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ABSTRACT

This thesis deals with Hardy Spaces of holomorphic functions for a domain in

Cn when the complex dimension n is greater than or equal to two. The results we

obtain are analogous to well known theorems in one complex variable. The domains

we are concerned with are strongly convex with real boundary of class C2. We obtain

integral representations utilizing the Leray kernel for H1 functions on such domains

D. Next we de�ne an operator to prove the non-tangential limits of a function in

Hp(D) integrated against any Lipschitz function is also in Hp(D), once again utilizing

the Leray kernel. This result yields a separation of singularities for any function f in

the Hp space on domain D.
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1 Introduction

This thesis deals with Hardy Spaces of holomorphic functions for a domain in Cn

when the complex dimension n is greater than or equal to two. The theory is quite

classical in one complex variable, that is, for domains in C. In particular, using the

complexi�ed form of Stokes' Theorem one obtains the Cauchy formula:

f(z) =
1

2πi

∫
ζ∈bD

f(ζ)

ζ − z
dζ, z ∈ D (1)

which is true for any simply connected domain D that is, say, of class C1, and

any function f that is holomorphic in D and continuous up to the boundary of D.

This formula is true in the more general, and in fact optimal, case when f is in the

holomorphic Hardy space H1(D) and D is simply connected and recti�able, see [5].

Formula (1) has many applications in complex analysis, mainly due to the fact that

the scalar part of the Cauchy kernel:

C(z, ζ) =
dζ

2πi(ζ − z)
, (2)

that is, the function:

1

2πi(ζ − z)

is holomorphic with respect to z in domain D. The objective of this thesis is to

study higher dimensional versions of the Cauchy formula and of the Cauchy kernel.
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A very natural generalization of the one dimensional Cauchy kernel is obtained by

�rst rewriting it as:

C(ζ, z) =
ζ − z

2πi|ζ − z|2
dζ, (3)

where ζ stands for the complex conjugate of ζ, and |ζ|2 is the square of the absolute

value of ζ. It is this form of the Cauchy kernel that naturally generalizes for higher

dimensions to:

K0,0(ζ, z) (4)

=
n∑
j=1

Cn,j
ζj − zj
|ζ − z|2n

dζ1 ∧ · · · ∧ dζn ∧ dζ1 ∧ · · · ∧ [dζj] ∧ · · · ∧ dζn (5)

where Cn,j =
(n− 1)!(−1)

n(n−1)
2 (−1)j−1

(2πi)n
. (6)

This kernel is known in the literature as the Martinelli-Bochner kernel; it was inde-

pendently discovered by Martinelli (1938, [16]) and Bochner (1943, [2]). Proceeding

in the same manner as the proof for the original Cauchy formula (that is, by way of

Stokes' Theorem) we see that the formula (4) leads to

f(z) =

∫
ζ∈bD

f(z)K0,0(ζ, z) , z ∈ D (7)

for all f holomorphic in D and continuous up to the boundary of D, and for all

bounded and simply connected domains D ⊂ Cn such that Stokes' Theorem holds for

the closure of said domain, e.g., for D Lipschitz. Contrarily to the one dimensional

case, the Martinelli-Bochner kernel (4) is easily seen not to be holomorphic in D
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when n is greater than or equal to two. And so the need arises for a kernel in higher

dimensions that is holomorphic for z in D and satis�es the reducing formula (7) for

holomorphic functions.

As is well known in the literature, see e.g. [16], the construction of holomorphic

kernels brings geometric obstructions that require restricting so, the class of domains

to satisfy some form or other of "convexity." Here we will be concerned with the case

when D is strongly convex and of class C2, that is, when (any) de�ning function of

D has real Hessian that is strictly positive de�nite when acting on (any) real tangent

vector, at any boundary point p in the boundary of D. In this case, a kernel was �rst

introduced by J. Leray in 1959 [15]

L(ζ, z) =
1

(2πi)n
∂ρ(ζ) ∧ (∂∂ρ)n−1(ζ)

〈∂ρ(ζ), ζ − z〉n
z ∈ D, ζ ∈ bD. (8)

Here ρ is any de�ning function for the domain D, and the convexity assumption on

D guarantees that the denominator does not vanish. Also notice that this kernel is

holomorphic with respect to z in D, it is a rational function of z.

This thesis makes use of the Leray kernel to prove some integral representation formu-

las for functions in Hardy spaces in higher complex dimensions on a domain D ⊂ Cn

that is strongly convex with boundary a real manifold of class C2. As an applica-

tion, we obtain a separation of singularities for functions in Hardy spaces on such
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domains. These results parallel those of E. Stout [19] in the 1970's where Hp func-

tions where studied on strongly pseudoconvex domains. Stout's results make use of

the Henkin-Ramirez kernel which is holomorphic on strongly psuedoconvex domains

in Cn with boundary a real manifold of class C3. As is well known, strong convexity

implies strong pseudoconvexity. Comparing this thesis with Stout's results we see

a relaxation of the domain in amount of convexity but stronger assumption on the

boundary (Stout's results) versus a stronger requirement on the domain's convexity

but more relaxed boundary condition (this thesis). This exempli�es a "robbing from

Peter to pay Paul, who in turn repays Peter" dichotomy that exists in several com-

plex variables anytime an attempt is made to reduce the ambient domain's boundary

regularity.

The advantage of working with the Leray kernel (8) is that it is globally de�ned,

that is, it is well-de�ned for all ζ in the boundary of our domain and for all z in the

domain. In contrast, for the Henkin-Ramirez kernel used by Stout, z in domain D

must be su�ciently close to ζ in the boundary. Thus, the Leray kernel has the same

spirit as the Cauchy kernel in one complex variable and it has the advantage of being

technically less demanding as other kernels in several complex variables.
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1.1 Statement of Main results

The following are the main results that are proved in this thesis. In what follows

we let Dε denote a family of domains that are obtained by "shrinking" the original

domain D by a small amount ε > 0. The precise de�nitions are given in section 1.2.

Theorem 1.1. Let D ⊂⊂ Cn be a strongly convex domain with bD a real manifold

of class C2. Fix z ∈ D. Hence, there is ε(z) > 0 such that for all ε < ε(z), and for

all f ∈ H1(D), we have

f(z) =
1

(2πi)n

∫
ζ∈bDε

f(ζ)j∗
(
∂λ(ζ) ∧ (∂̄∂λ(ζ))n−1

〈∂λ(ζ), ζ − z〉n
)

z ∈ Dε.

Here, λ is any de�ning function for D and j∗ denotes the pull back under the inclusion

j : bDε ↪→ Cn.

