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Abstract

Using light to probe the structure of matter is as natural as opening our eyes. Modern

physics and chemistry have turned this art into a rich science, measuring the delicate

interactions possible at the molecular level.

Perhaps the most commonly used tool in computational spectroscopy is that of ma-

trix diagonalization. While this is invaluable for calculating everything from molecular

structure and energy levels to dipole moments and dynamics, the process of numeri-

cal diagonalization is an opaque one. This work applies symmetry and semi-classical

techniques to elucidate numerical spectral analysis for high-symmetry molecules.

Semi-classical techniques, such as the Potential Energy Surfaces, have long been

used to help understand molecular vibronic and rovibronic spectra and dynamics.

This investigation focuses on newer semi-classical techniques that apply Rotational

Energy Surfaces (RES) to rotational energy level clustering effects in high-symmetry

molecules. Such clusters exist in rigid rotor molecules as well as deformable spherical

tops. This study begins by using the simplicity of rigid symmetric top molecules to

clarify the classical-quantum correspondence of RES semi-classical analysis and then

extends it to a more precise and complete theory of modern high-resolution spectra.

RES analysis is extended to molecules having more complex and higher rank ten-

sorial rotational and rovibrational Hamiltonians than were possible to understand

before. Such molecules are shown to produce an extraordinary range of rotational

level clusters, corresponding to a panoply of symmetries ranging from C4v to C2 and

C1 (no symmetry) with a corresponding range of new angular momentum localization

and J-tunneling effects.

Using RES topography analysis and the commutation duality relations between

symmetry group operators in the lab-frame to those in the body-frame, it is shown

how to better describe and catalog complex splittings found in rotational level clus-



ters. Symmetry character analysis is generalized to give analytic eigensolutions. An

appendix provides vibrational analogies.

For the first time, interactions between molecular vibrations (polyads) are de-

scribed semi-classically by multiple RES. This is done for the ν3/2ν4 dyad of CF4.

The nine-surface RES topology of the U(9)-dyad agrees with both computational and

experimental work. A connection between this and a simpler U(2) example is detailed

in an Appendix.
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Introduction

Light is the only tool humanity has to glean information from the stars. It may be

the only tool humanity will ever have. The details of interactions between light and

molecules provides more than inspiring images from telescopes, but also a window into

the chemistry, physics and perhaps biology of the universe. Moreover, high-resolution

spectroscopy is not only responsible for our understanding of the very distant, but

also the very small. The foundations of quantum mechanics are tested time and time

again by spectroscopy.

Molecular spectroscopy is unique for providing a test bed for perfect molecular

symmetry to dominate physical interactions. Symmetry and its slight perturbation

create an array of effects that exist on wide energy range. The phenomena studied

here are particular to high-resolution spectroscopy of highly symmetric molecules, but

the same effects of symmetry play analogous roles in myriad physical systems from

coupled oscillators to the electronic structure of crystals.

Physicists and chemists consider symmetry and group theory to be work saving

tools. This undervalues the quantitative understanding that theoretical work can

provide. Symmetry offers new avenues to explore, new phenomena to expect and way

of mathematical story telling. While the quantum mechanical world is invisible to our

massive bodies, symmetry analysis provides a qualitative understanding that lists of

eigenvalues cannot.

A key mathematical technique for atomic or molecular physics and quantum chem-

istry is matrix diagonalization for quantum eigensolution. As computers become faster

and more available, more problems of chemical physics are framed in terms of choosing

bases for eigensolution of time evolution operators or Hamiltonian generator matrices.

The resulting eigenvectors and eigenvalues are Fourier amplitudes and frequencies that

combine to give all possible dynamics in a given basis choice.

1



Despite the ease and power of computer diagonalization, it remains a “black box”

of processes quite unlike the complex natural selection by wave interference that we

imagine nature uses to arrive at its quantum states. Diagonalization uses numerical

tricks to reduce each N-by-N matrix to N values and N stationary eigenstates, but the

artificial processes may seem as opaque as nature itself with little or no physical insight

provided by N2−N eigenvector components. We are thus motivated to seek ways to

visualize more of the physics of molecular eigensolutions and their spectra. This leads

one to explore digital graphical visualization techniques that provide insight as well

as increased computational power.

Before describing tensor eigensolution techniques, a brief review is given of related

methods that may help to put this particular technique in a historical and methodolog-

ical context. Chapter 1 gives this context and a background of graphical techniques

used to evaluate rotational level clustering and tensor algebra used to create these

graphical tools. Chapter 2 expounds further on tensor algebra and uses these tools

to evaluate symmetric and asymmetric top molecules. Much of this analysis is then

shown for more complicated octahedral molecules in Chapter 3. The graphical anal-

ysis in Section 3.2 shows a type of rotational level clustering not previously known.

Chapter 4 offers a Semi-Classical explanation of inter-cluster spectral structure. Fi-

nally, Chapter 6 shows how this analysis can work be used for measured or calculate

spectra, particularly spectra with significant rotation-vibration coupling.

2



Chapter 1

Introduction to Semi-Classical Analysis and the Rotational Energy Surface
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1.1 Background

1.1.1 Symmetry-based Clustering of Rotational Energy Levels

Clustering of rotational energy levels was first reported in 1972 by Dorney and Watson[1].

Their calculations of tetrahedral (XY4) molecules posited that anharmonic or high-

order rotational Hamiltonians (Jk where k > 2) could cause, rather than split degen-

eracy.

Harter and Patterson expanded this theoretical observation[2] which was also con-

firmed experimentally[3]. Their semi-classical study demonstrated that molecular

symmetry can create an entirely new sort of effect: one where internally motivated

symmetry-reduction could cause, rather than split degeneracy. In this case, inter-

nally motivated symmetry breaking is that which the molecule does to itself by a

centrifugally induced interaction (anharmonic rotational Hamiltonian terms), rather

than symmetry breaking from an external agent or field. Highly exited rotational

states induce the molecule to deform its shape and also its rotational phase-space. As

the 2J + 1 eigensolutions redistribute themselves in the deformed phase-space, they

cluster themselves in ways dependent on the old symmetry (spherical) and the reduced

symmetry (tetrahedral). This redistribution is explained in detail in Section 1.1.4 and

ref [4].

Symmetry and semi-classical analysis were used to show the formation and split-

ting of clusters as well as line strength[4]. This work focuses on spectroscopic clus-

ter formation and splitting as a testbed for exploring symmetry and semi-classical

analysis as qualitative tools to evaluate classical-quantum correspondence, dynamical

tunneling, vibrational mode localization and other topics central to chemical physics.

Moreover, the effects outlined in this work are dominant in molecular species of cur-

rent interest. Notable among these is methane (CH4), well known as a greenhouse gas

on Earth as well as a molecule present in planetary and lunar atmospheres.
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1.1.2 Computer Graphical Techniques

Several graphical techniques and procedures exist for gaining spectral insight. One

of the oldest is the Born-Oppenheimer approximate (BOA) potential energy surface

(PES) that is a well-established tool for disentangling vibrational-electronic (vibronic)

dynamics. While BOA-PES predate the digital age by decades, their calculation and

display is made practical by computer. More recent are studies of phase portraits and

wavepacket propagation techniques to follow high-ν vibrational dynamics and chem-

ical pathways for dissociation or re-association[5, 6]. This includes BOA-breakdown

states in which a system evolves on multiple PES paths that interfere with each

other. Dynamic Jahn-Teller-Renner effects are the earliest examples of multi-BOA-

PES states in molecules and solids.

Visualizing eigensolutions and spectra in crystalline solids is helped by bands of

dispersion functions in reciprocal frequency-versus-wavevector space. An analogy with

band theory of solids in B-fields and molecular rovibronic bands is one of the ideas

explored below.

Visualization of molecular rotational, rovibrational, and rovibronic eigensolutions

and spectra is the subject of this work. Key techniques for achieving this goal involve

the rotational energy surface (RES). As described below, an RES is a multipole expan-

sion plot of an effective Hamiltonian in rotational momentum space. High sensitivity

of vibronic states to rotation lets the RES expose intricate and unexpected physics.

The RES was introduced about twenty-five years ago[7] to analyze spectral fine

structure of high resolution spectral bands in molecules of high symmetry. Among

these are PH3[8], XDH3 and XD2H molecules[9], tetrahedral (P4)[10], tetrafluorides

(CF4 and SiF4)[11], hexafluorides (SF6, Mo(CO)6 and UF6)[12, 13, 14, 15], cubane

(C8H8), and buckyball (C60)[14, 15]. Several effects were predicted using RES tech-

niques, including major hyperfine mixing of Herzberg rovibronic species[16]. Recently

RES have been extended to help understand the dynamics and spectra of fluxional
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rotors[17] or “floppy” molecules such as methyl-complexes[18].

Each of the techniques and particularly the RES-based ones described below de-

pend upon the key wave functional properties of stationary phase, adiabatic invari-

ance, and the spacetime symmetry underlying quantum theory. Additional symmetry

(point group, space group, exchange, gauge, etc.) of a molecular system makes it

prone to additional resonance, but that also makes graphical techniques even more

useful to expose and analyze resonant phenomenal dynamics.

Vibronic Born-Openheimer Approximate potential energy surfaces (BOA-

PES)

A BOA-PES depends on an adiabatic invariance of each electronic wavefunction to

nuclear vibration. It is often said that the electrons are so much faster than nuclei

that the system “sticks” to a particular PES that electrons provide. Perhaps a better

criterion would be that the spectrum associated with nuclear motion does not overlap

that of an electronic transition to another energy level. Nuclei often provide stable

configurations that quantize electronic energy into levels separated by gaps much wider

than that of low lying vibrational “phonon” states.

A BOA wavefunction is a peculiarly entangled outer product Ψ = ηψ of a nuclear

factor wavefunction ην(ε)

(
X . . .

)
in (1.1a) whose quantum labels ν(ε) depend on elec-

tronic quantum labels ε = nlm, etc. while the electronic factor wave ψ(x(X... ) . . . ) is

a function whose electron coordinates x(X... ) . . . depend adiabatically on nuclear vi-

brational coordinates (X . . . ) of the PES Vε(X . . . ) belonging to one electron bonding

state ε.

The adiabatic convenience of a single product Eq (1.1a) with a vibration eigen-

function ην(ε)(X . . . ) on a single PES function Vε(X . . . ) is welcome but comes at the

price of more complicated symmetry operator product algebra. A BOA-entangled

coordinate-state is not a simple bra-ket wavefunction product in Eq (1.1b) of bra-bra
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〈x . . . |〈X . . . | position and ket-ket |ψε〉|ην〉 state.

Ψν(ε)(x
electron . . . Xnuclei . . . ) =

ψε(x(X... ) . . . ) · ην(ε)(X . . . ) BOA-Entangled Product (1.1a)

Ψν,ε(x
electron . . . Xnuclei . . . ) =

ψε(x . . . ) · ην(X . . . ) Unentangled Product

= 〈x . . . |ψε〉〈X . . . |ην〉 = 〈x . . . ;X . . . |ψε; ην〉 (1.1b)

Elementary symmetry operators that operate on Eq (1.1b) are well known, but

the symmetry transformation of BOA product Eq (1.1a) depends on rotational BOA-

relativity of its parts. If one includes rotational effects as well, then the vibronic BOA-

PES generalize to rovibronic RES that involve rotational frame symmetry relations

described below.

Rovibronic BOA rotational energy surfaces (BOA-RES)

The rotational energy surface (RES) can be seen as a generalization of adiabatic

vibrational·electronic(vibronic) BOA wave Eq (1.1a) to a rovibroic wave in Eq (1.2)

below that includes rotational motion. Here one treats vibronic motion as having the

“fast” degrees of freedom while rotational coordinates Θ (e.g., Euler angle (αβγ) for

semi-rigid molecules) play the “slow” semi-classical role vis-a-vis the “faster” adiabatic

vibration or vibronic states.

ΦJ [ν(ε)](x
elec . . . Qvib . . .Θrot) =

ψε(x(Q...Θ... ) . . . ) · ην(ε)(Q . . . [Θ . . . ]) · ρJ [ν(ε)](Θ
rot . . . ) (1.2)
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In Eq (1.2), the wave factors of each motion are ordered fast-to-slow going left-to-right.

As in Eq (1.1a) each wave-factor quantum number depends on quanta in “faster” wave-

factors written to its left, but each coordinate has adiabatic dependence on coordinates

in “slower” factors written to its right.

Notation Q in Eq (1.2) stands for vibrational normal coordinates (q1, q2, . . . qm)

and ν stands for their quanta (ν1, ν2, . . . νm). The number m = 3N − 6 of modes of

an N -atom semi-rigid molecule has subtracted 3 translational and 3 rotational coor-

dinates. Each mode qk assumes an adiabatic BOA dependency on overall translation

and rotation Θ. Such dependency involves well known Eckart conditions that underlie

the Watson Hamiltonian[19, 20, 21]. (Here we ignore translation.)

RES are multipole expansion plots of effective BOA energy tensors for each quan-

tum value of vibronic quanta ν(ε) and conserved total angular momentum J . Choices

of effective energy tensors depend on the level of adiabatic approximation. So do

the choices of spaces in which RES are plotted. Elementary examples of model BOA

waves, tensors, and RES for rigid or semi-rigid molecules are discussed below.

1.1.3 Lab-frame coupling vs. Body frame constriction

Wave ρ
J
(Θrotation) for a bare rigid symmetric-top (ψ = 1 = η) molecule is a Wigner

DJ -function.

ρ
J
(Θ) = ρ

J,M,K
(αβγ) = DJ∗

M,K(αβγ)
√

norm

norm=[J]=2J+1 (1.3)

Total angular momentum J is J = R for a bare rotor. Bare lab-frame z-component

is labeled M = m. Its body-frame z̄-component is labeled K = M̄ = n. Both m and

n range between +R and −R in integral steps.

An entangled BOA product Eq (1.2) mates vibronic factor Eq (1.1a) with a rotor

factor ρ
J

= ρ
J,M,K

like Eq (1.3). Now J and K = M̄ depend on total vibronic
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momentum l and its body z̄-component µ̄ in Ψν(ε) = Ψl
µ̄.

ΦJ [ν(ε)] = Ψl
ν(ε) · ρJ[ν(ε)] = Ψl

µ̄ · ρJ,M,K = Ψl
µ̄ ·DJ∗

M,K

√
[J ] (1.4)

A disentangled product Ψρ like Eq (1.1b) of lab-based vibronic wave Ψl
µ and bare

rotor ρ
R,m,n

Eq (1.3) is coupled by Clebsch-Gordan Coefficients C lRJ
µmM into a wave ΦJ

M

of total J = R+ l, R+ l− 1, . . . or |R− l| and M = µ+m by the following sum over

lab z-angular bare rotor momenta m and lab vibronic µ bases.

ΦJ
M =

∑

µ,m

C lRJ
µmMψ

l
µ · ρRm =

∑

µ,m

C lRJ
µmMψ

l
µ ·DR∗

m,n

√
[R]

(M=µ+m=const.)

(1.5)

A BOA-entangled wave like Eq (1.1a) or Eq (1.4) requires more serious surgery

in order to survive as a viable theoretical entity. BOA vibronic wave are not merely

coupled like Eq (1.5) to a rotor, they are adiabatically “glued” or constricted to the

intrinsic molecular rotor frame. (We say a rotor is “BOA-constricted” by its vibronic

wave much as a boa-constrictor rides its writhing prey as the two rotate together.)

A remarkable property of quantum rotor operator algebra is that Wigner Dl-

waves in Eq (1.3) are also transformation matrices that relate rotating body-fixed

BOA Ψl
µ̄(body) into the lab-fixed Ψl

µ(lab).

Ψl
µ̄(body) =

∑

µ

Ψl
µ(lab)D l

µ̄µ(αβγ) (1.6a)

Ψl
µ(lab) =

∑

µ̄

Ψl
µ̄(body)D l∗

µµ̄(αβγ) (1.6b)

D-matrices underlie all tensor operators, their eigenfunctions and their eigenvalues and

are a non-Abelian (non-commutative) generalization of plane waves dk∗(r) = 〈r|k〉 =

eikr underlying Fourier operator analysis. Details of this connection are explored in

Chapter 2.
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Of particular importance to RES theory is the Wigner-Eckart factorization lemma,

Eq 1.7a, that relates Clebsch-Gordan C lRJ
µmM to Wigner-D’s and transforms coupled

wave Eq (1.5) to BOA-constricted wave Eq (1.4).

∫
d(αβγ)D l∗

µµ̄(αβγ)DR∗
mn(αβγ)DJ

MK(αβγ) =
1

[J ]
C lRJ
µmMC

lRJ
µ̄nK (1.7a)

∑

µ

∑

µ̄

C lRJ ′

µmMD l∗
µµ̄(αβγ)DR∗

mn(αβγ)C lRJ
µ̄nK = δJJ

′
DJ∗
MK(αβγ) (1.7b)

∑

µ

C lRJ ′

µmMD l∗
µµ̄(αβγ)DR∗

mn(αβγ) =
∑

µ̄

C lRJ
µ̄nKDJ∗

MK(αβγ) (1.7c)

A more familiar form of this is the Kronecker relation of product reduction D l⊗DR ≈

DJ ⊕ DJ ′ ⊕ · · · . Another form is a body-to-lab coupling relation with M = µ + m

and n = K − µ̄ fixed in the µ or µ̄ sums. The latter yields a sum over µ̄ = K − n of

body-fixed BOA waves Eq (1.4) giving lab-based ΦJ
M wave Eq (1.5).

ΦJ
M =

∑

µ

C lRJ
µmM Ψl

µ(lab)DR∗
m,n

√
[R] (1.8)

ΦJ
M =

∑

µ

C lRJ
µmM

∑

µ̄

Ψl
µ(body)D l∗

µµ̄D
R∗
m,n(αβγ)

√
[R]

=
∑

µ

C lRJ
µ̄nK Ψl

µ̄(body)DJ∗
MK(αβγ)

√
[R] (1.9)

=
∑

µ̄

CJlR
−Kµ̄n Ψl

µ̄(body)DJ∗
MK(αβγ)

√
[J ]

The coupling relation µ̄ = K − n also simplifies Eq 1.5 into Eq 1.8, or reorganized

into Eq 1.9.

ΦJ
M =

∑

µ̄

CJlR
−Kµ̄nΨl

µ̄ρJ,M,K =
∑

µ̄

CJlR
−Kµ̄nΦJ [Kν(ε)] (1.10a)

ΦJ [Kν(ε)] = =
∑

R

CJlR
−KµnΦJ

M (1.10b)

Body-(un)coupling Eq (1.10a) is an undoing of BOA-constriction by subtracting
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vibronic (l, µ̄) from (J,K) of BOA-wave ΦJ [ν(ε)] Eq (1.10b) to make lab-fixed ΦJ
M Eq

(1.10a) with sharp rotor quanta R = J − l, J − l + 1 . . . or J + l. In a lab-fixed wave

ΦJ
M of Eq (1.5) or Eq (1.10a), rotor R is conserved, but K and µ̄ that are not. A

BOA wave ΦJ [ν(ε)] of Eq (1.4) or Eq (1.10b) has body-fixed vibronic K and µ̄ that are

conserved, but rotor R that is not.

It is important to note the following for Eqs (1.8) - (1.10b). For Eq (1.8), (M =

µ + m) equals a constant. Eq (1.9) is derived from Eqs (1.6b) and (1.7c), while

(n = K − µ̄) is a constant. Finally, in Eqs (1.10a) and (1.10b) K = µ̄ + n and

M = µ+m respectively.

However, in both Eq (1.10a) and Eq (1.10b) the internal bare-rotor body compo-

nent n = K − µ̄ is conserved due to a symmetric rotor’s azimuthal isotropy. This n is

a basic rovibronic-species quantum number invariant to all lab based perturbation or

transition operators. Like a gyro in a suitcase, no amount of external kicking of the

case will slow its spin. Only internal body operations can “brake” its n.

The duality of lab vs body quantum state labels and external vs internal operators

is an important feature of molecular and nuclear physics, and it is to be respected

if we hope to take full advantage of symmetry group algebra of eigensolutions. The

duality is related to that of bra-&-ket. For every group of symmetry operations

such as a 3D rotation group R(3)lab = {. . .R(αβγ) . . . } there is a dual body group

R(3)body = {. . . R̄(αβγ) . . . } having identical group structure, but commuting with

the lab group. Tensor multipole operators, discussed in detail in Chapter 2, come in

dual and inter-commuting sets as well. Duality is discussed further in Chapter 4.

1.1.4 Creating and Using Rotational Energy Surfaces

The Rotational Energy Surface (RES) is a semi-classical phase-space surface used

to analyze various effects in rovibrational spectra. The Poinsot Ellipsoid, as well as

other classical and semi-classical rotational phase-space surfaces, have been used in

the past[22]. The Poinsot Ellipsoid is a surface of constant energy, plotting changing
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angular velocity. The RES is useful spectroscopically because it describes rotational

energy for a constant angular momentum. Therefore, the RES defines the energy level

structure for a given angular momentum.

The RES tools used here were first developed by Harter et al [13, 2] to evaluate

rotational level clusters in tetrahedral and octahedral molecules. This analysis was

first done for ground and singly excited vibrational states and was expanded to deal

with higher vibrational states, which are treated quantum mechanically [23, 24]. Other

groups have used Rotational Energy Surfaces (RES) to evaluate the rotational clusters

inside vibrational triplets [10, 12] and internal rotations [17]. In each of these cases

there are three main uses of the RES.

1. To explain the boundaries of the rotational bands for a given angular momentum.

2. To explain rotational clusters in terms of symmetry reduction [2].

3. To explain the splittings of the rotational clusters in terms of phase-space tun-

neling [25].

Most of this work will employ the first two of these uses, while Chapter 4 focuses on

the third.

While theorists typically use quantum rotational or rovibronic Hamiltonians writ-

ten as polynomial functions of Ĵ , converting to a unit-tensor formalism allows for

a variety of semi-quantum, semi-classical and classical analyses. By rewriting the

molecular Hamiltonian, one is able to use a well parameterized Hamiltonian that is

written in terms of the symmetry reduction from the rotational Lie symmetry, SO(2),

to the molecular symmetry, SO(2) ⊃ G × T , where G is the point symmetry group

of the molecule. Much of the effort in Chapters 3, 4 and 6 deals with octahedral and

tetrahedral molecules where SO(2) ⊃ Td × T . This Hamiltonian may also written as

an outer product of rotational and vibrational operators.

The semi-classical analysis done here will keep rotation a classical function of body
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frame angles θ and φ. One may then create surfaces of constant angular momentum

called Rotational Energy Surfaces.

The RES is built by first rewriting the rotational Hamiltonian as classical polyno-

mial functions of ~J , rather than of quantum operators J and K. By also making |J |

a discrete value, the rotational Hamiltonian can be plotted for constant total angular

momentum and varying direction of ~J in the body frame. Thus, the semi-classical

form of the rotational Hamiltonian can be called EJ(θ, φ), or a RES.

Symmetric-top molecules have a simple Hamiltonian that can be quickly con-

verted to EJ(θ, φ) form. The Hamiltonian polynomial and EJ(θ, φ) are expressed in

Eq (1.11a). Fig 1.1 plots the RES for this Hamiltonian, given that A = B < C. Such

Hamiltonians will be discussed in chapter 2.

H =A(Jx)
2 +B(Jy)

2 + C(Jz)
2 (1.11a)

EJ =
1

3
(A+B + C) |J |2 +

1

3
(2C − A−B) |J |2 (

3

2
cos2 θ − 1

2
) (1.11b)

+
1√
6

(A−B)

√
3

2
|J |2 sin2 θ cos 2φ

A more complicated example of RES is one for SF6 at J = 30 is shown in Fig 1.2.

SF6 has a more complicated structure which requires a forth order polynomial Hamil-

tonian H = BJ2 + D(J4
x + J4

y + J4
z ). Importantly, the RES and the molecule share

octahedral symmetry. Fig 1.2 is given here as an example only and will be explained

in detail in chapter 3.

Contours on RES in Fig 1.2 correspond to exact quantum levels. The radius

of all RES at a particular location is the rotational energy for that J direction in

the body-frame. The contour through that point is a precession path that J could

follow without changing total energy. Contours are intersections of a constant energy

(constant radius) sphere and the RES.

Contours show two important properties. The first is property is local-symmetry
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K=10

K=9

K=8

K=7

K=-10

K=-9

K=-8

Figure 1.1: Symmetric Top RES J = 10. K values are marked on the plot.

of the cluster states in the rotational phase-space and is related to the molecular

symmetry group[4, 25].

The second property of RES energy contours involves their relation with cones

of angular momentum uncertainty. These cones are graphical manifestations of the

uncertainty in Jx and Jy for a given J and Jz. Uncertainty cones have an opening

angle defined by Eq (1.12).

θuncertainty = arccos

(
Jz√

J(J + 1)

)
(1.12)

Eq (1.12) comes from the known magnitude of Jz and ~J for a given rotational angular

momentum. An example of such an intersection with an RES is shown in Fig 1.2.

Fig 1.2 is an RES describing a ground vibrational state and matches the behavior of

SF6 at J = 30 and shows a Jz = 30 cone (shown in purple) protruding from the top
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Kz=30

Kz=29

Kx=30
Kx=29

Kz=28

Figure 1.2: Rotational Energy Surface for SF6 at J = 30 in the vibrational ground
state. Quantum contours labeled by K-values are shown with colors matching the
symmetry of the topmost level in the K-cluster. (Color code: A1 is red, A2 is orange,
E is green, T1 is blue and T2 is light blue.) Black clusters are too tight for the graphic
routine to distinguish symmetry. The highest-K (K = 30 = J) uncertainty cone is
protruding from the RES at the top.

of the RES.

The uncertainty cone may be placed at any of the surface’s symmetry axes and

may vary in angle so long as Jz is an integer, |Jz| ≤ J and the cone does not cross a

separatrix.

Uncertainty cones and energy contours relate classical and quantum attributes

of the RES. The RES itself is a classical phase-space that is shown to only allow

certain quantized paths corresponding to quantum mechanically calculated energies.

Likewise, the uncertainty cones are a graphical manifestation of angular quantization

that relates to classical rotation intersection with the RES.

The uncertainty cones are useful for several analytical tasks. For example, it

has been shown that non-circular cone intersections (semi-classical trajectories) have

varying k-projection indicative of k-mixing. The RES and uncertainty cones can
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also be used to determine how rotational levels may cluster together. The origins of

clustering by symmetry reduction are discussed in section 1.1.4. More detail about

uncertainty cones and their use can be found in ref [4].

RES plots in this document are created by computer programs written by the

author, specifically for this purpose. High-level languages, such as Mathematica and

Matlab, could be used to similar effect, but the hand written Objective-C code proved

fast enough to be interactive for the user. Interactivity was a fundamental goal. This

allowed the user to take full advantage of the qualitative analysis possible with phase-

space plots.

Three dimensional plotting was done using OpenGL while corresponding two di-

mensional energy level plots were made using a variety of tools.

RES Global and Local Symmetry

As mentioned in earlier, the placement of quantum contours in the RES determines

possible clustering and cluster splitting within the molecule’s energy level structure.

Rotationally or vibrationally induced molecular distortions deform the RES away from

a sphere. As long as these distortions are written in terms of operators sharing the

molecular symmetry, the RES will also share that symmetry. Convex parts of the RES

that protrude radially to elevated energy, correspond to rotational axes of reduced

distortion. Concave portions of the RES at reduced energy, indicate rotational axes

along which the molecule tends to flatten, and raise its moment of inertia. Generally

the rotational axes with the greater structural distortion have the lowest rotational

energy.

Though the entire RES must show the overall or global symmetry of the molecule,

local pockets of an RES represent subgroups of the molecular symmetry group.

Subgroup sections are identified by the local shape of the base or separatrix contour

that divides the RES into locales belonging to a particular subgroup chain. Fig 1.3

shows two different RES plots with slightly different local geometries, but both with
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C4

C3 C3

C3C3

C4

C4C4

C4

(a) RES contains 8 C3 and 6 C4 axes. All visible
axes are indicated.

C2

C2C2

C2

C2

C2

(b) RES contains 12 C2 axes along with 8 C3 and 6
C4 axes. Only visible C2 axes are shown

Figure 1.3: Local symmetry axes of globally octahedral RES plots. The two plots are
built of the same operators, but show different local symmetry features because of
different fitting related to the rotational Hamiltonian.
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globally octahedral symmetry, created by using different Hamiltonian fitting terms.

Fig 1.3(a) shows six locally C4 sections protruding from their square bases as well as

eight locally C3 concave sections with triangular bases. Both the C4 and C3 sections

are marked by a labeled symmetry axis. Fig 1.3(b) relates to a slightly different

Hamiltonian which includes both fourth and sixth order polynomial terms. Because of

the new contribution, the RES contains C4 and C3 structures (both now protruding),

but also 12 concave C2 sections, each with a rectangular base and a C2 symmetry

axis.

How many such regions exist is found from the ratio of the order, ◦G, of the

group to the order, ◦H, of the local subgroup. As is shown in Fig 1.3, (◦G/◦H) gives

a smaller number of identical phase-space regions for higher symmetry subgroups.

Without considering inversions the total order is ◦G = 24 for our octahedral systems.

The level structure within each cluster will also be affected by the local geometry

of the RES. Rotational level clustering has been well known for decades and well

explained by internal symmetry breaking[25]. This is most easily understood in terms

of the RES. For a molecule of point symmetry G, a RES will have a global symmetry

of G, but rotational energy levels will sit in local sections of the RES with a symmetry

corresponding to a subgroupH ⊂ G and generally there will be two or more equivalent

copies of each H locale. Each energy level will be able to tunnel to the corresponding

level (contour) at the same altitude (energy) on all the other equivalent H regions.

The symmetry breaking G ↓ H forces rotational levels to cluster in patterns described

by the restricted representation or symmetry correlation table. The O ⊃ C4, O ⊃ C3

and O ⊃ C2 correlation tables are shown later in chapter 3.

Tunneling between equivalent local subgroup regions causes the rotational clusters

to split slightly. A detailed description of these effects is in Chapter 4.
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Chapter 2

Tensor Geometry and Spectral Fine Structure: Symmetric and Asymmet-

ric Top Molecules
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2.1 Chapter Summary

Symmetry analysis of tensorial operator eigensolutions has provided insight into molec-

ular rovibronic spectra and improved ways to calculate quantum levels and molecular

dynamics. Complex fine structure is related to topography and topology in tensorial

plots of rovibronic energy surfaces (RES) and shows how level cluster-formation and

avoided-crossing relates to selection rules and state mixing.

A critical review of RES analysis and technique is done here to show possibilities for

more general application to quantum eigensolution analysis as well as its limitations.

Also presented in this chapter is the classical-quantum correspondence possible for

symmetric top molecules as well as the limitation of semi-classical approximation.

2.2 Mathematical Background

2.2.1 Unitary Multipole functions and operators

The semi-classical analysis and symmetry considerations presented here rely on rewrit-

ing a rovibronic Hamiltonian in terms of unitary multipole functions. Since unitary

multipole functions and their related algebra are not well know and since many equiv-

alent versions of these functions exist, this section describes the definitions used by

the work presented late. The work here is based on earlier studies found in ref. [1, 2].

Spherical harmonic functions Ylm(φθ) are well know orbital angular factors in

atomic and molecular physics. They are special (n = 0)-cases of Wigner-Dl functions

Eq (1.3) as follows. Here they will be used to symmetrize the Watson Hamiltonian[3].

Y l
m(φθ) = D l∗

m,0(φθ0)

√
[l]

4π
where:[l] = 2l + 1 (2.1)

A diatomic or linear rotor must have zero body quanta (n = 0) and has a Ylm(φθ)

rotor wave. Ylm-matrix elements or expectation values of a multipole potential Ykq
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are proportional to Clebsch forms of Eq (1.7a).

∫
d(φθ0)DJ ′

m′0(φθ0)Dk∗
q0 (φθ0)DJ∗

m0(φθ0) =

√
(4π)3

[J ′][k][J ]

∫
d(φθ)Y J∗

m′ Y
k
q Y

J
m =

1

[J ]
CkJJ ′

qmm′C
kJJ ′

000

(2.2)

A multipole function Xkq(x, y, z), an xyz-polynomial of degree k, is Ykq(φθ) multi-

plied by (r)k. A generic multipole vkq matrix equals Eq (2.2) up to a factor 〈J ′‖k‖J〉

depending only on {J ′, k, J}, but not {m′, q,m}.

〈J ′

m′

∣∣∣vkq
∣∣∣
J

m

〉
= CkJJ ′

qmm′〈J‖k‖J〉 (2.3a)

Factor 〈J ′‖vkq‖J〉 is the reduced matrix element of vk
q and chosen by a somewhat

arbitrary convention.

