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Abstract

Ferroelectrics (FE) and multiferroics (MFE) have attracted a lot of attentions due to their

rich and novel properties. Studies towards FE and MFE are of both fundamental and techno-

logical importance. We use a first-principles-based effective Hamiltonian method, conventional

ab-initio packages and linear-scale three-dimension fragment method to investigate several im-

portant issues about FE and MFE.

Tuning the properties of FE and MFE films are essential for miniaturized device applica-

tions, which can be realized through epitaxial strain and growth direction. In this dissertation,

we use the effective Hamiltonian method to study (i) BaTiO3 films grown along the (110) pseu-

docubic direction on various substrates, (ii) BaTiO3 films grown on a single substrate along

directions varying from [001] to [110] via [111] pseudocubic direction. Optimized physical re-

sponses or curie temperatures are found along some special directions or under epitaxial strain

of certain range. FE and MFE nanostructures are shown to possess electrical vortices (known

as one type topological defect), which have the potential to be used in new memory devices.

However, the dynamic mechanism behind them is barely known. We use the effective Hamil-

tonian method to reveal that there exists a distinct mode which is shown to be responsible for

the formation of the electrical vortices and in the THz region.

Spin-canted magnetic structures are commonly seen in MFE, which results in the coex-

istence of two or more magnetic order parameters in the same structure. Understanding the

physics behind such coupled magnetic order parameters is of obvious benefit for the sake of

control of the magnetic properties of such systems. We employ both the effective Hamilto-

nian and ab-initio methods to derive and prove there is a universal law that explicitly correlates

various magnetic order parameters with the different types of oxygen octahedra rotations.

FE or MFE possessing electrical vortices are experimentally shown to have a much lower

critical voltage in current-voltage curves. However, the exact underlying reason is unknown.

In this dissertation, we take the advantage of the effective Hamiltonian method and linear-scale

three-dimension fragment method to study the electronic properties of electrical vortices. Such

combined procedure clearly shows the existence of electrical vortices doesn’t decrease the band

gap, but increases it instead, which suggests the lower critical voltage in current-voltage curves



is likely to result from the defects inside the vortices.
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Chapter 1

Introduction and summary

Introduction

Ferroelectrics (FE) and multiferroics (MFE) form a large and important class of materials in

condensed matter,and are well characterized by some electrical and magnetic order parameters.

The existence of electrical and/or magnetical degrees of freedom renders such systems capable

of exhibiting rich physical phenomena, ranging from various phases of different electrical and

magnetical dipole configurations to substantial magnetoelectric and electro-optic responses.

Additionally, the couplings between these degrees of freedom and other structural degrees of

freedom lead to many various applications of FE and MFE, such as piezoelectric devices, trans-

ducers and sonar devices [1, 2]. Therefore, study towards FE and MFE is of both fundamental

and technological importance.

For miniaturized device applications, it is essential to understand FE films under the epi-

taxial strain arising from the mismatch of lattice constant between the films and the substrate.

Because of the couplings between the epitaxial strain and other degrees of freedom such as

polarization, epitaxial strain is one of the most efficient ways of FE films’ engineering. Con-

ventionally, only films grown along the [001] pseudocubic direction are considered. As a result,

the broad effects of growth directions on properties of ferroelectric films remain basically un-

explored, but could play as another way of tuning the properties of FE films. As detailed in

Chapter 3, BaTiO3 films grown along the [110] pseudocubic direction demonstrate several in-

teresting features that are absent in (001) films. Moreover, there is an inevitable limitation to the

magnitude and sign of the epitaxial strain that ferroelectric films can experience due to the fact

that there are rather few available substrates. Additionally, some of these substrates are rather
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expensive and/or induce high defects’ density within the films, which therefore further limit

their technological usefulness. One alternative way to overcome such obstacles may be to grow

ferroelectric films on a single, amply available and economic substrate (such as SrTiO3), but

vary the crystallographic direction (away from the pseudo-cubic [001] direction) of the growth

axis. As shown in Chapter 3, this alternative procedure has more advantages than conventional

(001) films.

FE and MFE nanostructures are experimentally observed to display dipole configurations of

vortex shape which is known as one type of topological defects. FE and MFE films displaying

electrical vortices have the potential to be used in new memory devices since they are smaller

in volume and probably faster in speed than magnetic vortices. As a result, understanding the

dynamical mechanism behind electrical vortices is the crucial first step. In Chapter 4, we use

a first-principles-based effective Hamiltonian method to reveal that there exists a distinct mode

which is shown to be responsible for the formation of the electrical vortices and in the THz re-

gion. Not only the dynamical properties but also the electronic properties of electrical vortices

are of great interest. A recent experimental measurement reported that the current–versus-

voltage (I-V) curve starts to be significant for a voltage of about 1 V in BiFeO3 (BFO) thin

films having artificially-created electrical vortices, that is about 2 V lower than the correspond-

ing critical voltage in BFO systems having no topological defect. One important and currently

unknown issue to resolve is to determine if such reduction in critical voltage and resulting

significant electrical current measured between 1 and 2 V are intrinsic (i.e., if they are associ-

ated with a remarkable reduction of the electronic band gap) or are rather extrinsic in nature

(e.g., if they are due to the existence of vacancies near the topological defects). As detailed in

Chapter 6, we developed and applied a new large-scale ab-initio procedure to a nanocomposite

made of BaTiO3 (BTO) nanowires inserted in a matrix formed by SrTiO3 (STO). This original

numerical procedure consists in combining the effective Hamiltonian technique with the linear-

scaling three-dimensional fragment method (that was initially developed for for semiconductor

systems), which is able to resolve aforementioned questions.

In MFE, spin-canted structures are commonly seen, which results in the coexistence of two

or more magnetic order parameters in the same structure. Understanding the physics behind
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such coupled magnetic order parameters is of obvious benefit for the sake of control of the

magnetic properties of such systems, since it can dramatically affect magnetic properties and

even leads to the occurrence of the so-much-desired magneto-electric effects. Well-known ex-

amples of such coexistence are the R3c or Cc states of BiFeO3 (BFO) thin films and bulks that

exhibit a spin-canted magnetic structure – which generates a weak ferromagnetic (FM) moment

(also known as a F-type magnetic ordering) superimposed on a predominant G-type antiferro-

magnetic (AFM) vector. This corresponds to a combination of two coupled magnetic order

parameters and is receiving a lot of attention from the scientific community. Other examples

are the three coupled magnetic orders (to be chosen among the F-, G-, C- and A-types) recently

found in the Pnma phase of many magnetic or multiferroic perovskites. We employ both first-

principles-based effective Hamiltonian and ab-initio methods to derive and prove that there is

a universal law that explicitly correlates various magnetic order parameters with the different

types of oxygen octahedral rotations.

Structure of this thesis

The main body of this thesis naturally divides itself into five parts, which are fairly independent:

• Methodology (Chapter 2),

• Finite-temperature static properties of BaTiO3 epitaxial films (Chapter 3),

• Finite-temperature dynamical properties of (Ba, Sr)TiO3 nanocomposites (Chapter 4),

• A universal law governing coupled magnetic orders in ABO3 perovskites (Chapter 5),

and

• Electronic properties of ferroelectric vortices from large-scale ab-initio computations

(Chapter 6).

The first part gives detailed introduction of methodologies that will be used in the studies

of the later chapters: effective Hamiltonian and density functional theory. The second part

presents the detailed studies of static properties (such as structural phase transitions and physi-

cal responses) of ferroelectric films under epitaxial strain mainly by the effective Hamiltonian

3



approach. The third part explores the dynamics of ferroelectric nanocomposites by the effec-

tive Hamiltonian approach. The fourth part is devoted to coupled magnetic orders in perovskite

multiferroelectrics by analytical derivations and density functional theory approach. The fifth

part deals with the electronic properties of electric vortices in ferroelectric nanocomposites.

The subject matters and objectives of the five parts are sufficiently different to merit individual

introductions and summaries, which are now presented through chapters without further ado.
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Chapter 2

Methodology

Effective Hamiltonian

The effective Hamiltonian method used here has been established for two decades [3]. Such

effective Hamiltonian possesses several advantages that generally fall into the following as-

pects: (1) by decomposition of energetic contributions of such Hamiltonian, it provides a broad

picture from microscopic views of the properties of investigated ferroelectric systems; (2) by

combining such effective Hamiltonian with Monte Carlo (MC) Metropolis algorithm or molec-

ular dynamics simulation, it models finite-temperature-dependent static or dynamical proper-

ties of ferroelectric systems; (3) by the great reduction of degrees of freedom used in effective

Hamiltonian, it is capable of simulating large supercells, which is quite necessary in studying

more complex structures and complicated phenomena. Over the years, effective Hamiltonians

have been developed and extended to investigate varieties of ferroelectric and multiferroelectric

systems [4, 5, 6], including bulk and nanostructure systems [7, 8, 9, 10].

ABO3 perovskites have a common high-symmetry structure at high temperature as depicted

in Figure 2.1. The existences of some phonons make this cubic phase unstable, which leads

to low-symmetry structural phases as temperature drops. These phonons are often referred as

soft modes, which are thus responsible for the rich varieties of structural phase transitions in

this major type of ferroelectrics. For example, the arrows in Figure 2.1 indicate an unstable

displacement pattern that corresponds to a well-known Γ15 phonon, which is the origin of fer-

roelectricity in typical BaTiO3 and PbTiO3. As it has been stated in the introduction, effective

Hamiltonians are quite effective in simulating displacive phase transitions that involve a few

unstable phonons, and ABO3 perovskite ferroelectrics provide excellent examples that exhibit
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varieties of displacive phases and other intriguing phenomena in condensed matter.

Figure 2.1: ABO3 ferroelectrics: simple cubic structure with A atoms at corners, B atom
(mostly from transition metals) at the body center and oxygen atoms occupying face centers.
The arrows show the atomic displacement pattern of a typical Γ15 phonon of this structure.

In this thesis, a detailed description of the constituents of such Hamiltonian is given along

with underlying physics. To reproduce time-dependent static properties of a system, it is nec-

essary to reproduce the partition function which requires the unpractical full knowledge of

internal energy landscape. One option is to approximate it. For this, the lowest energy state

that weights most should be at least included in the Hamiltonian. Whether it is crucial or not to

add contributions from other higher energy states should depend on the extent of consistency

of the outputs. For the systems that are considered here, it is fairly sufficient for our simulating

properties (as shown in later chapters) to enclose only the lowest energy state which is related to

soft modes, for the investigated temperature window. For this thesis, we will talk about the case

of BaTiO3 which will be used in later chapters. To start, a reference structure is needed. The

high-temperature cubic structure of Figure 2.1 is a natural choice in the sense that it is where

the instability lies, and high symmetry will reduce a great deal of parameters in the energy term

expansions. In this structure, five atoms are included. Thus, there are 3 acoustic and 12 optical

phonon modes at any k point inside the first Brillouin Zone (BZ). The small displacements of

these atoms will be expressed in a linear combination of these phonon modes. As mentioned

above, here the most relevant mode is at the zone center (Γ point), the lowest-frequency triply

degenerate transverse optical modes, Γ15. The other important mode is the triply degenerate

Γ15 acoustic mode which accounts for the shape of the unit cell. A displacement vector {ui},
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namely local mode, can be constructed from the Γ15 soft mode using its eigenvector for every

unit cell. For the Γ15 acoustic mode, a strain tensor {η} is added to act for each unit cell. In

this way, the number of degrees of freedom is greatly reduced. Note here atomic units are used

through this section. Next thing is to map out the energy contributions for these degrees of

freedom.

The first contribution should be the energy of local modes at every unit cell [3]. Since

the local modes are small displacements with respect to the cubic structure, it is possible to

express the self energy in terms of polynomials of local modes. To ensure a double-well energy

landscape, at least up to fourth order should be included with odd-order terms absent like

Eself =
N∑
i

κui
2 + αui

4 + γ(u2
ixu

2
iy + u2

ixu
2
iz + u2

iyu
2
iz), (2.1)

where ui2 = u2
ix+u2

iy+u2
iz. {ui} is proportional to the dipole moment at unit cell i andN is the

number of total unit cells. κ, α and γ are coefficients that are determined from first-principles

calculations of a five-atom unit cell. Other higher order terms are ignored here as they have

little influence on the properties of interest in this thesis.

The second contribution comes from the mutual interactions between local modes at neigh-

bouring sites and therefore characterizes energy away from the Γ point. This kind of interaction

shall decompose into two parts, long-range coulomb and short-range interactions. Long-range

Coulomb interaction mimics the dipole-dipole interaction between local modes, while short-

range interaction takes into account the electronic repulsion and hybridization between neigh-

bouring local modes. For dipole-dipole interactions, the individual dipole moment di of unit

cell i is di = Z∗ui. Z∗ is the Born effect charge of the soft mode, which can be calculated by

the multiplication between soft mode eigenvector and the five ions’ Born effect charges:

Z∗ = ζAZ
∗
A + ζBZ

∗
B + ζO1Z

∗
O1 + ζO2Z

∗
O2 + ζO3Z

∗
O3, (2.2)

where {ζ} is the soft mode eigenvector. Under periodic boundary conditions, this long-range-

interaction energy can be rewritten as

Edpl =
1

2

N∑
ij,αβ

Qij,αβuiαujβ, (2.3)
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with

Qij,αβ =
4Z∗2

ε∞

[
π

Ωc

∑
G6=0

1

|G|2
exp(−|G|

2

4λ2
)cos(G · (Ri −Rj))GαGβ

− λ3

3
√
π
δαβδij)

]
.

(2.4)

Here G are reciprocal lattice vectors and Ωc is the whole cell volume. α and β denote Cartesian

components. Because it is long-range, it is very time consuming to calculate it. To avoid this, a

simple assumption is taken that the position vectors Ri, Rj and reciprocal vectors G are fixed

while Qij,αβ in Eq.2.4 are calculated once for all. The effect that strains enter into Ri, Rj of

Qij,αβ in Eq. 2.4 is of high order and ignored. Now it saves a lot of time by computing Qij,αβ

first and storing it for later use. For short-range interaction between neighbouring local modes,

only up to 3rd nearest neighbours are considered as this type of interaction mimics electronic

repulsion and hybridization, and thus decreases very fast with increasing distance. It is written

to 2nd order as

Eshort =
1

2

N∑
i 6=j

∑
αβ

Jij,αβuiαujβ. (2.5)

The Jij,αβ parameters are determined from a series of first-principles calculations. Due to the

high symmetry of the reference structure, these parameters have been greatly simplified of

which only 7 distinct Jij,αβ parameters are possible. Details are given in Ref.[3].

The next contribution to the total energy is from elastic energy associated with strain tensors

{ηil, l = 1, ..., 6} in Voigt notation that relate to Γ15 long wavelength acoustic modes. {ηil, l =

1, ..., 6} tensor at unit cell i is calculated from the dimensionless displacements v(Ri) located

at the corner A atoms from unit cell i and its adjacent unit cells. Reduced by symmetry, it is

expressed to 2nd order as

Eelastic,I=
N∑
i

{
B11

4
[vx(Ri)− vx(Ri ± x)]2

+
B12

8
[vx(Ri)− vx(Ri ± x)][vy(Ri)− vy(Ri ± y)]

+
B44

8
[vx(Ri)− vx(Ri ± y) + vy(Ri)− vy(Ri ± x)]2

+ cyclic permutation

}
. (2.6)

To mimic the long wavelength deformation, a homogeneous part of such deformation is missing

in Eq. 2.6. Therefore, an additional homogeneous strain tensor {ηH,l, with l = 1, ...6} is

8



required. Similarly, the deformation homogeneous elastic energy is written as

Eelastic,H =N

[
B11

2
(ηH,l

2 + ηH,2
2 + ηH,3

2)

+B12(ηH,lηH,2 + ηH,lηH,3 + ηH,2ηH,3)

+
B44

2
(ηH,4

2 + ηH,5
2 + ηH,6

2)

]
, (2.7)

whereB11,B12 andB44 are elastic constants and are determined by first-principles calculations.

