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Abstract

We define a family of functions, called s-multiplicity for each s > 0, that interpolates

between Hilbert-Samuel multiplicity and Hilbert-Kunz multiplicity by comparing powers of

ideals to the Frobenius powers of ideals. The function is continuous in s, and its value is

equal to Hilbert-Samuel multiplicity for small values of s and is equal to Hilbert-Kunz

multiplicity for large values of s. We prove that it has an associativity formula generalizing

the associativity formulas for Hilbert-Samuel and Hilbert-Kunz multiplicity. We also define

a family of closures, called s-closures, such that if two ideals have the same s-closure then

they have the same s-multiplicity, and the converse holds under mild conditions. We

describe methods for computing the F -threshold, the s-multiplicity, and the s-closure of

monomial ideals in toric rings using the geometry of the cone defining the ring.
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1 Introduction

Hilbert-Samuel multiplicity gives us information about the asymptotic behavior of the

powers of an ideal. Given a local ring (R,m) and an m-primary ideal I of R, one studies

the modules R/In for n ∈ N. In particular, one considers the Hilbert function

n 7→ λ(R/In), where λ(M) is the length of the R-module M . The Hilbert function is

eventually polynomial, i.e. there exists a polynomial P (n) with rational coefficients such

that P (n) = λ(R/In) for n� 0. We call P (n) the Hilbert-Samuel polynomial of I. The

degree of P (n) is equal to the dimension of R, and furthermore the leading coefficient of

P (n) is of the form e(I)
d!

, where e(I) is a positive integer and d = dimR. This number e(I)

is called the Hilbert-Samuel multiplicity of I.

We can compute the Hilbert-Samuel multiplicity as a limit, which allows us to use

some analytic methods in its study. For a d-dimensional local ring (R,m) and m-primary

ideal I of R, the Hilbert-Samuel multiplicity of I is

e(I) = lim
n→∞

d! · λ(R/In)

nd
.

Hilbert-Samuel multiplicity is also relevant in the study of integral closure. If (R,m) is

a local ring and I and J are m-primary ideals that have the same integral closure, then I

and J have the same Hilbert-Samuel multiplicity. On the other hand, a theorem of Rees

states that under mild conditions, if I ⊆ J and e(I) = e(J), then I and J have the same

integral closure.

When we work in a local ring (R,m) with positive characteristic p, we can define a

similar number attached to an m-primary ideal I using the Frobenius powers instead of the

ordinary powers. In particular, we can study the Hilbert-Kunz multiplicity of an ideal I,

defined by

eHK(I) = lim
e→∞

λ
(
R/I [p

e]
)

ped
,

where d is the dimension of the ring and I [p
e] is the ideal generated by the pe-th powers of
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the generators of I. The Hilbert-Kunz multiplicity is related to tight closure, as defined by

Hochster and Huneke [4], similarly to how Hilbert-Samuel multiplicity is related to integral

closure. Precisely, if I and J are m-primary ideals in a local ring (R,m) that have the same

tight closure, then they have the same Hilbert-Kunz multiplicity, and the converse holds

under mild conditions.

In this thesis we define a parameterized family of multiplicities that interpolate

between Hilbert-Samuel and Hilbert-Kunz multiplicities. This family is parameterized by a

positive real number s, and we call it the s-multiplicity.

Definition 1.0.1 (Definitions 3.3.2 and 3.5.1). Let (R,m) be a local ring of characteristic

p > 0 and of dimension d, and let I be an m-primary ideal of R. For each real number

s > 0, the s-multiplicity of I is

es(I) := lim
e→∞

λ
(
R/(Idsp

ee + I [p
e])
)

pedHs(d)
,

where Hs(d) =

bsc∑
i=0

(−1)i

d!

(
d

i

)
(s− i)d.

We establish many properties of the function es(I), the most important of which are

summarized below, and which show that the s-multiplicity is a good choice of interpolation

between Hilbert-Samuel and Hilbert-Kunz multiplicity.

Theorem 1.0.2. Let (R,m) be a local ring of characteristic p > 0 and of dimension d, and

let I be an m-primary ideal of R.

1. (Theorem 3.3.1) The s-multiplicity es(I) exists for all s > 0.

2. (Corollary 3.5.2) For s ≤ 1, es(I) = e(I), and for s ≥ d, es(I) = eHK(I).

3. (Corollary 3.5.2) If R is regular, then es(m) = 1 for all s.

4. (Corollary 3.5.4) For each s, es(I) has an associativity formula generalizing the ones

for Hilbert-Samuel and Hilbert-Kunz multiplicity.
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5. (Corollary 3.5.3) es(I) is Lipschitz continuous in s.

The first four parts of this theorem show that the s-multiplicity fulfills the properties

that we would want out of a function designed to translate between the Hilbert-Samuel and

Hilbert-Kunz multiplicities. Since we define the s-multiplicity using a limit, Item 1 is

necessary in order for us to know that the function we’re studying is well-defined. Its proof

is fairly technical, though Lemma 3.2.1, which details the generators of finite length

modules, is of independent interest. Item 2 shows that the s-multiplicity does indeed

interpolate between the Hilbert-Samuel and Hilbert-Kunz multiplicities, capturing both of

their behaviors at different points on its domain. Item 3 shows that the s-multiplicity

behaves like the Hilbert-Samuel and Hilbert-Kunz multiplicities when computing it at the

maximal ideal in a regular local ring, while Item 4 often reduces the problem of computing

the s-multiplicity to the domain case, just as the associativity formulas for the other

multiplicities do.

Item 5 deals with the intermediate values of s between those described in Item 2. It

shows that the behavior of the s-multiplicity, as a function of s, cannot be too pathological.

In fact, the derivative with respect to s exists almost everywhere and is bounded. This

result is essential to establishing the associativity formula mentioned above.

Understanding the way in which the s-multiplicity interpolates between the

Hilbert-Samuel and Hilbert-Kunz multiplicities requires understanding how ordinary

powers and Frobenius powers of ideals interact with each other. The F -threshold is a

number attached to a pair of ideals I and J in a ring of positive characteristic. Roughly

speaking, the F -threshold of I with respect to J is the infimum of those numbers s such

that Isp
e ⊆ J [pe] for all sufficiently large e. When the ring is regular local, the F -threshold

with respect to the maximal ideal is equal to another measure called the F -pure threshold,

which in turn is related to the log canonical threshold, the latter two of which can be used

to describe the singularities of the geometry of the ring.

It naturally arises that we wish to consider a dual notion to the F -threshold, that is,

3



the supremum of those numbers s such that J [pe] ⊆ Isp
e

for all sufficiently large e. In this

thesis, we call this number the F -limbus, and prove some properties of it that help us

understand the s-multiplicity.

As mentioned previously, the Hilbert-Samuel multiplicity is related to integral closure

in the following way: Suppose I and J are m-primary ideals in a local ring (R,m). If

I = J , then e(I) = e(J), where I indicates the integral closure of I. Similarly, if I∗ = J∗,

then eHK(I) = eHK(J), where I∗ indicates the tight closure of I. We construct a family of

closures, called s-closures, by combining the definitions of integral and tight closures. We

use the notation Icls to denote the s-closure of I, and define it as follows An element x ∈ R

is in the weak s-closure of I, denoted Iw.cls , if there exists an element c ∈ R, not in any

minimal prime, such that cxp
e ∈ Idspee + I [p

e] for all sufficiently large e. We define the

s-closure of I to be the ideal at which the increasing chain I ⊆ Iw.cls ⊆
(
Iw.cls

)w.cls ⊆ · · ·
stabilizes.

The s-closure translates between integral closure and tight closure as s increases. In

particular, Icl1 = I and Icls = I∗ when s is large. If s < s′, then Icls ⊇ Icls′ . In addition,

there are often infinitely many distinct s-closures between integral closure and tight

closure. Our main result related to s-closures is the following theorem, which describes

precisely the relationship between s-multiplicity and s-closure.

Theorem 1.0.3 (Theorem 4.2.1). If I and J are m-primary ideals in a local ring (R,m) of

characteristic p > 0 and Icls = Jcls, then es(I) = es(J). Furthermore, if I ⊆ J and R is an

F -finite complete domain, the converse holds.

In the final section of this thesis, we provide efficient methods of computing the

F -threshold, F -limbus, s-multiplicities, and s-closures for monomials ideals in affine

semigroup rings. In each case, we use the geometry of the cone defining the semigroup to

realize these numbers as ratios of lengths or volumes in Euclidean space.

Some results of in this thesis have appeared in the literature as the author’s paper [12].
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2 Rings of Positive Characteristic

Of primary concern for us are ideals and modules over rings of characteristic p, where p > 0

is a positive prime number. If x, y ∈ R and R is a ring of characteristic p, we have that

(x+ y)p = xp + yp, since p divides
(
p
i

)
for 1 ≤ i ≤ p− 1. In particular, this means the

Frobenius endomorphism F : R→ R, defined by F (x) = xp, is a ring homomorphism, and

that (x+ y)q = xq + yq, where q = pe for any e ∈ N.

2.1 Frobenius Powers of Ideals

In a ring of positive characteristic one often considers a new type of function on ideals that

behaves like ordinary powers in certain ways but has distinct properties of its own.

Definition 2.1.1. Let I be an ideal of a ring R of characteristic p, and let q = pe for some

e ∈ N. The ideal I [q] := (f q | f ∈ I) is called the q-th Frobenius power (or q-th bracket

power) of I.

At first glance, it is unclear why the number q in Definition 2.1.1 should depend on the

characteristic of R. However, this dependence is quite important.

Proposition 2.1.2. Let I be an ideal of a ring R. For any n ∈ N, n! · In ⊆ (fn | f ∈ I).

Proof. Let f1, . . . , fn ∈ I. By the inclusion-exclusion principle,

(f1 + · · ·+ fn)n =
∑

∑
aj=n

(
n

a1, . . . , an

)
fa11 · · · fann

= n! · f1 · · · fn +
n∑
i=1

∑
∑
aj=n
ai=0

(
n

a1, . . . , an

)
fa11 · · · fann

−
∑
i1<i2

∑
∑
aj=n

ai1=ai2=0

(
n

a1, . . . , an

)
fa11 · · · fann + · · ·+ (−1)n

n∑
j=1

fnj .

5



Each term after the first in the sum above is of the form

(f1 + · · ·+ f̂i1 + · · ·+ f̂i2 + · · ·+ f̂ik + · · ·+ fn)n,

which shows that n! · f1 · · · fn ∈ (fn | f ∈ I).

Corollary 2.1.3. Let I be an ideal of a ring R and let n ∈ N. If n! is invertible in R then

(fn | f ∈ I) = In.

Proof. The inclusion “⊆” is obvious. By Proposition 2.1.2, In ⊆ 1
n!
· (n! · I) ⊆ (fn | f ∈ I),

which proves the other direction.

Corollary 2.1.3 shows that defining a “bracket power” only returns the ordinary powers

in the case that R contains a field of characteristic 0. On the other hand, working in rings

of positive characteristic and taking bracket powers with powers of the characteristic allows

us to simplify the description and computation of them significantly.

Proposition 2.1.4. Let I be an ideal of a ring R of characteristic p, and let q be a power

of p. If I = (f1, . . . , fn) for some fi ∈ R, then I [q] = (f q1 , . . . , f
q
n).

Proof. Clearly, (f q1 , . . . , f
q
n) ⊆ I [q]. For the other inclusion, let f ∈ I. There exist

r1, . . . , rn ∈ R such that f = r1f1 + · · ·+ rnfn. Therefore

f q = (r1f1 + · · ·+ rnfn)q = rq1f
q
1 + · · ·+ rqnf

q
n ∈ (f q1 , . . . f

q
n).

Hence I [q] ⊆ (f q1 , . . . f
q
n).

The ideals I [q] and Iq are very different in general. For example, if I = (x, y) ⊆ k[x, y],

where k is a field of characteristic 3, then I3 = (x3, x2y, xy2, y3) but I [3] = (x3, y3).

Nevertheless, we will often exploit various containment relationships between ordinary and

bracket powers.
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Lemma 2.1.5. Let I = (f1, . . . , fm) be an ideal of a ring R of characteristic p > 0. For

every power q of p, Im(q−1)+1 ⊆ I [q] ⊆ Iq.

Proof. The inclusion I [q] ⊆ Iq is immediate. For the other inclusion, the ideal Im(q−1)+1 is

generated by elements of the form fa11 · · · famm with
∑
ai = m(q − 1) + 1. Therefore ai ≥ q

for some i, and so fa11 · · · famm ∈ I [q].

Bracket powers and ordinary powers of ideals also interact in predicable ways.

Lemma 2.1.6. Let I be an ideal of a ring R of characterstic p > 0. For every n ∈ N, and

q a power of p, (In)[q] =
(
I [q]
)n

.

Proof. Let f1, . . . , fm be a set of generators for I. We have that

(In)[q] =

(
(fa11 · · · famm )q |

∑
i

ai = n

)
=

(
(f q1 )a1 · · · (f qm)am |

∑
i

ai = n

)
=
(
I [q]
)n
.

Also, bracket powers interact with each other analogously to ordinary powers. We use

the notation F e for the eth iterate of the function F .

Lemma 2.1.7. Let I be an ideal of a ring R of characterstic p > 0. For every pair of

powers q, q′ of p,
(
I [q]
)[q′]

= I [qq
′].

Proof. Let q = pe and q = pe
′
. We have that I [q] = F e(I)R, and therefore

(I [q])[q
′] = F e′(F e(I)R)R = F e+e′(I)R = I [qq

′].

