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Abstract

The eigenvalues and eigenvectors of a Hessenberg matrix H are computed with a combi-

nation of homotopy increments and the Arnoldi method. Given a set, Ω, of approximate

eigenvalues of H, there exists a unique vector f = f (H,Ω) ∈ Rn where λ (H− e1 f t) = Ω.

A diagonalization of the homotopy H(t) = H− (1− t)e1 f t at t = 0 provides a prediction

of the eigenvalues of H(t) at later times. These predictions define a new Ω that defines a

new homotopy. The correction for each eigenvalue has an O(t2) error estimate, enabling

variable step size and efficient convergence tests. Computations are done primarily in real

arithmetic, and bifurcations are avoided by restarting the homotopy with Arnoldi eigenval-

ues. Although the method is neither as elegant nor as robust as the QR algorithm, it is about

twice as fast in the randomly generated examples considered and is highly parallelizable.
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Notation Conventions

I The identity matrix

e j The jth column of the the identity matrix

e The vector of ones

A(i: j,k:p) The submatrix of A consisting of rows i to j and columns k to p

Ai, j The (i, j) block of matrix A

Ai, jk The kth column of the (i, j) block of matrix A

Ai The (i, i) diagonal block of A or the ith A in a sequence
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1 Introduction

The fundamental idea behind this method is the iterative improvement of an approximate

eigensystem, which we present as a restarted homotopy method. Eigenvalue homotopy

methods use the homotopy function

M(t) = At +(1− t)B (1.1)

to find the eigenvalues of M(1)=A∈Rn×n where those of M(0)=B∈Rn×n are known. As

the eigenvalues of a matrix are a continuous function of its entries, this homotopy provides

eigenvalue paths, which can be followed from t = 0 to t = 1 where lie the eigenvalues of A.

In the method presented herein, after taking a time step along each eigenvalue homotopy

path, the current predictions are used to define a new starting matrix, Bk, which is a rank

1 perturbation of A, and the process repeats as, hopefully, Bk→ A. The homotopy step is

essentially a Taylor method of order 2 which provides cubic convergence near the solution

and useful error estimates. The computations are nearly all in real arithmetic, working for

the most part with a block diagonalization of B.

Homotopy methods for the nonsymmetric eigenvalue problem must somehow address

the singularities of multiple eigenvalues caused by the bifurcation of a complex pair into

two real eigenvalues, or vice-versa. Restarting the homotopy avoids the problem of detect-

ing bifurcation points, but a mechanism must be included to allow for complex-to-real or

real-to-complex exchanges. This is achieved through an Arnoldi minimization.

An upper Hessenberg matrix, H, or simply Hessenberg matrix, is one in which all
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elements below the first subdiagonal are zero. That is, hi j = 0 for i > j+1. A Hessenberg

matrix for which no subdiagonal entry is zero is called an unreduced Hessenberg matrix.

If a Hessenberg matrix is not unreduced and hk+1,k = 0 for some k, then its eigenproblem

splits into two subproblems: H(1:k,1:k) and H(k+ 1:n,k+ 1:n). Because of this and the

fact that any matrix A ∈ Rn×n is orthogonally similar to a Hessenberg matrix, we will

assume we are starting with an unreduced Hessenberg matrix, H.

Restarting the homotopy requires an estimate for the entire spectrum. Thus, the method

as presented does not look useful for computing only a portion of the spectrum although

some eigenvalues may converge faster than others. Since we are computing the entire

spectrum, we desire favorable comparisons to the QR algorithm.

The paper is organized as follows. Section 2 introduces the eigenvalue problem. Sec-

tion 3 develops the homotopy step and its components. Section 4 motivates the Arnoldi

feedback minimization procedure as a mechanism for avoiding bifurcations. The proposed

restarted homotopy algorithm is given in Section 5. In 6 we discuss issues with the algo-

rithm as presented, and in 7 we discuss various perspectives on errors. Results comparing

our method to the QR algorithm are given in Section 8.

2 Background

Given A ∈ Cn×n find a nonzero x ∈ Cn and λ ∈ C such that

Ax = λx. (2.1)

2



This is the eigenvalue problem. Here x is known as a right eigenvector and λ is the cor-

responding eigenvalue. Similarly, if y∗A = λy∗ for a nonzero y ∈ Cn then y∗ is a left

eigenvector. From (2.1) we see that (x,λ ) is an eigenpair if and only if

(λ I−A)x = 0 (2.2)

has a nontrivial solution. This is the case if and only if λ I−A is singular or equivalently

det(λ I−A) = 0. (2.3)

Equation (2.3) is known as the characteristic equation of A. The left side of (2.3) is

known as the characteristic polynomial of A and can be expressed as

λ
n− c1λ

n−1 + c2λ
n−2 · · ·+(−1)ncn (2.4)

where ci is the sum of all principal minors of order i for A. A principal minor of order i for

a matrix is the determinant of a submatrix of size i× i obtained by removing the rows and

columns with indeces from N = {k1,k2. . . . ,kn−i} ⊂ {1,2, . . . ,n}.

The eigenvalues of a matrix are the roots of its characteristic polynomial. From (2.4) we

see that there are exactly n eigenvalues, counting multiplicities. The set of all eigenvalues

of A is called the sprectrum of A and is denoted λ (A). The spectrum of a matrix is invariant
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under similarity transformations since

det(λ I−X−1AX) = det(X−1
λ IX−X−1AX)

= det(X−1(λ I−A)X)

= det(X−1)det(λ I−A)det(X)

= det(λ I−A)

Further, if A ∈ Rn×n, as will be the focus of this work, the coefficients of (2.4) are all real,

and λ (A) is closed under complex conjugation. The algebraic multiplicity of an eigen-

value is its multiplicity as a root of the characteristic polynomial. An eigenvalue is called

simple if its algebraic multiplicity is one. The eigenvalue algorithm presented here re-

quires all eigenvalues to be simple for reasons presented later. The geometric multiplicity

of an eigenvalue, λ , is the dimension of the null space of λ I−A. This is equivalent to

the size of the maximum list of linearly independent eigenvectors associated with λ . The

geometric multiplicity is always at least 1 and never greater than the algebraic multiplic-

ity. If the geometric multiplicity equals the algebraic multiplicity for all eigenvalues of A,

then A is diagonalizable as it has n linearly independent eigenvectors, {x1,x2, . . . ,xn}, with

Axi = λixi. If we let X = {x1,x2, . . . ,xn} and Λ = diag(λ1,λ2, . . . ,λn), then X−1AX = Λ.

Theorem 2.1 If H is an unreduced Hessenberg matrix, then the geometric multiplicity of

all its eigenvalues is 1.

Proof: Since H is unreduced, the rank of λ I−H is at least n−1 as its first n−1 columns

are clearly linearly independent regardless of λ . Therefore the dimension of the null space
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of λ I−H is at most 1 and is exactly 1 only when λ is an eigenvalue of H. 2

Theorem 2.2 An unreduced Hessenberg matrix, H, is diagonalizable if and only if all of

its eigenvalues are simple.

Proof: (⇒) Since H is diagonalizable it has n linearly independent eigenvectors. By the

previous theorem, each of these eigenvectors is associated with an eigenvalue that has geo-

metric multiplicity 1. Thus, there must be n distinct eigenvalues.

(⇐) This is clear from a previous discussion. 2

2.1 A Brief Overview of the QR Algorithm

A very well known result from Abel and Galois says that, in general, the roots of a polyno-

mial of degree five or greater cannot be determined in a finite number of steps. Therefore,

eigenvalue finding algorithms are iterative by nature. There are many eigenvalue algo-

rithms. The properties of the matrix, such as symmetric/nonsymmetric and dense/sparse,

often dictate which eigenvalue algorithm should be selected. The preferred algorithm can

also depend on whether the full spectrum is desired or just a certain portion. The algorithm

presented herein is designed to find the full spectrum of dense, nonsymmetric matrices. The

current benchmark for finding the full spectrum of a dense matrix is the QR algorithm with

implicit shifts. Later, we will present results from experiments comparing our restarted ho-

motopy method to the QR algorithm with double implicit shifts and with the EIG function

in MATLAB®, which uses multiple shifts. Also, we use the QR algorithm to supply the

initial eigenvalue estimates needed for the first homotopy iteration. Thus, we will now give

a brief discussion of the QR algorithm.
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The QR iteration was introduced by Francis in [6]. Beautiful in its simplicity, the al-

gorithm uses QR factorizations to compute the spectrum of A through a series of similarity

transformations that under certain restrictions converge toward an upper triangular matrix

where the eigenvalues are the diagonal entries. The restrictions are |λ1|< |λ2|< .. . < |λn|

and the leading principal minors of a matrix of right eigenvectors of A are all nonzero. Refer

to [22] for a more detailed discussion about the convergence of the basic QR algorithm.

Algorithm 2.1: Basic QR Algorithm

Input: A ∈ Rn×n

Output: H an upper triangular matrix similar to A

Put A in Hessenberg form H = Q∗AQ

H1 = H

for k = 1,2, . . .

QkRk = Hk

Hk+1 = RkQk

end

It is not obvious from the algorithm that each Hk is similar to H but this is easily

dispelled as Hk+1 = RkQk = Q∗kQkRkQk = Q∗kHkQk. The problem with this algorithm is

that it is expensive, O(n3) per iteration, and slow with only linear convergence. We can

improve on the cost by monitoring the subdiagonal elements of each Hessenberg Hk for

opportunities to deflate the problem. If hk(i+1,i) ≈ 0 for some k and i, the eigenproblem for

A splits into the two smaller problems: Hk(1:i,1:i) and Hk(i+1:n,i+1:n). A typical criterion

for the problem to deflate, such as used in LAPACK [12], is if

hk(i+1,i) < u(|hk(i,i)|+ |hk(i+1,i+i)|)
6



with u the machine precision.

Francis also showed in [6] the convergence rate can be increased by employing shifts.

Algorithm 2.2: QR Algorithm with Single Shifts

Input: A ∈ Rn×n

Output: H an upper triangular matrix similar to A

Put A in Hessenberg form H = Q∗AQ

H1 = H

for k = 1,2, . . .

QkRk = Hk−ρkI for some ρk ∈ C

Hk+1 = RkQk +ρkI

end

If Hk is unreduced and ρk ∈ λ (Hk), then H−ρkI has rank n− 1, and the properties of

the QR factorization give et
nRk = 0. Thus, the last row of Hk+1 is ρket

n, and the problem

decouples. If the ρk are effectively chosen, then Algorithm 2.2 has qradratic convergence.

When H is real, it quite often has complex eigenvalues. For Algorithm 2.2 to converge

in this case, it is necessary for ρk ∈ C at some point. This then forces Hk+1 ∈ Cn×n and

increases the cost of each subsequent iteration. Francis showed in Part II of [6] that complex

arithmetic can be avoided by applying what is now referred to as an implicit double shift.
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Two subsequent iterations of Algorithm 2.2 produce the steps

QkRk = Hk−ρkI

Hk+1 = RkQk +ρkI

Qk+2Rk+2 = Hk+1−ρk+1I

Hk+2 = Rk+2Qk+2 +ρk+1 (2.5)

where

QkQk+1Rk+1Rk = Qk(Hk+1−ρk+1I)Rk

= Qk(RkQk +ρkI−ρk+1I)Rk

= (Hk−ρkI)QkRk +(ρk−ρk+1)QkRk

= (Hk−ρkI)(Hk−ρkI)+(ρk−ρk+1)(Hk−ρkI)

= (Hk−ρkI)(Hk−ρk+1I).

If Hk ∈ Rn×n and ρk = ρ̄k+1 for some k, then

Γ = (Hk−ρkI)(Hk−ρk+1I) ∈ Rn×n

and its QR factorization, Γ = QΓRΓ, is necessarily real. Further, Q
Γ
= QkQk+1, R

Γ
=

Rk+1Rk, and Q
Γ
e1 =

Γe1

‖Γe1‖
. Thus,

Hk+2 = Q∗k+1Q∗kHkQkQk+1 = Q∗ΓHkQΓ
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and Hk+2 ∈R. If Hk+2 is calculated via (2.5), rounding errors will almost certainly prevent

Hk+2 from being real when ρk = ρ̄k+1. This could be dealt with by skipping Hk+1 and

computing the QR factorization of Γ explicity, but this is prohibitively expensive.

The implicit double shift strategy handles these technicalities and performs the trans-

formation Hk+2 = Q∗
Γ
HkQ

Γ
in 8n2 flops as opposed to O(n3) while bypassing Hk+1 and

complex arithmetic. To illustrate how, we first introduce the Implicit Q theorem, a proof of

which is available in [7]

Theorem 2.3 (The Implicit Q Theorem) Let Q and U be orthogonal matrices such that

Q∗AQ = H and U∗AU = H̃ are both unreduced Hessenberg. If q1 = u1 then qi =±ui and

hi+1,i =±h̃i+1,i. In the case when H is not unreduced and hk+1,k is its first zero subdiagonal

element, then qi =±ui, hi,i−1 =±h̃i,i−1 for i = 2,3, . . . ,k and h̃k+1,k = 0.

