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Abstract

Let Bp,α for p > 1 and α > −1 be the Besov type space of holomorphic functions on the

unit disk D. Given ϕ, a holomorphic self map of D, we show the composition operator Cϕ is

an isometry on Bp,α if and only if the weighted composition operator Wϕ′,ϕ, is an isometry

on the weighted Bergman space Apα. We then characterize isometries among composition

operators in Bp,α in terms of their Nevanlinna type counting function. Finally, we find that

the only isometries among composition operators on Bp,α, except on B2,0, are induced by

rotations. This extends known results by Martin, Vukotic and by Allen, Heller and Pons on

certain Besov spaces.
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1 Introduction

Let ϕ be a holomorphic self map of the unit disc D in the complex plane C and let f ∈ H(D),

the space of holomorphic functions in D. Then the composition operator, Cϕ, is the operator

that maps f 7→ f ◦ ϕ, that is

Cϕf = f ◦ ϕ.

Composition operators were originally studied in the context of the Hardy space, H2.

The Hardy space is the space of functions of square summable power series coefficients. In

1925 Littlewood proved a subordination principle. In terms of composition operators the

subordination principle implied that composition operators on the Hardy space are bounded.

Research on composition operators on spaces of holomorphic functions is fairly recent, dating

back to the mid 1960’s. A driving force in the study of a concrete operator on spaces of

holomorphic functions is seeing how properties of the symbol affects properties of the operator

such as boundedness, compactness, closed-range and isometries.

Let X be a normed linear space with norm ‖ · ‖X . An operator T on X is an isometry if

for each f ∈ X,

‖Tf‖X = ‖f‖X .

Stefan Banach was the first to study isometries on specific Banach spaces such as on C(D),

the space of continuous functions on a compact metric space D, see [3].

General isometries have been studied on H∞, the space of bounded holomorphic functions

on D, the weighted Bergman spaces, the Bloch space, and Besov spaces (see [5], [9], [13], [14],

[15]). Isometries among composition operators have been studied on H2, H∞, the Dirichlet

space, the Bloch space, the space of BMOA and on Besov spaces (see [1], [4], [6], [16]-[20],

[29]).

This thesis focuses on the isometries on the Besov type spaces. Given p > 1 and α > −1,
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the Besov type space, Bp,α, is the space of holomomorphic functions such that

‖f‖Bp,α =

∫
D
|f ′(z)|p(1− |z|2)αdA(z) <∞.

This is equivalent to f ′ belonging on the weighted Bergman space Apα. The Dirichlet space,

the Besov spaces, and the weighted Bergman spaces are all Besov type spaces.

In Chapter 2 we discuss the weighted Bergman spaces, the Besov type spaces, the Hardy

space, the Bloch type spaces and BMOA. These are all Banach spaces of holomorphic func-

tions. We give properties of these spaces that we will need in later chapters.

Composition operators are not always bounded on Bp,α. Given p > 1, α > −1 and w ∈ D,

the Nevanlinna type counting function for Bp,α is

Np,α(w,ϕ) =
∑

ϕ(z)=w

|ϕ′(z)|p−2(1− |z|2)α

where it is understood that if w is not in the range of ϕ, then Np,α(w,ϕ) = 0. It has been

used to determine bounded, compact and closed range composition operators, see [25].

In chapter 3 we recall a non univalent change of variables formula involving the counting

function for Bp,α, that is similar to the well known change of variables formula involving the

Nevanlinna function and is essential to this work, see Proposition 3.2. We also recall the

definition, a property of Besov type Carleson measures and a characterization of bounded

composition operators on Bp,α using Carleson measures, see Theorems 3.1 and 3.2. We

finally see that composition operators are always bounded on the Bloch space, in fact they

are contractions if ϕ(0) = 0.

Chapter 4 consists of three sections. In section 4.1 we discuss what is known on general

isometries on C(D), on H∞, on weighted Bergman spaces, on Bloch type spaces and on Besov

spaces. In section 4.2 we discuss what is known on isometries among composition operators

on H2, on Bloch type spaces, on BMOA and on Besov spaces. Motivated by Allen, Heller

and Pons paper [1], we classify isometric composition operators acting on Besov type spaces.
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In all known cases of isometries among composition operators, if Cϕ is an isometry then

ϕ(0) = 0.

Our first result in section 4.3 is Theorem 4.1, where we unify the proofs of all known

results and extend them to any Banach space satisfying some very general conditions.

Theorem 4.1 Let X be a Banach space of holomorphic functions containing the constant

functions and Aut(D). Moreover assume that for all f ∈ X, ||f ||X = |f(0)|+ ||f ||sX and for

any constant c, ||f + c||sX = ||f ||sX . Then Cϕ is an isometry on X if and only if ϕ(0) = 0

and for all f ∈ X

||f ◦ ϕ||sX = ||f ||sX .

We conclude that on all such Banach spaces, if ϕ is a unit disk automorphism then the only

isometries are the rotations, see Proposition 4.1.

The weighted composition operator, Wψ,ϕ is defined by Wψ,ϕf = ψf ◦ ϕ for ψ ∈ H(D),

and ϕ a holomorphic self map of D. In Theorem 4.2 we show that under general conditions

on a Banach space, whose norm is determined from a seminorm, we can use equality of the

seminorm to determine isometries in just operators that are unimodular constant multiples

of composition operators.

Theorem 4.2 Let X be a Banach space of holomorphic functions containing the constant

functions and Aut(D). Assume that for all f ∈ X, ‖f‖X = |f(0)|+ ‖f‖sX and ||f + c||sX =

||f ||sX , for each constant c. Moreover, assume that Wψ,ϕ is an isometry on X. Then

||Wψ,ϕf ||sX = ||f ||sX for all f ∈ X if and only if ψ(z) = ψ(0) for all z ∈ D, |ψ(0)| = 1 and

ϕ(0) = 0.

In Theorem 4.3 we show that Cϕ is an isometry on Bp,α if and only if ϕ(0) = 0 and Wϕ′,ϕ

is an isometry on the weighted Bergman space Apα. As a consequence of Kolaski’s theorem,

see Corollary 4.3 we have that isometries are full maps, that is the Lesbesgue measure area

of D\ϕ(D) is 0.
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The Dirichlet space is a Besov type space with p = 2 and α = 0. Martin and Vukotic

in [17] characterized isometries on the Dirichlet space D and showed that a composition

operators is an isometry on D if and only if ϕ is a univalent full map that fixes the origin.

This is equivalent to ϕ(0) = 0 and N2,0(w,ϕ) = 1 almost everywhere.

In Theorems 4.6 and 4.7 we characterize isometries in Bp,α in terms of their Nevanlinna type

counting function.

Theorem 4.6, Theorem 4.7 Let p > 1, α > −1. Then Cϕ is an isometry on Bp,α if and

only if ϕ(0) = 0 and for almost every w ∈ D, Np,α(w,ϕ) = (1− |w|2)α.

In Theorems 4.4, 4.5 and in Proposition 4.5, we partially solve the problem of isometries

on Bp,α. In Theorems 4.8 and 4.9 we find all isometries among composition operators on

Bp,α.

Theorem 4.8, Theorem 4.9 If p > 1, α > −1, except p = 2, α = 0, then Cϕ is an isometry

on Bp,α if and only if ϕ is a rotation.

Our last result is the corollary below.

Corollary 4.7 Let p > 1, α > −1, except p = 2, α = 0. Then, ϕ(0) = 0 and for almost

every w ∈ D, Np,α(w,ϕ) = (1− |w|2)α if and only if ϕ is a rotation.

If A and B are two quantities that depend on a holomorphic function f on D, we say

that A is equivalent to B and write A � B if there exists constants c1, c2 > 0 such that

c1A ≤ B ≤ c2A.

We say that a complex valued function h(w), w ∈ D is little o of 1 and write o(1), if as

w → 0, h(w)→ 0.
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2 Banach Spaces of Holomorphic Functions

Let H(D) denote the space of holomorphic functions on D. It is a complete metric space

with the topology it inherits from C(D), see [7, Chapter VII Corollary 2.3]; that is, every

Cauchy sequence in H(D), converges uniformly on compact subsets of D to a holomorphic

function on D. A Banach space is a normed linear space that is complete with respect to the

metric defined by its norm. In this chapter we define and give properties of Banach spaces

of holomorphic functions that we will need in later chapters.

Definition 2.1 A Möbius Transformation is a function of the form eiθαλ(z) where

αλ(z) =
λ− z
1− λ̄z

for λ ∈ D and z ∈ D.

These are the conformal automorphisms of D denoted by Aut(D). Two simple calculations

show that α−1
λ = αλ and

|α′λ(z)| = 1− |λ|2

|1− λ̄z|2
.

Also,

1− |αλ(z)|2 =
(1− |λ|2)(1− |z|2)

|1− λ̄z|2
= |α′λ(z)|(1− |z|2). (1)

Let A denote area measure on D normalized by the condition A(D) = 1.

Definition 2.2 Let α > −1. Define a positive Borel measure dAα on D by dAα(z) =

(1− |z|2)αdA(z).

Definition 2.3 Let α > −1, p ≥ 1. The Bergman space, Apα, consist of all holomorphic
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functions on D such that

‖f‖Apα =

(∫
D
|f(z)|pdAα(z)

) 1
p

<∞.

Theorem 2.1 Suppose f ∈ Apα, where p ≥ 1 and α > −1. Then

|f(z)| ≤
‖f‖Apα

(1− |z|2)
2+α
p

for all z ∈ D.

