffeomorphic to the conformally flat spin manifold U/Γ = S1 × Sn,

where U = Rn+1 \ {0} and Γ = {2k : k ∈ Z}. There exists a projection

pk : Rn+1 \ {0} −→ S1 × Sn, such that pk(2
kx) = x′.

Let V ⊆ Rn+1 be open, and if x ∈ V , 2kx ∈ V . Hence pk(V ) = V ′ ⊆ S1 × Sn, which is

also open. A left Clifford holomorphic functions f : V −→ Cln which satisfying

f(x) = f(2kx) could be lifted to a well defined function f ′ : V ′ −→ Cln by the projective

map pk, where f ′(x′) = f(x) for each x′ ∈ V ′ and x is one of p−1
k (x′).

The spinor bundle E over S1 × Sn is constructed by identifying (x,X) with (2kx,X) for

k ∈ Z and x ∈ Rn+1 \ {0}, X ∈ Cln. In [30], the Cauchy kernel for S1 × Sn is given as

follows. Let C(x− y) = C1(x− y) + 22−2nC2(x− y), where

C1(x− y) =
∞∑
k=0

G(2kx− 2ky),

C2(x− y) = G(x)
−∞∑
k=−1

G(2−kx−1 − 2−ky−1)G(y),

and G(x, y) =
x− y

||x− y||n+1
is the fundamental solution of the Euclidean Dirac operator.

Applying the projective map we obtain the Cauchy kernel C ′(x′, y′) for the Dirac operator
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on (S1 × Sn)× (S1 × Sn) \ diagonal(S1 × Sn), which is denoted by D′. A function f ′ defined

on V ′ ⊆ S1 × Sn is left monogenic if D′f ′ = 0.

Using the kernel of the Dirac operators D′, we can define the Cauchy transform on

S1 × Sn. If f ′ : V ′ −→ E, S ′ is a surface lying in V ′ and bounding a subdomain W ′.

Suppose x′ ∈ W ′,

TV ′f
′(x′) =

1

ωn

∫
V ′
C(x′ − y′)f ′(y′)dy′,

TV ′f
′(x′) =

1

ωn

∫
V ′
C(x′ − y′)f ′(y′)dy′.

Also, the non-singular boundary integral operator and its conjugate are given by

FS′f
′(x′) =

1

ωn

∫
S′
C(x′ − y′)dp(n(y′))f ′(y′)dσ′(y′),

FS′f
′(x′) =

1

ωn

∫
S′
C(x′ − y′)dp(n(y′))f ′(y′)dσ′(y′).

And the Borel-Pompeiu formula is stated as follows.

Theorem 7.4. ([30]) For f ′ ∈ C1(V ′, Cln) ∩ C(V ′), we have

f ′(x′) =
1

ωn

( ∫
S′
C(x′ − y′)dp(n(y))f ′(y′)dσ′(y′) +

∫
V ′
C(x′ − y′)Dlf

′(y′)dy′
)
.

7.2.2 Construction and Applications of the Π-Operator on Hopf Manifolds

Definition 7.2. Define the Π-operator on the Hopf manifold as

Π′f ′ = D′Tf ′.

Since Π′ is induced from the Π-operator in Euclidean space, we expect similar results

as in ([25]).
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Theorem 7.5. Π′ is an L2 isometry operator.

Proof. The proof is similar to Proposition 5 in [25].

Let V ′ ⊆ S1 × Sn be a bounded, simply connected domain with sufficiently smooth

boundary, and q, f ′ : V ′ −→ E, q is a measurable function, and f ′ is sufficiently smooth.

The Beltrami equation on the Hopf manifold is as follows:

D′f ′ = qD′f ′.

Substitute f ′ = φ+ Th we have

D′(φ+ Th) = h = qD′(φ+ Th) = q(D′φ+D′Th) = q(D′φ+ Π′h).

Therefore, the Beltrami equation has a unique solution f ′ = φ+ Th where φ is an arbitrary

left-monogenic function such that D′φ = 0 and h is the solution of an integral equation

h = q(D′φ+ Π′h).