2.2 p−e-linear maps

The fact that the Frobenius map and its iterates are ring homomorphisms means that we

can consider R as a module over itself with an action induced by the Frobenius map. To

make notation easier, we write the module with the new action as F e
∗R, where e ∈ N. As a

set, we write F e
∗R = {F e

∗x | x ∈ R}, and as an additive group it is isomorphic to R. That

is, for x, y ∈ R, we have that F e
∗x+ F e

∗ y = F e
∗ (x+ y).
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The distinctive property of F e
∗R is the action of R upon it. To be precise, for x ∈ R

and F e
∗ y ∈ F e

∗R, we have that x · F e
∗ y = F e

∗ (x
pey). The bracket powers defined in the

previous section can be characterized using this new structure as well. If I is an ideal of R,

then I · F e
∗R = F e

∗ I
[pe].

A common technique when studying rings of postive characteristic is to study maps,

i.e. R-module homomorphisms, into and out of F e
∗R. Of particular interest to us will be

the p−e-linear maps.

Definition 2.2.1. Let R be a ring of positive characteristic, and let e ∈ N. We call an

R-module homomorphism ϕ : F e
∗R→ R a p−e-linear map.

The p−e linear maps on R have certain basic but useful properties that we use in a

later section.

Lemma 2.2.2. Let R be a ring of characteristic p > 0, e ∈ N, x, y ∈ R, I and J be ideals

of R, and ϕ : F e
∗R→ R be a p−e-linear map. The following hold.

1. x · ϕ(F e
∗ y) = ϕ(F e

∗ (x
pey)).

2. I · ϕ(F e
∗J) = ϕ(F e

∗ (I
[pe]J)).

3. If I ⊆ J [pe], then ϕ(F e
∗ I) ⊆ J .

Proof. The first item combines the definition of the R-action on F e
∗R with the condition

that ϕ be an R-module homomorphism:

x · ϕ(F e
∗ y) = ϕ(x · F e

∗ y) = ϕ(F e
∗ (x

pey)).

The second item is similar, once we note that the additivity of ϕ is also guaranteed since it

8



is an R-module homomorphism. If I = (f1, . . . , fm) and J = (g1, . . . , gn), then

I · ϕ(F e
∗J) =

m∑
i=1

fiϕ

(
F e
∗

(
n∑
j=1

giR

))
=

m∑
i=1

ϕ

(
F e
∗

(
n∑
j=1

fp
e

i giR

))

= ϕ

(
F e
∗

(
m∑
i=1

n∑
j=1

fp
e

i giR

))
= ϕ(F e

∗ (I
[pe]J)).

The third item is a consequence of the second:

ϕ(F e
∗ I) ⊆ ϕ(F e

∗J
[pe]) = J · ϕ(F e

∗R) ⊆ J.

2.3 The F -threshold

An immediate consequence of Lemma 2.1.5 is the fact that for any power q of p, if I ⊆
√
J ,

then there exists some n such that In ⊆ J [q]. Conversely, if J ⊆
√
I, then there exists some

n such that J [q] ⊆ In. These relationships inspire the definition of two numerical values

relating I and J together. The following definition was proposed by Mustaţǎ, Takagi, and

Watanabe, and the existence of the limit was proved by De Stefani, Núñez-Betancourt, and

Pérez.

Definition 2.3.1. ([7]) Let I and J be ideals of a ring R with characteristic p > 0. For q a

power of p, let νJI (q) = sup
{
n ∈ N | In 6⊆ J [q]

}
. The F -threshold of I with respect to J ,

when it exists, is given by cJ(I) := lim
q→∞

νJI (q)

q
.

Theorem 2.3.2. ([1]) Suppose I and J are as in Definition 2.3.1. The F -threshold cJ(I)

exists.

For us, the primary application of the F -threshold will be the following observation: if

s > cJ(I), then for all q sufficiently large, Idsqe ⊆ J [q].

Example 2.3.3. Let R = k[x1, . . . , xd], let I = (xa11 , . . . , x
ad
d ), ai > 0 and let

J = (xb11 , . . . , x
bd
d ), bi > 0. For q a power of p = char(k), J [q] = (xqb11 , . . . , xqbdd ), and for

9



n ∈ N, In = (xn1a1
1 · · ·xndad

d | ni ∈ N,
∑
ni = n). Now In 6⊆ J [q] if and only if there exist ni

with
∑
ni = n and for each i, niai < qbi, i.e. ni ≤ dqbi/aie − 1. Therefore,

νJI (q) =
d∑
i=1

(⌈
qbi
ai

⌉
− 1

)
=

d∑
i=1

⌈
qbi
ai

⌉
− d.

Hence,

cJ(I) = lim
q→∞

∑d
i=1

⌈
qbi
ai

⌉
− d

q
=

d∑
i=1

bi
ai

Example 2.3.4. Let R = k[x, y, z, w]/(xy − zw), and let I = (x, y, z, w). If q is a power of

p = char(k), then we claim that I2q−1 ⊆ I [q]. The ideal I2q−1 is generated by elements of

the form xaybzcwd, with a+ b+ c+ d = 2q − 1. Without loss of generality we can assume

that a ≤ b and c ≤ d. Since a+ b+ c+ d = 2q − 1, we must have that either a+ d ≥ q or

b+ c ≥ q. If a+ d ≥ q, then

xaybzcwd = yb−aza+cwa+d ∈ I [q].

If b+ c ≥ q, then

xaybzcwd = xa+cyb+cwd−c ∈ I [q].

Therefore I2q−1 ⊆ I [q].

Now we claim that xq−1yq−1 /∈ I [q]. We can give R an N2-graded ring structure by

setting deg x = deg z = (1, 0) and deg y = degw = (0, 1). Under this grading, I [q] is a

homogeneous ideal generated by elements of degree (q, 0) and (0, q). Therefore, any element

of I [q] is a sum of terms of degree (t, u) with either t ≥ q or u ≥ q. Hence xq−1yq−1, which is

homogeneous of degree (q − 1, q − 1), is not an element of I [q]. Therefore I2q−2 6⊆ I [q].

We have now shown that νII (q) = 2q − 2, and therefore cI(I) = lim
q→∞

νII (q)

q
= 2.

Example 2.3.5. Let n ≥ 1 and R = k[x, y, z]/(xy − zn+1), let I = (x5z, xz4) and

J = (x3z2). We claim that cJ(I) = max{2, 3n+5
n+5
}. Let q be a power of p and set

10



N = max{2q, d3n+5
n+5

qe}.

Fix a generator of IN , which is of the form x5i+(N−i)zi+4(N−i) = x4i+Nz4N−3i for some

0 ≤ i ≤ N . Since N ≥ 2q, we have that 4N − 3i ≥ N ≥ 2q. Set j ∈ N the greatest integer

such that 4N − 3i− (n+ 1)j ≥ 2q. In this case we have that

4i+N + j > 4i+N +
4N − 3i− 2q

n+ 1
− 1

=
4i(n+ 1) + (n+ 5)N − 3i− 2q − (n+ 1)

n+ 1

≥ 4i(n+ 1)− 3i+ (3n+ 5)q − 2q − (n+ 1)

n+ 1

=
i(4n+ 1) + 3(n+ 1)q − (n+ 1)

n+ 1

≥ 3q − 1.

Since 4i+N + j is an integer strictly greater than 3q − 1, it is at least 3q. Therefore, we

have that x4i+Nz4N−3i = x4i+N+jyjz4N−3i−(n+1)j ∈ (x3qz2q) = J [q]. Hence

IN ⊆ (x3qz2q) = J [q], and so νJI (q) ≤ N − 1.

Now consider the ideal IN−1. We have that either N = 2q or N = d3n+5
n+5

qe. Suppose

N = 2q. We may give R an N-graded ring structure by setting deg x = 0, deg y = n+ 1,

and deg z = 1. Given this grading, J [q] = (x3qz2q) is generated by an element of degree 2q.

However, the ideal IN−1 contains x5(N−1)zN−1, an element of degree 2q − 1. Therefore

IN−1 6⊆ J [q].

Now suppose that N = d3n+5
n+5

qe. we may give R an N-graded ring structure by setting

deg x = n+ 1, deg y = 0, and deg z = 1. Given this grading, J [q] = (x3qz2q) is generated by

an element of degree 3q(n+ 1) + 2q = (3n+ 5)q. However, the ideal IN−1 contains

xN−1z4(N−1), an element of degree

(n+ 5)(N − 1) = (n+ 5)

(⌈
3n+ 5

n+ 5
q

⌉
− 1

)
< (n+ 5) · 3n+ 5

n+ 5
q = (3n+ 5)q.

Therefore IN−1 6⊆ J [q].

11



Hence we have shown that νJI (q) = max{2q, d3n+5
n+5

qe} − 1, and therefore

cJ(I) = max{2, d3n+5
n+5
e}.

Some basic properties of F -thresholds are summarized in the following result.

Proposition 2.3.6. Let I, I ′, J, J ′ be ideals of a ring R of characteristic p > 0. The

following hold.

(i) If I 6⊆
√
J then cJ(I) =∞, and if J = R then cJ(I) = −∞.

(ii) If I ⊆
√
J 6= R then 0 ≤ cJ(I) <∞.

(iii) If I ⊆ I ′ and J ⊇ J ′, then cJ(I) ≤ cJ
′
(I ′).

(iv) If S is an R-algebra, then cJS(IS) ≤ cJ(I). If futhermore S is faithfully flat over R,

then equality holds.

(v) If W is a multiplicative system of R such that W ∩
⋃

p∈Ass(R/J [q]) p = ∅ for infinitely

many powers q of p, then cJ(I) = cW
−1J(W−1I).

(vi) If I ′ is a reduction of I, then cJ(I) = cJ(I ′).

(vii) If In ⊆ J [q] and I has a reduction generated by m elements, then cJ(I) ≤ mn
q

.

(viii) If (R,m) is a local ring and In ⊆ J [q], then cJ(I) ≤ n·dimR
q

.

Proof. Throughout, let q stand for a power of p.

For part (i), note that if I 6⊆
√
J , then νJI (q) =∞ for all q and so cJ(I) =∞. If J = R

then νJI (q) = −∞ for all q and so cJ(I) = −∞.

For part (ii), for all q, 0 ≤ νJI (q) and so cJ(I) ≥ 0. The proof of the existence of cJ(I)

in [1, Theorem 3.4] shows also that cJ(I) <∞ in this case.

For part (iii), the inequality νJI (q) ≤ νJ
′

I′ (q) is immediate for all q from the definition,

and so cJ(I) ≤ cJ
′
(I ′)

12



For part (iv), note that if In ⊆ J [q], then (IS)n = InS ⊆ J [q]S ⊆ (JS)[q], so

νJSIS (q) ≤ νJI (q) for all q. Suppose S is faithfully flat over R and (IS)n ⊆ (JS)[q]. By the

flatness of S we have that

0 =
(IS)n + (JS)[q]

(JS)[q]
∼=
In + J [q]

J [q]
⊗R S

and by the faithful flatness of S we have that (In + J [q])/J [q] = 0, hence In ⊆ J [q]. Thus

νJI (q) ≤ νJSIS (q) for all q.

For part (v), let q be such that W ∩
⋃

p∈Ass(R/J [q]) p = ∅. If (W−1I)n ⊆ (W−1J)[q], then

there exists w ∈ W such that wIn ⊆ J [q]. Since w is not a zerodivisor on R/J [q], In ⊆ J [q].

Hence νJI (q) ≤ νW
−1J

W−1I (q), and so cJ(I) ≤ cW
−1J(W−1I). Part (iv) gives the other inequality.

For part (vi), let w be the reduction number of I with respect to I ′. We have that

Iν
J
I′ (q)+1+w = Iw(I ′)ν

J
I′ (q)+1 ⊆ J [q]. Combining this with part (iii), we have that

νJI′(q) ≤ νJI (q) ≤ νJI′(q) + w. Dividing all terms by q and taking the limit as q goes to

infinity gives the result.

For part (vii), first note that by part (vi) we may assume that I is generated by m

elements. Second, by Lemma 2.1.5, for any power q′ of p we have that Im(q′−1)+1 ⊆ I [q
′],

and then by Lemma 2.1.6, we have that

In(m(q′−1)+1) =
(
Im(q′−1)+1

)n
⊆
(
I [q
′]
)n

= (In)[q
′] ⊆ J [qq′].

Therefore νJI (qq′) ≤ n(m(q′ − 1) + 1)− 1.

For part (viii), the extension R ⊆ S = R[X]mR[X] is faithfully flat. Since S has infinite

residue field, IS has a reduction generated by at most dimS = dimR elements. Therefore,

the conclusion follows by parts (iv) and (vii).
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2.4 The F -limbus

A sort of dual notion to the F -threshold can be obtained by reversing the noncontainment

condition in Theorem 2.3.2. So far, this limit does not appear in the literature, and so its

existence and basic properties will be proved below. In particular, the proof if its existence

is very similar to the proof of the existence of the F -threshold in [1].

Definition 2.4.1. Let I and J be ideals of a ring R with characteristic p > 0. For q a

power of p, let µJI (q) = inf
{
n ∈ N | J [q] 6⊆ In

}
. The F -limbus of I with respect to J , when

it exists, is given by bJ(I) := lim
q→∞

µJI (q)

q
.

Theorem 2.4.2. Suppose I and J are as in Definition 2.4.1. The F -limbus bJ(I) exists.

