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Abstract

Let Q2 C C" be a smooth, bounded, pseudoconvex domain, and let M C 0€) be a complex
submanifold with rectifiable boundary. In 2017, Harrington studied the equation dy A = &
on M, where & is D’Angelo’s 1-form and A is real. In this thesis, we will study a
non-pseudoconvex example in which M has a non-rectifiable boundary. In spite of the lack

of topological obstructions on the boundary, there are no continuous solutions to dy;A = a.
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1 Introduction

In part one of this thesis, we will begin by building on the foundations of complex analysis
of a single variable. Let ¢(z) = zsinx ™ when x # 0 and ¢(x) = 0 when z = 0. This curve
lies inside a simply-connected domain @ C R? and O, {(z1,22) : |72 — ¢(z1)| < |21 |**} with
a non-rectifiable boundary. Therefore, our main result in section 2 will be the following

theorem:

Theorem 1.1. There exists an open set O C R?, and a harmonic function h € C*(O) but

the harmonic conjugate of h is not continuous on O,.

To do this, we will straighten the curve y = ¢(z) and show that the hypothesis of the
Cauchy-Kovalevsky Theorem 2.5 (see [4] and [16]) are satisfied for suitable Cauchy
conditions. We want to show that a solution exists using the Cauchy-Kovalevsky Theorem
along with the Cauchy Estimates. We want the function u(yy,y2) (see (2.36)), which is
derived from the pullback of our harmonic function h after straightening y = ¢(z) to
satisfy the Cauchy conditions (2.26) in Theorem 2.5. Together with the Cauchy estimates,
this will imply that « is a C? solution, but we will see that the harmonic conjugate of A is
not continuous.

In the section 3, we then turn to complex analysis of several variables. First we want to
define a domain Q = {(z1,25) € C?: |z — e™*)|2 < g(2,)} where h(z,) is real-valued and
g(z2) > 0. This domain was inspired by Diederich and Fornaess” Worm Domain [5] . It is
necessary for 2 to be C? and bounded. Therefore, the defining function

h(22)|2 _

p(z1,22) = |21 — €' g(z2) must satisfy:

i. pis C? on a neighborhood of €,
. Q= {(z1, 22) € p(z1, 22) < 0},

iii Vp # 0 on 09,



In order to ensure €2 has the necessary properties, we require that g(z9) satisfy:

i. g(z2) <0 outside a compact subset of C,

ii. Vg(z2) # 0 if g(22) = 0.

We also want to study when our defining function defines a Levi pseudoconvex domain §2.

This occurs when the Levi-form is positive semi-definite [5]. The Levi-form is given by

n an B

iagp(t, t) (p) =

n

for all t € T,°(0Q2) = {t = (t1,...,t,) € C": th (%) (p) = O} where 7)°°(09) is the
space of type (1,0) vector fields which are tailzgtent to the boundary at the point p. In
particular, if the Levi-form is positive definite, then the domain is called strongly
pseudoconvex. The geometry of pseudoconvex domains is an important part of the study
of Several Complex Variables (see [5] and [22]). Next, we will introduce an analytic disc

M C 092 that is biholomorphic to the domain O constructed in part one. The Levi form
vanishes on M and so 0f2 is at best weakly pseudoconvex on M. On M, we also want to
study when we have a plurisubharmonic defining function in Lemma 3.4.

In 1942, Lelong [17] and Oka [20] were the first to define plurisubharmonic functions. A
model example of a plurisubharmonic function in their paper is the logarithm of the
modulus of a holomorphic mapping.

This dissertation work was motivated by Harrington’s paper, “The Diederich-Fornaess
Index and Good Vector Fields” (see [12] Remark 2.6) and Liu [18]. Let Q C C" be a
smooth, bounded, pseudoconvex domain, and let M C 02 be a complex submanifold with
rectifiable boundary. They studied the equation djy; A = & on M, where & is D’Angelo’s
1-form and A is real. In this thesis, we will study a non-pseudoconvex example in which M
has a non-rectifiable boundary. Unfortunately, we were unable to construct a pseudoconvex

domain because the proof falls apart at the boundary in Lemma 3.5. We built an example
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where the equation dy; A = &, and where A is the harmonic conjugate of h. But since the
harmonic conjugate of h is discontinuous, there is no real continuous solution to dy;A = a.

Therefore, we were able to come up with the following:

Theorem 1.2. There ezxists a C? bounded domain Q C C? such that for some My C C,

M = {(0,29) : 20 € My} C O and on M,

_ _ Oh(2)
a=1 aZ_Q

dz, mod dzy,dzy, dzy,

where h is a real harmonic function on My but the harmonic conjugate of h is not

continuous on Ms.

The D’Angelo 1—form & ([6] and [22]) on M will be defined in Section 3.1.1. By studying
the equation dy; A = &, we see that & is not exact on M because it does not have a real
continuous solution A on M. D’Angelo’s useful 1—form & is a geometric invariant that
encodes information about the existence of plurisubharmonic defining functions and the
Diederich-Fornaess index. We will demonstrate this in Sections 3.1.1 and 3.1.2. The Worm
domain of Diederich and Fornaess ([22] Lemma 5.20) is an example of a domain that does
not admit a defining function that is plurisubharmonic on the boundary. Boas and Straube
[3] have shown that this phenomenon can be understood in terms of a.

In [8], Diederich and Forness proved that for every bounded pseudoconvex domain 2 with
C? boundary in C", there exists a defining function p and an exponent 0 < n < 1 such that
—(—p)" is strictly plurisubharmonic on 2. The Diederich-Fornaess index is the supremum
over all such exponents and it is a number that measures the strength of hyperconvexity. A
domain is said to be hyperconvex if it admits a bounded plurisubharmonic exhaustion
function. If 0€2 is strictly pseudoconvex, we know that 02 admits a strictly
plurisubharmonic defining function, hence n(2) = 1. In order for € to have positive

exponent 1, {2 must be pseudoconvex. This result of Diederich and Fornaess was generalized



by Kerzman and Rosay [14] to domains with C* boundary. This was generalized further by
Demailly [7] and Harrington [10] to domains with Lipschitz boundary. For a given bounded
pseudoconvex domain in C", it is difficult to compute the Diedrich-Fornaess index.
However, Diederich and Fornaess show that the Diederich-Fornaess index for the Worm
domain €2, goes to zero as y goes to infinity, where 7 is the winding of €2,. Liu [18] has
explicitly computed the Diederich-Fornzaess index for €2,. A few recent results due to
Fornaess and Herbig [9] showed that a smooth bounded pseudoconvex domain in C" with a
defining function that is plurisubharmonic on the boundary has Diederich-Fornaess index 1.
In further work, we would like to show that M can be embedded in the boundary of a
pseudoconvex domain ) with the same &|, . We would also like to show that i (and hence
Q) can be constructed to be a C* function for some k > 2. Our ultimate goal is to
construct an example for which the Diederich-Fornaess Index can be improved by

considering non-smooth defining functions.



2 Part 1- Complex Analysis in One Variable With PDEs

2.1 DrILL BiT DoOMAIN

Let ¢ : R — R be defined by

0 =0
¢(z) =

rsinz™® x #0.
Then we define the hypersurface I'y = {(71,73) € R* : 15 = ¢(x1)} on O,, an open set such
that I',\{0} € O,\{0} and O, = {(x1,22) : |22 + ¢(x1)| < |21|"*}.