By the Banach fixed point theorem, the previous integral equation has a unique solution in

the case of

‖q‖ ≤ q0 <
1

‖Π′‖

with q0 being a constant, we can use the estimate of the Lp norm of Πl with p > 1. Similar

argument could be found in Introduction.

Suppose V =
⋃∞
i=1 Vi is the inverse image of V ′ under pk, such that pk(Vi) = V ′.

f : Vi −→ Cln is a piecewise continuous function with compact support, and f could be

induced to f ′ : V ′ −→ E. For the Π-operator on Rn+1, we have

‖Π‖Lp(Rn+1) ≤ (n+ 1)(p∗ − 1), where p∗ = max(p, p/(p− 1)), see [42].
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On each subdomain Vi, we have ‖D′C ∗ f(x)‖Lp(Vi) = ‖DG ∗ f(x)‖Lp(Vi), hence for the

domain V =
∞∑
i=1

Vi, we have ‖D′C ∗ f(x)‖Lp(V ) = ‖DG ∗ f(x)‖Lp(V ) ≤ (n+ 1)(p∗ − 1).

Applying the projection pk on V , we could obtain ‖D′C ′ ∗ f(x′)‖Lp(V ′) ≤ (n+ 1)(p∗ − 1),

which shows that

Theorem 7.6.

‖Π′‖Lp(S1×Sn) ≤ (n+ 1)(p∗ − 1), where p∗ = max(p, p/(p− 1)).

8 A Π-Operator on the Hyperbolic Upper Half Space

In this section, we let X to be the upper half space Rn+1
+ with the hyperbolic measure.

Then Hilbert space H = L2(Rn+1
+ ,R) becomes a real Hilbert space, and H ⊗ Cln is a

Clifford-Hilbert module with the inner product

〈f, g〉 =

∫
Ω

fg
dxn

xn−1
n

,

where Ω is a subset of the upper half space with Ω inclosed and f, g : Ω −→ Cln. Then the

Π-operator theory on the hyperbolic upper half space is actually a special case of Section 4,

which is demonstrated as follows.

8.1 Hyperbolic Dirac Operator

Denote the upper half space Rn+1
+ = {x0e0 + x1e1 · · ·+ xnen : xn > 0}. The Poincaré

half-space is a Riemannian manifold (Rn+1
+ , ds2) with the Riemannian metric

ds2 =
(dx2

0 + dx2
1 + ....+ dx2

n)

x2
n

.

The Clifford algebra Cln could be expressed as Cln = Cln−1 + Cln−1en. So if A ∈ Cln, there

exist unique elements B and C ∈ Cln−1, such that A = B +Cen. This gives rise to a pair of
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projection maps P and Q, where

P : Cln −→ Cln−1, P (A) = B,

Q : Cln −→ Cln−1, Q(A) = C.

We denote −enQ(A)en by Q′(A) ∈ Cln−1. The modified Dirac operator is defined as

Mf = D0f +
n− 1

xn
Q′f,

where D0 =
n∑
i=0

ei∂xi is the Dirac operator on Rn+1. Let Ω ⊂ Rn+1
+ , we say a function

f : Ω −→ Cln is hypermonogenic if Mf(x) = 0 for each x ∈ Ω.

The conjugate of the modified Dirac operator is defined by

Mf = D0f −
n− 1

xn
Q′f,

where D0 = e0∂x0 −
n∑
i=i

ei∂xi , see [38].

Theorem 8.1. M∗ = −M .

Proof. Let f, g ∈ L2(Rn+1
+ , Cln) with compact support. From the decomposition that

A = P (A) +Q(A)en, we notice that ||f ||2h = ||Pf ||2h + ||Qf ||2h, where

||f ||2h =

∫
Ω

f(x)f(x)
dxn

xn−1
n

defines the norm of f in the upper half space with hyperbolic metric. If we replace f that

in the previous identity with f + g, one can easily see that P (f) is orthogonal to Q(g)en.
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More specifically,

∫
Ω

P (f) · (Q(g)en)
dxn

xn−1
n

= 0. (3)