Theorem 1.2. Let D ⊂⊂ Cn be a strongly convex domain with bD a real manifold

of class C2. If f ∈ H1(D) and z ∈ D, then

f(z) =
1

(2πi)n

∫
ω∈bD

f+(ω)j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)

where f+(ω) is the non-tangential limit of f at ω ∈ bD.
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Theorem 1.3. Let D ⊂⊂ Cn be a bounded domain of class C2. Suppose γ is de�ned

and satis�es a Lipschitz condition on Cn. For g ∈ L1(bD, dσ) de�ne the operator

Tg(z) =
1

2πi

∫
ω∈bD

g(ω){γ(ω)− γ(z)}j∗
(
∂λ(ω) ∧ (∂∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)
, z ∈ D. (9)

Then T has the following properties:

1. If g ∈ Lq(bD, dσ), q > 2n, then Tg ∈ L∞(D). Here σ denotes surface measure

on bD.

2. If g ∈ Lp(bd, dσ), 1 ≤ p <∞, then

sup
ε>0

∫
ω∈bDε

|Tg(ω)|pdσε(ω) < ∞

Here, σε denotes surface measure on bDε.

Theorem 1.4. Suppose f ∈ Hp(D), 1 ≤ p ≤ ∞, and suppose that γ is de�ned and

satis�es a Lipschitz condition on Cn, that is

|γ(z)− γ(ζ)| ≤ C|z − ζ| for all ζ, z ∈ Cn

then the function de�ned by

F (z) =
1

(2πi)n

∫
ω∈bD

f+(ω)γ(ω) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)
, z ∈ D

belongs to Hp(D).
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Corollary 1.5. Suppose f ∈ Hp(D) and U = (U1, ..., Uq) is a �nite open cover of

bD. Then there exists f1...fq ∈ Hp(D) such that

f = f1 + · · ·+ fq.

Furthermore, for all j = 1, ..., q there is an open neighborhood of bD\Uj, W (bD\Uj)

such that fj ∈ O(W (bD\Uj)).
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1.2 Preliminaries

De�nition 1.6. Let D be a domain in Cn. A real-valued function λ is a de�ning

function for D if λ is de�ned in a neighborhood U of D and it satis�es the following

conditions:

1. λ(z) < 0 ⇔ z ∈ D

2. bD = {z
∣∣λ(z) = 0}

Moreover, we say that D is of class C1 if λ is continuously di�erentiable and we have:

5λ(z) 6= 0 for all z ∈ bD

De�nition 1.7. A domain D is said to be class C2 if there exists a de�ning function

λ such that λ ∈ C2(U) for U as in de�nition (1.6).

De�nition 1.8. For ε > 0 �xed and D as in de�nition (1.6), we de�ne

Dε := {z ∈ D
∣∣λ(z) < −ε}

Lemma 1.9. For D and Dε as in de�nition (1.6) and de�nition (1.8), respectively,

the following are true:

1. If ε << ε◦, then λε(z) := λ(z) + ε is a de�ning function for Dε.

2. If ε1 < ε2, then Dε2 ⊂ Dε1
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3. Dε ↗ D as ε→ 0

Proof. We will �rst prove that λε(z) := λ(z) + ε is a de�ning function for Dε for

0 < ε� ε◦.

1. Let z ∈ Dε. Then

λε(z) = λ(z) + ε < −ε+ ε = 0

2. Notice that

λε(z) = 0 ⇐⇒ λ(z) = −ε.

It follows that the bDε is precisely the set {z ∈ D | λε(z) = 0}.

3. For z ∈ D, we have

5λε(z) = 5λ(z).

By condition three along with the continuity of 5λ, it follows that 5λ(z) 6= 0 for

all z ∈ U(bD). In particular, 5λε(z) 6= 0 for all z ∈ U(bDε). Thus, λε is a de�ning

function for Dε.

Now suppose ε1 < ε2. Then −ε2 < −ε1. So we see for all z ∈ D

λ(z) < −ε2 < −ε1 ⇒ λ(z) < −ε1.

Thus, Dε2 ⊂ Dε1 .

Recall that for z ∈ D
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λε(z) := λ(z) + ε and so we have that

λε(z) < −ε ⇐⇒ λ(z) + ε < 0

⇒ λ(z) < 0 as ε→ 0

Thus, Dε ↗ D as ε→ 0.

De�nition 1.10. Let D ⊂ Cn be open. A function f : D → C is holomorphic in D,

denoted f ∈ O(D), if f ∈ C1(D) and

∂f

∂zj
= 0 for all 1 ≤ j ≤ n and z ∈ D

where

∂f

∂zj
=

1

2

(
∂f

∂xj
− 1

i

∂f

∂xn+j

)
, j = 1, ..., n.

De�nition 1.11. A function u : D → R is harmonic in D, denoted u ∈ Harm(D),

if u ∈ C2(D) and

4u =
2n∑
j=1

∂2u

∂xj∂xj
= 0 for all z ∈ D

De�nition 1.12. Let p > 0 and f : D → C be given. We say that f ∈ Hp(D) if and

only if f ∈ O(D) and

sup
ε>0

∫
bDε

|f(ω)|pdσε(ω) <∞

where D is as in de�nition (1.6) and we have set Dε as in De�nition (1.8).
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De�nition 1.13. Let p > 0 and u : D → R be given. We say u ∈ Harmp(D) if and

only if u ∈ Harm(D) and

sup
ε>0

∫
bDε

|u(ω)|pdσε(ω) <∞

where Dε is as above.

Note that f : D → C can be decomposed as f = u + iv, where u = Ref , is the

real part of f and v = Imf is the imaginary part of f .

Remark 1.14. Since |Ref | ≤ |f | and |Imf | ≤ |f | , then f ∈ Hp(D) implies:

1. Ref ∈ Harmp(D)

2. Imf ∈ Harmp(D).

In particular, we have O(D) ⊂ Harm(D) and Hp(D) ⊂ Harmp(D) for all p and the

second inclusion is strict.
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Theorem 1.15. Let D ⊆ RN be a bounded domain of class C2 and let u be harmonic

on D.

Let 1 ≤ p <∞. the following are equivalent:

1. u ∈ Harmp(D)

2. There exists ũ ∈ Lp(bD, dσ) such that

u(z) =

∫
ω∈bD

P (z, ω)ũ(ω)dσ(ω)

3. |u|p has a harmonic majorant on D.

Proof. We will proceed as in the proof in [7, theorem 8.3.6].

2. ⇒ 3.

If p > 1, let

h(z) =

∫
ω∈bD

P (z, ω)|ũ(ω)|pdσ(ω).

Then, treating P (z, ·)dσ as a positive measure of total mass 1, we have

|u(z)|p =

∣∣∣∣∣∣
∫

ω∈BD

P (z, ω)|ũ(ω)|dσ(ω)

∣∣∣∣∣∣
p

≤
∫

ω∈bD

P (z, ω)|ũ(ω)|pdσ(ω) via Jensen

The proof for p = 1 is similar.