The idea behind the implicit double shift is to find a transformation U with Ue1 = Q
Γ
e1

that can be applied to Hk in place of QΓ more efficiently. To this end, let U1 be a House-

holder matrix such that U1Γe1 is a multiple of e1. As only the first three entries of Γe1 are

nonzero,

U1 =

 Ũ1

I


where Ũ1 is 3× 3. Further U1e1 =

Γe1

‖Γe1‖
. The transformation U1HkU1 is Hessenberg ex-

cept for the upper 4× 4 submatrix referred to as a bulge. Using Householder matrices

U2,U3, . . . ,Un−1 to return U1HkU1 to Hessenberg form by “chasing the bulge” and letting
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U =U1U2 · · ·Un−1 gives

H̃k+2 = (Un−1 · · ·U2U1)Hk(U1U2 · · ·Un−1)

=U tHkU

As the first column of Ui is e1 for i = 2,3, . . .n−1, we have

Ue1 = (U1U2 · · ·Un−1)e1 =U1e1 = Q̃e1.

As U and Q̃ have the same first row and each transforms Hk into Hessenberg form, the

Implicit Q theorem implies U and Q̃ are the same upto signs as are the subdiagonal elements

of Hk+2 and H̃k+2 upto the first zero subdiagonal entry. The transformations Ui only operate

on a few of the rows/columns of Hk and can be computed and applied to Hk with only 8n2

total flops.

This provides the main mechanism for the QR algorithm with implicit double shifts.

An algorithm is given in [7]. This was used to create a routine for supplying the intial

eigenvalue estimates needed for the homotopy method. The routine is also used for flop

count comparisons.

3 A Homotopy Step

The initial conditions, B, in (1.1) are critical to any homotopy method. Ideally, we would

like to choose B close to A in (1.1). Regardless of the criteria for selecting B, its eigenvalues

must be known. Some methods, such as that in [14], choose B so that solving its eigenvalue
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problem is easier than that of A. We take a different approach. We find a B whose spectrum

is a prescribed set. This is done through control theory.

For any unreduced Hessenberg matrix H ∈Cn×n, and any set Ω of n complex numbers,

there exists a unique f ∈Cn such that λ (H−e1 f ∗) = Ω. Furthermore, if H is real and Ω is

closed under complex conjugation, then f is real. This is a standard result in control theory,

where e1 is called the input vector, f is the feedback vector, and Ω is the closed-loop poles

for (H,e1, f ) (see [10], [23]).

So given an approximation Ω to λ (H), we have the following homotopy whose eigen-

values at t = 0 are Ω and at t = 1 are λ (H):

M(t) = Ht +(1− t)(H− e1 f t)

= H− (1− t)e1 f t (3.1)

By computing the feedback, f , we can embed in Rn×n× [0,1] the eigenproblem for H as

(H− (1− t)e1 f t)x(t) = λ (t)x(t) (3.2)

where x(t) ∈ Cn and λ (t) ∈ C are an eigenpair of M at time t.

Let us define an eigenpath to be the path in C traversed by λ (t), an eigenvalue of

M(t) = H− (1− t)e1 f t , and not the path in C×Cn consisting of both the eigenvalue and

eigenvector. The following result says that if M(t) differs from H by a rank one matrix,

then the eigenpaths depend only on the eigenvalues of M(0) = B. In this sense, all rank

one homotopy methods follow the same paths. The statement is not vacuous since for any
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collection Ω of n complex numbers, and for almost all A ∈ Cn×n and u ∈ Cn, there exist a

unique v∈Cn such that λ (A+uv∗) =Ω. That is, there are many B matrices giving the same

λ (M(0)), but all of them generate the same eigenpaths with the same parameterizations.

Thus, we are not concerned that restricting the input vector to e1 will adversely affect the

homotopy paths.

Theorem 3.1 Let A ∈ Rn×n, b, f ,u,v ∈ Rn, and t ∈ R. Define

p(x, t) = det(xI−A−b f t + tb f t)

and

q(x, t) = det(xI−A−uvt + tuvt).

Then p(x;0) = q(x;0) implies p = q.

Proof: Notice that p(x,1) = q(x,1). We will show that each coefficient of p(x, t) and

q(x, t) is linear in t. Thus, if p(x,0) = q(x,0), then p and q agree at two points and must be

equal. To that end, write

p(x; t) = xn− c1(t)xn−1 + c2(t)xn−2−·· ·± cn(t),

where ck(t) is the sum of all principal minors of A+b f t− tb f t of size k. Likewise, write

q(x; t) = xn +
n

∑
k=1

(−1)kdk(t)xn−k

where dk(t) is the sum of all principal minors of A+uvt− tuvt of size k.
12



Let α be a set of n− k integers taken from {1,2, . . . ,n} and Xα be the principal subma-

trix of X indexed by α . Then

ck(t) = ∑
α

det([A+b f t− tb f t ]α).

Since [b f t ]α = bα f t
α , we have

det([A+b f t− tb f t ]α) = det(Aα +bα f t
α − tbα f t

α).

Provided bα 6= 0 we can find an invertible matrix P such that P−1bα = e1.

Let Ãα = P−1(Aα +bα f t
α)P and rt

α = f t
αP. Now expanding the determinant about the first

row gives

det(Aα +bα f t
α − tbα f ∗α) = det(Ãα + te1rt

α)

=
k

∑
j=1

(−1) j+1(ã1 j + tr j)det(Ã1 j)

=
k

∑
j=1

(−1) j+1ã1 jdet(Ã1 j)+ t
k

∑
j=1

(−1) j+1r jdet(Ã1 j)

≡ det(A+b f t)α + tσα .

In the case when bα = 0 we have

det(Aα +bα f t
α − tbα f ∗α) = det(Aα)

In either case, we have det([A+b f t − tb f t ]α) is linear in t for all α , hence, ck(t) is linear

in t. Similarly, dk(t) is linear in t. 2
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Let us now get down to the business of following our eigenvalue paths. This will be

done through the second order Taylor polynomial approximation

λk(hk) = λk(0)+hkλ̇ k(0)+
h2

k
2

λ̈ k(0)+O(h3
k) (3.3)

for hk ∈ (0,1], k = 1,2, . . . ,n.

We may differentiate (3.2) in order to get λ̇ k. If H is unreduced, then H− (1− t)e1 f t

is unreduced for all t. Recall that an unreduced Hessenberg matrix is diagonalizable if and

only if all of its eigenvalues are simple. If all of the eigenvalues of H− e1 f t are simple,

then the eigenvalues of H− (1− t)e1 f t are also simple in a neigborhood of t = 0. In this

same neighborhood, we can define

X(t) = [x1(t),x2(t), . . . ,xn(t)]

to be a matrix of right eigenvectors of H− (1− t)e1 f t and

X−1(t) = Y (t) = [y1(t),y2(t), . . . ,yn(t)]∗.

Then

(H− (1− t)e1 f t)X(t) = X(t)Λ(t),

where Λ(t) = diag(λ1(t),λ2(t), . . . ,λn(t)). Differentiating (3.2) with respect to t and pre-

14



multiplying by the left eigenvector y∗k yields

e1 f txk +(H− (1− t)e1 f t)ẋk = λ̇ kxk +λkẋk (3.4)

y∗ke1 f txk + y∗k(H− (1− t)e1 f t)ẋk = y∗k λ̇ kxk + y∗kλkẋk

y∗ke1 f txk +λky∗k ẋk = λ̇ k +λky∗k ẋk

λ̇ k = y∗ke1 f txk

Let ω(t) = Y (t)e1 and ξ t(t) = f tX(t). Then in a neighborhood of t=0 we have

λ̇ k(t) = ωk(t)ξk(t). (3.5)

In order to get an expression for λ̈ k, we first need to obtain an expression for ẋk as a

linear combination of the right eigenvectors. If we write ẋk = Xck, then for λk simple, we

find by using (3.4) and premultiplying by y∗i for i 6= k that

e1 f txk +(H− (1− t)e1 f t)Xck = λ̇ kxk +λkXck

y∗i e1 f txk + y∗i (H− (1− t)e1 f t)Xck = y∗i λ̇ kxk + y∗i λkXck

ωiξk +λiy∗i Xck = λky∗i Xck

ωiξk +λiet
ick = λket

ick

ωiξk +λicik = λkcik

which results in

cik =
ωiξk

λk−λi
, i 6= k, i = 1,2, . . . ,n. (3.6)
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The value of ckk depends on the normalization chosen for xk, but this is inconsequential.

Differentiating (3.2) a second time by taking the derivative of (3.4) and premultiplying by

y∗k gives

2e1 f t ẋk +(H− (1− t)e1 f t)ẍk = λ̈ kxk + λ̇ kẋk + λ̇ kẋk +λkẍk

2y∗ke1 f t ẋk +λky∗k ẍk = λ̈ ky∗kxk +2λ̇ ky∗k ẋk +λky∗k ẍk

λ̈ k = 2y∗ke1 f t ẋk−2λ̇ ky∗k ẋk

= 2ωk f t
n

∑
i=1

xicik−2ωkξky∗k
n

∑
i=1

xicik

= 2ωk(ξkckk +∑
i6=k

ξicik)−2ωkξkckk

= 2ωk ∑
i6=k

ξicik

= 2ωk ∑
i6=k

ξiωiξk

λk−λi

= 2ωkξk ∑
i6=k

ωiξi

λk−λi
.

So in a neighborhood of t=0,

λ̈ k(t) = 2λ̇ k(t)∑
i 6=k

λ̇ i(t)
λk(t)−λi(t)

, (3.7)

and we see that λ̈ k is available for O(n) operations and that higher order derivatives are

possible.

The homotopy step can be summarized as follows. Given a set of pairwise distinct

numbers closed under complex conjugation, Ω = {λ1,λ2, . . . ,λn}, compute a vector f ∈Rn
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such that λ (H− e1 f t) = Ω. Then compute the quantities λ̇ k and λ̈ k, and define a new

approximation to λ (H) as in (3.3).

If we view λ̈ as an error estimator for the Euler prediction, λk(hk) = λk(0)+ λ̇ khk, then

we can choose hk adaptively and independently for each eigenvalue to satisfy some error

criterion h2
k

2 |λ̈ |< τ . Later, we will use the hk to detect troublesome eigenpaths, which will

be recomputed via an Arnoldi minimization procedure.

3.1 Computing the Feedback

Given an unreduced Hessenberg matrix, H, and a set Ω = {λ1,λ2, . . . ,λn} of n numbers

closed under complex conjugation, we want to compute f ∈Rn such that λ (H− e1 f t) =Ω.

This is a special case of the eigenvalue assignment/pole placement problem addressed in

[5], [9], [17], [18], and [20]. More generally, given A ∈ Rn×n, B ∈ Rn×p, and Ω as defined

above, the eigenvalue assignment problem is to find F ∈ Rp×n such that λ (A−BF) = Ω.

This problem has a solution for any Ω if and only if the system ẋ = Ax+Bu is controllable.

This time invariant system (A constant) is controllable if and only if the controllability

matrix

C = [B,AB, . . . ,An−1B] (3.8)

has rank n (see [10]).

In our case, we take A = H and B = e1. The system (H,e1) is controllable if and only if

[e1,He1, . . . ,Hn−1e1] has rank n, which is guaranteed if H is unreduced. Thus, the problem

has a unique solution, F = f t . All of the numerically attractive methods for this problem,

like that of Miminis and Paige [18], are based on a preliminary reduction of (A,b) to the

17



controller-Hessenberg form

Ptb = ‖b‖e1, PtAP = H, (3.9)

where P ∈ Rn×n is orthogonal. Controllablility can be determined (with all of the caveats

associated with any rank determination problem) by inspecting the subdiagonal elements

of H.

In 1972, Ackermann [1] gave an explicit form for the single-input feedback,

f t = et
nC−1

φ(A), (3.10)

where φ(x) =
n

∏
i=1

(x−λi), λi are the desired eigenvalues, and C is the controllability matrix

given in (3.8). In the controller-Hessenberg case, C is upper triangular and we have

f t = αet
nφ(H), (3.11)

where α = (‖b‖
n−1

∏
i=1

hi+1,i)
−1. Arnold and Datta [2] have shown that a whole class of meth-

ods used to compute f that appeared in the 1980’s are equivalent to the QR algorithm with

shifts from Ω to compute the QR factorization of φ(H). Such methods are the only ones

that have been proven backward stable, and when implemented with implicit double shifts

and deflation, require about 5n3 flops.