The final contribution comes from the interaction between strains and local modes, which

accounts for the interaction between soft mode and acoustic mode. To simplify, only on-site

interaction is considered. Its expression is written as:

Eelastic−mode =
1

2

∑
i,lαβ

Blαβηl(Ri)uiαuiβ. (2.8)

Here ηl(Ri) is the total strain at unit cell i and thus includes both homogeneous and inhomo-

geneous parts. Blαβ are parameters that are determined from first-principles calculations. Due

to the high symmetry of the reference structure, only three distinct parameters are obtained:

B1xx =B2yy = B3zz,

B1yy =B1zz = B2xx = B2zz = B3xx = B3yy,

B4yz =B4zy = B5xz = B5zx = B6xy = B6yx. (2.9)

More details are given in Ref. [3]. The total energy E is given as a sum of all the energy terms

above as:

E = Eself + Edpl + Eshort + Eelastic,I + Eelastic,H + Eelastic−mode. (2.10)

Outputs from such effective Hamiltonian are local modes and strains from which one can

obtain polarization, dipole configurations, dielectric constants and piezoelectric coefficients.

The expressions to calculate dielectric constants {χαβ, α = 1, ..., 3, β = 1, ..., 3} and piezo-

electric coefficients {dαl, α = 1, ..., 3, l = 1, ..., 6} are given in Refs. [11, 12] as:

χαβ =
βN(Z∗ea0)2

V
(< uαuβ > − < uα >< uβ >),

dαl = βN(Z∗ea0)(< ζluα > − < ζl >< uα >), (2.11)
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where

uα =
1

N

N∑
i

uiα,

and < ... > means statistically average.

All above discussions of effective Hamiltonian are for pure systems and it can be extended

to some alloy solutions like (A’A”)BO3 or A(B’B”)O3 alloys. Since (Ba,Sr)TiO3 (BST) systems

is of interest to this thesis, A-site alloys are depicted here. These schemes are detailed in Refs.

[4, 13]. Such schemes make it possible to explore finite-temperature properties for the full

composition range of perovskite alloys or superlattices. The general guide from Ref. [4] is

repeated below.

First, the starting composition for BST is chosen to be 50% Ba and 50% Sr, i.e., it corre-

sponds to the (Ba0.5Sr0.5)TiO3 system. Any other composition of BST alloy can be viewed as

the composition variation from this averaged system. Thus, the total effective Hamiltonian is

written as:

Etotal = Eave + Eloc,

with

Eloc=
∑
ij

(Qj,iσj êji · ui +Rj,iσj f̂ji · vi)

+ 1
2

∑
i

∑
l,αβ

Blαβηloc,l(i)uiαuiβ, (2.12)

where σj denotes Ba (+1) or Sr (−1) ion at the A site of unit cell j. Qj,i and Rj,i are param-

eters that mimic the effects of composition variations from (Ba0.5Sr0.5)TiO3 on local mode ui

and A-site displacement vi, and are determined from first-principle calculations. Unit vector

êji is along the direction from A site of unit cell j to B site of unit cell i. And unit vector f̂ji

is along the direction from A site of unit cell j to A site of unit cell i. Usually it is enough to

include only first nearest neighbours for Qj,i and up to 3rd nearest neighbours for Rj,i. ηloc,l(i)

in the second term of Elocl is given as:

ηloc,1(i) = ηloc,2(i) = ηloc,3(i) = ∆a
8a

∑
j

σj,

ηloc,4(i) = ηloc,5(i) = ηloc,6(i) = 0, (2.13)
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where j runs over all eight neighbour unit cells that have A sites nearest to the B site of unit

cell i. ∆a is the difference between the lattice constants of bulk BaTiO3 and (Ba0.5Sr0.5)TiO3

(of which the lattice constant is denoted by a) in their cubic phases extrapolated to 0 K. The

value of ∆a
a

is computed to be 0.01087. The potential of A atom used to obtain the 0 K lattice

constant of the latter is assigned to the average ofBa and Sr pseudopotentials. Thus the second

term in Elocl adds the interaction as Eelastic−mode in Eq. 2.8 resulting from the strains induced

by composition variations of A sites.

So far, the effective Hamiltonians that are used in this thesis have been given an overall

description, of which the parameters determined from first-principles calculations can be found

in Ref. [4], particularly.

Density Functional Theory

The advantages of effective Hamiltonian method have been concisely summarized in last sec-

tion. However, this semiclassical type method has its incapabilities when detailed electronic

calculations are required. To solve this problem, one has to resort to solving Schrödinger equa-

tion, if only non-relativistic frame is considered which is enough for most of cases. For a

system that has a unit cell of multiple ions, the time-independent Schrödinger equation is given

in position representation as:

Hψ({Rn}; {ri}) = Eψ({Rn}; {ri}), (2.14)

where H is the exact Hamiltonian that includes both ions and electrons contributions: kinetic

energies, ion-ion Coulomb interactions, electron-electron Coulomb interactions, electron-ion

Coulomb interactions and external potentials; ψ({Rn}; {ri}) is the total wavefunction that

involves both ions and electrons and gives the state of the system; Rn is the position vector of

the nth ion and ri is the position vector of ith electron. H is written explicitly as:

H=
∑
n

− h̄2

2Mn

∇2
Rn
−
∑
i

h̄2

2mi

∇2
ri

+
1

2

∑
n 6=m

ZmZne
2

|Rm −Rn|

+
1

2

∑
i 6=j

e2

|rj − ri|
−
∑
i,n

Zne
2

|rj −Rn|
, (2.15)

where Zn (Mn) is the valence charge (mass) of the nth ion andmi is the mass of the ith electron.

A first glance at Eqs. 2.14 and 2.15 reveals that there are too many degrees of freedom. The
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first choice is to separate the motions of ions from that of electrons, which is well known as

the Born-Oppenheimer approximation. Basically, due to its much larger masses of ions than

electrons, ions are considered to move much slower than electrons. So it is assumed that, at

every instant of ionic positions, the electrons are fast enough to reach their equilibrium. In

this way, ionic motions can be treated classically, while electrons require quantum mechanic

descriptions. Then Eq. 2.15 reduces to

H=
∑
i

h̄2

2mi

∇2
ri

+
1

2

∑
i 6=j

e2

|rj − ri|
−
∑
i,n

Zne
2

|ri −Rn|
, (2.16)

where {Rn} are then input parameters when solving Eq. 2.14. For a simple system of only

very few electrons, such as H2, it is not difficult to obtain its ground state by computers. For

a system of multiple ions and electrons, solving Eq. 2.14 becomes an overwhelming task to

accomplish due to the couplings of electrons: exchange and correlation effects. From Pauli’s

theory based on quantum electrodynamics, the total wavefunction of a system of multiple elec-

trons must change its sign at the exchange of two electrons’ positions; as seen from above, any

electron’s behavior is affected by other electrons as in typical many-body problem, which is

where correlation effect comes from. As a result, further simplifications are needed to make

the problem tractable.

The first few approaches are Hartree approximation and Hartree-Fock (HF) approximation

as depicted in many textbooks. Both of them started by assuming a specific form of the total

wavefunction. And the latter uses a Slater determinant of single-particle orbitals [14]:

Ψ(r1, r2, ..., rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) ... φ1(rN)

φ2(r1) φ2(r2) ... φ2(rN)

. . ... .

. . ... .

φN(r1) φN(r2) ... φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.17)

where N is the number of total electrons. The spin parts are intentionally left out for simplicity

and can be included without a problem. Put Ψ(r1, r2, ..., rN) into Eq. 2.14, and make a function
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variational calculation. Then the single-particle HF equation is obtained as:[
− h̄2

2me

∇2
r −

∑
n

Zne
2

|ri −Rn|
+

∫
e2ρ(r

′
)− ρ′

i(r, r
′
)

|r− r′ |
dr

′]
φi(r)=εiφi(r),

(2.18)

where

ρi(r) =
∑
i

|φi(r)|2, ρ
′

i(r, r
′
) =

∑
j

φ∗i (r)φi(r
′
)φ∗j(r

′
)φj(r)

φ∗i (r)φi(r)
. (2.19)

The term containing ρ′
i(r, r

′
) characterizes the exchange effect. The solutions to Eq. 2.18 can

be obtained through self-consistent computer iterations.

The other approach is Density Functional Theory (DFT) contributed by Hohenberg, Kohn

and Sham [15, 16]. Here only the basic sketch of DFT will be repeated. The critical idea is to

express key physics quantities in terms of density n(r) instead of the total wavefunction which

is far from being known. First thing, it needs to justify the one-on-one correspondence between

density n(r) and the total Hamiltonian (the potential terms combined, to be exact) in Eq. 2.16.

Suppose there are two different potentials V (r) and V ′
(r) corresponding to the same given

density n(r). And the ground states and energies of these two systems with V (r) and V ′
(r) are

(Ψ, E) and (Ψ′ , E ′). Then

E < 〈Ψ′|T + V (r)|Ψ′〉 = 〈Ψ′|T + V
′
(r) + V (r)− V ′

(r)|Ψ′〉

= E
′
+ 〈Ψ′ |V (r)− V ′

(r)|Ψ′〉,

E
′
< 〈Ψ|T + V

′
(r)|Ψ〉 = 〈Ψ|T + V (r)− V (r) + V

′
(r)|Ψ〉

= E + 〈Ψ| − V (r) + V
′
(r)|Ψ〉, (2.20)

where the two different potentials differ from each other by more than a constant. Adding these

two inequalities gives:

E + E
′
<E + E

′
+ 〈Ψ′ |V (r)− V ′

(r)|Ψ′〉 − 〈Ψ|V (r)− V ′
(r)|Ψ〉,

E + E
′
<E + E

′
+

∫
n(r)[V (r)− V ′

(r)]dr−
∫
n(r)[V (r)− V ′

(r)]dr,

E + E
′
<E + E

′
. (2.21)

This inequality is impossible. So the assumption is invalid that two different potentials can

correspond to the same given density. In other words, there is one unique density n(r) that
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belongs to a given system. Thus, it is natural that the total wavefunction is a functional of

density, so are other physical quantities. This conclusion has a very significant consequence

which makes it possible to simulate an interacting many-body system by a non-interacting

many-body system as long as giving the same charge density, which will finally be subjected

to a single-particle description. To include the exchange and correlation effects, an additional

energy term, EXC , the exchange-correlation term, is added. From a variation process, Kohn-

Sham single-particle equation is obtained as:

[
− h̄2

2me

∇2
r +

∫
e2n(r

′
)

|r− r′|
dr

′ −
∑
n

Zne
2

|r−Rn|
+
δEXC [n(r)]

δn(r)

]
φi(r) = εiφi(r),

(2.22)

where {φi(r)} are called Kohn-Sham orbitals that can be calculated through self-consistent

computer iterations. However, the exact form of EXC [n(r)] has been a mystery up to today.

There are a lot of works that have been devoted to this issue. A couple of approximated ex-

pressions are well known and three of them are mentioned here. The first type of exchange-

correlation functions depends on the local density n(r), which is a sole function of position r.

Thus, this type is now termed as local density approximation (LDA) [17, 18, 19]. The second

type of EXC depends on not only the local density n(r), but also its gradient, which is termed

as the generalized-gradient approximation (GGA) [20, 21, 22, 23]. The third type is a com-

bined functional consisting of Hartree-Fock exchange functional and LDA or GGA functional

[24, 25].

The above exchange-correlation functionals LDA and GGA are approximations and/or cor-

rections based on homogeneous electron gas. Therefore, they have severe consequences when

dealing with strongly localized and correlated electron states, e.g., d and f electrons in transi-

tion metal oxides and rare-earth compounds. Such consequences include underestimated band

gap and incorrect magnetic configurations. The possible reason behind these consequences is

that neither LDA or GGA doesn’t suffice to correct the non-physical self interaction in their

exchange-correlation functionals. An efficient technique to resolve this insufficiency is called

LDA + U [26, 27, 28, 29]. The “U” in “LDA + U” stands for the Hubbard-like on-site re-

pulsion correction added to the exchange-correlation functionals, which can be evaluated by
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constrained DFT calculations or fitting to experimental results.

As it is mentioned above, the incorporations of spin components inside those single-particle

aforementioned equations are straightforward [30]. The key part is to express the exchange-

correlation functional in terms of spin-up and spin-down electron densities for collinear spin

arrangements. However, for non-collinear spin arrangements, it is effective to introduce an

exchange-correlation magnetic field Bxc [31]:

Bxc = −δExc[n(r),m(r)]

δm(r)
, (2.23)

where m(r) (=
∑

i φi(r)σφi(r)) is the magnetization density. σ is the Pauli spin matrix. Gen-

erally, these single-particle orbital wavefunctions {φi(r)} contain a two-component spinor.

The last issue remaining in this subsection is the pseudopotential method that has been

excellently reviewed in details in Ref. [32]. Its main purpose is to use an effective smooth

ionic potential that acts on the valence electrons and combines all the effects from the nucleus

and the tightly bound core electrons. Two commonly used type of pseudopotentials are norm-

conserving and ultrasoft pseudopotentials [32]. Here the generalization procedures will not be

repeated here. Details of them can be found in Ref. [32] and references therein.

So far, the main methods used in calculations presented in later chapters have been intro-

duced here. Other employed techniques will be described along when necessary.
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Chapter 3

Finite-temperature static properties of BaTiO3 epitaxial films

Background

Ferroelectric (FE) materials have been of great interest because of their desirable properties

that can be used in devices design, such as high-frequency capacitors and ferroelectric random

access memories [1, 2]. A lot of efforts have been devoted to optimize their properties, such

as growing superlattices and solid solutions. One particular way to achieve this goal is epi-

taxial growth utilizing the misfit strain between the host films and substrates because of the

fact that there exists a strong interaction between strain and other degrees of freedom. These

have been shown in a lot of calculations and experimental works devoted to epitaxial thin films

[33, 34, 35, 36, 37, 38, 39, 40]. As a result, novel features have been reported in these nanos-

tructures made of the prototype BaTiO3 (BTO) ferroelectrics. For instance, FE thin films under

short-circuit-like electrical boundary conditions (for which the depolarizing field vanishes or

is rather small, as a result of a large screening of the polarization-induced surface charges)

exhibit different directions for the spontaneous polarization and different resulting crystallo-

graphic phases, depending on the misfit strain. Another example is the tuning of the Curie

temperature through misfit strains in BTO ferroelectric films. All these interesting features are

found in FE films grown along the [001] pseudo-cubic direction. Interestingly, there is still at

least another variable in this strain engineering, which is the growth direction. The variation

of growth directions may lead to altered properties of FE films. Unfortunately, there have been

very few experimental or theoretical works regarding this topic [41, 42, 43, 44]. In this chapter,

we will present several studies of BTO films: (i) BTO films grown along a high symmetric

direction, i.e., [110]; (ii) BTO films grown along a continuous path varying from [001] to [110]
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on a single substrate. These studies have been originally reported in Refs. [46, 47].

Method

In the studies here, the effective Hamiltonian given in Chapter 2 implemented in the Monte

Carlo (MC) Metropolis algorithm is used. MC simulations are very effective in simulating

finite-temperature properties of a variety of systems. The detailed procedures of a MC simula-

tion can be found in many textbooks. Here only the critical principles will be given here.

Markov chains. Suppose there is a system with a series of states {φi, with i = 1, 2, 3...}

and a consecutive flow of discrete times denoted by {tn, with n = 1, 2, 3...}. φi(tn) represents

the system in state φi at time tn. So at time tn+1, the probability of the system in state φj will

only depend on the state φi at time tn. This chain consisting of such states is called a Markov

chain. The probability of the system transiting into the state φj(tn+1) from residing in the state

φi(tn) is Wij . The probability of the system in the state φi(t) is denoted as P (φi, t). So when

the system is in equilibrium at time t, the probability of system transiting into the state φj(t)

shall cancel out the probability of system transiting out of the state φj(t). This is the detailed

balance of the probability Peq(φj) (i.e., the probability of the system in state φj at equilibrium

which is of course independent of time) written as:

WjiPeq(φj) = WijPeq(φi). (3.1)

According to classical statistical mechanics, the probability of the system in state φj at equilib-

rium is given as:

Peq(φj) = e−Ejβ/Z, (3.2)

where Z is the associated partition function. In a Markov process, from Eq. 3.1, one obtains

Wij =
WjiPeq(φj)

Peq(φi)
= e−(Ej−Ei)βWji. (3.3)

Clearly, there is still freedom to assign Wji. A algorithm proposed by Metropolis is
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Wij = e−(Ej−Ei)β, if Ej − Ei > 0; (3.4)

= 1, if Ej − Ei ≤ 0. (3.5)

Apparently, this choice satisfies detailed balance in Eq. 3.1. And it is also very easy to imple-

ment in MC simulations. The equilibrium properties of the system will be collected statistically

after the MC simulation reaches equilibrium. For the calculations in our study, 300000 MC

steps are used, of which the last 200000 steps are collected for the statistical results.