On one hand, since we have

〈Mf, g〉 = 〈
n∑
i=0

ei
∂f

∂xi
+
n− 1

xn
Q′f, g〉 = 〈

n∑
i=0

ei
∂f

∂xi
− n− 1

xn
enQfen, g〉,

then

〈
n∑
i=0

ei
∂f

∂xi
, g〉 =

∫
Ω

n∑
i=0

ei
∂f

∂xi
· g dx

n

xn−1
n

=

∫
Ω

n∑
i=0

∂f

∂xi
· eig

dxn

xn−1
n

= −
∫

Ω

f ·
n∑
i=0

∂

∂xi
(eig)

dxn

xn−1
n

= −
∫

Ω

f
( n∑
i=0

ei
∂g

∂xi

dxn

xn−1
n

)
−
∫

Ω

feng
−(n− 1)

xnn
dxn

= 〈f,−D0g〉 − (n− 1)

∫
Ω

f · eng
dxn

xnn
.

On the other hand,

〈−n− 1

xn
enQfen, g〉 = −(n− 1)

∫
Ω

enQfeng
dxn

xnn
= (n− 1)

∫
Ω

Qfen · eng
dxn

xnn
.

Hence,

〈Mf, g〉 = 〈
n∑
i=0

ei
∂f

∂xi
− n− 1

xn
enQfen, g〉

= 〈f,−D0g〉 − (n− 1)

∫
Ω

f · eng
dxn

xnn
+ (n− 1)

∫
Ω

Qfen · eng
dxn

xnn

= 〈f,−D0g〉 − (n− 1)

∫
Ω

Pf · eng
dxn

xnn

= 〈f,−D0g〉 − (n− 1)

∫
Ω

Pf · en(Pg +Qgen)
dxn

xnn
.

Since enPg can be rewritten as ±Pgen, where “± ” depends on that n is even or odd. This
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can also be considered as Qhen for some function h ∈ L2(Rn+1
+ , Cln). Hence, from (3), we

can see that Pf is orthogonal to enPg. Thus, the previous equation becomes

= 〈f,−D0g〉 − (n− 1)

∫
Ω

Pf · enQgen
dxn

xnn
.

With a similar argument as above, the previous equation is equal to

= 〈f,−D0g〉 − (n− 1)

∫
Ω

Pf +Qfen · enQgen
dxn

xnn

= 〈f,−D0g〉 − (n− 1)

∫
Ω

f · enQgen
dxn

xnn

= 〈f,−D0g +
n− 1

xn
Q′g〉 = 〈f,−Mg〉.

Therefore, M∗ = −D0 + n−1
xn
Q′ = −M . Similarly, M

∗
= −M .

By straight forward calculation, we can obtain

MMf = MMf = ∆f − n− 1

xn

∂

∂xn
f + (n− 1)

Qfen
x2
n

,

where ∆ is the Laplace operator in Rn+1. In the hyperbolic function theory, we define

hyperbolic harmonic function f : Ω −→ Cln as a solution of the equation

MMf(x) = 0

for x ∈ Ω. Let

E(x, y) =
(x− y)−1

‖x− y‖n−1‖x− ŷ‖n−1
, F (x, y) =

(x̂− y)−1

‖x− y‖n−1‖x̂− y‖n−1
,
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where x̂ =
n−1∑
i=0

xiei − xnen. Hence the Cauchy transform is defined as ([20])

TΩf(y) = −2n−1yn−1
n

ωn+1

∫
Ω

(
E(x, y)f(x)− F (x, y)f̂(x)

)
dxn.

Also, the non-singular boundary integral operator is given by

F∂Ωf(y) =
2n−1yn−1

n

ωn+1

∫
∂Ω

(
E(x, y)n(x)f(x)− F (x, y)n̂(x)f̂(x)

)
dσ(x).

Hence, we have the Borel-Pompeiu Theorem as follows.

Theorem 8.2. [20] Let Ω ⊆ Rn+1
+ be a bounded region with smooth boundary in Rn+1

+ .

Suppose f : Ω −→ Cln is a C1 function on Ω with a continuous extension to the closure of

Ω. Then for y ∈ Ω, we have

f(y) =
2n−1yn−1

n

ωn+1

∫
∂Ω

(
E(x, y)n(x)f(x)− F (x, y)n̂(x)f̂(x)

)
dσ(x)

−2n−1yn−1
n

ωn+1

∫
Ω

(
E(x, y)Mf(x)− F (x, y)M̂f(x)

)
dxn.