In order to keep our flop count down, we will use a different type of method, due to

Datta [5]. Unfortunately, the method is not stable, for the recursion is susceptible to digit

cancellation. However, an inexpensive estimate of the backward error is available as the
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Algorithm 3.1: Recursion for the Single-Input Feedback [5]

Input: H ∈ Rn×n unreduced Hessenberg

Ω = {λ1, . . . ,λn} closed under complex conjugation

Output: L ∈ Cn×n, ‖l̂i‖ ∈ R, and f ∈ Rn such that λ (H− e1 f t) = Ω

l1 = en

for i = 1,2, . . . ,n−1

l̂i+1 = (Ht−λiI)li

li+1 =
l̂i+1

‖l̂i+1‖

end

L = [l1, l2, . . . , ln]

f =
(Ht−λnI)ln

l1,n

recursion unfolds, so the method is reliable in the sense that it knows when things have

gone bad as shown by Arnold in [3]. For our purposes, the beauty of Datta’s method comes

in its ease and efficiency. It requires only O(1
3n3) flops. Furthermore, it provides at no extra

cost a bidiagonalization of our closed loop matrix H− e1 f t . Define Gc as the bidiagonal

matrix

Gc =



λ1 ‖l̂2‖

λ2 ‖l̂3‖

λ3
. . .
. . . ‖l̂n‖

λn


.

where the ‖l̂i‖ are output from Algorithm 3.1. Then

Lt(H− e1 f t) = GcLt (3.12)

19



with L output from Algorithm 3.1. The fact that H is unreduced Hessenberg ensures that L

is lower right triangular and nonsingular. This will be of great value later as we calculate

the left and right eigenvectors of H− e1 f t that will be needed to follow homotopy paths.

Since H is unreduced, H− e1 f t is also unreduced, and diagonalizing H− e1 f t requires

pairwise distinct λ j. In that case, if we define V = [vi j] to be unit upper triangular with

vi j =
j

∏
k=i+1

‖l̂k‖
(λi−λk)

(3.13)

for i < j, then it is not difficult to show that V diagonalizes Gc as

V GcV−1 = Λ = diag(λ1,λ2, . . . ,λn).

This method not only provides the feedback, f , but also a triangular factorization of

a matrix of left eigenvectors Y = V Lt . Later, we will be concerned with the quantities f ,

ω = Ye1, and ξ t = f tY−1, all of which can be computed for about 1
3n3 flops.

There are two main difficulties with computing f and Y in this way. One is fundamen-

tal to the overall method: a multiple eigenvalue precludes the existence of a well-defined

tangent to that eigenpath as V has a singularity if λi = λ j. The other is simply efficiency:

complex arithmetic is about 4 times as expensive as real arithmetic. As might be expected,

we can fix the latter problem via a 2×2 block diagonalization. This requires tweaking

Algorithm 3.1. From here on, let us assume that the current eigenvalue approximations, λi,

are ordered so complex conjugate pairs appear together at the front of the list. We further

define µi = Re(λi) for all i, νi = Im(λi) for odd i, and νi = 0 for even i.

20



Algorithm 3.2: Real Recursion for the Single-Input Feedback

Input: H ∈ Rn×n unreduced Hessenberg

Ω = {λ1, . . . ,λn} closed under complex conjugation

Output: L ∈ Rn×n, ‖l̂i‖ ∈ R, and f ∈ Rn such that λ (H− e1 f t) = Ω

Order λi so complex conjugate pairs appear together at the front of the list.

l0 = 0

l1 = en

µi = Re(λi)

νi =


Im(λi) : odd i

0 : even i

for i = 1,2, . . . ,n−1

l̂i+1 = (Ht−µiI)li +
νi

2 li−1

‖l̂i‖

li+1 =
l̂i+1
‖l̂i+1‖

end

L = [l1, l2, . . . , ln]

f =
(Ht−µnI)ln +

νn
2 ln−1

‖l̂n‖
l1,n

The matrix L from Algorithm 3.2 is still lower right triangular and nonsingular, but now

it provides a block-bidiagonalization of H− e1 f t . We have

Lt(H− e1 f t) = GLt

where
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G =



G1,1 G1,2

G2,2 G2,3

G3,3
. . .

. . . Gp−1,p

Gp,p


,

Gi,i =

 µ2i−1 ‖l̂2i‖

−ν2i−1
2

‖l̂2i‖
µ2i

 , and

Gi,i+1 =

 0 0

‖l̂2i+1‖ 0

 .

Note that Gi,i has eigenvalues λ2i−1 and λ2i. In the case where n is odd,

Gp,p = [µn] ∈ R1×1

and

Gp−1,p =

 0

‖l̂n‖

 ∈ R2×1.

3.2 Calculating the Left Eigenvectors

We now will find a factorization for a matrix of left eigenvectors Y = SV Lt , where L and

V are triangular and S is block diagonal. The first factor, L, is a byproduct of the feedback
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calculation in Algorithm 3.2. We get V by block-diagonalizing G. That is, we would like

to find a nonsingular matrix V such that

V G = DV (3.14)

where D is block-diagonal with the same main diagonal blocks as G. That is,

D = diag(G1,1,G2,2, . . . ,Gp,p). (3.15)

Proposition 3.2 Define V = [Vi j], where Vi j is 2×2 (excepting, for odd n, the last row and

column). If V G = DV then

(a) For j < i≤ bn
2c, Vi, j = 0.

(b) For i = j ≤ bn
2c and λ2i−1 = λ̄2i, Vi, j = αI +β

0
−‖l̂2i‖2

ν2
2i−1

1 0

 with α,β ∈ R.

(c) For i = j ≤ bn
2c and λ2i−1,λ2i ∈ R, Vi, j = αI +β


µ2i−1−µ2i

‖l̂2i‖
1

0 0

 with α,β ∈ R.

(d) For i < j ≤ bn
2c, Vi, j = [ 1

‖l̂2 j‖
(Gi−µ2 jI)v, v] where v solves

1
‖l̂2 j‖

(Gi−λ2 j−1)(Gi−λ2 j)v = ‖l̂2 j−1‖Vi, j−1e2.

(e) For odd n, et
nV = αet

n for α ∈ R.

(f) For odd n and i≤ bn
2c, the 2×1 blocks of the last column of V solveµ2i−1−µn ‖l̂2i‖

−ν2
2i−1

‖l̂2i‖
µ2i−µn


v2i−1,n

v2i,n

= ‖l̂n‖

v2i−1,n−1

v2i,n−1

.
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Proof: For aesthetics we denote a block on the diagonal with a single subscript (i.e. Gi is

the block Gii). To show (a) we proceed by induction on j. For j = 1, looking at the (i, j)

block of the matrix equation (3.14) and recalling Di = Gi gives

Vi,1G1 = GiVi,1

or

GiVi,1−Vi,1G1 = 0 (3.16)

Equation (3.16) is a Sylvester equation and has a unique solution provided Gi and G1 have

no common eigenvalues. This can be arranged provided the multiplicity of real eigenvalues

is no more than 2 and that all complex eigenvalues are simple. Recall we are assuming that

all eigenvalues are simple; thus, we have a unique solution. Clearly Vi,1 = 0 solves (3.16)

and therefore is the solution. Now assuming that (a) holds for j = p then the (i, p+ 1)

block of (3.14) gives

GiVi,p+1−Vi,p+1Gp+1 = 0

and we see again that Vi,p+1 = 0 is the unique solution and (a) is shown.

Now for (b) and (c) the (i, i) block of (3.14) is

ViGi = GiVi (3.17)

which clearly does not have a unique solution as both Vi = 0 and Vi = I are solutions. If we
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view (3.17) as

w x

y z


 µ2i−1 ‖l̂2i‖
−ν2

2i−1

‖l̂2i‖
µ2i

=

 µ2i−1 ‖l̂2i‖
−ν2

2i−1

‖l̂2i‖
µ2i


w x

y z

 (3.18)

we get the homogeneous system of equations



‖l̂2i‖ (µ2i−µ2i−1) 0 −‖l̂2i‖

ν2
2i−1

‖l̂2i‖
0 (µ2i−1−µ2i)

−ν2
2i−1

‖l̂2i‖

0
−ν2

2i−1

‖l̂2i‖
−‖l̂2i‖ 0

0
ν2

2i−1

‖l̂2i‖
‖l̂2i‖ 0





w

x

y

z


=



0

0

0

0


. (3.19)

If λ2i−1 and λ2i are a complex conjugate pair then the coefficient matrix in (3.19) reduces

to 

1 0 0 −1

0 ν2
2i−1 ‖l̂2i‖2 0

0 0 0 0

0 0 0 0


(3.20)

from which it is easy to see that

Vi = αI +β

0
−‖l̂2i‖2

ν2
2i−1

1 0

 (3.21)

for α,β ∈ R. This gives us (b). If, however, λ2i−1 and λ2i are real eigenvalues then the
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coefficient matrix in (3.19) reduces to



‖l̂2i‖ (µ2i−µ2i−1) 0 −‖l̂2i‖

0 0 0 0

0 0 1 0

0 0 0 0


(3.22)

showing that

Vi = αI +β


µ2i−1−µ2i

‖l̂2i‖
1

0 0

 (3.23)

for α,β ∈ R, thus (c) is proven.

We now develop the solution for Vi j with i < j. Considering the (i, j) block from matrix

equation (3.14) and again recalling that Di = Gi yields

Vi, j−1G j−1, j +Vi, jG j = GiVi, j

GiVi, j−Vi, jG j =Vi, j−1

 0 0

‖l̂2 j−1‖ 0



GiVi, j−Vi, jG j = ‖l̂2 j−1‖Vi, j−1e2et
1 (3.24)

Again, we see that (3.24) is a Sylvester equation and has a unique solution under our

assumption that all eigenvalues are simple. Let Vi, j1 and Vi, j2 denote the first and second
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columns of Vi, j respectively, then the second column of (3.24) reveals

GiVi, je2−Vi, jG je2 = ‖l̂2 j−1‖Vi, j−1e2et
1e2

GiVi, j2−Vi, j

‖l̂2 j‖

µ2 j

= 0

GiVi, j2−‖l̂2 j‖Vi, j1−µ2 jVi, j2 = 0

1
‖l̂2 j‖

(Gi−µ2 jI)Vi, j2 =Vi, j1. (3.25)

So we now see for i < j that

Vi, j =

[
1
‖l̂2 j‖

(Gi−µ2 jI)Vi, j2, Vi, j2

]
(3.26)

which leaves us only to find Vi, j2 . To do this, we now look at the first column of (3.24),

which gives
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GiVi, je1−Vi, jG je1 = ‖l̂2 j−1‖Vi, j−1e2et
1e1

GiVi, j1−Vi, j

µ2 j−1

−ν2
2 j−1

‖l̂2 j‖

= ‖l̂2 j−1‖Vi, j−1e2

GiVi, j1−µ2 j−1Vi, j1 +
−ν2

2 j−1

‖l̂2 j‖
Vi, j2 = ‖l̂2 j−1‖Vi, j−1e2

(Gi−µ2 j−1I)Vi, j1 +
−ν2

2 j−1

‖l̂2 j‖
Vi, j2 = ‖l̂2 j−1‖Vi, j−1e2

1
‖l̂2 j‖

(Gi−µ2 j−1I)((Gi−µ2 jI)Vi, j2 +
−ν2

2 j−1

‖l̂2 j‖
Vi, j2 = ‖l̂2 j−1‖Vi, j−1e2

1
‖l̂2 j‖

[
G2

i − (µ2 j−1 +µ2 j)Gi +(µ2 j−1µ2 j +ν
2
2 j−1)I

]
Vi, j2 = ‖l̂2 j−1‖Vi, j−1e2

1
‖l̂2 j‖

(Gi−λ2 j−1I)(Gi−λ2 jI)Vi, j2 = ‖l̂2 j−1‖Vi, j−1e2 (3.27)

and proves (d).

For (e) we first consider the (1,n) and (2,n) elements (not blocks) of (3.14). This yields

the homogenous system of equations

µ1−µn − ν2
1
‖l̂2‖

‖l̂2‖ (µ2−µn)


vn,1

vn,2

= 0.

There are three scenarios: 1) µn = µ1 = µ2 and ν1 6= 0, 2) µ1 = µ2 6= µn and ν1 6= 0,
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and 3) µ1 6= µn 6= µ2 and ν1 = 0. In any case, the coefficient matrix can be shown to be

nonsingular. Thus, vn,1 = vn,2 = 0. Proceeding sequentially along the 1× 2 blocks on the

last row of V will produce a similar set of equations with the same result and gives us

vn,1 = vn,2 = · · ·= vn,n−1 = 0. The (n,n) element of (3.14) gives the equation

vnnµn = µnvnn

where any real vnn is a solution and we have (e).