Theorem 2.1. There exists an open set O, C R?, and a harmonic function h € C*(0,)

but the harmonic conjugate of h is not continuous on O.

The rest of section 2 is proof of Theorem 2.1. First, we want to prove that there exists a

harmonic function h, which is C? on O,.

Lemma 2.2. Let h(z) : O, — R be a harmonic function such that:

(

Ayh(z) =0 on O,

=
&
I
8
=N
Q
S
=
8

then h is C? on T,.

Proof. We want h to be twice differentiable with uniformly bounded second derivatives on

I',. We compute

9 on oh ()
8—:)31(h($17¢($1))) —%(ﬁla ¢(r1)) + 8_:52(901’ ¢(x1)) oz, (2.1)

1




Calculating the second derivatives,
0? 0 0
5oz (a1, 0(e) = 5 (e o) )

2 2
g }QL(% o(z1)) + 2%(%’ ¢($1))8¢(a:1)

8%1

*h

+ a_xg(331,¢(x1))(a¢(xl)) + On, T ¢($1))a (b(Il)-

81’1 8%2( ’ (995%

In addition to this, we have the following partial derivative

0 s 0h 0%h 0%h 0

oo (a1, 0(1))) = 51, 0(an)) + (o, 0o o)
Therefore

0%h 19) oh 0%h 0

o1 0(e0) = (e o(en) ) = Saton o) 2520

Substituting (2.4) into (2.2) and simplifying, we end up with the following:

0? 0?h o0 ( oh 0¢ (1)
5o, o)) = G o) + 25 (2 o, o(en) ) 252

- g%m, $(21) (8§§j>) + 20 0y, o)) (22’

oh 02
+ T@(%ﬁ(%))%?)

(2.2)

(2.3)

(2.4)

(2.5)



Then we collect like terms from (2.5) and we determine that

0? _ 0%h g ( oh 0o (z1)
s, 0(e1)) = 5,600 + 25 (0 (o, o)) 250
(2.6)
Oh 06(x1)\* | Oh P(1)
- Stonolo)) (52) 4 S ote
Since h is harmonic, we obtain
2 2
T 0len) = =S, o) (2.7
Substituting (2.7) into (2.6) and collecting like terms, we formulate the following:
0%h 0 7
8—ﬁ($17¢($1))[1 + ( gil)) ] = 8_a:%(h(ml’¢(xl)))
~2( (o)) ) 22 e
oh o?
- 8[E2 <I1,¢(I1)) g(‘;l)
Si 1 e g 8¢($1) ? . . . .
imply dividing (2.8) by 1 + oyl A obtain and by similar computation, we derive
1
0° & ( oh 0¢(x1)
82}1 a_x%(h(xlagb(xl))) _2<8_$1 (a_@(l"bﬁs(fl)))) axl
a—x%(%, ¢(x1)) = L <a¢(x1>>2
(9x1
(2.9)
oh 0*¢(x1)
B 8_1,2(3717¢(931))8—$%
9¢(z1)\?
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o2 o [ oh 06 (1)
B - (Bl o) + 2(%(%722@1@@1»)) 2
’ 1+< 0xq )
(2.10)
oh D*¢(x1)

8—372(371@(931))8—%%

()

Substituting (2.10) into (2.4), we determine the following:

8¢(!L‘1) 82
) = (h(@1, ¢(x1)))
0%h d (on Dz, O
g 00 = (ot + e (2
8$1

5 0 (8h (x1,¢(wl))) (8¢(:1:1))2 oh (x1,¢($1))82¢<x1)8¢($1)

B 021 \ Ozo 0x; Oy or? O
5¢(931) ’
(2.11)
This simplifies to the following:
0o () d” oh 82¢(x1)8¢(x1)
9*h (2, $(z1)) = O Tﬁ(h(xl’gb(xl)))_8_;32(x1’¢<x1>) B2 o1y
Oridxy T 1+(3¢(:61)>2
(9.1'1
(2.12)

) %(g—iul,m») 1 (e
0o(x1)\2 '
1+ (2)

Now we evaluate where the first and second partial derivatives are bounded. We start with



Ooh

—— (w1, ¢(1)). Since 27 is bounded and

8%2
oh
a—xQ(%, $(x1)) = a7,
oh . . :
8—(351, ¢(z1)) is bounded. Next, we have the following calculation:
X2
0
q;(xl) =sina;® — 327° cos 7 °. (2.13)
T
From (2.1) and (2.13), we derive
Oh 7 . -3 4 -3
a_xl(xl’ o(z1)) = 221 — xysinx;” + 3z cosxy . (2.14)

oh
According to the above partial derivative, a—(xl, ¢(x1)) is bounded by O(x;) since
21

|coszi| <1 and |sinz| < 1.

Remark 1. Big-O notation uses to denote order of magnitude. We consider behavior of
functions in a neighborhood of a point a. Then O(f(x)) denotes any function g(x) such
that |g(z)| < C|f(x)| for x near a.

0?h 0?h

Next we calculate the bounds for m(xl, ¢(z1)) and F(xl’ ¢(z1)). Note that
T3 T

2
3(@925_(21) =27 (=9sina]® + 627 cos 77°). (2.15)
1

Using (2.10), (2.13) and (2.15) and we have the following calculation,

0%h 2 + 1228 sinz;® — 3623 cosxy® — 9sin )
—(x1,0(x = 2.16
3x%( o)) 1+ (sinz]® — 3273 cos 27?)2 (2.16)



We decompose R™ = V; U Va, where Vi = {z; : |77 cosz;?| < 1} and
Vo = {x1 : |z7% cos2®| > 1}. Then on Vi,
*h

a—x%m,qﬁ(xl»' <o),

and on V5,
0?h
o) < O,
h
The bound here would be O(1), which means W(l‘l, ¢(x1)) is uniformly bounded by a
T3
constant, and since
0*h 0*h

g2z (o1 8(a) = =55 (@1, 6(x)

we have the same bounds. Now, we calculate the bounds for the following second mixed

partial derivative from (2.12),

3

9?h 2sinz;® — 627 % cosx;? — (sinw;® — 3273 cos?)

afﬂlal’g (x17¢(‘r1)) -

3 =3 —3\2
1+ (sinzy° — 3z coszy”)

(—9sinx;® + 623 cos 17?) + 728§ — T28(sinz® — 3277 cos 17?)?

1+ (sinz;® — 3% cos w7 ?)?

Using the same decomposition of R, on V; we determine the following:

0?h
8x18x2

<x1,¢<x1>>\ <o),

and on Vj,
9%h
011029

(2, as(xl))\ <00

Therefore, our worst case is O(1), which is uniformly bounded. With the previous
calculations, we have a good bound without any discontinuities for each first and second

derivatives, so h is C? on T.

10



The following lemma gives a good estimate on integration needed to find the harmonic
conjugate function C(xy, ¢(x1)).
Lemma 2.3. We have that

x 1
‘ / t*sin kt Pdt — — 2P+ cos kx_ﬂ‘ < 0O(1),
2o kp
(2.17)

and
w 1
‘ / t*cos ktPdt — — 2+ gin kx_ﬂ‘ < 0(1),
zo0 kB

foraeR, >0, z9g>x>0andk >0, satisfying a + 28+ 1> 0.