〈J ′‖vk‖J〉 = (−1)k+J ′−J

√
[J ′]

[k]
(2.3b)

This particular choice is made to simplify bra-ket coupling and creation-destruction

operator expressions for vkq .

vkq = (−1)2J ′
∑

m,m′

=q−m

CJ ′Jk
m′mq

∣∣∣
J ′

m′

〉∣∣∣
J∗

m

〉†

= (−1)2J ′
∑

m,m′

=q−m

CJ ′Jk
m′mq

∣∣∣
J ′

m′

〉〈 J

−m

∣∣∣(−1)J−m (2.3c)

=
∑

m,m′

=q+m

(−1)J
′−m′

√
[k]



k J J ′

q m −m′


 āJ

′

m′ ā
J
m

In any case, other choices only rescale vkq eigenvalues and do not affect eigenvectors

of a tensor vkq or alter its transformation behavior Eq (2.4). (By Eq (1.7c) and Eq
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Table 2.1: Tabulated vkq values for J=1

〈v2
2〉J=1 = 〈v2

1〉J=1 = 〈v2
0〉J=1 = 〈v2

−1〉J=1 = 〈v2
−2〉J=1 = · · ·

· · ·
1 · ·

  · · ·
1 · ·
· −1 ·

 1√
2

1 · ·
· −2 ·
· · 1

 1√
6

· −1 ·
· · 1
· · ·

 1
2

· · 1
· · ·
· · ·


〈v1

1〉J=1 = 〈v1
0〉J=1 = 〈v1

−1〉J=1 =

· · ·
1 · ·
· 1 ·


 1√

2




1 · ·
· 0 ·
· · −1


 1√

2



· −1 ·
· · −1
· · ·


 1√

2

〈v0
0〉J=1 =


1 · ·
· 1 ·
· · 1


 1√

3

〈v2
q=−2...2〉J=1 =1 −1 1

1 −2 1
1 −1 1

 1
1√
2

1√
6

〈v1
q=−1...1〉J=1 =


1 −1 ·
1 0 −1
· 1 −1



·
1√
3

1√
2

〈v0
0〉J=1 =


1 · ·
· 1 ·
· · 1



·
·
1√
3

(2.3c), vkq transfoms like Eq (1.6a) for a wave state
∣∣∣
k

q

〉
.)

v̄kq = R(αβγ)vkqR
†(αβγ) =

k∑

q=−k

vkq̄D
k
q̄q(αβγ) (2.4)

Examples of vkq tensor matrices for J ′ = J = 1 to 3 are given in Table 2.1. The J = 2

case is given in expanded form by Table 2.1. (Higher-J tables are q-folded to save

space. Scalar 〈v0
0〉
J

= 1/
√

[J ] is left off each J-table in Table 2.3)
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Table 2.2: Tabulated vkq values and relation to quaturnions

(a) Tabulated vkq values for J=1/2

〈v1
−1〉J=1/2 = 〈v1

0〉J=1/2 = 〈v1
1〉J=1/2 = 〈v1

−1...1〉J=1/2 =(
· ·
−1 ·

)
−
(

1 ·
· −1

)
1√
2

(
· 1
· ·

) (
−1 1
−1 1

)
1
1√
2

〈v0
0〉J=1/2 = 〈v0

0〉J=1/2 =(
−1 ·
· −1

)
1√
2

−
(

1 ·
· 1

)
·
1√
2

(b) Simple Conversion from v to σ

v1
−1 = −σ− v1

0 = − 1√
2
σz v1

+1 = +σ+ v0
0 = +σ0

σx = σ+ + σ− σz = −
√

2v1
0 σy = −iσ+ + iσ− σ0 = −

√
2v0

0

=

(
· 1
1 ·

)
=

(
+1 ·
· −1

)
=

(
· −i
i ·

)
=

(
1 0
0 1

)

(c) Conventional quaternion-spinor relations

i = iσx k = iσz j = iσy 1 = σ0

=

(
0 i
i 0

)
=

(
+i 0
0 −i

)
=

(
0 1
−1 0

)
=

(
1 0
0 1

)

Historically, spinor J = 1/2 tensors shown in Table 2.2(a) are related to four Pauli

spinor matrices σµ and Hamilton quaternions {1, i, j,k} in Table 2.2(b) or Table 2.2(c).

The latter appear in 1843 and are used for Stokes’ polarization theory in 1867. The σµ

are U(2) algebraic basis of quantum theory for physics ranging from sub-kHz NMR to

TeV hadrons and also applies to special relativistic symmetry transformations of the

Lorentz Group. General U(k) algebra has k2 generators v0
0,v

1
q , . . . ,v

k
q with a subset

of k mutually commuting diagonal (q = 0) labeling operators vk0 of the U(k) tensor

algebras. The vkq are related to elementary creation(a†)-destruction(a) operators,

products a†mam′ and to their RES in the following sections.

The a†mam′ are also known a elementary matrix operators emem′ which simply

consist of unit-1 entry at the m-m′ position of an otherwise zero matrix.
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Table 2.3: Unit Tensor Representations
〈v1

q=−1...1〉
J=1 = 〈v1

q=−1...1〉
J=2 = 〈v1

q=−1...1〉
J=3 =

1 1 ·
1 0 −1
· 1 −1

·
1√
3

1√
2

2 −
√
2 · · ·√

2 1 −
√

3 · ·
·

√
3 0 −

√
3 ·

· ·
√
3 −1 −

√
2

· · ·
√

2 −2

·
·
·
1√
10
1√
10

3 −
√
3 · · · · ·√

3 2 −
√
5 · · · ·

·
√
5 1 −

√
6 · · ·

· · ·
√
6 −1 −

√
5 ·

· · · ·
√
5 −2 −

√
3

· · · · ·
√
3 −3

·
·
·
·
·
1√
28
1√
28

〈v2
q=−2...2〉

J=1 = 〈v2
q=−2...2〉

J=2 = 〈v2
q=−2...2〉

J=3 =

1 −1 1
1 −2 1
1 −1 1

1
1√
2

1√
6

2 −
√
6
√

2 · ·√
6 −1 −1

√
3 ·√

2 1 −2 1
√
6

· ·
√

2 −
√
6 2

·
·
1√
7

1√
14
1√
14

5 −5
√
5 · · · ·

5 0 −
√
15

√
10 · · ·√

5
√
15 −3 −

√
2

√
12 · ·

·
√

10
√
2 −4

√
2

√
10 ·

· ·
√
12 −

√
2 −3

√
15

√
5

· · ·
√
10 −

√
15 0 5

· · · ·
√

5 −5 5

·
·
·
·
1√
42
1√
84
1√
84

〈v3
q=−3...3〉

J=2 = 〈v3
q=−3...3〉

J=3 =

1
√
3 1 −1 ·√

3 −2
√
2 0 −1

1 −
√
2 0

√
2 −1

1 0 −
√
2 2 −

√
3

· 1 −1
√

3 −1

·
1√
2

1√
2

1√
10
1√
10

1 −
√
2
√
2 −1 · · ·√

2 −1 0 1 −
√
2 · ·

1 1 −1 0 1 −1 −1

·
√
2 0 −1 1 0 −

√
2

· ·
√
2 −1 0 1 −

√
2

· · · 1 −
√
2
√
2 −1

·
·
·
1√
6

1√
6

1√
6

1√
6

〈v4
q=−4...4〉

J=2 = 〈v4
q=−4...4〉

J=3 =

1 −1
√

3 −1 1

1 −4
√
6 −

√
8 1√

3 −
√
6 6 −

√
6
√
3

1 −
√
8
√

6 −4 1

1 −1
√
3 −1 1

1
1√
2

1√
14
1√
14
1√
70

3 −
√
30

√
54 −3

√
3 · ·√

30 −7
√
32 −

√
3 −

√
2

√
5 ·√

54 −
√
32 1

√
15 −

√
40

√
2

√
3

3 −
√
3 −

√
15 6 −

√
15 −

√
3 3√

3
√
2 −

√
40

√
15 1 −

√
32

√
54

·
√

5 −
√
2 −

√
3

√
32 −7

√
30

· ·
√
3 −3

√
54 −

√
30 3

·
1√
2

1√
2

1√
6

1√
6

1√
84
1√
84

〈v5
q=−5...5〉

J=3 =

1 −
√
5 1 −

√
2 1 −1 ·√

5 −4
√
27 −

√
2 1 0 −1

1 −
√
27 5 −

√
10 0 1 −1√

2 −
√
2

√
10 0 −

√
10

√
2 −

√
2

1 −1 0
√
10 −5

√
27 −1

1 0 −1
√
2 −

√
27 4 −

√
5

· 1 −1
√

2 −1
√
5 −1

·
1√
2

1√
2

1√
6

1√
6

1√
84
1√
84

〈v6
q=−6...6〉

J=3 =

1 −
√
2 1 −

√
2

√
5 −1 1√

2 −6
√
30 −

√
8 3 −

√
12 1

1 −
√
30 15 −10

√
15 −3

√
5√

2 −
√
8 10 −20 10 −

√
8

√
2√

5 −3
√
15 −10 15 −

√
30 1

1 −
√
12 3 −

√
8
√
30 −6

√
2

1 −1
√
5 −

√
2 1 −

√
2 1

1
1√
2

1√
22
1√
22
1√
33
1√
264
1√
924
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2.2.2 Tensor and Elementary Matrix Operators

Matrix Element
〈 J

m′

∣∣∣vkq
∣∣∣
J

m

〉
for J ′ = J is a coefficient of elementary matrix operator

em′,m =
∣∣∣
J

m′

〉〈J

m

∣∣∣.

〈vkq 〉J =
∑

m′,m

∣∣∣
J

m′

〉〈 J

m′

∣∣∣vkq
∣∣∣
J

m

〉〈J

m

∣∣∣ =

∑

m′,m

〈 J

m′

∣∣∣vkq
∣∣∣
J

m

〉∣∣∣
J

m′

〉〈J

m

∣∣∣ (2.5a)

=
∑

m′,m

〈 J

m′

∣∣∣vkq
∣∣∣
J

m

〉〈
em′m

〉J

where: q = m′ −m

〈J ′

m′

∣∣∣vkq
∣∣∣
J

m

〉
= (−1)J

′+m′
√

[k]



k J J ′

q m −m′


 = (−1)J

′+J−k

√
[k]

[J ′]
CkJJ ′

qmm′ (2.5b)

This follows from (2.3c) and a CG to Wigner 3j coefficient definition in Eq (2.6).



k J J ′

q m −m′


 = (−1)k−J+m′CkJJ ′

qmm′/
√

[J ′] (2.6)

CG or 3j orthonormality makes
〈
vkq

〉J
and

〈
em′,m

〉J
matrices convenient for anal-

ysis. Each has a unit vector of dimension d(J, q) = [J ]− q = 2J − q+ 1 sitting on the

qth-diagonal of its [J ]-by-[J ] matrix. For example, quadrupole v2
2, octopole v3

2, and
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24-pole v4
2 share the q = 2 diagonal of J = 2 Table 2.3.

〈
v2
q=2

〉J=2

=

√
2

7

〈
e−2,0

〉J=2

+

√
2

7

〈
e−1,1

〉J=2

+

√
2

7

〈
e0,2

〉J=2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· ·
√

2
7 · ·

· · ·
√

3
7 ·

· · · ·
√

2
7

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

√
2

7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · 1 · ·

· · · · ·

· · · · ·

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

√
3

7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·

· · · 1 ·

· · · · ·

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

√
2

7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·

· · · · ·

· · · · 1

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.7a)

〈
v3
q=2

〉J=2

=

√
1

2

〈
e−2,0

〉J=2

+0
〈
e−1,1

〉J=2

−
√

1

2

〈
e0,2

〉J=2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· ·
√

1
2 · ·

· · · 0 ·

· · · · −
√

1
2

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

√
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · 1 · ·

· · · · ·

· · · · ·

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·

· · · 1 ·

· · · · ·

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
√

1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·

· · · · ·

· · · · 1

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈
v4
q=2

〉J=2

=

√
3

14

〈
e−2,0

〉J=2

−
√

8

14

〈
e−1,1

〉J=2

−
√

3

14

〈
e0,2

〉J=2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· ·
√

3
14 · ·

· · · −
√

8
14 ·

· · · ·
√

3
14

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

√
3

14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · 1 · ·

· · · · ·

· · · · ·

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
√

8

14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·

· · · 1 ·

· · · · ·

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

√
3

14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·

· · · · ·

· · · · 1

· · · · ·

· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Tensor
〈
vkq

〉J
relations easily invert to

〈
em′,m

〉J
by inspection due to their being

orthonormal sets.

〈
e−2,0

〉J=2

=

√
2

7

〈
v2
q=2

〉J=2

+

√
1

2

〈
v3
q=2

〉J=2

+

√
3

14

〈
v4
q=2

〉J=2

〈
e−1,1

〉J=2

=

√
3

7

〈
v2
q=2

〉J=2

+0
〈
v3
q=2

〉J=2

−
√

8

14

〈
v4
q=2

〉J=2

(2.7b)

〈
e0,2

〉J=2

=

√
2

7

〈
v2
q=2

〉J=2

−
√

1

2

〈
v3
q=2

〉J=2

+

√
3

14

〈
v4
q=2

〉J=2
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Any [J ]-by-[J ] matrix is a combination of elementary
〈
em′,m

〉J
and thus also of

〈
vkq
〉J

.

From this we make RES maps to analyze [J ]-by-[J ] matrix eigensolutions by plotting

related combinations of Y k
q (θ, φ).

2.2.3 Fano-Racah tensor algebra

Diagonal dipole-vector (rank k = 1) matrix
〈
v1

0

〉J
is seen in top row of Table 2.3 to be

proportional to the angular momentum z-component matrix
〈
Jz

〉J
. Diagonal 2k-pole

(rank-k) tensors
〈
vk0

〉J
are linearly related to Jz powers J2

z = JzJz, J3
z = JzJzJz, . . .

up to the kth-power Jkz . This relates
〈
vk0

〉J
-eigenvalues to powers mp of

〈
Jz

〉
-

eigenvalues m and, in turn, leads to an RES scheme to analyze
〈
vkq

〉J
eigensolutions.

For example, matrix diagonals in Table 2.3 give elementary representations for vk0

of J = 2. (Only diagonals are listed.)

√
5
〈
v0

0

〉(J=2)

=
〈
1
〉(2)

=

(
1 1 1 1 1

)

√
10
〈
v1

0

〉(J=2)

=
〈
Jz

〉(2)

=

(
2 1 0 −1 2

)
(2.8a)

√
14
〈
v2

0

〉(2)

=

(
2 −1 −2 −1 2

)

√
10
〈
v3

0

〉(2)

=

(
1 −2 0 2 −1

)
(2.8b)

√
70
〈
v4

0

〉(2)

=

(
1 −4 6 −4 1

)

Powers of
〈
Jz

〉2

in Eq (2.9) are combinations of
〈
vkq

〉2

found by dot products with
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vectors in Eq (2.8a) and (2.8b).

〈
J0
z

〉(2)
=
(

1 1 1 1 1

)
=

5√
5

〈
v0
0

〉(2)

〈
J1
z

〉(2)
=
(

2 1 0 −1 −2

)
=

10√
10

〈
v1
0

〉(2)

〈
J2
z

〉(2)
=
(

4 1 0 1 4

)
=

10√
5

〈
v0
0

〉(2)
+

14√
14

〈
v2
0

〉(2)
(2.9)

〈
J3
z

〉(2)
=
(

8 1 0 −1 −8

)
=

34√
10

〈
v1
0

〉(2)
+

12√
10

〈
v3
0

〉(2)

〈
J4
z

〉(2)
=
(

16 1 0 1 16

)
=

34√
5

〈
v0
0

〉(2)
+

62√
14

〈
v2
0

〉(2)
+

24√
70

〈
v4
0

〉(2)

Elementary triangular inversion of Eq (2.9) gives each
〈
vk0
〉2

as a polynomial of Jz

powers 〈Jpz〉2 = mp in Eq (2.10).

〈
v0

0

〉(2)
=

1√
5

〈
J0
z

〉(2)

〈
v1

0

〉(2)
=

1√
10

〈
J1
z

〉(2)

〈
v2

0

〉(2)
=− 2√

14

〈
J0
z

〉(2)
+

1√
14

〈
J2
z

〉(2)
(2.10)

〈
v3

0

〉(2)
= −34

√
10

120

〈
J1
z

〉(2)
+

√
10

12

〈
J3
z

〉(2)

〈
v4

0

〉(2)
=

3
√

70

(5)(7)

〈
J0
z

〉(2) − 31
√

70

(3)(7)(8)

〈
J2
z

〉(2)
+

√
70

24

〈
J4
z

〉(2)

Now RES plotting schemes arise by comparing
〈
vk0
〉J

expansions in Jz like Eq

(2.10) with Wigner (J,m) polynomials (−1)J−m
√

[k]



k J J

0 m −m


 Eq (2.4), and Leg-

endre polynomials Dk
00(·θ·) = Pk(cos θ) Eq (2.1) that are also polynomials of Jz =

|J | cos θ. By plotting the latter we hope to shed light on the eigensolutions of the

former.

2.3 Tensor eigensolution and Legendre function RE surfaces

Legendre polynomials occupy the central (00)-component of a Wigner-DJ matrix.

Dk
00(·θ·) = Pk(cos θ) (2.11)
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Table 2.4: Forming
〈
vk0
〉

from powers of J and m
〈
vk0
〉J
m

=

〈
J
m

∣∣∣∣vk0
∣∣∣∣
J
m

〉
= (−1)J−m

√
[k]

(
k J J
0 m −m

)
= (−1)k

√
[k]
[J ]
CkJJ

0mm

〈v0
0〉
J
m = 1√

2J+1
[1]

〈v1
0〉
J
m = 2

√
3√

2J+2:0
[ m]

〈v2
0〉
J
m = 22

√
5√

2J+3:−1
[−1

2
J(J + 1) +3

2
m2]

〈v3
0〉
J
m = 23

√
7√

2J+4:−2
[ −3

2

(
J(J + 1)− 10

3

)
m +5

2
m3]

Examples of Legendre polynomials of cos θ = Jz/|J | and then of momenta J and

Jz = |J | cos θ are given below, first in angular form, then in cartesian. Each set begins

with P0 = 1.

P1(cos θ) = cos θ

P2(cos θ) = −1

2
+

3

2
cos2 θ (2.12a)

P3(cos θ) = −3

2
cos θ +

5

2
cos3 θ

P4(cos θ) =
3

8
− 30

8
cos2 θ +

35

8
cos4 θ

|J |1P1(cos θ) = Jz

|J |2P2(cos θ) = −1

2
|J |2 +

3

2
J2
z (2.12b)

|J |3P3(cos θ) = −3

2
|J |2Jz +

5

2
J3
z

|J |4P4(cos θ) =
3

8
|J |4 − 30

8
|J |2J2

z +
35

8
J4
z

Classical Pk functions are to be compared to corresponding quantized
〈
vk0
〉J

unit-

tensor e-values in Table 2.4 that generalize examples of tensor matrix (J = 1 − 3)-

eigenvalues in Table 2.3 and Eq (2.10) to any J and m = J, . . . ,−J . The powers of

m and J in
〈
vk0
〉J

, shown in Table 2.4, are taken to higher order in Table 2.5.
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Table 2.5: Forming
〈
vk0
〉

from powers of J and m, expanded

k m0 m1 m2 m3 m4 m5 m6 m7

0 1

1 1

2 −1
2
J
(
J + 1

) 3
2

3 −3
2

(
J(J + 1)− 2

3

)
5
2

4 3
8
(J + 2 : −1) −30

8

(
J(J + 1)− 5

6

)
35
8

5 15
8

(
(J + 2 : −1) −

4
3
J(J + 1)− 4

5

) −70
8

(
J(J + 1)− 3

2

)
63
8

6 −5
16

(J + 3 : −2) 105
16

(
(J + 2 : −1) −

3J(J + 1) + 14
5

) −315
16

(
J(J + 1)− 7

3

)
231
16

7 −35
16

(
(J + 3 : −2) −

3(J + 2 : −1) +
36
5
J(J + 1)− 36

7

)
315
16

(
(J + 2 : −1) −

5J(J + 1) + 61
9

) −693
16

(
J(J + 1)− 10

3

)
429
16

8 35(J + 4 : −3) −1260
128

(
(J + 3 : −2)−

13
2

(J + 2 : −1) +

332
15
J(J + 1)− 761

35

)
6930
128

(
(J + 2 : −1) −

22
3
J(J + 1)− 1871

1386

) −12012
128

(
J(J + 1) + 9

2

)
6435
128
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Norm 2k
√

[k]/
√

2J + k : −k + 1 makes each
〈
vk0
〉J

a unit vector. (Note shorthand

definition: A+a : b = (A+a)(A+a− 1) . . . (A+ b).) In contrast, normalized Pk have

Pk(cos 0) = 1. Coefficients cp of cosp θ sum to 1 = Σcp. Square |cp|2 usually do not

sum to 1.

Tensor values 〈v0
0〉
J
, 〈v1

0〉
J
, and 〈v2

0〉
J

in [. . . ]-braces of Table 2.4 equal Legendre

functions P0, P1, and P2 in Eq (2.12b) exactly using J-expectation values Eq (2.13a)

and (2.13b). However, for rank higher than k = 2, Pk is only approximately equal to
〈
vk0
〉J
m

though the approximation improves with higher J.

〈Jz〉Lm = m = 〈|J |〉Jm cos θJm (2.13a)

〈|J|〉 =
√
J(J + 1) ∼= J +

1

2
(2.13b)

For large-J values, the
〈
vk0
〉J
m

in Table 2.4 approach the P3, P4, . . . of Eq (2.12b)

according to
〈
|J |k

〉J
m
−−→
J�k

[J(J + 1)]k/2. However,
〈
vk0
〉J
m

differ significantly from Pk

for low J .

The classical Pk in Eq (2.12b) lack the small terms (−2/3, −10/3, etc) that kill

the
〈
vk0
〉

in Table 2.4 whenever J falls below strict quantum limits such as whenever

J < |m| or J < k/2. However, the quantum “killer terms” become negligible for

larger J-values (J > k) and thus tensor eigenvalues converge to Pk and thus approach

the RES plots.

2.3.1 Angular Momentum Cone and RES Paths

Quantum J-magnitude Eq (2.13b) introduces a quantum angular momentum cone

geometry with quantized angles θJm given by Eq (2.13a) as summarized here in Eq
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Figure 2.1: Symmetric top RES showing angular momentum cone with minimum
uncertainty. The cone intersects with one of the allowed paths.

K=10

K=9

K=8

K=7

K=-10

K=-9

K=-8

(2.14a) and (2.14b) for lab m = M and molecular body n = K.

cos θJM =
M√

J(J + 1)
(2.14a)

cos θJK =
K√

J(J + 1)
(2.14b)

An angular momentum eigenstate

∣∣∣∣∣∣∣

J

m, n

〉
has sharp (zero-uncertainty) eigenvalue m

or n on the lab or body frame z or z̄ axis, respectively. This sharp altitude and

magnitude in Eq (2.13b) constrain vector J to base circles of cones making half-angle

θJm or θJn with z or z̄ axes, respectively. Expected J-values are shown in Fig 2.1 .

Elementary RES energy level analysis begins by writing a multipole T kq tensor

expansion Eq (2.15a) of a general rigid rotor or asymmetric top Hamiltonian and
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then plotting the resulting surface using Eq (2.15a)

H = A(Jx̄)
2 +B(Jȳ)

2 + C(Jz̄)
2

=
1

3
(A+B + C)T 0

0 +
1

3
(2C − A−B)T 2

0 (2.15a)

+
1√
6

(A−B)
(
T 2

2 + T 2
−2

)

The (k = 0) and (k = 2) tensorial components of T kq are listed in Eq (2.15b).

T 0
0 = (Jx̄)

2 + (Jȳ)
2 + (Jz̄)

2 = |J|2

T 2
0 =
−1

2
(Jx̄)

2 − 1

2
(Jȳ)

2 + (Jz̄)
2 = |J|2

(
3

2
cos2 θ − 1

2

)

= |J|2P2(cos θ) (2.15b)

T 2
2 +T 2

−2 = −
√

3

2
(Jx̄)

2 +

√
3

2
(Jȳ)

2

= |J|2
√

3

2
sin2 θ cos 2φ

Inertial constants (A = 1/Ix̄, B = 1/Iȳ, C = 1/Iz̄) linearly combine in (2.15a) the

J-tensor operators T kq . Exact relation of 〈v0
0〉
J

and 〈v2
0〉
J

in Table 2.4 to classical P0

and P2 in Eq (2.12b) is used in Eq (2.15b) for T 0
0 and T 2

0 .

A rigid spherical top (A = B = C) has only the T 0
0 term of Eq (2.15a). Rigid

prolate (A = B > C) or oblate (A = B < C) symmetric tops have only T 0
0 and T 2

0
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terms with the following quantum energy eigenvalues.

〈
J

m, n

∣∣∣∣∣∣∣
HSymTop

∣∣∣∣∣∣∣

J

m, n

〉
=

=

〈
J

m, n

∣∣∣∣∣∣∣
B(Jx̄)

2 +B(Jȳ)
2 + C(Jz̄)

2

∣∣∣∣∣∣∣

J

m, n

〉

=
1

3

〈
J

m, n

∣∣∣∣∣∣∣
(2B + C)T 0

0 + 2(C −B)T 2
0

∣∣∣∣∣∣∣

J

m, n

〉
(2.16)

=

〈
J

m, n

∣∣∣∣∣∣∣
B|J |2 + (C −B)(Jz̄)

2

∣∣∣∣∣∣∣

J

m, n

〉

=BJ(J + 1) + (C −B)n2

Since a rigid symmetric-top involves only T 0
0 and T 2

0 , the θJn-cones define its eigenvalues

exactly by J-vector trajectories at angle-θJn where θJn-cones intersect the following T 2
0 -

RES shown in Fig 2.1.

RESymTop(θ) =
1

3
(2B + C)T 0

0 (θ) +
2

3
(C −B)T 2

0 (θ) (2.17a)

Inserting quantized-body cone relation Eq (2.14b) yields desired eigenvalues Eq (2.16)

exactly for all J . (This includes low J).

RESymTop(θJL) =
1

3
(2B + C)J(J + 1)

+
2

3
(C −B)J(J + 1)

(
3

2
cos2 θJK −

1

2

)

= J(J + 1)
1

3

[
(2B + C) + (C −B)(K2 − 1)

]
(2.17b)

= J(J + 1)B + (C −B)K2

Cone paths in Fig 2.1 are constant energy contours on symmetric top RES Eq
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(2.17a) and (2.17b) of constant J . They may be viewed as J-phase paths on which

the J-vector may delocalize or “precess” on a circular θJn-cone around body z̄-axis.

Or else one might view paths on Fig 2.1 as coordinate space tracks of the lab z-axis

around the z̄-axis by assuming J lies fixed on the former. Either view describes J in

the body-frame by Euler polar and azimuth angles −β,−γ with angle β = θJn and

|J |2 = J(J + 1) fixed.

J = (Jx̄, Jȳ, Jz̄) = (−|J| cos γ sin β, |J| sin γ sin β, |J| cos β) (2.18)

While P2(θJM) functions fit tensor v2
0 eigenvalues exactly, it is not the case for

higher Pk, particularly for low J . The difference between quantum vk0 and semi-

classical Pk funtions can be easily plotted as in Fig 2.2 and tabulated in Table 2.6.

The figure shows a slice of the semi-classical surface and the uncertainty cones for

each m from J to −J . The orange circles indicate the intersection of the surface

with the uncertainty cones and the blue circles indicate the energy of the quantum

value,
〈
vk0
〉J
m

, placed along the uncertainty cone. The forth order plot in Fig 2.2 shows

significant divergence between quantum J = 4 and semi-classical energies for 〈v4
0〉

4
m,

while the second order version for 〈v2
0〉

4
m is exact. The exact correspondence between

〈v2
0〉

4
m and P2(θJm) extends for all J ≥ 2, though

〈
vk0
〉J
m

are only fitted by Pk(θ
J
m) by

approximations that improve with higher J > k.

Reduced Matrix and RES Scaling

An RES is a radial plot along J direction −β,−γ that has hills where energy is high

and valleys where it is low, but at all points the same magnitude |J| =
√
J(J + 1).

Origin-shift to keep RES radius positive and scaling to display hills, valleys, and

saddles, may be needed to make useful RES plots.

A scalar term s · v0
0 added to a tensor combination T = Σktkv

k
0 does not affect

the T-eigenvectors and neither does an overall scaling of T to cT. This is true since
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Θ =26.6°4
4

Θ =47.9°

Θ =63.4°

Θ =77.1°

m=9/2
m=4

m=3

m=2

m=1

m=0

m=-1

m=-2

m=-3

m=-4

Example: (J=4)-eigenvalues of v2
0 m=9/2

m=4

m=3

m=2

m=0

m=-1

m=-2

m=-3

m=-4

Example: (J=4)-eigenvalues of v4
0

semi-
classical:

exact
quantum:

(a) At low J semi-classical approximation may have significant error.

m=13/2
m=6

m=5

m=4

m=3

m=2

m=1

m=0

m=-1

m=-2

m=-3

m=-4

m=-5

m=-6

Θ =22.2°6
6

Θ =39.5°6
5

Θ =51.8°6
4

Θ =62.4°6
3

Θ =72.0°6
2

Θ =81.1°6
1

Example: (J=6)-eigenvalues of v2
0

m=13/2

Example: (J=6)-eigenvalues of v

m=6

m=5

m=4

m=3

m=2

m=1

m=0

m=-1

m=-2

m=-3

m=-4

m=-5

m=-6

4
0

(b) As J becomes greater that k, semi-classical approximation improves.

Figure 2.2: Quantum solutions (blue) compared to semi-classical ones (orange) for
two different multipoles. Semi-classical energies are also seen as the intersection of
uncertainty cones with the RES. Inner circle represents zero-energy centroid.
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(a) Semi-classical correspondence for k = 2, 4 at J = 4. Correspondence degrades for increas-
ing k.

J = 4 m = 4 3 2 1 0 -1 -2 -3 -4

〈v2
0〉
J=4
m 14 3.5 -4 -8.5 -10 -8.5 -4 3.5 14

|J |2P2

(
cos θJm

)
14 3.5 -4 -8.5 -10 -8.5 -4 3.5 14

〈v4
0〉
J=4
m 14 -21 -11 9 18 9 -11 -21 14

|J |2P4

(
cos θJm

)
9.3 -22.8 -10.7 10.6 20 10.6 -10.7 -22.8 9.

(b) Correspondence for k = 4 improves by increasing J .

J = 6 |m| = 6 5 4 3 2 1 0

〈v2
0〉
J=6
m 22 11 2 -5 -10 -13 -14

|J |2P2

(
cos θJm

)
22 11 2 -5 -10 -13 -14

〈v4
0〉
J=6
m 18.7 -12.5 -18.1 -10.2 2.1 12.1 15.9

|J |2P4

(
cos θJm

)
16.7 -13.6 -18.6 -10.1 2.6 12.8 16.7

Table 2.6: Quantum values are similar to their semiclassical counterparts. Shown are〈
vkq
〉

and |J |2Pk(cos θJm) at J = 4, 6 for changing m. Agreement is exact for both
k = 2 cases and improves with increasing J for k = 4. Values are normalized and
reported in arbitrary energy units.

eigenvectors are invariant to adding a multiple s1 of unit matrix 1 to T or multiplying

it by c1. (Of course, eigenvalues would, respectively, be shifted by s or scaled by c.)

Wigner-Racah tensor algebra defines a reduced matrix element
〈
J ′‖T k‖J

〉
to serve

as a scale factor for each Clebsch-Gordan tensor matrix element having Wigner-Eckart

form Eq (2.3a).
〈
J ′

m′

∣∣∣∣∣∣∣
T kq

∣∣∣∣∣∣∣

J

m

〉
= CkJJ ′

qmm′ 〈J ′‖T k ‖J〉 (2.19)

Wigner-Eckart form for matrix

〈
J

m

∣∣∣∣∣∣∣
T 2

0

∣∣∣∣∣∣∣

J

m

〉
of quadratic-J-tensor T 2

0 = J2
0 Eq (2.15b)

reveals some key points.

〈
J

m

∣∣∣∣∣∣∣

(
3

2
J2
z −

1

2
J2

)
∣∣∣∣∣∣∣

J

m

〉
=

〈
J

m

∣∣∣∣∣∣∣
T 2

0

∣∣∣∣∣∣∣

J

m

〉

=
(
C2JJ

0mm

)
· 〈J‖T 2 ‖J〉 (2.20a)

40



3

2
m2 − 1

2
J(J + 1) =

〈
J

m

∣∣∣∣∣∣∣
T 2

0

∣∣∣∣∣∣∣

J

m

〉

=
4[J ]√

2J + 3 : −1

(
3

2
m2 − 1

2
J(J + 1)

)
·
√

2J + 3 : −1

4[J ]
(2.20b)

Reduced matrix element 〈J ‖T 2‖ J〉 cancels norm factor 4
√

[J ]/
√

2J + 3 : −1 in C2JJ
0mm.