Finally, for (f) consider the (2i−1,n) and (2i,n) elements (not blocks) in (3.14). This

produces the two equations

‖l̂n‖v2i−1,n−1 +µnv2i−1,n = µ2i−1v2i−1,n +‖l̂2i‖v2i,n

‖l̂n‖v2i,n−1 +µnv2i,n =
−ν2

2i−1

‖l̂2i‖
v2i−1,n +µ2iv2i,n

from which we get (f). 2

If in (b) in the above proposition we choose β = 0, then V is upper triangular. Further, if

we choose α 6= 0 in (b), (c), and (e) then V is nonsingular. For (b), (c), and (e) we have

taken α = 1 and β = 0.

Let us now take a moment to review where we are. Using only real arithmetic, we

have calculated the feedback, f , and triangular, nonsingular matrices, L and V , such that

V Lt(H− e1 f t) = DLtV . The fact that V and Lt are triangular somewhat ameliorates the

difficulties associated with the ill-conditioning they typically have, but difficulties remain.

We have postponed complex arithmetic as long as possible, but we will need it to diago-
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nalize D. This will be done with a 2×2 block diagonal matrix S, which is a matrix of left

eigenvectors of D. That is, SD = ΛS. When the kth diagonal block of D, Dk, has complex

eigenvalues,

Sk =


Im(λ2k−1)i
‖l̂2k‖

1

Im(λ2k)i
‖l̂2k‖

1

 . (3.28)

Otherwise, when Dk has real eigenvalues,

Sk =


(λ2k−1−λ2k)

‖l̂2k‖
1

0 1

 . (3.29)

If n is odd then the last block of S is 1×1 and

Sp = [1] (3.30)

with p = dn
2e. Of course the rows of S may be scaled as needed.

We now have an eigendecompostion of H− e1 f t , specifically

SV Lt(H− e1 f t) = ΛSV Lt . (3.31)

Furthermore, ω = SV Lte1 and ξ t = f t(SV Lt)−1. Of the O(1
3n3) flops needed for f , ω and

ξ , only O(n) are complex. We now have the necessary quantities for the updates in (3.3).
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4 Handling Homotopy Path Bifurcations

All of the homotopy path following methods must address the situation where a complex

pair coalesces, becomes a multiple eigenvalue, and splits into two distinct eigenvalues or

vice versa ([13], [14], [15]). These bifurcations must be accommodated unless the initial

conditions preclude their occurance. Subspace iteration, that is, inverse iteration on a sub-

space of dimension greater than one, is one approach, and may make it possible to avoid

complex floating point arithmetic.

Even if only one inverse iteration were necessary for each correction, then about 2n2

flops would be required per eigenvalue per time step. In order to compete with the QR

algorithm on a serial machine, all paths must be traversed and full accuracy attained in an

average of about 5 real inverse iterations per eigenvalue. This has been achieved, at least

for randomly generated matrices and a residual tolerance of about 10−9, by Li, et al.[13]

We will handle any paths containing bifurcations by computing a new homotopy that

does not contain the troublesome paths. At each iteration we replace m homotopy pre-

dictions with predictions that allow for a real-to-complex or complex-to-real interchange.

One needs to determine the quantity m, which m predictions will be replaced, and what the

replacements should be.

We suggest choosing the m replacements to minimize ‖ f‖2 for the next homotopy. We

choose the m estimates with largest |λ̈ k| to be replaced in favor of the ‖ f‖minimizers. One

justification for this rests in seeing h2
k

2 λ̈ k as an error estimate for the Euler prediction. Thus,

we are replacing the predictions in which we are least confident. Another justification is

simply that the curvature of the eigenpath as measured by |λ̈ k| is high near a singularity.
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How to choose the quantity m seems to be an interesting question. Later we will count

flops and provide a heuristic for an optimal m, but for now we note that m < 2 would not

permit real/complex exchanges, while m = n would solve the eigenvalue problem for H. It

is also clear that the minimization will replace homotopy paths with high curvature, even if

no real/complex exchange takes place.

4.1 Feedback Minimization

Applying m steps of the Arnoldi process ([7], [21]) for a matrix A∈Rn×n and starting input

vector b provides an orthogonal matrix, Qm ∈ Rn×m, a Hessenberg matrix, Wm ∈ Rm×m, and

a vector rm such that

AQm = QmWm + rmet
m.

Also, Qt
mrm = 0 and Qt

mAQm =Wm. The columns of Qm are an orthonormal basis for the

Krylov subspace,

Km(A,b) = span{b,Ab, . . . ,Am−1b}.

If at some step k ≤ m in the Arnoldi iteration rk = 0, then the process must terminate,

and Kk(A,b) is an invariant subspace for A and λ (Wk)⊆ λ (A). If the process does not

terminate and rm 6= 0, then we can still glean some information about λ (A) from λ (Wm).

Let Pm be the set of monic polynomials of degree no more than m, and let p0 be the

characteristic polynomial of Wm, then p0 satisfies

min
p∈Pm

‖p(A)b‖2.
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Now assume that after stepping forward along each of the homotopy paths, we can

partition our current approximation to λ (H) into a subset ΩB = {λ1,λ2, . . . ,λn−m} of “best”

approximations and a subset ΩW = {λn−m+1,λn−m+2, . . . ,λn} of “worst” approximations

where both ΩB and ΩW are closed under complex conjugation. We apply the Arnoldi

process to the matrix A = Ht , with the input vector b, given by

bt = et
nφB(H) (4.1)

where

φB(x) =
n−m

∏
i=1

(x−λi)

with λi ∈ΩB. This generates an m×m Hessenberg matrix with characteristic polynomial

q0(x) =
m

∏
i=1

(x− γi)

which optimizes

min
q∈Pm

‖et
nφB(H)q(H)‖2.

We then replace ΩW with the roots of q0. That is, we set

λn−m+ j←− γ j, j = 1,2, . . . ,m

Notice that if φB divides the characteristic polynomial of H, then the minimization

property of the Arnoldi process implies that q0φB is the characteristic polynomial of H, or

if the process breaks down, q0φB will be its minimal polynomial. This means the Arnoldi

33



process can be viewed as a deflation process, for if the roots of φB are eigenvalues of H, m

Arnoldi steps with input vector b = φB(Ht)en generates an m×m Hessenberg matrix whose

eigenvalues are exactly the remaining eigenvalues of H.

If we use the roots of φB and q0 as the initial conditions for a new homotopy, then the

feedback vector for this new homotopy will be f t = αet
nφB(H)q(H), which is precisely the

quantity minimized by the Arnoldi process. Furthermore, if the homotopy paths containing

bifurcations are included in ΩW , then the Arnoldi minimization allows for the real/complex

interchanges.
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5 The Restarted Homotopy Method

We now present the algorithm for the restarted homotopy method.

Algorithm 5.1: The Restarted Homotopy Method

Given an unreduced Hessenberg matrix, H ∈ Rn×n, an approximation Ω = {λ1, . . . ,λn} to

λ (H), a homotopy error tolerance, τ , and an eigenvalue convergence tolerance, ε ,

compute a new approximation to λ (H).

1. Using Algorithm 3.2, proposition 3.2 with α = 1 and β = 0, (3.28), (3.29), and

(3.30) compute f ∈ Rn, L,V ∈ Rn×n and S ∈ Cn×n, such that

SV Lt(H− e1 f t) = ΛSV Lt , where V and L are triangular, S is block diagonal with

2×2 or 1×1 blocks, and Λ = diag(λ1,λ2, . . . ,λn).

2. Compute ω = SV Lte1 and ξ satisfying ξ tSV Lt = f t .

3. For each k = 1,2, . . . ,n compute λ̇ k and λ̈ k by (3.5) and (3.7), respectively.

If all |λ̈ k| ≤ 2ε , then update as in (3.3) and stop.

4. For each k = 1,2, . . . ,n compute hk =
√

2τ/λ̈ k.

Select a nonnegative integer m, and update as in (3.3) the n−m eigenvalues with the

largest h.

5. Let φB be the monic polynomial whose roots are the updated eigenvalues from step

4. Compute the vector bt = et
nφB(H).

6. Run m steps of Arnoldi with operator Ht and input vector b. Replace the m

eigenvalues not yet updated with the Arnoldi eigenvalues. Go to step 1.

Steps 1 through 4 of each iteration requires 1
3n3 flops combined and step 5 requires

1
3(n−m)3 flops. The Arnoldi corrections from step 6 require about mn2 + 4m2n+ 10m3
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flops assuming reorthogonalization at each Arnoldi step and that the QR algorithm is used

for computing the eigenvalues of the m×m Hessenberg matrix. Storage requirements in-

clude: n2/2 real words for each of H, L and V , another nm+
m2

2
for the Arnoldi minimiza-

tion, plus O(n) for f , S, ω, ξ , Ω, λ̇ , λ̈ , and h, giving a total of about 3
2n2+(m+10)n+

m2

2

real words.

A homotopy step tolerance, τ , that is too small forces smaller time steps and can make

the homotopy updates ineffective. We are less concerned with τ being too large as the

m homotopy corrections with largest |λ̈ | are dropped in favor of the Arnoldi eigenvalues.

We have chosen τ =
√

n
2‖H‖2

F
. The eigenvalue convergence tolerance, ε , is currently set

at
√

u, where u is the machine precision. The rationale here is that the homotopy correc-

tions eventually converge cubically, but ε = u1/3 may be too aggressive. The only other

free parameter is m, the size of the Arnoldi correction. Currently, we have only add hoc

procedures for this selection. When f is large compared to ‖H‖, m can be as large as n/4.

But when f is small (near convergence) the homotopy predictions are extremely effective,

so usually m = 0 there. In section 8 we report more details.

6 Practical Issues

On one hand we have a highly parallel method that runs up to 2 times faster than the

QR method on serial machines. On the other hand we are proposing a method based on

diagonalizing intermediate matrices to drive a performance measure, ‖ f‖, to zero. This

idea has severe limitations. When f is near zero, it is necessarily computed with severe

cancellation. While this in itself is not always detrimental, it is a fundamental concern

36



for us, for the quantity ξ , which is used in computing the homotopy updates, is given by

Y tξ = f , where Y is a matrix of left eigenvectors. If, for example, f̄ = f − r is a computed

version of the exact feedback defined by {λ1, . . . ,λn}, and if Y is exactly a matrix of left

eigenvectors for H− e1 f t , then

Y (H− e1 f t) = ΛY

Y (H− e1 f t)+Ye1rt = ΛY +Ye1rt

Y (H− e1( f − r)t) = ΛY +Ye1rtY−1Y

Y (H− e1 f̄ t) = (Λ+R)Y (6.1)

where R =Ye1rtY−1. When ‖r‖ is on the order of ‖ f̄‖, as we expect near convergence, our

first order homotopy update term, λ̇ , might be mostly error as

|λ̇ k|= |ωkξk|= |et
kYe1 f̄ tY−1ek| ≈ |et

kYe1rtY−1ek|.

If the eigenproblem for H− e1 f t is ill-conditioned, then even a relatively small r could

lead to relatively large R, thus slowing down convergence. Of course we do expect slower

convergence if the eigenproblem for H is ill-conditioned, since H− e1 f t → H as f → 0.

We have introduced the subproblem of computing f or at least f tY−1. The sensitivity of

which will have important consequences for overall stability/efficiency. To help understand

the issues, we present a sensitivity analysis.
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Theorem 6.1 If H ∈ Rn×n is unreduced Hessenberg and

λ (H− e1 f t) = {λ1,λ2, . . . ,λn},

then there exists a matrix of left eigenvectors, Y , of H− e1 f t such that

Ye1 =−[1,1, . . . ,1]t

and

yi, j =
∂ f j

∂λi
.

Proof: Let H be unreduced Hessenberg and λ (H− e1 f t) = {λ1,λ2, . . . ,λn}. Recall from

(3.11) that f t = αet
nφ(H) where φ(x) =

n

∏
j=1

(x−λi) and, in this case,

α =

(
n−1

∏
j=1

h j+1, j

)−1

.

Let φi(x) = ∏
j 6=i

(x−λ j). It is not difficult to verify that et
nφi(H)e1 = α−1, which is nonzero

since H is unreduced. With all of this in mind,

αet
nφi(H)(H− e1 f t−λiI) = αet

nφi(H)(H−λI)−αet
nφi(H)e1 f t

= αet
nφ(H)−αα

−1 f t

= f t− f t

= 0
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shows that (αet
nφi(H),λi) is a left eigenpair of H− e1 f t and αet

nφi(H)e1 = 1. Letting

y∗i =−αet
nφi(H) and Y = [y1,y2, . . . ,yn]

∗ yields

Y (H− e1 f t)Y−1 = diag(λ1,λ2, . . . ,λn)

with Ye1 =−[1,1, . . . ,1]t .