In the current Monte-Carlo (MC) simulations, three-dimensionally periodic 12 × 12 × 12

supercells (8,640 atoms) are used. As it is commonly done in many previous calculations (see,

e.g. Refs.[33, 45, 36]), such periodic boundary conditions presume that the effect of the surface

on the films’ properties is intentionally left out in order that the combined effects of the strain

and growth direction on these properties can be isolated from surface effects. To start, there are

two different coordinate systems used here [46, 47]: (1) the “usual” (xyz) system for which the

x-, y- and z-axes coincide with the pseudo-cubic [100], [010], [001] directions, respectively;

and (2) the other coordinate system (x’y’z’) in which the z’-axis corresponds to the growth

direction of the film and in which the x’-, y’- and z’-axes are practically chosen to be along the

pseudo-cubic [1̄10], [mmn], and [hhk ] directions, respectively, with m=-cos(θ)/
√

2, n=sin(θ),

h=sin(θ)/
√

2 and k=cos(θ), where θ is the angle between the z’- and z-axes and will be referred

to as the growth angle afterwards. Note that when θ is set to 0o, 90o and 54.7o, it corresponds

to the pseudo-cubic [001], [110] and [111] growth direction, respectively. Then the mimick-

ing of finite-temperature properties of BTO films that are epitaxially grown along the z’-axis

is accomplished by imposing the following conditions for the homogeneous strain tensor (in

Voigt notation): η1′ = η2′ = (asub-alat)/alat = δ and η6′ = 0, while η3′ , η4′ and η5′ can fully relax

during the simulations [46, 47]. Here, the prime ’ is used to denote properties computed in

the (x’y’z’) coordinate system. asub is the in-plane lattice constant of the substrate and alat is

the lattice parameter of the BTO paraelectric bulk at the Curie temperature, Tc (' 395K). δ

then characterizes the misfit strain experienced by the epitaxial films. Note that the interface

between BTO and STO, beyond the strain effect that is taken into account in our simulations,
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is known to have rather minor effects on properties of BTO films, especially if these films have

a thickness being large enough (but smaller than the critical thickness associated with the full

strain relaxation of the films) [48, 49]. Its effect beyond the mediation of the strain is thus

neglected here. Note that also several studies (see, e.g., Refs. [40, 50, 51]) demonstrated that

(for a given growth direction) one of the most important aspects of ferroelectric thin films is the

amount of strain experienced by these films and arising from the lattice mismatch between the

materials forming the film and the substrate. In other words, effects, such as surface reconstruc-

tion, film’s thickness or precise morphology or stoichiometry of the substrate, have typically

much less consequence on physical properties of these films than the epitaxial strain.

BTO films grown along pseudo-cubic [110] direction

First, let us focus on BTO films grown along pseudo-cubic [110] direction. To begin, some

commonly used notations shall be clarified for FE phase transitions. Suppose the x-, y- and z-

components (in the usual pseudo-cubic frame) of the polarization in a state are denoted as ux, uy

and uz, respectively. Then the category follows this way [33, 37]: (1) all the three components

are all zero, which is termed as p phase, i.e., paraelectric phase (PE); (2) only one of the three

components is non-zero, which is termed as c phase; (3) two of the three components are non-

zero and equal, which is termed as aa phase; (4) two of the three components are non-zero and

not equal, which is termed as ab phase; (5) all the three components are non-zero and equal

to each other, which is termed as r phase; (6) all the three components are non-zero and only

two are equal, which is called either raa (if the magnitude of the third one is smaller than the

two of equal magnitude) or rc (if the magnitude of the third one is larger than the two of equal

magnitude); (7) all the three are non-zero and not equal, which is termed as abc phase. The

epitaxial strain range under this study is from -3.6% (in compressive strain region) to 2.9% (in

tensile strain region).

Fig. 3.1 gives a detailed and rich temperature-misfit-strain phase diagram. At low temper-

ature, e.g., 5K, the system goes from aa phase in the large compressive strain region, to raa

phase in the smaller compressive strain region, and to rc phase in the tensile strain region. Such

phase sequence lasts up to 250K. This is totally different from (001) BTO films which is just
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the opposite case (raa and aa phases in the tensile strain region and rc phase in the compressive

strain region). This discrepancy is easily understood using the fact that large compressive strain

Figure 3.1: The predicted temperature-versus-misfit strain phase diagram of (110) BTO films:
The phases displayed in the diagram are explained and discussed in the text. The direction of
their polarization is further indicated in the (xyz) coordinate frame near the phases’ names.

favors the out-of-plane component of the polarization and large tensile strain favors the in-plane

component of the polarization. In this case, the out-of-plane is the [110] instead of the [001]

pseudo-cubic direction. Around zero strain where the boundary lies between raa and rc phase,

the polarization lies exactly along the pseudo-cubic [11̄1], coincident with one of the eight

〈111〉 minimums of bulk BTO in its ground state. To better understand this, Fig. 3.2 shows

the evolutions of the polarization with respect to misfit strain in (xyz) frame (Fig. 3.2a) and

(x’y’z’) frame (Fig. 3.2b). The polarization vector rotates from [uu0] (coinciding with [110]
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(a) (b)

(c)

Figure 3.2: Dependency of properties on epitaxial strain in the (110) BTO film at 5K. Panels
(a) and (b) show the local modes in the (xyz) and (x’y’z’) coordinate frame, respectively. Panel
(c) displays the total energy for the two stable phases having a polarization lying along [uuv]
and [uūv]. The zero in energy corresponds to the energy associated with the zero misfit strain.

pseudo-cubic direction) to [uuv], and suddenly to [uūv] when the misfit strain varies from the

compressive strain region to the tensile strain region. Around zero strain, there is a sudden

jump of the y-component of the polarization from a positive value to a negative value (i.e., a

first-order transition occurs). To confirm it, Fig. 3.2c gives the energy comparison between the

polarization in the [uuv] configuration and the [uūv] configuration, which indeed shows that

the [uuv] configuration is more energetically favorable in the compressive strain region and

that the [uūv] configuration is more energetically favorable in the tensile strain region. When

seen in the (x’y’z’) frame, Fig. 3.2b shows clearly that the polarization is totally out of plane at

large compressive strain, and that the polarization is totally in plane in the tensile strain region.
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This is consistent with the fact that large compressive strain favors out-of-plane component of

the polarization and large tensile strain favors in-plane component of the polarization. Since

the two configurations are so close in energy for a certain range of strain, simple application of

a small external electric field along the out-of-plane direction (easily seen in Fig. 3.2b) in the

tensile strain region can change the system into the metastable state in which the polarization

lies along the [uuv] direction and the out-of-plane component occurs. Applying an in-plane

electric field will get the system back into its ground state with the polarization relaxing to

the [uūv] configuration, which results in the vanishing of the out-of-plane component of the

polarization. Such simply and efficiently controlled hopping between two states offers a novel

scheme to realize memory engineering with the occurring and vanishing of the out-of-plane

component of polarization corresponding to 1 and 0. The similar scheme can be used in the

compressive region except that the order of the directions of applied electric field will have to

be changed.

Let us now look at a higher temperature, e.g., one between 255K and 285K. The system

varies from the aa phase to raa phase, abc phase (with the polarization having a [uwv] configu-

ration which is a triclinic phase), abc phase (with the polarization being along a [uw̄v] direction

which is also a triclinic phase), and rc phase. These low-symmetric triclinic phases are quite

rare and not existing in (001) BTO films. When the temperature is between 285K and 385K,

e.g., 300K, the system undergoes another series of phase transitions, from aa to ab, abc (with

the polarization along a [uwv] direction), abc (with the polarization along a [uw̄v] direction)

and rc phase. The last four phases are all low-symmetric states, which manifest themselves by

the fast rotation of the polarization vector shown in Figs. 3.3a and 3.3b. Around -0.5% strain

and 0.5% strain, the polarization vector rotates very fast, which results in enormously large

dielectric responses and piezoelectric coefficients as shown in Figs. 3.3c and 3.3d. At around

-0.65% and 0.5% strains, the x- and y-components of the polarization change very fast, which

gives large responses from dielectric susceptibilities χ11, χ22 and piezoelectric coefficients d11

and d22; at around -0.45% strain, the fast variation of the z-component leads to exceptionally

large response from dielectric susceptibility χ33 and considerable response from the piezoelec-

tric coefficient d35. Between -0.65% and 0.5% strains, the dielectric susceptibility χ22 stays
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(a) (b)

(c) (d)

Figure 3.3: Dependency of properties on epitaxial strain in the (110) BTO film at 300K. Panels
(a) and (b) show the local modes in the (xyz) and (x’y’z’) coordinate frame, respectively. Panels
(c) and (d) display the largest piezoelectric and dielectric coefficients, respectively — with the
notation for subscript referring to the (xyz) frame (e.g., the 2 subscript corresponds to the
pseudo-cubic [010] direction).

above 2000 for the whole range due to the fast change of the y-component of the polariza-

tion. These features are promising, and may be used in devices of specific functions, especially

when these desirable properties happen for a large range of temperature window around room

temperature (from 255K to 385K) and around zero strain. As the temperature goes even higher

than 395K, the system will stay in p phase for the compressive strain region and c phase for

the tensile strain region. One more unusual feature about this phase diagram is that the tran-

sition temperatures remain constant at around 385K from p phase to aa phase, p phase to ab

phase, c phase to abc phase and c phase to rc phase. This temperature is exactly our predicted
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Curie temperature Tc of bulk BTO. To understand this unusual feature, one simple way is to

resort to the φ4 model which correlates the Curie temperature to the magnitude of the polar-

ization at 0K through a simple proportionality [52, 53]. As we shall see from Figs. 3.2a and

3.2b, the magnitudes of the x- and y-components of the polarization stay more or less constant

across the studied strain range. And the transitions above involve the emergences of these two

components at low temperature, as consistent with the φ4 model. To further understand the

atomistic origin behind it, a phenomenological derivation similar to that in Ref. [39] is carried

out to our situation. It shows that the independence of the local mode (that is proportional to

the polarization) with respect to the misfit strain mainly comes from the balanced competition

between various elasticity-local mode interactions and the anharmonic part of the local mode

self-energy in our films. To be specific, in p-to-aa transition, the interactions between the local

modes and “diagonal” strains (i.e., η1, η2, and η3) will favor the increase of the magnitude of

the x- and y-components of the local modes when increasing the magnitude of the compressive

misfit strain, while the interaction between the local modes and shear strain (i.e., η6) will de-

press them in an almost opposite way. This is also true for the c-to-rc transition in the tensile

strain region.

To further verify our predictions, direct DFT calculations are performed for epitaxial (110)

BTO films using the Vienna Ab-initio Simulation Package (VASP). Ba 5s5p6s, Ti 4s3d and

O 2s2p electrons are treated as valence electrons. It confirms several interesting properties

discussed above at low temperature: (1) the first-order transition between raa and rc around zero

strain; (ii) the same transition sequence, i.e., aa, raa and rc as strain varies; (iii) a similar energy

hierarchy as in Fig. 3.2c. In summary, the finite-temperature properties of epitaxial (110) BTO

films have been studied using the effective Hamiltonian combined with Monte Carlo (MC)

simulations. Several interesting features are found for this growth direction of high symmetry:

(i) the existence of low-symmetry phases including three monoclinic ones (e.g., ab, raa and rc)

and an unusual triclinic phase (e.g., abc); (ii) near room temperature, there are a series of novel

phase transitions: starting from an aa state (orthorhombic phase) in the far compressive strain

region, then passing through an ab state (monoclinic phase) and an abc state (triclinic phase) by

second order transitions in the near region of 0% strain, and finally turning into a rc state (which
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is another different monoclinic phase) by a first order transition; (iii) that the fast strain-induced

rotation of the polarization associated with these latter transitions results in huge dielectric

and piezoelectric responses, which is very promising to design efficient miniaturized lead-free

devices; (iv) that one can easily switch between different polarized states by applying in-plane

and out-of-plane electric fields, which is promising for the design of novel memory devices;

and (v) that the Curie temperature in the compressive strain region is nearly independent of the

epitaxial strain.

BTO films grown on a single substrate

As it is shown in last section, the growth direction plays an important role in shaping the

properties of BTO epitaxial films. Either epitaxial (001) or (110) BTO presents a lot of novel

properties that are absent in bulk BTO. However, there is an inevitable limitation on the number

and magnitudes of epitaxial strains arising from available substrates. For example, the typical

substrates for perovskite ferroelectrics are rather rare, e.g., SrTiO3 and MgO. Sometimes, some

of the novel properties pose a strong restriction on the lattice constant of the substrate which

is not available. Moreover, it is very hard to grow coherent FE films on some substrates. In

light of these limitations, a novel way to circumvent them is practically required. In Ref. [54],

the authors proposed a interesting way to overcome such difficulty by exploiting the relation

between the effective strain and the film thickness. Besides, there are few studies available

about the effects of low-symmetric growth directions on properties of FE films, which contrasts

with the case of semiconductors [55]. In this study, we will present an alternative in which

only a single substrate is required. The basic idea here is to continuously rotate the growth

direction through growing films on the high index atomic planes or different atomic facets of

the substrate. To maintain the minimum destruction and the maximum coherence of the object

film, a similar unit-cell structure of the substrate as the object film is desirable. We will discuss

properties of BTO films grown on STO along a continuous set of rotating directions.

Specifically, BTO films will be grown along a direction varying from the pseudo-cubic

[001] to [110] direction via the [111] direction, which is sketched in Fig. 3.4. At position 1, the

growth direction is the conventionally used pseudo-cubic [001]; at position 2, the growth direc-

25



Figure 3.4: The schematic diagram of the rotational path of the growth direction. The growth
direction vector is restricted inside the colored plane and rotates along the path 1-3-2.

tion is pseudo-cubic [110]; at the position 3, the growth direction corresponds to pseudo-cubic

[111]. As the growth direction vector varies along path 1-3-2, the growth angle θ introduced in

the Method part changes from 0o to 90o accordingly. For each chosen growth angle θ, we cool

down the system from high to low temperature with a 5K step. The δ value is selected to cor-

respond to the growth of the BTO films on the well-known and used STO substrate, therefore

yielding δ = −2.2%.

Fig. 3.5 gives the temperature-versus-growth angle phase diagram of BTO films grown on

a STO substrate as a function of the growth angle. This diagram displays several intriguing

features. First, let us take a look at the phase transitions occurring in the phase diagram in Fig.

3.5. For small growth angle (near 0o), the system makes a simple transition from p (paraelectric)

phase to c phase (i.e., the polarization lies along the z direction) at around 755K, which is

consistent with previous works [33, 37, 56]. Note that the experimental work in Ref. [56] gives

a value of around 700K, which is fewer by around 50K. This discrepancy most likely arises

from the strain relaxation present in the films, as indicated in their x-ray diffraction data. Note

that we numerically check that when the misfit strain δ is set to −1.9%, our MC simulation

gives a Tc of 705K which is very close to their measured Tc. This is in line with the fact that
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Figure 3.5: The temperature-versus-growth angle phase diagram of BTO films grown on a
STO substrate as a function of the growth angle. The solid red line represents the fitting of Tc
by Eq. 3.8, with the parameters of this fitting being: M = 1022.83, N = 1754.88, αe = 1.04,
when assuming γe = −1.00. The dashed lines are approximate boundaries between phases and
are a guide for the eyes.

the strain relaxation in the measured films is behind the discrepancy between measurements

and calculations for Tc. Other reasons may also contribute to such discrepancy, e.g., the pres-

ence of defects in the grown films, or from the effective Hamiltonian method used here that

neglects the finite thickness of the films. When the growth angle increases from 2o to 54.7o,

BTO films undergo a transition from p phase to rc phase (in which the polarization has a non-

zero z-component and smaller equal x- and y-components as the temperature decreases). The

resultant Tc ranges from 755K to 295K that is a decrease by 460K, which indicates a quite

large tuning of Tc by changing the growth angle from 0o to 54.7o. When the growth angle in-

creases from 54.7o to 87o, BTO films undergo a transition from p phase to raa phase (in which

the polarization has a non-zero and equal x- and y-components and a smaller z-component) as

the temperature decreases. The resultant Tc increases from 295K to 385K. Finally, when the

growth angle rotates from 87o to 90o (that is near the pseudo-cubic [110] direction), a p-to-aa-

to-raa phase transition sequence occurs as the temperature decreases as similar to the case of

(110) BTO films.

One interesting feature about this phase diagram is that there is a r phase below 295K at
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exactly θ = 54.7o, where the growth direction coincides with the pseudo-cubic [111] direction.