The result is the quadratic Legendre form |J |2P2(m/|J |) found inside [. . . ]-braces of

Table 2.4 with norm 4
√

[k]/
√

2J + 3 : −1 outside the braces. (The latter is just a

norm in Eq (2.20a) and (2.20b) multiplied by the factor
√

[k]/[J ] from definition Eq

(2.5b).)

Apparent conflicts in factors are due to having sum-of-squared -component nor-

malization of unit vk on one hand and sum-of-component normalization of Pk on

the other. Matrix elements

〈
J

m

∣∣∣∣∣∣∣
T

∣∣∣∣∣∣∣

J

m

〉
or

∣∣∣∣∣∣∣

J

m

〉〈
J

m

∣∣∣∣∣∣∣
use the former since amplitude

squares give probability. However, it is unsquared amplitude sum Σckthat measures

anisotropy of a tensor T = Σck · Pk since Σck is a maximum T -amplitude. (Each Pk

contributes Pk(0) = 1.) Expectation values

〈
J

m

∣∣∣∣∣∣∣
T

∣∣∣∣∣∣∣

J

m

〉
scale linearly, too, but J2

tensors may have extra scale factors.

Tensor T 2 = J2 in Eq (2.20a) and (2.20b) scales as |J |2 = J(J + 1) and T k = Jk

scale as |J |k. Factor 4
√

[J ]/
√

2J + 3 : −1 of C2JJ
0mm reduces scale |J |2 to

√
2J + 1 =

√
[J ]. Then the reduced factor 〈J ‖T‖ J〉 brings it back to |J |2.

4[J ]√
2J + 3 : −1

=

=
4(2J + 1)√

(2J + 3)(2J + 2)(2J + 1)(2J)(2J − 1)
(2.21)

=

√
[J ]√(

J + 3
2

)
(J + 1)

(
J − 1

2

) ≈
√

[J ]

|J |2

Each rank-k part has a factor |J |k = |J(J+1)|k/2. Anisotropy of mixed-rank J-tensor
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T = Σck ·Jk is Σ|J |kck, and thus is quite sensitive to quantum number J . So also are

the RES and related eigensolutions of T.

2.3.2 Asymmetric Top and Rank-2 RES

Plotting RES of non-diagonal Hamiltonians for the asymmetric top Eq (2.15a) in-

volves 2nd-rank tensors v2
q with reduced z-axial symmetry, nonzero q-values, and non-

commuting Ja combinations. Each Ja in the quadratic expressions in Eq (2.15a) is

replaced by its classical Euler-angle form in Eq (2.18).

HAsymTop =A (Jx̄)
2 +B (Jȳ)

2 + C (Jz̄)
2

⇒ RESAsymTop =A (|J | cos γ sin β)2 +B (|J | sin γ sin β)2 + C (|J | cos β)2 (2.22a)

Or else, each tensor T kq in Eq (2.15a) is replaced by a multipole function Xk
q =

|J |kDk∗
0q (·, β, γ). (Recall Eq (2.15b).)

HAsymTop =
A+B + C

3
T 0

0 +
2C − A−B

3
T 2

0 +
A−B√

6

(
T 2

2 + T 2
−2

)

⇒ RESAsymTop =
A+B + C

3
|J |2 +

2C − A−B
3

X2
0 +

A−B√
6

(
X2

2 +X2
−2

)
(2.22b)

= |J |2
[
A+B

2
+

2C − A−B
2

cos2 β +
A−B

2
sin2 β cos 2γ

]

Forms Eq (2.22a) and (2.22b) of rank-(k = 2)-RES are equal and give the same

plots shown in Fig 2.3, but tensor form Eq (2.22b) reveals symmetry. Terms X0
0

and X2
0 (Fig 2.1) are z-symmetric and non-zero near z-axis while X2

±2 terms are

asymmetric and vary as sin2 β with polar angle β between the J vector and the z-

axis. As β approaches π/2, X2
±2 terms grow to give equatorial valleys and saddles in

Fig 2.3 while X2
0 vanishes.

Asymmetric tensor operators T k±q are non-diagonal and do not commute with di-
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Figure 2.3: Asymmetric Top RES J = 10

agonal T k0 or with each other, and so HAsymTop eigenstates as well as eigenvalues vary

with coefficient (A − B) in (2.22b). As T 2
±2 mixes symmetric-top states

∣∣∣∣∣∣∣

J

K

〉
into

asymmetric-top eigenstates, θJK cone circles around the z-axis of Fig 2.1 warp into

oval-pairs an are squeezed by nascent oval pairs emerging around the x-axis and sep-

arated from them by a pair of separatrix circle-planes that meet at an angle θsep on

the y-axis. Fig 2.4 shows a range of RES and levels between symmetric-prolate top

(B = A or θsep = 0) and oblate top (B = C or θsep = π). A most-asymmetric case

(B = C or θsep = π/2) is midway between the symmetric cases.
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Figure 2.4: Asymmetric Top Energy Levels with Corresponding RES
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θsep = tan−1 |A−B|
|B − C| =





0 for : B = A

π/2 for : B = (A+ C)/2

π for : B = C

(2.23)

As B first differs a little from A, off-diagonal T 2
±2 and asymmetric X2

±2 first

“quench” degenerate ±K-momentum eigenstate pairs

∣∣∣∣∣∣∣

J

±K

〉
into non-degenerate

standing cos or sin-wave pairs.

∣∣cJK
〉

=
1√
2




∣∣∣∣∣∣∣

J

+K

〉
+

∣∣∣∣∣∣∣

J

−K

〉
 (2.24a)

∣∣sJK
〉

=
−i√

2




∣∣∣∣∣∣∣

J

+K

〉
−

∣∣∣∣∣∣∣

J

−K

〉
 (2.24b)

These state have nodes or anti-nodes standing on hills, saddles, or valleys of the RES

topography at the principal body axes. Whether a wave is cos-like or sin-like at an

axial point depends on whether it is symmetric or antisymmetric at the point and thus

whether that point is an anti-node or node. Nodal location can determine whether a

cos-like or sin-like wave has higher energy.

As B differs more and more from A, off-diagonal T 2
±2 will mix standing waves like

∣∣cJK
〉

with others such as
∣∣c J
K±2

〉
,
∣∣c J
K±4

〉
, and

∣∣c J
K±6

〉
that share the same HAsymTop

symmetry described below.

2.3.3 Symmetry Labeling of Asymmetric Top Eigenstates

Throughout the range of asymmetric cases in Fig 2.4 the symmetry of HA Top in Eq

(2.22a) and (2.22b) is described by orthorhombic group D2 made up of 180◦ rotations

Rx, Ry, and Rz about inertial body axes that mutually commute (RxRy = Rz =

RyRx), etc.). Unit square (R2
x = 1, etc.) R-eigenvalues ±1 label nodal symmetry
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(+1) or antisymmetry (−1) on each axis. D2 is an outer product of cyclic C2 groups

for any two axe, say C2(x) and C2(y). x and y values also label nodal symmetry

for the z axis since RxRy = Rz. A Cartesian 2-by-2 product of C2(x) and C2(y)

symmetry character tables shown in Table 2.7 gives four sets of characters and four

symmetry labels [A1, B1, A2, B2] for the outer product D2 = C2(x)⊗ C2(y).

Labels (A,B) or (1, 2) for (x) or (y) symmetric and anti-symmetric states follow

ancient arcane conventions. We prefer a binary (02, 12) notation for C2 characters and

N-ary notation (0N , 1N , 2N , . . . , (N − 1)N) for CN characters DmN (Rp) where each

label mN denotes “m-wave-quanta-modulo N” as in Table 2.8.

DmN (Rp) = e−im·p(2π/N) (2.25)

This notation is used in correlation Table 2.9 between symmetry labels of D2 and its

subgroups C2(x), C2(y), and C2(z), respectively. Each row belongs to a D2 species

and indicates which C2 symmetry, even (02) or odd (12), correlates to it. The Tables

2.9(a), 2.9(b) and 2.9(c) follow respectively from the columns Rx, Ry, and Rz of Table

2.7. An odd (02) D2 character is D02(R) = +1 and odd (12) is D12(R) = −1.

J = 10 HAsymTop-levels in Fig 2.3 consist of two sets of five pairs [(A1, B1) (A2, B2)

(A1, B1) (A2, B2) (A1, B1)] and [(B2, A1) (B1, A2) (B2, A1) (B1, A2) (B2, A1)] sepa-

rated by a single (A2) level. Each is related to RES x-valley path pairs Kx ∼

[±10,±9,±8,±7,±6] or z-hill pairs Kz ∼ [±6,±7,±8,±9,±10] separated by a single

y-path (A2 : Ky ∼ 5). Even-K belongs to a (02) column and odd-K belongs to a (12)

column of C2(x) Table 2.9(a) or C2(z) Table 2.9(c).

Valley-pair sequence (A1, B1), (A2, B2) . . . is consistent with (02) and (12) columns

of the C2(x) Table 2.9(a), and hill-pair sequence (B2, A1), (B1, A2) . . . is consistent

with (02) and (12) column of the C2(z) Table 2.9(c). This is because lower pairs

correspond to x-axial RES loops of approximate momentum Kx ∼ ±10,±9 · · · ± 6

while upper pairs correspond to z-axial RES loops of approximate momentum Kz ∼
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±6,±7 · · · ± 10 in Fig 2.3

Table 2.9(b) for C2(y) is not used since ±y-axes are hyperbolic saddle points on

one separatrix path, unlike the disconnected pairs of elliptic RES paths that encircle

±x-axes or ±z-axes at hill or valley points. Only a single E level exists in Fig 2.3 at

the energy ESep of the saddle points and their separatrix.

ESep = HAsymTop(Jx, Jy, Jz) = BJ(J + 1)

for





Jx = 0

Jy = |J |2

Jz = 0

(2.26)

As symmetric HSym becomes a more asymmetric HAsymTop in Fig 2.4, a hill or

valley path bends away from its ideal single-K symmetric-top cone circle at constant

polar angle θJK Eq (2.14a) and (2.14b). Each HSym state

∣∣∣∣∣∣∣

J

K

〉
turns into an HAsymTop

eigenstate expansion of states

∣∣∣∣∣∣∣

J

K ± 2p

〉
with K ± 2p above and below K, and its

RES path bends from constant θJK toward polar angles θJK±2, θ
J
K±4, θ

J
K±6 . . . above

and below angle θJK . At energy near the separatrix ESep, bending of hill and valley

paths become more severe as they approach separatrix asymptotes where the polar

angle range Eq (2.23) expands to 2θSep or π and the bend becomes a kink.

It is conventional to label HSep eigenstate |E〉 by both Kx and Kz quantum values

since |E〉 may use either a Kx basis or else a Kz basis. However, Jx and Jz do not

commute. For energy E above ESep, a |J,Kz〉 expansion is more compact and a

dominate |Kz| value may label |E〉. For E below ESep, a |J,Kx〉 expansion may have

a dominate |Kx| label that is meaningful. For E near ESep, K-labels are meaningless.

Though a more general form of the symmetry identification process may be unfa-
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miliar, it is easy to implement by computer. Group projectors (using Eq (2.27)) that

can distinguish how each eigenvector splits with respect to subgroup operations are

used. The product of these projectors and the calculated eigenvectors identifies the

subgroup symmetry of each level.

Pα
jk =

( lα
◦G
)∑

g

Dα∗

jk (g)g (2.27)

Only projectors in lower symmetry subgroups are used because they are easy to cal-

culate and there are fewer in number. With the eigenvector projection lengths and

knowledge of the correlation table between the molecular group itself and the sub-

group one can start to deduce the eigenvector symmetry. As mentioned earlier, one

correlation table is not enough to fully identify an eigenvector’s symmetry, but using

several subgroups one can assign symmetry. This process tends to be quicker to im-

pliment than calculating projectors of the full group, particularly if one can use a Cn

subgroup. In such a case Dα∗

jk (g) from Eq (2.27) is calculated by Eq (2.25).

This method can be significantly simpler than a traditional block diagonalization.

Block diagonlalizing the Hamiltonian requires projectors of the entire molecular sym-

metry group rather than of the smaller subgroups.

The disadvantage of this method is that it becomes unstable when clusters are

tightest. As the eigenvectors can become more mixed with tight clustering they be-

come harder for the algorithm to distinguish. Thus, some of the RES paths in the

figure (as in Fig 2.4)may appear black, meaning they are not distinguishable to the

projector method alone. Symmetry definitions hold for asymmetric tops where J < 50.

Spherical tops are particularly challenging, but octahedral or tetrahedral spherical top

Hamiltonians often split clusters enough to allow symmetry assignment, even at high

J .
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Table 2.7: Orthorhombic 4-group D2 = C2 × C2 character table construction
D2 = C2(x)× C2(y) 1 Rx Ry Rz

C2(x) 1 Rx C2(y) 1 Ry A1 = (0202)xy 1 1 1 1
A = (02)x 1 1 × 1 = (02)y 1 1 = A2 = (0212)xy 1 -1 1 -1
B = (12)x 1 −1 2 = (12)y 1 −1 B1 = (1202)xy 1 1 -1 -1

B2 = (1212)xy 1 -1 -1 1

Table 2.8: Group character tables for cyclic groups of symmetry order N.

(a) N=2

C2 1 Rx

(02) 1 1
(12) 1 -1

(b) N=3: ε = e2π/3

C3 1 R1 R2

(03) 1 1 1
(13) 1 ε∗ ε
(23) 1 ε ε∗

(c) N=4

C4 1 R1 R2 R3

(04) 1 1 1 1
(14) 1 −i -1 i
(24) 1 -1 1 -1
(3)4 1 i -1 −i

2.3.4 Tunneling Between RES-Path States

N-atom inversion in ammonia, NH3, is an example of molecular tunneling modeled

by a particle whose closely paired levels (inversion doublets) lie below the barrier of a

double-well PES. An RES generalization, sketched in Fig 2.3, shows level pairs such

as (A1, B1), (A2, B2), etc. as rotational analogs of inversion doublets. Here tunneling

between left and right positions on a PES is replaced by an RES inversion between

left-handed and right-handed rotation of an entire molecule. Instead of oscillation of

expected position values 〈r〉 between PES valleys there is oscillation of momentum

〈J〉 between pairs of x-paths (+Kx ↔ −Kx) in RES valleys or else between pairs of

z-paths (+Kz ↔ −Kz) on RES hills. Chapters 4 and 5 describes this phenomenon in

detail for molecules of octahedral symmetry.

2.4 Conclusion

This chapter has shown the function of unitary multipole functions and operators and

how they are used in calculating rovibrational energy levels. Approximations can be

made to many symmetric top molecular Hamiltonians making them classical, ignoring

high rank contribution. We have shown both cases where this approximation works
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Table 2.9: Symmetry correlation table between species of D2 and its axial subgroups.

(a) C2(x) subgroup

D2 ⊃ C2(x) (02)x (12)x
A1 1 ·
A2 · 1
B1 1 ·
B2 · 1

(b) C2(y) subgroup

D2 ⊃ C2(y) (02)y (12)y
A1 1 ·
A2 1 ·
B1 · 1
B2 · 1

(c) C2(z) subgroup

D2 ⊃ C2(z) (02)z (12)z
A1 1 ·
A2 · 1
B1 · 1
B2 1 ·

and where it fails.

For asymmetric top Hamiltonians, the RES is a more appropriate semi-classical

approximation. This work is continued in Chapter 3 for D3 molecules and octahedral

spherical top molecules.
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Chapter 3

Spectral Fine Structure of Octahedral Spherical Top Molecules
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3.1 Chapter Summary

Extreme examples of high-rank tensor eigensolutions with high-degeneracy 12 and

24-fold level clusters are examined in this chapter. Details of degeneracy are exam-

ined using the semi-classical Rotational Energy Surface (RES). The RES is placed in

context with other quantum visualization tools such as the potential energy surface

(PES) of Born and Oppenheimer. Limits of the RES semi-classical approximation are

also investigated.

3.2 Tensor Eigensolutions for Octahedral Molecules

Section 2.3 has shown that asymmetric top molecules may be treated semi-classically,

using only tensor operators and RES plots, but that the separatrix between regions

of local symmetry confounds the approximation. Spherical-top molecules experience

this symmetry breaking, but with far more possible separatrixes into far more possi-

ble regions of local symmetry. This chapter focuses on the added complication and

convenience of higher symmetry as well as showing novel rotational level clustering

patterns diagnosed by symmetry methods.

3.2.1 Symmetry Considerations

Just as qualitative features of asymmetric top spectra was analyzed in Sec 2.3, similar

theoretical machinery may be used to analyze nearly spherical molecules. This section

will demonstrate semi-classical tools, including mulitpole tensor operators, for an

octahedral or cubic molecule, such as SF6. This analysis will show spectral structures

and level clusterings that have not been previously considered or analyzed, but not

altogether different from those seen by ref [1].

Up to forth order, any such molecule may be treated using the Hecht Hamiltonian[2],

which may be rewritten in terms of tensor operators, as shown in Eq (3.1a) and Eq
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(3.1b).

H = BJ2 + 10t004(J4
x + J4

y + J4
z −

3

5
J)4 (3.1a)

H = BT 0
0 + 4t044

[
T 4

0 +

√
5

14

(
T 4

4 + T 4
4

)]
(3.1b)

T [4] =

√
7

12

[
T 4

0 +

√
5

14

(
T 4

4 + T 4
4

)]
(3.1c)

Eq (3.1c) isolates the 4th order term from the rest of the Hamiltonian. This can be

continued to the sixth order and show a more complicated structure[3]. Calculation of

the the tensor coefficients requires the symmetry-adapted vector coupling coefficients,

F kJJ
A1pp

, developed by Moret-Bailly[4]. The F kJJ
A1pp

coupling coefficient is used to find the

coefficient for the T kp tensor. The vector coupling coefficients are tabulated in ref [4]

and are derived from the symmetry subduction from R(3), fully rotational invariant

symmetry, to Oh or Td, octahedral and tetrahedral symmetry.

For convenience, we normalize the sum of these coefficients. Written this way, the

sixth order contribution to the Hamiltonian goes as follows.

T [6] =
1

2
√

2
T 6

0 −
√

7

4

(
T 6

4 + T 6
−4

)
(3.2)

Previous work has studied how both the RES and eigenvalue spectrum change with

different contributions of 4th and 6th rank tensor operators[5]. The relative contribu-

tions of these operators may be expressed as a normalized parameter-space as in Eq

(3.3).

T [4,6] = cos(θ)T [4] + sin(θ)T [6] (3.3)

Others[6] have looked at how 8th rank contributions change the eigenvalue spec-

trum. This added term greatly expands the parameter-space by making it 2 dimen-

sional, as demonstrated in Eq (3.4). Later portions of Section 3.2 of this chapter

demonstrate not only solutions to this Hamiltonian, but how to categorize the eigen-
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vectors and effects particular to inclusion of 8th order Hamiltonian terms.

T [4,6,8] = cos(φ)
(

cos(θ)T [4] + sin(θ)T [6]
)

+ sin(φ)T [8] (3.4)

As with the asymmetric top Hamiltonian, the octahedral Hamiltonian uses non-

axial operators shown in Eq (3.1b) and Eq (3.2). These operators are not simple Pk(θ)

Legendre functions, complicating purely semi-classical analysis. Thus, approximate

solutions based on axially symmetric operators alone will work only asymptotically

for high J and in regions of the RES far from any separatrix. In these cases, diagonal-

ization must be taken seriously as it becomes impossible to simply use combinations

of J and Jz for calculating spectra. Though full numerical diagonalization is required,

the use of tensor operators simplify the Hamiltonian matrix to a sparse, banded one.

In ref. [6], Gulacsi and coworkers explore the splitting of eigenvalues from varying

the T [4] and T [8] for fixed T [6]. They do this for J ≤ 10 and small contributions of T [6].

Below, we show agreement with these results and extend them by greatly increasing

J and also describing the topology of these manifolds using RES diagrams.

While the asymmetric top systems show clustering related to symmetry subduction

from D2 to a related C2 subgroup, octahedral molecules may experience clustering

related to subgroups subgroup D4, D3, D2, C4, C3 or C2. Oh has D2d, C4v, C3v and

C2v related to these by vertical reflection or inversion.

For simplicity, the discussion here will focus on O rather than Oh molecules. The

slightly lower symmetry equations and tables that are easier to display and easier for

the reader to interpret.

For a symmetric molecules, all possible clustering patterns could be described in

terms of correlations found in Table 2.9. Correlations in Table 3.1 are for octahedral

(O) symmetry and C4, C3 and C2. The columns of Table 3.1 represent the different

clusters of rotational levels found within the spectra. These clusterings are identified

by their degeneracy as well as their location in the RES of that rotational transition.
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In the RES, rotationally induced deformation or symmetry breaking is seen from

the shape of local regions of the RES involving a specific contour. Fig 3.1 shows

two examples of RES plots, both globally octahedral, but with local regions that

correspond to a subgroup symmetry of the octahedron. Fig 3.1(a) is the most common

RES of an octahedral molecule with a fourth rank Hamiltonian. It has C4 and C3

local symmetry regions. The C4 regions are identified by their location on [100], [010],

[001], (x, y, z) axes and by their square base. Similarly, the C3 regions are identified by

their location on [111] axes and triangular base. In this case C4 symmetric regions are

concave while C3 regions are convex. This depends on Hamiltonian fitting terms which

change the relative contributions of T [4] and T [6]. Fig 3.1(b) shows the C2 regions due

to higher rank tensors, which are located on [101] axes and have rectangular bases.

Cluster degeneracy is a hallmark of a specific symmetry breaking. While a symmetric-

top spectra may be resolved into a set of mJ levels, a rotational symmetry-reduced

spherical-top has multiple identical z-axes and mJ level-sets localized in symmetry-

reduced-H regions. The number of these H-regions must equal the degeneracy, dH of

the cluster for that H-region.

dH =
◦G
◦H (3.5)

This degeneracy, dH, is also found using the sum of the numbers in the columns of

Table 3.1 or by (3.5) given ◦G is the order of the molecular symmetry group and ◦H

is the order of the subgroup. In the cases shown here cluster degeneracy dH becomes

6, 8 and 12 for C4, C3 and C2 respectively.

3.2.2 Assigning Symmetry Labels to Eigenlevels

It is possible to diagonalize the Hamiltonian and organize symmetry species by the

order of each block, yet this alone will not distinguish all levels. For Hamiltonians

defined by T [4] as Eq (3.1a) it is possible to analytically determine the symmetry of
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Table 3.1: Correlation tables between octahedral symmetric, O and various cyclic
subgroups

(a)

O ⊃ C4 04 14 24 34

A1 ↓ C4 1 · · ·
A2 ↓ C4 · · 1 ·
E ↓ C4 1 · 1 ·
T1 ↓ C4 1 1 · 1
T2 ↓ C4 · 1 1 1

(b)

O ⊃ C3 03 13 23

A1 ↓ C3 1 · ·
A2 ↓ C3 1 · ·
E ↓ C3 · 1 1
T1 ↓ C3 1 1 1
T2 ↓ C3 1 1 1

(c)

O ⊃ C2(i1) 02 12

A1 ↓ C2 1 ·
A2 ↓ C2 · 1
E ↓ C2 1 1
T1 ↓ C2 1 2
T2 ↓ C2 2 1

(d)

O ⊃ C2(ρz) 02 12

A1 ↓ C2 1 ·
A2 ↓ C2 1 ·
E ↓ C2 2 ·
T1 ↓ C2 1 2
T2 ↓ C2 1 2

each level[5]. Once T [6] or T [8] terms are present, a numerical examination of eigen-

vectors is required to assign the symmetry of each level. Subgroup projectors are used

here where the cluster degeneracy increases and the symmetry becomes challenging to

distinguish. These projectors represent a simplification of the symmetry analysis of an

octahedral molecule into projections onto C4 symmetric projectors. The correlation

table for O ⊃ C4, shown in Table 3.1, and (2.27) give the information necessary for

the assignment. Moreover, when using the subgroup C4 there are only four projectors

to create and a clever choice of axis can force several of these projectors to be entirely

real or entirely imaginary. Conveniently, the C4 projectors can be used to diagnose

level symmetry for clusters in any subgroup region.

3.2.3 Octahedral Results

Demonstration of Topological Changes in T [4,6]

The Hecht Hamiltonian, Eq (3.1a), and it’s higher order analogues are generic Hamil-

tonians. Such Hamiltonians have numerous fitting constants specific to a given molecule
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and a given vibronic species. To better understand all such octahedral systems, we

consider changes in the level spectrum and RES plots with varying contributions of

T [4], T [6] and T [8].

Eq (3.4) has two angular parameters, θ and φ. Several plots may be required to

show slices in this parameter space. If T [8] contributions are zero (as is usually the

case), the eigenvalue spectrum for Eq (3.3) can be plotted versus θ, changing relative

contributions of 4th and 6th order Hamiltonian terms. Fig 3.4 plots such an eigenvalue

spectrum for φ = 0 and places RES plots for important parts of the level diagram.

The RES plots show the minimum-uncertainty cone (highest m) on an axis that has

the majority of lever clusters. Fig 3.4 also points out what spots on the level diagram

correspond to important changes in the RES plot.

To understand the behavior of the level diagram in Fig 3.4 it is critical to inspect

the changing shape of the RES plots. In particular, the clustering of levels in the

eigenvalue diagram is dependent on the localized symmetry regions of the RES at

each value of θ. Locally, the RES forms hills and valleys of a lower symmetry than

that of the molecule. The local symmetry must also be a sub-group of the molecular

symmetry. Fig 3.1 identifies the various local symmetry regions. The center of each

local symmetry region defines the local symmetry axis. In the case of C4, C3 and C2

axes shown in Fig 3.1(a) and Fig 3.1(b), these axes are fixed on the RES as θ changes.

In some cases a C4, C3 or C2 region may not be visible or present at all.

Semi-classical Outlines and Quantum Behavior

By understanding local subgroup regions, it is possible to discuss more detail of Fig

3.4. The correspondence between the RES plots and the level diagram can also be

seen by appending the eigenvalue spectrum in Fig 3.4 with the height of the C4,

C3 and C2 axes. This confirms that the quantum spectrum sits inside the semi-

classical boundaries and tracks the change in the eigenvalue spectrum corresponding

to changes in RES topology. Fig 3.2 shows the same quantum spectrum as Fig 3.4,
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(a) C3 and C4 local regions

(b) C2 local region

Figure 3.1: Symmetry Axes of T [4,6] RES for differing contributions of T [4] and T [6]
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Figure 3.2: Quantum spectrum of octahedral Hamiltonian (Eq (3.3)) with changing
θ. Bold lines are the energy of the classical symmetry axis labeled.

but also includes the height (energy) of each symmetry axis. The outlines are printed

in bold and are labeled for which Cn axis they each belong.

The separation of the extreme (highest or lowest) level clusters and the classical

boundaries corresponds to a generalized “zero point” energy gap or Maslov index.

No such gap appears for internal clusters around the C2 classical boundary when it

becomes a separatrix.

Section 2.3 described how to predict the error between a fully quantum mechani-

cal calculation and a semi-classical approximation of the symmetric rotor rotational

spectra. For the symmetric rotor this could be done analytically. It is difficult to be

as exact in calculating error for an octahedrally symmetric Hamiltonian, but a sim-

ple plot can show to what extent an RES plot fails to describe quantum mechanical

behavior.
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Rather than plotting the Hamiltonian as Eq (3.3) we will arrange it as

T [4,6] = (1− x)T [4] + xT [6]. (3.6)

By doing so the semi-classical outlines will go from being cosine-like to linear. This

rescaling helps to visually detect where quantum mechanical levels go outside the

semi-classical bounds and see cases where a RES plot can be trusted as a valid ap-

proximation.

The three plots in Fig 3.3 show spectra and semi-classical outlines for J = 30,

J = 10 and J = 4. Fig 3.3(a) shows that the quantum levels fit for all values of x

at J = 30, while Fig 3.3(b) shows some small disagreement near x = 2 for J = 10.

Fig 3.3(c) shows that for low J = 4 there is strong disagreement between quantum

calculations and semi-classical approximations.

Next, an analysis of T [4,6,8] demonstrates how such a Hamiltonian gives a different

type of topology than previously reported, that of C1 symmetry.
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(a) J=30

(b) J=10

(c) J=4

Figure 3.3: Spectrum of Octahedral Rotor Showing Semi-Classical Boundaries Given
Eq (3.6)
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Figure 3.4: Both Energy Levels and RES Plots for T [4,6]. Horizontal Axis goes from all T [4] on the left to all T [6] on the right
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Figure 3.5: RES with C1 local symmetry regions visible

Topological and Clustering Changes in the T [4,6,8] Parameter Space

The inclusion of eighth rank operators to the Hamiltonian dramatically changes the

possible types of RES local symmetry and the related level clustering. While Fig

3.1 demonstrated C4, C3 and C2 symmetric local structures for RES plots for T [4,6]

Hamiltonians, Fig 3.5 demonstrates previously unseen local structures in a T [4,6,8]

Hamiltonian. This new level cluster structure contains all 24 levels of an entire regular

representation. The local RES region pointed to in Fig 3.5 is asymmetric, that is, C1

symmetric and is repeated 24 times.

To demonstrate details of the two-dimensional T [4,6,8] parameter space, several

slices of the phase-space are shown by Table 3.2, which plots RES at select points in

the (θ, φ)-parameter-space. To be consistent with Eq (3.4), the plots range (0 to π) in

θ as they go from left to right and from (0 to π) in φ as they go from top to bottom.

Since the symmetry labeling of the octahedral group is different form the asymmetric

top, a new coloring convention for the octahedral levels is defined. For all octahedral

RES plots in this chapter A1 is red, A2 is orange, E2 is green, T1 is dark blue and T2
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Table 3.2: RES plots exploring the 2D parameter space
θ = 0 θ = π/4 θ = π/2 θ = 3π/4 θ = π

φ = 0

φ = π
4

φ = π
2

φ = 3π
4

φ = π

is light blue.

Due to Eq (3.4), the top and bottom rows are opposites of one another. That is,

where one RES is convex (shifts to higher energy), the other is concave (shifts to lower

energy). The RES at θ = 0, φ = 0 has convex C4 and concave C3 structure as does

the RES at θ = π, φ = π, but opposite the shape of the RES at either θ = 0, φ = π

or θ = π, φ = 0. The ordering of the levels is also inverted. These two extremal rows

also have no eighth order contribution, so they produce simple shapes, like Fig 3.1,

and nn C1 local symmetry regions.

Note, in the middle row all the RES are identical as required by Eq (3.4) for any

case where φ = π/2.

Figure 3.6 shows level diagrams with select RES plots that exhibit symmetry and
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(b) φ = 3π/4

Figure 3.6: Level Diagrams of Energy vs θ for given φ with RES Plots at Selected
Positions
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topology at each θ-point in the space. The bold vertical lines next to the RES plots

locate the spot in the level diagram or that particular RES. The θ = π/2 case is

unchanged, so it is not shown. The θ = π case is neglected as it is a mirror image of

the θ = 0 case.

3.2.4 C1 Level Clustering

Fig 3.5 shows where C1 local regions are located on the RES. Unlike the C2, C3 and

C4 local symmetry regions, the local C1 structures are not constrained to an axis and

may be at different locations about the RES given different values of parameter θ and

φ. RES plots with these local symmetries are also visible in parts of second, third

and fourth rows of Table 3.2 as well as parts of Figures 3.6(a) and 3.6(b) that show

concave C1 features. Fig 3.7 shows convex and concave C1 features arranged in either

a square or triangular pattern.

The C1 features are not always present for two reasons. First, only certain parts

of the parameter space allow them. In particular, there must be a non-zero T [8]

contribution. That is, φ must not be any multiple of π (including 0), but θ may have

any value. Second, J must be large enough for an energy level to actually exist at

that point on the surface. Thus, higher values of J make C1 clusters more likely since

there are then more eigenvalues and more ways to fit J cones on the surface. RES

with angular momenta as low as J = 4 may show C1 clusters, since they cannot have

24 levels and do not meet minimum uncertainty relationships.

From our studies, we see that no C1 clusters are uncertainty-allowed until around

J = 20. Their number does not grow quickly with J . Even for J = 30, C1 levels are

still barely allowed. This is indicated by the minimum (J = 30) uncertainty cone that

barely fits the the C1 portion of the RES in Fig 3.7(a). There is room for only one

cluster, at the least uncertain (J = 30 = k) cone.
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(a) RES with convex C1 in a square arrangement.
Note the figure is rotated slightly and the angular
momentum cone has rotated to point in a C1 sym-
metric direction.

(b) RES with concave C1 structures in a tetragonal
arrangement.

(c) RES with concave, trigonal arrangement of
C1 pockets

Figure 3.7: C1 Features on different parts of the parameter-space. All plots are done
for J = 30.
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3.3 Conclusion

In this chapter we have used the lowest parts of a Wigner multipole expansion of a

Watson-Hecht rovibrational Hamiltonian to analyze purely geometric approximations

to diagonalization. The RES approximations are often good and deviations can be

accounted for analytically for axially symmetric systems. Predictably, deviations are

large at low angular momentum and vanish with increasing J .