Proof. If J 6⊆
√
I, then µIJ(q) = 1 for all q and so bJ(I) = 0. If I = R, then µJI (q) =∞ for

all q, and so bJ(I) =∞. Suppose that J ⊆
√
I 6= R. Let q and q′ be powers of p. We have

that J [qq′] =
(
J [q′]

)[q] ⊆ (IµJI (q′)−1)[q] ⊆ Iqµ
J
I (q
′)−q, and so µJI (qq′) > qµJI (q′)− q. Therefore,

lim inf
q→∞

µJI (q)

q
= lim inf

q→∞

µJI (qq′)

qq′
≥ lim inf

q→∞

µJI (q′)− 1

q′
=
µJI (q′)− 1

q′

Hence lim inf
q→∞

µJI (q)

q
≥ lim sup

q′→∞

µJI (q′)− 1

q′
= lim sup

q′→∞

µJI (q′)

q′
and so the limit defining bJ(I)

exists.

Example 2.4.3. Let R = k[x1, . . . , xd], let I = (xa11 , . . . , x
ad
d ), ai > 0 and let

J = (xb11 , . . . , x
bd
d ), bi > 0. For q a power of p = char(k), J = (xqb11 , . . . , xqbdd ), and for n ∈ N,

In = (xn1a1
1 · · ·xndad

d | ni ∈ N,
∑
ni = n). For any 1 ≤ j ≤ d, x

qbj
j ∈ In if and only if

qbj ≥ naj, that is, n ≤ qbj
aj

. Hence J [q] ⊆ In if and only if n ≤ min1≤j≤d{ qbjaj }, and so

µJI (q) = bmin1≤j≤d{ qbjaj }c+ 1. Therefore, bJ(I) = min1≤j≤d{ bjaj }.

Example 2.4.4. Let R = k[x, y, z, w]/(xy − zw), and let I = (x, y, z, w). We always have

that I [q] ⊆ Iq, so µII(q) ≥ q + 1. Giving R the standard grading, i.e. letting

deg x = deg y = deg z = degw = 1, the ideal Iq+1 is homogeneous of degree q + 1. Since I [q]
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is generated by homogeneous elements of degree q, it cannot be contained in Iq+1, and

therefore µII(q) = q + 1. Hence bI(I) = 1.

Example 2.4.5. Let n ≥ 1 and R = k[x, y, z]/(xy − zn+1), let I = (x5z, xz4) and

J = (x3z2). We claim that bJ(I) = 17
19

. Let q be a power of p, and let N ∈ N. We have that

(x5z)b
10
19
qc(xz4)b

7
19
qc = x5b

10
19
qc+b 7

19
qczb

10
19
qc+4b 7

19
qc ∈ Ib

10
19
qc+b 7

19
qc.

Notice that 5b10
19
qc+ b 7

19
qc ≤ 5 · 10

19
q + 7

19
q = 3q and b10

19
qc+ 4b 7

19
qc ≤ 10

19
q + 4 · 7

19
q = 2q.

Therefore,

J [q] = (x3qz2q) ⊆ (x5b
10
19
qc+b 7

19
qczb

10
19
qc+4b 7

19
qc) ⊆ Ib

10
19
qc+b 7

19
qc,

and hence µIJ(q) ≥ b10
19
qc+ b 7

19
qc+ 1.

Now let us give R the structure of an N-graded ring by setting deg x = 3,

deg y = 4n+ 1, and deg z = 4. With this grading, I is a homogeneous ideal of degree 19

and J is a homogeneous ideal of degree 17. Therefore, J [q] is an ideal of degree 17q, and

hence is not contained in Ib
17
19
qc+1, which is an ideal of degree greater than 17q. Therefore

µIJ(q) ≤ b17
19
qc+ 1.

Since

17

19
= lim

q→∞

1

q

(⌊
10

19
q

⌋
+

⌊
7

19
q

⌋
+ 1

)
≤ lim

q→∞

µIJ(q)

q
≤ lim

q→∞

1

q

(⌊
17

19
q

⌋
+ 1

)
=

17

19
,

we conclude that bJ(I) = 17
19

.

The F -limbus behaves similarly to the F -threshold, and so we can prove many

analogous statements. Again, the most important property we use, which is implicit in the

definition, is that if s < bJ(I), then for all sufficiently large q, J [q] ⊆ Idsqe.

Proposition 2.4.6. Let I, I ′, J, J ′ be ideals of a ring R of characteristic p > 0. The

following hold.

(i) If J 6⊆
√
I, then bJ(I) = 0, and if I = R then bJ(I) =∞.
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(ii) If I ⊆ I ′ and J ⊇ J ′, then bJ(I) ≤ bJ
′
(I ′).

(iii) If S is an R-algebra, then bJS(IS) ≥ bJ(I). If furthermore S is faithfully flat over R,

then equality holds.

(iv) If W is a multiplicative system of R such that W ∩
⋃

p∈Ass(R/In) p = ∅ for all n ∈ N,

then bJ(I) = bW
−1J(W−1I).

(v) If I ′ is a reduction of I, then bJ(I) = bJ(I ′).

(vi) If J [q] ⊆ In, then bJ(I) ≥ n
q
.

Proof. Throught the proof, let q stand for a power of p.

Part (i) is just the first two lines of the proof of Theorem 2.4.2.

For part (ii), the inequality µJI (q) ≤ µJ
′

I′ (q) is immediate for all q from the definition,

and so bJ(I) ≤ bJ
′
(I ′).

For part (iii), note that if J [q] ⊆ In, then (JS)[q] = J [q]S ⊆ InS = (IS)n, so

µJSIS (q) ≥ µJI (q) for all q. Suppose S is faithfully flat over R and (JS)[q] ⊆ (IS)n. By the

flatness of S we have that

0 =
(JS)[q] + (IS)n

(IS)n
∼=
J [q] + In

In
⊗R S,

and by the faithful flatness of S we have that (J [q] + In)/In = 0, hence J [q] ⊆ In. Thus

µJI (q) ≥ µJSIS (q) for all q.

For part (iv), if (W−1J)[q] ⊆ (W−1I)n, then there exists w ∈ W such that wJ [q] ⊆ In.

Since w is not a zerodivisor on R/In, J [q] ⊆ In. Hence µJI (q) ≥ µW
−1J

W−1I (q), and so

bJ(I) ≥ bW
−1J(W−1I). Part (iii) gives us the other inequality.

For part (v), let w be the reduction number of I with respect to I ′. We have that

J [q] ⊆ Iµ
J
I (q)−1 ⊆ (I ′)µ

J
I (q)−1−w. Combining this with part (ii), we have that

µJI (q)− w ≤ µJI′(q) ≤ µJI (q). Dividing all terms by q and taking the limit as q goes to

infinity gives the result.

16



For part (vi), suppose q′ ≥ q. We have then that J [q′] = (J [q])[q
′/q] ⊆ (In)[q

′/q] ⊆ Inq
′/q,

and therefore µJI (q′) > nq′

q
. Therefore, bJ(I) = limq′→∞

µJI (q
′)

q′
≥ n

q
.

The F -threshold and the F -limbus are related to each other under certain conditions in

the following way, assuming both of them are positive and finite.

Lemma 2.4.7. Let I and J be ideals of a ring R with characteristic p > 0. If
√
I =
√
J 6=
√

0 and I is in the Jacobson radical of R, then bJ(I) ≤ cJ(I).

Proof. For q a power of p, we have that Iν
J
I (q)+1 ⊆ J [q] ⊆ Iµ

J
I (q)−1. If µJI (q)− 1 ≥ νJI (q) + 1,

then we have equality throughout and by Nakayama’s Lemma, µJI (q)− 1 = νJI (q) + 1.

Therefore, we have that µJI (q)− 1 ≤ νJI (q) + 1, and so dividing both sides of the inequality

by q and taking the limit as q goes to infinity, we prove the statement.

The F -threshold and the F -limbus measure which powers of one ideal contain, or are

contained in, the bracket powers of the other, at least asymptotically. Another way of

testing for whether two ideals are contained in one another is suggested by the proofs of

Propositions 2.3.6(iv) and 2.4.6(iii). To be precise, the condition I ⊆ J is equivalent to the

condition I + J = J . Thus, if s > cJ(I), then Idsqe + J [q] = J [q] for all large q, and for

s < bJ(I), we have that Idsqe + J [q] = Idsqe. Values of s in between the two values will give

ideals that seem to interpolate between Iq and J [q]. In the next section we will exploit this

relationship to compare two more numerical measures attached to ideals: the

Hilbert-Samuel and the Hilbert-Kunz multiplicities.
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3 Multiplicities

In this section, we discuss two measures associated to an ideal of a commutative ring, and

then construct a framework that incorporates both of them. Throughout this and later

sections, if R is a ring and M is a module of R, by λR(M) we mean the length of the M as

an R-module. When the ring R is understood we may write λ(M) for λR(M).

3.1 The Hilbert-Samuel and Hilbert-Kunz Multiplicities

Hilbert-Samuel multiplicity is a numerical measure associated to an ideal I in a

commutative ring R (of any characteristic) and an R-module M . There are multiple

equivalent definitions of Hilbert-Samuel multiplicity, and we will use the following.

Definition 3.1.1. Let (R,m) be a local ring of dimension d, I ⊆ R an m-primary ideal of

R, and M a finitely generated R-module. The Hilbert-Samuel multiplicity of M with

respect to I is defined to be

e(I;M) = lim
n→∞

d! · λ(M/InM)

nd
.

We often write e(I) for e(I;R).

Many properties of the Hilbert-Samuel multiplicity are well known. The properties

most important to us are the following:

• If I and J are ideals that have the same integral closure, then e(I) = e(J).

• If I ⊆ J and R is formally equidimensional, then the converse to the previous item

holds [10].

• The Hilbert-Samuel multiplicity is always a positive integer.

• If (R,m) is regular, then e(m) = 1.
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• If R is formally equidimensional the converse to the previous item holds [8, Theorem

40.6].

When the ring R is of positive characteristic, we may construct a similar limit using

bracket powers instead of ordinary powers. Doing so gives us the Hilbert-Kunz multiplicity.

Definition 3.1.2. Let (R,m) be a local ring of dimension d, I ⊆ R an m-primary ideal of

R, and M a finitely generated R-module. The Hilbert-Kunz multiplicity of M with respect

to I is defined to be

eHK(I;M) = lim
e→∞

λ
(
M/I [p

e]M
)

ped
.

We often write eHK(I) for eHK(I;R).

The Hilbert-Kunz multiplicity has some properties similar to the Hilbert-Samuel

multiplicity.

• If I and J are ideals that have the same tight closure, then eHK(I) = eHK(J).

• If I ⊆ J and R is complete and equidimensional then the converse to the previous

item holds [4, Theorem 8.17].

• The Hilbert-Kunz multiplicity is a real number at least 1, though unlike the

Hilbert-Samuel multiplicity it need not be an integer.

• However, like the Hilbert-Samuel multiplicity, if (R,m) is regular, then eHK(m) = 1.

• If R is unmixed then the converse to the previous statement holds [13, Theorem 1.5].

Out first goal is to define a function that behaves like the two multiplicities given here

and interpolates between them. Our first task in that direction will be to find a general

strategy for calculating, or at least bounding, the length of the R-modules in question.

Since all the rings we consider contain a field, this amounts to calculating a vector space

dimension.
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3.2 Vector Space Generators of Finite Length Modules

In this section, we construct sets of generators for certain R-modules as vector spaces over

the residue field of R. By counting these generating sets, we get upper bounds on the

dimensions of the vector spaces. We begin with a technical lemma.

Lemma 3.2.1. Let (R,m, k) be a local ring containing its residue field, and let M be an

R-module of finite length. Let {x1, . . . , xt} be a set of generators for m and {m1, . . . ,mn} a

set of generators for M . In this case,

(i) M is generated as a k-vector space by elements of the form xb11 · · ·xbtt mj, where

b1, . . . , bt ∈ N and 1 ≤ j ≤ n; and

(ii) If I = (f1, . . . , fm) is an m-primary ideal of R then M is generated as a k-vector

space by elements of the form fa11 · · · famm gmj, where a1, . . . , am ∈ N, 1 ≤ j ≤ n, and g

is a generator of R/I as a k-vector space.

Proof. (i) By definition, M is generated as a k-vector space by elements of the form rmj

with r ∈ R and 1 ≤ j ≤ n. For each such r, we have that r = v +
∑t

i=1 rixi for some v ∈ k

and ri ∈ R, since R = k ⊕m as a k-vector space. For each i, we may write

ri = vi +
∑n

j=1 rijxj with vi ∈ k and rij ∈ R, and so

r = v +
t∑
i=1

vixi +
∑

1≤i,j≤t

rijxixj.

We may repeat this process until every term either has a coefficient of the xi’s which is an

element of k or has a degree in the xi’s large enough that the term annihilates M and so

may be removed.

(ii) By part (i), M is generated as a k-vector space by terms of the form

fa11 · · · famm xb11 · · ·xbtt mj with ai, bi ∈ N. Fix a set of k-vector space generators {gi} of R/I.

Suppose that we have an element α = fa11 · · · famm xb11 · · ·xbtt mj ∈M with xb11 · · ·xbtt /∈ {gi}.
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There exist ci ∈ k such that xb11 · · ·xbtt −
∑

i cigi ∈ I, and so there exist r1, · · · , rm ∈ R such

that xb11 · · ·xbtt −
∑

i cigi =
∑m

`=1 r`f`. Therefore,

α =
∑
i

cif
a1
1 · · · famm gimj +

m∑
`=1

fa11 · · · f
a`+1
` · · · famm r`mj.