The polarization also lies along the pseudo-cubic [111] direction as in the ground state of bulk

BTO. At this special growth direction, Tc reaches its minimum at 295K (near room tempera-

ture), which can be, e.g., put into use to design devices having large dielectric tunability near

room temperature (see, e.g., Ref. [57] and references therein).

(a) (b)

(c) (d)

Figure 3.6: Structural properties of BTO films grown on a STO substrate as a function of
the growth angle. Panels (a) and (b) display the components of the supercell average of the
local mode in the (xyz) and (x’y’z’) coordinate frame, respectively, at 295K. Panels (c) and (d)
provide similar data than Panels (a) and (b), respectively, but for a temperature of 5K.

Then let us study the behavior of the polarization at this minimum Tc which are displayed

in Figs. 3.6a (in the (xyz) frame) and 3.6b (in the (x’y’z’) frame). When the growth angle

starts at 0o, only the z-component is there and the polarization is totally out of plane (see Fig.
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3.6b). Then x- and y-components appear and rise slowly in equal magnitudes, meanwhile

the z-component similarly decreases slowly, which leads to the rc phase. This is shown in

the (x’y’z’) frame by the rising of an in-plane component and decreasing of the out-of-plane

component until the growth angle of 38o. From 38o to 54.7o, both the in-plane components

decrease fast to zero, which lefts only the out-of-plane component of the polarization. When

the growth angle increases from 54.7o to 900, the x- and y-components continue to increase,

while the z-component decreases further. At 90o, the z-component disappears and the in-plane

y’-component again disappears. Notice that the x’-component of the polarization remains zero

during the whole range. This is in line with the geometry of the epitaxial growth direction as

a manifestation of the strong interaction between the polarization and strain. The polarization

at 5K shows similar behaviors. If we describe these behaviors in terms of the rotation of the

polarization vector, the polarization first rotates away from the growth direction, then back

toward the growth direction, then away from the growth direction, and then back towards the

growth direction, which manifests as large responses between around 40o to 60o from all normal

components of the dielectric constants and relevant components of piezoelectric coefficients as

shown in Figs. 3.7. For instance, d′
33 and d′

24 peak and adopt rather large values when θ is close

(a) (b)

Figure 3.7: Physical responses of BTO films grown on a STO substrate as a function of the
growth angle, at a temperature of 295K and within the (x’y’z’) coordinate frame. Panel (a)
reports the χ′

11 and χ′
22 components of the dielectric susceptibility, with its inset giving χ′

33.
Panel (b) displays the d′

33, d′
15 and d′

24 piezoelectric coefficients.

to 54.7o. And χ′
33 is larger than 10,000 and d′

24 is bigger than 200 pC/N when θ = 54.7o. Such
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behaviors are very promising to design efficient miniaturized devices at room temperature.

However, the large and unusual tails in χ′11 (i.e., values larger than 700) and d′15 (as large as 500

pC/N) when the growth angle is increased above 54.7o and up to 90o near room temperature,

remain to be further explained. In fact, such technologically-relevant and striking features arise

from the easiness of the spontaneous polarization to rotate within the (x’, z’) plane via, e.g., the

application of external electric field or stress [13, 58]. Such easiness is consistent with the fact

that Ref. [46] predicted that (110) BTO films experiencing a misfit strain of around -2.2% lie,

at 295K, near the edge of a phase transition towards the ab phase, for which the polarization

vector is in-between our x’- and z’- directions, that is in-between the pseudo-cubic [1̄10] and

[110] directions (see Fig. 3.1).

After all the discussions above, it will be illuminating to do a short comparison of the phase

diagram in Fig. 3.5 and in Fig. 3.8 (corresponding to (001) BTO films as a function of misfit

strain obtained by the same effective Hamiltonian). Clearly, they bear a lot of resemblances.

First, Tc can be tuned, although variation of growth directions acts more efficiently in the turn-

ing. Second, low-symmetric phases emerge at low temperature. Thus, one can conclude that

Figure 3.8: The predicted temperature-versus-misfit strain phase diagram of (001) BTO: The
phases displayed in the diagram are explained in the text.
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the method proposed here demonstrates its equivalence of the conventional growth method of

BTO films, i.e., (001) epitaxial BTO films. In other words, by “continuously” varying the

growth direction, we may get a specifically targeted Tc, which is mostly beyond the capability

of the conventional way (since the number of suitable substrates are limited).

Finally, there is still one issue that remains to be addressed: it is the TC behavior in Fig.

3.5. As indicated above, there is a strong interaction between the polarization and epitaxial

strain, meanwhile the polarization is related to Tc (according to the φ4 model mentioned in last

section), and the geometry of the growth direction affects the epitaxial strain. So there is a link

between the geometry of the growth direction and Tc. One may wonder whether this direc-

tional minimization of Tc (i.e., lowest Tc for the pseudo-cubic [111] direction) is more likely

material-dependent or geometry-dependent. To check this, similar calculations are performed

on another typical ferroelectrics, PbTiO3 (PTO). The phase diagram of PTO is shown in Fig.

3.9. Clearly, PTO films also gains its Tc minimum when the growth direction aligns with the

pseudo-cubic [111] direction. PTO is totally different from BTO in many ways. For example,

PTO adopts a single ferroelectric phase, c phase below 765K, while BTO undergoes a series of

Figure 3.9: The temperature-versus-growth angle phase diagram of PTO films grown on a
substrate at a -1.6% compressive strain as a function of the growth angle. The solid red line
represents the fitting of Tc by Eq. 3.8.
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phase transitions, p-to-c-to-aa-to-r, when the temperature is reduced below 405K. Given such

differences, still both Tc of these two ferroelectrics reach their minima at the pseudo-cubic [111]

direction. Therefore, it appears that the directional minimum of Tc is material independent. To

check it, a phenomenological model is developed. The internal energy provided by the effective

Hamiltonian of BTO systems can be expressed as a sole function of the z’-component of the

supercell average of the local modes, uz′ , which is the dominant component. In other words,

we neglect, in a first approximation, the other ux′ and uy′ components of the local modes (as

rather consistent with Figs. 3.6c and 3.6d ), and the magnitude of local modes simply reduces

to uz′ . We found that the analytical expression of the energy of this Heff , as well as the values

of its parameters, allows to rewrite the total internal energy as:

Etot = κuz′
2 + βuz′

2 + αeuz′
4 + γe(sin(θ)2 − 3

4
sin(θ)4)uz′

4, (3.6)

where κ is the quadratic coefficient solely associated with the polarization and that is indepen-

dent of θ. The β coefficient includes (1) the effective parameters quantifying the interaction

between strains and local modes, and thus depends on both θ and the epitaxial strain, and (2)

the effective parameters capturing the dipole-dipole interactions which are independent of θ

and of the epitaxial strain. Practically, β is found to be of the form:

β = sin(θ)2(4− 3sin(θ)2)L+K, (3.7)

where L and K adopt complicated expressions that contain the epitaxial strain but have rather

minor dependences on the growth angle. The αe and γe coefficients of Eq. 3.6 are found

to be positive and negative, respectively, and almost independent of θ for the BTO system.

Minimizing Eq. 3.6 with respect to uz′ and assuming that Tc is proportional to the square of uz′

(as consistent with the Φ4 model) therefore results in:

Tc '
M

αe + γe(sin(θ)2 − 3
4

sin(θ)4)
+N, (3.8)

where M and N only weakly depend on θ and are both positive. Then both Tc of BTO and

PTO are fitted to the Eq. 3.8. As shown by red solid lines in Figs. 3.5 and 3.9, the fittings are

actually quite good. However, in Eq. 3.8 several parameters are material dependent, e.g., the

relative signs of αe, γe and M . These parameters combine to render a minimum of Tc at the
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pseudo-cubic [111] direction. For ferroelectrics that have polarization as the single long-range

order parameter like BTO and PTO here, it is thus likely to be universal that a minimum of Tc

occurs at the pseudo-cubic [111] direction as consistent with Eq. 3.8.

So far, the effects of the growth direction on the static properties of ferroelectric BTO films

have been presented throughout this chapter. First, it has been shown in (110) BTO films (i) the

existence of low-symmetry phases (including three monoclinic ones and an unusual triclinic

phase); (ii) that, near room temperature, there are a series of novel phase transitions: starting

from an aa state (orthorhombic phase) in the far compressive strain region, then passing through

an ab state (monoclinic phase) and an abc state (triclinic phase) by second order transitions in

the near region of 0.0% strain, and finally turning into a rc state (which is another different

monoclinic phase) by a first order transition; (iii) that the fast strain-induced rotation of the

polarization associated with these latter transitions results in huge dielectric and piezoelectric

responses, which is very promising to design efficient miniaturized lead-free devices; (iv) that

one can easily switch between different polarized states by applying in-plane and out-of-plane

electric fields, which is promising for the design of novel memory devices; and (v) that the

Curie temperature in the compressive strain region is nearly independent of the epitaxial strain.

Items (i)-(v) all differ from features previously seen in (001) BTO films, and are obviously of

fundamental and technological importance. Next, another study was devoted to films made

of the most famous ferroelectric system (namely, BaTiO3) grown on the most famous single

substrate (i.e., SrTiO3) by varying the crystallographic direction (away from the pseudo-cubic

[001] direction) of the growth axis. This method is proposed to overcome an inevitable limita-

tion that arises from the fact that there are few available substrates and therefore the magnitude

and sign of the epitaxial strain that ferroelectric films can experience are scarce. Our findings

include: (i) an original temperature-versus-growth angle phase diagram possessing different

structural states; (ii) a tuning of the Curie temperature, Tc, by more than 450K; (iii) a minimal

value of Tc being near room temperature; (iv) optimization of important physical responses at

room temperature, such as dielectric and piezoelectric coefficients, for some specific growth

directions; (v) explanations of the origin of these features, including the finding of a simple

law correlating Tc with the growth direction (see Eq. 3.8). Items (i) clearly shows the alterna-
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tive procedure offered by our proposed method with respect to the usual way of growing (001)

films on top of various substrates, by equivalently offering a phase diagram possessing different

structural states. Items (ii)-(v) demonstrate the advantages of our proposed method by offering

a rather “continuous” tuning of Tc (including near room temperature) and other properties (e.g.,

substantial room-temperature dielectric and piezoelectric responses), which are also obviously

of technological importance. Moreover, our first-principles-based approach provides a deep

microscopic understanding of these novel features.
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Chapter 4

Finite-temperature dynamical properties of (Ba, Sr)TiO3 nanocomposites

Background

Ferroelectrics (FE) exhibit an abundant variety of phenomena ranging from rich structural

phase transitions to complex magnetic configurations and topological defects. Although fer-

roelectric vortices, or related flux-closure configurations, have been predicted to exist ten years

ago [59], they have been only observed more recently [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70].

On the other hand, vortices in superconductors and superfluids are still very active topics that

have been studied since the middle of last century [71, 72]. In particular, magnetic vortices have

been investigated a lot during the past two decades (see Refs. [73, 74] and references therein).

Unlike dynamics of magnetic vortices, studies about dynamics of ferroelectric (FE) vortices

are quite rare. One may expect that FE vortices have the potential to be more advantageous

than magnetic vortices for ultrafast and high-density storage devices, due to the facts that their

dynamics may be in the THz regime (since phonons’ frequencies are typically in this regime)

and that they are smaller in size compared to magnetic vortices which dynamics is known to

be mainly restricted to the GHz regime [75, 76, 77, 78]. A lot of questions remains therefore

unknown about this electric topological defect. For instance, what are the relations between

dynamics of an electric vortex as a whole and (dielectric) dynamics of the individual electric

dipoles forming such vortex? In particular, is there any mode operating in the THz regime that

is associated with the formation of FE vortex and that softens with temperature, as similar to the

soft or central mode for the polarization dynamics of typical ferroelectrics [79, 80, 81, 82]? If

yes, what kind of mode is that? In light of these issues, we use a first-principles-based effective

Hamiltonian to reveal dynamics of BaTiO3 nanowires embedded in a less polar matrix, which
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has been originally reported in Ref. [92]. This nanocomposite undergoes a series of complex

phases. When the temperature drops below a critical temperature that we denote as Tt, electric

vortices form and a spontaneous electrical toroidal moment appears.

Method and System

The method used in this study is the effective Hamiltonian for BST systems implemented in a

Molecular Dynamics (MD) algorithm. MD has been vastly applied in many different systems

in Physics, Chemistry and Biology. It has proven to be very efficient in modeling the dynamical

properties of a many-body system within classical mechanics description. The details proce-

dures of MD algorithm can be found in many reviews and books (e.g., Ref. [83]). Its outline is

simply presented here.

As an introduction, we will present it with a case with one type of degree of freedom. Of

course, it is very straightforward to extend it to multiple types of degrees of freedom depending

on what the simulations are aimed at. Suppose the model system contains N particles with their

displacements given by {ui, i=1,...N}. The next thing needed is an accurate description of the

particle-particle interaction H({ui, i = 1, ...N}). The consecutive discrete times are denoted by

{t=0, 1, 2, ..., t, ...}. Initially (at time t = 0), the displacements of all the particles are given. The

choice of the initial configuration is trivial but cannot be arbitrary, especially if the simulation

is carried out within NVE ensembles of which the total particle number, the whole volume and

the total energy are constant. Precisely, the chosen initial configuration shall be compatible

with the desirable macrostate that is studied. Now what is required is the dynamical equations

that govern their motions with respect to time. Generally, the dynamics equations will follow

Newton’s law in classical mechanics:

mi
d2ui,α
dt2

= − ∂H

∂ui,α
, i = 1, ...N, (4.1)

where mi is the assigned mass for particle i and α denotes Cartesian components. From this,

the velocity u̇i and acceleration üi of particle i are obtained numerically at each time. Based

on the velocities and accelerations at time t, the displacements at the next time (t+ 1) are read-

ily calculated through some numerical integration techniques. This process should continue
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for time long enough with respect to the characteristic time scale of the targeted dynamical

properties. At the end, the macroscopic quantities of interests are obtained through statistical

mechanics. At each step, the produced configuration is one microstate in the phase space of the

system. As it is shown in Hamiltonian mechanics, the total energy here is conserved. So, the

discussion above corresponds to NVE ensemble. However, in most cases, instead of fixed en-

ergy E or fixed volume V, the temperature T or pressure P is kept fixed which are more realistic

in experiments and called NVT (canonical) or NPT (isothermal-isobaric) ensembles. However,

the temperature T or pressure P isn’t naturally conserved from the equation of motion. There-

fore, additional modifications of Eq. 4.1 should be included. Such modifications are referred

as thermostat (for NVT ensemble) and barostat (for NPT ensemble). One famous thermostat is

the Nosé-Hoover algorithm. One barostat can be found in Ref. [84].

In our study, the system under investigation is four equisized BTO nanowires embedded

equispacedly in a large STO matrix. A recent study shows that below Tt (330K) this nanocom-

posite makes a transition from paraelectric and paratoroidic phase to paraelectric and toroidic

phase as indicated by a vanishing net polarization and non-trivial vortex-pattern dipole config-

urations inside BTO wires [85]. The toroidic phase is characterized by a spontaneous electrical

toroidal moment of each wire calculated as in Refs. [59, 86]:

G =
1

2Nw

Nw∑
i=1

ri × di, (4.2)

where ri is the position vector (with respect to a chosen origin) and di = Z∗ui is the dipole

moment of the 5-atom cell i, with Z∗ being the Born effective charge. Nw is the total number

of cells within each associated wire. A non-vanishing z-component of G appears below Tt as

a result of the formation of electric vortices in the (x,y) planes of each wire (see Fig. 4.1).
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Figure 4.1: This figure shows the dipolar configuration (averaged over 50 snapshots at the same
temperature) occurring in the (x,y) plane of the investigated nanocomposite for any temperature
ranging between TC ' 240K and Tt ' 330K. The areas in red and blue are BTO wires and STO
matrix, respectively.

Technically, we first run 3.0× 105 MD steps of NPT (isothermal-isobaric ensemble) sim-

ulations on a 36× 36× 6 supercell (38,880 atoms) to equilibrate the system and then another

equilibration within the NVE (microcanonical) ensemble is done through 3.0× 105 MD steps.