3.⇒ 1.
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If ε > 0 is small, z◦ is �xed, and GD is the Green's function for D, then GD(z◦, ·) has

nonvanishing gradient near bD (use Hopf's Lemma). Therefore,

D̃ε ≡
{
z ∈ D

∣∣−GD(z◦, ·) < −ε
}

are well-de�ned domains for ε small. Moreover, the Poisson kernel for D̃ε is Pε(z, ω) =

−νεωGD(z◦, ω). Here νεω is the normal to bD̃ε at ω ∈ bD̃ε. Assume that ε > 0 is so

small that z◦ ∈ D̃ε. So if h is the harmonic majorant for |u|p, then

h(z◦) =

∫
ω∈D̃ε

−νεωGD(z◦, ω)h(ω)dσ(ω).

Let πε : bD̃ε → bD be normal projection for ε small. Then

−νεωGD(z◦, ·)→ −νωGD(z◦, ·)

uniformly on bD as ε→ 0+. By [7,(8.2.1)], −νωGD(z·, ·) ≥ Cz◦ > 0 for some constant

Cz◦ . Thus −νεωGD(z·, π
−1
ε (·)) are all bounded below by Cz·

2
of ε is small enough. As

a result, [7,(8.3.6.4)] yeilds

∫
bD̃ε

h(ω)dσ(ω) ≤ 2h(z◦)

Cz◦
.

for ε > 0 small. In conclusion,

∫
bD̃ε

|u(ω)|pdσ(ω) ≤ 2h(z◦)

Cz◦
.

13



1.⇒ 2.

Let Dj be as in [7, equation (8.3.3)] through [7, equation (8.3.5)]. Fix j. De�ne on

Dj the functions uε(z) = f(z − ενj), 0 < ε < ε◦. Then the hypothesis and ( a small

modi�cation of) lemma 8.3.2 show that {uε} forms a bounded subset of Lp(bDj). If

p > 1, let ũj ∈ Lp(bDε) be a weak-* accumulation point (for the case p = 1 replace

ũj by a Borel measure µ̃j.) The crucial observation at this point is that u is the

Poisson integral of ũj on Dj. Therefore, u on Dj is completely determined by ũj

and conversely. A moment's re�ection shows that ũj = uk almost everywhere [dσ] in

bDj∩bDk∩bD so that ũ ≡ ũj on bDj∩bD is well de�ned. By appealing to a partition

of unity on bD that is subordinate to the open cover induced by the (relative) interiors

of the sets bDj ∩ bD, we see that uε = u ◦ π−1
ε converges weak-* to ũ on bD when

p > 1 (respectively uε → µ̃ weak-* when p = 1).

De�nition 1.16. Let D be a domain in Cn. For each p ∈ bD, and for each α > 0

we de�ne the approach region Γα(p) to be

Γα(p) := {z ∈ D | |z − p| ≤ (1 + α)dist(z, bD)}

where dist(z, bD) denotes the Euclidean distance in R2n of z for the boundary of D.

14



Theorem 1.17. Suppose u ∈ Harm(D) and there exists �u ∈ Lp(bD, dσ) such that

u(z) =

∫
ω∈bD

P (z, ω)�u(ω)dσ(ω).

Then the non-tangential limit of u:

u+(ω) = lim
z→ω

z∈Γα(ω)

u(z)

exists for a.e. w ∈ bD.

For the proof of Theorem (1.17) we refer to [18, Theorem I.5.4]

Corollary 1.18. Suppose f ∈ Hp(D). Then there exists

f+(ω) = lim
z→ω

z∈Γα(ω)

f(z) a.e.ω ∈ bD

Proof. Let f ∈ Hp(D) such that f := u + iv . Then we have that u ∈ Harp(D) and

v ∈ Harp(D) by remark 1.14. Theorem 1.15 gives us that

1. u(z) =
∫

ω∈bD
P (z, ω)ũdσ(ω)

2. v(z) =
∫

ω∈bD
P (z, ω)ṽdσ(ω).

Theorem 1.17 yields

1. u+(ω) = lim
z→ω

z∈Γα(ω)

u(z) a.e. ω ∈ bD

2. v+(ω) = lim
z→ω

z∈Γα(ω)

v(z) a.e. ω ∈ bD

15



Putting this together we obtain

u+(ω) + iv+(ω) = lim
z→ω

z∈Γα(ω)

(u(z) + iv(z)) a.e ω ∈ bD

= lim
z→ω

z∈Γα(ω)

f(z) a.e ω ∈ bD

=: f+(z).

De�nition 1.19. For u : D → R the non-tangential maximal function of u is:

Mu(ω) := sup
z∈Γα(ω)

|u(z)|, ω ∈ bD.

Theorem 1.20. For p > 0, D a bounded domain of class C2 and u ∈ Harm(D) we

have

Mu ∈ Lp(bD, dσ)

Here, σ denotes surface measure for bD.

For the proof of this theorem we refer to [18, Theorem I.5.3]

Corollary 1.21. For p > 0, D a bounded domain of class C2 and f ∈ Hp(D) we

have

Mf ∈ Lp(bD, dσ).
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2 Review of Cauchy-Fantappié Forms of Order 0

Lemma 2.1. Let W (ζ) =
n∑
j=1

ωj(ζ)(ζj − zj) be a C2
0,1 form on a given set U ⊂ Cn.

Suppose there is z /∈ U such that

〈W (ζ), ζ − z〉 =
n∑
j=1

ωj(ζ)(ζj − zj) = 1, for ζ ∈ U. (10)

Then the (n, n− 1)-form

Ω◦(W ) = (2πi)−nW ∧ (∂W )n−1

satis�es

dΩ◦(W ) = ∂ζΩ◦(W ) = 0 on U.

Proof. We will proceed as in the proof of [13, Lemma IV.3.1]. Since Ω◦ is of maximal

type n with respect to ζ, it is immediate that

(2πi)ndΩ◦(W ) = (2πi)n∂Ω◦(W )

=
(
∂W

)n
=

(
n∑
j=1

∂ωj ∧ dζj

)n

= n!
(
∂ζω1 ∧ dζ1

)
∧ · · · ∧

(
∂ζωn ∧ dζn

)
. (11)

Applying ∂ to identity (10) we get

n∑
j=1

∂ωj(ζ) · (ζj − zj) = 0.
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So, for ζ 6= z, the set {∂ζω1(ζ), ..., ∂ζωn(ζ)} is linearly independent, which implies

that (11) is 0, as desired.

De�nition 2.2. A generating form W on U ⊂ Cn (for the point z) is a C1
0,1 form on

U which satis�es (10).

De�nition 2.3. With same hypothesis as Lemma (2.1) , the (n, n− 1)-form

Ω◦(W ) = (2πi)−nW ∧
(
∂ζW

)n−1
ζ ∈ U

is called the Cauchy-Fantappié form of order 0 generated by W at z.