When f is a hypermonogenic function,

f(y) =
2n−1yn−1

n

ωn+1

∫
∂Ω

(
E(x, y)n(x)f(x)− F (x, y)n̂(x)f̂(x)

)
dσ(x).

In particular, if f ∈
◦
W 1

2 (Ω, Cln), then

f(y) = −2n−1yn−1
n

ωn+1

∫
Ω

(
E(x, y)Mf(x)− F (x, y)M̂f(x)

)
dxn,

in other words, TM = I. If we apply the hyperbolic Dirac operator M on both sides of the
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equation, we can easily obtain MT = I.

8.2 Construction of the Hyperbolic Π-Operator

It is well known that in complex analysis, the Π-operator can be realized as the

composition of ∂z̄ and the Cauchy transform. As the generalization to higher dimension in

Clifford algebra, we have the Π-operator in Rn+1
+ defined as follows.

Definition 8.1. The hyperbolic Π-operator in Rn+1
+ is defined as

Πh = MT.

The following are some well known properties for the Πh-operator.

Theorem 8.3. Suppose f ∈
◦
W k
p (Ω) (1 < p <∞, k ≥ 1), then

1. MΠhf = Mf,

2. ΠhMf = Mf −MF∂Ωf,

3. F∂ΩΠhf = (Πh − TM)f,

4. MΠhf − ΠhMf = MF∂Ωf.

The proof is a straight forward calculation.

The following decomposition of L2(Ω, Cln) helps us to observe that the Π-operator

actually maps L2(Ω, Cln) to L2(Ω, Cln).

Theorem 8.4. (Decomposition of L2(Ω, Cln))

L2(Ω, Cln) = L2(Ω, Cln) ∩ KerM ⊕M(
◦
W 1

2 (Ω, Cln)),

and

L2(Ω, Cln) = L2(Ω, Cln) ∩ KerM ⊕M(
◦
W 1

2 (Ω, Cln)).
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The proof is similar to Theorem 1 in [25]. Notice that

Πh(L
2(Ω, Cln) ∩KerM) = L2(Ω, Cln) ∩KerM,

Πh(M(
◦
W 1

2 (Ω, Cln)) = M(
◦
W 1

2 (Ω, Cln)).

Hence, Πh maps L2(Ω, Cln) to L2(Ω, Cln).

One key property of the Π-operator is that it is an L2 isometry, in other words,

Theorem 8.5. For functions in L2(Ω, Cln), we have

Π∗Π = I.

Proof. Let f ∈ L2(Ω, Cln) with compact support,

〈Πhf,Πhf〉 = 〈MTf,MTf〉 = −〈Tf,MMTf〉 = −〈Tf,MMTf〉

= 〈MTf,MTf〉 = 〈f, f〉.

Here we use M
∗

= −M .

To complete this section, we give the example of the Πh-operator solving the hyperbolic

Beltrami equation. Let Ω ⊆ Rn+1
+ , q : Ω→ Cln a bounded measurable function and

ω : Ω→ Cln be a sufficiently smooth function. The generalized Beltrami equation

Mω = qMω

could be transformed into an integral equation

h = q(Mφ+ Πhh)
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by substitute ω = Th+ φ, where φ is an arbitrary hypermonogenic function as follows.

M(Th+ φ) = h = qM(Th+ φ) = q(Mφ+MTh) = q(Mφ+ Πhh).

By the Banach fixed point theory, this equation could have a unique solution if

‖q‖ ≤ q0 <
1

‖Πh‖
, with q0 being a constant. With such unique fuction h, ω = Th+ φ is the

unique solution of the Hyperbolic Beltrami equation.

9 Π-Operator in Higher Spin Spaces

All our previous work is on classical Clifford analysis, which is centered around the study

of functions on Rn taking values in Clifford numbers. Several authors have been studying

generalizations of classical Clifford analysis techniques to the so-called higher spin spaces.

This concerns the study of higher spin operators acting on functions on Rn, taking values

in arbitrary irreducible representations of Spin(n). In Clifford analysis, these arbitrary

irreducible representations are traditionally defined in terms of polynomial spaces

satisfying certain differential equations. More specifically, the choices for the higher spin

spaces are the following.