We know by part (i) that r`mj is a k-linear combination of terms of the form x
b′1
1 · · · x

b′t
t mj′ ,

and so we have that α is a k-linear combination of terms of the form fa11 · · · famm gimj and

f
a′1
1 · · · f

a′m
m x

b′1
1 · · ·x

b′t
t mj′ with

∑
` a
′
` = 1 +

∑
` a`. Continuing in this way, we may write α as

a k-linear combination of terms either of the form fa11 · · · famm gimj for some i or of the form

fa11 · · · famm xb11 · · ·xbtt mj with
∑

i ai arbitrarily large. Since In annihilates M for some n, we

may throw out all the terms of the second kind, which finishes the proof.

Bounding the lengths of the ideals we are concerned with will involve some

combinatorial calculations. For convenience we introduce some notation.

Definition 3.2.2. For positive integers d and m and real number r, we set Smd (r) to be the

number of monomials in d variables with degree less than r and with degree in each

variable less than m.

Certain properties of the numbers Smd (r) are easy to see. First, if r ≥ 0, then

Sm1 (r) = min{m, dre}. Second, for d > 1, we have that Smd (r) =
∑m−1

i=0 Smd−1(r − i). Indeed,

if we denote one of the variables by x, then for i = 0, 1, . . . ,m− 1, there are Smd−1(r − i)

monomials with degree in x exactly i, degree less than r, and degree in each variable less

than m.

We occasionally use a combinatorial description of the numbers Sdm(r), which is

established in the following lemma. This result appeared in a more general form as [11,

Lemma 2.5], though the method of proof was different.
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Lemma 3.2.3. For positive integers d and m and real number r,

Smd (r) =
d∑
i=0

(−1)i
(
d

i

)(
dre − im− 1 + d

d

)
.

Proof. The number of monomials in d variables, of degree less than r, where each of a

given set of i variables has degree at least m is the number of monomials in d variables of

degree less than r − im, that is,
(dre−im−1+d

d

)
. Thus the total number of monomials in d

variables of degree less than r with degree in each variable less than m is

(
dre − 1 + d

d

)
−

d∑
i=1

(−1)i−1
(
d

i

)(
dre − im− 1− d

d

)
,

by the inclusion-exclusion principle.

Our next lemma is a technical result on the behavior of the numbers Smd (r) as m and r

grow.

Lemma 3.2.4. If f, g : N→ R are functions such that f(n)− g(n) ≤ cn+ o(n) for some

c ∈ R, f(n) ≥ g(n) for n� 0, and u is a positive integer, then

lim sup
n→∞

Sund (f(n))− Sund (g(n))

nd
≤ ud−1c.

Proof. We proceed by induction on d. Suppose d = 1, and let n ∈ N large enough that

f(n) ≥ g(n). If un ≤ g(n) we have that Sun1 (f(n))− Sun1 (g(n)) = 0, and if un > g(n) then

Sun1 (f(n))− Sun1 (g(n)) ≤ df(n)e − dg(n)e ≤ f(n)− g(n) + 1.

Therefore

lim sup
n→∞

Sun1 (f(n))− Sun1 (g(n))

n
≤ lim sup

n→∞

f(n)− g(n) + 1

n
≤ c.
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Now if d > 1,

Sund (f(n))− Sund (g(n)) =
un−1∑
i=0

(
Sund−1(f(n)− i)− Sund−1(g(n)− i)

)
≤ un

(
Sund−1(f(n)− in)− Sund−1(g(n)− in)

)
where in is the value of i with 1 ≤ i ≤ un− 1 that maximizes the expression

Sund−1(f(n)− i)− Sund−1(g(n)− i). By induction,

lim sup
n→∞

Sund (f(n))− Sund (g(n))

nd
≤ lim sup

n→∞

un
(
Sund−1(f(n)− in)− Sund−1(g(n)− in)

)
nd

=u · lim sup
n→∞

Sund−1(f(n)− in)− Sund−1(g(n)− in)

nd−1

≤u · ud−2c = ud−1c.

3.3 The Multiplicity-Like Function hs(I, J ;M)

We are ready to consider a limit which combines aspects of the limits defining the

Hilbert-Samuel and Hilbert-Kunz multiplicities. The idea is to take the colengths of a sum

of ideals, one of which corresponds to the increasing Frobenius powers of an ideal J , and

one of which corresponds to a subsequence of the powers of another ideal I. This

subsequence will be determined by a real number s. We require that both of these ideals be

primary to the maximal ideal of the ring they belong to so that at the extreme values of

the parameter s one of the two ideals will dominate the other. This guarantees that in the

extremal cases we will get a limit related to either the Hilbert-Samuel multiplicity of I or

the Hilbert-Kunz multiplicity of J .

Theorem 3.3.1. Let (R,m) be a local ring of dimension d and characteristic p > 0, I and

J be m-primary ideals of R, M be a finitely generated R-module, and s > 0. The following

limit exists.

lim
e→∞

λ
(
M/(Idsp

ee + J [pe])M
)

ped
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Proof. If d = 0, then for large enough e, Idsp
ee + J [pe] = 0 and so the limit is simply λ(R).

Suppose that d ≥ 1. If k is not infinite, we may replace R by S = R[X]mR[X]. For any

R-module N , we have λR(N) = λS(N ⊗R S), and so we may assume without loss of

generality that the ring R has infinite residue field. Futhermore, since completion is a

faithfully flat operation, we may assume R is complete and hence contains its residue field.

Let K be a reduction of I generated by d elements f1, . . . , fd ∈ R, and let w be the

reduction number of I with respect to K, x1, . . . , xt ∈ R be a set of generators for the

maximal ideal m, and m1, . . . ,mn ∈M be a set of generators of M . Let q, q′ be varying

powers of p.

If q′ > w+d
s

, then for sufficiently large q we have that

(
Kdsq

′e + J [q′]
)[q]
⊆
(
Idsq

′e + J [q′]
)[q]
⊆ Idsq

′qe+J [q′q] ⊆ Kdsq
′qe−w+J [q′q] ⊆

(
Kdsq

′e−d−1 + J [q′]
)[q]

.

Therefore,

λ

(
M

(Kdsq′e−d−1 + J [q′])
[q]
M

)
≤ λ

(
M

(Idsq′qe + J [q′q])M

)
≤ λ

(
M

(Kdsq′e + J [q′])
[q]
M

)
.

If we divide the first and last terms of this inequality by qd, then the limit as q →∞ exists

by [6, Theorem 1.8]. Hence

lim sup
q→∞

1

qd
λ

(
M

(Idsq′qe + J [q′q])M

)
− lim inf

q→∞

1

qd
λ

(
M

(Idsq′qe + J [q′q])M

)
≤ lim

q→∞

1

qd

(
λ

(
M

(Kdsq′e + J [q′])
[q]
M

)
− λ

(
M

(Kdsq′e−d−1 + J [q′])
[q]
M

))

= lim
q→∞

1

qd
λ

((
Kdsq

′e−d−1 + J [q′]
)[q]

M

(Kdsq′e + J [q′])
[q]
M

)
.

Let

Q =

(
Kdsq

′e−d−1 + J [q′]
)[q]

M

(Kdsq′e + J [q′])
[q]
M

∼=
(
K [q]

)dsq′e−d−1
M(

(K [q])
dsq′e

+ J [q′q]
)
M ∩ (K [q])

dsq′e−d−1
M
.
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As an R-module, Q is generated by elements of the form f y1q1 · · · f ydqd mα, where∑
i yi = dsq′e − d− 1 and 1 ≤ α ≤ n. Therefore, by Lemma 3.2.1, Q can be generated as a

k-vector space by elements of the form f y1q+z11 · · · f ydq+zdd gmα where bi, yi, zi ∈ N,∑
i yi = dsq′e − d− 1, and g is a k-vector space generator of R/K. Letting ci = yi + bzi/qc

and ai = zi − qbzi/qc, we have that ciq + ai = yiq + zi and ai < q, and so Q can be

generated as a k-vector space by elements of the form f c1q+a11 · · · f cdq+add gmα where

ai, bi, ci ∈ N, ai < q,
∑

i ci ≥ dsq′e − d− 1, g is a k-vector space generator of R/K, and

1 ≤ α ≤ n. Let v ∈ N such that Kv ⊆ J . If
∑

i ci ≥ sq′ or ci ≥ vq′ for some i, then the

product above vanishes in Q. Therefore

λ(Q) ≤ qd ·
(
Svq

′

d (sq′)− Svq
′

d (sq′ − d− 1)
)
· λ(R/K) · n.

From this we have that

lim sup
q→∞

1

qd
λ

(
M

(Idsqe + J [q])M

)
− lim inf

q→∞

1

qd
λ

(
M

(Idsqe + J [q])M

)
= lim sup

q→∞

1

(q′q)d
λ

(
M

(Idsq′qe + J [q′q])M

)
− lim inf

q→∞

1

(q′q)d
λ

(
M

(Idsq′qe + J [q′q])M

)

≤ lim
q→∞

qd ·
(
Svq

′

d (sq′)− Svq
′

d (sq′ − d− 1)
)
· λ(R/K) · n

(q′q)d

=

(
Svq

′

d (sq′)− Svq
′

d (sq′ − d− 1)
)
· λ(R/K) · n

(q′)d
.

Since this holds for all q′ � 0, and by Lemma 3.2.4,

lim sup
q→∞

1

qd
λ

(
M

(Idsqe + J [q])M

)
− lim inf

q→∞

1

qd
λ

(
M

(Idsqe + J [q])M

)

≤ lim sup
q′→∞

(
Svq

′

d (sq′)− Svq
′

d (sq′ − d− 1)
)
· λ(R/K) · n

(q′)d
≤ 0.

Thus the limit exists and the theorem is proved.
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With the limit shown to exist we are ready to define our multiplicity-like function.

Definition 3.3.2. Let (R,m) be a local ring of dimension d and characteristic p > 0, I and

J be m-primary ideals of R, and M be a finitely generated R-module. For s > 0, we set

hs(I, J ;M) = lim
e→∞

λ
(
M/(Idsp

ee + J [pe])M
)

ped
.

We often write hs(I, J) for hs(I, J ;R), hs(I;M) for hs(I, I;M), hs(I) for hs(I;R), and

hs(M) for hs(m;M). If we wish to emphasize the ring R, we write hRs (I, J ;M) or a

similarly decorated variant.

We next establish some properties of hs(I, J ;M). We use the next result repeatedly

throughout the thesis, often without explicit reference.

Proposition 3.3.3. Let (R,m) be a local ring of dimension d and characteristic p > 0, I

and J be m-primary ideals of R, and M be a finitely generated R-module. The following

statements hold.

(i) hs(I, J ;M) ≤ min{ sd
d!
e(I;M), eHK(J ;M)}.

(ii) If dimM < d then hs(I, J ;M) = 0.

(iii) If s′ ≥ s then hs′(I, J ;M) ≥ hs(I, J ;M).

(iv) If I ′ and J ′ are ideals of R such that I ⊆ I ′ and J ⊆ J ′, then

hs(I
′, J ′;M) ≤ hs(I, J ;M).

(v) If I ′ is an ideal of R with the same integral closure as I, then

hs(I
′, J ;M) = hs(I, J ;M).

(vi) If J ′ is an ideal of R with the same tight closure as J , then hs(I, J
′;M) = hs(I, J ;M).

Proof. Throughout the proof, let q stand for a power of p.
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(i) For all q we have that Idsqe + J [q] ⊇ Idsqe, hence

lim
q→∞

λ
(
M/(Idsqe + J [q])M

)
qd

≤ lim
q→∞

λ
(
M/IdsqeM

)
dsqed

· dsqe
d

qd
=
sd

d!
e(I;M).

Furthermore, for all q we have that Idsqe + J [q] ⊇ J [q], hence

lim
q→∞

λ
(
M/(Idsqe + J [q])M

)
qd

≤ lim
q→∞

λ
(
M/J [q]M

)
qd

= eHK(J ;M).

(ii) By [6, Lemma 1.2], eHK(J ;M) = 0 for any M with dimM < d, and so part (i)

gives us the result.

(iii) For all q we have that Idsqe + J [q] ⊇ Ids
′qe + J [q], hence

λ
(
M/(Idsqe + J [q])M

)
≤ λ

(
M/(Ids

′qe + J [q])M
)
.

(iv) For all q we have that I ′dsqe + J ′[q] ⊇ Idsqe + J [q], hence

λ
(
M/(I ′

dsqe
+ J ′

[q]
)M
)
≤ λ

(
M/(Idsqe + J [q])M

)
.

(v) It suffices to prove the case where I ′ = I, the integral closure of I. If s > 0, then we

have that, by part (iv) and [5, Proposition 11.2.1],

0 ≤ hs(I, J ;M)− hs
(
I, J ;M

)
= lim

q→∞

1

qd
λ

(
I
dsqe

+ J [q]

Idsqe + J [q]

)

≤ lim
q→∞

1

qd
λ

(
I
dsqe

Idsqe

)
=
sd

d!

(
e(I)− e(I)

)
= 0.

(vi) It suffices to prove the case where J = J∗, the tight closure of J . We have that, by
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part (iv) and [4, Theorem 8.17],

0 ≤ hs(I, J ;M)− hs(I, J∗;M)

= lim
q→∞

1

qd
λ

(
Idsqe + (J∗)[q]

Idsqe + J [q]

)
≤ lim

q→∞

1

qd
λ

(
(J∗)[q]

J [q]

)
= eHK(J)− eHK(J∗) = 0.

We will see in the next section that for small values of s, the function hs(I, J ;M) is

related to the Hilbert-Samuel multiplicity, and for large values it is related to the

Hilbert-Kunz multiplicity. What happens for values in between these two extremes,

however, is mostly unknown. The following result shows that the behavior of this function

cannot be too pathological.