Finally, additional 8.2× 106 MD steps are performed within this NVE ensemble to collect

time-resolved properties of the system. Typical outputs, at any MD step, are the local modes

and the electric toroidal moment defined in Eq. 4.2. To extract the dynamic properties, the

approach similar to that used in Refs. [79, 87, 88] is employed to compute two different com-

plex responses versus frequency, ν, for each investigated temperature and in any of the four

nanowires. One response is the dielectric permittivity, which is calculated via:

εαβ(ν) = 1 +
1

ε0VwkBT

∫ ∞
0

[dα(t)dβ(t) + i2πνe i2πνt < dα(t)dβ(0 ) >]dt,

dα =
1

4

∑
i

Z∗ui,α, with i running over all sites in the wires, (4.3)

where α and β denote Cartesian components. d(t) is the average total dipole moment of the

wires at time t and < dα(t)dβ(0 ) > is the autocorrelation function associated with dipole
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moment [83, 87]. Vw is the volume of each wire within this supercell, T is the temperature and

ε0 is the vacuum permittivity. The other is the response function of the toroidal moment to its

conjugate field (that is, a curled electric field [89, 90, 91, 9]) and is defined as:

εt,αβ(ν) = 1 +
1

ε0VwkBT

∫ ∞
0

[Gα(t)Gβ(t) + i2πνe i2πνt < Gα(t)Gβ(0 ) >]dt,

(4.4)

where G(t) is the electric toroidal moment vector averaged over all the four wires at time t and

< Gα(t)Gβ(0 ) > is the autocorrelation function associated with that toroidal moment. α and

β denote Cartesian components. The computed spectra of εαβ(ν) and εt,αβ(ν) are then fitted by

classical damped harmonic oscillators Sν2r
ν2r−ν2+iνγ

, where νr, γ and S are the resonant frequency,

damping constant and strength of the oscillator, respectively. Sνr2 gives the spectral weight.

The details of this work is reported in Ref. [92].

Dynamics of electric vortices formation

First, let us take a look at the complex spectra of two dielectric tensor components, εxx(ν) and

εtzz(ν) at two different temperatures. One is at 750K in the high temperature region and the

other is 450K closer to the transition temperature Tt. As shown in Ref. [85], the four wires

behave in phase and the inter-wire interactions are weak. Thus, it is reasonable to use the

average of all the four wires for d(t) and G(t). Fig. 4.2a shows that there is a single mode

at 750K, while there are two apparent modes at 450K. And this crossover from one mode to

two modes regime occurs at around 670K. A similar crossover was reported in the paraelectric

phase of bulk BTO [79]. The high frequency mode was referred to be the soft mode, while the

low frequency branch was identified as the central mode. One more thing worth mentioning is

that the high frequency modes in εzz(ν) and εtxx(ν) occur at close frequencies. However, the

low frequency modes at 450K behave differently. To understand it, we will turn to Fig. 4.3,

which shows the temperature evolution of the resonant frequencies extracted from εzz(ν) and
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(a) (b)

Figure 4.2: Imaginary parts of the responses of the x-component of the averaged dipole mo-
ment (Panel a) and the z-component of the electric toroidal moment (Panel b) inside the wires,
as a function of frequency and as fitted by classical harmonic oscillators, for 450K and 750K.

(a)

Figure 4.3: Characteristic dynamical properties of the studied nanocomposite as a function of
temperature: the resonant frequencies of the complex responses of both the x-component of the
toroidal moment and of the z-component of the averaged dipole moment inside the wires. The
thicker solid line shows the fit of some data by square-root laws that are indicated in the text.

εtxx(ν) by fitting to classical damped harmonic oscillators. In the whole temperature window,

each of the spectra has two modes at present, a high frequency one labelled by “H” and a low
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frequency one labelled by “L”. The high frequency branch of εzz(ν) (to be denoted as ν(H)
zz )

smoothly softens when temperature decreases from 630K to Tt (' 330K) up to which no net

polarization or toroidal moment has formed. Compared to the two modes in the paraelectric

phase of bulk BTO, this high frequency branch ν(H)
zz corresponds to soft mode, thus it character-

izes dipole moments’ oscillating. The low frequency branch of εzz(ν) (to be denoted as ν(L)
zz ),

however, softens much faster, which is identified as the central mode. It captures the motion

of the dipole moment fluctuation between energetic wells that are close enough. The existence

of these two modes is associated with an order/disorder type of transition and is well explained

by a Comes-Guinier-Lambert model [80, 93]. And it fits well to a square-root law of the form

C(T − TFE)1/2, where TFE is fitted to be around 247 K. Such result is consistent with the for-

mation of a net spontaneous polarization lying along the z-axis for a critical temperature TC '

240 K [85]. Meanwhile, the two modes from εtxx(ν) are displayed together, and are denoted as

ν
(H)
txx and as ν(L)

txx , respectively. For the temperature range here, the high frequency branch ν(H)
txx

from the x-component of the toroidal moment follows the high frequency branch ν(H)
zz from the

z-component of the dipole moment, and the low frequency branch ν(H)
txx from the x-component

of the toroidal moment follows the low frequency branch ν(H)
zz from the z-component of the

dipole moment. If we take a look at Eq. 4.2, this can be easily understood through the fact

that the x- component of the toroidal moment involves the y- and z- components of the dipole

moment. Therefore, when there is no formation of toroidal moment (i.e., Gx here), the two

modes from εtxx(ν) result from the conventional dynamical modes of the involved component

of the total dipole moment, i.e., the soft mode and central mode. In other words, there is no

significant individual mode that solely belongs to the toroidal moment. Now let us see what

happens when there is formation of a net toroidal moment below Tt.

Figure 4.4a shows the resonant frequencies of the complex responses of the z-component

of the toroidal moment and of the x-component of the averaged dipole moment inside the

wires. The resonant frequencies of εyy(ν) are not shown here since the spectra from εyy(ν) is

identical to that of εxx(ν). The high frequency branch of εxx(ν) (denoted as ν(H)
xx )) shares the

same temperature evolution as ν(H)
zz discussed above, only with a difference in their magnitudes

(such difference is due to the nonequivalency between the x- and z-components of the dipole
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(a)

(b)

Figure 4.4: Characteristic dynamical properties of the studied nanocomposite as a function
of temperature: Panel (a) displays the resonant frequencies of the complex responses of the
z-component of the toroidal moment and of the x-component of the averaged dipole moment
inside the wires. The inset of Panel (a) represents the spectral weight of the low-frequency
and high-frequency modes associated with the fluctuation of the z-component of the toroidal
moment, while Panel (b) displays the damping coefficients of these two latter modes. The
thicker solid line of Panel (a) shows the fit of some data by the square-root law that is indicated
in the text. The solid lines of Panel (b) are guides for the eyes.
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moment). Just like ν(H)
zz and ν(H)

txx , the high frequency branch ν(H)
tzz follows closely ν(H)

xx due to

the fact that the x-component of the dipole moment enters the z-component of the toroidal mo-

ment through Eq. 4.2. Since this high frequency mode ν(H)
xx corresponds to the oscillation of the

dipole moment along the x-direction, the high frequency mode ν(H)
tzz captures the oscillations of

the z-component of the toroidal moment due to the oscillation of the dipole moment along the

x- and y-directions. However, unlike ν(L)
zz and ν(L)

txx , the low frequency branches ν(L)
xx and ν(L)

tzz

soften faster while they significantly differ from each other when the temperature decreases

towards Tt. The gap between ν(L)
xx and ν(L)

tzz is around 20 cm−1, which is beyond a statistical

error. Besides, the damping constants for these two low frequency branches are displayed in

Fig. 4.4b, which shows the large difference between them. Clearly, the damping constant of

the toroidic mode is larger, which means the relevant motion of the toroidal moment damps

faster and there exists large anharmoncity in it. This is easily understood considering the fact

that toroidal moment involves a large portion of dipole moments which will result in larger

anharmonicity. On the other hand, we also numerically found (not shown here) that the damp-

ing coefficients of the low-frequency (and also high-frequency) toroidic and dielectric modes,

whose resonant frequencies are shown in Fig. 4.3, are basically identical. All of these suggest

that this low frequency ν(L)
tzz is a distinct mode solely associated with the toroidal moment. The

thicker solid line represents the fitting of ν(L)
tzz to the square-root law of the form C(T −Ttor)1/2.

Ttor is fitted to be around 319K here, which is very close to Tt (' 330K). The difference be-

tween this critical temperature Ttor and the reported Tt in Ref. [85] is within the typical error

of transition temperatures when going from Monte-Carlo simulations (as done in Ref. [85]) to

MD calculations (as used here). Further, the inset of Fig. 4.4b gives the spectral weights of the

two modes of εtzz(ν). With the temperature decreasing toward Tt, the spectral weight of the

high frequency mode decreases, and the spectral weight of the low frequency mode increases

and becomes increasingly important. Therefore, this low frequency mode ν(L)
tzz should be re-

sponsible for the transition from paratoroidic phase to ferrotoroidic phase, which also confirms

that the z-component of toroidal moment is a good order parameter in this transition.

As we discussed earlier, the low frequency dielectric modes ν(L)
xx and ν(L)

zz are identified as

the central modes which characterizes the hopping of the dipole moment between energetic
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wells. Then what kind of motion is the low frequency toroidic mode ν(L)
tzz related to? To answer

this question, let us first turn back to Eq. 4.2. In the definition, the toroidal moment consists

of the cross product of the individual dipole moments and the position vector. Since we collect

our complex dielectric spectra in micro-canonical (NVE) ensemble, it means that the position

vectors are held fixed at this stage of simulations. The oscillation of the magnitude of the

dipole moment has already entered into the toroidic spectra as exhibited by the high frequency

branch ν(H)
tzz . Then what are left of the cross product of the individual dipole moments and

the position vectors are the individual angles between the individual dipole moments and their

position vectors. So the angular fluctuation in the cross product is expected to be the origin of

the low frequency toroidic mode ν(L)
tzz . To confirm it, we performed another set of calculations

of which the results are shown in Fig. 4.5. In this set of calculations, we computed the average

of the projected local electric dipole at each site i onto its azimuthal direction. These azimuthal

directions are displayed for several unit cells in the inset of Fig. 4.5. Let us now sum these

azimuthal components over all the sites belonging to a wire, and denote the resulting quantity

as dazi(t) for any time step, t, of the MD procedure. One is then able to compute an “azimuthal”

response given by:

εazi(ν) = 1 +
1

ε0VwkBT

∫ ∞
0

[dazi(t)dazi(t) + i2πνe i2πνt < dazi(t)dazi(0 ) >] dt . (4.5)

This latter response is thus deduced from the “traditional” dielectric response of Eq. 4.3 by re-

placing the Cartesian components of the local electric dipoles by their azimuthal components.

This azimuthal response is then fitted by classical damped harmonic oscillators. The result-

ing resonant frequency, ν(L)
azi , of the lowest-in-frequency azimuthal mode is then plotted as a

function of temperature in Fig. 4.5, along with the resonant frequency ν(L)
tzz that is associated

with the fluctuation of the z-component of the toroidal moment. These two frequencies coin-

cide well for any investigated temperature. One can thus safely conclude that the dynamics of

the low-frequency toroidic mode displayed in Fig. 4.4a corresponds to fluctuation of the (col-

lectively organized) azimuthal components of the local electric dipoles. This low-frequency

toroidal mode can be thought as being analogous to a pendulum and rotational displacements,

rather than classical springs that are associated with translational displacements (as the other

investigated toroidic and dielectric modes correspond to) [94]. This azimuthal oscillation also
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(a)

Figure 4.5: Temperature evolution of the resonant frequency of the low-frequency mode as-
sociated with the azimuthal response defined by Eq. 4.5, along with that of the low-frequency
mode of the response of the z-component of the toroidal moment. The inset illustrates the az-
imuthal direction (which the arrows point towards) of each site position (where the tail of each
arrow is located at) in a wire.

bears resemblance with the azimuthal motions of spin waves associated with magnetic vortices

[78]. We also plot the probability distribution of the three components of the toroidal moment at

325K near the transition temperature Tt. Clearly, three is only one peak for Gx and Gy around

zero, while there are two large peaks around ±0.025 from Gz, which suggests a significant

oscillation of the rotational displacement between energetic wells when there is a net toroidal

moment component (Gz) going to form. This is captured in the lowest frequency mode ν(L)
tzz .

In summary, this chapter presents a study of the dynamical mechanisms of the toroidal

moment in a electrotoroidic system which consists of BTO wires embedded in STO matrix by

the method of effective Hamiltonian implemented in MD algorithm. We have shown that there

is one particular toroidic mode whose dynamical characteristics significantly differ from those

of the dielectric modes, despite their interconnection reflected through Eq. 4.3. This toroidic

mode softens via a square-root law when the temperature approaches Tt – implying that the

toroidal moment is the right order parameter to characterize the formation of electric vortices.
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(a)

Figure 4.6: The probability distribution of the three components of the toroidal moment at
325K.

Our work further demonstrates that the dynamics of this toroidic mode originates from the

fluctuation of the collectively-organized azimuthal component of electric dipoles. Finally, let us

suggest some possibilities to capture the predicted toroidic modes in experiments. Raman and

infrared spectroscopies are likely relevant tools to observe the toroidic modes in electrotoroidic

systems, based on the fact that magnons have been seen in Raman spectra of multiferroics [95].

Application of a curled external electric field in measurement may also lead to a confirmation

of our predictions [9].
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Chapter 5

A universal law governing coupled magnetic orders in ABO3 perovskites

Background

As seen in previous chapters, perovskites form an important class of materials that display not

only a rich ensemble of structural phase transitions related to electric dipole moments, but also

magnetism, multiferroicity, charge and orbital orderings and superconductivity, which are of

great interest for technological applications and for fundamental reasons [96, 97, 98, 99, 100,

101, 102]. In particular, multiferroics have attracted a huge attention in the past decade and

still are, because of the existence of magnetic order parameter in addition to an electrical po-

larization. This extra degree of freedom can lead to many interesting magnetic configurations

due to its interaction with other structural degrees of freedom. As a result, many structural

phases in various magnetic and multiferroic perovskites display a complex spin arrangement

that involves not only one but also different coexisting magnetic order parameters. Well-known

examples of such coexistence are theR3c orCc state of BiFeO3 (BFO) bulks and thin films that

exhibit a spin-canted magnetic structure – which generates a weak ferromagnetic (FM) moment

(also known as a F-type magnetic ordering) superimposed on a predominant G-type antiferro-

magnetic (AFM) vector [103, 104, 105, 106, 107]. This corresponds to a combination of two

coupled magnetic order parameters. Other examples are the three coupled magnetic orders (to

be chosen among the F-, G-, C- and A- types) abundantly found in the Pnma phase of any mag-

netic or multiferroic perovskite (e.g., orthoferrites) [108, 109, 110, 111, 112]. Understanding

such coexistence of coupled magnetic orders is of fundamental but also technological impor-

tance, since it can dramatically affect magnetic properties and even leads to the occurrence

of the so-much-desired magneto-electric effects. Then many important questions arise: What

47



are the microscopic origins of these coupled magnetic orders? Can coupled magnetic orders

occur in any crystallographic phase? Can one optimize the magnitude of the magnetization in

a system that is predominantly antiferromagnetic through the coupling between different mag-

netic order parameters? Is it possible to have more complex combination than those presently

reported, such as those possessing four different magnetic order parameters, in a given crys-

tallographic phase in a perovskite? If it is true, what will be the combination and what are the

resulting directions of the different vectors representing the different magnetic order parameters

in such combination?

Method

To answer these problems above, group theory seems to be an option, which has been devel-

oped in Refs. [111, 113, 114, 115]. Group theory is able to give all the compatible combina-

tions of multiple magnetic orders and the directions along which the corresponding magnetic

vectors lie for a given structure. But, it cannot provide any information about the relative mag-

nitudes of coupled magnetic orders or their connections to other structural degrees of freedom.

Additionally, it is by no means easy to apply group theory to determine which magnetic or-

ders are coupled, and along which directions the FM and/or AFM vectors are oriented, when

choosing a low-symmetry direction for the primary magnetic order in, e.g., R3c, Cc, Pnma

or Pmc21 states. As a result, a more simpler predictive tool is required in which only struc-

tural degrees of freedom are explicitly and straightforwardly involved. Considering the coupled

magnetic orders in the R3c and Cc states of BiFeO3 [104, 105, 106] and in the Pnma and/or

Pmc21 phases of YFeO3, RMO3 (where R3+ is a rare-earth ion or yttrium and M3+= Fe3+

or Cr3+) and CaMnO3 [109, 110, 111, 112], it seems that the oxygen octahedral tilting is

one strongly relevant structural degree of freedom. To start with, let us define the octahedral

tilting in perovskites, ωi (also called the “antiferrodistortive” (AFD) quantity) which is is cen-

tered at the B-site of the cell i. The direction of this pseudovector is the axis about which the

oxygen octahedra tilt and its magnitude is the angle of the rotation [5]. For example, let us

choose ωi = 0.1(x + y + z) ,when x, y and z are the unit vectors along the [100], [010] and

[001] pseudo-cubic directions, respectively. Then it corresponds to a rotation of 0.1
√

3 rad of
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the octahedron at cell i about the pseudocubic [111] direction. As introduced in the effective

Hamiltonian in Ref. [105], the main energetic term of our interest is

∆E = K
∑

i,j(ωi − ωj) · (mi ×mj), (5.1)

where mi denotes the magnetic dipole centered on the B-atom of i site and the sum over i

runs over all the B-atoms of the perovskite structure while the sum over j only runs over the

B-atoms that are first-nearest neighbors of the B-site i. K is a parameter that characterizes

the strength of this energetic interaction and is therefore material-dependent. Note that Eq.