• Hk: k-homogeneous harmonic polynomial space,

• Mk: k-homogeneous monogenic polynomial space.

The generalization of the Euclidean Dirac operator in higher spin space is called

Rarita-Schwinger operator. This was first studied systematically by Bures et al. ([6]) as the

first order conformally invariant differential operator in 2002. It has the following analytic

construction. Recall the Almansi-Fischer decomposition

Hk =Mk ⊕ uMk−1.
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We define Pk as the projection map

Pk : Hk −→Mk.

Suppose U is a domain in Rn = span{e1, · · · , en}. Consider f : U × Rn −→ Cln, such that

for each x ∈ U , f(x, u) is a left monogenic polynomial homogeneous of degree k in u. The

Rarita-Schwinger operator is defined as follows

Rk := PkDxf(x, u) = (
uDu

n+ 2k − 2
+ 1)Dxf(x, u),

where Dx =
∑n

i=1 ei∂xi is the Dirac operator in variable x. We also have a right projection

Pk,r : Hk −→Mk, and a right Rarita-Schwinger operator Rk,r = DxPk,r. See [6, 17].

Let Zk(u, v) be the reproducing kernel for Mk in the sense that

f(v) =

∫
Sn−1

Zk(u, v)f(u)dS(u), for all f(u) ∈Mk.

Then the fundamental solution for Rk is given by

Ek(x, u, v) =
1

ωnck

x

||x||n
Zk(

xux

||x||2
, v),

where ck = n−2
n+2k−2

and ωn is the surface area of the unit sphere Sn−1, see [6, 17].

As the generalization of the Dirac operator, Rarita-Schwinger operator also has Stokes’

theorem as follows.

Theorem 9.1 ([17]). (Stokes’ theorem for Rk)

Let Ω′ and Ω be domains in Rn and suppose the closure of Ω lies in Ω′. Further suppose
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the closure of Ω is compact and ∂Ω is piecewise smooth. Let f, g ∈ C1(Ω′,Mk). Then

∫
Ω

[
(g(x, u)Rk, f(x, u))u + (g(x, u), Rkf(x, u))u

]
dxn

=

∫
∂Ω

(g(x, u), dσxf(x, u))u,

where dσx = n(x)dσ(x), dσ(x) is the area element. (P (u), Q(u))u =
∫
Sn−1 P (u)Q(u)dS(u)

is the inner product for any pair of Cln-valued polynomials.

9.1 Construction of the Higher Spin Π-Operator

The idea to construct a Π-operator in higher spin spaces is similar as in Section 4.5. Before

we give the definition of our Π-operator in higher spin spaces, we need some preliminary

work and technical lemmas.

Assume Ω is a domain in Rn, with the fundamental solution for Rk, we can define an

integral operator as follows.

Tf(y, v) =

∫
Ω

(Ek(x− y, u, v)f(x, u))udx
n =

∫
Ω

∫
Sn−1

Ek(x− y, u, v)f(x, u)dS(u)dxn,

This integral operator has been shown as the inverse of Rk (RkT = TRk = Id) for

f(x, u) ∈ C∞(Rn,Mk) with compact support in the variable x, see [17].

Let f(x, u), g(x, u) ∈ C∞(Ω,Mk) with compact support in the variable x. The inner

product is given by

〈f, g〉 =

∫
Ω

(f(x, u), g(x, u))udx
n.

Then we claim that
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Lemma 9.2.

R∗k = −Rk = −PkDx = −Dx

(
1 +

uDu

m+ 2k − 2

)
.

Proof. Let f(x, u), g(x, u) ∈ C∞(Ω,Mk) with compact support in the variable x, where

Ω ⊂ Rn is a domain. Then, from the Stokes’ Theorem for Rk, we can see that

∫
Ω

(g(x, u)Rk, f(x, u))udx
n = −

∫
Ω

(g(x, u), Rkf(x, u))udx
n,

since the integral over the boundary vanishes because of the compact support of f and g in

variable x. Next, we consider

〈f(x, u), Rkg(x, u)〉 =

∫
Ω

(f(x, u), Rkg(x, u))udx
n

= −
∫

Ω

(f(x, u)Rk, g(x, u))udx
n = −

∫
Ω

(Rkf(x, u), g(x, u))udx
n

= 〈−Rkf, g〉.