Theorem 3.3.4. Let (R,m) be a local ring of characteristic p > 0, I and J be m-primary

ideals of R, and M be a finitely generated R-module. The function hs(I, J ;M) is Lipschitz

continuous.

Proof. Let δ > 0. The function hs(I, J ;M) is increasing by Proposition 3.3.3(iii), so we

need only bound hs+δ(I, J ;M)− hs(I, J ;M) above in terms of δ.

Let d = dimR. If d = 0, then hs+δ(I, J ;M) = hs(I, J ;M) = λ(M), so 0 is a Lipschitz

constant for hs(I, J ;M). Suppose d ≥ 1. We may assume that R/m is infinite, and so we

may assume that I is generated by d elements by replacing it with a minimal reduction by

Proposition 3.3.3(v). Let I = (f1, . . . , fd), let m = (x1, . . . , xt), let v ∈ N such that Iv ⊆ J ,

and let m1, . . . ,mn be a set of generators for M . Let q stand for a power of p. We have that

hs+δ(I, J ;M)− hs(I, J ;M) = lim
q→∞

1

qd
(
λ
(
M/(Id(s+δ)qe + J [q])M

)
− λ
(
M/(Idsqe + J [q])M

))
= lim

q→∞

1

qd
λ

(
(Idsqe + J [q])M

(Id(s+δ)qe + J [q])M

)
= lim

q→∞

1

qd
λ

(
IdsqeM

(Id(s+δ)qe + J [q])M ∩ IdsqeM

)
.

The quotient module in the last line is generated as a k-vector space by elements of the
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form fa11 · · · f
ad
d gmα, where

∑
i ai ≥ sq, g is a k-vector space generator of R/I, and

1 ≤ α ≤ n. However, if
∑

i ai ≥ (s+ δ)q or ai ≥ vq for some i, then the corresponding

product vanishes. Therefore,

λ

(
IdsqeM

(Id(s+δ)qe + J [q])M ∩ IdsqeM

)
≤ (Svqd ((s+ δ)q)− Svqd (sq)) · λ(R/I) · n,

and so, by Lemma 3.2.4,

hs+δ(I, J ;M)− hs(I, J ;M) ≤ lim sup
q→∞

(Svqd ((s+ δ)q)− Svqd (sq)) · λ(R/I) · n
qd

≤ δ · vd−1 · λ(R/I) · n.

Hence vd−1 · λ(R/I) · n is a Lipschitz constant for hs(I, J ;M).

Our most important application of Theorem 3.3.4 is the next result, which proves that

hs(I, J ;M) is additive on short exact sequences. A direct consequence of this will be the

associativity formula for hs.

Theorem 3.3.5. Let (R,m) be a local ring of characteristic p > 0 and I and J be

m-primary ideals of R. If 0→M ′ →M →M ′′ → 0 is a short exact sequence of finitely

generated R-modules, then hs(I, J ;M) = hs(I, J ;M ′) + hs(I, J ;M ′′).

Proof. Let d = dimR, let m be the minimal number of generators of I, and let q and q′ be

powers of p. We have that Id(s+m/q)qq
′e + J [qq′] ⊆

(
Idsqe + J [q]

)[q′] ⊆ Idsqq
′e + J [qq′]. Therefore,

by [6, Theorem 1.6], we have that

λ

(
M ′

(Idsqq′e + J [qq′])M ′

)
+ λ

(
M ′′

(Idsqq′e + J [qq′])M ′′

)
≤ λ

(
M ′

(Idsqe + J [q])
[q′]
M ′

)
+ λ

(
M ′′

(Idsqe + J [q])
[q′]
M ′′

)

= λ

(
M

(Idsqe + J [q])
[q′]
M

)
+O((q′)

d−1
) ≤ λ

(
M

(Id(s+m/q)qq′e + J [qq′])M

)
+O((q′)

d−1
).
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Dividing by (qq′)d and taking the limit as q′ →∞, we obtain that

hs(I, J ;M ′) + hs(I, J ;M ′′) ≤ hs+m/q(I, J ;M) .

This holds for all q, and so hs(I, J ;M ′) + hs(I, J ;M ′′) ≤ hs(I, J ;M) since by Theorem

3.3.4, hs(I, J ;M) is continuous in s.

For the other inequality, note that for any q, the sequence

M ′

(Idsqe + J [q])M ′ →
M

(Idsqe + J [q])M
→ M ′′

(Idsqe + J [q])M ′′ → 0

is exact, whence

λ

(
M ′

(Idsqe + J [q])M ′

)
+ λ

(
M ′′

(Idsqe + J [q])M ′′

)
≥ λ

(
M

(Idsqe + J [q])M

)
.

Therefore hs(I, J ;M ′) + hs(I, J ;M ′′) ≥ hs(I, J ;M).

The additivity of hs(I, J ;M) on short exact sequences is exactly what we need to prove

the associativity formula for hs. This proof follows the proof in [8, Theorem 23.5] for the

associativity formula for Hilbert-Samuel multiplicity.

Theorem 3.3.6 (The associativity formula). Let (R,m) be a local ring of characteristic

p > 0, I and J be m-primary ideals of R, and M be a finitely generated R-module. We have

that

hRs (I, J ;M) =
∑

p∈AsshR

hR/ps (I(R/p), J(R/p))λRp(Mp) ,

where AsshR = {p ∈ SpecR | dimR/p = dimR}.

Proof. We proceed by induction on σ(M) =
∑

p∈AsshR λRp(Mp). If σ(M) = 0, then

dimM < dimR and so hRs (I, J ;M) = 0.

Now suppose that σ(M) ≥ 1 and fix q ∈ AsshR such that λRq(Mq) ≥ 1. We have that
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q = (0 :R x) for some x ∈M and so we have an exact sequence

0→ R/q→M →M/Rx→ 0.

We have that σ(M/Rx) = σ(M)− 1 and so by induction,

hRs (I, J ;M/Rx) =
∑

p∈AsshR

hR/ps (I(R/p), J(R/p))λRp((M/Rx)p)

=
∑

p∈AsshR

hR/ps (I(R/p), J(R/p))λRp(Mp)− hR/qs (I(R/q), J(R/q)) .

Therefore, it suffices to show that hRs (I, J ;R/q) = h
R/q
s (I(R/q), J(R/q)) since then by

Theorem 3.3.5 we will have the desired formula. This, however, is an easy computation.

Letting q stand for a power of p, we have that

hRs (I, J ;R/q) = lim
q→∞

1

qd
λR

(
R/q

(Idsqe + J [q])R/q

)
= lim

q→∞

1

qd
λR/q

(
R/q

(I(R/q))dsqe + (J(R/q))[q]

)
= hR/qs (I(R/q), J(R/q)) .

To finish out this section, we notice that the function hs(I, J ;M) is closely related to

the F -threshold and the F -limbus from the previous section.

Lemma 3.3.7. Let (R,m) be a local ring of dimension d and characteristic p > 0, I and J

be m-primary ideals of R, and M be a finitely generated R-module.

1. If s ≤ bJ(I) then hs(I, J ;M) = sd

d!
e(I;M).

2. If s ≥ cJ(I) then hs(I, J ;M) = eHK(J ;M).

Proof. Let q stand for a power of p.
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If s < bJ(I), then for infinitely many q, J [q] ⊆ Idsqe. Therefore

hs(I, J ;M) = lim
q→∞

λ
(
M/(Idsqe + J [q])M

)
qd

= lim
q→∞

λ
(
M/IdsqeM

)
qd

= lim
q→∞

λ
(
M/IdsqeM

)
(dsqe)d

· (dsqe)d

qd
=
e(I;M)sd

d!
.

If s > cJ(I), then for infinitely many q, Idsqe ⊆ J [q]. Therefore

hs(I, J ;M) = lim
q→∞

λ
(
M/(Idsqe + J [q])M

)
qd

= lim
q→∞

λ
(
M/J [q]M

)
qd

= eHK(J ;M).

The continuity of hs(I, J ;M) gives the cases s = bJ(I) and s = cJ(I).

3.4 The Normalizing Factor Hs(d)

One of the most important and useful properties of the Hilbert-Samuel and Hilbert-Kunz

multiplicities are their behavior in regular rings. In particular, if (R,m) is a regular local

ring, then e(m) = eHK(m) = 1. In order to properly define a function that interpolates

between these two multiplicities, we need to understand the behavior of hs(m) when (R,m)

is a regular local ring.

Proposition 3.4.1. If k is a field of characteristic p > 0 and R = k[[x1, . . . , xd]], then

hs(m) =

bsc∑
i=0

(−1)i

d!

(
d

i

)
(s− i)d.

Proof. Let m = (x1, . . . , xd). If d = 0, then m = 0, and so

hs(R) = 1 =
∑bsc

i=0(−1)i
(
0
i

)
(s− i)0. If d ≥ 1, then for any power q of p,

k[[x1, . . . , xd]]/(m
dsqe + m[q]) is generated as a k-vector space by all monomials in the xi

with degree less than sq and with the exponent on each xi less than q. The number of such
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monomials is precisely Sqd(sq). Therefore, by Lemma 3.2.3 we have that

hs(m) = lim
q→∞

Sqd(sq)

qd

=
d∑
i=0

(−1)i
(
d

i

)
lim
q→∞

1

qd

(
dsqe − iq − 1 + d

d

)
=

bsc∑
i=0

(−1)i

d!

(
d

i

)
(s− i)d.

This function will serve as a normalizing factor, and fills the same role that the factor

of d! does in the definition of Hilbert-Samuel multiplicity. We will want to use various

properties of this function, so here we define notation for it and prove some of them.

Definition 3.4.2. Let d ∈ N and s ∈ R. We set

Hs(d) =

bsc∑
i=0

(−1)i

d!

(
d

i

)
(s− i)d.

Note that if s < 0, then Hs(d) = 0.

Example 3.4.3. We begin our analysis of the functions Hs(d) by computing several of

them. Note that we only show the values for s ≥ 0.

Hs(0) = 1

Hs(1) =


s if 0 ≤ s < 1

1 if s ≥ 1

Hs(2) =



1
2
s2 if 0 ≤ s < 1

1
2
s2 − (s− 1)2 if 1 ≤ s < 2

1 if s ≥ 2
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Hs(3) =



1
6
s3 if 0 ≤ s < 1

1
6
s3 − 1

2
(s− 1)3 if 1 ≤ s < 2

1
6
s3 − 1

2
(s− 1)3 + 1

2
(s− 2)3 if 2 ≤ s < 3

1 if s ≥ 3

Certain properties of Hs(d) are suggested by the above examples, and are confirmed in

the next lemma.

Lemma 3.4.4. The functions Hs(d) have the following properties.

(i) If d ≥ 1, then Hs(d) =
∫ s
s−1Ht(d− 1) dt.

(ii) Hs(d) is nondecreasing.

(iii) Hs(d) is a Lipschitz continuous function of s on the interval (0,∞).

(iv) If s ≥ d, then Hs(d) = 1.

(v) If 0 < s ≤ 1, then Hs(d) = sd/d!.

Proof. (i) This is clear for d = 1, so suppose that d ≥ 2. Let q and q′ be varying powers of

p. We have that

Hs(d) = lim
q→∞

Sqq
′

d (sqq′)

(qq′)d
= lim

q→∞

∑qq′−1
i=0 Sqq

′

d−1(sqq
′ − i)

(qq′)d

≤ lim
q→∞

q
∑q′−1

i=0 Sqq
′

d−1(sqq
′ − qi)

(qq′)d

=
1

q′

q′−1∑
i=0

lim
q→∞

Sqq
′

d−1 ((s− i/q′)qq′)
(qq′)d−1

=
1

q′

q′−1∑
i=0

Hs−i/q′(d− 1)

Since the above holds for all q′, we have that

Hs(d) ≤ lim
q′→∞

1

q′

q′−1∑
i=0

Hs−i/q′(d− 1) =

∫ s

s−1
Ht(d− 1) dt.
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A similar argument, only using the inequality

qq′−1∑
i=0

Sqq
′

d−1(sqq
′ − i) ≥ q

q′∑
i=1

Sqq
′

d−1(sqq
′ − qi)

in the second line, shows that Hs(d) ≥
∫ s
s−1Ht(d− 1) dt.

(ii) This is by inspection for d = 0. For d ≥ 1, let δ > 0, so by induction

Hs+δ(d)−Hs(d) =

∫ s

s−1
Ht+δ(d− 1)−Ht(d− 1) dt ≥ 0.

(iii) This is trivial for d = 0. For d ≥ 1, we will actually show that the functions Hs(d)

are Lipschitz continuous with Lipschitz constants at most 1 on the entire real line. This can

be seen for d = 1 by Example 3.4.3, so suppose d ≥ 2, s ∈ R, and 0 < δ < 1. By induction,

Hs+δ(d)−Hs(d) =

∫ s

s−1
Ht+δ(d− 1)−Ht(d− 1) dt ≤

∫ s

s−1
δ dt = δ.

(iv) This statement is true for d = 0 by inspection. Assume that d ≥ 1 and

Hs(d− 1) = 1 for s ≥ d− 1. For s ≥ d, we have that

Hs(d) =

∫ s

s−1
Ht(d− 1) dt =

∫ s

s−1
1 dt = 1

and the result follows by induction.

(v) This is clear from the definition.

3.5 s-Multiplicity

With all the results from the previous sections in hand, we are ready to define our main

object of study in this section.

Definition 3.5.1. Let (R,m) be a local ring of characteristic p > 0, I and J be m-primary

ideals of R, M be a finitely generated R-module, and s > 0. The s-multiplicity of M with
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respect to the pair (I, J) is defined to be

es(I, J ;M) =
hs(I, J ;M)

Hs(d)
.