Proof. We obtain the following:

T x Z’a+1 xa—i—l
‘/ % sin kt—ﬁdt‘ < / todt = S
20 20 a+l a+1

This is because | sin kt=" | < 1. The same goes for

/ t% cos ktﬁ‘ < / t“dt which is the
) 0
principal term. Now we consider

/ t*sin kt =P dt,

x0

Using integration by parts

dv
u = oAt =t P Tginkt™?

=
du orp 1 5 ’
E—(a—l—ﬁ%—l)t v—%cosk;t

we have the following:

x 1
/ % sin kt P dt :wt‘”ﬁ“ cos kt™"?

zo

x z 1
— / wt‘”ﬁ cos ktPdt. (2.18)
o 0 kB

11



Using integration by parts again we have

u = ot d_v =t P Teoskt™"
dt
% = (@ +28+ 1)t o= e sin kt =° ’
then
Ta+f+1 _ —(+ B+ 1) p—tot2Be e
— — L htacosktPdt = [ sin kt—?
/mo % BB kB .
. / —(Oé + 25 + 1)ta+25 sin kt—ﬁdt] (219)
0 kB
§0($a+2ﬁ+1).

Putting (2.18) and (2.19) together, we end up with

@t coskr™ (a4 B+ 1)zt

kp (k3)?

sin kz "

/ t*sin kt P dt =

o

(a+p+1) -8 a+28+1
T coskx o+ 1z . _
_ =0 o _ (ot Bt 1)z sin kag"”

kp (kB)?

Chdihs (1/3:<5(J)és+ . /JC 28 gin ket P dt.

Therefore (2.17) is proven. Notice that each integration by parts adds 8 + 1 to the

principal order term. O

Next, we will calculate the bounds for our harmonic conjugate using the Cauchy-Riemann

equations.

12



Remark 2. The Cauchy-Riemann equations for a pair of real-valued functions of two real

variables u(z,y) : R* — R and v(z,y) : R? — R defined by the two equations:

ou Ov ou ov

a_x:a_y an a_y:_a_x

2.1.1 Harmonic Conjugate

Lemma 2.4. Let h satisfy the hypotheses of Lemma 2.2. Let C on O, satisfy

oC Oh

B (1 9(31) = =5 (@1, 6(1),

and

oC oh
8_952(x1’ P(r1)) = 8—m($1:¢@1))~

We have that

2
C(z1, d(x1)) + §6x1_1 cosz;?, (2.20)

1s uniformly bounded on T',.

Proof. Let xg > 0. Substituting 687]1(15, $(t)) = t! along with %(h(wl, ¢(r1))) we have the
2 1

13



following using (2.1):

Clar, 6(a1)) =Clan. o)) + [ S (Clt 00N
~Clan o) + [ (= g0+ o) 50 ) ar
(2.21)
~Clano(an) + [ (= S (e0l0) + | kit o(0)
— %(t (b(t))aqb_(t)} @gb_@))dt
Oxy "’ ot | ot '
After simplifying, we obtain
Clanofen) =Clanoan) + [ (= gteon[i+ (250)]
+ %h(t, qs(t))a(g—gf)) dt (2.22)

—Clao, é(x0)) + / h ( iy ((3’?_?))2} + %h(t, ¢(t))3§g—§”) it.

Using integration by parts, where

VU="5" &I o (t, o(t))
du 0?¢(t) B
7 2 U h(t, ¢(t))

14



we obtain the following:

Clar, o)) =C'(o, 6(0)) + / ( e (%50 e ¢<t>>a2£§t)) “

Then we have:

C(z1,¢(x1)) = C(mo, P(x0)) + /I1 ( —t"(1 + (sint™® — 3t 3 cost™?)?)

o

— (77 (—=9sint? + 6t cos t_3))) dt + 23 (sina;® — 327° cosx7?)

(2.23)

1
< O(1) = 3z7 cos a7 + §$1_1 cos 7>,

T

Here, we use the technique of integration in Lemma 2.3 to estimate / 9t S sint3dt, so we
zo

end up with (2.20) where we have a singularity for our harmonic conjugate. O]

2.1.2 Straightening the Boundary

Our goal is to “flatten” I', by finding a smooth mapping that straightens out I', near some
points 2° € T',. We need this in order to use the following version of the
Cauchy-Kovalevsky Theorem (9.4.5) in Hormander in [13]. This presentation of

Cauchy-Kovalevsky Theorem would give a precise bounds on the solution.

15



Theorem 2.5. Assume that the coefficients in the differential equation

Z a®* D%y = f, (2.24)
|1 |<2
are analytic in Qps, = {z € C*|z1] < R and |2| < §; R} and that the coefficient a®?) s
equal to 1. If

2(2%)* Y RFIMIST e (2) <1, 2 € Qg (2.25)
a1#p

and f is bounded and analytic on Qg s,, then (2.24) has a unique analytic solution in

Qgj2s, satisfying the Cauchy boundary conditions

Diu=0 when z=0,j < 2. (2.26)
For u we have the estimate
sup |u| < 2(R6;)* sup |f]. (2.27)
QRr/2,6, Qr,s,

To straighten the boundary of the Drill Bit Domain ¢(z), we need a change of coordinates
near a point on I',. Therefore, to flatten out the boundary, we consider the following

hypersurface

Iy = {(y1,92) : y2 = 0}.

Let O, = {(y1,2) : [y2] < |y1|**} and with a change of coordinates.

Y1 =T
(2.28)

Yo = Tg — ¢($1)

16



The inverse change of coordinates from (2.28) is given by

1=
(2.29)
Ty = Yo + ¢(y1)-
We define the Laplacian in terms of xi:
0 0 0 0
A, = . 2.30
! 8:61 <8x1) * 81’2 (axg) ( )
: 0 0 . .
To find the partials — and ——, we obtain the following:
8x1 6’x2
9 _ 99 Oy 0
Oxy  O0x10y1  Ox1 0y’
which is equal to
0 0 0
— = — — ¢ (1)) =—.
0z, oy Ya
Then, using the appropriate substitution from (2.29), we have
0 0 , 0
— == — 2.31
8.751 ayl (yl) ay2 ( )
In addition, we compute
9 _op 0 Oy 9
01’2 B (%g 8y1 81'2 3y27
which simplifies to
0 0
— = 2.32
8x2 8y2 ( )

Then, combining (2.31) with the first term of (2.30), we can evaluate the following:

17



Using the Leibniz Rule on (2.33), we have the following:

0 0 0? Y ) ) o2 , 92 , , O
D \or | "o o - — + —.
0x (6%) Y7 ¢ (yl)ayz ¢ (yl)aylayz ¢ (y1>8y28y1 (¢'(y1)) 0

Y3

Evaluation of the last term of (2.30) using (2.32), gives us

o (0N o
Oxg \Oxy ) O3’

Then we have

0? 0 0? 0?

o v / / 2y Y
= o ¢" (1) 2¢ (yl)aylay2 + (14 (¢'(y1)) )ay%-

A,
0y

Moreover, factoring out 14 ¢'(y;)?, we end up with

D=1+ 6P | s+ T | — 200 — 8 )|
’ Wlog T 0+ o) owd oy, o] |
This gives us the differential operator
2 /" / 2 2