Proof: Let f ∈ Apα, fix p ≥ 1 and α > −1. Using polar coordinates we see that

‖f‖Apα =

∫
D
|f(z)|p(1− |z|2)αdA(z)

=

∫ 1

0

{∫ 2π

0

|f(reiθ)|p(1− r2)αrdθ

}
dr

π
.

Hardy’s Convexity Theorem (Theorem 1.5 from [12]) states that integrals of the form

∫ 2π

0

|f(reiθ)|pdθ

are increasing functions of r for 0 ≤ r < 1. Therefore for each 0 ≤ r < 1

|f(0)|p ≤ 1

2π

∫ 2π

0

|f(reiθ)|pdθ.

Multiply both sides above with (α + 1)r(1− r2)α, and integrate with respect to r to get

(α + 1)

∫ 1

0

|f(0)|pr(1− r2)αdr ≤ α + 1

2π

∫ 1

0

{∫ 2π

0

|f(reiθ)|p(1− r2)rθ

}
dr

=
1

2

∫
D
|f(z)|p(1− |z|2)αdAα(z).

6



Hence,

|f(0)| ≤ ‖f‖Apα (2)

and the conclusion is proved if z = 0.

Next fix z0 ∈ D \ {0} and define

F (z) = f ◦ αz0(z) ·
[

1− |z0|2

(1− zz̄0)2

] 2+α
p

.

Then by (1)

‖F‖p
Apα

= (α + 1)

∫
D
|F (z)|p(1− |z|2)αdA(z)

= (α + 1)

∫
D
|f(αz0(z))|p

∣∣∣∣ 1− |z0|2

(1− zz̄0)2

∣∣∣∣2+α

(1− |z|2)αdA(z)

= (α + 1)

∫
D
|f(αz0(z))|p

(
|1− |z0|2|(1− |z|2

|1− zz̄0|2

)α ∣∣∣∣ 1− |z0|2

(1− zz̄0)2

∣∣∣∣2 dA(z)

= (α + 1)

∫
D
|f(αz0(z))|p(1− |αz0(z)|2)α|α′z0(z)|2dA(z).

By making the change of variables ζ = αz0(z) we see that

‖F‖p
Apα

=

∫
D
|f(ζ)|p(1− |ζ|2)αdAα(ζ)

= ‖f‖p
Apα
.

Thus F and f have the same norm. Notice that F (0) = f(z0)(1− |z0|2)
2+α
p and from (2) we

7



know that |F (0)| ≤ ‖f‖Apα . Therefore,

|f(z0)|(1− |z0|2)
2+α
p ≤ ‖f‖p

Apα
.

Hence,

|f(z0)| ≤
‖f‖p

Apα

(1− |z0|2)
2+α
p

.

�

Theorem 2.2 Let p ≥ 1 and α > −1. Then the Bergman space Apα is a Banach space.

Proof: Let (fn) be a Cauchy sequence in Apα. Then (fn) is Cauchy in Lpα := Lp((1 −

|z|2)αdA(z)), which is a Banach space, see [22, Theorem 3.11]. Therefore (fn) converges to

some function g ∈ Lpα, that is ‖fn − g‖Lpα → 0. By Theorem 2.1 we know that for all z ∈ D

and all natural numbers m,n,

|fn(z)− fm(z)| ≤
‖fn − fm‖Apα
(1− |z|2)

2+α
p

.

For each fixed r and for all |z| < r,

1

(1− |z|2)
2+α
p

<
1

(1− r2)
2+α
p

.

Therefore (fn) is uniformly Cauchy on compact subsets of D. We conclude that there exist an

f ∈ H(D) such that fn → f uniformly on compact subsets of D. Now since ‖fn − g‖Lpα → 0

by [22, Theorem 3.12], there exists a subsequence (fnk) such that fnk → g uniformly on

compact subsets of D. Thus g is holomorphic and f = g. Hence ‖fn − f‖Apα → 0 and Apα is

a Banach space. �

Definition 2.4 Let p > 1 and α > −1. The Besov type space Bp,α is the space of holomor-
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phic functions f on D such that

||f ||pBp,α =

∫
D
|f ′(z)|p (1− |z|2)α dA(z) <∞ . (3)

The following is a norm in Bp,α:

‖f‖p,α = |f(0)|+
{∫

D
|f ′(z)|p (1− |z|2)α dA(z)

} 1
p

. (4)

Note that Bp,p−2 is the Besov space, B2,0 is the Dirichlet space with an equivalent norm.

Below we describe the growth of a function in Bp,α. By Proposition 4.27 in Zhu [26] we know

that for any holomorphic function f ∈ D

f(z)− f(0) =
1

α + 1

∫
D

(1− |w|2)1+αf ′(w)

w̄(1− zw̄)α+2
dA(w).

Then by Hölder’s Inequalities

|f(z)− f(0)| ≤ 1

α + 1

∫
D

(1− |w|2)1+α|f ′(w)|
|w̄||1− zw̄|α+2

dA(w)

≤ C

∫
D

(1− |w|2)1+α|f ′(w)|
|1− zw̄|α+2

dA(w)

≤ C

(∫
D
|f ′(w)|p(1− |w|2)αdA(w)

) 1
p
(∫

D

(
1− |w|2

|1− zw̄|α+2

)q
(1− |w|2)αdA(w)

) 1
q

= C‖f‖Bp,α
(∫

D

(1− |w|2)q+α

|1− zw̄|αq+2q
dA(w)

) 1
q

,

where 1
p

+ 1
q

= 1.

Let t = q + α and c = αq + q − α− 2. Then c = α−p+2
p−1

.

By Lemma 3.10 in [26] we have the following.

9



• Assume p > 1 and α = p− 2. Then c = 0 and

|f(z)− f(0)| ≤ C‖f‖p,p−2

(∫
D

(1− |w|z)t

|1− zw̄|2+t+c
dA(w)

) 1
q

≤ C‖f‖Bp,p−2

(
log

1

1− |z|2

) 1
q

. (5)

• Assume p > 1 and −1 < α < p− 2. Then c < 0 and

(∫
D

(1− |w|z)t

|1− zw̄|2+t+c
dA(w)

) 1
q

is bounded above and below on D. So for all z ∈ D

|f(z)− f(0)| ≤ C‖f‖Bp,α . (6)

• Assume p > 1 and α > p− 2. Then c > 0 and

|f(z)− f(0)| ≤ C‖f‖Bp,α
(∫

D

(1− |w|2)t

|1− zw̄|2+t+cp
dA(w)

) 1
q

≤ C‖f‖Bp,α
1

(1− |z|2)
α+2−p

p

. (7)

Proposition 2.1 Let p > 1, α > −1. If (fn), f ∈ Bp,α and ||fn − f ||p,α → 0 then fn

converges to f uniformly on compact subsets of D. Moreover, if −1 < α < p − 2, fn → f

uniformly on D.

Proof: Since ‖fn − f‖p,α → 0 we have, fn(0) → f(0) and ‖fn − f‖Bp,α → 0. First, let

α = p− 2. For each fixed r ∈ (0, 1), for |z| < r and by (5)

|fn(z)− f(z)− fn(0) + f(0)| ≤ C‖fn − f‖Bp,p−2

(
log

1

1− |z|2

) 1
q

10



≤ C‖fn − f‖Bp,p−2

(
log

1

1− r2

) 1
q

.

So fn → f uniformly on compact subsets of D.

Next for −1 < a < p− 2. Clearly fn converges uniformly on D to f by (6).

Lastly, for α > p− 2, for each fixed r ∈ (0, 1), for |z| < r, and by (7)

|fn(z)− f(z)− fn(0) + f(0)| ≤ C‖fn − f‖Bp,α
1

(1− |z|2)
α+2−p

p

≤ C‖fn − f‖Bp,α
1

(1− r2)
α+2−p

p

.

Thus fn − f → 0 on compact subsets of D. �

A proof similar to the one in Proposition 2.1 gives the following.

Corollary 2.1 Let p > 1, and α > −1, (fn) ∈ Bp,α. If (fn) is a Cauchy sequence in Bp,α

then (fn) is uniformly Cauchy on compact sets.

Theorem 2.3 Let 1 < p <∞, α > −1. Then the Besov type space Bp,α is a Banach space.

Proof: Let (fn) be a Cauchy sequence in Bp,α.. Then (f ′n) is Cauchy in Apα, which is a

Banach space by Theorem 2.2. Therefore, f ′n converges to some function g ∈ Apα, that is

‖f ′n − g‖Apα → 0.

Since fn is Cauchy in Bp,α, and by Corollary 2.1 fn is uniformly Cauchy on compact subsets

of D, there exists a holomorphic function f on D such that fn → f uniformly on compact

subsets of D. Hence f ′n → f ′ uniformly on compact subsets of D.

By [22, Theorem 3.12] and since ‖f ′n− g‖Apα → 0, there exists a subsequence of f ′n such that

f ′n → g uniformly on compact subsets of D. Therefore f ′ and g must be the same function.

That is g = f ′ and g is holomorphic. Hence ‖f ′n − f ′‖Apα → 0 and ‖fn − f‖Bp,α → 0.

Also from Corollary 2.1, fn converges to f uniformly on compact sets of D. Choose {0} to

11



be the compact subset. Then |fn(0)− f(0)| → 0. Therefore,

‖fn − f‖p,α = |fn(0)− f(0)|+ ‖fn − f‖Bp,α → 0

and Bp,α is complete and therefore a Banach space. �

Below is Theorem 4.28 in [26] that gives a characterization of weighted Bergman spaces in

terms of the first derivative.