The Wigner D-functions that make up the multipole expansion tensors can also

create the projectors that assist in identifying the symmetry of each eigenvector to

come from a Hamiltonian matrix diagonalization. This process is simplified by using

Cn subgroups of a given molecule’s point symmetry.

The RES analysis shows a new complexity in the topological analysis of high order

rotational Hamiltonians of octahedral O symmetry spherical-top molecules. A Hecht

Hamiltonian terms of eighth order has new types of level clusters that have only

C1 symmetric (asymmetric) RES regions that repeat 24 times along the RES. The

possibility emerges of having 48 such asymmetric regions in a Oh Hamiltonian RES

with a “monster” cluster of 48 rovibrational levels.
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Chapter 4

Local Symmetry Tunneling Eigensolutions
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4.1 Chapter Summary

High-resolution rovibronic spectra of spherical top molecules may cluster and exhibit

superfine structure. Superfine splittings depend on both the symmetry and geometry

of phase-space tunneling paths. These paths are elucidated by rovibronic energy

surfaces (RES). The relevant tunneling is that found between equivalent contours

(energy levels) regions showing similar “local” symmetry. This chapter offers a method

of labeling tunneling paths with molecular symmetry group labels. This allows for

convenient labeling, but, more importantly, offers ways to simplify projection algebra

to analyze tunneling dynamics and superfine energy splittings.

Rotational energy level cluster degeneracy or dimension increases as local symme-

try is reduced. This is quite the opposite of extrinsic or “global” symmetry degeneracy,

which splits with global symmetry reduction or “breaking”. An important duality ex-

ists between “un-splitting” or clustering due to local symmetry reduction and level

splitting due to global symmetry reduction. The latter has been called “applied sym-

metry breaking” while the former may be known as “spontaneous symmetry breaking”

in a number of areas of physics and chemistry.

A critical reformulation of quantum eigensolution analysis by exploiting the global-

local duality improves its insight and computational efficiency. Here the parameter

formation is introduced using an Abelian C6 example of Fourier group projection.

This is extended to the most elementary non-Abelian D3 symmetry example in order

to demonstrate dual symmetry analysis subsequent chapters follow with examples of

Oh tensor eigensolutions having 12-fold and 24-fold level cluster superfine structure.

4.2 Introduction

For a system to have symmetry means two or more of its parts are the same or similar

and therefore subject to resonance. This can make a system particularly sensitive to

internal parameters and external perturbations and give rise to interesting and useful
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effects. However, resonances can make it more difficult to analyze and understand

a system’s eigensolutions. The tensor level cluster states discussed in the preceding

chapter 3 have examples of complex superfine structure due to J-tunneling that is the

focus of this chapter and the following chapter 5.

Fortunately, the presence of symmetry in a physical system allows algebraic or

group theoretical analysis of quantum eigensolutions and their dynamics. Groups of

operators (g, g′, g′′, ...) leave a Hamiltonian operator H invariant (g†Hg = H) if and

only if each g commutes with it (gH = Hg). Then each g in the group shares a set

of eigenfunctions with H. However, if (g′) and (g) do not commute then the (g′) and

(g) sets will differ.

Hamiltonians may themselves be symmetry operators or linear expansions thereof.

Multipole tensor expansions used in chapters 1 through 3 are examples. Expanding

H into operators with symmetry properties, such as (a†a) or (T kq ), helps to analyze

its eigensolutions since, in some sense, a symmetry algebra “knows” its spectral res-

olutions. The underlying isometry of a system’s variables and states contains all the

sub-algebras that are possible H-symmetries.

If H-symmetry operators (g, g′, ...) also commute with each other (gg′ = g′g, etc.)

then all g share with H a single set of eigenvectors as discussed in Sec. 4.3. Such

commutative or Abelian symmetry analysis is just a Fourier analysis where all H

are linear expansion of its symmetry elements (g, g′, g′′, ...) and simultaneously diag-

onalized with H. Such g expansions define both Hamiltonians H and their states as

described in Sec. 4.3.

However, non-commuting (non-Abelian) symmetry operators (g, g′, g′′, ...) of H

cannot both expand H and commute with H. This impasse is resolved in Sec. 4.4

by using a dual local operator group (ḡ, ḡ′, ḡ′′, ...) that mutually commutes with the

original global group. Then local (ḡ) expand any H that commutes with global g,

while the global g define base states and their combinations define symmetry projected
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states.

In Sec. 4.4, the dual group (D̄3 ∼ C̄3v) of the smallest non-Abelian group (D3 ∼

C3v) is defined and applied. Dual symmetry-analysis is demonstrated for a trigonal

tunneling system by group parametrization of all possible (D3)-symmetric H matrices

and all possible eigensolutions for each. The example shows how global (g) label states

while the local (ḡ) label tunneling paths. In this way symmetry labels processes as

well as states.

In chapter 5, the local symmetry expansion is applied to octahedral tensor su-

perfine structure. Local symmetry conditions are used to relate tunneling paths to

RES topography in chapter 3 and predict specific energy level patterns.

4.3 Abelian symmetry analysis

This introduction to analysis of tunneling using symmetry begins with the very sim-

plest cases that involve just cyclic Cn symmetry of n-fold polygonal structure. But,

it also applies to Abelian (mutually commuting) groups A since they may be shown

to reduce to outer products Cm × Cn × · · · of cyclic groups of prime order.

4.3.1 Operator expansion of Cn symmetric Hamiltonian

The analysis described here and in Sec. 4.4 deviates from standard procedure[1, 2,

3, 4, 5]. Instead of beginning with a given quantum Hamiltonian H-matrix, we start

with a Cn symmetry matrix (r) and build all possible Cn symmetric (H)-matrices by

combining n powers (rp) = (r)p of (r) ranging from identity r0 = 1 = rn to inverse

rn−1 = r−1 [6].

H = r0r
0 + r1r

1 + r2r
2 + . . .+ rn−2r

n−2 + rn−1r
n−1

= r01 + r1r
1 + r2r

2 + . . .+ r−2r
−2 + r−1r

−1 (4.1)

In (4.1) the rotation r is by angle 2π/n so rotation rn is by angle n2π/n = 2π,
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that is, the identity operator r0 = 1 = rn. Thus power-p indices label modulo-n or

base-n algebras. If n=2, it is a Boolean algebra C1 ⊂ C2 of parity [+1,-1] or classical

bits [0,1]. (U(2) spin-algebras of q-bits have 4π identity but are not considered here.)

Sum rule: p+ p′ = (p+ p′) mod (n)

Product rule: p · p′ = (p · p′) mod (n) (4.2)

We construct the general H-matrix using Cn group-product tables shown below in a

g−1g-form and a g†g-form that is equivalent for unitary operators g† = g−1 . In each

table the kth-row label g−1 matches kth-column label g so that the identity operator

1 = g−1g resides only on the diagonal. This example is for hexagonal symmetry C6

for which r−6 = r0 = 1 = r6 = r6†, r−5 = r1 = r5†, r−4 = r2 = r4†, r−3 = r3 = r3†,

and so forth.

g−1g
form r0 r1 r2 r3 r4 r5

r0 r0 r1 r2 r3 r4 r5

r5 r5 r0 r1 r2 r3 r4

r4 r4 r5 r0 r1 r2 r3

r3 r3 r4 r5 r0 r1 r2

r2 r2 r3 r4 r5 r0 r1

r1 r1 r2 r3 r4 r5 r0

=

g†g
form 1 r+1 r+2 r+3 r−2 r−1

1 1 r+1 r+2 r+3 r−2 r−1

r−1 r−1 1 r+1 r+2 r+3 r−2

r−2 r−2 r−1 1 r+1 r+2 r+3

r+3 r+3 r−2 r−1 1 r+1 r+2

r+2 r+2 r+3 r−2 r−1 1 r+1

r+1 r+1 r+2 r+3 r−2 r−1 1

(4.3)

The g†g-form produces a regular representation R(g) = (g) of each operator g as

indicated by examples below. Each R(rp) is a zero-matrix with a 1 inserted at any
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matrix position where a rp appears in the g†g-table.

R(1) = R(r1) = (4.4)



1 · · · · ·

· 1 · · · ·

· · 1 · · ·

· · · 1 · ·

· · · · 1 ·

· · · · · 1




,




· 1 · · · ·

· · 1 · · ·

· · · 1 · ·

· · · · 1 ·

· · · · · 1

1 · · · · ·




,

R(r2) = R(r3) = (4.5)



· · 1 · · ·

· · · 1 · ·

· · · · 1 ·

· · · · · 1

1 · · · · ·

· 1 · · · ·




,




· · · 1 · ·

· · · · 1 ·

· · · · · 1

1 · · · · ·

· 1 · · · ·

· · 1 · · ·




, · · · (4.6)

(4.7)

A general Cn Hamiltonian (H) matrix results by inserting matrices from (4.4) above
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into expansion (4.1) of operator H.

(H) =
n−1∑

p=0

rp (rp) =




r0 r1 r2 r3 r4 r5

r5 r0 r1 r2 r3 r4

r4 r5 r0 r1 r2 r3

r3 r4 r5 r0 r1 r2

r2 r3 r4 r5 r0 r1

r1 r2 r3 r4 r5 r0




=




r0 r1 r2 r3 r−2 r−1

r−1 r0 r1 r2 r3 r−2

r−2 r−1 r0 r1 r2 r3

r3 r−2 r−1 r0 r1 r2

r2 r3 r−2 r−1 r0 r1

r1 r2 r3 r−2 r−1 r0




(4.8)

The matrices in (4.8) are simply group tables (4.3) with each operator rp replaced by

a complex amplitude parameter rp. Parameters r0 = (r0)∗ and r3 = (r3)∗ belong to

self-conjugate elements of binary subgroups C1 ⊂ C2 = (1, r3) related by 1 = (r3)2,

and they must be real so that matrix (H) is Hermitian self-conjugate (Hab = H∗ba), as

well.

Three distinct classes of tunneling or coupling parameters are depicted in Fig. 4.1

using classical spring-mass analogs for quantum systems[7]. They are similar to those

presented in ref [8, 9, 10] and many others using tunneling Hamiltonians. The 1st-

neighbor class has non-zero parameters r1=-r and conjugate r−1=-r∗=-r̄ coupling only

nearest neighbors each with self-energy r0=H1. The 2nd-neighbor class has non-zero

parameters r2=-s and conjugate r−2=-s∗=-s̄ coupling only next-nearest neighbors

with self-energy r0=H2. Finally, 3rd-neighbor coupling r3=-t=-t∗ is real as required

for binary self-conjugacy r3=(r3)†.
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Figure 4.1: Three classes of tunneling paths and parameters

4.3.2 Spectral resolution of Cn symmetry operators

Eigenvalues χmp of each operator rp are mth multiples of nth-roots of unity since all

Cn symmetry operators g = rp satisfy gn = 1 and are characters of Cn symmetry

operators. Magnetic or mode-wavenumber indices m label a base-n algebra as do the

power or position-point indices p in (4.2). Spatial lattice points xp = L · p(meters)

are indexed by p while reciprocal-(k)-wavevector space km = 2πm/L(permeter) is

indexed by integer m.

〈rp〉m = χmp = e−i(m·p)2π/n = e−ikmxp = D(m)(rp) (4.9)

The χmp are Cn irreducible representations D(m)(rp) as well as Cn characters. General

group characters are traces (diagonal sums) of D-matrices (χ(m)(g) = traceD(m)(g)).

Abelian group irreducible representations are 1-dimensional due to their commutativ-

ity, and so for them characters and representations are identical. (χ(m)(g) = D(m)(g))

Any number of mutually commuting unitary matrices may be diagonalized by a

single unitary transformation matrix. The characters in (4.9) form a unitary trans-
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Figure 4.2: C6 Characters (a) Numerical table (b) Wave phasor table

formation matrix Tm,p that diagonalizes each Cn matrix (rp).

Tm,p = χmp /
√
n (4.10)

This T is a discrete (n-by-n) Fourier transformation. A 6-by-6 example that diagonal-

izes all matrices in (4.4) and (4.8) and in Fig. 4.1 is shown in Fig. 4.2 by a character

table of wave phasors based on D(m)(rp) in eq.(4.9) or (4.10). The irreducible rep-

resentations D(m)(rp) or irreps play multiple roles. They are variously eigenvalues,

eigenvectors, eigenfunctions, transformation components, and Fourier components of

dispersion relations. This hyper-utility centers on their role as coefficients in spectral

resolution of operators rp into idempotent projection operators P(m).

rp =
n−1∑

m=0

χmp P(m)

= χ0
pP

(0) + χ1
pP

(1) + χ2
pP

(2) + χ3
pP

(3) + χ4
pP

(4) + χ5
pP

(5) (4.11)

P(m) are irrep placeholders. Eq (4.11) is column-p of Fig. 4.2. Column-0 is a
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completeness or identity resolution relation.

r0 =
n−1∑

m=0

P(m) = 1 = P(0) + P(1) + P(2) + P(3) + P(4) + P(5) (4.12)

Dirac notation for P(m) is |(m)〉〈(m)|. Its representation in its own basis (eigenbasis)

is simply a zero matrix with a single 1 at the (m,m)-diagonal component. P(m)-

product table in (4.13) is equivalent through (4.11) to g-product table in Eq (4.3)

but the P(m)-table given below has an orthogonal (e.g.P(1)P(2) = 0) idempotent

(e.g.P(1)P(1) = P(1)) form.

P(m)P(n) = δmnP(n) →

P†P
form P(0) P(1) P(2) P(3) P(4) P(5)

P(0) P(0) · · · · ·

P(1) · P(1) · · · ·

P(2) · · P(2) · · ·

P(3) · · · P(3) · ·

P(4) · · · · P(4) ·

P(5) · · · · · P(5)

→
(
P(2)

)
P

=




· · · · · ·

· · · · · ·

· · 1 · · ·

· · · · · ·

· · · · · ·

· · · · · ·




(4.13)

The location of each P(m) in the P-table is a location of a 1 in its representation as

indicated in the right hand side of (4.13) in the same way that locations in g-table

(4.3) place 1’s in representations (4.4). However, idempotent self-conjugacy (P† = P)

makes row labels of P-table (4.13) identical to its column labels, whereas only g = 1
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and g = r3 are self-conjugate in g-table (4.3).

We may view character arrays such as Fig. 4.2 as representing operator eigen-

products between rp and P(m).

rpP(m) = χmp P(m) = P(m)rp (4.14)

We may also view character χmp as scalar product overlap of position state bra or ket

with momentum ket or bra.

Position bra: 〈xp| = 〈p| = 〈0|r−p

Position ket: |xp〉 = |p〉 = rp|0〉 (4.15a)

Momentum bra: 〈km| = 〈(m)| = 〈0|P(m)√n

Momentum ket: |km〉 = |(m)〉 = P(m)|0〉√n (4.15b)

Plane wave momentum eigenfunction ψkm(xp) equals character (4.9) conjugated to

eikmxp and normalized by
√
n.

ψkm(xp) = 〈xp|km〉 = 〈p|(m)〉 = (χmp /
√
n)∗

= (〈(m)|p〉)∗ = eikmxp/
√
n (4.16)

The effect of rp on a state ket |(m)〉 = |km〉 is conjugate and inverse to its effect

on coordinate bra 〈xq| = 〈q|.

ψkm(xq − p · L) = 〈xq|rp|km〉 = 〈q|rp|(m)〉

= 〈q − p|(m〉 = e−ikmxp〈q|(m)〉 (4.17)

The same overlap results whether rp moves a (m)-wave p-points forward or moves the

coordinate grid p-points backward. This Cn relativity-duality principle is generalized
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below in the discussion of higher symmetry and is a key part of the operator labeling

of coordinates, base states, Hamiltonians, and their eigensolutions.

P(m) operators project momentum states using conjugate characters φmp = (χmp )∗

normalized by 1/n to be idempotent and sum to 1. (ΣpP
(m) = 1) States |km〉 use φmp

normalized by 1/
√
n to be orthonormal so a sum of squares is 1. (Σp|〈xp|km〉|2 = 1)

This gives rise to a factor
√
n in projection eq.(4.15b) of |km〉 by P(m).

More explicitly, the inverse of spectral resolution in (4.11) sums over column points

p using φmp from each row-(m) of Fig. 4.2. Factor 1/n makes P(m) complete (ΣmP(m) =

1 in (4.12)) and idempotent (P(m)P(m) = P(m)) in (4.13)).

P(m) =

(
n−1∑

p=0

φmp rp

)
/n

= (φm0 r0 + φm1 r1 + φm2 r2 + φm3 r3 + φm4 r4 + φm5 r5)/6 (4.18)

The first row (The (m)=(0)-row) of Fig. 4.2 is the average or a sum of all symmetry

operators weighted by 1/n.

P(0) =

(
n−1∑

p=0

rp

)
/n = (r0 + r1 + r2 + r3 + r4 + r5)/6 (4.19)

The preceding shows how factors
√
n =
√

6 in state projections in (4.15b) gives state

norms
√
n/n = 1/

√
n in (4.16).

P(m)|0〉√n =

(
n−1∑

p=0

φmp |p〉
)
/
√
n

= (φm0 |0〉+ φm1 |1〉+ φm2 |2〉+ φm3 |3〉+ φm4 |4〉+ φm5 |5〉)/
√

6 (4.20)

The (0)-momentum or scalar state is a sum over the (m)=(0)-row of Fig. 4.2 normal-
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ized by 1/
√
n.

P(0)|0〉√n =

(
n−1∑

p=0

|p〉
)
/
√
n = (|0〉+ |1〉+ |2〉+ |3〉+ |4〉+ |5〉)/

√
6 (4.21)

4.3.3 Spectral resolution of Cn symmetric Hamiltonian

Given Hamiltonian H expansion in (4.1) in operators rp and the spectral resolution

in (4.11) of rp, there follows the desired spectral resolution of H. The eigenvalue

coefficients ω(m) of P(m) define the dispersion function ω(km) of H.

H =
n−1∑

p=0

rpr
p =

n−1∑

p=0

rp

n−1∑

m=0

χmp P(m) =
n−1∑

m=0

ω(m)P(m) where : ω(m) =
n−1∑

p=0

rpχ
m
p = ω(km)

(4.22)

It is conventional to center scalar origin (m)=(0). Positive km-axis C6 array [...(0), (1),

(2), (3), (4), (5), ...] of Eq (4.13) shifts to a zone-centered array mod-6: [...(4), (5),

(0), (1), (2), (3), ...]=[...(−2), (−1), (0), (1), (2), (3), ...] using (4.2).

Examples of dispersion relations for three classes of tunneling paths in Fig. 4.1

are shown in Fig. 4.3. Dispersion ω(km) for C6 symmetry depends sensitively on the

Hamiltonian tunneling amplitudes rp for −3 < p ≤ 3 (or 0 ≤ p < 6) in Eq (4.8), and

for any set of eigenvalues ω(km) there is a unique set of rp found by inverting (4.22).

rp =
n−1∑

m=0

φmp ω
(m)/n where : φmp = (χmp )∗ (4.23)

A common tunneling spectral model is the elementary Bloch 1st-neighbor B1(6)-model

shown in Fig. 4.3a, much like that developed in ref [8]. For negative values of r1=-r,

a B1(6) spectra for C6 consist of six points on a single inverted cosine-wave curve

centered at m=0 with its maxima at the Brillouin-band boundaries (m)=±3. This

curve applies to B1(n) spectra for Cn where n equally spaced (m) points lie on the

82



dispersion curve between m=±n/2 for even-n. The n energy eigenvalues ω(m) are

projections of an n-polygon. For n=6 that is the hexagon shown in Fig. 4.3a projecting

two doublet levels ω(±1) and ω(±2) between singlet ω(0) and singlet ω(3) at lowest and

highest hexagonal vertices as follows from (4.22).

ωB1(n)(km) = r0χ
m
0 + r1χ

m
1 + r−1χ

m
−1 = H1 − 2r cos(2πm/6) (4.24)

The 2nd-neighbor B2-model (Fig. 4.3b) has a two-cosine-wave dispersion curve.

An equilateral triangle projects energy doublet levels [ω(0), ω(3)] from its lowest vertex

and a quartet [ω(±1), ω(±2)] from its upper vertices.

ωB2(n)(km) = r0χ
m
0 + r2χ

m
2 + r−2χ

m
−2 = H2 − 2s cos(4πm/6) (4.25)

The 3rd-neighbor B3-model (Fig. 4.3c) has a three-cosine-wave dispersion, which

for n=6 and r3=−t, separates levels into an even-m triplet [ω(0), ω(±2)] below an odd-m

triplet [ω(3), ω(±1)].

ωB3(n)(km) = r0χ
m
0 + r3χ

m
3 + r−3χ

m
−3 = H3 − 2t (−1)m) (4.26)

Combining of kth-neighbor rk-terms gives dispersion ω(m) as a k-term Fourier cosine

series that is, for real rk, a sum of the preceding three equations (4.24), (4.25), and

(4.26). However, real rk imply symmetry that is higher than C6, namely non-Abelian

reflection-rotation symmetry such as C6v or D6h and a corresponding degeneracy be-

tween ω(±m) levels that will be treated shortly. Simple C6 symmetry allows six real

parameters with complex r1 and r2. Then eq. (4.22) implies six levels that are gen-

erally non-degenerate as shown in Fig. 4.4. Complex r1 = |r|eiφ of a ZB1 model

describes chiral magnetic or rotational effects that include Zeeman-like splitting of

m-doublets. The projecting hexagon tilts by the “gauge” phase angle φ = π/12 as

the ZB1(6) dispersion ω(m) shifts. Then m doublets (±1) and (±2) suffer splittings
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Figure 4.3: Energy level dispersion for archetypical tunneling parameters: B1:r1 = −r,
B2:r2 = −s, B3:r3 = −t
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Figure 4.4: Zeeman shifted Bloch dispersion for complex parameter in ZB1(6) model:
r1 = −reiφ with φ = π/12

that are 1st-order in φ while singlets (0) and (3) undergo shifts that are 2nd-order in

φ.

4.4 Non-Abelian symmetry analysis

Characterization and spectral resolution in (4.22) of a Hamiltonian HBk(6) uses its

expansion in (4.1) in Abelian group C6. Similar spectral resolution of a Hamiltonian

H by a non-Abelian group G = [...g1,g2...] of non-commuting symmetry operators

might seem impossible. To be symmetry operators of H, elements g1 and g2 must

commute with H, but that cannot be if H is a linear expansion of them like (4.1).

The impasse is broken by introducing operator relativity-duality detailed below. A

D3-symmetric tunneling H with a 3-well potential sketched in Fig. 4.5 is used as an

example.

Though examples in this section are for rotational states and Hamiltonians, ap-

pendix 4.A demonstrates similar structure for vibrational states.

4.4.1 Operator expansion of D3 symmetric Hamiltonian

The simplest non-Abelian group is the rotational symmetry D3 = [1, r1, r2, i1, i2, i3] of

an equilateral triangle. D3 is used to show how to generalize C6 operator analysis of

the preceding section to any symmetry group. The D3 analysis begins with a g†g-form
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Figure 4.5: Rotation operators [1, r1, r2, i1, i2, i3] for a D3 symmetric square-well po-
tential.

of group product table like (4.3) for C6. However, D3 also requires a gg†-form giving

the same product rules but using inverse g† ordering |..r2, r1, ...|=|..r1†, r2†, ...| along

the top instead of down the left side as is done for the g†g-form of table. (The two

±120◦ rotations r1 and r2 are the only pair (r1†=r2) to be switched by conjugation).

The three ±180◦ rotations are each self-conjugate (ip
†=ip) as is (always) the identity

1†=1.)

g†g
form 1 r1 r2 i1 i2 i3

1 1 r1 r2 i1 i2 i3

r2 r2 1 r1 i2 i3 i1

r1 r1 r2 1 i3 i1 i2

i1 i1 i2 i3 1 r1 r2

i2 i2 i3 i1 r2 1 r1

i3 i3 i1 i2 r1 r2 1

gg†

form 1̄ r̄2 r̄1 ī1 ī2 ī3

1̄ 1̄ r̄2 r̄1 ī1 ī2 ī3

r̄1 r̄1 1̄ r̄2 ī3 ī1 ī2

r̄2 r̄2 r̄1 1̄ ī2 ī3 ī1

ī1 ī1 ī3 ī2 1̄ r̄1 r̄2

ī2 ī2 ī1 ī3 r̄2 1̄ r̄1

ī3 ī3 ī2 ī1 r̄1 r̄2 1̄

(4.27)

The over-bar notation is used for a dual-group D̄3 = [1̄ , r̄1, r̄2, ī1, ī2, ī2] of “body”-

based operators isomorphic to the usual “lab”-based group. Matrix representations
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(4.28a) for D3 or matrices (4.28b) for D̄3 are given, respectively, by g†g or gg†-forms
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(4.27) in the same way that the g†g form (4.3) for C6 gives matrices in (4.4).

(1) = (r1) = (r2) =



1 · · · · ·

· 1 · · · ·

· · 1 · · ·

· · · 1 · ·

· · · · 1 ·

· · · · · 1







· 1 · · · ·

· · 1 · · ·

1 · · · · ·

· · · · 1 ·

· · · · · 1

· · · 1 · ·







· · 1 · · ·

1 · · · · ·

· 1 · · · ·

· · · · · 1

· · · 1 · ·

· · · · 1 ·




(i1) = (i2) = (i3) =




· · · 1 · ·

· · · · · 1

· · · · 1 ·

1 · · · · ·

· · 1 · · ·

· 1 · · · ·







· · · · 1 ·

· · · 1 · ·

· · · · · 1

· 1 · · · ·

1 · · · · ·

· · 1 · · ·







· · · · · 1

· · · · 1 ·

· · · 1 · ·

· · 1 · · ·

· 1 · · · ·

1 · · · · ·




(4.28a)

(1̄) = (r̄1) = (r̄2) =



1 · · · · ·

· 1 · · · ·

· · 1 · · ·

· · · 1 · ·

· · · · 1 ·

· · · · · 1







· · 1 · · ·

1 · · · · ·

· 1 · · · ·

· · · · 1 ·

· · · · · 1

· · · 1 · ·







· 1 · · · ·

· · 1 · · ·

1 · · · · ·

· · · · · 1

· · · 1 · ·

· · · · 1 ·




(̄i1) = (̄i2) = (̄i3) =



· · · 1 · ·

· · · · 1 ·

· · · · · 1

1 · · · · ·

· 1 · · · ·

· · 1 · · ·







· · · · 1 ·

· · · · · 1

· · · 1 · ·

· · 1 · · ·

1 · · · · ·

· 1 · · · ·







· · · · · 1

· · · 1 · ·

· · · · 1 ·

· 1 · · · ·

· · 1 · · ·

1 · · · · ·




(4.28b)
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Most pairs of resulting D3 matrices in (4.28a) do not commute. (For example

(r1)(i1)=(i3) does not equal (i1)(r1)=(i2).) Identical non-commutative product rules

apply to the dual bar group D̄3 matrices in (4.28b). However, all matrices of the latter

D̄3 commute with all matrices of the former D3. This suggests that the Hamiltonian

matrix, in order to commute with its symmetry group D3, is constructed by linear

combination of bar group operators of D̄3 [6].

H = r01̄ + r1r̄
1 + r2r̄

2 + i1̄i1 + i2̄i2 + i3̄i3 (4.29)

The resulting D3 symmetric (H) matrix generalizes the C6 symmetric (H) matrix

in (4.8) to non-Abelian symmetry.

(H) =

oG∑

g=1

rg(ḡ) =




r0 r2 r1 i1 i2 i3

r1 r0 r2 i3 i1 i2

r2 r1 r0 i2 i3 i1

ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1

i3 i2 i1 r1 r2 r0




(4.30)

4.4.2 Spectral resolution of D3 symmetry operators

Spectral resolution of D3 or any non-Abelian group G = [...g1,g2...] entails more

than the C6 expansion into a unique combination of idempotent operators Pα=|α〉〈α|

multiplied by eigenvalue D(α)(g) coefficients as in (4.11). It is not possible to diago-

nalize two non-commuting g1 and g2 in one basis since numbers (eigenvalues) always

commute. If g1 and g2 do not commute, their collective resolution must include eigen-

matrix coefficients Dα
m,n involving nilpotent (N2 = 0) operators Pα

m,n=|αm〉〈αn| as well

as idempotent (I2 = I) operators Pα
m,m=|αm〉〈αm| seen in (4.11).

Unlike a commutative algebra of Cn idempotents, which are shown in (4.13) and
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uniquely defined by (4.18), a non-Abelian algebra yields a panoply of equivalent

choices of P operators that resolve it. The number and types of these P’s is uniquely

determined by size and structure of certain key commuting sub-algebras. The key to

symmetry analysis of quantum physics is to first sort out the operators and algebras

that commute from those that do not. It amounts to a kind of symmetry analysis of

symmetry and leads to a far greater diversity than is found in commutative Abelian

systems.

Sorting commuting subalgebras: Rank and commuting observables

The rank ρ(G) of a G-algebra is the maximal number of mutually-commuting op-

erators available by linearly combining the oG operators gk of symmetry group G.

ρ(G) is also the greatest number of orthogonal idempotents Pm that can resolve the

G-identity 1 as in Eq (4.12). (oG is total number or order of G. Here oD3 and oC6

both equal 6.)

C6 rank is obviously equal to its order (ρ(C6) = 6), but the rank of D3 turns out

to be only four (ρ(D3) = 4). As shown below, D3 can have no more than four P-

operators that mutually commute though there exist quite different sets of them. On

the other hand, D3 has just three linearly independent Pα-operators that commute

with all of D3, and there is but one invariant set of them just as there is but one set

of P(m) for C6 in Eq (4.18).

Rank is a key quantum concept since it is the total number of commuting ob-

servables, the operators that label and define eigenstates. Of primary importance are

G-invariant labeling operators IG that commute with all g and not just with other

labeling operators. IG are uniquely defined within their group G and invariant to all

g. (gIGg−1=IG) For example, total angular momentum J2 and e-values J(J + 1) are

R(3)-invariant .

Next in importance are labeling operators [IHn−1 , IHn−2 , ..., IH1 ] belonging to nested

subgroups of G=Hn in a subgroup chain G⊃Hn−1⊃Hn−2⊃...H1. Multiple choices of
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chains exists since each subgroup link Hk is not uniquely determined by the Hk+1 that

contains it, but each IHk is invariant to all possible Hj≤k at level-k or below.

For example, the z-axial momentum Jz and its e-values mz belong to a 2nd link in

chain-R(3)⊃R(2z)⊃C6(z). Given R(3) there are an infinity of R(2) subgroups besides

the one for z-axis of quantization. Jx or Jy are just two of an infinite number of

possible alternatives to Jz. Each R(2ζ) has an infinite number of cyclic Cn(ζ) sub-

subgroups.

Sorting commuting subalgebras: Centrum and class invariants

The centrum κ(G) of a G-algebra is the number of all-commuting operators available

by combining gk. It is also the number of G-invariant Pα-operators. Students of

group theory know κ(G) as the number of equivalence classes of group G. D3 elements

in Fig. 4.5 are separated into three classes of elements [1],[r1, r2], and [i1, i2, i3].

(κ(D3) = 3)

Elements in each class are related through transformation g1=gtg2g
−1
t by gt in

group G. Sum κk of ock elements in gk’s class is invariant to gt transformation. (It

only permutes gk-terms in κk thus κk commutes with all gt in G.)

gtκkg
−1
t = κk where: κk =

j=ock∑

j=1

gj = 1/osk

t=oG∑

t=1

gtgkg
−1
t (4.31)

The product table for D3 class algebra [κ1 = 1 , κ2 = r1 + r2 , κ3 = i1 + i2 + i3] in

Eq (4.32) below follows by inspecting D3 group product tables in Fig. 4.5 or (4.27).

It is a commutative algebra since each κj commutes with each κk as well as with each
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gt. This guarantees a class algebra has a unique and invariant spectral resolution.

1 r1 r2 i1 i2 i3

r2 1 r1 i2 i3 i1

r1 r2 1 i3 i1 i2

i1 i2 i3 1 r1 r2

i2 i3 i1 r2 1 r1

i3 i1 i2 r1 r2 1

→
κ1 = 1 κ2 = r1 + r2 κ3 = i1 + i2 + i3

κ2 2κ1 + κ2 2κ3

κ3 2κ3 3κ1 + 3κ2

(4.32)

The first sum in Eq (4.31) is over the ock elements in gk’s class. (ock is order of

κk.) The second sum is over all oG group elements. The number of elements gt that

commute with gk is osk, the order of gk’s self-symmetry sk. Each group operator gk

has a self-symmetry group consisting of (at least) the identity 1 and powers (gk)
p of

itself. The order of class-k is the (integer) fraction ock=
oG/osk.