This completes the proof.

To prove our Π-operator is isometric for f(x, u) ∈ L2(Rn,Mk) with compact support in

the variable x, we need the following theorems and technique lemmas.

Theorem 9.3. [17]

∫∫
Rn
−(Ek(x− y, u, v), Rkf(x, u))udx

n = f(y, v)

for each f ∈ C∞(Rn,Mk) with compact support in varaible x.

Notice that Rkf(x, u) ∈ C∞(Rn,Mk) if f ∈ C∞(Rn,Mk) with compact support in the

variable x. Hence, the theorem above tells us that Tf ∈ C∞(Rn,Mk) as well.
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Theorem 9.4. ([17]) RkTf = f for f ∈ C∞(Rn,Mk) with compact support in the variable

x. i.e.

Rk

∫∫
Rn

(Ek(x− y, u, v), f(x, u))udx
n = f(y, v).

From the proof of the previous theorem in [17], we observed the following fact, which is

critical in our argument for Theorem 9.6 below.

Lemma 9.5. DyTf = f for f ∈ C∞(Rn,Mk) with compact support in the variable x. i.e.

Dy

∫∫
Rn

(Ek(x− y, u, v), f(x, u))udx
n = f(y, v).

Now, we are ready to give our L2 isometric Π-operator as follows.

Definition 9.1. The Π-operator in higher spin spaces is defined by Π =
√

n+2k−2
3n+4k−6

RkT .

Note the constant in our definition allows the Π-operator to be isometric when acting

on each f(x, u) ∈ L2(Rn,Mk) with compact support in the variable x.

Theorem 9.6. Π is isometric for f(x, u) ∈ L2(Rn,Mk) with compact support in the

variable x.

Proof. Let f(x, u), g(x, u) ∈ C∞(Rn,Mk) with compact support in the variable x, then we

have

3n+ 4k − 6

n+ 2k − 2
〈Πf,Πg〉 = 〈RkTf,RkTg〉 = −〈Tf,RkRkTg〉.

The last identity comes from Lemma 9.2. Since Rk = PkDy = DyPk, the previous equation

is equal to

−
∫
Rn

(Tf, PkDyDyPkTg)vdy
n = −

∫
Rn

(Tf, Pk∆yPkTg)vdy
n = −

∫
Rn

(Tf,∆yPkPkTg)vdy
n. (4)
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Next, we will show the relation between Pk and Pk. Recall that

vDv = −Ev +
∑

1≤i<j≤n

Γi,jeiej

where Ev =
∑n

i=1 vi∂vi is the Euler operator and Γi,j = vi∂vj − vj∂vi is the angular

momentum operator. Hence,

vDv = −Ev −
∑

1≤i<j≤n

Γi,jeiej = −vDv − 2Ev.

Thus,

Pk = 1 +
vDv

m+ 2k − 2
= 1 +

−vDv − 2Ev
m+ 2k − 2

= −Pk + 2− 2Ev
m+ 2k − 2

.

Now we consider the term PkPkTg in (4). Since g(x, u) ∈ C∞(Rn,Mk) has compact

support in the variable x, Theorem 9.3 tells us that Tg ∈ C∞(Rn,Mk) and PkTg = Tg.

On the other hand, from the argument in page 5 in [17], we know that

Tg(y, v) =

∫
Rn

(Ek(x− y, u, v), g(x, u))udx
n

has degree 2− k −m in the variable v. Hence

PkPkTg(y, v) = Pk(−Pk + 2− 2Ev
n+ 2k − 2

)Tg(y, v)

= (1− 2Ev
n+ 2k − 2

)Tg(y, v) =
3n+ 4k − 6

n+ 2k − 2
Tg(y, v).
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Therefore, equation (4) is equal to

−3n+ 4k − 6

n+ 2k − 2

∫
Rn

(Tf,∆yTg)vdy
n = −3n+ 4k − 6

n+ 2k − 2

∫
Rn

(Tf,DyDyTg)vdy
n

=
3n+ 4k − 6

n+ 2k − 2

∫
Rn

(Tf Dy, DyTg)vdy
n =

3n+ 4k − 6

n+ 2k − 2
〈DyTf,DyTg〉

=
3n+ 4k − 6

n+ 2k − 2
〈f, g〉.