(5.1) can be considered as a particular case of the so-called Dzyaloshinksy-Moriya interaction

[116, 117] – that is analytically given by D
′ · (mi×mj) – for which the “mysterious” D′ vector

is here simply the difference between the AFD pseudo-vectors at sites i and j. It is important

to realize that several remarkable works [111, 113, 114, 115] have derived important properties

of the D′ vector, but that none of these works have explicitly connected it with the magnitude

and direction of oxygen octahedra tilting, as done in Eq. (5.1). Such connection, which is

consistent with some symmetry considerations done in these previous works, is the key to the

general formula to be indicated below (in Eq. (5.4)). Then what is left is to connect these

quantities to the possible magnetic order parameters and AFD quantities. Since these order

parameters are associated with a few discrete commensurate k-points of the first Brillouin zone

(BZ) of the cubic reference structure introduced in previous chapters, it is a natural choice to

rewrite Eq. (5.1) in k space instead of r space, i.e., expressing the local quantities ωi,j and mi,j

in terms of k-dependent quantities (e.g., ωk and mk).

First, for the AFD motion, there are two types of AFD motion under our consideration,

anti-phase and in-phase tiltings, which are common in perovskite structures. The anti-phase

tilting is related to the R-point of of the cubic first BZ. If only the anti-phase tilting is present

in the system, then ωi can be written as (−1)nx(i)+ny(i)+nz(i)ωR, where ωR is constant, site-

independent vector and nx(i), ny(i) and nz(i) are the integers indexing the center of the cell i

(to be more specific, in the ideal perovskite structure and when denoting as alat the 5-atom

cubic lattice constant, this cell i is centered at alat(nx(i)x + ny(i)y + nz(i)z) with respect to a

chosen origin). The in-phase tilting is related to the M-point of the cubic first BZ. If only the

in-phase tilting is present, then ωi is simply written as (−1)nx(i)+ny(i)ωM, where ωM is another
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homogeneous vector. The k vector at R- and M- point are given as qR = 2π
alat

(x + y + z) and

qM,xy = 2π
alat

(x + y), respectively. In a general case, ωi is simply decomposed into the sum of

the two previous terms, that is:

ωi = (−1)nx(i)+ny(i)+nz(i)ωR + (−1)nx(i)+ny(i)ωM, (5.2)

where both the anti-phase and in-phase tiltings are present. To better understand it, let us choose

the particular case for which ωR = 0.01(x + y) and ωM = 0.04z. Such example corresponds

to a a−a−c+ tilting system (using Glazer notations [118]) with the angle of anti-phase tilting

(about [110]) being
√

2× 0.01 radian and the angle of in-phase tilting (about [001]) being 0.04

radian. Note also that structural constraints associated with the rotation of the oxygen octahedra

imply that, for any Cartesian component of ωM that is nonzero, that component of ωR must be

zero, and vice versa [119].

For magnetic moments, four common magnetic order parameters are considered here. They

are F-, G-, C- and A- type. The F-type is characterized by the ferromagnetic vector denoted by

F and associated with the Γ-point in the cubic first BZ; the G-, C- and A- types are shown as

the antiferromagnetic vectors denoted as G (associated with the R-point in the cubic first BZ),

C (associated with theM -point in the cubic first BZ) and A (associated with theX-point in the

cubic first BZ), respectively. The X-point vector is given as qX,z = 2π
alat

z. In case of a general

magnetic structure, the magnetic dipole moment at site i is numerically decomposed into a sum

of all the four type magnetic vectors as

mi = F + (−1)nx(i)+ny(i)+nz(i)G + (−1)nx(i)+ny(i)C + (−1)nz(i)A, (5.3)

where all the vectors F, G, C and A are presumed to be homogeneous. Note that the magnetic

moments are located in the B sublattice of the ABO3 perovskite structure.

Now put Eqs. (5.2) and (5.3) into Eq. (5.1), and sum first over the six first-nearest neighbors

of site i and then over all sites i. After some algebraic work, we arrive at

∆E = 24NKωR · (G× F) + 16NKωM · (C× F)

+16NKωM · (G×A) + 8NKωR · (C×A), (5.4)

where N is the total number of sites in the system. There are a few things about Eq. (5.4)

worth mentioning. First, it is very simple in terms of explicit expressions of oxygen octahedra
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tilting and magnetic vectors. Second, it applies to ABO3 perovskite structures of which the

magnetism comes from the B sublattice. For the case that the magnetism comes from both the

A and B sublattices (e.g., as in NdFeO3), it should work for the magnetic structures of Fe ions

only.

In order to test such simple yet powerful equation, the comparison of its predictions is

given and discussed not only with existing data in the literature, but also with the results of

first-principles calculations [120]. In these calculations, a given material (namely, BFO bulk)

is chosen and considered in different crystallographic phases. Spin-orbit and non-collinear

magnetism are included in these calculations (we numerically found that omitting them will

not lead to any coupled magnetism, as consistent with Refs. [104, 105, 112]). Technically,

we use the Local Spin Density Approximation and a Hubbard U parameter [29] equal to 3.8

eV for Fe ions, as in Refs. [105, 6, 121]. The 5-atom cubic lattice constant, alat, is chosen

to be 3.85 Å. In each of these calculations, only one magnetic order among the four discussed

above is initially chosen with a selected direction of its corresponding order parameter vector.

However, while the ions and lattice vectors are kept frozen, the system is then allowed to relax

its magnetic structure, and can thus adopt secondary magnetic orders in order to minimize its

total energy (the initially chosen magnetic order is referred to as the primary magnetic order,

while the other magnetic vectors are termed as secondary). This work has been originally

reported in Ref. [122].

Paraelectric cases

In this section, we perform first-principles calculations in the paraelectric phases on various

magnetic structures, which are indicated in Tables 5.1 and 5.2 and are now discussed and com-

pared to the predictions of Eq. (5.4).

Anti-phase tiltings within a 10-atom unit cell: to start, we consider the cases for which only

anti-phase tilting of the oxygen octahedron exists. A 10-atom unit cell is chosen with the fol-

lowing lattice vectors: a1 = alat(y+z), a2 = alat(x+z) and a3 = alat(x+y). This unit cell is

compatible only with the coexistence/existence of a ferromagnetism or a G-type antiferromag-
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netism, which reduces Eq. (5.4) to its first term, 24NKωR · (G×F) (= 24NK(ωR×G) ·F =

24NK(F × ωR) · G). The minimization of this energetic term implies that an initially pure

G-type AFM structure will have its spins canted via the creation of a magnetization that is par-

allel or antiparallel to ωR×G because of the existence of anti-phase tilting. As shown in cases

1-4 of Table 5.1, the predominant G-type AFM vectors are chosen along various directions.

For all of the four cases, the first-principles calculations agree with the prediction from the

aforementioned energetic term. In case 1, due to the vanishing of the cross product of ωR and

G, the resultant magnetization is zero. In cases 2-4, the calculated magnetization vectors F lie

exactly perpendicular to the predominant G vectors as from the minimization of Eq. (5.4). On

the other hand, in case 5, the predominant magnetic vector is chosen to be the magnetization

vector along the x-direction. Then the G vector is found to lie along the minus y-direction as

predicted from Eq. (5.4). Therefore, predictions from Eq. (5.1) indeed hold when performing

first-principles calculations, independently of the chosen direction of the G-type AFM vector

and independently of the arrangement of anti-phase oxygen octahedra tilting (and therefore

independently of the corresponding crystallographic phase)! As a matter of fact, it is valid for

a a0a0c− tilting configuration (see cases 1-4, that corresponds to a I4/mcm space group) but

also for a a−a−a− arrangement (see cases 6-8, for which the space group is R3̄c). In particular,

(i) no weak magnetization exists when G lies along ωR – as evidenced by cases 1 and 6 of

Table 5.1; (ii) the magnitude of the magnetization, for a given anti-phase tilting angle, should

be the largest when ωR and G are perpendicular to each other – which is indeed verified in

Table 5.1 (see cases 2 and 3 for a0a0c−, and case 8 for a−a−a−). Moreover, starting from a

free-energy expansion for which the energetic terms involving the magnetization are simply a

term proportional to F2 and the presently proposed 24NKωR · (G × F) term, one can prove

that, for a given G vector, the magnitude of the magnetization should be directly proportional

to the magnitude of ωR – that is to the anti-phase tilting angle. Fig. 5.1 indeed confirms the

linear relationship between the magnitude of the magnetization and tilting angle, up to quite

large magnitude of ωR.
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Figure 5.1: This figure shows the magnitude of the magnetization as a function of the angle of
tilting of the oxygen octahedra in theR3̄c phase of BiFeO3 bulk, as predicted by first principles.
The primary G-type AFM vector is aligned along [101], while ωR is chosen to be along the
[1̄1̄1] pseudo-cubic direction.

The first term of Eq. (5.4) can therefore be practically used to design materials in which

a large G-type AFM vector will coexist with a significant magnetization, by searching for a

structure in which the G-type AFM vector is perpendicular to a large ωR. Note also that, if we

assume that the magnetic anisotropy only arises from the first term of Eq. (5.4) in a primarily

G-type structure, then the minimization of the total magnetic energy should result in a G vector

and a magnetization that should not only be perpendicular to each other but also should be both

perpendicular to ωR. This is indeed the case in BiFeO3 films [104, 105]. The first term of Eq.

(5.4) further implies that a material being primarily ferromagnetic and possessing anti-phase

oxygen octahedra tilting will also exhibit a secondary G-type AFM order for which the AFM

vector will be parallel or antiparallel to F× ωR. Case 5 in Table 5.1 confirms such prediction.
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Table 5.1: Ferromagnetic, F, and antiferromagnetic (G, C and A) vectors for different oxygen
octahedra tilting arrangements and different resulting paraelectric phases in BiFeO3 bulks, as
predicted by first principles. The chosen ωR and ωM AFD vectors are provided in the first
two columns. The asterix symbol indicates the primary magnetic vector. Each different case is
referred to by an integer that is indicated at the beginning of each row. The magnetic vectors are
expressed in unit of Bohr magneton per Fe ion. The AFD vectors are indicated in radians. The
integers in parenthesis indicate the energetic term (first, second, third or fourth) of Eq. (5.4)
that are consistent with the direction of the magnetic vectors found by first principles. Glazer
notations [118] are used for describing the oxygen octahedra tilting arrangements.

a0a0c− I4/mcm

ωR ωM G F C A

1: 0.16z 0 4.04z∗ 0 (1) N/A N/A

2: 0.16z 0 4.04x∗ -0.011y (1) N/A N/A

3: 0.16z 0 2.86(x+y)∗ 0.008(x-y) (1) N/A N/A

4: 0.16z 0 2.86(x+z)∗ -0.007 y (1) N/A N/A

5: 0.16z 0 -0.024y (1) 4.14x∗ N/A N/A

a−a−a− R3̄c

ωR ωM G F C A

6: 0.16(-x-y+z) 0 2.33(-x-y+z)∗ 0 (1) N/A N/A

7: 0.16(-x-y+z) 0 2.34(x+y+z)∗ 0.012(x-y) (1) N/A N/A

8: 0.16(-x-y+z) 0 2.87(x+z)∗ 0.008(x-2y-z) (1) N/A N/A

a0a0c+ P4/mbm

ωR ωM G F C A

9: 0 0.16z N/A 0 (2) 4.10z∗ N/A

10: 0 0.16z N/A -0.007x (2) 4.11y∗ N/A

11: 0 0.16z N/A 4.18x∗ -0.012y (2) N/A

a−a−c+ Pnma

ωR ωM G F C A

12: 0.16(x+y) 0.16z 4.05z∗ 0.010(-x+y) (1) -0.040(x+y) (2) 0 (3,4)

13: 0.16(x+y) 0.16z 2.34(x+y+z)∗ 0.006(-x+y) (1) 0.015(-x-y+2z) (2,4) 0.001(x-y) (3)

14: 0.16(x+y) 0.16z 2.34(x-y+z)∗ 0.005(-x+y+2z) (1) -0.019(x+y) (2) -0.001(x+y) (3)

15: 0.16(x+y) 0.16z 2.87(x-y)∗ 0.012z (1) 0 (2,4) -0.002(x+y) (3)

16: 0.16(x+y) 0.16z 2.87(x+y)∗ 0 (1,2) 0.043z (4) 0.002(x-y) (3)

17: 0.16(x+y) 0.16z 2.60(-x+y+2/3 z)∗ 0.002(-x+y-3 z) (1) -0.008(x+y) (2) 0.001(x+y) (3)

18: 0.16(x+y) 0.16z 0 (1,3) -0.032(x+y) (2) +0.017(-x+y) (4) 4.15z∗

19: 0.16(x+y) 0.16z -0.007(x+y) (3) 0 (1,2) 0.030z (4) 2.94(x-y)∗

20: 0.16(x+y) 0.16z 0.007(x-y) (3) 0.022z (1) 0 (2,4) 2.94(x+y)∗

21: 0.16(x+y) 0.16z 0.005(x-y) (3) 0.012(-x-y+2z) (1,2) 0.009(-x+y) (4) 2.40(x+y+z)∗

22: 0.16(x+y) 0.16z 0.015(-x+y) (1) 4.23z∗ 0 (2,4) -0.014(x+y) (3)
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In-phase tiltings within a 10-atom unit cell: now we consider the cases for which only in-

phase oxygen octahedra tiltings exist. For this, another unit cell is chosen that is spanned

by the following lattice vectors: a′1 = alat(x − y), a′2 = alat(x + y) and a′3 = alatz.

This unit cell is compatible with the existence of ferromagnetization and/or C-type AFM. As

a result, Eq. (5.4) reduces to the second term alone, that is ∆E = 16NKωM · (C × F)

(= 16NK(ωM × C) · F = 16NK(F × ωM) · C). This simple term predicts that (i) with

a primarily C-type AFM structure, in-phase tiltings will create a magnetization aligned along

ωM × C; (ii) with a primarily ferromagnetic structure, in-phase tiltings will create a C-type

AFM vector aligned along F×ωM . Cases 9-11 in Table 5.1 also confirm these predictions. For

instance, in case 10, the primary magnetic vector C is chosen to lie along the y-direction. With

the in-phase tilting around the z-direction, the magnetic dipoles cant to give a magnetization

along the minus x-direction, which is the direction of the cross product of (ωM ×C). One can

easily verify case 11 when the primary magnetic vector is chosen to be ferromagnetic.

Complex oxygen octahedra tiltings: let us now investigate more complex cases for which both

in-phase and anti-phase oxygen octahedra tiltings exist. An example of such arrangement is the

a−a−c+ configuration, that can be tackled by first principles by choosing a 20-atom supercell

that is generated by the following lattice vectors: a′1 = alat(x − y), a′2 = alat(x + y) and

a′′3 = 2alatz. Such supercell is compatible with the existence and coexistence of a magneti-

zation, as well as G-, C- and A-types of antiferromagnetism [112]. Consequently, all the four

terms of Eq. (5.4) can be activated and play a role in the creation of coupled magnetic orders.

Cases 12-22 of Table 5.1 display first-principles results for the Pnma phase of BFO, when ini-

tially choosing different primary magnetic orders and different directions of the corresponding

FM/AFM vectors. Once again, all these results are in-line with Eq. (5.4). Let us provide details

on a couple of them to fully exhibit its predictive power.

For instance, in case 15, with both anti-phase and in-phase octahedra tiltings, an initial G

primary magnetic vector along [11̄0] leads to the creation of (i) a magnetization along the z-

axis as a result of the first term of Eq. (5.4), since the corresponding ωR is along [110]; and

(ii) a A vector that is aligned along [1̄1̄0] because of the third term of Eq. (5.4) in which ωM is

parallel to [001]. In such case, there is no C-type AFM ordering because the second and fourth
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terms of Eq. (5.4) vanish (since F is parallel to ωM and A is parallel to ωR, respectively).