Lemma 2.4. Suppose Ω◦(W ) is a Cauchy-Fantappié form and g is any C1 function.

Then

Ω◦(gW ) = gnΩ◦(W ).

Proof. Notice

gW ∧ ∂ζ(gW ) = gW ∧
(
∂ζg ∧W + g∂ζW

)
= gW ∧ g∂ζW.

So

Ω◦(gW ) = (2πi)−ngW ∧
(
∂ζgW

)n−1

= (2πi)−ngW ∧ gn−1
(
∂ζW

)n−1

= (2πi)−ngnW ∧
(
∂ζW

)n−1

= gnΩ◦(W )
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3 Proof of Main Results

Theorem 3.1. Let D ⊂⊂ Cn be a strongly convex domain with bD a real manifold

of class C2. Fix z ∈ D. Hence, there is ε(z) > 0 such that for all ε < ε(z), and for

all f ∈ H1(D), we have

f(z) =
1

(2πi)n

∫
ζ∈bDε

f(ζ)j∗
(
∂λ(ζ) ∧ (∂̄∂λ(ζ))n−1

〈∂λ(ζ), ζ − z〉n
)

z ∈ Dε.

Here, λ is any de�ning function for D and j∗ denotes the pull back under the inclusion

j : bDε ↪→ Cn.

Proof. Fix z ∈ D and let ε(z) > 0 be such that z ∈ Dε for all ε < ε(z). Now

Dε◦ ⊂⊂ D and f ∈ O(Dε◦ ∩ C(D̄ε◦) as f ∈ H1(D), for all ε < ε(z)

Let χ(ζ, z) := χ(|ζ − z|) ∈ C∞◦ (Cn) be a real-valued function such that

χ(|ζ − z|) =

{
0 ζ ∈ U'(bDε◦),

1 ζ ∈ D\U'(bD).

For ζ, z de�ne

W (ζ, z) := χ(|ζ − z|)∂ζβ
β

(ζ, z) + (1− χ(|ζ − z|)) ∂λ(ζ)

〈∂λ(ζ), ζ − z〉

where

β(ζ, z) = |ζ − z|2 ζ, z ∈ Cn. (12)
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Since

β(ζ, z) = |ζ − z|2 = (ζ1 − z1)(ζ1 − z1) + · · ·+ (ζn − zn)(ζn − zn)

= (ζ1 − z1)(ζ1 − z1) + · · ·+ (ζn − zn)(ζn − zn)

it follows that

∂ζβ =
n∑
j=1

∂

∂ζj

[
(ζ1 − z1)(ζ1 − z1) + · · ·+ (ζn − zn)(ζn − zn)

]
dζj

= (ζ1 − z1)dζ1 + · · ·+ (ζn − zn)dζn

So

〈∂ζβ, ζ − z〉 = (ζ1 − z1)(ζ1 − z1) + · · ·+ (ζn − zn)(ζn − zn) = β(ζ, z)

Then

〈W (ζ, z), ζ − z〉

=

〈
χ(|ζ − z|)∂ζβ

β
+ (1− χ(|ζ − z|)) ∂λ(ζ)

〈∂λ(ζ), ζ − z〉
, ζ − z

〉
=

〈
χ(|ζ − z|)∂ζβ

β
, ζ − z

〉
+

〈
(1− χ(|ζ − z|)) ∂λ(ζ)

〈∂λ(ζ), ζ − z〉
, ζ − z

〉
=

χ(|ζ − z|)
β

〈∂ζβ, ζ − z〉+
(1− χ(|ζ − z|))
〈∂λ(ζ), ζ − z〉

〈∂λ(ζ), ζ − z〉

= χ(|ζ − z|) + 1− χ(|ζ − z|) ≡ 1 ∀ζ ∈ Dε◦\{z}.

This computation shows that W (ζ, z) is a generating form for z on Dε◦ .
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Now letting

Ω◦(W (ζ, z)) =
1

(2πi)n
W (ζ, z) ∧ (∂̄ζW (ζ, z))n−1,

we have that Ω◦ is a Cauchy-Fantappié form of type (n, n− 1) in the variable ζ. So

in particular

dΩ◦(W (ζ, z) = ∂̄Ω◦(W (ζ, z),

and by lemma 2.1 we have:

∂̄Ω◦(W (ζ, z) = 0

For 0 < ε < ε◦

Dε,δ :=

{
ζ ∈ Dε◦

∣∣∣ |ζ − z| > δ

2

}
. (13)

Recall that

df(ζ) ∧ Ω◦(W (ζ, z)) = ∂f(ζ) ∧ Ω◦(W (ζ, z)) + ∂f(ζ) ∧ Ω◦(W (ζ, z)).

By type considerations it follows:

∂f(ζ) ∧ Ω◦(W (ζ, z)) = 0.

We now recall Stokes' Theorem:

∫
ζ∈bD

j∗ω(ζ) =

∫
ζ∈D

dω(ζ)

which holds for any di�erential form ω ∈ C1
2n−1(D) with j : bD ↪→ Cn denoting the
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inclusion. Thus, applying Stokes' Theorem to ω(z) = f(ζ)Ω◦(W (ζ, z) and the domain

Dε,δ we obtain:

∫
ζ∈bDε,δ

f(ζ)j∗ (Ω◦(W◦(ζ, z)))

=

∫
ζ∈Dε,δ

d(f(ζ)Ω◦(W (ζ, z)))

=

∫
ζ∈Dε,δ

∂f(ζ) ∧ Ω◦ (W (ζ, z)) = 0

since f ∈ H1(D) is, in particular, holomorphic in D. On the other hand, we have:

∫
ζ∈bDε,δ

f(ζ)j∗ (Ω◦(W (ζ, z)))

=

∫
ζ∈bDε◦

f(ζ)j∗Ω◦(W (ζ, z))−
∫

|ζ−z|= δ
2

f(ζ)j∗Ω◦(W (ζ, z))

=

∫
ζ∈bDε

f(ζ)j∗Ω◦

(
∂λ(ζ)

〈∂λ(ζ), ζ − z〉

)

−
∫

|ζ−z|= δ
2

f(ζ)j∗Ω◦

((
∂ζβ

β
(ζ, z)

))
,
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where β is as in equation(12). Combining these identities we obtain:

1

(2πi)n

∫
ζ∈bDε

f(ζ)j∗
(
∂λ(ζ) ∧ (∂∂λ(ζ))n−1

〈∂λ(ζ), ζ − z〉n
)

=

∫
|ζ−z|= δ

2

f(ζ)j∗Ω◦

((
∂β

β
(ζ, z)

))

=

∫
|ζ−z|= δ

2

(f(ζ)− f(z))j∗Ω◦

((
∂β

β
(ζ, z)

))