Theorem 2.4 Suppose β > −1, p > 1 and f ∈ H(D). Then f ∈ Apβ if and only if

(1− |z|2)f ′(z) ∈ Lp(dAβ). Moreover, if f ∈ Apβ then

‖f‖Apβ � |f(0)|+ ‖(1− |z|2)f ′(z)‖Lp(dAβ).

Proposition 2.2 If p > 1, α > p − 1 then Bp,α = Apα−p with equivalent norms; that is, if

f ∈ Bp,α then

‖f‖Bp,α � ‖f‖Apα−p .

Proof: Let f ∈ Bp,α and β = α− p. Then

‖f‖pBp,α =

∫
D
|f ′(z)|p(1− |z|2)αdA(z)

=

∫
D

[
|f ′(z)|(1− |z|2)

]p
(1− |z|2)βdA(z).

Therefore, f ∈ Bp,α if and only if (1 − |z|2)f ′ ∈ Lp(dAβ). Applying Theorem 2.4 we have

f ∈ Bp,α if and only if f ∈ Apα−p, and the equivalency of the norms. �

Theorem 2.5 For α > −1, p > 1, Bp,α is a Möbius invariant Banach space if and only if

α = p− 2.

Proof: The space Bp,α is Möbius invariant if and only if ‖f ◦ αλ‖pBp,α = ‖f‖pBp,α for all

λ ∈ D.
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Note that

‖f ◦ αλ‖pBp,α =

∫
D
|(f ◦ αλ)′(z)|p(1− |z|2)αdA(z)

=

∫
D
|f ′(αλ(z))|p|α′λ(z)|p(1− |z|2)αdA(z)

Thus, making the change of variables w = αλ(z) and by (1) we have

‖f ◦ αλ‖pBp,α =

∫
D
|f ′(w)|p|α′λ(αλ(w))|p(1− |αλ(w)|2|α|α′λ(w)|2dA(w)

=

∫
D
|f ′(w)|p 1

|α′λ(w)|p
(1− |w|2)α|α′λ(w)|α|α′λ(w)|2dA(w)

=

∫
D
|f ′(w)|p(1− |w|2)α

|α′λ(w)|α

|α′λ(w)|p−2
dA(w).

If α = p− 2 then it is clear that Bp,α is Möbius invariant.

If α 6= p− 2 and Bp,α was Möbius invariant then

∫
D
|f ′(w)|p(1− |w|2)α

(
1− |α′λ(w)|α−p+2

)
dA(w) = 0.

for all f ∈ Bp,α. Apply the above for the function f(z) = z to get

∫
D
(1− |w|2)α|α′λ(w)|α−p+2dA(w) =

∫
(1− |w|2)αdA(w) =

1

α + 1
.

Therefore, ∫
D

(1− |w|2)α

|1− λ̄w|2α−2p+4
dA(w) =

1

α + 1

1

(1− |λ|2)α−p+2
.

Let c = α − 2p + 2. By examining the three possible cases in Lemma 3.10 in [26], we ar-

rive at a contradiction. Therefore if α 6= p−2, Bp,α is not a Möbius invariant Banach space. �
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Definition 2.5 The Hardy Space, H2, is the space of holomorphic functions

f(z) =
∞∑
n=0

anz
n

with square-summable power series coefficients, that is

‖f‖H2 =
∞∑
n=0

|an|2 <∞.

Notice f ∈ H2 if and only if f ∈ B2,1. That is H2 = B2,1 as sets but they are equipped with

different norms.

Theorem 2.6 Littlewood-Paley Identity For each f ∈ H(D),

‖f‖2
H2 = |f(0)|2 +

∫
D
|f ′(z)|2 log

1

|z|2
dA(z).

It is known, see for example Theorem 17.11 in [22], that if f ∈ H2 then the radial boundary

values of f ,

f(ζ) := lim
r→1

f(rζ)

exists almost everywhere. Let dm = dθ
dπ

denote the normalized Lebesgue measure on the unit

circle T. By [22, Theorem 17.1].

‖f‖2
H2 =

∫
T
|f(ζ)|2dm(ζ) (8)

Definition 2.6 Let α > 0. The Bloch type space Bα is the space of holomorphic functions

f on D such that

‖f‖Bα = sup
z∈D
|f ′(z)|(1− |z|2)α <∞.
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For each α > 0, the space Bα is a Banach space with norm

‖f‖ = |f(0)|+ ‖f‖Bα ,

see [28, Proposition 1]. The Bloch space, denoted by B, is the space Bα with α = 1. It

is a Möbius invariant Banach space. That is, if f ∈ B then f ◦ ϕ ∈ B for all Möbius

transformations ϕ. In fact

‖f ◦ αλ‖B = sup
z∈D
|(f ◦ αλ)′(z)|(1− |z|2)

= sup
z∈D
|f ′(αλ(z))||α′λ(z)|(1− |z|2)

= sup
z∈D
|f ′(αλ(z))|(1− |αλ(z)|2)

= sup
w∈D
|f ′(w)|(1− |w|2)

= ‖f‖B.

Rubel and Timoney in [21] showed that the Bloch space is the largest Möbius invariant

Banach space in the following sense. Let X be a linear space of holomorphic functions with a

semi norm ‖ ·‖X such that f ◦ϕ ∈ X and ‖f ◦ϕ‖X = ‖f‖x for all f ∈ X and have a non-zero

linear functional L that is decent (that is L extends to a continuous linear functional on the

space of holomorphic functions on D). Then X must be a subspace of the Bloch space.

Definition 2.7 The space BMOA consists of the holomorphic functions f ∈ H2 such that

‖f‖∗ = sup
λ∈D
‖f ◦ αλ − f(λ)‖2 <∞.

The norm in the space of BMOA is

‖f‖BMOA = |f(0)|+ ‖f‖∗.

It is also a Möbius invariant Banach space, see [26, Chapter 9].
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3 Composition Operators on Banach spaces of Holomorphic Functions

In this chapter we define and give properties of the composition operator. It is always

bounded on H2 and on B. We recall the Besov type space Carleson measures and the

characterization of bounded composition operators on Bp,α.

Definition 3.1 Let ϕ be a holomorphic self map of the unit disc D in the complex plane C

and let f be a function in a space of holomorphic functions. Then the composition operator,

Cϕ, is the operator that maps f to f ◦ ϕ, that is Cϕf = f ◦ ϕ.

Proposition 3.1 Cϕ is a one to one linear operator on any space of holomorphic functions.

Proof: Let f, g ∈ H(D) then

Cϕ(f + g) = (f + g) ◦ ϕ

= f ◦ ϕ+ g ◦ ϕ. (9)

And if a ∈ C

Cϕ(af) = af ◦ ϕ

= a(f ◦ ϕ)

= a(Cϕf)

Thus Cϕ is a linear operator. Moreover, if Cϕf = Cϕg then f ◦ ϕ = g ◦ ϕ and therefore

f |ϕ(D) = g|ϕ(D). Now since ϕ is holomorphic and D is open, ϕ(D) is open by the Open

Mapping Theorem. Two holomorphic functions that are equal on an open set are equal by

the Identity Principle, thus f ≡ g and Cϕ is one to one. �

Littlewood in 1925 proved that composition operators on H2 are bounded.

Theorem (Littlewood’s Subordination Principle) Suppose that ϕ is a holomorphic self map

of D, with ϕ(0) = 0. Then for each f ∈ H2 and Cϕf ∈ H2, ‖Cϕf‖H2 ≤ ‖f‖H2 .
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For each bounded Borel subset E of T let mϕ denote the pull back measure of m; that is

mϕ(E) = m(ϕ−1(E)). Then for each f ∈ H2,

∫
T
|f(ζ)|2dmϕ(ζ) =

∫
T
|f ◦ ϕ(ζ)|2dm(ζ). (10)

Definition 3.2 Let p > 1, α > −1 and w ∈ D. The counting function for Bp,α is

Np,α(w,ϕ) =
∑

ϕ(z)=w

|ϕ′(z)|p−2(1− |z|2)α.

If w is not in ϕ(D) then Np,α(w,ϕ) = 0.

The proof of the proposition below is similar to the proof of the proposition in section 10.3

in [23].

Proposition 3.2 If g is a non-negative measurable function on D and ϕ is a holomorphic

self map of D, then

∫
D
g(ϕ(z))|ϕ′(z)|p(1− |z|2)α dA(z) =

∫
D
g(w)Np,α(w,ϕ) dA(w).

Proof: Let g be a non-negative measurable function on D. Let Z ⊂ C be the set where

ϕ′ vanishes. That is Z = {z ∈ D : ϕ′(z) = 0}. Then Z is an at most countable set and

D\Z is a finite or countable union of a collection of semi-closed polar rectangles. That is

D\Z =
⋃
n∈ARn.

Notice that for all n, ϕ is univalent on Rn. Then ϕ : Rn → ϕ(Rn) is one to one and onto.