We write es(I, J) for es(I, J ;R), es(I;M) for es(I, I;M), es(I) for es(I;R), and es(M) for

es(m;M). If we wish to emphasize the ring R, we will write eRs (I, J ;M) or a similarly

decorated variant.

Many properties of the hs(I, J ;M) immediately imply similar properties for the

s-multiplicity. Some of these properties are listed in the next three corollaries. The first

corollary makes explicit the interpolating properties of the s-multiplicity, while the second

contains some auxiliary results listed for completeness. The third is the associativity

formula for s-multiplicity.

Corollary 3.5.2. Let (R,m) be a local ring of dimension d and characteristic p > 0, I and

J be m-primary ideals of R, and M be a finitely generated R-module.

(i) If s ≤ min{1, bJ(I)}, then es(I, J ;M) = e(I;M).

(ii) If s ≥ max{d, cJ(I)}, then es(I, J ;M) = eHK(J ;M).

(iii) If R is a regular ring, then es(R) = 1 for all s.

Proof. Statements (i) and (ii) simply combine Lemma 3.3.7 and Lemma 3.4.4. For

statement (iii), we may assume without loss of generality that R is complete with residue

field k, in which case R ∼= k[[x1, . . . , xd]]. The result then follows from Definition 3.5.1 and

Proposition 3.4.1.

Corollary 3.5.3. Let (R,m) be a local ring of dimension d and characteristic p > 0, I and

J be m-primary ideals of R, and M be a finitely generated R-module. The following

statements hold for all s > 0.

(i) es(I, J ;M) is a Lipschitz continuous function of s.
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(ii) es(I, J ;M) ≤ eHK(J ;M)/Hs(d).

(iii) If dimM < d then es(I, J ;M) = 0.

(iv) If I ′ and J ′ are m-primary ideals of R such that I ⊆ I ′ and J ⊆ J ′, then

es(I
′, J ′;M) ≤ es(I, J ;M).

(v) If I ′ is an m-primary ideal of R with the same integral closure as I, then

es(I
′, J ;M) = es(I, J ;M).

(vi) If J ′ is an m-primary ideal of R with the same tight closure as J , then

es(I, J
′;M) = es(I, J ;M).

(vii) If 0→M ′ →M →M ′′ → 0 is a short exact sequence of finitely generated R-modules,

then es(I, J ;M) = es(I, J ;M ′) + es(I, J ;M ′′).

Proof. (i) We have that es(I, J ;M) is constant, hence Lipschitz continuous, on

(0,min{1, bJ(I)}]. By Lemma 3.4.4, Hs(d) is Lipschitz continuous and bounded away from

0 on [min{1, bJ(I)},∞) and by Theorem 3.3.4, hs(I, J ;M) is Lipschitz continuous, and so

es(I, J ;M) is Lipschitz continuous on [min{1, bJ(I)},∞). Thus es(I, J ;M) is Lipschitz

continuous.

Parts (ii)-(vi) follow from Proposition 3.3.3. Part (vii) follows from Theorem 3.3.5.

The following corollary now follows directly from Theorem 3.3.6.

Corollary 3.5.4 (Associativity formula for s-multiplicity). Let (R,m) be a local ring of

characteristic p > 0, I and J be m-primary ideals of R, and M be a finitely generated

R-module. We have that

eRs (I, J ;M) =
∑

p∈AsshR

eR/ps (I(R/p), J(R/p))λRp(Mp)

where AsshR = {p ∈ SpecR | dimR/p = dimR}.
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Proof. For any p ∈ AsshR, dimR/p = d, and so

eR/ps (I(R/p), J(R/p)) =
h
R/p
s (I(R/p), J(R/p))

Hs(d)
.

By Theorem 3.3.6, we have that

hRs (I, J ;M) =
∑

p∈AsshR

hR/ps (I(R/p), J(R/p))λRp(Mp) .

Therefore, dividing each term of this equation by Hs(d) proves the result.

An immediate application of Corollary 3.5.4 is the following result, which shows that

the s-multiplicity of a module is in many cases determined by the s-multiplicity of the ring

itself.

Proposition 3.5.5. Let (R,m) be a local ring of characteristic p > 0, let I and J be

m-primary ideals of R, and let M be a finitely generated R-module. If Mp is free of constant

rank r for every p ∈ AsshR, in particular if R is a domain, then es(I, J ;M) = es(I, J) · r.

Proof. By the associativity formula, we have that

eRs (I, J ;M) =
∑

p∈AsshR

eR/ps (I(R/p), J(R/p))λRp(Mp)

=
∑

p∈AsshR

eR/ps (I(R/p), J(R/p)) · r = eRs (I, J) · r

The problem of finding general bounds for the value of the s-multiplicity seems to be

difficult, but we have a few results along those lines.

Proposition 3.5.6. Let ϕ : (R,m)→ (S, n) be a local homomorphism of local rings of

dimension d and characteristic p > 0 such that mS is n-primary, let I and J be m-primary

ideals of R, and let M be a finitely generated R-module. In this case,

eSs (IS, JS;M ⊗R S) ≤ eRs (I, J ;M) · λS(S/mS)
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and we have equality if ϕ is a flat ring homomorphism.

Proof. For any R-module N of finite length, we have that

λS(N ⊗R S) ≤ λR(N) · λS(S/mS) .

Thus, for any s > 0 and q a power of p we have that

λS

(
M ⊗R S

((IS)dsqe + (JS)[q])(M ⊗R S)

)
= λS

(
M

(Idsqe + J [q])M
⊗R S

)
≤ λR

(
M

(Idsqe + J [q])M

)
· λS(S/mS) .

Dividing both sides by qd and taking the limit as q goes to infinity gives us that

hSs (IS, JS;M ⊗R S) ≤ hRs (I, J ;M) · λS(S/mS) ,

and dividing both sides by Hs(d) gives us the result for s-multiplicity.

If ϕ is a flat ring homomorphism, then for any R-module N we have that

λS(N ⊗R S) = λR(N) · λS(S/mS) and so we have equality everywhere.

Corollary 3.5.7. If (R,m, k) be a local ring of characteristic p > 0 and I is an ideal

generated by a system of parameters in R, then es(I) ≤ λ(R/I). Furthermore, equality

holds if R is Cohen-Macaulay.

Proof. We may assume that R is complete. Let d = dimR, let x1, . . . , xd be a system of

parameters generating I, and let S = k[[x1, . . . , xd]] ⊆ R. Now by Proposition 3.5.6 and

Corollary 3.5.2(iii), eRs (I) ≤ eSs ((x1, . . . , xd))λR(R/I) = λR(R/I). Furthermore, if R is

Cohen-Macaulay, then R is a free S-module, hence is flat over S, so equality holds.
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4 Closures Related to s-Multiplicity

The s-multiplicity is related to closures, just as the Hilbert-Samuel and Hilbert-Kunz

multiplicities are. We see this already in the guise of Proposition 3.3.3 and Corollary 3.5.3

with respect to integral and tight closure. The natural question to ask at this point is

whether there are closures that are similarly related to the various s-multiplicities. In this

section we define these closures and show that in sufficiently nice rings, we get a strong

connection between the closure operators and the s-multiplicity. We use the notation R◦ to

stand for the complement of the union of the minimal primes of R.

4.1 The s-Closure

We can take a guess as to an appropriate kind of closure to relate to s-multiplicity by

looking at integral closure and tight closure. Integral closure, like Hilbert-Samuel

multiplicity, has many equivalent definitions, but the most relevant to us is the following.

Definition 4.1.1. Let I be an ideal of a ring R. An element x is in I, the integral closure

of I, if there exists c ∈ R◦ such that for infinitely many n ∈ N, cxn ∈ In.

Tight closure has fewer common definitions, but has one that closely matches the form

of the previous definition.

Definition 4.1.2. Let I be an ideal of a ring R of positive characteristic p. An element

x ∈ R is in I∗, the tight closure of I, if there exists c ∈ R◦ such that for all sufficiently large

powers q of p, cxq ∈ I [q].

Given these two definitions, it is natural for us to try to define a closure in a similar

way, using the sums of ideals that translate between Iq and I [q].

Definition 4.1.3. Let R be a ring of characteristic p > 0, I be an ideal of R, and s ≥ 1 be

a real number. An element x ∈ R is said to be in the weak s-closure of I if there exists

c ∈ R◦ such that for all q � 0, where q is a power of p, cxq ∈ Idsqe + I [q]. We denote the set

of all x in the weak s-closure of I by Iw.cls .
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Remark 4.1.4. If I is of positive height, then x ∈ Iw.cls if and only if there exists c ∈ R◦

such that cxq ∈ Idsqe + I [q] for all q ≥ 1. To see this, suppose that there exists c′ ∈ R◦ and

q′ such that c′xq ∈ Idsqe + I [q] for q > q′. Since I is of positive height, there exists

c′′ ∈ (Idsq
′e + I [q

′]) ∩R◦. Setting c = c′c′′, we have that c ∈ R◦ and cxq ∈ Idsqe + I [q] for all

q ≥ 1.

For a given ideal I, Iw.cls is clearly an ideal containing I. However, it is not clear that

the weak s-closure is idempotent; that is, it is not clear that (Iw.cls)
w.cls = Iw.cls . If the ring

is noetherian, we can construct an idempotent operation out of the weak s-closure by

iterating the operation until the chain of ideals stabilizes.

Definition 4.1.5. Let R be a ring of characteristic p > 0, let I be an ideal of R, and let

s ≥ 1 be a real number. The s-closure of I is defined to be the ideal at which the following

chain of ideals stabilizes:

I ⊆ Iw.cls ⊆ (Iw.cls)
w.cls ⊆

(
(Iw.cls)

w.cls
)w.cls

⊆ · · · .

We denote this ideal by Icls .

Notice that, for s = 1, the s-closure is integral closure, and for s > cI(I), the s-closure

is tight closure. Furthermore, if s ≤ s′, then Icls ⊇ Icls′ for all ideals I. Thus the s-closure

interpolates monotonically between integral closure and tight closure as s increases. One

should note that new closures do in fact arise.

Example 4.1.6. Let R = k[x, y], where k is a field of characteristic p > 0. If I = (x3, y3),

then

Icls =


(x, y)3 if s = 1

(x3, x2y2, y3) if 1 < s ≤ 4
3

(x3, y3) if s > 4
3
.

In particular, if 1 < s ≤ 4
3
, then I = I∗ ( Icls ( I = (x, y)3.
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Example 4.1.6 demonstrates that in some cases, an ideal I will only have finitely many

distinct s-closures for various values of s; in fact, this will occur whenever R is local and I

is primary to the maximal ideal. However, even in regular rings there can be infinitely

many distinct s-closures.

Example 4.1.7. Let R = k[x, y], where k is a field of characteristic p > 0. Let

1 ≤ s < s′ ≤ 2. Choose n ∈ N such that n > 2/(s′ − s), and let I = (x2n, y2n). We have

that xdsneydsne ∈ Iw.cls , since for any power q of p,

2

⌊
2n+ dsneq

2n

⌋
≥ 2

⌊
1 +

s

2
q
⌋
≥ sq,

and so x2ny2n(xdsneydsne)q ∈ (x2n, y2n)dsqe. However, xdsneydsne /∈ Iw.cls′ , since for any a ∈ N,

if q ≥ a, then we have that

2

⌊
a+ dsneq

2n

⌋
≤ a+ (sn+ 1)q

n
≤ (sn+ 2)q

n
= sq +

2q

n
< sq + (s′ − s)q = s′q

and so xaya(xdsneydsne)q /∈ (x2n, y2n)ds
′qe. Thus Iw.cls 6= Iw.cls′ , and hence Icls 6= Icls′ by

Theorem 4.2.1. Thus we find that there are infinitely many distinct s-closures on R, one

for every real number in the interval [1, 2].

4.2 s-Closure and s-Multiplicity

If I and I ′ have the same integral closure, then e(I) = e(I ′), while if I and I ′ have the same

tight closure, then eHK(I) = eHK(I ′). Our main theorem in this section is a similar result

for s-multiplicity and s-closure.

Theorem 4.2.1. Let (R,m) be a local ring of characteristic p > 0 and let I and J be

m-primary ideals of R with I ⊆ J . If J ⊆ Icls, then es(J) = es(I). If R is an F -finite

complete domain, then the converse holds and Icls = Iw.cls.

Proof. Let d = dimR. Suppose that x ∈ Iw.cls , so that there exists c ∈ R◦ such that for all
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q � 0, where q is a power of p, we have that cxq ∈ Idsqe + I [q] ⊆ Iq. Hence x is in the

integral closure of I and so hs((I, x), (I, x)) = hs(I, (I, x)) by Proposition 3.3.3(v). Now for

large q, c annihilates Idsqe+(I,x)[q]

Idsqe+I[q]
. Let S = R/cR, so that for q � 0,

λR

(
Idsqe + (I, x)[q]

Idsqe + I [q]

)
= λS

(
Idsp

ee + (I, x)[p
e]

Idsqe + I [q]
⊗ S

)
= λS

(
(IS)dsqe + ((I, x)S)[q]

(IS)dsqe + (IS)[q]

)
.

So, since dimS = d− 1,

hs(I, I)− hs(I, (I, x)) = lim
q→∞

1

qd
λR

(
Idsqe + (I, x)[q]

Idsqe + I [q]

)
= lim

q→∞

1

qd
λS

(
(IS)dsqe + ((I, x)S)[q]

(IS)dsqe + (IS)[q]

)

=

(
lim
q→∞

1

q

)
·

(
lim
q→∞

1

qd−1
λS

(
(IS)dsqe + ((I, x)S)[q]

(IS)dsqe + (IS)[q]

))

= 0 · (hSs (IS, IS)− hSs (IS, (I, x)S)) = 0.