+

∫
|ζ−z|= δ

2

f(z)j∗Ω◦

((
∂β

β
(ζ, z)

))
=: Aδ +Bδ

Concerning term Bδ, by [17, Lemma IV.1.2] we have:

∫
|ζ−z|= δ

2

j∗Ω◦

((
∂ζβ

β
(ζ, z)

))
= 1

and it follows that

Bδ =

∫
|ζ−z|= δ

2

f(z)Ω◦

((
∂ζβ

β
(ζ, z)

))
= f(z)

holds for each �xed z ∈ Dε and for each δ > 0. We now investigate term Aδ. First

note that by [17, Lemma VII.3.9] in the special case when D = B δ
2
(z), so that for

ρ(ζ) = |ζ − z|2 −
(
δ
2

)2
and ‖dρ‖ = 2δ, it follows that:

j∗Ω◦

((
∂β

β
(ζ, z)

))
= Cn

dσ(z)

δ2n−1
for each ‖z‖ < δ

2

where σ denotes surface measure.
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Putting all of this together we obtain:

0 ≤ |Aδ| ≤
Cn
δ2n−1

∫
|ζ−z|= δ

2

|f(ζ)− f(z)|dσ

≤ max

{
f(ζ)− f(z)

∣∣ |ζ − z| = δ

2

}
Cn
δ2n−1

σ
(
bB δ

2

)
(z)

≤ Cnmax

{
f(ζ)− f(z)

∣∣ |ζ − z| = δ

2

}

and by the uniform continuity of f on B δ
2
(z), it follows that the latter tends to 0 as

δ → 0.

So we have that:

f(z) =
1

(2πi)n

∫
ζ∈bDε

f(ζ)j∗
(
∂λ(ζ) ∧ (∂̄∂λ(ζ))n−1

〈∂λ(ζ), ζ − z〉n
)

Theorem 3.2. Let D ⊂⊂ Cn be a strongly convex domain with bD a real manifold

of class C2. If f ∈ H1(D) and z ∈ D, then

f(z) =
1

(2πi)n

∫
ω∈bD

f+(ω)j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)

where f+(ω) is the non-tangential limit of f at ω ∈ bD.

Proof. Fix z ∈ D and let ε(z) > 0 be such that z ∈ Dε for all ε < ε(z). Now Dε ⊂⊂ D

and f ∈ O(Dε ∩ C(Dε) as f ∈ H1(D), for all ε < ε(z)
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Let πε : bD → bDε be a di�eomorphism whose inverse π−1
ε : bD → bDε is given

by the formula

π−1
ε (ω) = ζ := ωε = ω − ε · ν(ω) (14)

where ν(ω) is the outward unit normal vector to bD at ω ∈ bD. Since D is of class

C2, it follows that πε and π
−1
ε are of class C1. Note that ωε lies along the inner normal

direction to bD at ω, so in particular we have that

ωε → ω as ε→ 0

with non-tangential convergence. We now inspect

f(ωε)

〈∂λ(ωε), ωε − z〉n
,

with ω ∈ bD, z ∈ D, and ωε = π−1
ε (ω). Let dist2(z, bD) := Cz. Then for each ω ∈ bD

we have Cz ≤ |ω − z|2 as ω ∈ bD and z ∈ D.

By the strong convexity of D we have:

| 〈∂λ(ω), ω − z〉 | ≥ C|ω − z|2 for all ω ∈ bD.
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See [17, Theorem IV.3.2.4]. We now continue as follows.

| 〈∂λ(ω), ω − z〉 |

= | 〈∂λ(ωε), ω − z〉+ 〈∂λ(ω)− ∂λ(ωε), ω − z〉 |

≤ | 〈∂λ(ωε), ω − z〉 |+ | 〈∂λ(ω)− ∂λ(ωε), ω − z〉 |

= | 〈∂λ(ωε), ωε − z〉+ 〈∂λ(ωε), ω − ωε〉 |+ | 〈∂λ(ω)− ∂λ(ωε), ω − z〉 |

≤ | 〈∂λ(ωε), ωε − z〉 |+ | 〈∂λ(ωε), ω − ωε〉 |+ | 〈∂λ(ω)− ∂λ(ωε), ω − z〉 |,

and applying the Cauchy Schwartz Inequality we obtain that the latter is bounded

by

| 〈∂λ(ωε), ωε − z〉 |+ |∂λ(ωε)| · |ω − ωε|+ |∂λ(ω)− ∂λ(ωε)| · |ω − z|

Since D is of class C2 (and bounded), in particular, we have that ∂λ is Lipschitz

continuous on a (bounded) neighborhood of bD and so

|∂λ(ω)− ∂λ(ωε)| ≤ C2|ω − ωε|,

and by the de�nition of ωε we have:

|ω − ωε| ≈ ε.

Also, since bD is compact (and so is U(bD)) we have:

|∂λ(ωε)| · |ω − ωε| ≤ C1|ω − ωε| ≤ C1ε.
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Combining these with all of the above we obtain:

| 〈∂λ(ωε), ωε − z〉 |+ |∂λ(ωε)| · |ω − ωε|+ |∂λ(ω)− ∂λ(ωε)| · |ω − z|

≤ | 〈∂λ(ωε), ωε − z〉 |+ C1ε+ C2|ω − ωε||ω − z

≤ | 〈∂λ(ωε), ωε − z〉 |+ C1ε+ C2 diam(D)ε

= | 〈∂λ(ωε), ωε − z〉 |+ Cε.

Putting all of this together we conclude:

Cz − Cε ≤ | 〈∂λ(ω − ε), ωε − z〉 |, for all ω ∈ bD.

Let ε1 = 1
2
Cz. Then ∀ 0 < ε < ε1 we have 1

2
Cz = 1

2
Cz − Cε1 < Cz − εC ,and it

follows

| 〈∂λ(ωε), ωε − z〉 | ≥ Cz − εC > 1
2
Cz for all ω ∈ bD and for all

varepsilon < ε1. We have proved

1

| 〈∂λ(ωε), ωε − z〉 |n
≤ Cz

for all ω ∈ bD and for all 0 < ε < ε1. Since f ∈ H1(D) and ωε belongs to (any) non-

tangential approach region at ω we have that |f(ωε)| ≤ M(f)(ω), and we conclude

that ∣∣∣∣ f(ωε)

〈∂λ(ωε), ωε − z〉 |n

∣∣∣∣ ≤ CzM(f)(ω)
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holds for all ω ∈ bD, for every 0 < ε < ε1. Since f ∈ H1(D) we also have:

f(ωε)→ f+(ω) a.e. ω ∈ bD as ε→ 0

and we conclude

f(ωε)

〈∂λ(ωε), ωε − z〉n
−→ f+(ω)

〈∂λ(ω), ω − z〉n
a.e. ω ∈ bD as ε→ 0.