So the inverse of ϕ|Rn exists, ψn = (ϕ|Rn) : ϕ(Rn)→ Rn. Now applying the usual change of

variables, we have

∫
Rn

g(ϕ(z))|ϕ′(z)|p(1− |z|2)α dA(z) =

∫
Rn

g(ϕ(z))|ϕ′(z)|p−2(1− |z|2)α|ϕ′(z)|2 dA(z)

=

∫
ϕ(Rn)

g(w)|ϕ′(ψ(w))|p−2(1− |ψn(w)|2)α dA(w)
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=

∫
D
g(w)χn(w)|ϕ′(ψ(w))|p−2(1− |ψn(w)|2)α dA(w)

where χn is the characteristic function of ϕ(Rn). Now summing both sides on n we obtain

∫
D
g(ϕ(z))|ϕ′(z)|p(1−|z|2)α dA(z) =

∫
D
g(w)

{∑
n

χn(w)|ϕ′(ψ(w))|p−2(1− |ψn(w)|2)α

}
dA(w)

For w ∈ ϕ(D)\ϕ(Z) the points in the inverse image ϕ−1{w} have multiplicity one. So the

term above in braces is Np,α(w,ϕ) almost everywhere on ϕ(D). Similarly if w /∈ ϕ(D) then

the term in braces and Np,α are both zero. Thus

∫
D
g(ϕ(z))|ϕ′(z)|p(1− |z|2)α dA(z) =

∫
D
g(w)

∑
ϕ(z)=w

|ϕ′(z)|p−2(1− |z|2)α dA(w).

�

The counting function is useful in the following change of variables. Let f ∈ Bp,α, p > 1 and

α > −1. Then by Proposition 3.2

‖Cϕf‖pBp,α =

∫
D
|(f ◦ ϕ)′(z)|p(1− |z|2)α dA(z)

=

∫
D
|f ′(ϕ(z))|p|ϕ′(z)|p(1− |z|2)α dA(z)

=

∫
D
|f ′(ϕ(z))|p|ϕ′(z)|p−2(1− |z|2)α|ϕ′(z)|2 dA(z)

=

∫
D
|f ′(w)|pNp,α(w,ϕ) dA(w). (11)

The composition operator Cϕ is bounded on certain Besov type spaces Bp,α. But they are not

always bounded on all Besov type spaces. Carleson measures have been used to characterize

properties of composition operators such as compactness and boundedness in many settings.

They can be used to characterize bounded composition operators on Bp,α, see [25].

Definition 3.3 Let µ be a positive measure on D. Then µ is a (Bp,α, p) Carleson measure
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if there exist a constant A > 0 such that for all f ∈ Bp
p,α

∫
D
|f ′(w)|p dµ(w) ≤ A‖f‖pp,α.

By Lemma 3.10 (b) in [26]

∫
D

(1− |z|2)t

(1− λ̄w)2+t+c
dA(w) ≈ 1

(1− |λ|2)c
(12)

for c > 0 and t > −1.

Let z ∈ D, λ ∈ D, δ > α+2
p
− 1 and

βλ,δ(z) =
(1− |λ|2)δ+1−α+2

p

|1− λ̄z|δ
. (13)

Then by (12)

‖βλ,δ(z)‖pBp,α =

∫
D
|β′λ,δ(z)|p(1− |z|2)α dA(z)

= δp|λ|p(1− |λ|2)δp+p−α−2

∫
D

(1− |z|2)α

(1− λ̄z)δp+p
dA(z)

≈ δp|λ|p(1− |λ|2)δp+p−α−2 · 1

(1− |λ|2)δp+p−2−α

≤ C. (14)

Let θ ∈ [0, 2π) and h ∈ (0, 1). The Carleson type set S(h, θ) is:

S(h, θ) = {z ∈ D : |z − eiθ| < h}.

The following theorem characterizes Carleson measures on Bp,α. It extends and unifies

Theorem 13 in [2] to Besov type spaces, and Carleson measures in Hardy and Bergman

spaces.

Theorem 3.1 Let p > 1, α > −1 and δ > α+2
p
− 1.
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Then the following are equivalent

1. µ is a (Bp,α, p) Carleson measure.

2. There exists a constant A > 0 so that

µ(S(h, θ)) ≤ Ahα+2

for all θ ∈ [0, 2π) and for all h ∈ (0, 1).

3. There exists a constant B > 0 so that for all λ ∈ D

∫
D

(1− |λ|2)δp+p−α−2

|1− λ̄w|δp+p
dµ(w) ≤ B

Proof: First suppose that (1) above holds. Let βλ,δ ∈ Bp,α be as in (13). Then, by (14),

statement (3) of the theorem easily follows. Now suppose that (3) holds. Given h ∈ (0, 1)

and θ ∈ R, let λ = (1− h)eiθ. Then for all w ∈ S(h, θ)

1− |λ|2

|1− λw|2
≥ 1

5h
.

Therefore by (3) and since 1− |λ| = h,

B ≥
∫
D

(1− |λ|2)δp+p−α−2

|1− λw|δp+p
dµ(w)

≥
∫
S(h,θ)

(
1− |λ|2

|1− λ̄w|2

) δp+p
2

· (1− |λ|2)
δp+p

2
−α−2 dµ(w)

≥ const.
1

hα+2
µ(S(h, θ))

and (2) follows. Finally suppose that (2) holds. Let E1(z) =
{
w ∈ D : |z − w| < 1−|z|

2

}
.

Then if z = |z|eiθ, E1(z) ⊂ S(2(1− |z|), θ). Therefore as in the proof of Theorem 13 of [2],
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if f ∈ Bp,α

∫
D
|f ′(z)|p dµ(z) ≤ 9

∫
D
|f ′(w)|p(1− |w|)−2µ(S(2(1− |w|, θ))) dA(w)

≤
∫
D
|f ′(w)|p (1− |w|2)α dA(w)) ,

and statement (1) of the theorem follows. �

By (11) and Theorem 3.1 we obtain the following.

Theorem 3.2 Let p > 1, α > −1 and δ > α+2
p
− 1. Then the following are equilvalent.

1. The composition operator Cϕ is a bounded operator on Bp,α.

2. There exists a constant B > 0 such that

sup
λ∈D

∫
D

(1− |λ|2)δp+p−α−2

|1− λw|δp+p
Np,α(w,ϕ) dA(w) ≤ B .

3. The measure Np,α(w,ϕ) dA(w) is a p-Carleson measure.

We know that composition operators are not always bounded on Bp,α. However, composition

operators are always bounded on the Bloch space as shown below.

Theorem 3.3 If ϕ(0) = 0 then Cϕ is a contraction on B, that is for all f ∈ B

‖Cϕf‖ ≤ ‖f‖.

Proof: Applying the Schwarz-Pick lemma to line (15) below we have

‖Cϕf‖ = |f(ϕ(0))|+ ‖Cϕf‖B

= |f(0)|+ sup
z∈D
|(f ◦ ϕ)′(z)|(1− |z|2)

21



= |f(0)|+ sup
z∈D
|f ′(ϕ(z))||ϕ′(z)|(1− |z|2) (15)

≤ |f(0)|+ sup
z∈D
|f ′(ϕ(z))|(1− |ϕ(z)|2)

≤ |f(0)|+ sup
w∈D
|f ′(w)|(1− |w|2)

= ‖f‖

Thus Cϕ is a contraction on B.

�
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4 Isometries

4.1 General Isometries

An isometry from one metric space to another is a distance preserving map between them.

The isometries of the complex plane C form the Euclidean group. They are rotations, trans-

lations, reflections, and glide reflections and have the form eiθz + a, and eiθz + a, θ ∈ R and

a ∈ C.

Let X be normed linear space. A linear operator T : X → X is an isometry if for all

f ∈ X, ||Tf || = ||f ||.

Let D be a compact metric space. The space of continuous real valued functions defined

on D is denoted by C(D). It is a Banach space with the sup norm, that is if f ∈ C(D) then

||f ||∞ = sup
t∈D
|f(t)| .

Stefan Banach was the first to study isometries on specific Banach spaces such as C(D),

lp and Lp[0, 1]. In particular Banach gave the following characterization of the onto linear

isometries of C(D), see [3], [13].

Theorem (Banach) Let D be a compact metric space. If T is an onto isometry of C(D),

then there exists a real valued function h on D with |h(t)| = 1 for all t ∈ D and ϕ a

homeomorphism of D onto itself such that for all f ∈ C(D)

Tf(t) = h(t) f(ϕ(t)) , t ∈ D.

The Banach space of bounded holomorphic functions D with the sup norm is denoted by

H∞. Below is the characterization of the onto linear isometries of H∞ given by deLeeuw,

Rudin and Wermer.

Theorem (deLeeuw, Rudin, Wermer) A linear operator T on H∞ is an onto linear isometry
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if and only if there exists θ ∈ R and p ∈ D such that for all f ∈ H∞

T (f)(z) = eiθ (f ◦ αp)(z) , t ∈ D.

The following is the characterization that Kolaski gave for the isometries of the weighted

Bergman spaces. It is Theorem 1 in [15] p 911.

Theorem (Kolaski) Let 1 < p <∞, p 6= 2 and α > −1.

1. If T : Apα → Apα is a linear isometry and if T1 is denoted by ψ, then there is a

holomorphic map ϕ taking D onto a dense subset of D such that

(Tf)(z) = Wψ,ϕf(z) = ψ(z) · f(ϕ(z)), (16)

for all f ∈ Apα. For every bounded Borel function h on D then

∫
D
(h ◦ ϕ(z))|ψ(z)|p dAα(z) =

∫
D
h(z) dAα(z). (17)

2. If ϕ is a holomorphic map of D into D and if ψ ∈ Apα satisfies (17) for every continuous

function h on D then (16) defines an isometry of Apα.

3. If the linear isometry T is onto Apα, then ϕ ∈ Aut(D). Conversely, if ϕ ∈ Aut(D) and

if ψ ∈ Apα is related to ϕ by (17), then (16) defines an isometry of Apα onto Apα.

A holomorphic self map of D is called a full map if the Lebesgue area measure of D\ϕ(D) = 0.

As the authors in [1] point out, Kolaski proved that if T is a linear isometry then ϕ is a full

map.