More importantly, cases 12, 15 and 16 in Table 5.1 are fully consistent with the experimental

results for the Pnma phase of YFeO3 [109, 110]. Similarly, the measurements for LaMnO3

[108] are consistent with our Case 20, and those for LuCrO3 [123] and LuFeO3 [124] fully

match the predictions expressed in Cases 12 and 15, respectively. The observed temperature-

induced reorientation of the primary and secondary coupled magnetic orders in the Fe sublattice

of NdFeO3 [125] is also covered by Eq. 5.4: it corresponds to Cases 15, 14 and 12 as the

temperature is reduced. Moreover, Cases 12, 15, 16, 18, 19, 20 and 22 fully agree with the

analysis based on group theory [112] for the Pnma structure (actually for any perovskite,

including CaMnO3. Note that the x-, y- and z-axes in Refs. [109, 110, 111] are chosen along

the [11̄0], [110] and [001] pseudo-cubic directions, respectively, while they are along the [110],

[001] and [11̄0] directions, respectively, in Ref. [112]. Such choices contrast with ours, for

which the x-, y- and z-axes are along the [100], [010] and [001] pseudo-cubic directions). It

is thus interesting to realize that our predictions are consistent with pure symmetry analysis

associated with the B sites of the ABO3 perovskite structure while no symmetry argument was

used to derive Eq. (5.4)!

It is also important to point out that Eq. (5.4) is more informative than group theory by

indicating the microscopic reasons responsible for the coupled magnetic orders and the corre-

sponding directions of their FM/AFM vectors. Another interesting issue that was not addressed

in Refs. [109, 110, 112] is the possibility that all the four aforementioned magnetic orderings

simultaneously exist within a structure. Table 5.1 reveals that this indeed can occur, see cases

13, 14, 17 and 21. Let us try to take advantage of Eq. (5.4) to understand why it happens for

the sole Case 21, in which the primary AFM vector is of A-type and is aligned along [111].

This specific A vector generates (i) a G vector aligned along [11̄0] because of the third term

of Eq. (5.4), and (ii) a C vector aligned along [11̄0] because of the fourth term of Eq. (5.4).

The first and second terms of Eq. (5.4) then imply that a F vector should be created with the

preferred energetic choice of having a component along ωR × G (that is, along [001]) and

also having a component along ωM × C (that is along [1̄1̄0]). The system does follow such

energetic requirements by choosing a FM vector that is along [1̄1̄2], which also allows it to be
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perpendicular to the primary A vector. Moreover, Eq. (5.4) is general in the sense that it is also

valid for low-symmetry directions. For instance, in a a−a−c+ tilting system, choosing G along

the [3̄32] direction should lead to a magnetization along [1̄13̄] via the first term of Eq. (5.4),

and to the formation of C and A vectors along [110] via the second and third terms of Eq. (5.4)

(the fourth term of Eq. (5.4) vanishes because C and A are along the same direction). Case 17

in Table 5.1 confirms the predictive power of Eq. (5.4) even for these low-symmetry directions

of G and F. In this case, the predominate magnetic vector is chosen to lie along [3̄32]. With the

anti-phase tilting around [110] and in-phase tilting around [001], it displays a magnetization

along [1̄13̄] (as permitted by the first term of Eq. (5.4), i.e., (ωR×G) ·F), a A-type AFM along

[110] (as permitted by the third term of Eq. (5.4), i.e., (ωM ×G) ·A) and a C-type AFM along

[110] (as permitted by the second term of Eq. (5.4), i.e., (F× ωM) ·C).

Ferroelectric cases

Interestingly, none of the terms of Eq. (5.4) explicitly involves electric dipoles, which implies

that the direction of the resulting coupled magnetic orders should not depend on the electric po-

larization. In other words, what matter are “only” the primary magnetic vector and the oxygen

octahedra tilting arrangement. As detailed in Table 5.2, ab-initio calculations on phases pos-

sessing a polarization (in addition to oxygen octahedra tilting) indeed confirm such surprising

prediction. For instance, the secondary FM vector is still along the y-axis when the primary G

vector lies along [100] for a a0a0c− tilting configuration, independently of the fact that the po-

larization is along the z-axis (case 2 of Table 5.2, with a I4cm polar space group) or along the

x-axis (case 5 of Table 5.2, with a Fmm2 polar space group) – exactly as in case 2 of the Table

5.1 (for which the space group is non-polar I4/mcm). As demonstrated by the comparison of

these two Tables, the insensitivity of the direction of the coupled magnetic orders on the exis-

tence and direction of the polarization even holds for complex cases, such as those involving

a−a−c+ tilting configuration and a primary A vector aligned along the [111] direction (see case

21 of Table 5.1 and case 19 of Table 5.2). This insensitivity is a general feature of magnetic

perovskites, as demonstrated by the fact that it also explains an interesting result of Ref. [112],

namely why the directions of the G, F, C and A vectors do not vary (for
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Table 5.2: Same as Table 5.1 but for different ferroelectric phases. The polarization is expressed
in C/m2.

a0a0c− P=0.38z I4cm

ωR ωM G F C A

1: 0.16z 0 4.04z∗ 0 N/A N/A

2: 0.16z 0 4.04x∗ -0.007y N/A N/A

3: 0.16z 0 2.86(x+z)∗ -0.005y N/A N/A

a0a0c− P=0.38x Fmm2

ωR ωM G F C A

4: 0.16z 0 4.04z∗ 0 N/A N/A

5: 0.16z 0 4.04x∗ -0.012y N/A N/A

6: 0.16z 0 2.86(x+z)∗ -0.009y N/A N/A

a−a−a− P=0.38(-x-y+z) R3c

ωR ωM G F C A

7: 0.16(-x-y+z) 0 2.33(-x-y+z)∗ 0 N/A N/A

8: 0.16(-x-y+z) 0 2.33(x+y+z)∗ 0.012(x-y) N/A N/A

9: 0.16(-x-y+z) 0 2.85(x+z)∗ 0.008(x-2y-z) N/A N/A

a−a−c+ P=0.38z Pna21

ωR ωM G F C A

10: 0.16(x+y) 0.16z 4.05z∗ 0.009 (-x+y) -0.034(x+y) 0

11: 0.16(x+y) 0.16z 2.34(x+y+z)∗ 0.005 (-x+y) -0.009(-x-y+2z) 0.001(-x+y)

12: 0.16(x+y) 0.16z 2.34(x-y+z)∗ 0.005 (-x+y+2z) -0.016(x+y) -0.001(x+y)

13: 0.16(x+y) 0.16z 2.86(x-y)∗ 0.011z 0 -0.001(x+y)

14: 0.16(x+y) 0.16z 2.86(x+y)∗ 0 0.03 z 0

15: 0.16(x+y) 0.16z 2.59(-x+y+2/3 z)∗ 0.003(-x+y-3 z) (1) -0.009(x+y) (2) 0.001(x+y)

16: 0.16(x+y) 0.16z 0 -0.019(x+y) +0.031(-x+y) 4.15z∗

17: 0.16(x+y) 0.16z -0.006(x+y) 0 0.015z (4) 2.94(x-y)∗

18: 0.16(x+y) 0.16z 0.011(-x+y) 0.003 z 0 2.94(x+y)∗

19: 0.16(x+y) 0.16z 0.004(x-y) 0.009(-x-y+2z) 0.008(-x+y) 2.40(x+y+z)∗

20: 0.16(x+y) 0.16z 0.012(-x+y) 4.22z∗ 0 -0.011(x+y)

a given primary vector aligned a specific direction) when going from a non-polar Pnma phase

to a polar Pmc21 phase. As also nicely emphasized in Ref. [112], knowing such insensitivity
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is of large importance to design materials with non-zero linear magneto-electric coefficients.

Note, however, that the polarization does have a small effect on coupled magnetic orders: it can

slightly modify the magnitude of the secondary magnetic orders, see, e.g., the magnetization in

case 4 of Table 5.1 versus cases 3 and 6 of Table 5.2. In other words, one can think of the effect

of polarization on Eq. (5.4) as to weakly renormalize the strength of the K parameter.

In summary, this work reveals the existence (and its oxygen octahedra tiltings origins) of a

“universal” law (i.e., Eq. (5.4)) that governs coupled magnetic orders in perovskites. This “uni-

versal” law adopts a shockingly simple analytic form. First-principles calculations confirm its

validity for any tested structural paraelectric and even ferroelectric phase, and for any chosen

direction of any selected predominant magnetic vector. Examples of many important findings

resulting from this proposed law are: (i) the coupled magnetic orders microscopically originate

from anti-phase and/or in-phase oxygen ocathedra tiltings; (ii) when anti-phase oxygen octahe-

dral tiltings only exist, a magnetization can be generated through spin canting of a predominant

G-type AFM structure and is maximized in magnitude if the predominant G-type AFM vector

is perpendicular to the axis about which the oxygen octahedra tilt and vice versa; and for a

given G vector, the magnitude of the magnetization is directly proportional to the magnitude of

the anti-phase tilting angle; (iii) when there is only in-phase oxygen octahedral tiltings, a mag-

netization can be also created by a predominant C-type AFM structure and can be maximized

if the predominant C-type AFM vector is perpendicular to the axis about which the oxygen oc-

tahedral tilt and vice versa; (iv) when both anti-phase and in-phase oxygen octahedral tiltings

exist in a given paraelectric phase, there is a possibility that A-type, C-type, F-type and G-type

magnetic orders can ALL coexist in a structure and their corresponding vectors lie along re-

strained directions that are all given by the proposed “universal” law; (v) for polar phase, the

existence of the polarization has no effect on the direction of the coupled magnetic orders, but

do weakly alter the strength of the secondary magnetic order parameters. Such insensitivity is

of large importance to design materials with non-zero linear magneto-electric coefficients. This

“universal” law is straightforward and easy to manipulate to search for novel multiferroics. It

can also be easily generalized to derive novel energetic expressions, in case of coupled mag-

netic orders that are different and even more complicated than F-, G-, A- and C-types. It should
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also be noted that the work here does not exclude the possibility that other energetic terms, such

as the Dzyaloshinksy-Moriya interaction [116, 117] or spin-current-induction model [126], in-

volving the electrical polarization [127] or other structural degrees of freedom (rather than AFD

distortions) can also possibly govern coupled magnetic orders in materials.
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Chapter 6

Electronic properties of ferroelectric vortices from large-scale ab-initio computations

Background

Topological defects exist in several areas of science, e.g., particle physics and condensed matter

physics. Along with their special topologies, topological defects exhibit many unique proper-

ties, which renders them of great interest to the scientific community [128]. Such interest

includes electrical vortices, or related flux-closure configurations, that have been predicted to

exist about ten years ago [59] and that have been more recently observed [60, 61, 70, 66, 65,

62, 63, 64, 67, 68, 69]. During the past decade, several works have been aimed at investigat-

ing electrical properties of topological defects for possible applications in electronic devices

(see, e.g., Refs. [129, 130, 131, 60] and references therein). In particular, Ref. [60] observed

that the current–versus-voltage (I-V) curve starts to be significant for a voltage of about 1 V

in BiFeO3 (BFO) thin films having artificially-created electrical vortices, that is about 2 V

lower than the corresponding critical voltage in BFO systems having no topological defect.

One fundamentally- and technologically-important issue to resolve is the origin of such reduc-

tion in critical voltage and resulting significant electrical current measured between 1 and 2V.

For instance, is it an intrinsic effect, i.e., is it associated with a remarkable reduction of the

electronic band gap, since the I-V curve shown in Ref. [60] resembles that of a p-n junction

and the I-V curve in p-n junctions does naturally depend on the electronic band-gap [132]?

Or is such origin extrinsic in nature, i.e. is it due, e.g., to the existence of vacancies near the

topological defects? Such issue is not easy to address for several reasons. First of all, on an

experimental level, it is by no means trivial to separate intrinsic versus extrinsic effects on I-V

curves in systems possessing topological defects [60]. Secondly, electrical vortices are rather
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large in size which makes the calculation of their electronic properties by standard numerical

codes rather challenging. For instance, the computational scheme that has been used in Ref.

[59] to predict the existence of electrical vortices, that is the effective Hamiltonian technique,

can lead to the prediction of the relaxed positions of the thousands of atoms forming an elec-

trical vortex but can not yield its electronic properties because electrons are not included as

degrees of freedom in this scheme. Conversely, traditional first-principles codes can mimic

well both the atomic and electronic structures of materials, but “only” providing that the sys-

tem’s size is well below the typical size of electrical vortices (otherwise the computations are

too memory- and time-intensive and thus become practically unfeasible) [120, 134, 133]. As a

result of this conundrum, it is presently unknown if electric topological defect can intrinsically

and significantly modify electronic properties.

Moreover, ferroelectric nanocomposites, that are nanostructures made of two different fer-

roelectric materials, have been recently predicted to possess electrical vortices below a certain

critical temperature [85, 135]. It is thus legitimate to also wonder what type of band alignment

these systems adopt, i.e. is it type-I for which both the valence band maximum (VBM) and

conduction band minimum (CBM) are localized within the same material or type-II for which

one band-edge state is localized in one material while the other is localized in the second ma-

terial forming the nanocomposite? One may even ask if the formation of electrical vortices in

these nanocomposites can change the type of the band alignment, which will constitute a novel

effect of fundamental and technological interest. This work has been originally reported in Ref.

[136].

Method

Motivated to resolve the aforementioned issues, we employ a new ab-initio procedure and

apply it to a nanocomposite made of BaTiO3 (BTO) nanowires inserted in a matrix formed by

SrTiO3 (STO). This procedure consists in combining the effective Hamiltonian technique with

the linear-scaling three-dimensional fragment method (LS3DF) that was initially developed in

Ref. [137] for semiconductor systems. The first technique allows to obtain the relaxed atomic

configuration associated with topological defects in ferroelectrics, that is then used as inputs of
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the second tool to predict the corresponding electronic structure.

Here, the investigated system is a stress-free nanocomposite made of a periodic squared

array of BaTiO3 (BTO) nanowires embedded in SrTiO3 (STO). This type of nanocomposite is

chosen because it has been recently shown to exhibit electrical vortices below a certain critical

temperature [85, 135]. The nanowires have a long axis oriented along the pseudo-cubic [001]

direction (chosen to be the z-axis) and possess a squared cross-section of 6× 6 in lattice con-

stant units (i.e., 2.4× 2.4 nm2 area) in the (x,y) plane, where the x- and y-axes are along the

pseudo-cubic [100] and [010] directions, respectively. The whole nanocomposite is mimicked

by a 12× 12× 4 supercell, that is periodic along the x, y and z axes and that contains a single

nanowire. To explore properties of such system, we employ two different numerical methods:

(1) the effective Hamiltonian (Heff) method developed in Ref. [4] for (Ba,Sr)TiO3 (BST) com-

pounds, in order to obtain the relaxed atomic configuration at different temperatures; and the

(2) linear-scaling three-dimensional fragment method (LS3DF) developed in Ref. [137], in or-

der to compute the electronic structure of such atomic configurations. Regarding Heff , its total

internal energy consists of two main terms:

Etot = Eave ({ui} , {vi} , {ηH})

+Eloc ({ui} , {vi} , {σj} , {ηloc}) , (6.1)

where ui denotes the local soft mode that is centered on the Ti-sites of the 5-atom unit cell i

(ui is directly proportional to the electric dipole moment of that cell, and represents the collec-

tive motion of the Ba/Sr, Ti and oxygen atoms inside the cell i [3]); {vi} are the dimensionless

displacement variables defined at the cell corners and are used to calculate inhomogeneous

strain tensor components of the cell i [3]; {ηH} is the homogeneous strain tensor, which allows

the simulation supercell to vary in size and shape [3]; σj characterizes the atomic distribution

of of the mixed A-sublattice [13], with σj=+1 or -1 corresponding to the presence of a Ba or

Sr atom, respectively, at the A-lattice site j; and {ηloc} represents the local strain resulting from

the difference in ionic size between Ba and Sr atoms, which is relatively large ('2%). The

first energy term, Eave, contains a local mode self-energy, a long-range dipole-dipole inter-
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action, a short-range interaction between local soft modes, an elastic energy, and interactions

between local modes and strains [3] within the application of the virtual crystal approximation

[138, 139] to model (Ba0.5Sr0.5)TiO3 solid solutions. On the other hand, Eloc can be thought

of as a perturbative term due to the fact that BST systems possess real Ba and Sr atoms on the

A-sites rather than a virtual, compositional-dependent 〈A〉 atom. To be specific and as detailed

in Ref. [4], energetic terms in Eloc model how the presence of real Ba and Sr ions inside the

system affects the local soft modes and the inhomogenuous strain tensor, as well as take into

account the strain that is induced by the size difference between Ba and Sr ions and its effect on

physical properties. The parameters entering the total internal energy of this Heff are derived

from first principles. Previous calculations [140, 4, 141, 80, 142] using this Heff for various

disordered or ordered BST systems demonstrated its accuracy. Note that the nanocomposite

investigated in the present manuscript is stress-free, and, as a result, the matrix, interface and

wires adopt different lattice constants – implying that the strain is inhomogeneous, as it should

be in most nanostructures. This Heff is employed here within Monte-Carlo simulations to ob-

tain the (temperature-dependent) positions of all the Ba, Sr, Ti and oxygen ions belonging to

the supercell used to mimic the studied nanocomposite.