The last equation comes from Lemma 9.5. Since C∞(Rn,Mk) with compact support is

dense in L2(Rn,Mk). This completes the proof.

To conclude this section, we give the example of the Π-operator solving the higher spin

Beltrami equation. Let Ω ⊆ Rn, q : Ω→Mk a bounded measurable function and

ω : Ω→Mk be a sufficiently smooth function. The generalized Beltrami equation

Rkω = qRkω

could be transformed into an integral equation by substitute ω = Th+ φ. The integral

equation is

h = q(Rkφ+ Πhh),

where φ is an arbitrary function such that Rkφ = 0. By the Banach fixed point theory, this

equation could have a unique solution if ‖q‖ ≤ q0 <
1

‖Π‖
, with q0 being a constant. Hence,

ω = φ+ Th is the solution to the Beltrami equation.

9.2 Ahlfors-Beurling Type Inequality

In 1950, Ahlfors and Buerling gave an inequality in [1], which states that

∣∣ 1

2π

∫
X

dλ

ζ − a
∣∣ ≤ ( 1

4π
· λ(X)

) 1
2 ,
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where X is a compact subset of the complex plane C and λ is the two-dimensional

Lebesgue measure. This inequality provides an important tool to study rational

approximation [7, 22]. Putinar proved a generalization of the Ahlfors-Beurling Inequality in

[37], which states that ∣∣ 1

2π

∫
C

ϕ(ζ)

ζ − a
dλ
∣∣ ≤ 1

2
√
π
‖ϕ‖1/2

1 ‖ϕ‖1/2
∞ ,

where ϕ is a nonnegative function and ϕ ∈ L1(C) ∩ L∞(C). This inequality gives an

estimate of Cauchy transformation in the complex plane. In 1998, Martin extended

Putinar’s result to higher dimensional spaces. His result gives a uniform estimates of

higher-dimensional Cauchy transforms, which states as follows:

|G ∗ f(x)| ≤ αn‖f‖1/(n+1)
1 ‖f‖n/(n+1)

∞ ,

where f ∈ L1(Rn,R) ∩ L∞(Rn,R), x ∈ Rn+1, and αn is a constant depending on the subset

Bn+1 = {x ∈ Rn, |x| ≤ 1} and Kn+1 = {x ∈ Rn, |x|n+1 ≤ x0}. For more details see [33].

Our goal is to generalize the Ahlfors-Beurling inequality to higher spin spaces, to give a

uniform estimate of the convolution type operator, which is a generalization of the Cauchy

transformation in higher spin spaces.

Theorem 9.7. Let f ∈ L1(Rn,Mk) ∩ L∞(Rn,Mk), then for each fixed y ∈ Rn, we have

‖Ek ∗ f(y, v)‖v is bounded, where ‖f(x, v)‖v = (
∫
Sn f(x, v)f(x, v)ds(v))

1
2 , and Ek is the

fundamental solution of the Rarita-Schwinger operator Rk.

78



Proof. Since

‖Ek ∗ f(y, v)‖L1 =

∫
Rn
‖Ek ∗ f‖vdyn

‖Ek ∗ f‖v = ‖
∫
Rn

∫
Sn

x− y
‖x− y‖n

Zk(
(x− y)u(x− y)

‖x− y‖n
, v)f(x, u)ds(u)dxn‖v

≤
∫
Rn

∫
Sn
‖ x− y
‖x− y‖n

Zk(
(x− y)u(x− y)

‖x− y‖n
, v)f(x, u)‖vds(u)dxn

=

∫
Rn

∫
Sn

√
(x− y)(x− y)

‖x− y‖2n
(f(x, u)f(x, u))

1
2

∫
Sn

(Zk(u, v)Zk(u, v)ds(v))
1
2ds(u)dxn

=

∫
Rn

∫
Sn

√
(x− y)(x− y)

‖x− y‖2n
(f(x, u)f(x, u))

1
2 · ||Zk||ds(u)dxn.