Resolving all-commuting class subalgebra: centrum=κ(D3) = 3

Spectral resolution gives class-sum operators κ1, κ2, and κ3 as combinations of three

D3-invariant Pα-operators with each of the κk eigenvalues as coefficients. The κ3

characteristic equation found by (4.32) gives three Pα directly.

0 = κ3
3 − 9κ3 = (κ3 − 3 · 1)(κ3 + 3 · 1)(κ3 + 0 · 1)

= (κ3 − 3 · 1)PA1 = (κ3 + 3 · 1)PA2 = (κ3 − 0 · 1)PE (4.33)
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Standard notation A1, A2, and E is used for the three invariant idempotents Pα.

κ1 = 1 ·PA1 + 1 ·PA2 + 1 ·PE

κ2 = 2 ·PA1 − 2 ·PA2 − 1 ·PE

κ3 = 3 ·PA1 − 3 ·PA2 + 0 ·PE

PA1 = ( κ1 + κ2 + κ3)/6

PA2 = ( κ1 + κ2 − κ3)/6

PE = (2κ1 − κ2)/3

= ( 1 + r1 + r2 + i1 + i2 + i3)/6

= ( 1 + r1 + r2 − i1 − i2 − i3)/6

= (21− r1 − r2)/3

(4.34)

Traces of D3 matrices (gk) in (4.28a) are zero excepting Trace(1) = 6. Traces of (Pα)

then follow.

tracePA1 = 1, tracePA2 = 1, tracePE = 4. (4.35)

This means (PA1) and (PA2) are each 1-by-1 projectors while (PE) splits into two

2-by-2 projectors. The latter splitting is not uniquely defined until subgroup chain

D3⊃C3 or a particular D3⊃C2 chain is chosen, but relations in (4.34) are invariant and

unique. The κk coefficients inside parentheses of Pα expansion give the D3 character

table for traces of irreducible representations (irreps). Irrep dimension `α is trace of

the αth-irrep of identity g1 = 1.

D3 κ1 κ2 κ3

A1 1 1 1

A2 1 1 −1

E 2 −1 0

χαk = TraceDα(gk), `α = χα1 = TraceDα(1)

(4.36)

93



Resolving maximal mutually commuting subalgebra: rank=ρ(D3) = 4

Completing resolution of D3 uses a product of two completeness relations, the res-

olution of class identity κ1 = 1 in Eq (4.34) with the identity resolution of a D3

subgroup C3 = [1, r1, r2] or else C2 = [1, i3]. In either case invariant PE splits but

PA1 and PA2 do not. In Eq (4.37) PE is split by C2 into plane-polarizing projectors

PE
x,x+PE

y,y=PE
0202

+ PE
1212

.




D3

(
class algebra
completeness

)

1 = PA1 + PA2 + PE


 ·



C2

(
subgroup
completeness

)

1 = P02 + P12


 =




D3

(
group
completeness

)

1 = PA1
0202

+ PA2
1212

+PE
0202

+ PE
1212




where :

PA1 = PA1
0202

= ( 1 + r1 + r2 + i1 + i2 + i3)/6 = PA1P02

PA2 = PA2
1212

= ( 1 + r1 + r2 − i1 − i2 − i3)/6 = PA2P12

PE
x,x = PE

0202
= (21 − r1 − r2 − i1 − i2 + 2i3)/6 = PEP02

PE
y,y = PE

1212
= (21 − r1 − r2 + i1 + i2 − 2i3)/6 = PEP12

(All other

PαPm2 = 0)

(4.37)
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In (4.38) PE is split by C3 into Right and Left circular-polarized projectors PE
R,R +

PE
L,L = PE

1313
+ PE

2323
.




D3

(
class algebra
completeness

)

1 = PA1 + PA2 + PE


 ·




C3

(
subgroup
completeness

)

1 = P03 + P13 + P23


 =




D3

(
group
completeness

)

1 = PA1
0303

+ PA2
0303

+PE
1313

+ PE
2323




where :

PA1 = PA1
0303

= ( 1 + r1 + r2 + i1 + i2 + i3)/6 = PA1P03

PA2 = PA2
0303

= ( 1 + r1 + r2 − i1 − i2 − i3)/6 = PA2P03

PE
R,R = PE

1313
= ( 1 + ε r1 + ε∗r2 )/3 = PEP13

PE
L,L = PE

2323
= ( 1 + ε∗r1 + ε r2 )/3 = PEP23

(All other

PαPm3 = 0)

ε= ei 2π/3

(4.38)

In (4.37) and (4.38), neither PA1 nor PA2 split or change except to acquire some C2

or C3 labels. The total number (four) of irreducible idempotents after either complete

splitting is the same group rank noted before: ρ(D3)=4. But, the RL-circularly

polarized pairs PE
R,R and PE

L,L split-out by C3=[1, r1, r2] differ from the linear xy-

polarized pairs PE
x,x and PE

y,y split-out by C2=[1, i3]. PE
x,x and PE

y,y are, respectively,

parallel (symmetric i3P
E
x =+PE

x ) and anti-parallel (anti-symmetric i3P
E
y =−PE

y ) to

x-axial 180o rotation i3 in Fig. 4.5 and will be used in examples.

Final resolutions of non-commuting algebra: o(D3) = 6

Mutually commuting algebras resolve into (I2 = I) operators Pα
m,m=|αm〉〈αm| that sum

to identity operator 1. They are split using the “one-equals-one-times-one” (1=1·1)

trick in (4.37) and (4.38).

Non-commuting algebras resolve into idempotents and nilpotent (N2 = 0) oper-

ators Pα
m,n=|αm〉〈αn| that are split out using the following “operator-equals-one-times-

operator-times-one” (g=1·g·1) trick. It is only necessary that 1 be resolved into
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rank-number ρ of irreducible idempotents as in Eq (4.37) or (4.38). (Here ρ(D3) = 4.)

g = 1 · g · 1 = (PA1
x,x + PA2

y,y + PE
x,x + PE

y,y) · g · (PA1
x,x + PA2

y,y + PE
x,x + PE

y,y) (4.39)

The product in (4.39) could have sixteen terms, but only six survive due to idempotent

orthogonality Pα
j,jP

β
k,k = δα,βδj,kP

α
j,j, and the fact that both PA1 and PA2 remain

invariant and commute with all Pα
j,j and all g.

g = PA1 · g ·PA1 + PA2 · g ·PA2 + PE
x,x · g ·PE

x,x + PE
x,x · g ·PE

y,y

+PE
y,y · g ·PE

x,x + PE
y,y · g ·PE

y,y

(4.40)

This reduces to a non-Abelian spectral resolution of D3 that generalizes resolution

(4.11) of Abelian C6 and includes two nilpotent projectors Pα
j,k multiplied by off-

diagonal irrep matrix components Dα
j,k as well as the four idempotents Pα

j,j with their

diagonal irrep matrix coefficients Dα
j,j that are not altogether unlike the D(m)(rp)P(m)

terms in (4.11).

g =
∑

irreps (α)

`α∑

j=1

`α∑

k=1

Dα
j,k(g)Pα

j,k (4.41a)

g =DA1(g)PA1 +DA2(g)PA2 +DE
x,x(g)PE

x,x +DE
x,y(g)PE

x,y

+DE
y,x(g)PE

y,x +DE
y,y(g)PE

y,y (4.41b)

where :Pα
j,j · g ·Pα

j,j = Dα
j,j(g)Pα

j,j Pα
j,j · g ·Pα

k,k = Dα
j,k(g)Pα

j,k

Terms (1/n)D(m)∗(rp)rp in Eq (4.18) that give P(m) of Cn in Eq (4.11) generalize to

non-Abelian Pα
j,k and invert (4.41a) to (4.42).

Pα
j,k = (`α/oG)

oG∑

g=1

Dα∗
j,k(g)g (4.42)
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D3 resolution in (4.41b) has two irreps DA1 and DA2 of dimension `A1=1=`A2 and a

third irrep DE of dimension `E=2 as noted in the first column of the character array

in (4.36). The irrep dimensions are related to the centrum κ(D3)=3, rank ρ(D3)=4,

and order oD3=6. The following power sums of `α apply to any finite group G.

G− centrum : κ(G) =
∑

irrep(α)

(`α)0 = Number of classes, invariants or irrep types

G− rank : ρ(G) =
∑

irrep(α)

(`α)1 = Number of mutually commuting observables

G− order : o(G) =
∑

irrep(α)

(`α)2 = Number of symmetry operators

(4.43)

4.4.3 Spectral resolution of dual groups D3 and D̄3

Spectral resolution shown in (4.41a) and (4.42) of non-Abelian group G reduce g·h-

product tables in (4.27) to P -projector algebra.

Pα
jkP

β
j′k′ = δαβδkj′P

α
jk′ (4.44)

Product tables in Eq (4.45) for D3 projectors Pα
jk generalize the C6 idempotent table

in (4.13). Non-commutativity entails a pair of tables like the g†g form and gg†-forms

in (4.27) for “lab” g and “body” ḡ operators. Tables in (4.27) differ by switching

conjugate pair r1 and r2 on side and top.(r1† = r2) The rest are self conjugate.

(i†1=i1,etc.) Similarly, tables in (4.45) differ by switching conjugate nilpotent pair PE
xy

and PE
yx. (PE†

xy=PE
yx) The rest are self-conjugate. (Pα†

jj =Pα
jj)
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p†p
form PA1

xx PA2
yy PE1

xx PE1
xy PE1

yx PE1
yy

PA1
xx PA1

xx · · · · ·

PA2
yy · PA2

yy · · · ·

PE1
xx · · PE1

xx PE1
xy · ·

PE1
yx · · PE1

yx PE1
yy · ·

PE1
xy · · · · PE1

xx PE1
xy

PE1
yy · · · · PE1

yx PE1
yy

pp†

form PA1
xx PA2

yy PE1
xx PE1

yx PE1
xy PE1

yy

PA1
xx PA1

xx · · · · ·

PA2
yy · PA2

yy · · · ·

PE1
xx · · PE1

xx · PE1
xy ·

PE1
xy · · · PE1

xx · PE1
xy

PE1
yx · · PE1

yx · PE1
yy ·

PE1
yy · · · PE1

yx · PE1
yy

(4.45)

The p†p and pp† tables in (4.45) give commuting representations of projector Pα
jk just

as g†g and gg† tables in (4.27) give commuting (g)G-matrices in (4.28a). Wherever

Pα
jk appears in a table, a “1” is put in its (p)-matrix. Putting “Dα

jk(g)” at each

Pα
jk spot instead gives the following p†p-representation (g)P of g since it is a sum of
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Dα
jk(g)Pα

jk in Eq (4.41a).

(g)P = T (g)G T
† =

∣∣PA1
xx

〉 ∣∣PA2
yy

〉 ∣∣PE1
xx

〉 ∣∣PE1
yx

〉 ∣∣PE1
xy

〉 ∣∣PE1
yy

〉



DA1(g) · · · · ·

· DA2(g) · · · ·

· · D
E1

xx(g) D
E1

xy (g) · ·

· · D
E1

yx (g) D
E1

yy (g) · ·

· · · · D
E1

xx(g) D
E1

xy (g)

· · · · D
E1

yx (g) D
E1

yy (g)




(4.46)

Conjugate pp†-representation (ḡ)P of ḡ has complex conjugate “Dα∗
jk (g)” put at each

Pα
jk spot. The matrices in Eqs (4.46) and (4.47) are transformations (g)P = T (g)GT

†

and (ḡ)P = T (ḡ)GT
† of the respective matrices in Eqs (4.28a) and (4.28b) by trans-

formation T composed of Dα
jk(g) components. The C6 analogy is Fourier transform

(4.10) from (4.4) to (4.13).

(ḡ)P = T (ḡ)G T
† =

∣∣PA1
xx

〉 ∣∣PA2
yy

〉 ∣∣PE1
xx

〉 ∣∣PE1
yx

〉 ∣∣PE1
xy

〉 ∣∣PE1
yy

〉



DA1∗(g) · · · · ·

· DA2∗(g) · · · ·

· · D
E1∗
xx (g) · D

E1∗
xy (g) ·

· · · D
E1∗
xx (g) · D

E1∗
xy (g)

· · D
E1∗
yx (g) · D

E1∗
yy (g) ·

· · · D
E1∗
yx (g) · D

E1∗
yy (g)




(4.47)

Matrices ...(r̄2)P , (̄i1)P , ... defined by Eq (4.47) commute with every ...(r2)P , (i1)P , ...

defined by Eq (4.46) while each represents identical non-commutative D3 product
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Figure 4.6: D3-operator defined states and tunneling paths

tables in (4.27). Both use real [x, y]-based i3-diagonal irreps Dα
jk(g) given below.

g = 1 r r2 i1 i2 i3

DA1 (g) = 1 1 1 1 1 1

DA2 (g) = 1 1 1 −1 −1 −1

DE
xx xy
yx yy

(g) =




1 ·

· 1






−1
2

−
√
3

2
√
3
2

−1
2






−1
2

√
3
2

−
√
3

2
−1
2






−1
2

−
√
3

2

−
√
3

2
1
2






−1
2

√
3
2

√
3
2

1
2







1 ·

· −1




(4.48)

4.4.4 Spectral resolution of D3 Hamiltonian

Hamiltonian H-matrix in (4.30) has six parameters [r0, r1, r2, i1, i2, i3] or coefficients

of its expansion (4.29) in terms of intrinsic D̄3 operators [1 = r̄0, r̄1, r̄2, ī1, ī2, ī3]. The

parameters are indicated in Fig. 4.6 by tunneling paths between the first D3 base state

|1〉 and other D3-defined base states |g〉 = g|1〉 representing potential minima.

The resolution of H-matrix then follows that of ḡ and (ḡ)P -matrices. Any reduc-

tion of all (ḡ)P -matrices, such as the [x, y]-reduction in Eq (4.47), also reduces the

(H)P -matrix accordingly. Row-1 of (HP ) in Eq (4.30) has all six parameters.

H
α

ab =

◦G∑

g=1

〈1|H |g〉Dα∗

ab (g) =

◦G∑

g=1

rgD
α∗

ab (g) (4.49)

If the P -nilpotent pair are switched to ...PE
xy, PE

yx.., then (H)P and all (ḡ)P (instead of
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all (g)P as in Eq (4.46)) are diagonal with eigenvalues HA1 and HA2 or block-diagonal

with a pair of identical 2-by-2 HE-blocks.

∣∣PA1
xx

〉 ∣∣PA2
yy

〉 ∣∣PE1
xx

〉 ∣∣PE1
xy

〉 ∣∣PE1
yx

〉 ∣∣PE1
yy

〉

(H)P = T̄ (H)G T̄
† =




HA1 · · · · ·

· HA2 · · · ·

· · H
E

xx H
E

xy · ·

· · H
E

yx H
E

yy · ·

· · · · H
E

xx H
E

xy

· · · · H
E

yx H
E

yy




(4.50)

The H-block matrix components follow by combing (4.48) with (4.49).

HA1 =r0D
A1∗(1) + r1D

A1∗(r1) + r∗1D
A1∗(r2) + i1D

A1∗(i1) + i2D
A1∗(i2)

+ i3D
A1∗(i3)=r0+r1+r∗1+i1+i2+i3

HA2 =r0D
A2∗(1) + r1D

A2∗(r1) + r∗1D
A2∗(r2) + i1D

A2∗(i1) + i2D
A2∗(i2)

+ i3D
A2∗(i3)=r0+r1+r∗1−i1−i2−i3

H
E

xx =r0D
E∗

xx(1) + r1D
E∗

xx(r1) + r∗1D
E∗

xx(r2) + i1D
E∗

xx(i1) + i2D
E∗

xx(i2) + i3D
E∗

xx(i3)

=(2r0−r1−r∗1−i1−i2+2i3)/2

H
E

xy =r0D
E∗

xy (1) + r1D
E∗

xy (r1) + r∗1D
E∗

xy (r2) + i1D
E∗

xy (i1) + i2D
E∗

xy (i2) + i3D
E∗

xy (i3)

=
√

3(−r1+r∗1−i1+i2)/2=HE∗
yx

H
E

yy =r0D
E∗

yy (1) + r1D
E∗

yy (r1) + r∗1D
E∗

yy (r2) + i1D
E∗

yy (i1) + i2D
E∗

yy (i2) + i3D
E∗

yy (i3)

=(2r0−r1−r∗1+i1+i2−2i3)/2 (4.51)

Irrep-dimension `E = 2 implies (at least) 2-fold degenerate E-level since eigenvalues

of identical HE-blocks must also be identical, but only certain parameter values give
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diagonal HE-blocks in (4.51), i.e, real r1 = r∗2 and equal i1 = i2.




H
E

xx H
E

xy

H
E

yx H
E

yy


 = 1

2




2r0−r1−r∗1−i1−i2+2i3
√

3(−r1+r∗1−i1+i2)
√

3(−r∗1+r1−i1+i2) 2r0−r1−r∗1+i1+i2−2i3




=




r0−r1−i12+i3 0

0 r0−r1+i12−i3




For: r1=r∗1 and: i1=i12=i2

(4.52)

These are the values that respect the local D3 ⊃ C2[1, i3] subgroup chain symmetry

that gave (x, y)-plane polarized splitting in Eq (4.37). This is broken by a complex

r1 or by unequal i1 and i2. Complex r1 = |r|eiφ gives rise to complex rotating-wave

eigenstates similar to ones in Fig. 4.4 but, unlike that ZB1 model, cannot split E-

degeneracy. Unequal i1 and i2 shift standing-wave nodes but cannot split E-doublets

either. E-levels may split if H contains external or lab-based operators g in addition

to its internal or body-based ḡ, but it thereby loses its D3 symmetry.

4.4.5 Global-lab-relative G versus local-body-relative Ḡ base state defini-

tion

Non-Abelian symmetry analysis in general, and the present example of D3 resolution

in particular, involves a dual-group relativity between an extrinsic or global “lab-

based” group G=D3 on one hand, and an intrinsic or local “body-based” group

Ḡ=D̄3 on the other hand. Each ḡ in Ḡ commutes with each g in G.

In the present example, the global “lab-based” group G=D3=[1, r1, r2, i1, i2, i3]

labels equivalent locations in a potential or lab-based field and is a reference frame

for an excitation wave or “body” occupying lab locations.

On the other hand, the local “bod-based” group Ḡ=D̄3=[1, r̄1, r̄2, ī1, ī2, ī3] regards

the excitation wave as a reference frame to define relative location of the potential or

laboratory field.

Quantum waves provide the most precise space-time reference frames that are
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possible in any situation due to the ultra-sensitive nature of wave interferometry.

This is the case for optical coherent waves or electronic and nuclear matter waves.

The latter derive their space-time symmetry properties from the former, and these

are deep classical and quantum mechanical rules of engagement for currently accepted

Hamiltonian quantum theory.

Interference and interaction of any two waves depends only on the relative position.

This is reflected in the following equivalent definitions of base state kets for wave in

a D3 potential in Fig. 4.5 as sketched by six localized wave bases [|1〉, |r1〉, |r2〉, |i1〉,

|i2〉, |i3〉] in Fig. 4.6.

|gk〉 = gk|1〉 = ḡ−1
k |1〉 (4.53)

Key to this definition is the principle of independence and mutual commutation of

the dual sets in (4.28a) and (4.28b).

gjḡk = ḡkgj (4.54)

Neither relation makes sense if we were to equate gk with ḡ−1
k . The effect of gk is

equal to that of ḡ−1
k only when acting on the origin-state |1〉. The action of global i2 in

Fig. 4.7(a) is compared to local ī2 in Fig. 4.7(b) that gives the same relative position

of wave and wells. In Fig. 4.7(c) product ī1ī2=r̄ has the same action as i2i1=r−1=r2

on |1〉.

Different points of view show how “body” ḡ operations relate to the “lab” g.

Starting from state |1〉, r̄1=r̄ rotates lab potential clockwise (−120o) in a view where

the body “stays put”. The body wave ends up in the same well as it would if, instead,

the body rotates counter-clockwise (+120o) by r=r1 in a lab frame that “stays put.”

In a lab view, effects of body operation ḡk and lab operation g−1
k on |1〉 are the

same except that ḡ−1
k also moves each body operation ḡj in the same way to ḡkḡjḡ

−1
k .
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Figure 4.7: D3-operators compared (a) Global i2 (b) Local ī2 (c) ī2 followed by ī1
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The lab view of a lab operation gk does not see any of lab gj axes change location.

The following generalization of lab-body relativity relation (4.53) using (4.54)

shows how ḡj affects arbitrary |gk〉.

ḡ−1
j |gk〉 = ḡ−1

j gk|1〉 = gkḡ
−1
j |1〉

= gkgj|1〉 = gkgjg
−1
k gk|1〉 = gkgjg

−1
k |gk〉 (4.55)

4.4.6 Global versus local eigenstate symmetry

Each projection operator Pα
jk in (4.42) applied to origin ket |1〉 gives a local-and-global

symmetry-defined ket |αjk〉.

|αjk〉 = Pα
jk|1〉

√
oG/`α =

√
`α/oG

oG∑

g=1

Dα∗
j,k(g) |g〉 (4.56)

The norm-factor N=oG/`α is a non-Abelian generalization of the integral norm N for

Abelian CN eigenket projection in (4.20). Interestingly, the non-Abelian norm is also

an integer since irrep dimension `α is always a factor of its group’s order oG.

A non-Abelian projection ket in (4.56) has two independent symmetry labels j

and k belonging to global-lab symmetry operators g and local-body operators ḡ,

respectively. Application of g-resolution Eq (4.41a) to ket Eq (4.56) is reduced by

P-product rules in (4.44) to the following global transformation.

g
∣∣α
jk

〉
= gPα

j k |1〉
√
N =

`α∑

j′=1

`α∑

k′=1

Dµ
j′ k′ (g) Pα

j′ k′P
α
j k |1〉

√
N

=
`α∑

j′=1

Dα
j′ j (g) Pα

j′ k |1〉
√
N (4.57)

=
`α∑

j′=1

Dα
j′ j (g)

∣∣α
j′ k

〉

The corresponding local operator ḡ first commutes through Pα
jk according to (4.54)
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and is converted by Eq (4.53) to inverse global g−1 on the right of Pα
jk using Eq (4.41a)

again. Finally, unitary irreps Dα(g−1) = Dα†(g) are assumed.

ḡ
∣∣α
j k

〉
= ḡPα

j k |1〉
√
N = Pα

j kḡ |1〉
√
N = Pα

j kg
−1 |1〉

√
N

=
`α∑
j′=1

`α∑
k′=1

Dµ
j′ k′ (g

−1) Pα
j kP

α
j′ k′ |1〉

√
N =

`α∑
j′=1

Dα
kk′ (g

−1) Pα
j k′ |1〉

√
N

=
`α∑
j′=1

Dα
kk′ (g

−1)
∣∣α
j k′

〉
=

`α∑
j′=1

Dα∗
k′ k (g)

∣∣α
j k′

〉
(4.58)

A summary of the results is consistent with the block matrix forms in (4.46) and

(4.47).

〈
α
j′ k

∣∣g
∣∣α
j k

〉
= Dα

j′ j (g) ,
〈
α
j k′

∣∣ ḡ
∣∣α
j k

〉
= Dα∗

k′ k (g) . (4.59)

Choice of subgroup C2 = [1, i3] in Eq (4.37) leads to (x, y)-polarized states (m)2

labeled by their i3 eigenvalues (−1)m.

〈
α
j′ k

∣∣ i3
∣∣α
j k

〉
=Dα

j′ j (i3) ,
〈
α
j k′

∣∣ ī3
∣∣α
j k

〉
= Dα∗

k′ k (i3) .

=δj′ j





+1for :j=x

−1for :j=y
, =δk′ k





+1for :k=x

−1for :k=y
.

(4.60)

Significance of these global-(j) and local-(k) values are now discussed using Fig. 4.8.

Wherever the global j is x or i3-symmetric (02), then the entire wave is symmetric

to x-axial rotation by π in Fig. 4.8(a) or horizontal reflection thru the middle square-

well in Fig. 4.8(b). Similarly, wherever the global j is y or i3-antisymmetric (12), that

is seen for each overall figure, too.

However, if the local k is x or i3-symmetric (02), the local wave in each well has

no node and is symmetric to its local axis of rotation by π in Fig. 4.8(a) or horizontal

reflection of each square-well in Fig. 4.8(b). Similarly, wherever the local j is y or

i3-antisymmetric (12), that antisymmetry and one node is seen in each well, too.

Local and global symmetry clash along the i3-axis for states projected by nilpotent

106



Pα
xy or Pα

yx and give x-axial wave nodes indicated by pairs of arrows in Fig. 4.8. The

|Eyx〉 wave in the lower right of Fig. 4.8(b) appears quite suppressed on the i3-axis.

However, the |Exy〉 “node” in the upper left seems to be coming unglued.

The “unglued” level ωExy is higher than ωEyx and enjoys more tunneling. If tunneling

increases so do parameters such as r1 and r2 in (4.51) that do not respect x-axial local

subgroup C2 = [1, i3]. This breaks x-axial nodes and i3 local symmetry causing E-

modes to be less C2-local and more like current-carrying above-barrier C3-local waves

rotating on r-paths. D3 correlation arrays in (4.61) with C2 or C3 indicate level cluster

structure for extremes of each case.

D3 ⊃ C2 02 12

A1 1 ·

A2 · 1

E 1 1

D3 ⊃ C3 03 13 23

A1 1 · ·

A2 1 · ·

E · 1 1

(4.61)

Column 02 of array D3 ⊃ C2 in Eq (4.61) correlates to A1 and E. The lower

(A1, E)-level cluster in Fig. 4.8 has 02 local symmetry and lies below cluster-(A2, E)

that has local 12 symmetry according to the 12 column of (4.61). Column 03 of table

D3 ⊃ C3 indicates that A1 and A2 levels cluster under extreme C3 localization, but

columns 13 and 23 indicate that each E doublet level is unclustered under C3 with no

extra degeneracy beyond its own (`E = 2).

4.4.7 Symmetry correlation and Frobenius reciprocity

The mathematical basis of correlation arrays in (4.61) is a Frobenius reciprocity rela-

tion that exists between irreps of a group and its subgroups. This may be clarified by

appealing to the physics of Pα
jk-projected states |αjk〉 such as are displayed in Fig. 4.8

and by exploiting the duality between their local and global symmetry and subgroups.

D3-symmetric Hamiltonian H in (4.30) is made only of local ḡ that couple |αjk〉-
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Figure 4.8: D3-symmetry waves (a) Sketch of projection (b) 3-Well wave simulation

states thru local k-indices by (4.59) but leave all `α values of global j-indices un-

changed. Thus α-eigenstates of H mix k-values to form `α-fold degenerate levels

labeled by j-indices. (Recall `E = 2 equal sub-matrices Eqs (4.52) in (4.50).) Further

degeneracy or near-degeneracy (“clustering”) occurs if inter-and-intra local tunneling

coefficients vary exponentially with quantum numbers causing various types of local

modes or “spontaneous” symmetry localization.

In contrast to the clustering or “un-splitting” associated with local ḡ symmetry

operators, global g are associated with external or “applied” symmetry reduction that

causes level splitting. Adding global gm to a Hamiltonian H reduces its G-symmetry

to a self-symmetry subgroup K=sm consisting of operators that commute with gm.

Adding a combination of gm and gn reduces K to an even smaller self-symmetry

intersection group sm ∩ sn.

Global g couple |αjk〉-states thru global j-indices according to (4.57). The more

global perturbations are added to a Hamiltonian H the more likely it is to split `α-

fold j-degeneracy (for `α ≥ 2) and/or alter eigenfunctions.
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Global “applied” symmetry reduction, subduction, and level splitting

In the G=D3 example, adding matrix (r1) from Eq (4.28a) to (H) in Eq (4.30) reduces

its symmetry to K=C3=[1, r1, r2], and adding (i3) reduces it to K=C2=[1, i3]. Adding

a combination of (r1) and (i3) completely reduces (H)-symmetry to intersection C3 ∩

C2=C1=[1], which corresponds to having no global symmetry.

By reducing G to a subgroup K⊂G, each G-labeled α-level becomes relabeled by

that subgroup K and split (if `α ≥ 2) in precisely the way that central G-idempotent

Pα is relabeled and/or split by unit resolution shown in (4.37) or Eq (4.38). The

splitting in (4.38) of D3 idempotent PE into C3-labeled PE
1313

plus PE
2323

implies the

D3 doublet level ωE splits into C3-labeled singlets ω13 and ω23 . Both D3 singlets A1

and A2 end up relabeled with C3 scalar 03 labels.

D3 ⊃ C3 Pαrelabel/split Dαrelabel/reduce ωαrelabel/split

A1 PA1 = PA1P03 = PA1
0303

⇒ DA1 ↓ C3 ∼ D03 ⇒ ωA1 → ω03

A2 PA2 = PA2P03 = PA2
0303

⇒ DA2 ↓ C3 ∼ D03 ⇒ ωA2 → ω03

E PE = PEP13 + PEP23 ⇒ DE ↓ C3 ∼ ⇒ ωE → ω13

= PE
1313

+ PE
2323

D13 ⊕D23 ↘ ω23

(4.62)

Global D3⊃C2 relabeling and/or splitting follows (4.37). Now D3 singlets end up with

different labels 02 and 12 [6].

D3 ⊃ C2 Pαrelabel/split Dαrelabel/reduce ωαrelabel/split

A1 PA1 = PA1P02 = PA1
0202

⇒ DA1 ↓ C2 ∼ D02 ⇒ ωA1 → ω02

A2 PA2 = PA2P12 = PA2
1212

⇒ DA2 ↓ C2 ∼ D12 ⇒ ωA2 → ω12

E PE = PEP02 + PEP12 ⇒ DE ↓ C2 ∼ ⇒ ωE → ω02

= PE
0202

+ PE
1212

D02 ⊕D12 ↘ ω12

(4.63)

Center portions of splitting relations in Eqs (4.62) and (4.63) use subduction sym-

bols (↓) to denote how each D3 irrep-Dα reduces to subgroup C3 or C2 irreps under
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their respective global symmetry breaking. Earlier studies[11] have referred to these

multiple subgroup splittings as multiple frameworks. Each α-row of (4.62) and (4.63)

corresponds to the row α=A1, A2, or E, of correlation array D3⊃C3 or D3⊃C2, re-

spectively, in (4.61).

Local “spontaneous” symmetry reduction, induction, and level clustering

Opposite to globalG⊃K symmetry irrep subductionDα(G)↓K=...⊕da(K)⊕db(K)⊕...

that predicts level-splitting is the reverse relation of local K⊂G symmetry irrep

induction da(K)↑G=...⊕Dα(G)⊕Dβ(G)⊕... that predicts “unsplitting” or level-clustering.

In the former, an `α-dimensional irrep Dα(k) of global G-symmetry is reducible to

smaller (`a ≤ `α) block-diagonal irreps da(k) of a subgroup K. In the latter, a K irrep

da is projected kaleidoscope-like onto coset bases of a larger induced representation

da↑G of G that is generally reducible to G irreps Dα.

Base states |k ↑αj 〉 of induced representation dk↑G are each made by a G-projector

Pα
jk acting on local dk-symmetry base state |k〉=Pk|k〉 defined by local K-projector

Pk. G-projection is simpler if Pα
jk is also based on K-projection.

Of all D3⊃C2-projectors Pα
j2k2

based on Eq(4.37), only PA1
0202

, PE
0202

, and PE
1202

have right index k2 = 02 . Only these can project induced states |02 ↑αj2〉 from local

base state |02〉 corresponding to the 02-column of D3 ⊃ C2 array in (4.61) having A1

and E. Similarly, A2 and E in the 12-column of Eq (4.61) correspond to PA2
1212

, PE
0212

,

and PE
1212

projecting states |12 ↑αj2〉 from a local |12〉 state. Each projector Pα
j2k2

in

(4.63) has a C2-subgroup projector Pk2 “right-guarding” the side facing each local

`2-ket |`2〉 = P`2|`2〉 that is similarly “guarded” by its own defining projector P`2 .

C2-subgroup projector orthogonality then allows only k2=`2. This is the reason for

projection selection rules just described.

Pα
j2k2
|`2〉 = Pα

j2k2
Pk2P`2 |`2〉 = δk2`2Pα

j2`2
|`2〉 = δk2`2|`2 ↑αj2〉 (4.64)
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Each “right guard” projector Pk of Pα
jk is part of a G⊃K subgroup splitting or sub-

duction splitting Dα(G)↓K=...⊕dk(K)⊕... as shown by D3↓C2 examples in Eq (4.63).

(These go back to the original D3⊃C2 subgroup chain resolution in Eq (4.37).) In

Eq (4.64) each Pk selects which α-type induced bases |k ↑αj 〉 and block-diagonal α-

irreps can appear in a k-induced representation dk(K)↑G=...⊕Dα(G)⊕..., and it im-

plies a duality between induced (↑) level-clustering and subduced (↓) level-splitting

as stated by the following Frobenius reciprocity relation.