In particular, we also have:

f(ωε) · h(ωε)

〈∂λ(ωε), ωε − z〉n
−→ f+(ω) · h(ω)

〈∂λ(ω), ω − z〉
a.e. ω ∈ bD as ε→ 0.

for every h ∈ C(U(bD)). And since π−1
ε (ω) → ω as ε → 0 for every ω ∈ bD (see

equation (14)), we also have:

(
π−1
ε

)∗( f(ωε) · h(ωε)

〈∂λ(ωε), ωε − z〉n
dσε(ωε)

)
−→ f+(ω) · h(ω)

〈∂λ(ω), ω − z〉n
dσ(ω) as ε→ 0. (15)

Next, we observe that since

λε = λ+ ε

is a de�ning function for bDε (see section 1.2), then in particular we have:

∂λε = ∂λ , and

∂λε ∧ (∂∂λε)
n−1 = ∂λ ∧ (∂∂λ)n−1 (16)

By identity (16) and Theorem 3.1 we have:

f(z) =
1

(2πi)n

∫
ωε∈bDε

f(ωε) ·
j∗
(
∂λε(ωε) ∧

(
∂∂λε(ωε)

)n−1
(ωε)

)
〈∂λε(ωε), ωε − z〉n
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Moreover, by [17, Lemma VII.3.9] together with 16 we have:

1

(2πi)n
j∗
(
∂λε(ωε) ∧

(
∂∂λε(ωε)

)n−1
(ω)
)

= hε(ωε) · dσε(ωε)

where

hε ∈ C◦(U(bDε)), satis�es 0 < C3 < hε(ωε) < C4 for all ε << ε◦, (17)

for all ωε ∈ bDε, see [17, VII (3.21)] for an explicit formula for hε.

Thus

f(z) =

∫
ωε∈bDε

f(ωε)hε(ωε)

〈∂λ(ωε), ωε − z〉n
dσε(ωε). (18)

Next, by the change of variables formula for the C1−di�eomorphism π−1
ε : bD → bDε,

see e.g. [17,III(1.25)], we have

∫
ωε∈bDε

f(ωε)hε(ωε)

〈∂λ(ωε), ωε − z〉n
dσε(ωε) =

∫
ω∈bD

(
π−1
ε

)∗(f(ωε)hε(ωε)dσε(ωε)

〈∂λ(ωε), ωε − z〉n
)
. (19)

On account of (15) and (17) we also have: (recalling that ωε = π−1
ε (ω))

∣∣∣∣(π−1
ε

)∗(f(ωε)h◦(ωε)dσε(ωε)

〈∂λ(ωε), ωε − z〉n
)∣∣∣∣ ≤ Cz ·M(f)(ω)ḣ◦ (20)

where M(f) is the non-tangential maximal function of f (see section 1.2). Now

because f ∈ H1(D) we know that

M(f) ∈ L1(bD, dσ),
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(see again section 1.2). Combining equations (15), (18), (19), (20) we see that by the

Lebesgue Dominated Convergence theorem it follows that for each 0 < ε < ε1

f(z) =

∫
ωε∈bD

(
π−1
ε

)∗(f(ωε)h◦(ωε)dσε(ωε)

〈∂λ(ωε), ωε − z〉n
)

−→
∫

ω∈bD

f+(ω)h◦(ω)dσ(ω)

〈∂λ(ω), ω − z〉n
as ε→ 0

=
1

(2πi)n

∫
ω∈bD

f+(ω)j∗

(
∂λ(ω) ∧

(
∂∂λ(ω)

)n−1

〈∂λ(ω), ω − z〉

)

where the last identity is due to [17, Lemma VII.3.9].

Theorem 3.3. Let D ⊂⊂ Cn be a bounded domain of class C2. Suppose γ is de�ned

and satis�es a Lipschitz condition on Cn. For g ∈ L1(bD, dσ) de�ne the operator

Tg(z) =
1

2πi

∫
ω∈bD

g(ω){γ(ω)− γ(z)}j∗
(
∂λ(ω) ∧ (∂∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)
, z ∈ D. (21)

Then T has the following properties:

1. If g ∈ Lq(bD, dσ), q > 2n, then Tg ∈ L∞(D). Here σ denotes surface measure

on bD.

2. If g ∈ Lp(bd, dσ), 1 ≤ p <∞, then

sup
ε>0

∫
ω∈bDε

|Tg(ω)|pdσε(ω) < ∞

Here, σε denotes surface measure on bDε.
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Proof. Assume for the time being that 1. and 2. below are true:

1. T : L∞(bD)→ L∞(D) is bounded for the time being. That is

(a) ‖ Tf ‖L∞(D)≤ C1 ‖ f ‖L∞(bD) .

Note that the above implies that T : L∞(bD) → L∞(bDε) is bounded for

all ε > 0 with constant independent of ε. That is,

(b) ‖Tf‖L∞(bDε) ≤ C1‖f‖L∞(bD) for all ε > 0

because bDε ⊂ D for all ε > 0.

2. T : L1(bD, dσ)→ L1(bDε, dσε) is bounded for all 0 < ε� 1 that is

(a) ‖ Tf ‖L1(bDε)≤ C◦,ε ‖ f ‖L1(bD) for all ε > 0

(b) C◦ := sup
ε>0

C◦,ε < 0

Then the Reisz-Thorin [4] theorem in variable spaces grants

∀ 1 < p <∞ T : Lp(bD)→ Lp(bDε) is bounded uniformly in ε > 0, with

‖ Tf ‖Lp(bDε) ≤ C1−t
◦ · Ct

1 ‖ f ‖Lp(bD)

= C
1
p
◦ · C

1− 1
p

1 ‖ f ‖L∞(bD)
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where 1
p

= 1− t and 0 < t < 1.

Now the conclusion above along with 2.(b) automatically gives us

sup
ε>0
‖Tf‖Lp(bDε,dσε) ≤ C1−t

◦ · Ct
1 ‖f‖Lp(bD,dσ),

are de�ned. Thus, we are left to show 1.(a), 2.(a), and 2.(b) above for the operator

T de�ned by equation (21). To this end, for z ∈ D, we have:

|Tg(z)| =

∣∣∣∣∣∣ 1

(2πi)n

∫
ω∈bD

g(ω){γ(ω)− γ(z)}∂λ(ω) ∧ (∂∂(ω))n−1

〈∂λ(ω), ω − z〉n

∣∣∣∣∣∣
≤ 1

(2π)n

∫
ω∈bD

|g(ω)|
∣∣∣∣ γ(ω)− γ(z)

〈∂λ(ω), ω − z〉n
∣∣∣∣ dσ(ω)

≤ 1

(2πi)n

∫
ω∈bD

‖g(ω)‖L∞(bD)

∣∣∣∣ γ(ω)− γ(z)