Now taking the derivative of f t = αet
nφ(H) with respect to λi gives

∂ f t

∂λi
=−αet

nφi(H).

Thus,

∂ f t
j

∂λi
= yi, j. 2

The above result says that Y being appropiately scaled is the transpose of the Jacobian of

f (Ω),

Jλ ( f ) = Y t

and provides the sensitivity of f with respect to the λi. We are also concerned with the

sensitivity of the λi with respect to perturbations in f . This analysis is already done; for if

Jλ ( f ) is nonsingular, then J f (λ ) = (Jλ ( f ))−1.

To a large extent the efficiency of this method depends on the triangular factorization

of a matrix of eigenvectors. This factorization provides an inexpensive estimate of its

condition number (see [8] or DLACN2 in [12]). Unfortunately, the factorization can also be

a source of instability. Generically, L tends to be ill-conditioned for large n. The accuracy
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of the decomposition depends primarily on the accuracy of the matrix L, which is computed

recursively. A small example may help clarify some of the difficulties.

Consider the matrix

H =

a 0

δ a+ ε

.
If δ = 0, then I is a matrix of both right and left eigenvectors and the eigenvalues are per-

fectly conditioned. However, our SV Lt factorization of the matrix of eigenvectors requires

an unreduced H, and so does not exist. The condition number of an eigenvalue of H gives

a bound on the perturbations in λ in relation to perturbations in H. The 2-norm condition

number is defined to be

κλ =
1
|y∗x|

where y∗ and x are unit 2-norm left and right eigenvectors corresponding to λ . Note H has

the following unit 2-norm eigenpairs:

([1,0],a) and ( 1√
1+(δ/ε)2

[1,−δ/ε]t ,a)

([0,1],a+ ε) and ( 1√
1+(δ/ε)2

[δ/ε,1],a+ ε)

So the 2-norm condition numbers for the eigenvalues of H are

κa = κa+ε =
√

1+(δ/ε)2.
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Notice that for a fixed ε 6= 0 the eigencondition of H improves as δ → 0, while

L =


0

δ√
δ 2 + ε2

1
ε√

δ 2 + ε2



becomes singular! In short, computing ξ t by solving SV Ltξ t = f t could potentially intro-

duce ill-conditioned subproblems into a well conditioned problem.

7 Error Analysis

We have suggested that |λ̈ k/2| be used as an error estimate for λk, based on a Taylor expan-

sion of the solution to the homotopy initial value problem. This may not give satisfactory

assurance of accuracy, especially given the typically ill-conditioned systems that must be

solved to compute λ̈ .

If Y is our matrix of left eigvectors of H − e1 f t , then the Bauer-Fike theorem says

that the eigenvalues of H are within ‖ f‖ν(H− e1 f t) ≤ ‖ f‖κ(Y ) of those of Λ, where

ν(H− e1 f t) is the spectral condition number of H− e1 f t . This result is typically too pes-

simistic to be useful here, for while we can estimate κ(Y ) efficiently, it is typically poorly

scaled, and not a good estimate of ν(H− e1 f t). The difficulty in getting a good estimate of

ν(H− e1 f t) is precisely why it is cheap. Y is factored into triangular factors. In order to

achieve good row (or column) scaling, it is necessary to explicitly form Y , which requires

about n3/3 flops. We can improve the estimate by noticing that ν(H− e1 f t) ≤ κ(D−1Y )

for any nonsingular diagonal matrix D, and we can use a condition estimator for D−1Y
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without explicitly forming Y . Now

D−1Y (H− e1 f t)Y−1D = Λ

D−1Y HY−1D = Λ+D−1
ωξ

tD, (7.1)

and we would like D to minimize η = ‖D−1ωξ tD‖2. Osborne in [19] shows that a diagonal

matrix with positive real elements that balances A also minimizes ‖D−1
α ADα‖F over all

nonsingular diagonal matrices Dα . As ωξ t is rank one, it is easy to verify that

D = diag

(∣∣∣∣ω1

ξ1

∣∣∣∣ 1
2

,

∣∣∣∣ω2

ξ2

∣∣∣∣ 1
2

, . . . ,

∣∣∣∣ωn

ξn

∣∣∣∣ 1
2
)

balances ωξ t . Therefore, it also minimizes η since ‖ · ‖F = ‖ · ‖2 for rank 1 matrices. We

then have

‖D−1
ωξ

tD‖2
2 = ‖D−1

ω‖2
2 ‖ξ tD‖2

2

=
n

∑
k=1

∣∣∣∣∣
∣∣∣∣ ξk

ωk

∣∣∣∣ 1
2

ωk

∣∣∣∣∣
2

n

∑
k=1

∣∣∣∣∣
∣∣∣∣ωk

ξk

∣∣∣∣ 1
2

ξk

∣∣∣∣∣
2

=

(
n

∑
k=1
|ξk||ωk|

)2

= (|ξ |t |ω|)2

giving a minimum value of η = |ξ |t |ω|.

The quantity η above is useful from an inclusion-region perspective. From (7.1) we
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see that H is similar to Λ+R, with ‖R‖2 = |ξ |t |ω|. Bauer-Fike now says H is similar to

a matrix whose eigenvalues differ from those of Λ by |ξ |t |ω|. An even better result holds

for the updated eigenvalues neglecting the second order terms. Since rii = λ̇ i = ωiξi, H is

similar to a matrix whose eigenvalues differ from those of Λ+diag(rii) by ‖R−diag(rii)‖2.

Since R is a rank 1 matrix

‖R−diag(rii)‖2 ≤ ‖R−diag(rii)‖F

= [(|ξ |t |ω|)2−∑k |λ̇ k|2]1/2

= [(|ξ |t |ω|)2−∑k |ωkξk|2]1/2.

(7.2)

We can also use the off diagonal elements of R to estimate the radii of Gershgorin disks

about the updated eigenvalues.

Informally, an algorithm is said to be backward stable if it provides an answer that is

the exact solution of a nearby problem. In terms of the eigenvalue problem, an algorithm

is backward stable if the eigenpair (x̃, λ̃ ) it outputs for input A is the exact solution of

(A + E)x̃ = λ̃ x̃ with ‖E‖‖A‖ ≈ O(u) where u is the machine precision. A complete error

analysis of this algorithm is still left to be done. So how can we have any confidence in our

output? The answer is residuals. If x̃ is scaled so that ‖x̃‖= 1, then the residual associated

with (x̃, λ̃ ) is

r = Ax̃− λ̃ x̃. (7.3)
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We will now show that if the residual is small, then E is small. From (7.3) we see

Ax̃− r = λ̃ x̃

Ax̃− rx̃∗x̃ = λ̃ x̃

(A− rx̃∗)x̃ = λ̃ x̃

giving E =−rx̃∗. Since E is rank 1,

‖E‖2 = ‖rx̃∗‖2 = ‖r‖2‖x̃∗‖2 = ‖r‖2.

So a small residual indicates a small E, and we can be confident we have solved a nearby

problem. Note an analagous result holds for the residual based on left eigenvectors.

Residual norm estimates are available since

y∗k(H−λkI) = ωk f t

and

(H−λkI)xk = ξke1.

These would be particularly valuable if we knew the norm of either y∗k or xk since the

backward error in λk is given by ‖y
∗
k(H−λkI)‖
‖y∗k‖

or ‖(H−λkI)xk‖
‖xk‖ . Again, the factored form of Y
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is frustrating as we don’t have yk explicitly. Notice though, that

‖y∗k(H−λkI)‖‖(H−λkI)xk‖
‖y∗k‖‖xk‖

=
‖y∗ke1 f t‖‖e1 f txk‖
‖y∗k‖‖xk‖

=
|ωk| ‖ f t‖ ‖e1‖ |ξk|
‖y∗k‖‖xk‖

=
|λ̇ k|‖ f‖
‖y∗k‖‖xk‖

≤ |λ̇ k|‖ f‖
‖y∗kxk‖

= |λ̇ k|‖ f‖.

An upper bound for the minimum of these two relative residuals is ρk =
√
|λ̇ k|‖ f‖.

If the upperbound gives an unsatisfactory error, we are resigned to form yk from SV Lt

and calculate the residual explicitly. If this relative residual is still too big, a (left) inverse

iteration is applied with the current eigenvalue and eigenvector estimate from the homotopy.

After updating λ with the inverse iteration, the new relative residual is explicitly computed.

If accurate eigenvectors of H are required, we suggest an inverse iteration on all of the

eigenvalues, not just those that fail the backward error tests.

8 Numerical Experiments

Experiments were performed in MATLAB® [16] on randomly generated matrices with

entries uniformly distributed between -1 and 1 using the RAND function. The matrices

were reduced to Hessenberg form via MATLAB’s HESS function. A total of 50 matrices

were tested for each of size 50, 100, 150, 200, 250, 300, 400, and 500. In all of our tests, we

have performed the restarted homotopy iterations until |λ̈ | < 2ε where ε is the sqare root
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of the machine precision. Upon convergence one additional homotopy update is performed

to help reduce residuals. As described at the end of the previous section, inverse iterations

are then performed on any eigenpairs that fail to satisfy a relative residual tolerance set to

10−9 for these experiments.

Essential to this method is the initial estimate of the eigenvalues of H. This was ob-

tained via the QR algorithm with implicit double shifts but with a relaxed deflation toler-

ance. Specifically, the subdiagonal elements of the intermediate transformed matrices were

considered to be zero when

hi+1,i < tol(|hi,i|+ |hi+1,i+1|) (8.1)

where tol is dependent on the size of H. An effective value of tol in terms of overall flops

was determined through experiments to be

tol =


0.01 : n < 400

0.001 : n≥ 400

.

This method for the initial guess provides estimates near the actual eigenvalues, which

serves to reduce the number of homotopy iterations required and the number of homotopy

paths with potential bifurcations. This in turn reduces the size of the Arnoldi step or in

many instances avoids it all together. This is all discussed further in section 8.1.

Recall that we use the second order term in (3.3) as an error estimate for the Euler

prediction and therefore calculate the time step to be hk =
√

2τ/|λ̈ k|. Currently the eigen-
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values that are candidates for being replaced by the Arnoldi minimization are those with

hk < j, where j is equal to the maximum of 2 and the current iteration number. The eigen-

values to be replaced are selected from the candidates in order of minimum hk, and the

total chosen may not exceed n/4. Due to the quality of the initial eigenvalue estimates,

of the 400 matrices tested, 219 of them never utilized the Arnoldi minimization step. For

the others, typically only the first homotopy iteration required the Arnoldi minimization, m

never exceeded 12 and was usually between 2 and 4.

We present two comparisons. The first is of flop counts for the restarted homotopy

method versus the QR algorithm with implicit double shifts with tol in (8.1) set to the

machine precision. The second is of residuals from the restarted homotopy method versus

MATLAB’s EIG routine. These experiments indicate that on at least well conditioned

problems the restarted homotopy method is as much as two times faster than QR with

implicit double shifts. This difference is made more significant by the fact the QR algorithm

as employed for flop comparison only calculated the eigenvalues, whereas the homotopy

method supplies a factorization of a matrix of left eigenvectors as well as some eigenvectors

calculated explicitly from inverse iteration as necessary to meet a residual tolerance. This

must be qualified. The computed left eigenvectors, SV Lt , are not as accurate as those from

QR as implemented in MATLAB’s EIG routine. However, with typically just one inverse

iteration after the homotopy process has converged, we have found that this method is

significantly more accurate than the QR method for computing the eigenvalues as it gives

much smaller residuals. A summary of flop counts is given in Table 8.1 and residuals in

Table 8.2. It should be noted that actually 51 matrices of size 500 were run as one of them

failed to converge. The results presented for n = 500 are only for those that converged.
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n
avg n3 flops min n3 flops max n3 flops

RHM QR RHM QR RHM QR

50 3.9 6.1 3.2 5.5 4.7 7.0
100 3.5 5.7 2.9 5.4 4.1 6.6
150 3.4 5.5 2.8 5.0 4.7 6.0
200 3.6 5.4 2.9 5.1 4.5 5.8
250 3.7 5.3 2.9 4.9 4.5 5.6
300 3.8 5.2 2.8 5.0 4.8 5.6
400 4.1 5.1 3.4 4.9 5.6 5.5
500 4.2 5.1 2.8 4.9 5.1 5.4

Table 8.1: Flop Count for Restarted Homotopy Method (RHM) and QR

n RHM EIG

50 4.5 × 10−11 4.5 × 10−12

100 9.7 × 10−10 4.4 × 10−10

150 1.0 × 10−9 1.7 × 10−9

200 1.0 × 10−9 3.5 × 10−8

250 1.0 × 10−9 5.3 × 10−8

300 1.0 × 10−9 8.8 × 10−8

400 1.0 × 10−9 1.4 × 10−6

500 1.0 × 10−9 5.2 × 10−6

Table 8.2: Maximum Residual from 50 Matrices: RHM vs MATLAB’s EIG

8.1 Importance of the Initial Eigenvalue Estimate

A few methods were considered for providing the initial eigenvalue estimates needed to

begin the first homotopy iteration. The key consideration here was in limiting the total

flops. The game one has to play here is this. An inexpsensive initial guess, such as a list of

random numbers, may be easy on the front end but is paid for on the back end. Inexpensive

estimates are typically a poor approximation to the actual eigenvalues and would require

more homotopy iterations and larger Arnoldi minimizations to converge if convergence

occurs at all. Increasing the work done in providing the initial estimate moves more of the

cost to the front end. Expensive estimates will be nearer the actual eigenvalues and reduce

48



the homotopy iterations and Arnoldi minizaitons needed. So the goal is to find a balance

between the cost of the initial estimate and the homotopy iterations.