P @) oy (L (1)) v (L4 (9(11))?) Oy Oy

Then using (2.24) to identify the coefficients from Theorem 2.5, we obtain the following:

PCRY) _ —¢"(y1)

W) = T @ ®
a®?(y) =1

: (2.35)

JCRY _ —2¢ (yl)

W) = T @ l®
420 () — 1
) = T e

We also need to modify our function h so that the Cauchy boundary conditions match

18



those in Theorem 2.5. Ideally, we want to ensure that a unique solution exists. Therefore,

we define

u(yr,ya) = h(y1, y2 + ¢(y1)) — yi — yays. (2.36)

Then we deduce Cauchy boundary conditions from (2.26) using (2.36)

u(y1,0) = h(y1, ¢(y1)) — y% =0

P P ] (2.37)
—U , = —h y — — O
9% (y1.92) o (y1, &(y1)) — w1
Then A h = 0 implies
Lyu = _Ly@% + 92917)'
So if we set f = —L,(y} + y2y;), then we have the following calculation:
1
f=- — 24 14 (y))yS + ¢ (y)yl | 2.38
(1 4 (¢/(y1))2) ( 1) 1 ( 1) 1 ( )
Therefore, we wish to solve the following partial differential equation from (2.26):
4
Lyu=f on O,
u=20 on I’y (2.39)
ou
— =0 on [,
L Dy2 Y

Set Q,, rs, = {(21,22) € C*: |21 — p1| < R, |29| < 8, R} for p; € R, and fix R > 0 and
81 > 0 such that (y1,y2) € O, whenever |y, — p1| < R and |y2| < §; R. This implies

R < |291|12

. To use Theorem 2.5, we need to find a bound on f, but first we need to
estimate |R¢'(z1)| and |R¢"(z1)|. Our goal is to show O, is sufficiently small so that

d(y1) ~ ¢(z1), where ¢(21) = 2 sinz; "% and ¢'(z;) = sin 27> — 327> cos 27>,
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Remark 3. With Hormander’s Cauchy-Kovalesky Theorem, we need to complexify ¢'(y;)

and ¢”(y;) and work with complex coordinates.

Now let z; = a + ib. As before |z; — p1| < R. This implies that a > |p;| — R and b < R by

the Triangle Inequality. Then we have the following:

b < ’p1|127 (2 40)
a> |pi| — ;|

This then implies that

b < O(a'?).

Remember our goal is that we need O, to be sufficiently small. Therefore, we need b to be
bounded by O(a'?). Next we need to find the estimate of ¢'(z;). However, first we need the

following computation:

2y =(a+1ib)""

=a 7 (1 + zé) ,
a

where 7 € R. We want to expand (2.41) using the Taylor expansion method.

(2.41)

Remark 4. Taylor expansion states if U C R" is open, z € U and f : U — R is C? then
f(x+h)= f(x)+ Df(x)(h) + O(|h]) as b — 0.

T

Multiplying through by a™ ", we get

z =a’ (1 — m'g + O( 2>) 212

=a"" — 1iba” "' 4+ O(la)**7T7).

b

a
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Let 7 = 3 in (2.42). Then we have the following estimate

2P =a"? (1 — 3@'2 + O(|a|22)>

(2.43)
=a"? — 3iba~* + O(|a|").
Recall Euler’s formulas:
sin(u 4 iv) = sinu cosh v + i cosusinh v,
(2.44)
cos(u + iv) = cosu cosh v + isinusinh v.
Evaluating cos(a + ib) and sin(a + ib) from (2.44) and (2.43), we have the following
estimates
. —3\ _ . -3 __3b . -3 . __3b 19
sin(2; ) =sina " cosh | —~ ) +icosa "sinh { —~ ) + O(la|™), (2.45)
a a
and
-3 -3 —3b T S —3b 19
cos(z; ") = cosa “cosh (| — | +isina ”sinh | —~ | + O(|a|™). (2.46)
a a
Combining (2.43),(2.46) and (2.45), we have the following estimate for ¢'(z1):
—3b —
¢'(21) = sina"* cosh (—4> —3a % cosa? cosh (—ib>
a a
—3b —3b
— 3ba"*sina"?sinh (—4) —1 {cos a~?sinh (—4)
“ @ (2.47)
-3 . -3 . _3b —4 —3 —3b
+3a""sina " sinh | —— | —3ba”" cosa” cosh | —
a a

+0(la]").

21



Since

at

Now combining (2.47) and

@' (z1) =sina”

< O(|al?), this implies that

—3b

\

(2.48), we have:

3

3

—3a °c

cosh (?) - 1' < O(|a]"9).

osa + O(|al’).

Hence ¢'(z1) =~ ¢'(Rz1) as a — 0. Next, we calculate

¢"(z1) = 27 "(—=9sin 2, + 627 cos 2,°).

Using 7 = —3 and 7 = 7 from (2.42), we have the following estimates:

3 _
Zl_

-7
zl —

b 3
a’ (1 +3i—) = a® + 3iba® + O(|a]®),
a

-7
a”" (1 — 71‘9)
a

=a " — Tiba”® + O(|a|"®).

We now have an estimate for ¢”(z1) using (2.50) and (2.51):

¢"(21) = (a7 — Tiba™®) [ -9 ( sin a3 cosh (

+6(a* + 3iba?) (cos a~® cosh (—

b
3 ) +isina™® sinh(

+O(la]”).

at

22

3b
1 ) + i cosa”?sinh (
a

—3b

at

o))
)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)



Simplifying (2.52), we end up with the following:

3 —3b
¢"(z1) = —9a""sina"? cosh (—) — 63a"%bcosa? sinh ( )

a* at
6/ 2 2 -3 —3b 5 . 3. —3b
+6a""(a” — 21b°) cosa”” cosh | — = | — 24ba”"sina™ " sinh | ——
a a
—3b —3b
+1 ( —9a"" cos a3 sinh (—4> — 63a " ®bsina " cosh (—4> (2.53)
a a
-6/ 2 2\ cin =3 o —3b -5 -3 —3b
+6a""(a” — 21b%) sina™ " sinh | — | + 24ba™" cosa™ " cosh | —~
a a
+0(|al™).
Using (2.48), this implies the following estimate:
¢"(z1) = —9a "sina"* + 6a * cosa + O(|al). (2.54)

Hence, ¢"(z1) = ¢"(Rz1) as a — 0.

Next, we want to ensure that the coefficients in (2.24) and (2.35) are analytic in Q,, g, .

Lemma 2.6. There exist §; > 0 sufficiently small such that (2.25) holds when z € Q,, rs,,

where Qp, ps, = {2 € C?% |21 — p1| < R and |z| < 5, R} .
Proof. By (2.35), it suffices to show

I
L+ (¢/'(=21))?

2¢/(21)
L4 (¢/(21))?

¢"(21)

2070 TGP

+9

+R5‘

} <1. (2.55)

We rewrite (2.55) as
2(2%)? {52(1) +6(J) + Ré(K)} <1,
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where we show
1

"= F@er <00
| 2¢/(=) _

I~ weor| < 0w (2.56)
) .

S e R

Recall that

¢'(21) = ¢'(y1) = siny;® — 3y;° cos .