〈∂λ(ω), ω − z〉n
∣∣∣∣ dσ(ω)

=
‖g‖L∞(bD)

(2π)n

∫
ω∈bD

|γ(ω)− γ(z)|
|〈∂λ(ω), ω − z〉|n

dσ(ω)

≤
‖g‖L∞(bD)

(2π)n

∫
ω∈bD

C|ω − z|
| 〈∂λ(ω), ω − z〉 |n

dσ(ω)

≤ Cn,γ‖g‖L∞(bD)

∫
ω∈bD

|ω − z|
C|ω − z|2n

dσ(ω)

= Cn,γ,D‖g‖L∞(bD)

∫
ω∈bD

|ω − z|2n−1dσ(ω)

Converting to polar coordinates centered at z we have

Cn,γ,D‖g‖L∞(bD)

∫
ω∈bD

|ω − z|2n−1dσ(ω)

= Cn,γ‖g‖L∞(bD)

2π∫
0

· · ·
2π∫

0

c̃∫
c(z)

r1−2n · r2n−1drdθ1 · · · dθ2n

where 0 < c(z) := dist(z, bD) ≤ |z − ω| ≤ diam(bD) =: c̃.
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Notice that

1. 0 < c(z) < c̃ for all z ∈ D

2. As z → bD, c(z)→ 0 and so (c(z), c̃) ⊂ (0, c̃) for all z ∈ D.

Thus

Cn,γ‖g‖L∞(bD)

2π∫
0

· · ·
2π∫

0

c̃∫
c(z)

r1−2n · r2n−1drdθ1 · · · dθ2n

≤ Cn,γ,D‖g‖L∞(bD)

2π∫
0

· · ·
2π∫

0

c̃∫
c(z)

1drdθ1 · · · θ2n

≤ Cn,γ,D‖g‖L∞(bD)

We have shown that for all z ∈ D

|Tg(z)| ≤ C‖g‖L∞(bD)

and so

sup
z∈D
|Tg(z)| ≤ C‖g‖L∞(bD).

That is,

‖Tg‖L∞(D) ≤ C‖g‖L∞(bD) (22)

We have shown part of the hypothesis of the Reisz-Thorin theorem holds for T and

so we have left to show the rest of the hyothesis. That is, we need to show

∫
z∈bDε

|Tg(z)|dσε(z) ≤ C◦‖g‖L1(bD)
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Now

∫
z∈bDε

|Tg(z)|dσε(z)

=

∫
z∈bDε

1

2πi

∫
ω∈bD

g+(ω){γ(ω)− γ(z)} j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)
dσε(z)

≤ Cn

∫
z∈bDε

 ∫
ω∈bD

|g+(ω)| ·
∣∣∣∣ γ(ω)− γ(z)

〈∂λ(ω), ω − z〉n
∣∣∣∣ dσ(ω)

 dσε

Now, g ∈ L1(bD) by hypothesis of the Reisz-Thorin theorem. We now consider for

ω ∈ bD and z ∈ bDε-�xed,

∣∣∣∣ γ(ω)− γ(z)

〈∂λ(ω), ω − z〉n
∣∣∣∣ =

|γ(ω)− γ(z)|
| 〈∂λ(ω), ω − z〉 |n

≤ C|ω − z|
| 〈∂λ(ω), ω − z〉 |n

≤ Cn,γ,D
|ω − z|
|ω − z|2n

as γ ∈ Lip(Cn) and D is strongly convex. So we have

∫
z∈bDε

|Tg(z)|dσε(z)

≤
∫

z∈bDε

∫
ω∈bD

|g(ω)| ·
∣∣∣∣ γ(ω)− γ(z)

〈∂λ(ω), ω − z〉n
∣∣∣∣ dσ(ω)dσε(z)

≤ Cγ

∫
z∈bDε

∫
ω∈bD

|g(ω)| · |ω − z|1−2ndσ(ω)dσε(z)

Note that for �xed ε > 0, |ω − z|1−2n ≤ Cε1−2n for all ω ∈ bD and for all z ∈ bDε.
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By Fubini's Theorem, we have

Cγ

∫
z∈bDε

∫
ω∈bD

|g(ω)| · |ω − z|1−2ndσ(ω)dσε(z)

= Cγ

∫
ω∈bD

|g(ω)|

 ∫
z∈bDε

|ω − z|1−2ndσε(z)

 dσ(ω)

Claim.

∫
z∈bDε

|ω − z|1−2ndσε(z) < Cn,D for all ω ∈ bD and for all ε � 1

Converting to polar coordinates centered at z, that is, r = |ω − z|, we have

∫
z∈bDε

|ω − z|1−2ndσε(z)

=

2π∫
0

· · ·
2π∫

0

c̃∫
ε=dist(ω,bDε)

r1−2n · r2n−1drdθ1 · · · dθ2n

=

2π∫
0

· · ·
2π∫

0

c̃∫
ε=dist(ω,bDε)

1drdθ1 · · · dθ2n

= Cnr
∣∣c̃
ε

= Cn · (c̃D − ε) < Cn · c̃D

for all ε > 0. So our claim holds. Putting all of this together we have

∫
z∈bDε

|Tg(z)|dσε(z) < Cγ · Cn,D
∫

ω∈bD

|g(ω)|dσ(ω)

=: Cγ,n,D‖g‖L1(bD).
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Theorem 3.4. Suppose f ∈ Hp(D), 1 ≤ p ≤ ∞, and suppose that γ is de�ned and

satis�es a Lipschitz condition on Cn, that is

|γ(z)− γ(ζ)| ≤ C|z − ζ| for all ζ, z ∈ Cn

then the function de�ned by

F (z) =
1

(2πi)n

∫
ω∈bD

f+(ω)γ(ω) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)
, z ∈ D

belongs to Hp(D).

Proof. Let z ∈ D. Then de�ne

F (z) :=
1

(2πi)n

∫
ω∈bD

f+(ω)γ(ω) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)
, z ∈ D

By Theorem 3.2 we have that

f(z) =
1

(2πi)n

∫
ω∈bD

f+(ω) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)

So we can write:

γ(z)f(z) =
γ(z)

(2πi)n

∫
ω∈bD

f+(ω) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)

=
1

(2πi)n

∫
ω∈bD

f+(ω)γ(z) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)

36



Then, by Theorem 3.2 we have:

F (z) =
1

(2πi)n

∫
ω∈bD

f+(ω)γ(ω) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)

=
1

(2πi)n

∫
ω∈bD

f+(ω)γ(ω) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)
− f(z)γ(z) + f(z)γ(z)

=
1

(2πi)n

∫
ω∈bD

f+(ω)γ(ω) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)

+

− 1

(2πi)n

∫
ω∈bD

f+(ω)γ(z) j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)

+ f(z)γ(z)

=
1

(2πi)n

∫
ω∈bD

f+(ω){γ(ω)− γ(z)} j∗
(
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
)

+ f(z)γ(z)

De�ne the operator T = Tγ by

Tg(z) :=
1

(2πi)n

∫
ω∈bD

g+(ω){γ(ω)− γ(z)}∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n

With these notations we have

F (z) = Tf+(z) + f(z)γ(z) for z ∈ D.