We will now present a comparison of the restarted homotopy method for four different

techniques of obtaining the initial guess. The testing was done on 30 matrices of size 200.

Method 1 uses as the intial guess the eigenvalues of the 2× 2 diagonal blocks of H. This

method is extremely cheap as it requires only O(n) flops. Method 2 employs a divide and

conquer strategy and is presented in Algorithm 8.1.

Algorithm 8.1: A Spectrum Estimate Routine

Input: Hessenberg matrix H ∈ Rn×n

Output: Ω, which is an approximation to λ (H)

1. If n≥ 8 go to 2 else go to 5.

2. Find k such that .4n < k < .6n and hk,k−1 is of smallest magnitude.

3. Find the eigenvalues of H(k:n,k:n) and append to Ω.

4. Let H← H(1:k−1,1:k−1) and n← k−1 and go to 1.

5. Let p = bn
2
c and append the eigenvalues of H(1:p,1:p) and H(p+1:n, p+1:n) to

Ω.

Method 3, the one ultimately implemented, is the QR algorithm with double implicit

shifts and a relaxed deflation tolerance. That is again hi+1,i is considered to be zero when

tol = 0.01 in (8.1). Method 4 is also the QR algorithm with double implicit shifts but with

the stricter deflation tolerance where the machine precision replaces tol in (8.1). Method

4 is the opposite extreme of Method 1 in that it solves the eigenvalue problem completely
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and renders the homotopy steps unnecessary.

Method
Estimate Flops Homotopy Flops Total Flops
mean max mean max mean max

1 0 0 9.9 18.3 9.9 18.3
2 1.2 1.3 4.5 6.8 5.6 7.8
3 1.8 2.1 1.5 1.7 3.3 3.8
4 5.4 5.7 0.7 0.7 6.0 6.4

Table 8.3: n3 Flops for Restarted Homotopy Method with Different Initial Estimates

Table 8.3 illustrates the dance that occurs between the initial eigenvalue estimates and

the total flops. We do indeed see that extra effort put into generating the initial eigenvalue

estimates does result in less work needed for refinement by the homotopy iterations. How-

ever, there is a point where the less work required for the homotopy steps due to a quality

initial guess does not offset the cost of that guess. This is seen by comparing Method 4 to

Method 3. Residual checks were not performed for the purposes of these comparisons.

An efficient value of tol in (8.1) was determined through experiments and depends on

n. Fifty matrices of each size n= 50,60,70, . . . ,500 were evaluated using the QR algorithm

with double implicit shifts and tol = 10−1,10−2, . . . ,10−6 in (8.1) for the initial eigenvalue

estimate. The mean of the total flops requred for the initial estimate and homotopy itera-

tions combined was calculated for each combination of n and tol and then used to determine

an effectivel tol based on n.

8.2 Bifurcation Avoidance Through Arnoldi Minimization

Here we will present a demonstration of the Arnoldi minimization handling homotopy

paths with bifurcations. We construct a 10×10 matrix
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A =



1

2

3

4 0
5

6

0 7

8

1 1

-1 1


whose spectrum is

λ (A) = {1,2,3,4,5,6,7,8,1+ i,1− i}.

We then perform a similarity transformation of A by a randomly generated matrix R giving

a full matrix B = RAR−1. We then finally put B in Hessenberg form via MATLAB’s HESS

function, H = hess(B). Disregarding rounding errors the eigenvalues of H are those of A.

Matrix H is input into the restarted homotopy program along with the initial eigenvalue

estimates

Ω = {1,2,3,4,5,6,7,8,9,10}.

This guarantees that the initial homotopy paths contain a bifurcation point, specifically

those originating from λ9 = 9 and λ10 = 10. The program will identify these troublesome

paths through the second derivates and will replace them with those from the Arnoldi min-

imization.

Notice in Table 8.4 that our error estimates, λ̈ , are very low for the eigenvalues 1
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λ λ̇ λ̈ h

1 -1.3 × 10−17 -2.6 × 10−17 6.0 × 107

2 -2.4 × 10−16 -4.7 × 10−16 1.4 × 107

3 -8.5 × 10−16 -1.5 × 10−15 8.0 × 106

4 6.1 × 10−16 8.2 × 10−16 1.1 × 107

5 4.5 × 10−15 1.4 × 10−15 8.4 × 106

6 3.3 × 10−15 -7.7 × 10−15 3.5 × 106

7 -2.6 × 10−14 2.7 × 10−13 5.9 × 105

8 3.0 × 10−14 -1.4 × 10−12 2.6 × 105

9 6.5 × 101 1.1 × 104 3.0 × 10−3

10 -8.2 × 101 -1.1 × 104 3.0 × 10−3

Table 8.4: Initial Homotopy Values for Matrix H with Initial Estimate Ω

through 8, which are essentially exact. However, those for 9 and 10 wtih paths contain-

ing bifurcations are on the order of 104. Correspondingly, the time steps, h, are large for

the good eigenvalues and small for the bad ones. Indeed the program isolates λ9 = 9 and

λ10 = 10 as the only eigenvalues to be replaced by those from the Arnoldi minimization.

The Hessenberg matrix output from the Arnoldi minimization process is

W =

2.119736592076983 −9.433466991510892×10−1

2.389164066258232 −1.197365920764506×10−1

 .

The eigenvalues of W are calculated to be 1.000000000000266± .9999999999997584i

and replace 9 and 10 in the next and final homotopy iteration. This illustrates a bifurcation

avoidance via a real to complex interchange. Also note that since the ’good’ eigenvalues

used to generate the Arnoldi input vector are close to actual eigenvalues of H, the eigenval-

ues of the Arnoldi output are close to those of the remaining eigenvalues of H.
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9 Conclusions and Future Work

Although faster and more accurate than QR on these randomly generated well conditioned

problems, and much more parallelizable, the restarted homotopy method as presented is

neither as general purpose nor as robust as the QR algorithm. For example, an easy way to

construct a matrix for which the method does not converge is to generate a square random

matrix of size n > 30, compute its Hessenberg form, and then divide each subdiagonal

element by 20. This ensures that the product of the subdiagonals is almost certainly much

less than the machine precision, making L singular to working precision as L is lower right

triangular and

l1,n =
n−1

∏
i=1

hi,i+1

‖l̂i+1‖
.

Further, even on well conditioned problems, this method fails to consistently converge if

the size of the matrix is over 500. The most probable culprit for this is that L becomes

increasingly ill-conditioned with increased matrix size.

Two primary avenues may lead toward making this a general purpose eigensolver com-

petitive with QR. Perhaps the most natural is a block implementation, where one solves a

multi-input inverse eigenvalue problem that computes matrices B∈Rn×m and F ∈Rm×n so

that A−BF has the desired spectrum. This introduces more BLAS 3 operations and may

improve the conditioning of the L matrix from step 1. Convergence results may be more

complicated in this case, since if m > 1 the matrix F is no longer unique. For the homotopy

method to converge, it is necessary for F to approach 0. F does become unique once the

eigenvectors are restricted, so pursuing this route would require a method for calculating F

so that the eigenvectors of H−BF were near those of H. The multi-input eigenvalue as-
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signment method of Arnold and Datta [4] computes an F and a triangular matrix L, which

block diagonalizes A−BF but does not meet the eigenvector requirement.

Another avenue could be to explicitly calculate an eigenvector matrix for H− e1 f t .

While prohibitively more expensive than the current factorization SV Lt in a serial imple-

mentation, it may lead to a more robust parallel version of the restarted homotopy method.

The right eigenvectors, xi, of the matrix H− e1 f t can be computed directly by solving the

Hessenberg systems

(H−λiI)xi = e1, i = 1,2, . . . ,n. (9.1)

Given X = [x1,x2, . . . ,xn], we can compute the quantities needed for the homotopy updates

ω = X−1e1 and ξ t = f tX = et , where e is the vector of ones.
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A Main Code: rhm.m

function [ev,S,V,L,f,lambda dot,t,M,flops,fail] = rhm(H,ev,hom tol,eig tol)

%Calculate the eigenvalues of the unreduced hessenberg matrix H.

%

%ev is an estimate to the eigenvalues of H.

%S*V*L' is a factorization of left eigvenvalues of H.

%f is the final feedback vector.

%lambda dot is the derivative of the eigenvalues for the final homotopy

%paths.

%t is the number of iterations performed.

%M is a vector containing the number of eigenvalues recomputed using the

%Arnoldi method per iteration.

%flops is the number of flops performed discounting lower order terms.

%fail will return 0 if the algorithm converged and 1 otherwise.

%

% External calls

% qralg.m

% combined.m

% orgeig3.m
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% choosem.m

% arnoldi.m

% xpolyvalroots2.m

%check if H is triangular

if min(min(H==triu(H)))==1 || min(min(H==tril(H)))==1

disp('Matrix is triangular');

ev=diag(H);

return

end

%Verify H is unreduced

if ismember(0,diag(H,-1))

disp('Matrix is not unreduced');

return

end

n = max(size(H));

nh = norm(H,'fro');

fail=0;

flops=0;

M=zeros(30,1); %Tracks the number of bad eigenvalues per iteration.
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%Specify the homotopy tolerance and eigenvalue tolerance if not supplied

if nargin<3

hom tol = sqrt(n/(2*nhˆ2));

end

if nargin <4

eig tol=sqrt(eps);

end

%Get an initial eigenvalue estimate if not supplied.

if nargin<2

if n<400

[ev,flops]=qralg(H,.01);

else

[ev,flops]=qralg(H,.001);

end

end

ent=zeros(1,n);

ent(1,n)=1;

if max(isnan(ev)) || max(isinf(ev))

fail=1;

return
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end

for t=1:30

%Sort the eigenvalues with complex pairs first.

ev =orgeig3(ev);

rl=real(ev(:,1));

im=imag(ev(:,1));

im2=im.*im;

%Calculate the homotopy terms.

[f,L,S,V,lambda dot,lambda double dot]=combined(H,ev,rl,im,im2,n);

nf=norm(f);

%Check if everything is converged. That is are the eigenvalue paths

%essentially straight.

if max(abs(lambda double dot)) < 2*eig tol

k=1;

while k < n

if im(k)

ev(k) = ev(k) + lambda dot(k) + lambda double dot(k)/2;

ev(k+1) = conj(ev(k));
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k = k+2;

else

ev(k:n) = ev(k:n) + lambda dot(k:n) + real(lambda double dot(k:n))/2;

k = n+1;

end

end

%Perform one additional iteration to get better residuals

ev =orgeig3(ev);

rl=real(ev);

im=imag(ev);

im2=im.ˆ2;

[f,L,S,V,lambda dot,lambda double dot]=combined(H,ev,rl,im,im2,n);

k=1;

while k < n

if im(k)

ev(k) = ev(k) + lambda dot(k) + lambda double dot(k)/2;

ev(k+1) = conj(ev(k));

k = k+2;

else

ev(k:n) = ev(k:n) + lambda dot(k:n) + real(lambda double dot(k:n))/2;

k = n+1;

end
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end

M=M(1:t-1);

m=nonzeros(M);

flops=flops+sum(((n-m).ˆ3)/3)+(t+1)/3*nˆ3+sum(m)*(nˆ2)+sum((m.ˆ2))*n+10*sum(m.

ˆ3);

flops=flops/nˆ3;

return

end

%Calculate homotopy time steps

h(:,1) = (sqrt(2 * hom tol ./ abs(lambda double dot)));

%---------------------Determine the number of 'bad' eigenvalues.

m=choosem(h,n,nf,nh,t);

M(t)=m;

%find the m 'bad' eigenvalues with the smallest h.

if m6=0
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%Make sure conjugate pairs do not get separated between good and bad.