Number of Dα in dk(K) ↑ G = Number of dk in Dα(G) ↓ K (4.65)

The numbers on the left-hand side of (4.65) would reside in the kth-column of a G⊃K-

correlation array such as in (4.61) while the numbers on the right-hand side of (4.65)

would reside in the αth-row of the same array. The examples in Eq (4.61) have only

ones {1} and zeros {·}. A deeper correlation D3⊃C1 to C1 symmetry, i.e., to no

symmetry is a conflation of either the array D3⊃C2 or the array D3⊃C3 in (4.61)

since C1=C2∩C3 is the intersection of C2 and C3.

D3 ⊃ C1 01 = 11

A1 1

A2 1

E 2

(4.66)

The C1 local symmetry base |01〉=|11〉 is just the |1〉 in Fig. 4.6. Its projections give

the scalar A1, pseudo-scalar A2, and two E wave states in Fig. 4.8. That is consistent

with the single column of the D3⊃C1 correlation array in (4.66).

Reciprocity in (4.65) also holds for non-Abelian subgroup irreps dk. D3 is the

smallest non-Abelian group so it has no such subgroups, but octahedral symmetry

has non-Abelian D3 and D4 subgroups that figure in its splitting and clustering that

are described in chapter 5.
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Coset structure and factored eigensolutions

Three pairs of kets in Fig. 4.6 relate to left cosets [1C2 = (1, i3), rC2 = (r1, i2),

r2C2 = (r2, i1)] one at each site.

[(|1〉, |i3〉), (|r1〉, |i2〉) = r1(|1〉, |i3〉), (|r2〉, |i1〉) = r2(|1〉, |i3〉)] (4.67)

Conjugate bras 〈g|=〈1|g†relate to right cosets [C2=(1, i3), C2r
2=(r2, i2), C2r=(r, i1)],

again, one per C2-well site.

[(〈1|, 〈i3|), (〈r1|, 〈i2|) = (〈1|, 〈i3|)r2, (〈r2|, 〈i1|) = (〈1|, 〈i3|)r1] (4.68)

C2 projectors P02=1
2(1+i3)=Px and P12=1

2(1-i3)=Py split bra 〈g| into ±-sum of bras

mapped by left coset g†C2.

[
〈1| Pm2 =1

2 (〈1| ± 〈i3|),
〈
r1
∣∣ Pm2 =1

2 (
〈
r1
∣∣ ± 〈i2|),

〈
r2
∣∣ Pm2 =1

2 (
〈
r2
∣∣ ± 〈i1|)

]

(4.69)

The same projectors split ket |g〉 into bases Pm2|g〉 that are ±-sum of kets mapped

by right coset C2g.

[
Pm2 |1〉 =1

2 (|1〉 ± |i3〉), Pm2
∣∣r1
〉

=1
2 (
∣∣r1
〉
± |i2〉), Pm2

∣∣r2
〉

=1
2 (
∣∣r2
〉
± |i1〉)

]

(4.70)

g-coefficients in H-submatrix (4.52) track C2 cosets. Row-(bra)-x terms in HE
x,· line

up in (+)-right-coset 1g+i3g order ...(r1+i1), (r2+i2). Row-(bra)-y terms in HE
y,· line

up in (−)-right-coset 1g-i3g order (r1-i1), (r2-i2). Column-(ket) (±)-forms HE
·,x and

HE
·,y line up in left-coset order ...(r1±i2), (r2±i1). Either ordering gives the same

matrix. Off-diagonal components HE
x,y and HE

y,x have x vs. y symmetry conflicts so
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coset parameters (r0 ± i3) vanish.



H

E

[x]x H
E

[x]y

H
E

[y]x H
E

[y]y


 =




(r0 + i3)− 1
2
(r1 + i1)− 1

2
(r2 + i2) 0 · (r0 + i3)−

√
3

2
(r1 + i1) +

√
3

2
(r2 + i2)

0 · (r0 − i3) +
√

3
2

(r1 − i1)−
√

3
2

(r2 − i2) (r0 − i3)− 1
2
(r1 − i1)− 1

2
(r2 − i2)



bra


H

E

x[x] H
E

x[y]

H
E

y[x] H
E

y[y]


 =




(r0 + i3)− 1
2
(r1 + i2)− 1

2
(r2 + i1) 0 · (r0 − i3)−

√
3

2
(r1 − i2) +

√
3

2
(r2 − i1)

0 · (r0 + i3) +
√

3
2

(r1 + i2)−
√

3
2

(r2 + i1) (r0 − i3)− 1
2
(r1 − i2)− 1

2
(r2 − i1)



ket

(4.71)

Kets Px|rp〉=[Px|1〉, Px|r1〉, Px|r2〉 span induced representation dx(C2)↑D3, and Py|rp〉

span dy(C2)↑D3. Normalized states Px|rp〉
√

2 and Py|rp〉
√

2 correspond to σ-type and

π-type orbitals at vertex positions p=0, 1, or 2 in Fig. 4.9.

D3 table in (4.27) is reordered in (4.72) below to display C2(i3) body-basis right-

coset representation bra-defined by 〈g|=〈1|ḡ or ket-defined by ḡ† |1〉=|g〉. The result-
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ing H-matrix in (4.27) is (4.30) reordered for cosets of C2 instead of C3.

D3 body

gg†form
|1〉

|i3〉 =

ī3 |1〉

|r1〉 =

r̄2 |1〉

|i2〉 =

ī3r̄
2 |1〉

|r2〉 =

r̄1 |1〉

|i1〉 =

ī3r̄
1 |1〉

〈1| 1 ī3 r̄2 ī2 r̄1 ī1

〈i3| = 〈1| ī3 ī3 1 ī2 r̄2 ī1 r̄1

〈r1| = 〈1| r̄1 r̄1 ī2 1 ī1 r̄2 ī3

〈i2| = 〈1| r̄1̄i3 ī2 r̄1 ī1 1 ī3 r̄2

〈r2| = 〈1| r̄2 r̄2 ī1 r̄1 ī3 1 ī2

〈i1| = 〈1| r̄2̄i3 ī1 r̄2 ī3 r̄1 ī2 1

(4.72)

⇒ 〈H〉 =

|1〉 |i3〉 |r1〉 |i2〉 |r2〉 |i1〉

〈1| r0 i3 r2 i2 r1 i1

〈i3| i3 r0 i2 r2 i1 r1

〈r1| r1 i2 r0 i1 r2 i3

〈i2| i2 r1 i1 r0 i3 r2

〈r2| r2 i1 r1 i3 r0 i2

〈i1| i1 r2 i3 r1 i2 r0

C2 ordered products in (4.72) help reduce H-matrix in (4.30) to a direct sum of C2

induced reps (d02⊕d12)↑D3 in (4.73). Upper (02)-array in Eq (4.73) uses σ-orbital

bases |rpx〉 in Fig. 4.9a while π-orbital bases |rpy〉 in Fig. 4.9b span the (12)-array.
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Figure 4.9: C2↑D3 waves at vertex points p = 0, 1, 2. (a) 02↑D3 bases Px|rp〉
√

2 (b)
12↑D3 bases Py|rp〉

√
2

〈H〉 =

|02 ↑0
x〉 |02 ↑1

x〉 |02 ↑2
x〉

∣∣12 ↑0
y

〉 ∣∣12 ↑1
y

〉 ∣∣12 ↑2
y

〉

〈0x| r0 + i3 r2 + i2 r1 + i1 · · ·

〈1x| r1 + i2 r0 + i1 r2 + i3 · · ·

〈2x| r2 + i1 r1 + i3 r0 + i2 · · ·
〈

0
y

∣∣ · · · r0 − i3 r2 − i2 r1 − i1
〈

1
y

∣∣ · · · r1 − i2 r0 − i1 r2 − i3
〈

2
y

∣∣ · · · r2 − i1 r1 − i3 r0 − i2

(4.73)

Any group component of (4.73) or combination thereof is a possible tunneling matrix.

Submatrices d02(g)↑D3 shown for g=r1, i1, and i3 reflect the effect of these operators
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on states in Fig. 4.9a and similarly for d12(g)↑D3 in Fig. 4.9b.

〈
r1r̄

1
〉

= r1

· · 1 · · ·

1 · · · · ·

· 1 · · · ·

· · · · · 1

· · · 1 · ·

· · · · 1 ·

,
〈
i1̄i1
〉

= i1

· · 1 · · ·

· 1 · · · ·

1 · · · · ·

· · · · · -1

· · · · -1 ·

· · · -1 · ·

,

〈
i3̄i3
〉

= i3

1 · · · · ·

· · 1 · · ·

· 1 · · · ·

· · · -1 · ·

· · · · · -1

· · · · -1 ·

(4.74)

The 02 correlation in (4.61) implies d02↑D3 reduces further to D3 irreps A1⊕E that

label the lower band of Fig. 4.8. Meanwhile d12↑D3 reduces to irreps A2⊕E that label

the upper band of Fig. 4.8. Eq (4.50) shows A1⊕A2⊕E⊕E.

4.5 Conclusion

This chapter uses dual sets of symmetry operator groups, G and Ḡ, to define the most

general G-symmetric Hamiltonian and then to define general sets of eigenvectors that

diagonalize the Hamiltonian. In this case, molecular symmetry operator combinations

of g from the lab-frame are used to diagonalize a Hamiltonian written in terms of

projection body-frame operators ḡ. Examples here involve ideal molecular models

of D3 symmetry. The eigenstates that obey local symmetry, as shown in Eq 4.71,

reduce the number of free parameters which govern the physical system and reduce

the eigensolutions to analytic expressions for eigenvectors and eigenvalues.
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This formalism or parameterization is shown for octahedral molecules in Chapter 5

where its power is more apparent. As molecule symmetry goes higher, parameteri-

zation typically becomes more cumbersome. The method described here reduces this

difficulty by using the molecular symmetry to reduce the number of required param-

eters to exactly the number of physical coupling processes.
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Appendix 4.A Classical D3 Vibrational Modes
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4.A.1 Classical D3 modes: Local C2 and C3 symmetry examples

Local symmetry theory applies to classical vibrational modes as well as to quantum

tunneling. Examples of classical D3 modes given below help clarify global-vs-local

symmetry and geometry of group projection. For example, D3 modes defined by local

C2(i3) in Fig. 4.10 are to be compared with quantum waves in Fig. 4.8. Each mode

ket |αjk〉 has the same coefficients Dα?
jk (g) for projections in (4.37) as the waves do, but

the mode shapes clearly display a vector geometry.

In particular, global x-vector modes |E1
xx〉 and |E1

xy 〉 (left E1 column in figure) “point”

along global x-direction while y-vector modes |E1
yx 〉 and |E1

yy 〉 (right E1 column) “point”

along global y-direction. Each global pair [|E1
x` 〉, |E1

y` 〉](` = x, y) is projected to be an

i3-symmetric-antisymmetric pair like lab unit vectors [|x〉,|y〉]. (Recall Eq (4.37).)

|x〉 = P03 |1〉
√

2 = (|1〉+ |i3〉) /
√

2 , |y〉 = P13 |1〉
√

2 = (|1〉 − |i3〉) /
√

2 (4.75)

This exposes easy derivations of E-irrep DE1
jk (g)=〈j|g|k〉 in (4.48). Irreps in (4.46)

such as DE1
jk (r) for 120◦-rotation r simply contain direction cosines 〈j|r|k〉=êj•êr·k of

rotated vectors [r|x〉,r|y〉] relative to original [|x〉,|y〉].

r |x〉 = −1
2
|x〉+

√
3

2
|y〉

r |y〉 = −
√

3
2
|x〉 − 1

2
|y〉

(4.76)

implies:




DE(r) =



〈x| r |x〉 〈x| r |y〉

〈y| r |x〉 〈y| r |y〉


 =



−1

2
−
√

3
2

+
√

3
2
−1

2




This also fixes local transformations. Local x-vector modes |E1
xx〉 and |E1

yx 〉 (lower

E1 row in figure) “point” along local x-axes that are local radial lines while local

y-vector modes |E1
xy 〉 and |E1

yy 〉 (upper E1 row) “point” along local y-axes that are local

angular lines. If global symmetry meets local anti-symmetry as in |E1
xy 〉 (or vice-versa

in |E1
yx 〉), a zero appears on the i3-axis in Fig. 4.10. Singlet modes |A1

xx 〉 and |A2
yy 〉 avoid
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Figure 4.10: D3⊃C2(i3)-local symmetry modes of X3 molecule
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such conflicts by being one or the other.

For group-defined cases like Fig. 4.10, symmetry arguments alone determine nor-

mal modes that usually require diagonalizing a K-matrix (below) just as tunneling

states (Fig. 4.8) usually require diagonalizing an H-matrix.

Comparing K-Matrix and H-matrix formulation

Classical modes are eigenvectors of force-field matrix K or operator K that is a linear

function of spring constants (k0, etc. in Fig. 4.11) for a harmonic approximate potential

V (x) that is a quadratic K-form of coordinates xa based on six D3-labeled axes x̂a

or |a〉 shown in Fig. 4.10. Each K component Kab=〈a|K|b〉 is a sum over spring k-

constants that connect axis-xa to axis-xb multiplied by factor (k̂a • x̂a)(k̂b • x̂b) for

projecting spring k’s end vectors k̂a and k̂b onto x̂a and x̂b at respective connections.

(A straight-line spring has equal k̂a=k̂b. Curvilinear springs must only have k̂-ends

with equal sense (→→) or (←←) of spring direction. Either direction gives the same

Kab.)

V (x) =
∑

(k)

1

2
〈x|K |x〉 where: |x〉 =

∑

a

xa |a〉 , (a, b) = (1, r1, r2, i1, i2, i3)

=
1

2

∑

a,b

Kabxaxa where: Kab =





∑
(k)

k
2
(k̂a • x̂a)2 if : a = b

−∑
(k)

k(k̂a • x̂a)(k̂b • x̂b) if : a 6= b

(4.77)

This sum of harmonic Hooke (kx2/2)-potentials has diagonal Kaa terms followed by

off-diagonal terms (Kab= Kba).

V (x) =
∑

(k)

k

2
(∆`k)

2 =
∑

(k)

k

2

∑

a,b

(k̂a • xa − k̂b • xb)2

=
∑

(k)

k

2

∑

a

(k̂a • x̂a)2x2
a −

∑

(k)

k
∑

a6=b

(k̂a • x̂a)(k̂b • x̂b)xaxb

(4.78)
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The classical equation of coupled harmonic motion is a Newtonian F= M·a relation

of a n-dimensional force vector F, acceleration vector a, and mass operator M. The

latter is a unit-matrix-multiple M ·1 for the D3-symmetric case treated here. Driving

force F is a (-)derivative of potential (4.77) that becomes a K-matrix expression.

−M∂2
t x

a =
∂V

∂xa
=
∑

b

Kabx
b (4.79)

It is instructive to compare this classical equation of motion to that of Schrodinger’s

equation for quantum motion.

ih̄∂tψ
a =

∑

b

Habψ
b (4.80)

Squaring quantum time generator ih̄∂t=H yields equations having classical form (4.79)

with K=H2 and M=h̄2.

−h̄2∂2
t ψ

a =
∑

b

Kabψ
b where: K = H2 (4.81)

The (H/h̄)-eigenvalues are quantum angular frequencies εm/h̄=ωm. The (K/M)-

eigenvalues are classical squared angular frequencies km/M=ω2
m. The former is Planck’s

oscillator frequency relation ε=h̄ω. The latter is Hooke’s relation k/M=ω2. Apart

from normalization, eigenvectors of quantum H are identical to those of classical K

and either eigenvalue set corresponds to the respective energy spectrum.

Comparing K-Matrix and H-matrix eigensolutions for local D3 ⊃ C2(i3)

The preceding relates eigensolutions (4.51) and (4.52) of quantum Hamiltonian H-

matrix in (4.30) with those of a classical K-matrix. In particular, eigenvectors of H

found using D-matrices in (4.48) or (??) also serve as mode-eigenkets in Fig. 4.10

that diagonalize a D3⊃C2(i3)-locally-symmetric K-matrix. With this symmetry, K
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Figure 4.11: X3 spring models with local symmetry: (a) D3⊃C2(i3) (b) Mixed

cannot couple radial (local-x) and angular (local-y) modes and is left with just four

independent real group-based parameters ga=r0, r1, i12, and i3 allowed for D3⊃C2(i3)-

symmetric H in (4.52). These relate to four spring kh-constants in Fig. 4.11(a).

Only 1st-row parameters gb=〈1|K|gb〉=K1b of the force matrix Kab are needed for

the spring model in Fig. 4.11(a). That model includes kr(angular) and ki(radial)

constants for internal connections between masses. The k3(angular) and k0(radial)

constants represent external connections between each mass and an outside lab frame.

Generic group parameters gb=H1b, labeled [r0, r1, r2, i1, i2, i3] for the H-matrix in

(4.30), are now applied to gb=K1b. The gb are to be related to spring-constants kj using

coordinate-spring projection cosine factors (k̂1 • x̂1)(k̂b • x̂b) in (4.77) and (4.78). The

usual harmonic limit assumes small vibrational amplitudes (xb�1) for which direction

of spring end vectors k̂1 or k̂b do not vary to 1st-order, and so, for lab-fixed x̂a the
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Kab are constants.

|gb〉 |1〉 |r1〉 |r2〉 |i1〉 |i2〉 |i3〉

〈1|K |gb〉 =

ki/2

+kr

+k3

+k0/2

ki/2

−kr/2

+0

+0

ki/2

−kr/2

+0

+0

ki/2

+kr/2

+0

+0

ki/2

+kr/2

+0

+0

ki/2

−kr
−k3

+k0/2

(4.82)

One may visualize each −K1b as the acceleration of x1 due to setting a (tiny) unit xb in

(4.79). Diagonal -K11 must be negative or else x1 blows up. Higher order anharmonic

terms are needed to describe effects of rotating k̂b or x̂b and such models are likely to

suffer from classical stochastic (chaotic) motion.

Substitution of generic ga from (4.82) into reducedD3⊃C2(i3)-symmetricH-matrix

in (4.51) or (4.52) gives K-matrix eigenvalues Kα
`` due to each spring ki, kr, k3, or k0

in Fig. 4.11(a) separately or together. Modes in Fig. 4.10 remain eigenmodes for all

values of four spring constants ki, kr, k3, and k0 since none can mix local x-and-y-

symmetry.

KA1
xx = r0 + r1 + r∗1 + i1 + i2 + i3 = k0 + 3ki

KA2
yy = r0 + r1 + r∗1 − i1 − i2 − i3 = 3k3 (4.83)




K
E

xx K
E

xy

K
E

yx K
E

yy


 =

1

2




2r0 - r1 - r*
1 - i1 - i2 + 2i3

√
3( - r1 + r*

1 - i1 + i2)
√

3(−r*
1 + r1 - i1 + i2) 2r0 - r1 - r*

1 + i1 + i2 - 2i3




=




k0 0

0 k3 + 2kr




Any set of four K-matrix eigenvalues kA1 , kA2 , kEx , and kEy is arithmetically possible

by adjusting the four spring constants. However, their arrangement in Fig. 4.10 (This

was drawn to match tunneling states in Fig. 4.8.) is impossible without negative
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k-values that would give classical instability. As shown below, free ring molecules

often have A1-stretching modes among the highest frequencies. In contrast, tunneling

amplitudes are often negative so their A1 states lie low. As a rule, fewer quantum

nodes imply lower energy.

K-Matrix eigensolutions for broken local symmetry

In some ways the direct-k1-connection spring model of Fig. 4.11(b) is quite the opposite

of the D3⊃C2(i3) model just treated since it involves maximal (50-50) mixing of x

and y local symmetry. Below are recalculated generic gb=〈1|K|gb〉 in terms of direct

spring-constants k1 using (4.78) with projection cosines listed in Fig. 4.11(b).

|gb〉 |1〉
∣∣r1
〉 ∣∣r2

〉
|i1〉 |i2〉 |i3〉

〈1|K |gb〉 =

k1(cos2 75◦

+ cos2 15◦)

= k1

k1 cos 75◦

· cos 15◦

=
k1
4

k1 cos 15◦

· cos 75◦

=
k1
4

k1 cos 15◦

· cos 15◦

=
k1(2−

√
3)

4

k1 cos 75◦

· cos 75◦

=
k1(2 +

√
3)

4

k1(cos2 75◦

− cos2 15◦)

=
k1
2

(4.84)

Again, a substitution of generic ga from (4.84) into reduced H-matrix (4.52) gives a

reduced K-matrix like (4.83), but now the E-symmetry submatrix is not diagonal.

KA1
xx = 3k1

KA2
yy = 0




K
E

xx K
E

xy

K
E

yx K
E

yy


 =




3k1
4

3k1
4

3k1
4

3k1
4




(4.85)
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Eigenvectors of the E-submatrix are symmetric (+) and antisymmetic (−) mixtures

of x and y local symmetry states.

K

∣∣∣∣∣∣∣

E

g(−)

〉
= K




∣∣∣∣∣∣∣

E

gx

〉
−

∣∣∣∣∣∣∣

E

gy

〉
 1√

2
=

3k1

2

∣∣∣∣∣∣∣

E

g(−)

〉
,

K

∣∣∣∣∣∣∣

E

g(+)

〉
= K




∣∣∣∣∣∣∣

E

gx

〉
+

∣∣∣∣∣∣∣

E

gy

〉
 1√

2
= 0

∣∣∣∣∣∣∣

E

g(+)

〉
, g = (x, y).

(4.86)

Fig. 4.12 shows (50-50 ±)-mixing due to k1. It distinguishes genuine vector modes

(|Ex,(−)〉 or |Ey,(−)〉) and the scalar breathing mode (|A1
x,x〉) from non-genuine (low or zero-

frequency) vector modes of pure x or y-translation (|Ex,(+)〉 or |Ey,(+)〉) and rigid rotation

(pseudo-scalar |A2
y,y〉). The i3-local symmetry is wiped out by direct connection-k1.

In order to reestablish approximate D3⊃C2(i3)-local-symmetry there needs to be

a C2(i3)-“locale” provided by lab-grounded potential springs such as those with con-

stants k3 and k0 in Fig. 4.11(a). Adding these in the form of (4.83) to (4.85) causes a

transition between the two extremes. If the difference (k3 + 2kr − k0) between eigen-

values (4.83) begins to dominate the off-diagonal component (3k1/4) of (4.85), then

mixed E-modes of Fig. 4.12 begin to recover D3⊃C2(i3) locality seen in Fig. 4.10 .

Meanwhile the constant k3 that determines eigenvalue kA2
y,y does not affect locality

for either of the singlet A1 or A2 modes. Singlet eigenvectors are non-negotiable as

long as master symmetry D3 holds.

K-Matrix eigensolutions for D3⊃C3 symmetry

Another choice for D3 local symmetry is the C3 subgroup of Eq (4.38) corresponding to

a strong chiral perturbation by internal rotation, spin, or B-field. The E-submatrix

in (4.83) with zero generic reflection parameters (i1=i2=i3=0) may take a purely

chiral C3 form if the generic rotation parameters r1 and r2=r?1 are purely imaginary

corresponding to velocity dependent force. ( r1=ir and r2=-ir. Here K is assumed
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Figure 4.12: Mixed-local symmetry modes of direct-k1-coupled X3 model in
Fig.4.11(b).

128



Hermitian self-conjugate as was H.)

KA1
xx = r0

KA2
yy = r0




K
E

xx K
E

xy

K
E

yx K
E

yy


 =




r0 −ir
√

3

+ir
√

3 r0




r1 = ir = −r∗2
i1 = i2 = i3 = 0

(4.87)

C3 E-eigenvectors have local x ± iy=(±1)3 combinations the exhibit purely circu-

lar right R=(+1)3 and left L=(−1)3 polarization orbits of C3 symmetry shown in

Fig. 4.13. (Recall C3 splitting in Eq (4.38).)

K

∣∣∣∣∣∣∣

E

g(+1)3

〉
= K




∣∣∣∣∣∣∣

E

gx

〉
+ i

∣∣∣∣∣∣∣

E

gy

〉
 1√

2
= +r

√
3

∣∣∣∣∣∣∣

E

g(+1)3

〉
,

K

∣∣∣∣∣∣∣

E

g(−1)3

〉
= K




∣∣∣∣∣∣∣

E

gx

〉
− i

∣∣∣∣∣∣∣

E

gy

〉
 1√

2
= −r

√
3

∣∣∣∣∣∣∣

E

g(−1)3

〉
, g = (x, y).

(4.88)

Pure C3 symmetry is a normal subgroup and restricts kA1
x,x and kA2

y,y to become degen-

erate. Both the scalar |A1
03,03
〉 and pseudoscalar |A2

03,03
〉 state are both labeled equally by

(0)3 symmetry. Local symmetry effectively goes global in the pure C3-case where all

internal coupling is zero.

Any internal or external parameters may split the A1-A2 degeneracy and mix the

C3 states to form elliptical polarization orbits. This is most efficiently calculated using

SU(2) analysis.
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Figure 4.13: D3⊃C3-local symmetry modes of X3 molecule.
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Chapter 5

Local Symmetry Tunneling In Octahedral Molecules
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5.1 Chapter Summary

This chapter uses the developments of Chapter 4 and applies them to octahedral

spherical-top molecules. Particular care is taken with local symmetry subduction to

parameterize all possible splittings of rotational clusters (superfine structure). This

parameterization can form a basis from which both tunneling splittings and tunneling

strengths may be evaluated. Local symmetries C2, C3 and C4 introduced in chapter 3

are detailed.

The power of this process is demonstrated for the C2 local-symmetry clusters pos-

sible in octahedral spherical-top molecules. Though this cluster has more degeneracy,

the choice of C2 is convenient as the formulae describing its behavior are more com-

pact. Moreover, this formalism, while easiest for the C2 cluster is exceedingly difficult

to parameterize using other methods.

5.2 Octahedral symmetry analysis

Octahedral-cubic rotational symmetry O operations are modeled in Fig. 5.1. Rotation

inversion symmetry Oh=O×Ci operations are modeled in Fig. 5.2. In each case the

larger g-symbols label position ket states |g〉=g|1〉 while smaller g-symbols label axes

of rotation in O or planes of reflection in Oh. Three Cartesian C4 axes of anti-clockwise

90◦ rotations Rx, Ry, and Rz define directions [100], [010], and [001], respectively.

Their inverses R̃x=R3
x, R̃y=R3

y, and R̃z=R3
z are also 90◦ rotations but around nega-

tive axes [1̄00], [01̄0], and [001̄]. A shorthand notation for 180◦ Cartesian rotations is

ρx=R2
x, ρy=R2

y, and ρz=R2
z. Trigonal C3 axes of anti-clockwise 120◦ rotations r1, r2,

r3, and r4 lie along [111], [1̄1̄1], [1̄11], and [1̄11̄], respectively, while axes of inverses

r̃1=r2
1, r̃2=r2

2, r̃3=r2
3, and r̃4=r2

4 lie along the opposite directions [1̄1̄1̄], [111̄], [11̄1̄],

and [11̄1], respectively.

There are six C2 axes of 180◦ rotations i1, i2, i3, i4, i5, and i6 located along [101],

[1̄01], [110], [1̄10], [011], and [01̄1], respectively. This completes the five classes of O:
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[1], [r1..4, r̃1..4], [ρxyz], [Rxyz, R̃xyz], and [i1..6]. Including the rotations with inversion

I yields five more classes of Oh: [I], [s1..4, s̃1..4], [ρxyz], [Sxyz, S̃xyz], and [σ1..6] where

s1..4=I · r1..4, [σxyz]=[I · ρxyz], [Sxyz]=[I ·Rxyz], and [σ1..6]=[I · i1..6]. σ’s are mirror-

plane reflections in Fig. 5.2.

Fig. 5.1 and Fig. 5.2 are useful for quickly evaluating group products and for

identifying local symmetry subgroups and their cosets. Three of the largest cyclic

subgroups of O are tetragonal C4 such as C4=[1,Rz,R
2
z=ρz,R

3
z=R̃z] displayed on

the Rz-face of the cube in Fig. 5.1. In Fig. 5.2 the same face displays local symmetry

C4v=[1, ρz,Rz, R̃z, σ4, σx, σ3, σy] that contains C4 plus pairs of diagonal mirror reflec-

tions [σ4=I·i4, σ3=I·i3] and Cartesian mirror reflections [σx=I·ρx, σy=I·ρy]. Each pair

[σx, σy] and [σ3, σ4] is a C4v class as is rotation pair [Rz, R̃z] or, singly, 1 and ρz. The

other five cube faces display cosets of the tetragonal subgroups C4v⊃C4 of Oh⊃O.

Fig. 5.1 shows six O-cosets g·C4 of C4=[1,Rz, ρz, R̃z]. Opposite ρx-face has coset

ρx·C4=[ρx, i4, ρy, i3] in that order. The r1-face shows coset r1·C4=[r1, i1, r4,Ry] in

upper right of Fig. 5.1, and the opposite r2-face has coset r2·C4=[r2, i2, r3, R̃y]. Top

and bottom faces have cosets r̃1·C4=[̃r1, R̃x, r̃3, i6] and r̃2·C4=[̃r2,Rx, r̃4, i5].

Each g·C4-coset element g·Rp
z (p = 0..3) transforms the 1-face to the same g-face

and orients it according to a C4 element Rp
z as it permutes the list of its elements

accordingly. Each face may be labeled by any element g·Rp
z in its coset. An i-class

labeling by 1, i3(or i4), i1, i2, i6, and i5 of C4 cosets in Fig. 5.1 is as good as any other.

Fig. 5.2 shows six Oh-cosets of C4v (counting C4v itself) in a geometric display

that also shows eight trigonal cosets of C3v⊃C3-[111] and twelve dihedral cosets of

C2v⊃C2-[101]. Fig. 5.3 shows three symmetry points of Fig. 5.2 forming a triangular

cell with sides that are on reflection planes.

An order-8 axial symmetry C4v lies on the tetragonal-z-[001]-axis of a cube face

or octahedral vertex. An order-6 C3v lies on the trigonal-[111]-axis of a cube vertex

or octahedral face. Finally, there is a dihedral-C2v [110]-axis of a cube or octahedral
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Figure 5.1: O operators distributed in cosets of C4 ⊃ C2
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Figure 5.2: Oh operators distributed in cosets of C4v ⊃ C2v
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Figure 5.3: Oh local symmetry (a) C4v (b) C3v (c) C2v

edge. Lines between the axes have bilateral local reflection symmetry Cv(y)=[1, σy],

Cv(2)=[1, σ2], or Cv(4)=[1, σ4], fundamental symmetry operations whose products

generate all others.

Each subgroup spawns a coset space and a set of induced representations of full

Oh symmetry that generalize the C3v induced representations in (4.74) and base kets

sketched in Fig. 4.9. Correlation tables between O or Oh and its subgroups H ⊂ G

tell which O or Oh irreps, states, and energy levels arise from each coset space. Lesser

local symmetry order ◦L implies greater coset dimension dH =◦ G/◦H and more

irreps or levels in H ↑ G-induced representations, as in Eq 3.5. The correlation tables

between the octahedral molecular symmetry group and local subgroups was mentioned

in chapter 3 in Eq 3.1 and are repeated in Eq 5.2.

5.2.1 Octahedral characters and subgroup correlations

Spectral resolution of O classes in Fig. 5.1 is similar to that of D3 classes in (4.34) and

gives character array in (5.1). Detailed derivation is available in many group theory
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texts[1, 2].

O group

χακg

g = 1
r1−4

r̃1−4

ρxyz
Rxyz

R̃xyz

i1−6

α = A1 1 1 1 1 1

A2 1 1 1 −1 −1

E 2 −1 2 0 0

T1 3 0 −1 1 −1

T2 3 0 −1 −1 1

(5.1)

Cyclic subgroup C4(Rp
z), C3(rp1), and C2 characters correlate with those of O according

to arrays in (5.2).

O ⊃ C4 04 14 24 34

A1 ↓ C4 1 · · ·

A2 ↓ C4 · · 1 ·

E ↓ C4 1 · 1 ·

T1 ↓ C4 1 1 · 1

T2 ↓ C4 · 1 1 1

O ⊃ C3 03 13 23

A1 ↓ C3 1 · ·

A2 ↓ C3 1 · ·

E ↓ C3 · 1 1

T1 ↓ C3 1 1 1

T2 ↓ C3 1 1 1

O ⊃ C2(i1) 02 12

A1 ↓ C2 1 ·

A2 ↓ C2 · 1

E ↓ C2 1 1

T1 ↓ C2 1 2

T2 ↓ C2 2 1

O ⊃ C2(ρz) 02 12

A1 ↓ C2 1 ·

A2 ↓ C2 1 ·

E ↓ C2 2 ·

T1 ↓ C2 1 2

T2 ↓ C2 1 2

(5.2)

Equivalent subgroup correlations O⊃H and O⊃gHg−1 share elements in the same

O-classes and have one correlation array. Thus all three C4 local symmetries have
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O-centrum: k(O) =
∑

α(`α)0 = 5 number of classes
O-rank: ρ(O) =

∑
α(`α)1 = 10

O-order: ◦O =
∑

α(`α)2 = 24

Table 5.1: Key commutation number for group O are listed using Eq 4.43.

one correlation table in (5.2), as do all four C3 subgroups. However, O⊃C2(ρz) and

O⊃C2(i1) correlations differ since i1 and ρz have different O-class and characters in

(5.1).