Below is the characterization of the onto linear isometries of B given by Cima and Wogen in

[5].

Theorem (Cima, Wogen) If T is an onto isometry of B then there exists θ ∈ R and ϕ ∈
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Aut(D) such that

Tf(z) = eiθ ( f ◦ ϕ(z)− f(ϕ(0)) ) , z ∈ D .

Let n ≥ 2 and f ∈ Bp,p−2. A new norm on Bp,p−2 that is equivalent to ‖f‖p,p−2 is the

following

‖f‖ =
n−1∑
k=0

|f (k−1)(0)|+
(∫

D
|f (n)(z)|p(1− |z|2)np−2dA(z)

) 1
p

,

see [27].

Let I denote the identity operator on Bp,p−2. Given a natural number k define

zkBp,p−2 = {zkf : f ∈ Bp,p−2}.

Define recursively operators Ik : Apkp−2 → zkBp,p−2 by

I1(f)(z) =

∫ z

0

f(u)du

and

Ik(f) = I1(Ik−1(f))

for each integer k > 1. Below is the characterization of the linear isometries of Bp,p−2 that

Hornor and Jamison gave in [14].

Theorem (Hornor, Jamison) Let p > 1, p 6= 2 and n ≥ 2. Let T : Bp,p−2 → Bp,p−2 be

an isometry. Then there exists a permutation π of the set {0, 1, 2, ..., n − 1}, unimodular

complex numbers ui, a function g ∈ Apnp−2 and a holomorphic function ϕ on D and onto a

dense subset of D such that

(Tf)(z) =
n−1∑
i=0

uif
(i)(0)zπ(i)

n(i)!
+ In(g · f (n) ◦ ϕ)(z)

for all z ∈ D and for all f ∈ Bp,p−2.
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Moreover,

∫
D
(h ◦ ϕ)|g|p(z)(1− |z|2)np−2dA(z) =

∫
D
h(z)(1− |z|2)np−2dA(z)

for every bounded Borel function h on D. Conversely, given a collection ui of unimodular

constants, a permutation π of {0, 1, ..., n−1} and an isometry U of Apnp−2, the formula above

defines an isometry on Bp,p−2.

4.2 Isometries among Composition Operators: Known results

The characterization of isometries among composition operators has been studied on many

different spaces. Among these are the Hardy space, the Bergman space, the Bloch space,

the space of BMOA and certain Besov spaces.

A holomorphic self-map ϕ of D is said to be inner if |ϕ(ζ)| = 1 for almost every ζ in the

unit circle.

In 1968 Nordgren classified all isometries among composition operators on the Hardy Space

H2 (see [20]), also Martin and Vukotic in [18].

Theorem A The composition operator, Cϕ, is an isometry in H2 if and only if ϕ(0) = 0

and ϕ is an inner function.

Proof: First, assume Cϕ is an isometry on H2. Then, ‖Cϕz‖H2 = ‖z‖H2 and by (8)

∫
T
|ϕ(ζ)|2dm(ζ) =

∫
T
|ζ|2dm(ζ).

Therefore, ∫
T

1− |ϕ(ζ)|2dm(ζ) = 0.

Since ϕ is a self map of D we conclude that |ϕ(ζ)| = 1 for almost every ζ ∈ T and ϕ is an

inner function. As we will see in Theorem 4.1, ϕ(0) = 0.
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Next, assume that ϕ is an inner function and that ϕ(0) = 0. Then by (10) and [20, Lemma

1] dmϕ(ζ) = dm(ζ) and Cϕ is an isometry on H2. �

Remark 4.1 Note that by the proof of Theorem A, Cϕ is an isometry on H2 if and only if

ϕ(0) = 0 and ‖ϕ‖H2 = 1.

Martin and Vukotic also characterized the isometries of the Dirichlet among composition

operators in [17].

Theorem B A composition operator Cϕ that acts on D is an isometry if and only if ϕ is a

univalent full map of D that fixes the origin.

Colonna determined the isometries among composition operators in B as follows (see [6,

Theorem 5]).

Theorem (Colonna) A holomorphic self map ϕ of D induces an isometric composition op-

erator on B if and only if ϕ(0) = 0 and ||ϕ||B = 1.

Moreover, Martin and Vukotic determined the isometries among composition operators in B

as follows (see [19, Theorem 1.1]). The hyperbolic derivative of ϕ is

ϕ∗(z) =
(1− |z|2)ϕ′(z)

(1− |ϕ(z)|2)
,

and let τ ∗ϕ(z) = |ϕ∗(z)|.

Theorem (Martin, Vukotic) Let ϕ be a holomorphic self map of D. Then Cϕ is an isometry

on B if and only if ϕ(0) = 0 and either ϕ is a rotation, or for each λ ∈ D there exists a

sequence (zn) ∈ D such that |zn| → 1, ϕ(zn)→ λ and |ϕ∗(zn)| → 1.

The following is immediate by Colonna’s theorem; moreover it is implicit in the proof of the

theorem by Martin and Vukotic although it is not mentioned there. We give below a direct

proof; part of the proof is similar to the one by Martin and Vukotic.

Theorem C Let ϕ be a holomorphic self map of D. Then, Cϕ is an isometry on B if and

only if ϕ(0) = 0 and for each λ ∈ D, ||Cϕαλ||B = 1.
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Proof: First, assume that ϕ(0) = 0 and for each λ ∈ D, ||Cϕαλ||B = 1. For each given

λ ∈ D there exists a sequence (zn) in D such that,

1− 1

n
< |α′λ(ϕ(zn))| |ϕ′(zn)| (1− |zn|2) ≤ 1 ,

or equivalently by (1)

1− 1

n
< (1− |αλ(ϕ(zn)|2) τϕ(zn) ≤ 1 . (18)

We conclude, by taking subsequences if necessary, that either there exists a sequence (zn) in

D such that |zn| → 1 and (18) is valid or there exists z0 ∈ D with zn → z0 and

lim
n→∞

(1− |αλ(ϕ(zn)|2) τϕ(zn) = 1 . (19)

First, if zn → z0, then by (19) we obtain

(1− |αλ(ϕ(z0)|2) τϕ(z0) = 1 ;

since 1−|αλ(ϕ(z0)|2 ≤ 1 and τϕ(z0) ≤ 1, we must have λ = ϕ(z0) and τϕ(z0) = 1. That is we

obtain equality in the Schwarz-Pick Lemma, and there exists θ ∈ R such that ϕ(z) = eiθz.

Next, if for a given λ ∈ D, there exists a sequence (zn) in D such that |zn| → 1 and (18)

holds, we conclude that

lim
n→∞

τϕ(zn) = 1 (20)

and

lim
n→∞

|αλ ◦ ϕ(zn)| = 0
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or

lim
n→∞

|λ− ϕ(zn)|
|1− λϕ(zn)|

= 0 ;

it follows that ϕ(zn)→ λ.

We have proved that either ϕ is a disk rotation or for each λ ∈ D there exists a sequence

(zn) ∈ D such that |zn| → 1, ϕ(zn)→ λ and (20) holds. We will show that Cϕ is an isometry

on B.

First, suppose that ϕ(z) = eiθz, for some θ ∈ R. If f ∈ B, then

||Cϕf || = |ϕ(0)|+ sup
z∈D
|f ′(eiθz)| (1− |z|2) = ||f ||

therefore rotations are isometries on B.

Next, suppose that for each λ ∈ D there exists a sequence (zn) ∈ D such that |zn| → 1,

ϕ(zn) → λ and (20) holds. It is enough to prove that if f ∈ B with ||f ||B = 1 then

||Cϕf ||B = 1, see Proposition 4.2 below. Let f ∈ B with ||f ||B = 1. Then, either

(a) there exists w ∈ D such that

|f ′(w)| (1− |w|2) = 1 (21)

or

(b) there exists a sequence (wn) in D such that |wn| → 1 and

|f ′(wn)| (1− |wn|2)→ 1 . (22)

Let h(z) := |f ′(z)| (1− |z|2). Suppose that (a) holds. Then there exists a sequence (zn) ∈ D

such that |zn| → 1, ϕ(zn) → w and (20) holds. Therefore, by (21) and since the function h
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is continuous at w, h(ϕ(zn)) τϕ(zn)→ 1 or

|(f ◦ ϕ)′(zn)|(1− |zn|2)→ 1 ,

and ||Cϕf ||B ≥ 1. By Theorem 3.3 we obtain ||Cϕf ||B = 1 for each f ∈ B with ||f ||B = 1,

and Cϕ is an isometry on B. Finally, suppose that (b) holds. Fix 0 < r < 1. By (22), there

exists a natural number n0 such that h(wn0) > (r + 1)/2. By our assumption, there exists

a sequence (zn) ∈ D such that |zn| → 1, ϕ(zn) → wn0 and (20) holds. Therefore since h is

continuous at wn0 , h(ϕ(zn)) τϕ(zn)→ h(wn0) or

|(f ◦ ϕ)′(zn)|(1− |zn|2)→ h(wn0) .

We conclude that there exists a natural number m such that

|(f ◦ ϕ)′(zm)|(1− |zm|2) > h(wn0)−
1− r

2

>
r + 1

2
− 1− r

2

= r .

We have shown that for each 0 < r < 1 there exists a natural number m such that |(f ◦

ϕ)′(zm)|(1− |zm|2) > r. Therefore ||Cϕf ||B ≥ 1 and by Theorem 3.3 we obtain ||Cϕf ||B = 1

for each f ∈ B with ||f ||B = 1. We have shown that Cϕ is an isometry on B.