%The variable bad will hold the indices of ev corresponding to the bad eigenvalues.

%The variable good will hold the indeces of ev corresponding to the good eigenvalues.

[¬,I] = sort(h);

bad = I(1:m);

if im(bad(m)) && rem(bad(m),2)

bad(m+1) = bad(m)+1;

m = m+1;

end

good=setdiff(I, bad);

else

good=(1:n);

bad=[];

end

%Update the 'good' eigenvalues with the largest using the homotopy update.

h=min(h,1);

k=1;

lg=n-m; %lg is number of good eigenvalues

while k ≤lg
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if ¬im(good(k))

ev(good(k)) = ev(good(k)) + h(good(k)) * lambda dot(good(k)) + h(good(k))ˆ2 * real

(lambda double dot(good(k))) / 2;

k=k+1;

else

ev(good(k)) = ev(good(k)) + h(good(k)) * lambda dot(good(k)) + h(good(k))ˆ2 *

lambda double dot(good(k)) / 2;

ev(good(k)+1) = conj(ev(good(k)));

k=k+2;

end

end

if max(isnan(ev)) || max(isinf(ev))

fail=1;

return

end

%Update the bad eigenvalues to be the eigenvalues from the arnoldi iteration

if m6=0

%First find the arnoldi input vector, b=enˆt*phi(H') where phi is the

%polynomial with updated good egienvalues as roots.
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b=xpolyvalroots2(H,ent,ev(good));

if m6=0

[Arnoldi Matrix,¬,¬,c] = arnoldi(H',b',m,1);

if c<m

disp(['Arnoldi breakdown: h(c+1,c) = ',num2str(Arnoldi Matrix(c+1,c)),' c =

',int2str(c)])

return

end

if max(max(isnan(Arnoldi Matrix))) || max(max(isinf(Arnoldi Matrix)))

fail=1;

return

end

ev(bad) = eig(Arnoldi Matrix);

end

if max(isnan(ev)) || max(isinf(ev))

fail=1;

return

end

end

end

fail=1;

65



A.1 subroutine: combined.m

function [f,L,S,V,lambda dot,lambda double dot]=combined(H,ev,rl,im,im2,n)

%function [f,L,lambda dot,lambda double dot,V,S]=combined(H,ev,rl,im,im2,n)

%

%diag(S)VL'(H-e1*f')=diag(ev)*inv[diag(S)VL']

%----------------------CALCULATE FEEDBACK AND L-----------------

%Hdiag is the diagonal elements of H and used to make the recursion run faster.

Hdiag = diag(H,0);

L(n,1) = 1 ;

scl=ones(n-1,1);

%The recursion is L(i+1) = (H'-real(ev(i))*I) * L(i) + v(i)ˆ2 * L(i-1).

%Where v(i) = imag(ev(i)) if i is odd and v(i) = 0 if i is even.

for j=1:n

for k=1:n

H(k,k) = Hdiag(k) -rl(j);

end

rblock = n-j+1:n;

if j<n-1

cblock= n-j:n;
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else

cblock= 1:n;

end

if mod(j,2) == 1

L(cblock,j+1) = H(rblock,cblock)'*L(rblock,j);

else

L(cblock,j+1) = H(rblock,cblock)'*L(rblock,j) + im2(j-1)*L(cblock,j-1)/scl(j-1,1);

end

if j<n

scl(j,1)=2ˆround(log2(norm(L(n-j:n,j+1))));

L(n-j:n,j+1)=L(n-j:n,j+1)/scl(j,1);

end

end

f=L(:,n+1)/L(1,n);

L=L(:,1:n);

%-----------------Calculate V and S-----------

nisodd = mod(n,2);

if nisodd
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nm1=n-1;

else

nm1=n;

end

%The ith diagonal 2x2 block of V is the identity. Vii = I

V=eye(n);

%The goal is to find V such that VG'=BV where B is block diagonal.

%Note G'(i) * V(ij) + V(ij)G'(j)= V(i,j-1)*e2*e1' is the equation we use to solve for V.

%Using the above equation we come up with a matrix equation Ax=b where the elements

of x are the elements of V(ij)

for i=1:nm1/2-1

for j=i+1:nm1/2

a1=rl(2*i-1)-rl(2*j-1);

a2=rl(2*i-1)-rl(2*j);

a3=rl(2*i)-rl(2*j);

a4=im2(2*j-1)-im2(2*i-1);

a5=rl(2*i)-rl(2*j-1);

A(1,1)= (a1*a2+a4)/scl(2*j-1);
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A(1,2)= scl(2*i-1)*(a1+a3)/scl(2*j-1);

A(2,1)= -im2(2*i-1)*(a1+a3)/(scl(2*i-1)*scl(2*j-1));

A(2,2)= (a5*a3+a4)/scl(2*j-1);

C(1,1) = a2/scl(2*j-1);

C(1,2) = scl(2*i-1)/scl(2*j-1);

C(2,1) = -im2(2*i-1)/(scl(2*i-1)*scl(2*j-1));

C(2,2) = a3/scl(2*j-1);

V(2*i-1:2*i,2*j)=A\(scl(2*j-2)*V(2*i-1:2*i,2*j-2));

V(2*i-1:2*i,2*j-1)=C*V(2*i-1:2*i,2*j);

end

end

if nisodd

for i=1:2:nm1

V(i:i+1,n)=[rl(i)-ev(n) scl(i); -im2(i)/scl(i) rl(i+1)-ev(n)]\(scl(n-1)*V(i:i+1,nm1)

);

end

end

%Calculate 2x2 blocks of eigenvectors for B which is VGt=BV

S=zeros(n,2);
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for k=1:nm1/2

S(2*k-1,2) = 1;

if im(2*k-1) == 0

S(2*k-1,1) = (ev(2*k-1)- ev(2*k))/scl(2*k-1);

else

S(2*k-1,1) = im(2*k-1)*sqrt(-1)/scl(2*k-1);

end

S(2*k,2) = 1;

if im(2*k-1) == 0

S(2*k,1) = 0;

else

S(2*k,1) = im(2*k)*sqrt(-1)/scl(2*k-1);

end

end

if nisodd

S(n,1) = 1;

end
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%------------------------Calculate Derivatives----------------

if nisodd

p = n-1;

else

p = n;

end

for j = 1:p/2

w(2*j-1:2*j,1) = S(2*j-1:2*j,1:2)*V(2*j-1:2*j,n)*L(1,n);

end

if p 6=n

w(n,1) = S(n,1)*V(n,n)*L(1,n);

end

%In solving for z*, first solve f' * L'ˆ(-1).

%Do this by solving x where x*L' = f' using a 'weird backsub'.

x(1,n) = f(1)/L(1,n);

for j=2:n
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temp = f(j);

for k=n-j+2:n

temp = temp -L(j,k)*x(1,k);

end

x(1,n-j+1) = temp/L(j,n-j+1);

end

%Next solve a backsub where yV=x.

y(1,1) = x(1,1)/V(1,1);

for j=2:n

temp = x(1,j);

for k = 1:j-1

temp = temp-y(1,k)*V(k,j);

end

y(1,j) = temp/V(j,j);

end

% Next solve z*S=y

z=zeros(n,1);

for k = 1:p/2

z(2*k-1,1) = (y(1,2*k-1)-y(1,2*k)*S(2*k,1)/S(2*k,2))/(S(2*k-1,1) -S(2*k-1,2)*S(2*

k,1)/S(2*k,2));
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z(2*k,1) = (y(1,2*k)-z(2*k-1,1)*S(2*k-1,2))/S(2*k,2);

end

if p 6=n

z(n,1) = y(1,n)/S(n,1);

end

%Calculate the derivative of the eigenvalue

lambda dot = w.*z;

%Calculate the second derivative of the eigenvalue

k=1;

numerator=zeros(n,1);

lambda double dot=zeros(n,1);

while k≤n

if im(k)

numerator(1:n,1)=1;

numerator(k)=0;

denominator = -ev(:,1) + ev(k,1);

denominator(k) = 1;

lambda double dot(k,1) = 2*lambda dot(k)*sum(lambda dot.*(numerator./
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denominator));

lambda double dot(k+1,1) = conj(lambda double dot(k));

k=k+2;

else

numerator(1:n,1)=1;

numerator(k)=0;

denominator = -ev(:,1) + ev(k,1);

denominator(k) = 1;

lambda double dot(k,1) = real(2*lambda dot(k)*sum(lambda dot.*(numerator./

denominator)));

k=k+1;

end

end
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A.2 subroutine: arnoldi.m

function [H,Q,v,j]=arnoldi(A,b,m,reorth)

%Arnoldi method using MGS with optional reorthogonalization

%

%Uses MGS to find hessenberg H and unitary Q such that AQ=QH -v e mˆt

%b is the input vector.

%A is nxn

%b is nx1

%m is the size of the Arnoldi iterartion

%Q is nxm and span(q1, q2, ..., qk) = span(b, Ab,...,Aˆ(k-1)b) for k=1:m

%j is the actual number of Arnoldi steps performed. If the procedure

%breaks down then j<m and eig(H) is contained in eig(A);

if nargin < 4

reorth = 1;

end

zero tol = 1e-10;

n=length(b);

H=zeros(m,m);

Q=zeros(n,m);

Q(:,1)=b/norm(b);
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for j=1:m

v = A*Q(:,j);

for k = 1:j

H(k,j) = Q(:,k)'*v;

v = v -H(k,j)*Q(:,k);

end

if reorth == 1

for k = 1:j

tmp = Q(:,k)'*v;

v = v -tmp * Q(:,k);

H(k,j) = H(k,j) + tmp;

end

end

if j<m

H(j+1,j) = norm(v);

if H(j+1,j) ≤zero tol

return

end

Q(:,j+1) = v/H(j+1,j);

end

end
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A.3 subroutine: xpolyvalroots2.m

function y = xpolyvalroots2(h,x,lam)

%function y = xpolyvalroots(h,x,lam)

%

%y = x*(a-lam(1))*(a-lam(2))*...*(a-lam(n))/norm(x*(a-lam(1))*...*(a-lam(n-2))

d = length(lam); [m,n] = size(x); ln2 = log(2); t = 0;

l = orgeig3(lam);

if rem(d,2), flag=1; else flag=2; end

for i=1:2:d-flag,

% Compute ak and bk, where xˆ2 + ak*x + bk = (x -l(i))*(x -l(i+1))

ak = -(real(l(i)) + real(l(i+1)));

bk = real(l(i))*real(l(i+1)) -imag(l(i))*imag(l(i+1));

% Compute x = x*(Hˆ2 + ak*H + bk*I)

y = x*h + ak*x;

x = bk*x + y*h;

% Scale x

x=x/2ˆ(ceil(log2(norm(x))));

end

if flag==2,

ak = -(real(l(d-1)) + real(l(d)));

bk = real(l(d-1))*real(l(d)) -imag(l(d-1))*imag(l(d));
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y = x*h + ak*x;

y = bk*x + y*h;

else

y = x*h -l(d)*x;

end
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A.4 subroutine: orgeig3.m

function [lambda,ipvt]=orgeig(eigs,ctol)

%function [lambda,ipvt]=orgeig(eigs,ctol)

%

% sorts an n-vector of real numbers and complex pairs

% so that complex pairs appear consecutively in the first

% lk positions, and the real numbers appear grouped

% as nearest nbrs in the last n-lk positions.