We need to show:

1. F ∈ O(D)

2. sup
ε>0

∫
bDε

|F |pdσε < ∞ ∀ 1 ≤ p ≤ ∞

Notice that as D is strongly convex,
∂λ(ω) ∧ (∂̄∂λ(ω))n−1

〈∂λ(ω), ω − z〉n
is holomorphic in D, and
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so F ∈ O(D). Thus, we need only prove the second item above. Now

‖F‖pLp(bDε)
= ‖Tf+(z) + f(z)γ(z)‖pLp(bDε)

≤ 2p−1
(
‖Tf+‖pLp(bDε)

+ ‖fγ‖pLp(bDε)

)

and

‖fγ‖pLp(bDε)
=

∫
ω∈bDε

|f(ω)γ(ω)|pdσ − ε(ω) (23)

≤
∫

ω∈bDε

|f(ω)|p|γ(ω)|pdσε(ω) (24)

But γ is Lipschitz on Cn, D ⊂⊂ Cn and since bDε ⊂ D for all ε > 0 we have

∫
ω∈bDε

|f(ω)|p|γ(ω)|pdσε(ω)

≤ MD

∫
ω∈bDε

|f(ω)|pdσε(ω)

where MD := max
ω∈D
|γ(ω)|. But,

MD

∫
ω∈bDε

|f(ω)|pdσε(ω) ≤ sup
ε>0

MD

∫
ω∈bDε

|f(ω)|pdσε(ω) <∞

by the hypothesis that f ∈ Hp(D). Now we need only consider

‖Tf+‖plp(bDε)
=

∫
ω∈bDε

|Tf+(ω)|pdσε(ω)

By equation (21) along with F (z) = Tf+(z)+f(z)γ(z), we have that F ∈ HP (D).
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Corollary 3.5. Suppose f ∈ Hp(D) and U = (U1, ..., Uq) is a �nite open cover of

bD. Then there exists f1...fq ∈ Hp(D) such that

f = f1 + · · ·+ fq.

Furthermore, for all j = 1, ..., q there is an open neighborhood of bD\Uj, W (bD\Uj)

such that fj ∈ O(W (bD\Uj)).

Proof. Let γj be a smooth partition of unity subordinated to the covering Uj,

j = 1, ..., q and satis�es γj(ω) = γj(|ω|).

Claim 1: For all �xed j, γj ∈ Lip(Cn)

proof

For ω, ω′ in Uj we need to show that

|γj(ω)− γj(ω′)| < Cγj |ω − ω′| for all ω ∈ Cn

Now

γj(ω) = γj(ω
′) +

∫
ζ∈[ω,ω′]

(5γj(ζ)) · dσ(ζ)

For ζ = sω + (1− s)ω′, s ∈ [0, 1] we have that dσ(ζ) = (ω − ω′)ds and so

γj(ω
′) +

∫
ζ∈[ω,ω′]

(5γj(ζ)) · dσ(ζ)

= γj +

1∫
0

(5γj(sω + (1− s)ω′)) · (ω − ω′) ds
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So we get that

|γj(ω)− γj(ω′)| ≤
1∫

0

|5γj(sω + (1− s)ω′) · (ω − ω′)| ds

By the Cauchy Schwartz inequality we have

1∫
0

|5γj(sω + (1− s)ω′) · (ω − ω′)| ds

≤
1∫

0

|5γj(sω + (1− s)ω′)| · |(ω − ω′)| ds

= |ω − ω′| ·
1∫

0

|5γj(sω + (1− s)ω′)| ds

But γj ∈ C∞◦ (Cn) and therefore 5γj ∈ L∞(Cn). Putting this all together we see

|γj(ω)− γj(ω′)| ≤ |ω − ω′|Cγj ·
1∫

0

1ds = Cγj |ω − ω′|

Our claim is proved. By Theorem 3.4 we have

fj(z) :=
1

2πi

∫
ω∈bD

f+(ω)γj(ω)j∗

(
∂λ(ω) ∧

(
∂∂λ

)n−1
(ω)

〈∂λ(ω), ω − z〉

)

where Suppγj ⊂ Uj = Uj(ωj). In the sequel we will use the short-hand notation:

L(ω, z) = j∗

(
∂λ(ω) ∧

(
∂∂λ

)n−1
(ω)

〈∂λ(ω), ω − z〉

)
.

Claim 2: fj ∈ O (U (bD\Uj))

proof

Since γj ∈ C∞◦ (Uj) there exists U
′
j ⊂⊂ Uj such that, in fact:

fj(z) =
1

2πi

∫
ω∈bD∩U ′j

f+(ω)γj(ω)L(ω, z).
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Now L(ω, z) fails to be holomorphic only if either:

1. ∂λ(ω) = 0

2. ω 6= z and 〈∂λ(ω), ω − z〉 = 0 or

3. ω = z.

Now we know that:

1. ∂λ(ω) 6= 0 for all ω ∈ bD and so by continuity we must also have that for all

ω ∈ U(bD), ∂λ(ω) 6= 0.

2. | 〈∂λ(ω), ω − z〉 | ≥ c|ω − z| for all ω ∈ bD and for all z ∈ D by the strong

convexity of D, so 〈∂λ(ω), ω − z〉 6= 0 when ω 6= z.

3. By hypothesis, i.e. z ∈ U(bD\Uj) along with

fj(z) =
1

2πi

∫
ω∈bD∩U ′j

f+(ω)γj(ω)L(ω, z).

We have that (ω, z) ∈ U((bD\U ′j) × U(bD\Uj) and (bD ∩ U ′j) ∩ (bD\Uj) = ∅.

That is, |z − ω| > dist(Uj, U
′
j) = cj > 0.

So, for z ∈ U(bD\Uj), L(ω, z) 6= 0. Thus, L(ω, z) ∈ Oz(U(bD\UJ)) and our claim is

proved.
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5 Appendix

Theorem 5.1 (Chen,Reisz-Thorin Theorem). Let (X,µ) and (Y, ν) be two measure

spaces and p0, p1, q0, q1 be numbers in [1,∞]. If T is of type (pi, qi) with (pi, qi)-norm

Mi, i = 0, 1, then T is of type (pt, qt)

‖Tf‖Lqt ≤M1−t
0 M t

1‖f‖Lpt ,

provided

1

pt
=

1− t
p0

+
t

p1

and
1

qt
=

1− t
q0

+
t

q1

with 0 < t < 1.
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