Then for I,
1 1
L+ (¢'(1n)* 1+ (siny;® — 3y cosyy®)? — (257
SO
L —on (2.58)
1+ (¢'(21))* — ' '
For J, we have
20'(y1) sin y;° — 3y, cos g, ° (2.59)

L+(¢'(y1)? 1+ (siny;® — 3y;° cosy; )2
By Cauchy’s Inequality:

2¢/(y1) < 1+ (¢'(11))*,

So
2¢' (1)
— <1
T @w? =
and hence
J < O(1).

For K, we have the following from (2.50) and (2.57):

¢"(y1) oy (—9siny;® + 6y} cosy;?)
1+ (¢'(11))? 1+ (siny;® —3y; *cosy;®)?

(2.60)

We decompose R™ = U; U ki, where ky = {y : |y;* cosy; | < 1} and
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Uy ={y:|y;*cosy;®| > 1}. Then on k;, we have

K S O(|y1|_7)7

and on U;, we have the following estimate:

|siny;® — 3y, cosyi®| > 2y cos gy

1+ |siny;® — 3y 2 cosy 212 > 1+ 4|y, 3 cosy 3|2
1 1 1 1 1

Then
K < O(ln]?).

Therefore K < O(|y;|™") is the worst bound on RY. O

Here the coefficients are analytic in €2,, rs, and we now use Lemma 2.6 to calculate if

f(y1,92) is bounded and analytic.

Lemma 2.7. Let f(y1,y2) be defined by (2.38). Then

fy,y2) < O(1), (2.61)

on O,.

Proof. Recall that
—2+ 146/ (y1)y? + ¢" (y1)yi

fy,y2) = 1+ o(11)?) )

from (2.38). Then using the coeflicients from (2.44) and the notation and estimates from

Lemma 2.6, we have the following estimate:

|F(yr,y2)| < O]+ [T |ys + |Kyf),
S O(1) + O(ly:]%) + 0(1), (2.62)
0(1).
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Therefore, f is bounded and analytic on O,. [
The last lemma in part one, we now estimate u from (2.36) using Cauchy Estimates.

Lemma 2.8. Assume p; € R and R < O(|p1|*®) from (2.40), then u € C*(Q, rs,) from
(2.36), where Q0 ps, = {2 € C*: |21 — p| < 01 R and |z| < R} with uniform bounds on the

second derivatives, hence u € C*(0,).

Proof. Notice we have |z — p1| < R and z; = a + ib. Then |z; — p1| < R is equivalent to
(a — p1)* +b* < R?. Using the Cauchy Kovalevsky Theorem (2.27) and f(y1, 1) < O(1)

from (2.38), we now have an estimate for u from (2.36):

sup [u| S R* sup |f|

Qp),R,6; Qp),R,6;

< O(Ip[*).

Using the Cauchy Estimates on the Drill Bit Domain, we have the following on €2, rs,:

R2 Supﬂpl’R’(gl |f|

r3

S O(|p1|_12),

sup | DPu| <

Qpy ,R,5

where 7 =~ R. Since the second derivative of u is uniformly bounded on I'y, the third

derivative tells us how fast the second derivative changes. Therefore

sup |D%u| < sup |D?ul + Rslllp | D3ul.

Qp),R,5; Y y

If R < O(|p|"), then |D*u| is uniformly bounded and hence u € C*(O,)). O

Finally, we define h on O, to be the pull-back of u from O,, and obtain a solution to

(2.39). This concludes the proof of our main theorem, Theorem 2.1.
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3 Part 2- Complex Analysis in Several Variables with PDEs

3.1 DriLL BiT DOMAIN IN SEVERAL COMPLEX VARIABLES

Let
Q={(z1,2) € C?: |21 — eih(“)|2 < g(z)}, (3.1)

where h(z;) and g(z;) are real-valued functions in C?(C). Then a defining function for € is
p(z1,2) = |21 — M2 — g(z,). (3.2)

We parameterize 9Q by 0Q = {(z1, 25) € C?: 2, = €2 1 /g(2,)e”, 0 € R} where we
have a disc centered at ¢™*2) with radius \/g(z2).

Remark 5. €1 is inspired by the Worm Domain of Diederich and Fornaess. They produced a
smoothly bounded domain known as the Worm domain [5] that is pseudoconvex but does
not have a plurisubharmonic defining function. In this case, h(z) = log|2|* + 7 and

g(z2) = 1 —n(log|2|?*) where
i. n(z) >0, n is even and convex
ii. n71(0) = Iz, where Ig = = {— B+ g,ﬁ — g}
iii. there exists an a > 0 such that n(x) > 1 if either z < —a or x > a

iv. n'(z) #0if n(x) =1

Proposition 3.1. The domain Q C C* is C? and bounded if and only if g(z;) has the

following properties:

i. g(z2) <0 outside a compact subset of C,
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it. Vg(z2) # 0 if g(z2) = 0.

Proof. Clearly,  is bounded since g(z;) has compact support (i). For domains to be C?,

we need to show that p is C* by checking the gradient on the boundary (ii). Observe

p(z1,22) = |21 — €22 — g(2,)
= (z — M) (77 — e "2)) — g(z,) (3.3)

= 2177 — 210 M)zt 11 g(z).

Next we do a few simple calculations:

— 5 _ ,—ih(z2)
Do Z1—e , (3.4)
and
ap . —ih(z2) ah’(ZZ) — ih(z2) ah(’z2) 89(22>
Do iz1€ 2 izie 5o 9 (3.5)

0
Now assume for contradiction that Vp(p) = 0 for some p € 0Q2. If P

(’321( p) = 0 at some

boundary point, we get
dp

- = 77— 7ih(z2) — O
821 21 (&

Substituting z; = e —ih(z2) 4 Vg % into 8_ we derive the following:
z

ap —zh(zg) / —zh (22)
82’1 N +

—i0,

(3.6)
=V g(z)e
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0
so g(p) = 0. Also, substituting z; and z7 in —p, we obtain

822

0,0 zh (22) 19 —zh (22) ah(z2)
82(21721 = +Vg 0

o o8 in(2) ON(22)  0g(22)
. ih(z2) 10\ Jih(z2) .
i(e + 1/ g(z2)e")e 9% 9%

(3.7)

~ i(0—h(z2)) OR(2 . it0—n(sn) OR(Z
=1 9(22)6(0 g 2))8%22) —ivg(z2)e (6—h( 2))—8222)

822

0
Since 1/ ¢g(p) = 0, this implies that —# = 0, which is a contradiction, and so this proves
Z2

that  is C*. 0
Definition 3.1. Let Q be a bounded domain in C? and let p be a C? defining function for

Q. Q is called Levi pseudoconvex at p € 02 if the Levi form satisfies

2

i00p(t, t)( Z 82’ tr > 0,
k

J,k=

2
dp
for all t € T,°(09) = {t = (t1,t;) € C*: Zt (azj

type (1,0) vector fields which are tangent to the boundary at the point p. The domain €2 is

)(p) = 0}- T,°(89) is the space of

said to be strictly Levi pseudoconvex at p if the Levi form is strictly positive definite for all

such ¢ # 0.