Therefore hs((I, x)) = hs(I) for any x ∈ Iw.cls , hence hs
(
Iw.cls

)
= hs(I). By induction,

hs
(
Icls
)

= hs(I), hence hs(J) = hs(I) and so es(J) = es(I).

Now suppose that R is an F -finite complete domain and x ∈ R such that

es((I, x)) = es(I). In this case hs((I, x)) = hs(I), and so hs(I, (I, x)) = hs(I, I), and

therefore

0 = lim
q→∞

1

qd
λ

(
Idsqe + (I, x)[q]

Idsqe + I [q]

)
= lim

q→∞

1

qd
λ
(
R/
(
(Idsqe + I [q]) :R x

q
))
.

Let ψ ∈ HomR (F∗R,R) be a nonzero p−1-linear map and let

ϕ(−) = ψ
(
F∗(f

p−1
1 · · · fp−1n ) · −

)
, where f1, . . . , fn is a generating set for I. We have that

ϕ
(
F∗
(
(Idspqe + I [pq]) :R x

pq
))
· xq ⊆ ϕ

(
F∗
(
Idspqe + I [pq]

))
⊆ ψ

(
F∗
(
fp−11 · · · fp−1n Idspqe

))
+ I [q].
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If a1, . . . , an ∈ N with a1 + · · ·+ an ≥ spq, then

n∑
i=1

⌊
ai + p− 1

p

⌋
≥

n∑
i=1

ai
p
≥ sq

and so fp−11 · · · fp−1n Idspqe ⊆
(
Idsqe

)[p]
. Therefore ψ

(
F∗
(
fp−11 · · · fp−1n Idspqe

))
⊆ Idsqe and so

ϕ
(
F∗
(
(Idspqe + I [pq]) :R x

pq
))
· xq ⊆ Idsqe + I [q],

that is,

ϕ
(
F∗
(
(Idspqe + I [pq]) :R x

pq
))
⊆
(
(Idsqe + I [q]) :R x

q
)
.

Since this holds for all q, by [9, Theorem 5.5], we must have that⋂
q≥0
(
(Idsqe + I [q]) :R x

q
)
6= 0, that is, there is some 0 6= c ∈ R such that for all q,

cxq ⊆ Idsqe + I [q]. Therefore x ∈ Iw.cls .

Thus we have that if R is an F -finite complete domain and hs((I, x)) = hs(I), then

x ∈ Iw.cls . Therefore if hs(J) = hs(I) then J ⊆ Iw.cls ⊆ Icls . Furthermore, in this case, if

x ∈ Icls , then hs((I, x)) = hs(I) and hence x ∈ Iw.cls . Therefore Icls = Iw.cls .

This theorem shows that the s-multiplicity and the s-closures are intimately related.

Remark 4.2.2. The domain hypothesis in the backwards direction of Theorem 4.2.1 is

difficult to remove. In the case of both integral closure and tight closure, the relationship

with the corresponding multiplicity was established for domains first, and then afterward

expanded to the more general cases. These two arguments used different techniques. In the

case of integral closure and Hilbert-Samuel multiplicity, a different definition of the closure

was used which involves an “equation of integral dependence”, an object that we do not

have for s-closure. In the case of tight closure and Hilbert-Kunz multiplicity, the existence

of “stable test elements” for tight closure was relied upon, which again we do not have for

s-closure. So far, there is no clear way to replace the domain hypothesis with a weaker one.
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5 Toric Rings

In this section we will study the F -threshold, F -limbus, s-muliplicity, and s-closure in toric

rings, also called semigroup rings. These rings can be realized as subrings of Laurent

polynomial rings generated by monomials. When we study the s-multiplicity of these toric

rings we will complete the ring at the maximal homogneous ideal in order to work in the

local setting.

Definition 5.0.1. Let k be a field. By a toric ring of dimension d over k, or simply toric

ring, we will mean the ring k[S], where S = σ∨ ∩Zd. Here σ∨ is a cone in Rd not containing

any line through the origin, and S inherits the semigroup structure of Zd. Furthermore, we

will require that the cone σ∨ be rational, that is, σ∨ = cone(v1, . . . , vn) for some

v1, . . . , vn ∈ Zd, and of full dimension, that is, the R-span of σ∨ is all of Rd. We will denote

the monomial elements of k[S] by xv for v ∈ S, and if σ∨ = cone(v1, . . . , vn), we may write

k[xv1 , . . . , xvn ] for k[S].

The ideals of toric rings that are of most interest to us are the monomial ideals. For a

monomial ideal I ⊆ k[S], we let Exp I := {v ∈ S | xv ∈ I} be the exponent set of I. Also of

interest to us will be the convex hull of I, also called the Newton polytope of I, which we

denote by Hull I and which is the convex hull of Exp I in Rd, that is, Hull I is the smallest

convex set in Rd containing Exp I. We will also sometimes use the descriptions given in the

following lemma:

Lemma 5.0.2. Let I = (xu1 , . . . , xun) be a monomial ideal in the toric ring k[S], where

S = σ∨ = cone(t1, . . . , tm). We have that Exp I = {u1, . . . , un}+ S, and

Hull I = {
∑

i aiui | ai ∈ R≥0,
∑

i ai = 1}+ σ∨.

Proof. A monomial xv is in I if and only if it is a multiple of xui for some i, which occurs

precisely when there exists w ∈ S such that xv = xwxui , that is, v = ui + w ∈ ui + S. This

shows the first statement.
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For the second statement, if v ∈ Hull I then there are elements v1, . . . , vr ∈ Exp I and

bj ∈ R≥0 such that v =
∑

j bjvj and
∑

j bj = 1. Therefore, by the first part, for each j there

exists 1 ≤ ij ≤ n and wj ∈ S such that vj = uij + wj. Hence

v =
∑

j bj(uij + wj) =
∑

j bjuij +
∑

j bjwj ∈ {
∑

i aiui | ai ∈ R≥0,
∑

i ai = 1}+ σ∨.

Now we claim that for each i, ui + σ∨ ⊆ Hull I. First, take a cone generator tj of σ∨, let

α > 0, and consider ui + αtj. Let β = α− bαc. We have that ui + bαctj ∈ Exp I and

ui + dαetj ∈ Exp I, and therefore

ui + αtj = (1− β) (ui + bαctj) + β (ui + dαetj) ∈ Hull I.

Now if w ∈ σ∨ \ {0}, then there exist wj ≥ 0 such that w =
∑

j wjtj. Let W =
∑

j wj, and

observe that

ui + w = ui +
∑
j

wjtj =
∑
j

wjui
W

+
∑
j

wjtj =
∑
j

wj
W

(ui +Wtj) .

By the previous paragraph, each ui +Wtj ∈ Hull I, and also
∑

j
wj

W
= 1, and so

ui + w ∈ Hull I.

Now suppose that ai ∈ R≥0 with
∑

i ai = 1 and w ∈ σ∨, and consider v =
∑

i aiui + w.

For each i, let wi = w/ai if ai > 0 and wi = 0 if ai = 0. Now each wi ∈ σ∨, and so by the

previous paragraph, v =
∑

i aiui + w =
∑

i ai(ui + wi) ∈ Hull I,

Example 5.0.3. Consider the toric ring R = k[x, x2y, x3y2]. We can visualize this ring

using the shaded cone in Figure 5.1. The lattice points in the shaded region to monomials

in R. For instance. the point (1, 0) corresponds to the monomial x, the point (2, 1)

corresponds to the monomial x2y, and the point (3, 2) corresponds to the monomial x3y2.

Consider the monomial ideal I = (x4, x4y2, x6y4). The generators of I correspond to

the points (4, 0), (4, 2), and (6, 4) in Zd, which are the red dots in Figures 5.2 and 5.3.
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Figure 5.2 illustrates Exp I. From every lattice point corresponding to a generator of I,

we draw a copy of the shaded cone from the first figure. The lattice pointsin the shaded

region of Figure 5.2 correspond to the monomials that are in I. Figure 5.3 illustrates

Hull I, which is the smallest convex set containing all the lattice points in Exp I.

Our next result is a lemma that describes Exp Im and Exp I [q] for monomial ideals in

toric rings and will be essential to the rest of the section.
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Lemma 5.0.4. Let R = k[S] be a positive characteristic toric ring of dimension d, where

S = σ∨ ∩ Zd, and I be an ideal of R generated by n monomials. For any m ∈ N≥1 and q a

power of p,

(m+ n) Hull I ⊆ Exp Im + σ∨ ⊆ mHull I and Exp I [q] + σ∨ = q Exp I + σ∨.

Proof. Let xu1 , . . . , xun be a set of monomial generators for I.

If v ∈ (m+ n) Hull I then there exist ai ∈ R≥0 such that
∑

i ai = 1 and

v ∈ (m+ n)
∑

i aiui + σ∨. For each 1 ≤ i ≤ n, let bi = b(m+ n)aic. Since each ui ∈ σ∨, we

have that (m+ n)aiui ∈ biui + σ∨, and so

v ∈ (m+ n)
∑
i

aiui + σ∨ ⊆
∑
i

biui + σ∨.

Since
∑

i bi ≥ (m+ n)
∑

i ai − n ≥ m, we have that x
∑

i biui ∈ Im and so v ∈ Exp Im + σ∨.

This shows the first inclusion in the first statement.

If v ∈ Exp Im + σ∨, then there exist ai ∈ N such that v ∈
∑

i aiui + σ∨ and
∑

i ai = m.

Therefore v ∈ m ·
∑

i
ai
m
ui + σ∨, and since

∑
i
ai
m

= 1, we have that
∑

i
ai
m
ui + σ∨ ⊆ Hull I.
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This shows that Exp Im + σ∨ ⊆ mHull I.

For the second statement, we have that

Exp I [q] + σ∨ = Exp(xqu1 , . . . , xqun) + σ∨ =
⋃
i

(qui + σ∨) = q
⋃
i

(ui + σ∨) = q Exp I + σ∨.

5.1 The F -threshold and F -limbus in Toric Rings

The geometric way in which we may describe monomial ideals in toric rings gives us a

method for computing certain numerical invariants. In particular, we may use Lemma 5.0.4

to measure the F -threshold and F -limbus for two monomial ideals I and J in toric rings.

The theorem below was proved in [3, Theorem 3.3] for the F -threshold, though we include

a proof of our own.

Theorem 5.1.1. Let I and J be monomial ideals in a positive characteristic toric ring

R = k[S]. We have that

cJ(I) = inf {s | sHull I ⊆ Exp J + σ∨}

and

bJ(I) = sup {s | Exp J ⊆ sHull I} .

Proof. Suppose s > cJ(I), and let n be the size of a generating set for I. For q � 0,

Idsqe ⊆ J [q], and so by Lemma 5.0.4,

(dsqe+ n) Hull I ⊆ Exp Idsqe + σ∨ ⊆ Exp J [q] + σ∨ = q Exp J + σ∨.

Dividing the first and last terms in the inequality by q gives us that

dsqe+n
q

Hull I ⊆ Exp J + σ∨, and since this holds for all large q, we have that

sHull I ⊆ Exp J + σ∨.
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Now suppose that sHull I ⊆ Exp J + σ∨. For q ≥ 1, we have that

Exp Idsqe ⊆ dsqeHull I ⊆ sqHull I ⊆ q (Exp J + σ∨) = q Exp J + σ∨ = Exp J [q] + σ∨.

Therefore Exp Idsqe ⊆
(
Exp J [q] + σ∨

)
∩ Zd = Exp J [q], and hence Idsqe ⊆ J [q]. Therefore

s ≥ cJ(I). Hence cJ(I) = inf {s | sHull I ⊆ Exp J + σ∨}.

Similarly, suppose that s < bJ(I). For q � 0, J [q] ⊆ Idsqe, and so

Exp J ⊆ 1

q
(q Exp J + σ∨) ⊆ 1

q

(
Exp J [q] + σ∨

)
⊆ 1

q

(
Exp Idsqe + σ∨

)
⊆ 1

q
dsqeHull I.

Since this holds for all large q, we have that Exp J ⊆ sHull I.

Now suppose that Exp J ⊆ sHull I. For q ≥ 1, we have that

Exp J [q] ⊆ q Exp J + σ∨ ⊆ sqHull I ⊆ bsqcHull I ⊆ Exp Ibsqc−n + σ∨,

which shows that J [q] ⊆ Ibsqc−n. Therefore, for every q, µJI (q) > bsqc − n, and therefore

s ≤ bJ(I). Hence bJ(I) = sup {s | Exp J ⊆ sHull I} .

We begin by studying Examples 2.3.5 and 2.4.5 again in this context.

Example 5.1.2. We take R = k[x, y, z]/(xy− zn+1), and note that we may identify R with

k[X, Y,X−1Y n+1], with the ring map sending x 7→ X, y 7→ X−1Y n+1, z 7→ Y realizing the

isomorphism. Under this identification we have that I = (x5z, xz4) 7→ (X5Y,XY 4) and

J = (x3z2) 7→ (X3Y 2). We can represent this information in Figure 5.4, in which the red

points correspond to the monomial generators of I and the blue point corresponds to the

monomial generator of J . The dashed line indicates the boundary of Hull I.

We can use the geometry in this figure to calculate the F -threshold using

Theorem 5.1.1. According to the theorem, the F -threshold is the minimum s such that

sHull I ⊆ Exp J + σ∨. The current situation is simpler than the general one since J is

principal, which means that Exp J + σ∨ is itself convex, which means we only need to find
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the minimum s that will send the points corresponding to the generators of I into

Exp J + σ∨. We illustrate the situation in Figure 5.5.