Notice that ||Zk|| ≤ dimMk(Rn+1), similar proof can be in Proposition 5.27 in [2]. Let

C = dimMk(Rn+1), then
∫
Sn Zk(u, v)Zk(u, v)ds(v) ≤ C · Area(Sn). Then

C
1

ωn−1

∫
Rn

1

‖x− y‖n−1
(

∫
Sn

(f(x, u)f(x, u))
1
2ds(u))dxn

≤ C
1

ωn−1

∫
Rn

1

‖x− y‖n−1
(

∫
Sn
f(x, u)f(x, u)ds(u))

1
2 (

∫
Sn

1ds(u))
1
2dxn

≤ C1

∫
Rn

1

‖x− y‖n−1
‖f(x, u)‖udxn.

Notice that

∫
Rn

1

‖x− y‖n−1
||f(x, u)||udxn =

∫
Rn

1

‖x‖n−1
‖f(x− y, u)‖udxn, then let

Kδ = {x ∈ Rn, ‖x‖ ≤ δ}. We have

∫
Rn

1

‖x‖n−1
‖f(x− y, u)‖udxn

=

∫
Kδ

(
1

‖x‖n−1
− 1

δn−1
)‖f(x− y, u)‖udxn +

∫
Kδ

1

δn−1
||f(x, u)||udxn

+

∫
Kc
δ

1

‖x‖n−1
‖f(x− y, u)‖udxn.
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Let ||f(x, u)||u = ψ(x), we can observe that

∫
Kδ

(
1

‖x‖n−1
− 1

δn−1
)‖f(x− y, u)‖udxn ≤ ‖ψ‖∞ ·

∫
Kδ

(
1

‖x‖n−1
− 1

δn−1
)dxn. (?)

Let x = (ρcosθ)e0 + (ρsinθ)ω, where ω ∈ Sn, ρ ≥ 0, 0 ≤ θ ≤ π, the (?) is equal to

‖ψ‖∞
∫
Sn−1

∫ π

0

∫ δ

0

(
1

ρn−1
− 1

δn−1
)ρn−1(sinθ)n−2dρdθdσ(ω)

= ‖ψ‖∞
1

ωn−1

∫ π

0

(sinθ)n−2dθ

∫ δ

0

(1− ρn−1

δn−1
)dρ

= ‖ψ‖∞
1

ωn−1

∫ π

0

(sinθ)n−2dθ · n− 1

n
δ.

Since

V (Kδ) =

∫
Sn−1

∫ π

0

∫ δ

0

ρn−1(sinθ)n−2dρdθdσ(ω) =
1

ωn−1

∫ π

0

(sinθ)n−2dθ · 1

n
δn,

the previous equation becomes

∫
Kδ

1

‖x‖n−1
‖f(x− y, u)‖udxn ≤ ||ψ||∞(n− 1)δ1−nV (Kδ),

and

1

δn−1

∫
Kδ

||f(x− y, u)||udxn +

∫
Kc
δ

1

‖x‖n−1
‖f(x− y, u)‖udxn

≤ 1

δn−1
(

∫
Kδ

||f(x− y, u)||udxn +

∫
Kc
δ

‖f(x− y, u)‖udxn)

=
1

δn−1

∫
Rn
ψdxn =

1

δn−1
‖ψ‖L1 .
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Combining both equalities we obtain the following:

∫
Rn

1

‖x‖n−1
‖f(x− y, u)‖udxn ≤ δ1−n(||ψ||∞(n− 1)V (Kδ) + ||ψ||L1).

Notice the volume of subset V (Kδ) = δnV (B), where B is the unit ball in Rn+1. Taking

δ = (
‖ψ‖1

V (B)‖ψ‖∞
)

1
n , we finally have

∫
Rn

1

‖x‖n−1
‖f(x− y, u)‖udxn

≤ nV (B)
n−1
n ||ψ||

1
n
1 ||ψ||

n−1
n∞ = nV (B)

n−1
n ‖f‖

1
n
1 ‖f‖

n−1
n∞ .

Therefore, ‖Ek ∗ f(y, v)‖L1 is bounded by ‖f‖1 and ‖f‖∞.
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