Proposition 3.2.  is a C? bounded pseudoconvex domain in C* with C?-boundary if and
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only if g(z2) and h(zy) satisfy hypotheses of Proposition 3.1 and

2

Oh(z2) 2, 07 logg(zo) 0g(z2) Oh(22)
2 -2
e R e L C e
(3.8)
Oh(z)|”>  82h(z)
— >
9(z2) (' 0 | T 0mom )| 7"
whenever g(z2) > 0.
Proof. We first calculate the second derivatives of (3.2). On 012,
2= ) 1 g,
for § € R. Then 012
0?p
: _ 1
O nom
(’LZ) a2p_ _ ’Lh(ZQ) ah(z2)
02’2821 82’2
2
(iii) Tp_ _ z‘e*ih(m)%f)
821822 82’2 (3 9)
. 0%p Oh(z (O—n(zay| ON(22) | ‘
(1v) 0007 2’ +2+/¢g(z2)Re [e 92 ]
Ph(z2) 0%Nh(2)
i(0—h(22)); (0—h(z2))
V() 8z 20%9 9(z)e ! 0290%3
~ Pg(=)
82282_2 ’
Moreover, T"%(99) is spanned by
R ) 510

62’2 82’1 821 822
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Using (3.4) and (3.5), we calculate L

L :(i g(zz)ei(e_h(’z?))—ah(@) —in/g(zg)e 0N=2) M) ag<22)) :

822 az2 822 a_Zl

3.11
_ (2 )e—wi ( )
g\z2 D2
Then the Levi-form is
E(L Z) :29(2 ) ah(22> ? + 89(22) 2 . g(z )829(22)
’ 1 9z Dz Y 02007

8h(z2) dg(22) 3/2 —i(0—h( )),82h(zg)
. —ih(z2) ? 22))y N 27 3.12
21/ 9g(22)Re {ze e 0z 0% — g (z)e l 02207, ( )

If we minimize (3.12) with respect to 6, the Levi form is bounded below by (3.8). Therefore

), 0h(z2)
822322

| Oh(zs) [

+ g3/2(22)e i(0—h(22)) 822

+2¢**Re [e (6=h(z2))

L(L, L) > 0 if and only if (3.8) holds whenever g(z;) > 0. O

Next, we will introduce an analytic disc M C 0f2 that is biholomorphic to O, in Lemma

2.2.

Lemma 3.3. Let an analytic disc M = {(z1, 22) : (0, z2) € IQ} be biholomorphic to O, and
suppose the interior of M is nonempty. If h(zs) is harmonic on M, then the Levi form

vanishes on M.

Proof. Since z = 0, this implies that g(z) = [¢”"*2)|2 = 1, when (0, z5) € M. We observe
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now that since ¢ is constant on a set with nonempty interior,

(0g(22)
822 =0
P9(=) _
\ 02282_2 '
: “h(22)
when (0, z5) € M. Since h(zy) is harmonic oy = 0. Then by (3.12), we obtain
2072
— Oh(z) Oh(z) |?
L,L)=2 -2 =0.
E( ' ) ’ 82’2 ’ 82’2 0

]

Note also that e = —e~™=) on M. Next, let j be a defining function for Q. We wish to

determine if the defining function p is plurisubharmonic on M.

Definition 3.2. For a domain 2 ¢ C", a function p € C? is plurisubharmonic if
P

2

i00p(t,t)(z Z ZaZkzttk>O
J

for all t = (¢1,t5) and for all z € Q.

p is a strictly plurisubharmonic function if

i00p(t,1)(2) =

for all t € C?,t # 0.

Remark 6. The simplest example of a strictly pseudoconvex domain is a ball B(p, R). The
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corresponding function p = |z — p|* — R is a strictly plurisubharmonic defining function for

B(p,R) = {z € C*: p(z) < 0}.

Lemma 3.4. Let A be a real-valued function and let p be defined in (3.2), then p = pe” is

A A . 1
a C? defining function for Q. Suppose A satisfies 8_ = Z,@h(zg) and R 8—6_”‘(22) <=
a22 822 821 2

on M. Then p has a positive semi-definite complex hessian on M.

Proof. After a few calculations along with (3.9), we obtain the following;:

N Al o OA e OA
_ ih(z2) Z4 —th(z2) 4 1
W Foam ~ (6 o ¢ om T )

0707 02, 02

(ZZ) 02,5 €A (eih(ZQ) % B i@ih(22) (9h(22) )

(3.13)

02107 % 0%

2 ~
(le) 9 P eA ( — eih(22)§_f + ie*ih(zz) 8h(22>>

%)

(1v) 007 0.

A is a function both in terms of z; and 25, we need to check to see if the complex hessian

matrix is positive semi-definite, so we require

8% 82
82’102’_1 82182_2
>0
2 ~
0 p_ 0
822621
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p Pp
82182_282282_1_

e OA i O(22) L OA o Oh(z)
. Al _ Jih(ze) Y4 ih(z2) A th(zg) 24 - ih(z2)
<e < e 0% + ie 0% )) <e (e 92 1€ —822

VOA DA | 0AOh(z) A Oh(z)  Oh(zs) Oh(z)
— 2ih(z2) 2th(z2) 24
e’ ( 92 0% 2 02 + e 7% 0 9% 0% (3.14)

Therefore, we need to calculate the determinant and the trace. First

— _ 2A( p2ih(=2) 0A|* 814 ah(z2) _i_ieQih(zg)%ah(ZQ) 4 Oh(22) ’ '
82’2 822 822 82’_2 822 822
A h
Since g— = ia 8<22)’ we can make the appropriate substitution into (3.14). Then we obtain
Z9 Z9
2 ~ 2~
0 p_ 0 p_ _ €2A 2ih(zz)%% et 0A 0A e?zh 22) aA 04 %% ] (315)
821622 622821 622 822 822 822 622 822 82’2 822
P?p 0% . . . .
Then — ——— = (), so the determinant of the complex hessian of p vanishes on M.
821822 622821

Next, we calculate the trace. Since

aA —Zh(zg) 1

we obtain the following:

p A ih(z) 04
= et 2R —e M=) — 11
0m0m ( %< T ))

> eA< — 2(%) + 1> (3.16)

= 0.
Therefore, the complex hessian of p on M is positive semi-definite. m
0A . 0h
Remark 7. Our problem lies with 9 8(22) A satisfies this equation if and only if A
Z9 Z9
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is the harmonic conjugate of h, and we have already shown that such A is necessarily

discontinuous.

Remark 8. De Rham Cohomology is a cohomology theory based on differential forms on a
smooth manifold. De Rham Cohomology is the cohomology of a certain chain complex,
wherein each grading, the group is generated by k-forms. The boundary map for the De
Rham chain complex is called the exterior derivative. Thus, the cohomology groups in each
grading of the chain complex are generated by closed k-forms modulo exact k-forms. This
cohomology theory contains global topological data about the manifold. For instance, the
failure of the closed forms to be exact tells us topological properties of the manifold, such
as holes or twists. Thus, De Rham cohomology is a way of using tangent bundles of the

manifold to understand its global topology.