Drawing lines from the origin through the points (1, 4) and (5, 1), which correspond to

the generators of I, we can find the points on those lines closest to the origin which lie in

Exp J + σ∨. From this we can determine that 2 · (5, 1) ∈ Exp J + σ∨ and

3n+5
n+5
· (1, 4) ∈ Exp J + σ∨. Thus the F -threshold of I with respect to J is the maximum of

these two values.

The calculation of the F -limbus is similar. In this calculation we need to find the

maximum s such that Exp J ⊆ sHull I. We illustrate this situation in Figure 5.6. In this

case we can draw a line through the origin and the point corresponding to the generator of

J and find where it intersects with Hull I. We can then take the sum of the coefficients of

(3, 2) and divide by the sum of the coefficients of the intersection
(
57
17
, 38
17

)
to obtain that

bJ(I) = 5 · 17
95

= 17
19

.
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5.2 s-Multiplicity in Toric Rings

Next we consider the s-multiplicity of semigroup rings. Since we only defined the

s-multiplicity for local rings, we will consider the completion of a semigroup ring k[S] at its

unique maximal homogeneous ideal. The ring we obtain is the power series ring k[[S]] in

the monomials that generate k[S] as a k-algebra.

In this section we relate the s-multiplicity function for toric rings to certain volumes in

Euclidean space, and use this to compute the s-multiplicity for a few toric rings. See [2] for

a more general treatment of the correspondence between limits in positive characteristic

and volumes in real space.

Theorem 5.2.1. Let (R,m) = (k[[S]], (S)) be the completion of a normal toric ring of

dimension d over a field k of characteristic p > 0, where S = σ∨ ∩ Zd, and I and J be

m-primary monomial ideals of R. We have that

hs(I, J) = vol (σ∨ \ (sHull I ∪ (Exp J + σ∨)) ,

where vol(−) is the standard Euclidean volume in Rd.

Proof. Let q be a power of p, and let n be the size of a generating set for I. The length of

R/(Idsqe + J [q]) is precisely the size of the set

Vq :=
{
v ∈ S | xv /∈ Idsqe + J [q]

}
=
{
v ∈ S | v /∈ Exp Idsqe ∪ Exp J [q]

}
.

From Lemma 5.0.4, we have that

(σ∨ \ (dsqeHull I ∪ q Exp J + σ∨)) ∩ Zd ⊆ Vq ⊆ (σ∨ \ ((dsqe+ n) Hull I ∪ q Exp J + σ∨)) ∩ Zd.
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Since the volume of σ∨ \ (sHull I ∪ Exp J + σ∨) is equal to the volume of its interior,

vol (σ∨ \ (sHull I ∪ Exp J + σ∨))

= lim
q→∞

1

qd

∣∣∣∣∣(σ∨ \ (sHull I ∪ Exp J + σ∨)) ∩
(

1

q
Z
)d∣∣∣∣∣

= lim
q→∞

1

qd
∣∣(σ∨ \ (sqHull I ∪ q Exp J + σ∨)) ∩ Zd

∣∣
≤ lim

q→∞

1

qd
|Vq|

≤ lim
q→∞

1

qd
∣∣(σ∨ \ ((dsq + ne) Hull I ∪ q Exp J + σ∨)) ∩ Zd

∣∣
= lim

q→∞

1

qd

∣∣∣∣∣(σ∨ \ ((dsq + ne/q) Hull I ∪ Exp J + σ∨)) ∩
(

1

q
Z
)d∣∣∣∣∣

= vol (σ∨ \ (sHull I ∪ Exp J + σ∨)) ,

and so we have equality throughout. Since hs(I, J) = lim
q→∞

1

qd
|Vq|, the theorem is

proved.

Theorem 5.2.1 allows us to calculate the s-multiplicity of toric rings. We compute two

examples.

Example 5.2.2 (An Singularities). Let n ∈ N, n ≥ 1, and let

An = k[[x, y, z]]/(xy − zn+1) ∼= k[[X, Y,X−1Y n+1]].

The geometry of this toric ring is illustrated in Figure 5.7 in the case n = 2, though our

calculations will be for general n. The shaded region corresponds to the cone σ∨, and the

lattice points (1, 0), (0, 1), and (−1, n+ 1) correspond to X, Y , and X−1Y n+1, respectively.

We wish to calculate es(An), so we need to calculate Hullm and Expm + σ∨ where

m = (X, Y,X−1Y n+1). These are illustrated in Figure 5.8.

There are three situations to consider: s ≤ 1, 1 ≤ s ≤ 2− 1
n+1

, and s ≥ 2− 1
n+1

. When

s ≤ 1, sHullm ∪ Expm + σ∨ is illustrated is Figure 5.9a, and from this we can compute
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hs(An) = s2 for s ≤ 1.

Now suppose that 1 ≤ s ≤ 2− 1
n+1

. The picture now becomes Figure 5.9b. Calculating

the area of the unshaded region in σ∨ gives

hs(An) = −n+ 1

n
(s− 1)2 + 2(s− 1) + 1

when 1 ≤ s ≤ 2− 1
n+1

.

Now consider the case when s ≥ 2− 1
n+1

. In this case the picture becomes Figure 5.9c

and so we compute hs(An) = 2− 1
n+1

when s ≥ 2− 1
n+1

. With this, we can write down the
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s-multiplicity for the An singularities.

es(An) =



2 if 0 < s < 1

−n+1
n

(s−1)2+2(s−1)+1
1
2
s2−(s−1)2 if 1 ≤ s < 2− 1

n+1

2− 1
n+1

1
2
s2−(s−1)2 if 2− 1

n+1
≤ s < 2

2− 1
n+1

if s ≥ 2.

Example 5.2.3. Let k be a field, and consider the ring Vn = k[[x, xy, . . . , xyn]]. The

geometry of this ring is illustrated in Figure 5.10 below; the shaded region corresponds to
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σ∨ and for 0 ≤ a ≤ n, the lattice points (1, a) corresponds to the monomial xya.

Letting m = (x, xy, . . . , xyn), Figure 5.10 also illustrates Hullm and Expm + σ∨. Thus

Figure 5.11 illustrates sHullm ∪ Expm + σ∨ for various values of s.
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With these figures we can calculate hs(Vn) and es(Vn):

hs(Vn) =



ns2

2
if 0 < s ≤ 1

−n2

2
(s− 1)2 + n(s− 1) + n

2
if 1 ≤ s ≤ 1 + 1/n

n+1
2

if s ≥ 1 + 1/n
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es(Vn) =



n if 0 < s < 1

−n2(s−1)2+2n(s−1)+n
s2−2(s−1)2 if 1 ≤ s < 1 + 1/n

n+1
s2−2(s−1)2 if 1 + 1/n ≤ s < 2

n+1
2

if s ≥ 2.

Example 5.2.4. The normalizing factors Hs(d) can be easily visualized as areas in space

in the same manner. Indeed, since k[[x1, . . . , xd]] is a toric ring, we simply apply the

construction above to calculate hs((x1, . . . , xd)). For instance, when d = 2, we have

Figure 5.12.
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5.3 s-Closures in Toric Rings

We can consider the various s-closures we defined earlier in the specific case of toric rings.

Toric rings are examples of graded rings, which have many good properties that we can

exploit. Our first result using these properties is Theorem 5.3.1, which shows that

homogeneous ideals have homogeneous s-closures. In the proof below, for a Zn-graded ring

R and an element c =
∑

i∈Zn ci, where the degree of each ci is i ∈ Zn, we call

Supp(c) := {i ∈ Zn | ci 6= 0} the support of c. Furthermore, by the diameter of c we mean

max {‖i− i′‖∞ | i, i′ ∈ Supp(c)}, where for i = (i1, . . . , in) ∈ Zn, ‖i‖∞ = maxi≤`≤n |i`|.

Theorem 5.3.1. If R is a Zn-graded ring of positive characteristic, I is a homogeneous

ideal of R, and s ≥ 1, then Iw.cls and Icls are homogeneous ideals. Furthermore, if
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x ∈ Iw.cls, there exists a nonzero homogeneous element c such that cxq ∈ Idsqe + I [q] for all

q � 0.

Proof. Let x =
∑

j∈Zn xj ∈ Iw.cls . There exists 0 6= c =
∑

i∈Zn ci ∈ R such that

cxq ∈ Idsqe + I [q] for all q � 0.

If cix
q
j 6= 0 and ci′x

q
j′ 6= 0 have the same degree, then i+ qj = i′ + qj′, and so

i− i′ = q(j′ − j). If in addition q is greater than the diameter of c, we must have that

j = j′ and i = i′. Therefore each nonzero homogeneous component of cxq is cix
q
j for some

i, j. Since I is homogeneous, so is Idsqe + I [q], and therefore for q � 0, we have that

cix
q
j ∈ Idsqe + I [q]. This shows that each xj ∈ Iw.cls and that for each ci, cix

q ∈ Idsqe + I [q]

for q � 0.

Since Iw.cls is homogeneous, so is
(
Iw.cls

)w.cls
, and each time we take the weak s-closure

we preserve homogeneity. Since Icls is the directed union of homogeneous ideals, it is

homogeneous.

Toric rings are naturally Zd-graded, since they are subrings of k[x±11 , . . . , x±1d ]. This

grading is also called the monomial grading, since all the homogeneous elements of k[S] are

of the form αxv, where α ∈ k and v ∈ S. Just as there is a way to calculate the

F -threshold, F -limbus, and s-multiplicity of monomial ideals using the geometry associated

to the toric ring, there is also a way to calculate the s-closure of a monomial ideal in a toric

ring. This method uses the same construction as the one we use to calculate the

s-multiplicity in the previous section, but instead of calculating area, we find the lattice

points contained in the region we define.

Theorem 5.3.2. Let R = k[S] be a toric ring, where S = σ∨ ∩ Zd and k is a field of

characteristic p > 0. If I is a monomial ideal of R, then Icls is a monomial ideal of R,

Icls = Iw.cls, and Exp Icls = Exp I ∪ (sHull I ∩ Zd).

Proof. Let xb1 , . . . , xbm be a set of monomial generators for I. By Theorem 5.3.1, Icls is a

monomial ideal containing I.
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Let xa be a monomial of R. If a ∈ Exp I, then xa ∈ I ⊆ Iw.cls . Suppose a ∈ sHull I

and let c =
∑

i bi ∈ S. There exist t1, . . . , tm ≥ 0 such that
∑

i ti = s and a ∈
∑

i tibi + σ∨.

Thus, aq + c ∈
∑

i(qti + 1)bi + σ∨ ⊆
∑

idqtie+ σ∨. Therefore,

xc(xa)q = xaq+c ∈ xdqt1eb1 · · ·xdqtmebmR ⊆ I
∑

idqtie ⊆ Idsqe. Hence xa ∈ Iw.cls ⊆ Icls .

Now suppose that xa ∈ Iw.cls , and let xc ∈ R such that xc(xa)q = xaq+c ∈ Idsqe + I [q] for

q � 0. If xaq+c ∈ I [q] for infinitely many q, then there exists i such that for infinitely many

q, xaq+c ∈ ((xbi)
q) and therefore aq + c ∈ qbi + σ∨. Hence, a ∈ bi − (c/q) + σ∨ for infinitely

many q and so a ∈ bi + σ∨ ⊆ Exp I.

Suppose now that xaq+c ∈ Idsqe for q � 0. Thus for all sufficiently large q there exist

ai ∈ N such that
∑

i ai = dsqe and aq + c ∈
∑

i aibi + σ∨. Hence a ∈ −c/q +
∑

i ai/q + σ∨.

Since
∑

i ai = dsqe, we have that
∑

i ai/q = dsqe/q ≥ s, and so a ∈ −c/q + sHull I. Since

this holds for all q � 0, a ∈ sHull I.

The above two arguments show that Exp Iw.cls = Exp I ∪ (sHull I ∩ Zd). Since

Iw.cls ⊆ I, we have that Hull Iw.cls ⊆ Hull I = Hull I, and so sHull Iw.cls ⊆ sHull I.

Therefore,

Exp (Iw.cls)
w.cls

= Exp Iw.cls ∪ (sHull Iw.cls ∩ Zd)

= Exp I ∪ (sHull I ∩ Zd) ∪ (sHull Iw.cls ∩ Zd)

= Exp I ∪ (sHull I ∩ Zd)

= Exp(Iw.cls).

Therefore Iw.cls = (Iw.cls)
w.cls and so Iw.cls = Icls .

Example 5.3.3. Let R = k[x, y] and I = (x4, y3). The red points in Figure 5.13 are the

points in Exp I, while the shaded regions are sHull I for various values of s.

As we vary s, the lattice points that lie outside of Exp I but inside sHull I are

additional monomials that belong to Icls . For instance, when 1 ≤ s ≤ 13
12

, the blue points in

Figure 5.13a correspond to the monomials in Icls \ I. Therefore, Icls = (x4, x3y, x2y2, y3).
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Similarly, when 13
12
< s ≤ 7

6
, Figure 5.13b gives us that Icls = (x4, x2y2, y3). When

7
6
< s ≤ 17

12
, Figure 5.13c gives us that Icls = (x4, x3y2, y3). Finally, when s > 17

12
, we have

that Icls = (x4, y3) = I, as shown in Figure 5.13d.
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In summmary, we have that

Icls =



(x4, x3y, x2y2, y3) = I 1 ≤ s ≤ 13/12

(x4, x2y2, y3) 13/12 < s ≤ 7/6

(x4, x3y2, y3) 7/6 < s ≤ 17/12

(x4, y3) = I s > 17/12.
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