% eigs is the vector of such numbers

% ctol is a tolerance for snapping a cplx number to a real number

% lambda is the sorted vector

% ipvt is the permutation (lambda = ipvt(eigs))

%

% calls findreal

n = length(eigs); lambda = zeros(n,1); ipvt = 1:n;

%snap to real axis

if nargin < 2, ctol = 1e-10; end

jj = findreal(eigs,ctol); eigs(jj) = real(eigs(jj));
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%get complex pairs

kk = find(imag(eigs)); lk = length(kk);

if rem(lk,2), disp('not self conjugate'); end

nk = ones(n,1); nk(kk) = zeros(lk,1); nk = find(nk); %nk = ¬kk

ipvt = ipvt([kk;nk]); eigs = eigs(ipvt);

%make sure cplx pairs are together

jj = find(imag(eigs) > 0); [lc,li] = sort(eigs(jj));

lambda(1:2:lk) = lc;

ip1 = ipvt(jj(li));

jj = find(imag(eigs) < 0); [lc,li] = sort(eigs(jj));

lambda(2:2:lk) = lc;

ip2 = ipvt(jj(li));

ipvt([1:2:lk 2:2:lk]) = [ip1 ip2];

jj = find(imag(eigs) == 0); [lc,li] = sort(eigs(jj)); ip2 = ipvt(jj(li));

lambda(lk+1:n) = lc;

ipvt(lk+1:n) = ip2;

%sort real eigs into pairs of close values

for j=lk+1:2:n-2,

[m,jj] = min(abs(diff(lambda(j:n))));

t = lambda(j); lambda(j) = lambda(j-1+jj); lambda(j-1+jj) = t;

t = lambda(j+1); lambda(j+1) = lambda(j+jj); lambda(j+jj) = t;
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t = ipvt(j); ipvt(j) = ipvt(j-1+jj); ipvt(j-1+jj) = t;

t = ipvt(j+1); ipvt(j+1) = ipvt(j+jj); ipvt(j+jj) = t;

[s,jj] = sort(lambda(j+2:n));

lambda(j+2:n) = s; ipvt(j+2:n) = ipvt(j+1+jj);

end
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A.5 subroutine: findreal.m

function t = findreal(x,tol)

%function t = findreal(x,tol)

%

%finds the indices of real elements of a vector

%a scalar is called real if |imagpart| < tol or |imagpart/modulus| < tol

if nargin < 2, tol = 500*eps*max(abs(x)); end

if any(abs(x)==0),

t = find(abs(imag(x)) < tol);

else

t = find( abs(imag(x))./abs(x) < tol | abs(imag(x)) < tol);

end
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A.6 subroutine: choosem.m

function [m]=choosem(h,n,nf,nh,j)

%Finds the number of eigenvalues to find using the Arnoldi minimization.

maxarni=floor(n/4);

%Candidates for Arnoldi minimization:

candidates = find(h < 10); maxshift = length(candidates);

%number of eigs to replace (ad hoc)

if nf > nh/4,

if rem(j,2), m = 5; else m = min([maxshift maxarni]); end

else

if rem(j,2), m = 2; else m = min([maxshift maxarni]); end

end

if j < log2(n)-1, m = min([maxarni length(find(h<j))]); end

if j == 1, m = min([floor(n/4) length(find(h<2))]); end
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A.7 subroutine: qralg.m

function [ev, flop,h,Q]=qralg(h,tol)

%function [ev, flop,h,Q]=qralg(h,tol)

%QR algorithm with implicit double shifts. Input h is Hessenberg.

%tol is the tolerance to make subdiagonal elements zero.

%Output h is real Schur form of input h. h=Q'hQ.

%flop is the total flops.

%

%calls francisqr.m

[n,¬] = size(h);

findQ=0;

if nargout>3

findQ=1;

Q=eye(n);

end

if nargin==1;

tol=eps;

end

p=0;

q=0;
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flop = 0;

if n==1

ev=h;

return

end

if n>2

while q<n

%Set to zero all subdiagonal elements sufficiently small.

row1=p+2;

row2=n-q;

for j=row1:row2

if abs(h(j,j-1))≤tol*(abs(h(j,j))+abs(h(j-1,j-1)))

h(j,j-1)=0;

end

end

%Find largest q and smallest p such that h(n-q+1:n,n-q+1:n) is quasi-upper

%triangluar and h(p+1:n-q,p+1:n-q) is unreduced.

d=diag(h,-1);

[p,q]=findpq(d,n);

%Perform Francis QR step on h(p+1:n-q,p+1:n-q)
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if q < n

if findQ

[h(p+1:n-q,p+1:n-q),P]=francisqr(h(p+1:n-q,p+1:n-q));

Q(:,p+1:n-q)=Q(:,p+1:n-q)*P;

h(1:p,p+1:n-q)=h(1:p,p+1:n-q)*P;

h(p+1:n-q,n-q+1:n)=P'*h(p+1:n-q,n-q+1:n);

flop=flop+13.5*(n-q-p)ˆ2+(nˆ2*(n-2*(q+p)+5)+n*(2*q*p+qˆ2+pˆ2-5*(q+p)

-6))+(pˆ2*(2*(q-n)+p-5)+p*(nˆ2-2*q*n+5*n+qˆ2-5*q-6))+(qˆ2*(2*(p-n

)+q-5)+q*(nˆ2-2*p*n+5*n+pˆ2-5*p-6));

else

h(p+1:n-q,p+1:n-q)=francisqr(h(p+1:n-q,p+1:n-q));

flop = flop + 8 *(n-q-p)ˆ2;

end

end

end

else

d=diag(h,-1);

end

%Find eigenvalues of the 2x2 or 1x1 diagonal blocks on h.

t=1;

86



z=find(d==0);

numzeros=length(z);

ev=zeros(n,1);

for j=1:numzeros+1

if j==numzeros+1;

m=n;

else

m=z(j);

end

%Diagonalize any 2x2 blocks with real eigenvalues

if t<m

desc=((h(t,t)+h(m,m))ˆ2-4*(h(t,t)*h(m,m)-h(t,m)*h(m,t)));

if desc>0

[P,T]=schur(h(t:m,t:m),'complex');

P=real(P);

T=real(T);

ev(t:m)=(diag(T));

h(t:m,t:m)=T;

h(m,t)=0;

h(1:t-1,t:m)=h(1:t-1,t:m)*P;

h(t:m,m+1:n)=P'*h(t:m,m+1:n);
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if findQ

Q(:,t:m)=Q(:,t:m)*P;

end

end

end

ev(t:m)=eig(h(t:m,t:m));

t=m+1;

end
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A.8 subroutine: francisqr.m

function [h,Q]=francisqr(h)

%Does one Francis QR Step for Hessenberg H

%Code from Golub & Van Loan Matrix Computations

%calls house.m

n = max(size(h));

if n<3

Q=eye(n);

return

end

nm1 = n-1;

findQ=0;

if nargout==2

findQ=1;

Q=eye(n);

V=zeros(3,nm1);

end

%find x=(h-aI)*(h-bI)*e1 = (hˆ2 -s*h + tI)e1 where a and b are

%eigenvalues of 2x2 trailing principal submatrix.

s=h(nm1,nm1)+h(n,n);

t=h(nm1,nm1)*h(n,n)-h(nm1,n)*h(n,nm1);
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x=h(1:3,1:2)*h(1:2,1)-s*h(1:3,1)+[t;0;0];

for k=0:n-3

[v,b]=house(x);

q=max([1,k]);

h(k+1:k+3,q:n) = h(k+1:k+3,q:n)-(b*v)*(v'*h(k+1:k+3,q:n));

r=min([k+4,n]);

h(1:r,k+1:k+3)=h(1:r,k+1:k+3) -(h(1:r,k+1:k+3)*(b*v))*v';

if k<n-3

x=h(k+2:k+4,k+1);

else

x=h(k+2:k+3,k+1);

end

if findQ

V(2:3,k+1)=v(2:3);

V(1,k+1)=b;

end

end

[v,b]=house(x);

h(nm1:n,n-2:n) = h(nm1:n,n-2:n)-(b*v)*(v'*h(nm1:n,n-2:n));

h(1:n,nm1:n) = h(1:n,nm1:n)-(h(1:n,nm1:n)*(b*v))*v';

if findQ

V(2,nm1)=v(2);
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V(1,nm1)=b;

Q(nm1:n,nm1:n)=Q(nm1:n,nm1:n)-(b*v)*v';

for j=n-2:-1:1

v=[1;V(2:3,j)];

Q(j:j+2,j:n)= Q(j:j+2,j:n) -(V(1,j)*v)*(v'*Q(j:j+2,j:n));

end

end

h=triu(h,-1);
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A.9 subroutine: findpq.m

function [p,q]=findpq(d,n)

%Find largest q and smallest p such that h(n-q+1:n,n-q+1:n) is

%quasi-upper triangluar and h(p+1:n-q,p+1:n-q) is unreduced.

%d=diag(h,-1) where h is nxn Hessenberg.

z=find(d==0)+1;

numzeros=length(z);

if numzeros == 0

p=0;

q=0;

elseif ¬ismember(z(numzeros),[n n-1])

p=z(numzeros)-1;

q=0;

else

flag=1;

k=numzeros;

q=n-z(k)+1;

while flag && k>1

if (z(k)-z(k-1))<3
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q=n-z(k-1)+1;

k=k-1;

else

flag=0;

end

end

if q>n-3

q=n;

end

if flag==0

p=z(k-1)-1;

else

p=0;

end

end
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A.10 subroutine: house.m

function [v,b]=house(x)

%Given x in Rn, house returns v in Rn and b in R, st Px=norm(x)*e1.

%P=I-bvv' is a householder reflector for x.

n=length(x);

s=x(2:n)'*x(2:n);

v=[1;x(2:n)];

if s==0

b=0;

else

m=sqrt(x(1)ˆ2+s);

if x(1)≤0

v(1)=x(1)-m;

else

v(1)=-s/(x(1)+m);

end

b=2*v(1)ˆ2/(s+v(1)ˆ2);

v=v/v(1);

end
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A.11 subroutine: residualcheck.m

function [ev,res,Y,flops] = residualcheck(ev,H,S,V,L,ld,f,rtol)

%function [ev, res] = residualcheck[ev,S,V,L,ld,ldd]

%Estimates the residual and if the error criterion is not met,

%performs an inverse iteration. Any eigenvalues subject to inverse

%iteration will be updated and stored back in ev.

%H is matrix with eigenvalues ev

%S,V,L are left eigenvector factors from homotopy

%ld is the first derivative of ev

%n is size of ev

%f is feedback

%nh is frobenious norm of matrix H

%The last n columns of Y will be a matrix of left eigenvectors calculated

%using inverse iteration if necessary. The first column of Y will hold

%the index of the corresponding eigenvalue of ev.

%flops will have the total flops based solely on inverse iterations

%performed and calculation of left eigenvector from SVL' as necessary.

%A maximum of two inverse iterations is permitted per eigenvalue.

%

%Calls hessys1.m
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n=length(ev);

k=1;

Y=0;

flops=0;

nf=norm(f);

absld=abs(ld);

res=sqrt(absld*nf);%upperbound for minimum of left or right residual

updatedev=0; %counter tracking number of eigenvalues updated through

%inverse iterations

total invit=0;%counts number of inverse iterations performed;

while k≤n

invit=0;

if res(k)>rtol

%Calculate the residual using the estimated left eigenvector

%if residual upperbound is too high.

if ¬mod(k,2)

y=(S(k,1)*V(k-1,k-1:n)+S(k,2)*V(k,k-1:n))*L(:,k-1:n)';

elseif k==n

y=S(n,1)*V(n,n)*L(:,n)';

else

y=(S(k,1)*V(k,k:n)+S(k,2)*V(k+1,k:n))*L(:,k:n)';

end
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flops = flops + 2*(n-k+1)+(n-k+1)ˆ2;

y=y/norm(y);

res(k)=norm(y*H-ev(k)*y);

if res(k)>rtol

invit=1;

updatedev=updatedev+1;

%Perform inverse iteration if residual is too high

y = hessysl(H,y,ev(k));

y=y/norm(y);

yH=y*H;

ev(k)=(yH)*y'; %update eigenvalue

res(k)=norm(yH-ev(k)*y);

end

if res(k)>rtol

invit=2;

%Perform second inverse iteration if residual still too high.

y = hessysl(H,y,ev(k));

y=y/norm(y);

yH=y*H;

ev(k)=(yH)*y'; %update eigenvalue

res(k)=norm(yH-ev(k)*y);
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end

total invit=total invit+invit;

if imag(ev(k)) && invit

Y(updatedev,1:n+1)=[k,y];

updatedev=updatedev+1;

Y(updatedev,:)=[k+1,conj(y)];

ev(k+1)=conj(ev(k));

elseif invit

Y(updatedev,1:n+1)=[k,y];

end

end

if imag(ev(k))

res(k+1)=res(k);

k=k+2;

else

k=k+1;

end

end

flops = (flops+ total invit*2*nˆ2)/nˆ3;
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A.12 subroutine: hessysl.m

function x = hessysl(a,b,l)

%function x = hessys(a,b,l);

%

% x solves x*(a -l*I) = b, where a is a Hessenberg matrix

[p,n] = size(b);

if nargin > 2, for j=1:n, a(j,j) = a(j,j) -l; end, end

x = zeros(p,n); p = 1:n;

a = [b;a];

% Triangularization

for j=n:-1:2,

jm1 = j -1;

if abs(a(j+1,p(jm1))) > abs(a(j+1,p(j))),

t = p(j); p(j) = p(jm1); p(jm1) = t; % Pivot

end

m = -a(j+1,p(jm1))/a(j+1,p(j));

if abs(m) > 1/eps, disp('small pivot'); end

a(1:j+1,p(jm1)) = m*a(1:j+1,p(j)) + a(1:j+1,p(jm1));

end

% Forward substitution

x(1) = a(1,p(1))/a(2,p(1));
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for j = 2:n,

x(j) = (a(1,p(j)) -x(1:j-1)*a(2:j,p(j)))/a(1+j,p(j));

end
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