3.1.1 D’Angelo’s useful one-form

The form we are interested in is D’Angelo’s useful one-form, which is & = —Lyn where L1
denotes the Lie derivative in the direction of T'. Here n denote a purely imaginary,
nonvanishing one-form on 99 that annihilates 7Y (99) @ TV (9Q) and T is a unique
purely imaginary tangential vector field orthogonal to 7V (9Q) @& TV (9Q) and such that
n(T) = 1. We compute &(L) where L is a local section of T (9€). We can calculate
&(L) directly in terms of the defining function p. The form & depends on the choice of
defining function, but the cohomology class represented by & on the submanifold M does
not depend on the defining function. Therefore

&(T) = " 0% (9/)_
|ap|2 —~ 02,0% 0%; s

(3.17)

where Wy, = dz(L), (see (5.85) in [22]).
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Lemma 3.5. For Q defined by (3.1), and assuming &(L) is defined by (3.17), we have that

a(L) = —e™=gy 4 iah<_z2)w_2. (3.18)
)
Proof. Using (3.17), we obtain
&(Z)——l P @w_ Pp @w_ Pp @w— Pp @w— (3.19)
T |0p2 02107 07 | 0210707 | 02007 07 - 020% 0% | ‘

and where z; = 0 on M. Then, using the appropriate substitution from (3.9), we calculate

&(L). Then

~ T 1 ih(z2)\— . _ih(z )ah(z2) ih(z2)\ \7—

O[(L) f— m{l(_e 2 )w1+0+ (_7/6 2 82_2 (_6 2 ) w2+0 3
which simplifies to (3.18). O

According to Straube [22], when a domain admits a defining function that is
plurisubharmonic at the boundary, then the form & resulting from choosing this defining
function is zero on the null space of the Levi form. In particular, it vanishes when
restricted to a complex submanifold in the boundary. Then its cohomology class on this
submanifold is zero. However, we will build an example containing a simply-connected

analytic disc in the boundary on which &(L) =1

s, but dy;A = & has no continuous

22
solution, so the cohomology class represented by & is non-trivial.

3.1.2 Diederich-Fornaess Index

To obtain estimates, we need to construct bounded plurisubharmonic functions using
special defining functions, (see [21],[19],[2],[1],[15], and [11]). Diederich and Forneess have
shown that if 99 is C?, then Q always has a C? defining function p for some 0 < n < 1,

such that —(—p)" is plurisubharmonic on € [8].
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Proposition 3.6. Let Q C C? be a smooth bounded pseudoconvexr domain defined by
p =z — M2 — g(z). Suppose that for some neighborhood U of M there exists a C?,

bounded real-valued function A on U satisfying

0?A
_4A_2( A\2n—2 .
e (—se”) [77( 905 T

for some 0 < n < 1. Then there exists a neighborhood U of O such that —(—peM is

04 Oh(=)
822 822

2
92 A
> 3.90
) + a@az] =0, (3:20)

strictly plurisubharmonic on QN U.

Proof. Let p€ M and p=e’pec C*(M). If L € Tpl'O(M), the complex hessian of p at p is

defined to be the complex hessian

L~ (99p),(L AT). (3.21)
So let
op 0 op 0
L1 = —ﬁ— + _ﬁ_
071021 073 0z (3.22)
I dp 0 dp 0
2 _——

B 82’1 02’2 822 821
where L; is the complex normal vector and L, is a tangent vector. The defining function p
is called plurisubharmonic at p if the complex hessian is positive semi-definite and is called

strictly plurisubharmonic at p if the complex hessian is positive definite. Recall that

p =z — "2 g(z,). (3.23)

For —1 < s <0, fix 25 such that g(z3) = 1. Then for such a z, set

) ih(z2)
y =) - S T (3.24)
|€zh(z2)|

So we have p(z1, 22) = s.
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We then have the following calculations from (3.23) and (3.24):

_L(ZQ)\/_( JsF1 ) (3.25)

_’e—ih(@)‘ /s 1 |e—z'h(z2)‘2'

As s — 07, we have the following:

ap _ —ih(zg)
5o e + O(s). (3.26)

Then similarly, we obtain the following:

dp ih(22)
22— _ehG2) 4 O(s). 2
= e O(s) (3.27)

Also note that

@ — Z'Zle—ih(@)M _

o Oh(z)
ih(z2)
622 822 e 822 (328)

)
After substituting (3.24) into (3.28), we end up with a—p = 0. Then from (3.22), (3.1.2)
22

(3.27) and (3.28), we have the following calculations

iy O
Ly = —ez2) — 2
1 e 821 + O(S), (3 9)
and
Ly = _emintz) 9 + O(s). (3.30)
82’2

We now calculate the following partial derivatives along with the tangent and normal

0 0
vectors. Note that dp = 8—pdzl + a—deQ. Thus
21 Z9
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(i) 0p(L) = " 22 1 0(s
=14+ 0(s)
(i13)  00p(Lj N Ly) = 82-28[)5 + O(s) for j =
(iv) OA(Ly) elhm)g—i + O(s)
(v)  OA(Ly) = e_’h(”)g—: + O(s)
(vi)  O0A(L; A Ly,) 022;; - O(s).

Note:

A(—(—pe™)") = —(n(—pet)"1)(—edp — e pd A).
Next, we calculate the second partial derivative of p:
0B(~(~3)") = = (= D(=pet2(~e0p — o)

A (—e?0p — e pdA) + (n(—pe)1™ 1) (—et0A A Op — e*00p

—e0Ap NOA — e0p N DA — eApagA) )
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(3.32)

(3.33)



Simplifying (3.33), we obtain:

0B(~(~3)") = = (=" (0(0p A Tp) + 1(0p A 431
+1(pdA A dp) + n(pdA N pdA) — (8p A Dp)

— (0p A pdp) — (pOA A Dp) — (pOAp N OA) + pdA A Op

_ _ _ _ 3.34
+ pddp + pdAp N OA + pdp N DA + p288A> (3:34)
=— (e“n(—pe“‘)”‘Q(n(ap A 8p) +n(0p A pdA) +n(pdA A dp)
+n(pdA N pOA) — (Op A Op) + pddp + p285A)) .
Now we derive the following from (3.31) and (3.34) and substituting into (3.21):
09(—(=p)")(L1 A Ly) =
— e*n(—set)r? (nﬁp(Ll)gp(L_l) +n9p(L1)pdA(Ly) + ndA(Ly)s9p(Ly) (3.35)

+ nsOA(L)sOA(Lr) — 0p(L1)p(L1) + s90p(Ly A Ly) + s200A(Ly A L_l)) .

All the terms with s go into the error term, therefore (3.35) simplifies to the following

using substitution from (3.31):
D0(—(=p)") (L1 A Ly) = —e*n(—se?)72(n — 1) + O(s)"L. (3.36)

Secondly, we have the following:

9(—(=p)") (L1 A Ly) = —e*Ay(—se)12 (Uap(Ll)gﬂ(L_z) +ndp(L1)sOA(Ly)
+n0A(L1)s0p(La) + nsdA(L1)sDA(Ly) — Op(L1)dp(Ly)  (3:37)
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Using the appropriate substitution into (3.37) and sending each term with s? into the error

term, we obtain the following:

00(—(—)")(Ln A T) = —*p(— sy (ne‘

; _ 8h(z2)
_ 2ih(22) th(z n
e (z 0% )) + O(s)

(3.38)
= —ie*n(— (776’ 822 m(zz)ag(zf)) + O(s)"
— 2A+zh (22) ( SeA)n 1( 822 . g(zz )) +O( )
Thirdly, we have
00(—(—p)")(La A Ly) = —e*Ap(—se)"? (?78 (L2)0p(L1) +ndp(La)sOA(Ly)
+nAA(L2)s0p(Ly) + nsOA(Ls)sOA(Ly) (3.39)