Conversely, if Cϕ is an isometry on B then as we will see in Proposition 4.2 below, ϕ(0) = 0.

If λ ∈ D, then by (1)

||αλ||B = sup
z∈D
|α′λ(z)| (1− |z|2) = 1− |αλ(z)|2 = 1 .

Therefore ||Cϕαλ||B = 1. �

Zorboska in [29] characterized the isometries on all Bloch type spaces Bα, α 6= 1.
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Theorem D Let ϕ be a holomorphic self map of D and let α > 0, α 6= 1. Then Cϕ is an

isometry on Bα if and only if ϕ is a rotation.

Remark 4.2 Examining the proof of Theorem D we see that Cϕ is an isometry on Bα if

and only if ‖ϕ‖Bα = 1 and ϕ(0) = 0. Notice that this was the case in H2, see Remark 4.1

and Colonna’s Theorem in B.

Isometries among composition operators on the space of BMOA is given by Laitila in the

following theorem in [16].

Theorem E The following are equivalent.

1. ‖Cϕf‖∗ = ‖f‖∗ for all f ∈ BMOA.

2. ‖αw ◦ ϕ‖∗ = 1 for all w ∈ D.

3. The map ϕ satisfies the following property:

for every w ∈ D, there is a sequence an in D such that ϕ(zn)→ w and ‖ϕan‖2 → 1, as

n→∞, where ϕ(an) = αϕ(an) ◦ ϕ ◦ αan for n ∈ N.

In [18] Martin and Vukotic proved the following theorem about the weighted Bergman spaces.

Theorem F Let p ≥ 1 and α > −1. A composition operator Cϕ is an isometry of Apα if and

only if ϕ is a rotation.

Recently, in 2014 Allen, Heller and Pons studied composition operators that are isometries

on the Besov space in [1]. Let ηϕ(ω) denote the cardinality of the set ϕ−1{ω}.

Theorem G

1. Let 1 < p < 2. Then Cϕ is an isometry on Bp if and only if ϕ is a rotation of the disk.

2. Let p > 2 and suppose that nϕ = 1 almost everywhere in some neighborhood of the

origin. Then Cϕ is an isometry on Bp if and only if ϕ is a rotation of the disk.
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4.3 Isometries of Banach spaces among composition operators

If Cϕ is an isometry on H2, Bα, Bp,p−2, Apα, BMOA, then ϕ(0) = 0, see section 4.2 and [1,

Lemma 3.4]. Below we show that under some very general conditions on a Banach space

X, the isometries among composition operators fix the origin. In particular, this theorem

unifies the proofs of all such known results.

Theorem 4.1 Let X be a Banach space of holomorphic functions containing the constant

functions and Aut(D). Moreover assume that for all f ∈ X, ||f ||X = |f(0)|+ ||f ||sX and for

any constant c, ||f + c||sX = ||f ||sX . Then Cϕ is an isometry on X if and only if ϕ(0) = 0

and for all f ∈ X

||f ◦ ϕ||sX = ||f ||sX . (23)

Proof: First, assume that Cϕ is an isometry on X and let λ = ϕ(0). We conclude that

||αλ ◦ ϕ||sX + |λ| = ||αλ ◦ ϕ− λ||sX + |λ|

= ||αλ ◦ ϕ− λ||X

= ||Cϕ(αλ − λ)||X

= ||αλ − λ||X

= ||αλ − λ||sX

= ||αλ||sX . (24)

By (24) and using one more time that Cϕ is an isometry, we conclude that

|λ|+ ||αλ||sX = ||αλ||X = ||Cϕαλ||X

= ||αλ ◦ ϕ||X
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= ||αλ ◦ ϕ||sX

= ||αλ||sX − |λ| (25)

and λ = ϕ(0) = 0. It is now clear that (23) holds.

Conversely, if we assume that ϕ(0) = 0 and ‖f ◦ ϕ‖sX = ‖f‖sX for all f ∈ X then

‖Cϕf‖X = |f(ϕ(0))|+ ‖f‖sX

= |f(0)|+ ‖f‖sX

= ‖f‖X ,

and Cϕ is an isometry on X. �

The weighted composition operator, Wψ,ϕ, is defined by Wψ,ϕf = ψ(f ◦ϕ) for ψ ∈ H(D), and

ϕ an holomorphic self map of D.

Next we extend the result of the theorem above to isometries among weighted composi-

tion operators; we derive a necessary and sufficient condition that guarantees equality of

seminorms of f and Wψ,ϕf .

Theorem 4.2 Let X be a Banach space of holomorphic functions containing the constant

functions and Aut(D). Assume that for all f ∈ X, ‖f‖X = |f(0)|+ ‖f‖sX and ||f + c||sX =

||f ||sX , for each constant c. Moreover, assume that Wψ,ϕ is an isometry on X. Then

||Wψ,ϕf ||sX = ||f ||sX for all f ∈ X if and only if ψ(z) = ψ(0) for all z ∈ D, |ψ(0)| = 1 and

ϕ(0) = 0.

Proof: The sufficiency of the conditions for the equality of the semi norms follows easily

by Theorem 4.1. For the necessity, if Wψ,ϕ is an isometry and ||Wψ,ϕf ||sX = ||f ||sX for all

f ∈ X then |ψ(0)| |f(ϕ(0))| = |f(0)| for all f ∈ X. Applying this for the functions 1 and

f(z) = z we see that |ψ(0)| = 1 and ϕ(0) = 0 respectively. Next, note that by assumption
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||1||X = ||1||sX + 1

= ||2||sX + 1

= ||2||X − 2 + 1

= 2||1||X − 1 (26)

and ||1||X = 1. Since Wψ,ϕ is an isometry, ||Wψ,ϕ1||X = ||1||X = 1 and

1 = ||ψ||X = ||ψ||sX + |ψ(0)|

= ||ψ − ψ(0)||sX + |ψ(0)|

= ||ψ − ψ(0)||X + |ψ(0)| . (27)

Therefore |ψ(0)| = 1 if and only if ψ(z) = ψ(0) for all z ∈ D and the conclusion follows. �

The only Mobius transformations on D fixing the origin are disk rotations. Therefore the

following is an immediate corollary of Theorem 4.1.

Proposition 4.1 Let X be a Banach space of holomorphic functions containing the constant

functions and Aut(D). Let ϕ ∈ Aut(D) and assume that ‖f‖X = |f(0)|+ ‖f‖sX and for any

constant c, ||f + c||sX = ||f ||sX . Then Cϕ is an isometry on X if and only if ϕ is a disk

rotation.

Corollary 4.1 Let α > −1, p > 1 and ϕ ∈Aut(D). Then Cϕ is an isometry on Bp,α if and

only if ϕ is a rotation.

Proposition 4.2 Let X be a Banach space of holomorphic functions containing the identity

for i(z) = z, z ∈ D. Then the range of Cϕ contains a univalent map if and only if ϕ is

univalent.
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Proof: First, assume there exists g ∈ X univalent and f ∈ X such that Cϕ(f) = g. Let

z1, z2 ∈ D be such that ϕ(z1) = ϕ(z2). Then

g(z1) = Cϕf(z1) = f(ϕ(z1)) = f(ϕ(z2)) = Cϕf(z2) = g(z2) .

Since g is univalent, we conclude that z1 = z2 and thusly ϕ is univalent.

Next, assume that ϕ is univalent. Then, since X contains the constants and ϕ = Cϕz, ϕ is

a univalent map on the range of Cϕ. �

The following is an immediate corollary of the above proposition.

Corollary 4.2 Let α > −1, p > 1. If Cϕ is onto on Bp,α then ϕ is univalent.

In [1, Lemma 3.4] the authors show that if Cϕ is an isometry on Bp,p−2 then Wϕ,ϕ′ is an

isometry on App−2. Next we show that the isometries among the composition operators Cϕ

on all Besov type spaces are precisely the weighted composition operators with symbols ϕ

and ϕ′ on weighted Bergman spaces.

Theorem 4.3 Let 1 < p <∞ and α > −1. Then Cϕ is an isometry on Bp,α if and only if

ϕ(0) = 0 and Wϕ′,ϕ is an isometry on Apα.

Proof: First, assume that Cϕ is an isometry on Bp,α. Then by Theorem 4.1 ϕ(0) = 0 and

for each g ∈ Bp,α, ||Cϕg||p,α = ||g||p,α or

∫
D
|g′(ϕ(z))|p|ϕ′(z)|p(1− |z|2)αdA(z) =

∫
D
|g′(z)|p(1− |z|2)αdA(z) . (28)

For each f ∈ Apα, pick g ∈ Bp,α such that f = g′. Then by (28) we have ||Wϕ′,ϕf ||Apα = ||f ||Apα
and we conclude that Wϕ′,ϕ is an isometry on Apα.

Next if Wϕ′,ϕ is an isometry on Apα then for all f ∈ Apα

∫
D
|f(ϕ(z))|p|ϕ′(z)|p(1− |z|2)αdA(z) =

∫
D
|f(z)|p(1− |z|2)αdA(z) .
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Since g ∈ Bp,α if and only if g′ ∈ Apα, we conclude that (28) is valid for all g ∈ Bp,α and Cϕ

is an isometry on Bp,α. �

The following is an immediate corollary of the proposition above and Kolaski’s theorem.

Corollary 4.3 Let 1 < p < ∞, p 6= 2, and α > −1. If Cϕ is an isometry on Bp,α then

ϕ(0) = 0 and ϕ is a full map of D.