Projectors Pα
jk and irreps Dα

jk of O depend on choice of local symmetry just as

D3 projector splitting in (4.37) or (4.38) depends on choice of correlation D3⊃C2 in

(4.63) or D3⊃C3 in (4.62), respectively. Sub-labels (j, k) range over C2 values [02, 12]

or else C3 values [03, 13, 23] while a tetragonal correlation O⊃C4 will use sub-labels

(j, k)= [04, 14, 24, 34].

The m4 or else m3 unambiguously define all O states since no O⊃C4 or O⊃C3

correlation numbers in (5.2) exceed unity. However, O⊃C2(i1) correlations cannot

distinguish all three sub-levels of T1 or T2 wherever a number 2 appears, and the

O⊃C2(ρz) correlation leaves the E sub-levels unresolved, as well. A full Oh labeling

resolves the first ambiguity as shown below, but we consider the unambiguous O⊃C4

case first. (C4 also resolves C2(ρz) ambiguities.)

Resolving commuting O ⊃ C4 local symmetry subalgebra: rank=ρ(O) = 10

The C4 correlation table in (5.2) shows how invariant class projectors Pα (expanded

below in terms of O characters χακg in table shown in Eq (5.1)) will split into irrep

projectors Pα
m4m4

when hit by by C4 local symmetry projectors pm4 . The latter pm are

expanded in terms of C4 operators Rp
z weighted by character eigenvalues φm4

p = (χm4
p )∗
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using Eqs (4.16) and (4.18). Since rank is ρ(O) = 10 there are 10 results.

1 ·Pα = (p04 +p14 +p24 +p34) ·Pα

1 ·PA1 = PA1
0404

+0 +0 +0

1 ·PA2 = 0 +0 +PA2
2424

+0

1 ·PE = PE
0404

+0 +PE
2424

+0

1 ·PT1 = PT1
0404

+PT1
1414

+0 +PT1
3434

1 ·PT2 = 0 +PT2
1414

+PT2
2424

+PT2
3434

(5.3)

The five class projectors Pα are O-invariant and commute with all twenty-four

O-operators (1, r1, r2, ...i5, i6). So do the five class operators (κ0, κrk , κρk , κRk , κik) in

which each Pα is expanded as follows. (Recall D3 classes in Eq (4.34).)

Pα =
`α

◦O

5∑

k=0

χαkκk = where: α = A1, A2, E, T1, or T2

=
`α

24

[
χα0 1 + χακr(r1 + r2 + ....+ r̃4) + χακρ(ρx + ρy + ρz)

+χακR(Rx + Ry + ....+ R̃z) + χακi(i1 + i2 + ....+ i6)
]

(5.4)

Each of the `α irrep projectors Pα
n4n4

is obtained from its invariant Pα by product

Pαpn4=pn4P
α following (5.3) with each of four C4 local symmetry projector pm4 .

pm4 =
3∑

p=0

e2πim·p/4

4
Rp
z =





p04 = (1 + Rz + ρz + R̃z)/4

p14 = (1 + iRz − ρz − iR̃z)/4

p24 = (1−Rz + ρz − R̃z)/4

p34 = (1− iRz − ρz + iR̃z)/4

(5.5)

As the five (O-centrum=5) projectors Pα split into ten (O-rank=10) sub-projectors
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Pα
n4n4

, the five O class sums κg split into ten C4-invariant sub-class sums ck(k=1..10).

◦O

`α
·Pα

n4n4
=

10∑

k=0

Dα∗

n4n4
(gk)ck

where: Dα
n4n4

(gk) = Dα
n4n4

(Rp†
z gkR

p
z) (5.6)

The resulting ten products
◦O
`α

Pα
n4n4

are listed in (5.7) of diagonal irrep coefficients

Dα
n4n4

(gk) in terms of twenty-four group elements gk that have been sorted into ten sub-

classes that have C4(z) local symmetry. The ten irrep projectors Pα
n4n4

are C4 local-

invariant, that is, they commute with four C4-operators (1,Rz,R
2
z = ρz,R

3
z = R̃z) but

not the whole O group like the Pα do. The ten sub-class-sum operators ck, into which

which each Pα
n4n4

is expanded in (5.7), are each individually invariant to Rp
z, that is

Rp
zck=ckR

p
z, and Dα

n4n4
(gk) is the same for all gk in sub-class ck. Note that a sum

of `α rows belonging to Pα
n4n4

between horizontal lines in (5.7) yields corresponding

character values χαk=traceDα(gk) in O-character array (5.1) and effectively “unsplits”
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the sub-classes. For example {ρx, ρy, ρz} “unsplits” into {(ρx, ρy)ρz}.

P
(α)
n4n4(O ⊃ C4) 1 r1r2

r̃3r̃4
r̃1r̃2
r3r4 ρxρy ρz

RxR̃x
RyR̃y

Rz R̃z i1i2i5i6 i3i4

24 ·PA1
0404

1 1 1 1 1 1 1 1 1 1

24 ·PA2
2424

1 1 1 1 1 −1 −1 −1 −1 −1

12 ·PE
0404

1 − 1
2̄ − 1

2̄ 1 1 − 1
2̄ 1 1 − 1

2̄ 1

12 ·PE
2424

1 − 1
2̄ − 1

2̄ 1 1 + 1
2̄ −1 −1 + 1

2̄ −1

8 ·PT1
1414

1 − i
2̄ + i

2̄ 0 −1 + 1
2̄ −i +i − 1

2̄ 0

8 ·PT1
3434

1 + i
2̄ − i

2̄ 0 −1 + 1
2̄ +i −i − 1

2̄ 0

8 ·PT1
0404

1 0 0 −1 1 0 1 1 0 −1

8 ·PT2
1414

1 + i
2̄ − i

2̄ 0 −1 − 1
2̄ −i +i + 1

2̄ 0

8 ·PT2
3434

1 − i
2̄ + i

2̄ 0 −1 − 1
2̄ +i −i + 1

2̄ 0

8 ·PT2
2424

1 0 0 −1 1 0 −1 −1 0 1

(5.7)

Without evaluating (5.7), one may find ten O⊃C4 sub-classes by simply inspecting

Fig. 5.1 for operations in each O-class that transform into each other by C4 opera-

tions Rp
z only. The O-class of eight 120◦ rotations rk split into two sub-classes, one

[r1, r2, r̃3, r̃4] whose axes intersect four corners of the +z front square, and the other

[r̃1, r̃2, r3, r4] whose axes similarly frame the −z back square. The class of six diagonal

180◦ rotations ik split into a sub-class [i1, i2, i5, i6] whose two-sided axes bisect edges

of the z squares, and sub-class [i3, i4] whose axes are perpendicular to z-axis and bi-

sect edges of xy side squares. The 180◦ rotational class [ρx, ρy, ρz] splits similarly into

sub-classes [ρx, ρy] and [ρz] with axes perpendicular and along, respectively, the Rz

axis. The 90◦ class splits, as indicated in the top row of (5.7), into a sub-class of four

perpendicular xy-axial rotations and separate sub-classes for Rz and R̃z.

The inverse to (5.6) expresses the ten subclasses in terms of the ten diagonal irrep

projectors using the same (albeit, conjugated) array of Dα
n4n4

(gk). However, column
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and row labels must switch and acquire different coefficients.

ck
◦ck

=
10∑

k=0

Dα
n4n4

(gk)P
α

n4n4
=

10∑

k=0

Dα
n4n4

(ck)
◦ck

P
α

n4n4
(5.8)

Resolving D-matrices with C4 local symmetry

Off-diagonal Dα
m4n4

(gk) matrices derive from products of diagonal irrep projectors in

(5.7) using (4.41b) repeated here.

Pα
j,j · g ·Pα

k,k = Dα
j,k(g)Pα

j,k (5.9)

Scalar A1 and pseudo-scalar A2 are given first then E, T1, and T2 irrep matrices for

the fundamental ik-class of O.

DA1
0404

(ikik) = i1 + i2 + i3 + i4 + i5 + i6

DA2
2424

(ikik) = −(i1 + i2 + i3 + i4 + i5 + i6)
(5.10)

DE(ikik) =

04 24

04 −1
2
(i1 + i2 + i5 + i6) + i3 + i4

√
3

2
(i1 + i2 − i5 − i6)

24 h.c. 1
2
(i1 + i2 + i5 + i6)− i3 − i4

(5.11)
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DT∗1 (ikik) 14 34 04

14 − 1
2 (i1 + i2 + i5 + i6) − 1

2 (i1 + i2 − i5 − i6) − 1√
2
(i1 − i2 ) + i√

2
(i5 − i6)

−i(i3 − i4)

34 h.c. − 1
2 (i1 + i2 + i5 + i6) + 1√

2
(i1 − i2 ) + i√

2
(i5 − i6)

04 h.c. h.c. −(i3 + i4)

DT∗2 (ikik) 14 34 24

14 + 1
2 (i1 + i2 + i5 + i6) + 1

2 (i1 + i2 − i5 − i6) + 1√
2
(i1 − i2 ) + i√

2
(i5 − i6)

−i(i3 − i4)

34 h.c. + 1
2 (i1 + i2 + i5 + i6) − 1√

2
(i1 − i2 ) + i√

2
(i5 − i6)

04 h.c. h.c. +(i3 + i4)

(5.12)

Symmetry of C4⊂O subclass [i1, i2, i5, i6] and [i3, i4] would demand equality of param-

eters for each.

i1 = i2 = i5 = i6 ≡ i1256 ≡ iI, and, i3 = i4 ≡ i34 ≡ iII (5.13)

Setting each parameter to the inverse of its sub-class order (ik=1/(◦cik)) reduces each

matrix to diagonal form and gives the diagonal Dα
n4n4

(gk) given in (5.7). Classes r, ρ,

R behave similarly.

Resolving Hamiltonians with C4 local symmetry

An octahedral Hamiltonian H =
∑24

k=1 gkḡk with local C4(z) symmetry is resolved

by sorting gk into its C4(z) sub-classes ck and then into P
α

n4n4
whose coefficients are

the desired H eigenvalues εαn4
. Zero off-diagonal Hα

m4n4
= 0 and C4-local symmetry

conditions shown in (5.13) arise from (5.7) consistent with Fig. 5.1. Tunneling pa-

rameter i1256=iI from +z-axis to its 1st-neighbor ±x or ±y axes may dominate flip-

tunneling i34 = iII to 2nd neighbor-z-axis. The i-columns of Eq (5.7) (or matrix

diagonals in Eqs (5.10)-(5.12)) give iI and iII contributions to eigenvalues εαn4
listed in
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Table 5.2: Splittings of O ⊃ C4 given sub-class structure.
O ⊃ C4 0◦ rn120◦ ρn180◦ Rn90◦ in180◦

04 · rI = Re r1234

mI = Im r1234
· Rz = ReRz

Iz = ImRz

iI = i1256

iII = i34

εA1
04

= g0 +8rI +2ρxy + ρz +4Rxy + 2Rz +4iI + 2iII
εT104

g0 0 −2ρxy + ρz +2Rz −2iII
εE04 g0 −2rI +2ρxy + ρz −2Rxy −Rz −2iI + 2iII
14 · · · · ·
εT214

g0 +2mI −ρz −Rxy − 2Iz +2iI
εT114

g0 −2mI −ρz +Rxy − 2Iz −2iI
24 · · · · ·
εE24 g0 −2rI +2ρxy + ρz +2Rxy −Rz +2iI − 2iII
εT224

g0 0 −2ρxy + ρz −2Rz +2iII
εA2

24
g0 +8rI +2ρxy + ρz −4Rxy − 2Rz −4iI − 2iII

34 · · · · ·
εT234

g0 −2mI −ρz −Rxy + 2Iz +2iI
εT134

g0 +2mI −ρz +Rxy + 2Iz −2iI

Figure 5.4: O i-class level clusters of C4 local symmetry (a) 04 (b) 14 (c) 24 (d) 34

the in-column of Table 5.2. Clusters (εA1
04
, εT104

, εE04) thru (εT234
, εT134

) are plotted in Fig. 5.4

for select values of parameters iI = i1256 and iII = i34.

One expects the parameter iII for 2nd-neighbor tunneling to be exponentially

smaller than iI for adjacent tunneling so the (iII = 0)-cases are drawn first in Fig. 5.4.

While the i-class operations are most fundamental (all operations are generated by

products of ik) other operations also generate 1st-neighbor transformation. Three class

parameters Rxy(90◦), rI(120◦) , and iI(180◦) label 1st-neighbor inter-C4 axial tunnel-

ing paths that have the same iI-level patterns and splitting ratios as (iII=0)-cases in

Fig. 5.4 but with differing sign. (Signs differ since each sub-class eigenvalue set must
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be orthogonal to all others as shown below.) Level patterns in Fig. 5.4 are reflected

in spectral patterns of Fig. 5.5 if both ground and excited vibe-rotor states have sim-

ilar RES-shape. However, only C4z sub-class iI(180◦) patterns (with iI < 0) exhibit

spectral ordering (A1T1E)(T2T1)(ET2A2)(T2T1) on the left hand side of Fig. 5.5 that

is maintained even as levels re-cluster into patterns (T1ET2)(T1ET2)(A2T2T1A1) of

C3[111] local symmetry across the separatrix break on the right-hand side of Fig. 5.5

as analyzed below [3, 4]. O-crystal-field wavefunctions for either case tend to follow

a Bohr-orbital progression s(A1), p(T1), d(E, T2), f(T1, A2, T2), g(E, T1, T2, A1), ... In

general, ordering is sensitive to RES-shape and tensor rank as discussed later.

For an isolated three-level (ATE)-cluster of local symmetry 04 or else 24 the split-

ting pattern requires only two parameters. This could be either the 180◦(iI,iII) or the

90◦(Rxy,Rz) class pair in Table 5.2. The 120◦-class, lacking 180◦ flips, has just one

real parameter rI. Parameters iI, Rxy, and rI each split (ATE) by 2:1 ratio but differ

in sign.

Local symmetry 14 and 34 each have two-level (TT ) clusters that require just one

splitting parameter, say iI, or else Rxy. Complex parameters Rz and Iz of the 90◦

Rn-class and the ρn(180◦)-class in Table 5.2 may play minor roles in most C4 clusters

but are necessary in order that the whole set be orthonormal and complete.

Orthogonality-completeness of local symmetry parameters

Eq (5.7) expands P
(α)
nn by Eq (4.42) in group operators (1, r1, r2, ...i6). It acts on |1〉

to give |(α)
n4n4〉 eigenkets in (5.14).

∣∣(α)
nn

〉
= P(α)

nn |1〉
√
◦G

`α
=

√
`α

◦G

◦G∑

b=1

D(α)∗
nn (gb)gb |1〉

=

√
`α

◦G

◦G∑

b=1

D(α)∗
nn (gb) |gb〉 (5.14)
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Figure 5.5: Tiny excerpt of SF6 ν4P (88) superfine spectral cluster structure in 16µm
region

An O-symmetric H matrix is a sum of dual operators (1̄, r̄1, r̄2, ...̄i6) with coefficients

ga=ε0, r1, r2, ..., i6. Local symmetry C4 or C3 reduces the sum to ρG=10 sub-class

terms c̄a=ḡa+ḡ′a+... each sharing a coefficient ga=g
′
a...

H =

◦G∑

a=1

gaḡa =

ρG∑

a=1

gac̄a (5.15)

From these arise expansions like Table 5.2 of H eigenvalues εαn4
in terms of its co-

efficients ga. Dual commutation gjḡk=ḡkgj makes P
(α)
nn and H commute. Duality

relation in (4.53) leads to a Dα∗-weighted sum of ga analogous to sum in (5.14) of
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|ga〉.

εαn =
〈

(α)
nn

∣∣H
∣∣(α)
nn

〉
= 〈1|P(α)

nnHP(α)
nn |1〉

◦G

`α
= 〈1|HP(α)

nn |1〉
◦G

`α

= 〈1|
◦G∑

a=0

gaḡa

◦G∑

b=0

D(α)∗
nn (gb)gb |1〉 = 〈1|

◦G∑

a=0

ga

◦G∑

b=0

D(α)∗
nn (gb)gbg

−1
a |1〉

=

◦G∑

a=0

gaD
(α)∗
nn (ga) =

ρG∑

a=1

D(α)∗
nn (ga)

◦caga

(5.16)

Each C4 sub-class of order ◦ca has ◦ca equal terms gaD
(α)∗
nn (ga) = g′aD

(α)∗
nn (g′a) =. . . expanding

eigenvalue εαn4
. Rank-of-group ρG = 10 is the number of eigenvalues and of expansion

terms ◦cagaD
(α)∗
nn (ga) in (5.16) or Table 5.2. Each of ten eigenvalues εαn4

=(εA1 , εA2 , ..., εT234
)

expand to ten C4-local tunneling parameters ga=(ε0, rI, rII, ..., iII) and vice-versa.

ga = 〈1|H |ga〉 = 〈1|Hga |1〉 =
∑

α

`α∑

j

`α∑

k

D
(α)
jk (ga) 〈1|HPα

jk |1〉

=
∑

α

`α∑

n

D(α)
nn (ga) 〈1|HPα

nn |1〉 =
∑

α

`α∑

n

D(α)
nn (ga)

`α

◦G
εαn

(5.17)

One might count twelve real parameters in Table 5.2 since both pairs (rI,r̃I) and

(Rz,R̃z) are complex unlike RI = R̃I which are real. If H is a Hermitian array

(H = H†) it should only require ten, the rank of O, for its ten distinct real eigenvalues

and the parameter pairs must be complex conjugates.

With no conjugation symmetry, such as for a unitary O ⊃ C4-symmetric matrix,

the R and r parameters may be complex and unrelated to R̃ and r̃, and resulting extra

real parameters are then needed. Symmetry parameter dimension matches eigenso-

lution dimension for each local symmetry as shown in Fig. 5.7. The formulas (5.16)

and (5.17) are generalizations of projective character formulas such as Eq (4.34) that

involves classes k and irreps(α). These former involve split classes and irreps like the

character coefficients χαk of the latter and have class-to-class transformations that are

quaisi-unitary.
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Table 5.3: Splittings of O ⊃ C3 given sub-class structure.
O ⊃ C3 0◦ rn120◦ ρn180◦ Rn90◦ in180◦

03 · rI = Re(r1) iI = Im(r1)
rII = Re(r234) iI = Im(r234)

ρ = ρxyz
Rn = Re(Rxyz)
In = Im(Rxyz)

iI = i136

iII = i245

εA1
03

g0 2rI + 6rII 3ρ 6Rn 3iI + 3iI
εA2

03
g0 2rI + 6rII 3ρ −6Rn −3iI − 3iII

εT103
g0 2rI − 2rII −ρ 2Rn iI − 3iII

εT203
g0 2rI − 2rII −ρ −2Rn −iI + 3iII

13

εE13 g0 −rI +
√

3iI − 3rII + 3
√

3iII 3ρ 0 0

εT113
g0 −rI +

√
3iI + rII −

√
3iII −ρ 2Rn + 2

√
3In −2iI

εT213
g0 −rI +

√
3iI + rII −

√
3iII −ρ −2Rn − 2

√
3In 2iI

23

εE23 g0 −rI −
√

3iI − 3rII − 3
√

3iII 3ρ 0 0

εT123
g0 −rI −

√
3iI + rII +

√
3iII −ρ 2Rn − 2

√
3In −2iI

εT223
g0 −rI −

√
3iI + rII +

√
3iII) −ρ −2Rn + 2

√
3In 2iI

Resolving Hamiltonians with C3 local symmetry

The previous two sections have detailed of symmetry-based level clustering and cluster

splitting for C4. In Fig. 5.5 these are the lower energy clusters of SF6 for ν4 P (88).

Given the previous two sections, it is possible to find the splittings of the C3 sub-group

quickly. Starting with (5.2) and (5.3) one can build the irreducible representations

necessary to create the Pα
n3n3

for the new sub-group. At this point, one can create

a table analogous to Table 5.2. Such a table for C3 is shown in Table 5.3. The C3

clustering fits patterns of (A1, A2, T2, T2) and two of (E, T1, T2), each with a total

degeneracy of 8. As before in Fig. 5.4, the splittings in C3 make different patterns

depending on which tunneling parameters are active. This is demonstrated in Fig. 5.6.

Octahedral splitting for a range of local symmetry C1⊂C2...⊂O

As the order ◦L of local symmetry L⊂G decreases there are proportionally fewer types

of local symmetry irrep dλ(L) and hence fewer types of energy level cluster since each

cluster is defined by its induced representation dλ(L)↑G. There is a proportional

increase in total number `λ↑G=(`λ)◦G/◦L of levels in each eigenvalue cluster. How-
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Figure 5.6: O i-class and ρ-class level clusters of C3 local symmetry given different
tunneling parameters

ever, G-symmetry degeneracy limits the total number of distinct eigenvalues from all

clusters to be global rank ρ(G) or less, no matter what local symmetry is in effect.

Octahedral rank is ρ(O)=10=`A1+`A2+`E+`T1+`T2 where `α gives both the global

degeneracy of each level type and the number of times it appears.

The number of H-matrix parameters equals the number of distinct eigenvalues as

long as all eigenvectors are determined by global-local symmetry, that is, each entry

is 0 or 1 in the G⊃L correlation array. Diagonal eigenmatrix forms are shown in

Fig. 5.7(a-b) for C4⊂O and C3⊂O for which all bases states are distinctly labeled.

Multiple correlation (≥ 2) occurs if L-symmetry is too small to determine some of the

◦G eigenbases. Then the H-matrix must have extra parameters that fix vectors thru

diagonalization. This happens for the C2(i1) ⊂O symmetry whose correlation array

in (5.2) assigns the same C2 label to two bases of T1 and of T2. (Two C2 symmetries

02 and 12 cannot distinctly label three bases.) Fig. 5.1 shows C2(i1) splits O into

fourteen sub-classes: (1), (r1r̃4), (r2r̃2), (r3r̃3), (r4r̃1), (ρxρz), (ρy), (RxRz), (R̃xR̃z),

(RyR̃y),(i1), (i2), (i3i5), (i4i6). The C2⊂O sub-classes form a non-commutative algebra

and cannot be resolved so easily as C3⊂O or C4⊂O into commuting idempotent

combinations like (5.8).

Spectral resolution of fourteen C2(i1)⊂O sub-classes requires more than rank num-

ber ρ(O)=10 of diagonal commuting O idempotents Pα
nn. To fully determine C2 basis,
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Figure 5.7: O⊂L-local symmetry eigenmatrix parameters (a-e) L=C4,...,C1 (f-j)
L=O,D4,...,D2

150



two off-diagonal pairs PT1
ab=PT1†

ba and PT2
ab=PT2†

ba of non-commuting nilpotent projectors

are needed to finish C2-labeling of T -triplets. Adding these four gives fourteen projec-

tors with their fourteen parameter coefficients ε` shown in Fig. 5.7(c) to fully define

general C2(i1)⊂O H-operators. (However, only twelve of the fourteen parameters are

independent for Hermitian Ha,b=H
∗
b,a.)

The other class of C2 symmetry has similar problems. Local C2(ρz)⊂O symmetry

requires projector pairs PT1
ab=PT1†

ba and PT2
ab=PT2†

ba , too, but then another nilpotent

pair PE
ab=PE†

ba must be added to label repeated E bases in array (5.2). This gives

sixteen C2(ρz) sub-classes to resolve and sixteen parameters sketched in Fig. 5.7(d).

(Hermitian H=H† matrices for C2(ρz)⊂O have thirteen free parameters.)

For the lowest local symmetry C1=[1] (i.e., no local symmetry) sub-classes are

completely split since every O-operator is invariant to 1 as C1 provides no distin-

guishing labeling, and all twenty-four O-projectors (Σα(`α)2=24) are active in its

resolution. The 24-parameter H-matrix resolution is sketched in Fig. 5.7(e). Each

parameter εa for a=1, ..., 24 is a combination of 24 products Dα∗
j,k(gp)gp (p=1, ..., 24) of

irrep and group element coefficient gp as given in (4.49) or (5.16). (If H is Hermitian

the number of free parameters reduces to Σα`
α(`α+1)=17.)

For O’s highest local symmetry, namely O itself, there is no splitting of the

Σα(`α)0=5 invariant idempotents Pα that resolve the five O classes. Then H has five

independent parameters and five eigenvalues of degeneracy (`α)2. This 5-parameter

resolution is sketched in Fig. 5.7(f). Total level degeneracy for sub-matrix eigenval-

ues are listed below each one, and show less splitting than Abelian cases listed in

Fig. 5.7(a-e).

Any non-Abelian local symmetry such as L = D4 also fails to split Pα into a

full number `α of components Pα
nn if O irrep-(α) correlates with multi-dimensional

L-irreps. By splitting out less than the full rank number ρ(O)=10 of idempotent

projectors Pα
nn, the resulting number of independent H matrix parameters reduces
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accordingly. The 8-parameter resolution for an H-matrix with D4⊂O is sketched in

Fig. 5.7(g) and similarly for D3⊂O in Fig. 5.7(h). Two kinds of D2⊂O in Fig. 5.7(i-j)

share degeneracy sums with the Abelian cases.

Each matrix display lists exact degeneracy `α due to global symmetry O but

not the cluster quasi-degeneracy `λ↑G due to local symmetry induced representation

dλ(L)↑G. The latter is found by summing global degeneracy `α of all states |αa,λ〉 with

the same local symmetry λ as per Frobenius reciprocity in (4.65). The result is integer

`λ↑G=(`λ)◦G/◦L mentioned above.

5.3 Spectral resolution of full Oh symmetry

Including inversion I and reflection operations σn allows parity correlations between

even-g (gerade) and odd-u (ungerade) states. Two classes of C2 subgroups lie in

O and appear in separate C2-correlations in (5.2). In the following Oh correlations,

Eq (5.18), the two types of C2v subgroups have separate tables. The first subgroup

Ci
2v=[1, σy, i1, σ2] is the one of the three local symmetries shown in Fig 5.7 while

the second Cz
2v=[1, ρz, σy, σx] is just a subgroup of local symmetry C4v as would be
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C34
2v=[1, ρz, σ3, σ4].

Oh ↓ C4v A′ B′ A′′ B′′ E

A1g ↓ C4v 1 · · · ·

A2g ↓ C4v · 1 · · ·

Eg ↓ C4v 1 1 · · ·

T1g ↓ C4v · · 1 · 1

T2g ↓ C4v · · · 1 1

A1u ↓ C4v · · 1 · ·

A2u ↓ C4v · · · 1 ·

Eu ↓ C4v · · 1 1 ·

T1u ↓ C4v 1 · · · 1

T2u ↓ C4v · 1 · · 1

,

C3v A′ A′′ E

A1g 1 · ·

A2g · 1 ·

Eg · · 1

T1g · 1 1

T2g 1 · 1

A1u · 1 ·

A2u 1 · ·

Eu · · 1

T1u 1 · 1

T2u · 1 1

,

Ci
2v A′ B′ A′′ B′′

A1g 1 · · ·

A2g · 1 · ·

Eg 1 1 · ·

T1g · 1 1 1

T2g 1 · 1 1

A1u · · 1 ·

A2u · · · 1

Eu · · 1 1

T1u 1 1 · 1

T2u 1 1 1 ·

,

Cz
2v A′ B′ A′′ B′′

A1g 1 · · ·

A2g 1 · · ·

Eg 2 · · ·

T1g · 1 1 1

T2g · 1 1 1

A1u · · 1 ·

A2u · · 1 ·

Eu · · 2 ·

T1u 1 1 · 1

T2u 1 1 · 1

(5.18)

The local symmetry Ci
2v⊂Oh unambiguously defines all states in its correlation array

while the other C2v symmetries fail to split the Eg and Eu sub-species. The former

lead to complete eigenvalue formulae. The latter may not.
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Table 5.4: Splittings of O ⊃ C2(i4) given sub-class structure.

O ⊃ D4

⊃ C2(i4)
0◦ rn120◦ ρn180◦ Rn90◦ in180◦

02

εA1
02

g0 4r12 + 4r34 2ρxy + ρz 4Rxy + 2Rz 4i1256 + i3 + i4
εE02 g0 −2r12 − 2r34 2ρxy + ρz −2Rxy + 2Rz −2i1256 + i3 + i4
εT102

g0 −2r12 + 2r34 −ρz 2Rxy −2i1256 − i3 + i4

ε
T2E
02

g0 2r12 − 2r34 −ρz −2Rxy 2i1256 − i3 + i4

ε
T2A1
02

g0 0 −2ρxy + ρz −2Rz i3 + i4
12

εA2
12

g0 4r12 + 4r34 2ρxy + ρz −4Rxy − 2Rz −4i1256 − i3 − i4
εE12 g0 −2r12 − 2r34 2ρxy + ρz 2Rxy − 2Rz 2i1256 − i3 − i4
ε
T1E
12

g0 2r12 − 2r34 −ρz 2Rz −2i1256 + i3 − i4
ε
T1A2
12

g0 0 −2ρxy + ρz −2Rz −i3 − i4
ε
T2E
12

g0 −2r12 + 2r34 −ρz −2Rxy 2i1256 + i3 − i4

5.3.1 Resolving Hamiltonians with C2v local symmetry

As the order of the local sub-group symmetry goes down, the degeneracy and complex-

ity of the rotational cluster must increase. Oh ⊃ C2v clusters are 12 fold degenerate

and come in 4 cluster species. Matrices describing this system are larger, but O ⊃ C2

will show many of the same effects. To actually resolve the doubled T1 or T2 triplets

of O ⊃ C2 requires distinguishing the u and g versions of each. The C2 clusters are

12 fold degenerate, but they are also easily displayed.

As mentioned earlier, the O ⊃ D3 ⊃ C2 and O ⊃ D4 ⊃ C2 local symmetries give

identical cluster degeneracies and groupings, but with cluster splittings and structure

dependent on the sub-group chain. Though it neglects inversion, Fig. 5.7 indicates

that there are several different types of O ⊃ C2 (and, thus Oh ⊃ C2v local sub-group

symmetries). Examples given here involve the O ⊃ D4 ⊃ C2(i4) sub-group chain.

Compared to O ⊃ C4 and O ⊃ C3, the splittings of O ⊃ C2 are relatively simple

to calculate since the terms in (5.16) will be real. Creating splitting tables for C2 is

done in the same way as for Tables 5.2 and 5.3. It is shown in Table 5.4.
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Table 5.5: Matrix that converts tunneling strengths to cluster splitting energies
02 1 r12, i1256 r34, Rxy ρxy, Rz ρz, i3
εA1

02
1 4 4 2 1

εE02 1 −2 −2 2 1

εT102
1 −2 2 0 −1

εT2E,02 1 2 −2 0 −1

εT2A1,02
1 0 0 −2 1

Local sub-group tunneling matrices and their inverse

Table 5.4 can be further broken apart to demonstrate how a numerical program may

automatically evaluate the tunneling splittings for O ⊃ C2 local-symmetry structures.

This would require an invertible transformation between cluster-splitting energy and

tunneling parameters whose inverse is easily defined.

Eq (5.16) produces Table 5.4, but even after combining splittings from each sub-

class, repetition exists. Two steps convert Table 5.4 into convenient, reduced transfor-

mation matrices. First we assume that only nm levels may interact with themselves,

e.g., that 12 and 02 clusters are decoupled. Second we recognize that only half of the

subclasses are needed to fully define the possible splittings, the others simply repeat

the same information. Table 5.4 shows this for the 02 cluster. Looking at the A1 level

in the 02 cluster, one can see that the subclasses 1, rn, ρn make a vector {1, 4, 4, 2, 1}

while the Rn, in subclasses make a vector {4, 2, 4, 1, 1}. These vectors are reordered

versions of each other. Thus only one is needed. The A2 level in the 12 cluster shows

the same similarity, but the Rn, in now contain a negative sign.

By applying only five splitting parameters to a single cluster gives a condensed

version of Table 5.4 H transforms five select symmetry-based tunneling values into

five energy levels reduced in the form of Eq (5.16). Such a table is shown in Table 5.5.

Its inverse in Table 5.6 gives tunneling parameters for a given set of cluster energy

splittings in the reduced form of Eq (5.17).