- Op{La)I(I) + s00p(Lx A )+ 00AL A T) )
Similar to (3.38), after substitution and simplifying, we have
_ _ . A
G0(— (=) (Ly A T) = —e2A-ibCly( eyt (n 04 _OM@)) o (3.49)
82’2 822

Lastly, we have

09(—(=p)")(La A Ly) = —e*n(—se)1=? (n8p<L2)5p(L_z) +n0p(La)sIA(Ly)
+ nOA(Ls)s0p(Ly) + nsOA(Ly)sOh(Ly) — p(Ls)dp(Lay)  (3.41)

4 500p(Lo A Tp) + 200A(Ly A L—2>) |
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After the appropriate substitution in (3.41), we have the following;:

_ _ HA DA
_(__=\n — _2A L ANN—2 2y L 3
OB(~(~)") (L A Ta) = =52 (s 5222 4 O
+ 8_2 (eih(ZQ) < . efzh 22) ah(ZQ) . Zefzh 29 azh(ZQ))
2 8,22 822822 (3 42)
2| h(z2) | '

+ e—ih(zg) ( __ ih

; @Qh(zg)
+ ezh(zg)—)>
82282_2
+ 0(s%) + 2 A

gmin O ))

822

Simplifying (3.42), we obtain

90(—(=p)") (Lo A Ly) = _emn(_seA)n(n 94

2 N %A
322

(92232_2

822

) +O(s)"1. (3.43)

Finding the determinant of the complex hessian using (3.36), (3.38), (3.40) and (3.43), we

deduce:

00(—(=p)") (L1 A L1)(i00(—(=p)") (L2 A L»))

— (09(=(=p)") (L1 A L2)90(—(~ ))(Lz/\Ll))

_ OA|? Oh(z2) 2 0*A
44,2 eA)2n—2 1 O(s5)2"
= (mse) ((77 )(77 02y ‘ 0z 02007, ()

—64/*772(—5&)2”—2(778’4 Z@h(z*g))( DA 8h(22)>

A
+ O(s)*"
PA OA|? DA Oh(z) Oh(z) |?
44,2 (o AY2n—2 _ oA 9 2 2
A {’7( 9207 | |om| T §R< 07 0% )+‘ 97 )

0%A on
+ (9228721 + O(s)

0%A
o AA20 A2 _
e (—se”) [n( Do

0A _ 0h(z)
822 82’2

2
0*A on
) + 8z28z_2} + O(s)"".

(3.44)
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Therefore, (—(—p)" is strictly plurisubharmonic if and only if

2 2 2
—eMn?(—set)?? {77( o4 > + oA } > 0. (3.45)

- 0A  Oh(z)
82262_2 82’282_2

8_2'2 ! 82’2

A 2
Remark 9. If we could solve (3.45), then 8— — z’ah(zQ)

0A _ Oh(z) . A
822 n 822 82282_2

constructed our example to have a discontinuous harmonic conjugate then we have no real

would vanish since

= 0. However, since A is the harmonic conjugate of of h and we

continuous solution.

Remark 10. For example, if A = —t|2,|* for some ¢ > 0, then we have

) 1] (3.46)

If we fix a constant ¢ > 0, then we choose 7 sufficiently small so that (3.46) is positive,

Oh(z»)
822

_ef4t|Z2‘2?72(_S€7t|22‘2)27772 |:77 <t + ‘ o tZ_Q .

hence —(—p)" is plurisubharmonic.

3.1.8  The Construction of the Domain

Recall that:

Q={(z1,2) € C? . |21 — eih(ZQ)|2 < g(z)},

where h(z;) and g(z,) are real-valued functions in C?(C). Then a defining function for Q is

p(z1, 2) = |21 — "D 12— g(z). (3.47)

Using Proposition 3.1, p defines a bounded smooth domain if
(i.) g(22) <0 outside a compact subset of C,

(il.) Vg(z2) # 0 if g(22) = 0.
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Let r be a smooth function such that

r(z,y) = (y — zsinz™)%2® — 2%, 2,y,c € R,

near 0 and lim 7(z,y) = oo. Next, we define My C C, by

z2+y2—o0
My={z=x+1iy:r(x) <0}
Then define M C 0f)
M ={(0,25) : 29 € Ms}.

Theorem 3.7. There exists a C* bounded domain Q@ C C? such that for My C C, defined
as above, M = {(0, z9) : 29 € My} C 052 and on M,

oO=1—
02’2

dEQ mod le, dZQ, dzl,

where h is a real harmonic function on My but the harmonic conjugate of h is not

continuous on Ms.

Proof. First, we start by defining g(z2) to be the following;:

1, r<0
g(z) = (3.48)
1—2e" w2, r>0,

for ¢1,co > 0 and r is our defining function. This bump function is in two real variables.
We need to check that r(z,y) is C* on M, so that g(z;) is C*. So we compute the first

partial derivatives in terms of r using the formula:

or_1or_ior o)
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From this, we derive:

0
a—r =2 (y —wsinz™®)(—wsinz™® + 3z 2 cosz > + 4(y — xsinz™?) — i)
22
— 10c%z".
or (3.50)
= 2" (y — zsing ) (—zsing ™ + 3x 2 cosx ™ + 4(y — wsinz™?) + xi)
22

— 1022,

or ar . _
Here, we want to find the bounds on —— and ——. Since |sinz™?| <1 and |cosz™?| < 1,

822 822

we obtain the following:

0
8—r < |2"(y — @) (=5z + 3a7% + 4y — xi) + 102"
%2 (3.51)
S O(@’y).
.. . or )
Similarly, we obtain the same bounds for —. We now calculate the second partial
22
derivati : d*r 10 (or +i8 or
erivatives usin =——| = —— | =
& 0507  200\0%)  20y\05 )
Or _1 2%(y — xsinz ™) [T(4y — bwsinz ™ + 3z~ % cosz ™)
62282_2 2
+ z(=5sinz™® + 11z cosz™® + 92 P sinz7?)]
+ 2" (—sinag ™3 + 3z 3 cosx?)(4y — Srsina?
+ 32 % cosa™?) + ¥ — 1900%18} (3.52)

3

2%(y — wsinz ™) [28y — 40z sinz™® + 320 cos 2~

N | —

+ 92 sina™?| + 27(—sina™® + 327 cos 27?)(4y — Sasina?

+ 32 % cosz™?) + 2® — 1900235181 :
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9%r

Again, using |sinz | < 1 and |cosz ™| < 1, we have —
822822

< O(zy). Now we find

O*r
822822

1
=3 1%(y — wsinz ™) [7(4y — bwsinz™® + 3z~ cos ™ — 2wi)

+ x(=5sinz™® + 122 cosz™® + 92 P sinz ™ — 2i)]
(3.53)

+ 2" (—sinz™® + 323 cos ) (4y — Srsinz?

+ 32 %cosz?) — ¥ — 1900%18} .

92

Therefore, again the bounds on 3 (,; < O(zxy). Since each partial derivative has good
29029

bounds, 7(z,y) is C? on My, and hence g(z) is also C* on M. O

In spite of the lack of topological obstructions on the boundary, M has a non-rectifiable

boundary, so there are no real continuous solutions to dy;A = & on M.
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