Proposition 4.3 Let p > 1 and α > −1. Then all rotations induce isometries on Bp,α.

Proof: Let θ ∈ R and ϕ(z) = eiθz be a rotation in the unit disk. Then if f ∈ Bp,α, by (4)

and Corollary 4.3 and applying a change of variables, we have

‖Cϕf‖pp,α = |f(ϕ(0)|+
∫
D
|f ′(ϕ(z)|p|ϕ′(z)|p(1− |z|2)α dA(z)

= |f(0)|+
∫
D
|f ′(eiθz)|p(1− |z|2)α dA(z)

= |f(0)|+
∫
D
|f ′(w)|p(1− |w|2)α dA(w).

= ‖f‖pp,α.

Thus rotations are isometries on Bp,α. �

Proposition 4.4 Let 1 < p < 2, −1 < α ≤ p − 2. If Cϕ is an isometry on Bp,α then ϕ is

univalent on D.

Proof: By Corollary 4.3, ϕ(0) = 0 and ηϕ(z) ≥ 1 almost everywhere on D. Therefore by

Schwarz’s Lemma and the Schwarz-Pick Lemma,

|ϕ′(z)|p (1− |z|2)α ≥ (1− |ϕ(z)|2)α |ϕ′(z)|2. (29)
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Then since Cϕ is an isometry, by (29) and Proposition 3.2

||z||pp,α = ||ϕ||pp,α =

∫
D
|ϕ′(z)|p (1− |z|2)α dA(z)

≥
∫
D
(1− |ϕ(z)|2)α |ϕ′(z)|2dA(z)

=

∫
D
(1− |w|2)α ηϕ(w) dA(w)

≥
∫
D
(1− |w|2)α dA(w)

= ||z||pp,α; (30)

therefore

||ϕ||pp,α =

∫
D
(1− |w|2)α dA(w) =

∫
D
(1− |w|2)α ηϕ(w) dA(w) (31)

and ηϕ(w) = 1 for almost every w ∈ D. Equivalently ϕ is a univalent full map of D. By the

proof of the main Theorem in [17] we conclude that ϕ is univalent on D. �

Theorem 4.4 Let 1 < p < 2, −1 < α ≤ p−2. Then, Cϕ is an isometry on Bp,α if and only

if ϕ is a rotation.

Proof: Fix 1 < p < 2 and −1 < α ≤ p − 2. By Corollary 4.3 and Proposition 4.4, if Cϕ

is an isometry on Bp,α then ϕ is univalent full map on D that fixes the origin. Now the

calculation in (30) is valid and implies that

||ϕ||pp,α =

∫
D
|ϕ′(z)|p (1− |z|2)α dA(z)

=

∫
D
(1− |w|2)αηϕ(w) dA(w)

=

∫
D
(1− |ϕ(z)|2)α |ϕ′(z)|2 dA(z) . (32)
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Let h(z) denote the function below:

|ϕ′(z)|p−2(1− |z|2)α − (1− |ϕ(z)|2)α . (33)

Then by (29), h(z) ≥ 0 for all z ∈ D and by (32)

∫
D
h(z)dA(z) = 0 ;

we conclude that h(z) = 0 for almost all z ∈ D, that is

|ϕ′(z)|p−2(1− |z|2)α = (1− |ϕ(z)|2)α .

By the Schwarz-Pick Lemma we obtain

|ϕ′(z)|p−2 (1− |z|2)α ≥ (1− |ϕ(z)|2)p−2 (1− |z|2)α−p+2

and

(1− |ϕ(z)|2)α−p+2 ≥ (1− |z|2)α−p+2 , (34)

for almost all z ∈ D. Since α ≤ p− 2, this implies that |z| ≤ |ϕ(z)|. And since ϕ(0) = 0, by

Schwarz’s Lemma, |ϕ(z)| ≤ |z|. Therefore we obtain equality in Schwarz’s Lemma and ϕ is

a rotation. By Proposition 4.3 disk rotations are isometries on Bp,α. �

Theorem 4.5 If p > 2 and α ≥ p − 2 and ϕ is univalent then, Cϕ is an isometry on Bp,α

if and only if ϕ is a rotation.

Proof: Fix p > 2 and α ≥ p− 2. Assume that Cϕ is an isometry in Bp,α. By Proposition

4.1, ϕ(0) = 0 and by Corollary 4.3 the Lebesgue area measure of D \ϕ(D) is 0. Since p > 2,
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α ≥ p− 2 by both Schwarz’s Lemma and the Schwarz-Pick Lemma,

||ϕ||pp,α =

∫
D
|ϕ′(z)|p (1− |z|2)α dA(z)

=

∫
D
|ϕ′(z)|p−2 (1− |z|2)p−2 (1− |z|2)α−p+2 |ϕ′(z)|2 dA(z)

≤
∫
D
(1− |ϕ(z)|2)p−2 (1− |z|2)α−p+2 |ϕ′(z)|2 dA(z)

≤
∫
D
(1− |ϕ(z)|2)α |ϕ′(z)|2 dA(z)

=

∫
ϕ(D)

(1− |w|2)α dA(w)

=

∫
D
(1− |w|2)α dA(w) = ||z||pp,α (35)

therefore we obtain equalities everywhere above and

∫
D
(1− |ϕ(z)|2)p−2 (1− |z|2)α−p+2 |ϕ′(z)|2 dA(z) =

∫
D
(1− |ϕ(z)|2)α |ϕ′(z)|2 dA(z)

Since α− p+ 2 ≥ 0 we have for the function h(z) below,

h(z) = (1− |ϕ(z)|2)p−2
(
(1− |ϕ(z)|2)α − (1− |z|2)α−p+2

)
= (1− |ϕ(z)|2)p−2

(
(1− |ϕ(z)|2)α−p+2 − (1− |z|2)α−p+2

)
≥ 0 (36)

By (35) we have ∫
D
|ϕ′(z)|2h(z) dA(z) = 0.

Since ϕ is univalent ϕ′ never vanishes. Thus h(z) = 0 for almost every ζ ∈ D. By Proposition

4.3 disk rotations are isometries in Bp,α. �

Let A2(N2,α(w,ϕ)dA(w)) denote the space of holomorphic functions f on D with

‖f‖2
N2,α

=

∫
D
|f(w)|2N2,α(w,ϕ)dA(w) <∞.
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Below we classify isometries on B2,α in terms of Nevanlinna type counting functions. It

extends the main result in [17] and part of the proof is similar to it.

Theorem 4.6 Let α > −1. Then, Cϕ is an isometry on B2,α if and only if ϕ(0) = 0 and

for almost every w ∈ D,

N2,α(w,ϕ) =
∑

ϕ(z)=w

(1− |z|2)α = (1− |w|2)α . (37)

Proof: First, assume that Cϕ is an isometry on B2,α. By Theorem 4.3 this is equivalent to

ϕ(0) = 0 and Wϕ′,ϕ being an isometry on A2
α. Then for all h ∈ A2

α we have

∫
D
|h(ϕ(z))|2 |ϕ′(z)|2 (1− |z|2)α dA(z) =

∫
D
|h(z)|2 (1− |z|2)α dA(z) ;

and by Proposition 3.2 for g = |h|2 we obtain

∫
D
|h(w)|2N2,α(w,ϕ) dA(w) =

∫
D
|h(z)|2 (1− |z|2)α dA(z). (38)

By (38), h ∈ A2
α if and only if h ∈ A2(N2,α(w,ϕ)dA(w)) and in fact ‖h‖A2

α
= ‖h‖N2,α . Using

the polarization identities in A2
α and in A2(N2,α(w,ϕ))dA(w) and for functions f, g ∈ A2

α

(see [10, Lemma 3.3]), we obtain

∫
D
f(w)g(w)N2,α(w,ϕ) dA(w) =

∫
D
f(w)g(w) (1− |z|2)α dA(z) ;

by using f(z) = zm and g(z) = zn, m,n = 0, 1, 2, ... we see that for all polynomials p(z, z)

∫
D
p(z, z)N2,α(w,ϕ) dA(w) =

∫
D
p(z, z) (1− |z|2)α dA(z).

By the Stone-Weierstrass Theorem (see [10, Theorem 2.40], for all h ∈ C(D)

∫
D
h(z)N2,α(w,ϕ) dA(w) =

∫
D
h(z) (1− |z|2)α dA(z) .
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By the Riesz Representation Theorem (see [22, Theorem 2.14]) we conclude that (37) holds

for almost every w ∈ D. By Theorem 4.1 and (38) the sufficiency of the above condition is

clear. �

By Theorem 4.1 and the main result in [17] we obtain the following.

Corollary 4.4 The composition operator Cϕ is an isometry on B2,0 if and only if ϕ is a

univalent full map that fixes the origin.

If Cϕ is an isometry on B2,α and α ≥ 0 then by Theorem 4.6 and for almost every w ∈ D,

0 < (1− |w|2)α ≤ ηϕ(w). So we obtain the following corollary.

Corollary 4.5 Let α > 0. If Cϕ is an isometry on B2,α then ϕ(0) = 0 and ϕ is a full map

of D.

Corollary 4.6 Let −1 < α < 0 and ϕ a non constant self map of D. Then, Cϕ is an

isometry on B2,α if and only if ϕ is a rotation.

Proof: First, assume that Cϕ is an isometry on B2,α. By Schwarz’s lemma if z ∈ D then ,

(1− |z|2)α ≥ (1− |ϕ(z)|2)α. Hence by Theorem 4.6 and for almost all w ∈ D

(1− |w|2)α = N2,α(w,ϕ) ≥ (1− |w|2)α ηϕ(w) .