The following example demonstrates this process for a simple Hecht Hamilto-
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Table 5.6: Matrix that converts cluster splitting energies to tunneling strengths
02 εA1

02
εE02 εT102

εT2E,02 εT2A1,02

1 1
12

1
6

1
4

1
4

1
4

r12, i1256
1
12

− 1
12
−1

8
1
8

0
r34, Rxy

1
12

− 1
12

1
8

−1
8

0
ρxy, Rz

1
12

1
6

0 0 −1
4

ρz, i3
1
12

1
6

−1
4
−1

4
1
4

nian written for an octahedral floppy spherical-top molecule of varying spectroscopic

parameters. The specific Hamiltonian used is (5.19). The terms T [4] and T [6] are

rotational distortions written in an octahedral basis and are fourth and sixth order

respectively in J . The parameter θ is varied to explore the different relative contri-

butions of T [4] and T [6] while keeping them normalized. Because T [4] and T [6] are

derived from octahedral operators, (5.19) (a repeat of Eq (3.3)) represents all possible

octahedral pure rotational Hamiltonians up to sixth order.

H = BJ2 + cos(θ)T [4] + sin(θ)T [6] (5.19)

It was noted in Fig 3.4 that both the cluster structure location and the RES shape

will change significantly as the Hamiltonian parameters change in (5.19). As such,

the tunneling parameters and cluster splittings must also change. Fig. 5.8 plots the

rotational energy levels of (5.19) for changing θ and shows the corresponding RES for

several points along the parameter-space. RES plots in the figure demonstrate how

the phase-space changes with the Hamiltonian fitting terms.

RES diagrams in Fig. 5.8 along with the cluster degeneracy indicate where in

the parameter-space C2 clusters exist. The lowest cluster in Fig. 5.8 in the range

θ ' 18◦ − 132◦ is C2 symmetric. This cluster is magnified nearly 100 times and

displayed in Fig. 5.9. In Fig. 5.9 the inside plot shows the C2 cluster only and the

levels have been adjusted to only show level splittings, not the shifting of the cluster.

This is done by subtracting a θ-dependent shift from all rotational levels.
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Figure 5.8: J=30 Energy levels and RES plots for T [4,6]vs.[4,6] mix-angle θ with
T [4] levels above φ=0◦(extreme left), T [6] levels at θ=90◦(center), and −T [4] levels at
θ=180◦(extreme right). C4 local symmetry and 6-fold level clusters dominate at θ=17◦

while C3 type 8-fold level clusters dominate at θ=132◦. In between these extremes
are C2 type 12-fold level clusters particularly around θ=80◦ where a C3 − C4 level-
cluster-crossing of the top 14 levels occurs.
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Figure 5.9: The plot focuses on the lowest cluster in the previous energy plot (Fig. 5.8)
of the T [4,6] Hecht Hamiltonian for J = 30. The inside plot has been magnified 100
times. The inside diagram also centers the levels around their center of mass, showing
only the splittings and ignoring the shifts of the cluster. As before, color indicates the
symmetry of each level. The vertical lines on inside plot draw attention to specific
clustering patterns described in the text.
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There are repeated points of coincidence in Fig. 5.9 including degeneracy between

levels of different symmetry or notable splitting patterns. These are included in

Fig. 5.9 by the vertical dashed, dotted and solid lines corresponding to (A1, E, T1, T2, T2)

splitting patterns of (0, 0, 0, 1,−1), (2,−1, 1, 1,−1) and (2,−1, 1, 0,−1) respectively.

The transformation in Table 5.6 converts each splitting pattern marked in Fig. 5.9

into a vector of tunneling amplitudes for each of several values of the fitting parameter

θ used in the Hecht Hamiltonian (5.19). The tunneling for these cases is shown in the

inset legend of Fig. 5.9 and is consistent with the notation of Tables 5.6 and 5.5.

Particularly surprising are three cases of dashed lines consisting of a triple crossing

of (A1, T1, E) lying between a pair of T2 levels. (Two additional such cases appear

outside of the 18◦ to 132◦ range.) This (T2[A1, T1, E]T2) cluster belongs to O ⊃ C2,

induction 02(C2) ↑ O. One normally sees (A1, T1, E) clusters present in the ν3 spectra

of CH4 taken by Pine[5] and assigned to be a C4-type cluster[6], though its band

location was close to the C2 separatrix region.

The relationship between the more common (A1, T1, E) C4 methane clusters and

this extraordinary cluster-within-cluster (T2[A1, E, T1]T2) O ⊃ C2 cluster shown here

is not yet understood. Despite this, students of group theory may not be amazed to

see a connection between T ⊃ C4 and O ⊃ C4 ⊃ C2 as the tetrahedral and octahedral

groups are isomorphic. Moreover the O ⊃ C4 ⊃ C2 subgroup chain must contain the

T ⊃ C4 chain. Continuing the subduction from C4 to C2 entails further splitting of

the C4 clusters. This does not explain the (A1, T1, E) C4 pattern, but does show a

route to its origin.

5.4 Conclusion

Using the developments of Chapter 4, it is possible to use group operator based

parameters to construct and solve Hamiltonians in a more complete and rigorous

manner than was previously possible using only nearest-neighbor coupling amplitudes.
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This more general approach accounts for changes in phase of eigenvector components,

a common point of difficulty and confusion for nearest-neighbor models.

Parameterization based on local symmetry of rotational eigenstates greatly reduces

the number of possible tunneling parameters by showing equivalency between them,

leading to condensed forms such as Table 5.2 or Table 5.5. This derives possible cluster

splitting patterns for a particular molecular symmetry group subduction.

The use of such a basis is shown explicitly in Fig 5.9. In this figure, the split-

tings are labeled in terms of the basis created by the body-frame operations. This

ortho-complete transformation between energy splittings and tunneling parameters is

a computationally simple process embodied by Eqs (5.5) and (5.6) and more able to

be automated for use in more complex spectral analyses, such as the disentanglement

of polyadic rovibrational bands discussed in chapter 6.
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Chapter 6

Rotational Energy Surfaces Analysis for the ν3/2ν4 Polyad of CF4
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6.1 Chapter Summary

CF4 has spectroscopic interest because, like CH4, it is a known greenhouse gas and

one that requires more detailed study. Experimental data for the ν3/2ν4 polyad band

exist[1], but has recently been expanded[2]. Of the spherical tops, CH4 is one whose

vibrational structure contains the most anomalously resonant anharmonic and Coriolis

interactions. It s heavier cousin, CF4, also has strong Coriolis interactions. Moreover,

its higher inertia means much higher J values in standard temperature spectroscopy

and more opportunity to investigate rovibronic quantum mechanics.

This chapter is an attempt to offer theoretical insight to the experimental and

calculated spectrum of CF4 using semi-classical RES methods. The treatment done

here can be extrapolated to help study other molecules of similar symmetry including

the very fluxional CH4 and P4.

Semi-classical or semi-quantum solutions often provide a qualitative understand-

ing that would be more obscure by purely quantum mechanical or numerical means.

Rotational Energy Surface (RES) analysis is one such technique. This study uses

Rotational Energy Surface analysis to provide such understanding to rotational level

clusters found in the ν3/2ν4 polyad of CF4.

Previous chapters required only a single RES to show rotational behavior given a

vibrational singlet or ground state. The inclusion of a vibrational polyad removes this

simplification, requiring a combination of interacting Rotational Energy Eigenvalue

Surfaces (REES). The surfaces plotted each represent parts of multiply connected

phase-space surfaces. As such they are useful in locating possible tunneling paths and

clustering patterns.

6.2 Polyad Formalism

The polyad model is a method for classifying molecular vibrational interactions in

which vibrational states which may interact with each other as well as with rotational

163



states. This implies that vibrational interactions may be anharmonic, non-linear and

may break the Born-Oppenheimer Approximation between molecular rotation and

vibration.

Once a polyad is defined in terms of its vibrational interaction, the rovibrational

Hamiltonian becomes an outer product of anharmonic rotational and vibrational parts.

The polyad model is a particularly convenient tool used to evaluate spherical-top

molecules for which polynomials of rotational and vibrational terms may be com-

putationally inexpensive to calculate and are based on parameters of the molecular

symmetry group. Ref [3, 4] describes how formulations of anharmonic rovibrational

Hamiltonians may be rewritten using the polyad model.

A polyad Hamiltonian is one that has been transformed into the form of Eq (6.1).

In this form, P0 is the vibrational ground state (GS) while Pk (k = 0, . . . , n) are

various vibrationally excited interactions. P{1} refers to a single vibration or monad.

P{2} refers to two coupled vibrations or a dyad. The dyad ν3/2ν4 is the focus of

Sec 6.5.

H = H{P0=GS} +H{P1} + · · ·+H{Pk} + · · ·+H{Pn−1} +H{Pn} (6.1)

The specific case shown in this chapter is a semi-classical treatment of the ν3/2ν4

polyad (dyad) band of CF4. The ν3/2ν4 is an interaction of the ν3 vibrational triplet

and the harmonic of the ν4 vibrational triplet. The ν3/2ν4 exists because of the coin-

cidence in energy of these two vibrations (ν3 = 1283.460cm−1 and ν4 = 631.059cm−1).

The Hamiltonian used here includes P0 = GS, P1 = ν3 and P2 = ν3/2ν4.

The polyad formalism is convenient for both theoretical and computational scien-

tists for several reasons. It strictly uses parameters derived from group operations.

This creates computational conveniences and it offers a coherent language to describe

various spectroscopic effects and features. Similar formulation can be used to calcu-

late electric dipole moments and spectral intensities as well as energy levels. Once
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enough spectroscopic data exists to create fitting parameters, a synthetic spectrum

can be generated including spectral linewidth, energy and intensity.

Once a specific vibrational and rotational Hamiltonian operators are created, they

may be reused for other molecules of the same symmetry. Thus, changes between sim-

ilar molecules of the same symmetry may only require a change in fitting parameters.

Terms HPk also have no matrix elements with Pk′>k terms, making the continuation

of an expansion. Expanding to higher order terms uses previously generated operators

in this formalism as higher order (or higher polyad) terms are simply added to the

Hamiltonian.

6.3 Development

The rewritten polyad Hamiltonian is expressed as an outer product of molecular-

symmetry-based rotation and vibration operators as shown in Eq (6.2). The sum in

Eq (6.2) is over all possible rotation and vibration operators while the t
Ω(K,nΓ)Γ1Γ2

{γ1}{γ2} co-

efficients are fitting parameters found for a particular set of operators and a particular

molecular species and transition.

The operator V
Γ1Γ2(Γν)
γ1γ2 is a vibrational operator for coupling between mode γ1 (of

symmetry Γ1) and γ2 (of symmetry Γ2). The term Γν is the symmetry of the combined

Γ1 ⊗ Γ2 operator.

Rotation operator RΩ(K,nΓr) is similar to the rotational Hamiltonian operators

found in chapter 3. The term Ω defines the order, K defines the rank and Γr de-

fines the tetrahedral symmetry of the operator. The term n in the rotation operator

helps distinguish operators which may have the same tetrahedral symmetry. These

operators are not shown explicitly here, but may be found in ref [3].

The term β is a numerical coefficient defined as β =
√

[Γ1](−
√

3/4)Ω/2, unless

(K,nΓ) = (0, 0A1) when β = 1. Thus it is also dependent on the vibrational and

rotational operators used, though it is independent of molecular species. The specific
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fitting parameters used here can be found in ref [2].

H =
∑

t
Ω(K,nΓ)Γ1Γ2

{γ1}{γ2} β(RΩ(K,nΓr) ⊗ε V Γ1Γ2(Γν)
γ1γ2

)A1 (6.2)

Individual matrix elements are formed as Eq (6.3). Such a Hamiltonian is fully quan-

tum mechanical. Reduced matrix elements, normalization factors, generalized 3J

symbols and isoscalar factors are all disused in depth in ref [3, 5, 6]. Many of these

terms are easily calculated by easily available software packages[7, 8, 9]. To make this

a semi-quantum Hamiltonian, the rotation operators must be classical functions of

body-frame angles θ and φ. This changes the form of the matrix elements into the

simpler Eq (6.4), forcing a basis of vibrational components only since the rotation is

now classical.

〈
JnrCr; {νs}Cν ;C

∣∣∣
(
RΩ(K,n,Γ) ×ε V Γ1Γ2(Γ)

γ1γ2

)A1
∣∣∣ Jn′rC ′r; {ν ′s}C ′v;C ′

〉
(6.3)

= (−1)J+KK
(K J J)

(nΓ n′rC
′
r nrCr)

(−1)Γ+C+C′r+Cv



C ′v C ′r C

Cr Cv Γ



√

1

[Γ]

×
〈
J
∥∥RΩ(K)

∥∥ J
〉 〈
{νs}Cv

∥∥εV Γ1Γ2(Γ)
γ1γ2

∥∥ {ν ′s}C ′v
〉
δCC′

〈
{νs}Cνσ

∣∣∣
(
RΩ(K,nΓ) ×ε V Γ1Γ2(Γ)

γ1γ2

)A1
∣∣∣ {ν ′}C ′νσ′

〉
(6.4)

=
1

N




Γ Γ A1

σ1 σ2






C ′ Γ C

σν σ σ′nu


RΩ(K,nΓ)

〈
{νs}Cν

∥∥εV Γ1Γ2(Γ)
γ1γ2

∥∥ {ν ′s}C ′ν
〉

While several studies have generalized the RES for cases involving vibration[10,

11, 12] or torsion, some being totally classical [13], the present treatment keeps vibra-

tion a quantum operator. In this way the total molecular Hamiltonian can be thought
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Figure 6.1: All 9 interacting Rotational Energy Eigenvalue Surfaces for ν3/2ν4 of CF4

with J = 60. Minimum uncertainty cone is also shown for this value of J . Surfaces
are also dissected show those of lower energy beneath. Outer RES also tend to be
more spherical, making contours challenging and causing them to be slightly dappled.

of as a vibrational Hamiltonian matrix which has elements made up of classical ro-

tational terms. This total molecular Hamiltonian is then numerically diagonalized,

giving several interacting Rotational Energy Eigenvalue Surfaces (REES). In the fully

classical description there is a single surface existing in a higher dimensional space.

The diagonalization prevents surfaces from crossing one another.

Figure 6.1 shows the 9 interacting surfaces describing the ν3/2ν4, J = 60 manifold

of CF4. Taken as such a large group they are of limited utility. Following sections

show how these nested surfaces can be used for to analyze this ν3/2ν4 polyad.

6.4 3D Oscillator Example

Though polyad formalism is well known in molecular spectroscopy, it is less familiar to

the broader physics community. As a means of introduction, a short example is given,

showing behavior familiar to physicists. More details on a similar problem can be

found in ref [10]. Further examples of rovibrational and multi-rotor RES are included
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in appendix 6.A.

The simplest polyad is that of a single vibrational excitation (monad). This monad

band is formed by the interaction between rotational modes and a single vibrational

mode. Using a minimum number of terms, such a rovibrational spectrum may be

modeled as an uncoupled vibrational term, a rotational term and a Coriolis term. In

this case, the Hamiltonian could have the form found in Eq (6.5).

H = ν3 +BJ2 +Bζ ~J · ~v3 (6.5)

This simplified case keeps the notation and parameterization of tetrahedrally sym-

metric molecules (XY4). The vibration ν3 is chosen because it is the lowest vibrational

state that has a non-zero Coriolis interaction. For an XY4 molecule, ν3 is a three-

dimensional oscillator of symmetry F2.

Using the notation of Eq (6.2) the Hamiltonian terms used in this example are

the following. The pure rotational term is B
(
R2(0,A1) ⊗ 1

)
. This is also the H{P0},

the vibrational ground state term which allows molecular rotations. The next two

terms are a part of H{P1} since they include a contribution from the vibration ν3. The

pure vibrational term is ν3

(
R0(0,A1) ⊗ V F2F2(A1)

3 3

)
. The Coriolis term is written as

Bζ
(
R1(1,F1) ⊗ V F2,F2(F1)

3 3

)
, coupling rotational and vibrational operators.

While estimates of the Coriolis coupling term can be calculated[14], that is not the

process this example is intended to show. In fact, the coupling term is often taken as

a fitting parameter, as it is done here.

To demonstrate the similarity between effects in molecular spectroscopy and the

atomic splittings better known to physicists, Fig 6.2(a) plots the splitting of the

vibrational band with increasing J . The plot is of reduced energy, subtracting the

BJ(J + 1) shift from each point, showing only the shift. The example assumes the

following parameters: ν3 = 1000 cm−1, B = 1 cm−1, Bζ = 0.1 cm−1.

This behavior is analogous to that of ~l · ~s coupling. The vibrational angular mo-

168



mentum of the tripplet ν3 will split the rotational sub-levels into three distinct bands

just as l and s will form two bands in J . For ~l · ~s coupling, J = l ± 1/2 are possible

values. Here, splittings happen in the same fashion, but from vibrational angular

momentum ν3.

Other types of splitting are possible in this context as well. The distinct bands

formed in Fig 6.2(a) can be split into constituent J sub-levels by rotational anhar-

monicity. Such a term is introduced to form Fig 6.2(b). The term added here is

forth-order in J and splits the bands, showing the J sub-levels underneath. The exact

term is shown in Eq (6.6) with D = 10−7cm−1. Though the constant in the term is

small, it quickly becomes large for high values of J .

R4(4,A1) = D
(
J4
x + J4

y + J4
z − 3J2

yJ
2
z − 3J2

x

(
J2
y + J2

z

))
(6.6)

This short example has shown the effect of two different operators inside a sin-

gle polyad, one that split degeneracies by rotation and one that did so by rotation-

vibration interaction. In treating the CF4 ν3/2ν4 dyad, both types of operators are

active and both types will couple to a second vibration. The key distinction between

this simplified example and the following dyad is this coupling between separate vi-

brational modes. That is, the distinction between monad and dyad.

6.5 Analysis

6.5.1 Experimental and Computational Details

The spectrum of CF4 was measured by Fourier transform infrared (FTIR) methods

at a resolution of 0.003cm−1 both at room temperature and by supersonic expansion

jet at at temperature of nearly 15 K. The experimental work was done by Maul and

coworkers[2] in Braunschweig, Germany. A synthetic linelist of this spectrum was

extrapolated Boudon and coworkers[2] and included in the HITRAN 2008[15] and
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(a) Reduced Energy plots shows the energy splitting while removing BJ2 term.
This figure demonstrates splittings from a monad of a vibrational triplet state.
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(b) Including anharmonic rotational terms may split the bands formed by the
Coriolis interaction.

Figure 6.2: Reduced Energy plots may show different types of interactions depending
on the model Hamiltonian used.
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GEISA 2009 databases. The fitting parameters associated with this experimental fit

and synthetic spectrum were used in this analysis.

6.5.2 Rotational Band Boundaries

This section evaluates the ν3/2ν4 polyad band of CF4, explaining rotational clusters in

terms of symmetry reduction and explaining the boundaries of the rotational bands for

a given angular momentum. Each REES represents a band of rotational energy levels.

The bands may interact with each other through phase-space tunneling, though the

effect is small. The minimum and maximum of the REES represent classical bounds

to the quantum band. Quantum levels outside the classical boundaries represents

a breakdown of the semi-quantum treatment. Fig 6.3 plots quantum rovibrational

energy with changing J along with the height of the C4, C3 and C2 axes for each

REES in the ν3/2ν4 polyad. Evaluating the height (energy) of these subgroup axes

allows for great computational simplicity. A numerical search for maxima and minima

would be computationally expensive and unnecessary because, by definition, a global

maxima or minima for an object of symmetry G must exist only on axes of subgroup

H.

It is possible for the C1 axis to provide a maximum or minimum, but since the

axis moves, its height is significantly more challenging to calculate and would require

a numerical search. Though rare, these C1 structures do occasionally exist in ν3/2ν4.

Fig 6.4 shows an REES which includes evidence of C1 local structure. While they

have been shown to exist, their effect is small. As such, we do not track them, though

they could be a small source of error, particularly at even higher values of J .

Correspondence between the classical band boundaries and the quantum levels is

clear for most of Fig 6.3. Regions of Fig 6.3 which diverge the most are in the range of

J > 50 on the third vibrational band. The fifth band near J = 60 has a single cluster

which is out of the semi-quantum boundaries. Closer inspection shows this band to

be build of an REES with C1 clusters as global maxima, which is shown in Fig 6.4.
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Though the C1 maxima extends past the band boundaries, the highest cluster is still

beyond the semi-classical approximation.

Clusters do fit more tightly in low J portions of Fig 6.3. Slight disagreement found

at low J is thought to be of different origin from those at high J . Lack of correspon-

dence at low J can be easily thought of as a difference between classical and quantum

rotational operators. This is distinct from the lack of correspondence at higher J

which is likely from the simplification of the outer product of the rotational and vi-

brational Hamiltonians in the semi-quantum approximation. Thus, this difference can

be considered a type of Born-Oppenheimer breakdown.

6.5.3 Rotational Level Clustering

While taken all at once, the nine rotational energy surfaces, as shown in Fig 6.1, are

of limited utility. Taken individually they offer an explanation as to the origin of

rotational level clusters seen in the ν3/2ν4 band.

Individual RES plots are shown in Fig 6.5. The plots are taken of the J = 60

rotational energy surfaces, starting with the fourth rotational band and increasing to

the sixth of nine. These were chosen because they are of high enough J to have a

significant number of rotational clusters (REES contours) on each surface. They each

show local regions of very different subgroup symmetry while still showing clear global

octahedral symmetry.

There are several noteworthy features in Fig 6.5. All REES plots show excellent

agreement between the minimum uncertainty cone and accompanying level cluster.

Fig 6.5(d) makes this slightly less obvious since this cluster is found along the C2 axis

and is deformed into an ellipse. Figs 6.5(c) and 6.5(d) also show clusters matching

this cone, but place along the C3 axis. Some clusters do not match intersections with

uncertainty cones. While this is common near separatrix regions, as one would expect

given the shift in local subgroup symmetry, it occasionally happens for higher Jz cones

as J increases.
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Figure 6.3: Semi-quantum outlines show band boundaries for the rotational levels of
ν3/2ν4. Reduced energy is defined as the quantum energy subtracted by all scalar
fully rotational terms. In this way, the reduced energy shows the energy splittings
without the energy shifts related only to increasing J .
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Figure 6.4: C1 local symmetry structures are rare, but we see some at J = 57 on the
fifth surface from the bottom. Others do exist, but this one is amongst the clearest
at this range of J .
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Importantly, clusters placed on each region do show the internal symmetry and

degeneracy expected of the given local symmetry region. The only notable exception

to this is when neighboring REES plots overlap in range. Though the surfaces cannot

cross, the maxima of one may extend above the minima of the next. In such cases an

REES may show a contour that belong to a different REES. This is easiest to spot

when the improperly placed cluster either shows the clustering related to one REES

and not the other or when the cluster obeys the angular momentum uncertainty for

one REES and not the other.

6.6 Conclusion

Semi-quantum Rotational Energy Eigenvalue Surface plots can predict several impor-

tant spectral features for the ν3/2ν4 polyad band of CF4. The semi-classical tools

of angular momentum uncertainty cones works with some success in this sort of sys-

tem. While for vibrational singlets it is highly predictive, for this polyad system the

technique can lose precision as J increases. As in the case of vibrational singlets,

angular momentum uncertainty cones are most accurate at predicting cluster energies

of clusters that are more localized to a single axis, thus showing less K mixing.

The REES are effective at finding the boundaries of the rotational bands for a

given angular momentum, J . The REES are perhaps the most useful in predicting the

rotational clusters that originate from symmetry reduction from the global molecular

symmetry to the local subgroup symmetry regions of the REES. This is typically

done for REES for vibrational singlets. For polyads it is more efficiently done with

an energy plot using semi-quantum outlines as in Fig 6.3. The semi-quantum outlines

help diagnose which of the possible local symmetry regions can produced symmetry

reduced clusters.

While some of this analysis has been done in previously for monads, this work

shows that semi-classical theory can be extended to a system with significant rotation-
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(a) J = 60 3rd surface has C4

and C3 local symmetry.
(b) J = 60 4th surface has C4 local
symmetry.

(c) J = 60 5th surface has C4 and
C3 local symmetry.

(d) J = 60 6th surface has C3 and
C2 local symmetry.

Figure 6.5: CF4 ν3/2ν4 REES plots. Surfaces are labeled starting from the center going
out. Looking at surfaces one by one shows their individual geometry and indicates
how the level clusters (contours) must arrange themselves. We include only 4 surfaces
as examples, but many are examined in the analysis.
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vibration coupling which also requires many REES.
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Appendix 6.A Multiple Rotors and Rotor-2D Vibration Hamiltonians
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Fluxional rotor molecular systems as well as polyad states are areas of considerable

spectroscopic interest. Molecules demonstrating this behavior are known to be green-

house gasses and many exist astronomically. This appendix demonstrates the simplest

possible Rotational Energy Surfaces for such states. A more detailed explanation is

found in ref [1].

6.A.1 Constrained Molecular Double Rotators

Common composite rotors are molecules which are a rigid rotor, but with an attached

methyl (CH3) pinwheel. Both the main rotor angular momentum,R, and methyl rotor

angular momentum,S, must be considered in this case. Moreover, R and S will add

to make total angular momentum ~J = ~R + ~S.

When treated numerically, these rotor-rotor interaction are treated with a torsional

potential as in Eq (6.7). In the simplified case here, the secondary rotor or gyro, S is

constrained to exist in a fixed body-frame axis.

HR+S = Hrotor,R +Hgyro,S + VRS (6.7)

Given that S is constrained, it does no work and need not contribute to the Hamil-

tonian. This should be rewritten to incorporate the fact that vecR = ~J − ~S. For a

main rotor that is an asymmetric top, the Eq(6.7) can be written as Eq (6.8).

HR+S,fixed = A (Jx − Sx)
2 +B (Jy − Sy)

2 + C (Jz − Sz)
2 +Hgyro,S (6.8)

= AJ2
x +BJ2

y + CJ2
z − 2AJxSx − 2BJySy − 2CJzSz +Hgyro,S

For a spherical top, Eq(6.8) condenses into (6.9).

H = BJ2 − 2S · J +Hgyro,S (6.9)
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If S is treated as classical and constant, then Eq (6.9) simplifies, forcingHgyro,S=const.

which may be removed from the total Hamiltonian, as in (6.10).

HR+S,fixed = AJ2
x +BJ2

y + CJ2
z − 2ASxJx − 2BSyJy − 2CSzJz (6.10)

By converting components Jx, Jy and Jz into T kq form, as described in chapter 1, the

Hamiltonian Eq (6.10) may be plotted as an RES. Fig 6.6 shows RES plots for various

values of rotor A,B, and C coefficients. Fig 6.6(a) is formed from a spherical top with

a gyro S vector pointing along the body-frame x axis. This create a cardioid-like

surface that has been pushed away from the origin by the S vector.

Figs 6.6(b) and 6.6(c) are similarly formed, but from prolate and oblate tops

respectively. Both prolate and oblate versions contain a separatrix while Fig 6.6(a)

did not.

6.A.2 2D Oscillation - 3D Rotation Analogy

RES plots identical to those in Fig 6.6(c) may also be created for an analogous system:

one with a rotor fixed to a vibrational angular momentum[1]. In the same way 2D

electric field polarization may be plotted as a vector in a three dimensional Stokes-

space, any 2D vibration (or two 1D oscillations) may be plotted as such a 3D vector

using either Pauli spinors or Hamilton quaternions[2, 3]. The Hamiltonian will have
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(a) Spherical-top with gyro

(b) Prolate rotor with gyro on the body-x axis

(c) Oblate rotor with gyro on the body-x axis

Figure 6.6: Multi-rotor RES formed from different types of rotors will make RES with
varying topographies. Unlike other RES, the contours here do not indicate quantum
energies. They exist only to show changes in topography.
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the form of Eq (6.11).

H =




A B − iC

B + iC D


 (6.11)

=
A+D

2
σ0 +

A−D
2

σA +BσB + CσC

where

σ0 =




1 0

0 1


 σA =




1 0

0 −1




σB =




0 1

1 0


 σC =




0 −i

i 0




The constants A,B,C and D should not be confused for the rotational constants

or inverse moments of inertia. The labels A−D
2

(asymmetric diagonal), B (bilateral)

and C (Coriolis or circular) are mnemonics for the Pauli spinors. In this way, the

rovibrational Hamiltonian is converted to Eq (6.12).

H = S0J0 + S · J (6.12)

where

J0 = σ0, JA =
σA
2
, JB =

σB
2
, JC =

σC
2

and

S0 =
A+D

2
, SA = (A−D), SB = 2B, SC = 2C

In this Stokes analogy, what was an RES is now a deformed Stokes sphere. The

directions x, y and z correspond to linear x, y and circular polarization of the 2D

oscillator. The radius of the surface now indicates the amplitude of oscillation. Given

the total angular momentum is constant, neither the vibrational angular momentum

nor the rotor angular momentum need be, so long as the sum is.

183



B-type Hamiltonians HB, built of σB operators, angular momentum J must pre-

cess about the x axis symmetrically as in Figs 6.6(a) and 6.6(b). Eigenvectors of

these Hamiltonians are linearly polarized oscillators. The difference between the two

figures is in the contribution of a rotational T 2
0 operator, but not in σα contributions.

Fig 6.6(c) includes a B-type and also an A-type term to the rovibrational Hamilto-

nian, forming eigenvectors at two points that are still in the linear x,y plane, but not

along either an x (B) or y (A) axis.

6.A.3 Rovibrational Multi-surface RES Plots

Rovibrational Hamiltonians may also be plotted a second way. This involves treating

the single-rotor rotation classically (though of fixed magnitude) and the vibration

quantum mechanically. This is the method used in chapter 6 to analyze the ν3/2ν4

dyad band of CF4. The simplest possible example of this is to include the RES of a

classical rotation coupled to a quantum mechanical spin. For this rotor-spin example,

the 2× 2 Hamiltonian must be diagonalized, creating two surfaces[4].

Converting Eq (6.8) to quantize spin S creates Eq (6.13).

H = M0J
2 +QxxJ

2
x +QyyJ

2 +QzzJ
2
z

+Dx|S|σxJx +Dy|S|σyJy +Dz|S|σzJz (6.13)

=




h(J) +Dz|S|Jz |S|(DxJx − iDyJy)

|S|(DxJx + iDyJy) h(J)−Dz|S|Jz




where

h(J) = M0J
2 +QxxJ

2
x +QyyJ

2
y +QzzJ

2
z

and

dα = Dα|S||J | M0 = A+B + C

Dα = −2ASα Qzz =
2C − A−B

6
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(a) Classical plot creates intersecting surfaces (b) Quantum plot creates nested surfaces that
avoid each other.

Figure 6.7: Classical and quantum spin treatment will result in different RES. Con-
tours show topography and do not indicate quantum energy. Surfaces are sliced open
to show the surface inside.

If treated quantum mechanically, this matrix must be diagonalized, giving the double

surface Rotational Energy Eigenvalue Surface (REES) plot shown in Fig 6.7(b). To

compare to classical behavior, Fig 6.7(a) plots the same, but with the off diagonal

terms ignored. This classical case still contains two surfaces, but they may intersect

while the quantum surfaces are forced to avoid each other. Behavior at the top and

bottom (away from the intersection) is nearly identical for both plots in Fig 6.7,

mirroring much of the classical-quantum agreement shown in chapter 2.
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Chapter 7

Conclusions

Despite a history nearly as long as quantum mechanics itself, quantum molecular

spectroscopy remains a dynamic field. Computational and experimental tools have

transformed the study, but new theoretical work is still needed to interpret these

results. Spectroscopists have proven themselves invaluable to analytical chemists, as-

tronomers, atmospheric scientists and remote sensing experts. Current advancements

in molecular theory are exploring the boundaries of physics, even exploring supersym-

metric string theory[1].

This work is an attempt to add to the qualitative toolset of molecular theorists.

We have introduced tools of quantitative approximations, but the goal is to allow

theorists to better explain the sea of experimental and computational data now being

created.

To that end, this dissertation demonstrates several tools. Chapter 2 describes

approximation methods for symmetric and asymmetric-top molecules. This is done

by using the connection between unitary multipole operators and Legendre functions

to make a semiclassical approximation, also demonstrating the breakdown of this ap-

proximation with increasing rank of the Hamiltonian parameter (multipole operator).

This work is continued in chapter 3 to increase the parameter space for which

octahedral spherical-top molecules have been explored by RES analysis. These regions

of the parameter space show a new type of rotational level clustering consistent with

the symmetry subduction from O to C1.

The enormous degeneracy of both the rotational level cluster and the local-symmetry

axes require a different type of analysis to explain the tunneling splitting of the clus-

ters. This is the motivation for the work of chapters 4 and 5. Chapter 4 describes
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how Hamiltonians may be written in terms of lab-frame and body-frame operators to

better parametrize tunneling. This technique was carried out in chapter 5 using C2

rotational clusters in octahedral molecules as an example.

While previous cases of RES analysis shown here were for vibrational singlets

or ground states, chapter 6 expands this work to a vibrational polyad involving the

nine interacting vibrational modes in the ν3/2nu4 dyad of CF4. This required nine

interacting, nested REES plots. Similar work has been done with triplet states as well

as fully classical analysis. Shown here is the connection between rotational energy

clustering and polyad REES plots. These are predictive of the synthetic spectra for

most cases. Errors between our analysis and the computed spectra are likely a result

of our semiclassical approximations as discussed in chapter 6.
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