We conclude ηϕ(w) ≤ 1. Pick w ∈ D with ηϕ(w) = 1 and such that (37) holds. We obtain

equality in Schwarz’s lemma and ϕ has to be a rotation. By Proposition 4.3 disk rotations

are isometries. �

Below we extend Theorem 4.6, include all indices p > 1 to α > −1.

Theorem 4.7 Let p > 1, p 6= 2. Then Cϕ is an isometry on Bp,α if and only if ϕ(0) = 0

and for almost every w ∈ D, Np,α(w,ϕ) = (1− |w|2)α.
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Proof: First, assume that Cϕ is an isometry on Bp,α; by Theorem 4.3 this is equivalent to

ϕ(0) = 0 and Wϕ′,ϕ being an isometry on Apα. By (17) and for all bounded Borel functions

h we have

∫
D
h(ϕ(z)) |ϕ′(z)|p (1− |z|2)α dA(z) =

∫
D
h(z) (1− |z|2)α dA(z) ;

by Proposition 3.2 we obtain

∫
D
h(w)Np,α(w,ϕ) dA(w) =

∫
D
h(z) (1− |z|2)α dA(z) . (39)

If h is a continuous function on D with compact support then it is a bounded Borel function.

Therefore (39) holds for all continuous function on D with compact support and by the Riesz

Representation Theorem, (see [22, Theorem 2.14]), we conclude that for almost every w ∈ D,

Np,α(w,ϕ) = (1− |w|2)α. By (11) the sufficiency of the above condition is obvious. �

Proposition 4.5 Let p > 1, α > −1 except p = 2, α = 0 and let ϕ be a self map of D with

ϕ′(0) 6= 0. Then, Cϕ is an isometry on Bp,α if and only if ϕ is a rotation.

Proof: Since ϕ′(0) 6= 0, ϕ is univalent in a small disk ∆ in D centered at 0. Then by

Theorem 4.6, Theorem 4.7, and assuming that Cϕ is an isometry on Bp,α,

∫
ϕ(∆)

(1− |w|2)α dA(w) =

∫
ϕ(∆)

Np,α(w,ϕ) dA(w) .

By making non-univalent change of variables as in Proposition 3.2 in both integrals of the

above equation we obtain

∫
∆

|ϕ′(z)|2 (1− |ϕ(z)|2)α dA(z) =

∫
∆

|ϕ′(z)|p (1− |z|2)α dA(z) ,
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equivalently

∫
∆

|ϕ′(z)|2
(
(1− |ϕ(z)|2)α − |ϕ′(z)|p−2 (1− |z|2)α

)
dA(z) = 0 .

It is clear that the integrand above is non-negative, therefore for almost every z ∈ ∆,

|ϕ′(z)|p−2 (1− |z|2)α = (1− |ϕ(z)|2)α . (40)

Pick a sequence (zn) ∈ ∆ such that (40) holds for each zn and such that zn converges to

0. By Corollary 4.3, ϕ(0) = 0 and we conclude that |ϕ′(0)| = 1. By Schwarz’s lemma ϕ is a

rotation. The converse is clear. �

In the proof below we use an argument in Proposition 2.5 in [24].

Theorem 4.8 Let α > −1, α 6= 0 and ϕ a non constant self map of D. Then, Cϕ is an

isometry on B2,α if and only if ϕ is a rotation.

Proof: First let α > 0 and assume that Cϕ is an isometry on B2,α. Then, by Theorem 4.6,

ϕ(0) = 0 and for almost all w ∈ D

∑
ϕ(z)=w

(1− |z|2)α = (1− |w|2)α . (41)

Since ϕ is non constant, there exists a natural number n such that ϕ(j)(0) = 0 for j =

0, 1, ..., n−1 but ϕ(n)(0) 6= 0. Moreover there exists an holomorphic and univalent function g

in a small disk ∆ centered at 0 such that g(0) = 0 and ϕ(z) = g(z)n for all z ∈ ∆. Moreover

g(∆) contains a disk ∆′ centered at 0. Given w ∈ ∆′, let w1, w2, ..., wn denote the n-th roots

of w that is wnj = w, for j = 1, 2, ..., n. Then g−1(wj) ∈ ϕ−1(w), j = 1, 2, ..., n and by (41)

(1− |w|2)α ≥
n∑
j=1

[
(1− |g−1(wj)|2)

]α
. (42)
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Note that

g−1(w) = [ (g−1)′(0) + o(1) ]w = [
1

g′(0)
+ o(1) ]w

for w sufficiently near 0. By (42) we conclude that

(1− |w|2)α ≥
n∑
j=1

[
(1− | 1

g′(0)
+ o(1)|2)|wj|2

]α
= n

[
(1− | 1

g′(0)
+ o(1)|2)|w|

2
n

]α

or equivalently that

n
1
α | 1

g′(0)
+ o(1) |2) |w|

2
n − |w|2 ≥ n

1
α − 1

and therefore

n
1
α | 1

g′(0)
+ o(1) |2) |w|

2
n ≥ n

1
α − 1

for w near 0. Therefore by taking limits as w approaches 0 we get n = 1 and ϕ is univalent

near 0 and ϕ′(0) 6= 0. By Proposition 4.5 ϕ must be a disk rotation. By Proposition 4.3 disk

rotations are isometries. If −1 < α < 0, then Corollary 4.6 applies. �

Example 4.1 Cz2 is an isometry in H2 but is not an isometry in B2,1.

Let ϕ(z) = z2. Then ϕ(0) = 0 and if |z| = 1 then |z|2 = 1. We have ϕ is an inner function

and fixes the origin. Therefore by Theorem A, Cz2 is an isometry on H2. By Theorem 4.8,

Cz2 is not an isometry in B2,1.

Remark 4.3 Note that B2,1 = H2 but the isometries in H2 among composition operators

are all the inner functions fixing the origin, while the isometries in the B2,1 norm are only

the disk rotations.
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Proposition 4.6 Let ϕ be an holomorphic full map of D such that ϕ(0) = 0 and for all

z ∈ D, |ϕ′(z)| ≤ 1. Then ϕ is locally univalent at 0, that is, ϕ′(0) 6= 0.

Proof: Suppose that ϕ′(0) = 0. Then by Schwarz’s lemma applied to ϕ′ we see that

|ϕ′(z)| ≤ |z| for all z ∈ D. Therefore,

|ϕ(z)| = |
∫ 1

0

zϕ′(tz) dt|

≤ |z|
∫ 1

0

|ϕ′(tz)| dt

≤ |z|2
∫ 1

0

t dt

=
|z|2

2

≤ 1

2
(43)

and clearly ϕ cannot be a full map, and ϕ′(0) 6= 0. �

Below we extend Theorem 4.4, Theorem 4.5, and Theorem 4.8 to include all indices p > 1.

Theorem 4.9 If p > 1, p 6= 2, and α > −1 then Cϕ is an isometry on Bp,α if and only if ϕ

is a rotation.

Proof: Assume that Cϕ is an isometry on Bp,α. By Corollary 4.3, ϕ(0) = 0. By Theorem

4.7, Cϕ is an isometry on Bp,α if and only if for almost every w ∈ D

Np,α(w,ϕ) =
∑

ϕ(z)=w

|ϕ′(z)|p−2 (1− |z|2)α = (1− |w|2)α . (44)

By Schwarz’s lemma |ϕ′(0)| ≤ 1, and if |ϕ′(0)| = 1 then ϕ is a rotation. So we may

assume that |ϕ′(0)| < 1.

First, let α = 0. We will show that ϕ′(0) 6= 0. If p > 2, then by (44) and the continuity of

ϕ′, for every z ∈ D, |ϕ′(z)| ≤ 1 . Therefore by Proposition 4.6, ϕ′(0) 6= 0. Next, if 1 < p < 2

then by (44) and the continuity of ϕ′ we obtain that for all z ∈ D, |ϕ′(z)| ≥ 1, in particular
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ϕ′(0) 6= 0. Now by Proposition 4.5, ϕ is a rotation.

Next, let α 6= 0. If |ϕ′(z)| ≤ 1 for all z ∈ D then by Proposition 4.6, ϕ′(0) 6= 0 and

again by Proposition 4.5, ϕ is a rotation. On the other hand, if there exists a ∈ D such that

|ϕ′(a)| > 1 then, since |ϕ′(0)| < 1, there exists z0 ∈ D such that |ϕ′(z0)| = 1. Therefore

ϕ is also univalent in a small disk ∆ with center z0. By (44), the continuity of ϕ′ and an

argument similar to the one for the the derivation of (40) we conclude that for every z ∈ ∆

|ϕ′(z)|p−2 (1− |z|2)α = (1− |ϕ(z)|2)α ;

if z = z0 then

(1− |z0|2)α = (1− |ϕ(z0)|2)α ,

and by Schwarz’s lemma ϕ is a rotation. That rotations are isometries in any Besov type

space follows by Proposition 4.3 and the theorem is proved. �

Let ϕ be a holomorphic self map of D with ϕ(0) = 0. Martin and Vukotic’s main result in

[17] implies that for almost every w ∈ D, N2,0(w,ϕ) = (1 − |w|2)0 = 1 if and only if ϕ is a

univalent full map. By Theorem 4.6 and Theorem 4.9 and for all other indices we have the

following.

Corollary 4.7 Let p > 1, α > −1, except p = 2, α = 0. Then, ϕ(0) = 0 and for almost

every w ∈ D, Np,α(w,ϕ) = (1− |w|2)α if and only if ϕ is a rotation.
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