As aforementioned, electronic properties associated with the resulting atomic configura-

tions are then calculated by the LS3DF method. The LS3DF method is a linear scaling method

to self-consistently solve problems in the frame of density functional theory (DFT) [15, 16].

It (1) divides the system into overlapping fragments; (2) solves the fragment wave functions,

and obtains the fragment charge densities; (3) patches the fragment charge densities together to

yield the global charge density of the whole system, which is realized here by using a partition

function to obtain only the central part of the fragment charge density; (4) solves the Poisson

equation of the whole system based on the global charge density. Note that the LS3DF “only”

gets the total charge density, hence the potential of the system, but not the eigenwave func-

tions of the whole system. The eigenwave functions and eigenenergies of the whole system are

obtained using the folded spectrum method [143] with the potential provided by the LS3DF

calculations. The LS3DF method can solve systems with tens of thousands of atoms, and has

been shown to yield results being almost identical to those obtained by the conventional full
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system DFT [144]. It has been used to study various type of problems and materials, includ-

ing: ZnTe:O alloy [145], ZnO nanorod [146], MoS2/MoSe2 Moirres pattern [147], and organic

hybrid perovskite CH3NH3PbI3 [144]. Note that Ba 6s, Sr 5s, Ti 4s and 3d, and O 2s and 2p

electrons are treated as valence electrons in the present LS3DF calculations.

In order to test the accuracy of the LS3DF method on ferroelectrics, we first decided to

choose two supercells having the same size as our investigated nanocomposite (i.e., 12× 12× 4)

but made either of pure BTO or pure STO material with all the different atoms being at their

ideal cubic positions. The LS3DF method within local density functional approximation (LDA)

[17] yields a value of 1.81 eV and 1.98 eV for the band gap of these paraelectric BaTiO3 and

SrTiO3 pure materials, respectively. These values are identical or very close to the 1.81 eV

and 2.06 eV band gaps of ideal BTO and STO, respectively, obtained from direct DFT calcula-

tions using the PEtot code [148]. This comparison therefore demonstrates the capability of the

LS3DF method to model the electronic structure of ferroelectric materials in their non-polar

phases, especially once realizing that different DFT calculations can provide some range for

these band gaps [149].

Electronic properties

Let us now use the numerical procedure described above to investigate electronic properties

of our nanocomposite. For that, it is first important to know that the aforementioned effective

Hamiltonian predicts that such system exhibits a ferrotoroidic and paraelectric state (to be de-

noted as FT-PE) for temperatures ranging between TC ' 105 K and Tt ' 215 K. In other words,

it possesses an electrical vortex but does not have any net spontaneous electrical polarization,
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Figure 6.1: Top view (seen from negative z- direction) of the local mode configuration in the
FT-PE state of the studied nanocomposite at 165 K, as predicted by the effective Hamiltonian
technique. These local modes are centered on Ti ions, and are represented by arrows that have
been amplified 20 times for a better view. The light red lines go through the Ba atoms that are
located at the interface between the BTO nanowire and the STO matrix.

in this range of temperature. The resulting dipolar configuration is displayed in Fig. 6.1, which

reveals that the FT-PE state consists of a circular electrical vortex forming in the (x,y) planes

inside the BaTiO3 nanowire. The driving force behind the formation of such electrical vortex is

the depolarizing field arising from the existence of the SrTiO3 matrix surrounding the nanowire.

This vortex is numerically found to disappear for temperatures above Tt, therefore leading to a

paratoroidic and paraelectric phase (that will be termed PT-PE). On the other hand, the studied

system further acquires a spontaneous polarization along the z-direction, in addition to the

vortex structure, when the temperature is below TC . In the present study, we will focus on two

different temperatures: a first temperature TPT−PE = 425K, as representative of the PT-PE

state; and a second temperature TFT−PE = 165K which lies inside the region of stability of

the FT-PE state. For each of these two temperatures, the atomic positions and lattice vectors of
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the resulting 12× 12× 4 nanocomposite supercell predicted by the Heff technique are fed as

inputs to the LS3DF method. Comparing the output electronic properties of these two different

supercells will thus reveal the effect of electrical vortex on such properties.

(a) VBM PT-PE (b) VBM PT-PE (c) VBM FT-PE (d) VBM FT-PE

(e) CBM PT-PE (f) CBM PT-PE (g) CBM FT-PE (h) CBM FT-PE

Figure 6.2: Top view (seen from negative z- direction) of the real-space charge density distri-
bution of the band edge states of the investigated system, as predicted by the LS3DF method.
Panels (a) and (b) show the VBM states in the PT-PE phase, while Panels (e) and (f) display
the CBM states of that PT-PE phase. Panels (c-d) and (g-h) report the same information than
Panels (a-b) and (e-f), respectively, but for the FT-PE phase. The light red lines go through the
Ba atoms that are located at the interface between the BTO nanowire and the STO matrix.

Figures 6.2a and 6.2b display the top view of the charge densities of the two degenerate

valence band maximum states for the PT-PE phase. Figures 6.2e and 6.2f show similar in-

formation but for the two degenerate conduction band minimum states of that PT-PE phase,

respectively. For the VBM states, the charge density is distributed mainly inside the BaTiO3

nanowire (which is delimited by light red lines there), specifically around oxygen ions. This is

consistent with the fact that the valence band of pure BaTiO3 is known to be formed by oxygen

2p orbitals [150]. The charge density of the CBM states of the PT-PE phase is also mostly lo-

calized inside the BaTiO3 nanowire, however, specifically around titanium ions, which is also

in-line with the known fact that the conduction band of pure BaTiO3 is made of Ti d orbitals

[150]. As schematized on the left part of Fig. 6.5, the PT-PE phase can thus be considered to
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possess a type-I band alignment since both its VBM and CBM are localized in the confined

quantum object (i.e., the BaTiO3 nanowire here) [151]. The resulting band gap is numerically

found to be 1.87 eV (note that we also performed a similar calculation in this phase but with

ions put at their ideal positions and obtained the same band gap value, i.e., 1.87 eV , which thus

shows that thermally induced randomly-oriented dipoles have no effect on the band gap). This

latter value is larger than the aforementioned value of 1.81 eV obtained for pure paraelectric

BaTiO3, which is consistent with the fact that the BTO wire is quantum mechanically confined

by the STO medium in the (x, y) plane of the nanocomposite [152]. However, the difference

between these two band gaps is only of the order of 0.06 eV , implying that the quantitative

effects of this quantum confinement is not that large, likely because the band offset between

BaTiO3 and SrTiO3 is rather small as indicated by their similar band gaps.

For comparison, Figures (6.2c-6.2d) and (6.2g-6.2h) show the same top view of the charge

densities of the two degenerate VBM and CBM states but for the ferrotoroidic and paraelectric

(FT-PE) phase, respectively. One can see that the charge density of the VBM states of FT-PE is

very similar to that of PT-PE, and is thus also mainly localized on the oxygen atoms belonging

to the BaTiO3 nanowire. The main difference between electronic properties of FT-PE and

PT-PE, in fact, resides in their CBM: as shown in Figs. 6.2g and 6.2h, the occurrence of the

electrical vortex inside the nanowire makes the charge density of the CBM going outside this

nanowire towards the matrix.

From the local density of states calculations shown in Fig. 6.3, we numerically found that

the lowest-in-energy conduction state localized within the BTO nanowire is ' 0.22 eV higher

than the CBM state shown in Figs (6.2g-6.2h), which results in a difference in energy of 2.12

eV between the band edge states localized within the BTO nanowire. The enlargement of this

transition by 0.25 eV within the BTO nanowire, as compared to 1.87 eV in the PT-PE phase,

can therefore have two different origins: it is either due (i) to the fact that individual dipoles

are rather significant in the FT-PE phase, or (ii) to the collective vortex organization of these

dipoles in this phase. We numerically found that scenario (ii) holds, as evidenced by the fact

that considering significant but randomly oriented dipoles inside the nanowires did not result

in such large band lifting of 0.25 eV (note that collective organization of dipoles can indeed
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(a) PT-PE

(b) FT-PE

Figure 6.3: The local density of states (LDOS) for (a) the PT-PE phase and (b) the FT-PE
phase. The black solid lines denote LDOS within the SrTiO3 region, while the red dash lines
show LDOS within the BaTiO3 region. The arrows provide a guide for the eyes regarding the
lowest-lying conduction states.
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have a large impact on the band gap, as further illustrated by additional calculations we per-

formed for which the dipoles inside the wire are all oriented along the same direction and have

the same magnitude, therefore leading to a ferroelectric state: in that case, the band gap was

found to increase by 0.40 eV (mainly from the uplifting of the CBM state) with respect to the

paraelectric state, as consistent with, e.g., Ref. [153]). Specifically, such enlargement of 0.25

eV is found to be related to the larger electrostatic potential (due to the dipole arrangements)

in the FT-PE phase than in the PT-PE phase. We numerically found that scenario (ii) holds,

as evidenced by the fact that considering significant but randomly oriented dipoles inside the

nanowires did not result in such large band lifting of 0.25 eV (note that collective organization

of dipoles can indeed have a large impact on the band gap, as further illustrated by additional

calculations we performed for which the dipoles inside the wire are all oriented along the same

direction and have the same magnitude, therefore leading to a ferroelectric state: in that case,

the band gap was found to increase by 0.40 eV (mainly from the uplifting of the CBM state)

with respect to the paraelectric state, as consistent with, e.g., Ref. [153]). Specifically, such en-

largement of 0.25 eV is found to be related to the larger electrostatic potential (due to the dipole

arrangements) in the FT-PE phase than in the PT-PE phase. This larger electrostatic potential

“pushes up” the conduction band edge state of the BTO nanowire, as a result of the more orga-

nized dipolar (vortex) configuration in the FT-PE phase. As a result of this push, Figures 6.2g

and 6.2h show that the charge density of the CBM states of the FT-PE case prefers to localize

inside SrTiO3, more specifically around Ti atoms belonging to stripes being oriented along the

x- or y-axis. In contrast with the PT-PE state and as schematized in Fig. 6.5, the FT-PE state

therefore adopts a type-II alignment since the VBM localizes in the confined quantum object

while its CBM prefers to lie outside of it [151]. Varying temperature can therefore lead to a

control of the band alignment type (i.e., type-I versus type-II), since temperature is the ther-

modynamical parameter driving the transition from the PT-PE to FT-PE state in the presently

studied nanocomposite. Interestingly, we are not aware of any previous study reporting the

possibility of having both types of band alignment within the same system when varying a

physical factor. Such possibility may lead to the development of original devices exploiting the

advantage of both types of alignments, that are, e.g., light emitting devices for type-I band

70



(a) VBM PT-PE (b) VBM FT-PE

(c) CBM PT-PE (d) CBM FT-PE

Figure 6.4: (Color online) Top view (seen from negative z-direction) of the real-space charge
density distribution of the band edge states of the investigated system from the linear mixture
of degenerate states, as predicted by the LS3DF method. Panels (a) and (c) show the VBM and
CBM states in the PT-PE phase, respectively. Panels (b) and (d) display the VBM and CBM
states of the FT-PE phase. The light red lines go through the Ba atoms that are located at the
interface between the BTO nanowire and the STO matrix.

alignment versus photovoltaic devices and detectors for type-II band alignment [154]. These

hypothetical original devices may even be functionalized to operate at room temperature by

varying the sizes of, and separation between, the BTO wires. This is because playing with

these two latter physical parameters can make the Tt critical temperature at which the PT-PE–

to–FT-PE occurs being near 300K, as demonstrated in Ref. [85].

It is also worth mentioning the fact that these stripes can be along the x- and y-axis, which
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is consistent with the symmetry of the studied system. Due to the overall symmetry of the

studied nanocomposite system, the x- and y- directions are equivalent. The charge densities of

the two degenerate valence band minimum state (VBM) and conduction band minimum states

(CBM) are shown in Figs. 6.2 for both the PT-FE and FT-PE phases. One can linearly combine

the charge densities of these two degenerate states to have a global state that will better display

the overall system’s symmetry. Such combination is reported in Fig. 6.4 for both the VBM and

CBM states, in the PT-PE and FT-PE phases.

(a) (b)

Figure 6.5: (Color online) Schematization of the band alignment for the PT-PE (Panel a) and
FT-PE (Panel b) phases, respectively.

Moreover and as shown on the right part of Fig. 6.5, the band gap of the FT-PE state (that is,

the difference in energy between its CBM and VBM states) is about 1.90 eV , that is of the same

order than the band gap of 1.87 eV of the PT-PE state. Such numerical finding, altogether with

the aforementioned difference in energy of 2.12 eV between the highest occupied and lowest

unoccupied states localized within the BTO nanowire, therefore resolve an important current

issue: the formation of an electrical topological defect does not intrinsically imply a significant

decrease of the band gap. In particular, our finding strongly suggests that the remarkable current

experimentally found for voltage corresponding to energy being 2 eV below the band gap of

BiFeO3 bulk, when electrical vortices form inside BiFeO3 films [60], is an extrinsic rather than

intrinsic effect. It is likely caused by the fact that vortices are a natural place for structural
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defects (e.g., oxygen vacancies) to form or migrate to. The results also imply that the “true”

band gap of both the FT-PE and PT-PE states should be close to 3.2 eV (which is at the border

between violet and ultraviolet lights) based on the facts that (1) the predicted band gaps of both

these states are close to each other and within the 1.87–1.90 eV range; and (2) the LDA method

used here was found above to lead to an underestimation of the band gap by nearly 1.3 eV with

respect to experiments in pure BTO and STO systems [155, 156, 157].

In summary, we have combined the effective Hamiltonian method with the LS3DF scheme

to study electronic properties of structurally-relaxed ferroelectric nanocomposites. This com-

bination reveals that the formation of electrical vortex (i) does not intrinsically decrease the

magnitude of the band gap (in fact, it rather significantly increases by ' 0.25 eV the transition

between band-edge states localized within the BTO nanowires); and (2) dramatically modifies

the type of band alignment. We hope that the present study helps in better understanding the

role of topological defects on electronic properties of ferroelectrics, and may be put into some

use to design novel devices with original capabilities. We are also confident that the proposed

combination of these two different techniques will be taken advantage of, in order to investi-

gate other non-trivial electrical, electronic and optical properties of ferroelectric systems in the

future.
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Conclusion

In conclusion, we have elaborated several different studies that focus on static, dynamical,

magnetic and electronic properties of ferroelectrics and multiferroics.

For (110) BaTiO3 (BTO) films, we discovered (i) the existence of low-symmetry phases

(including three monoclinic ones and an unusual triclinic phase), (ii) that, near room tempera-

ture, there are a series of novel phase transitions: starting from an aa state (orthorhombic phase)

in the far compressive strain region, then passing through an ab state (monoclinic phase) and

an abc state (triclinic phase) by second order transitions in the near region of zero strain, and

finally turning into a rc state (which is another different monoclinic phase) by a first order tran-

sition, (iii) that the fast strain-induced rotation of the polarization associated with these latter

transitions results in huge dielectric and piezoelectric responses, which is very promising to

design efficient miniaturized lead-free devices; (iv) that one can easily switch between differ-

ent polarized states by applying in-plane and out-of-plane electric fields, which is promising

for the design of novel memory devices, and (v) that the Curie temperature in the compressive

strain region is nearly independent of the epitaxial strain. Items (i)-(v) all differ from features

previously seen in (001) BTO films. We also proposed an alternative procedure with respect

to the usual way of growing (001) films on top of various substrates, i.e., to grow ferroelectric

films on a single, amply available and economic substrate (such as SrTiO3), but vary the crys-

tallographic direction (away from the pseudo-cubic [001] direction) of the growth axis. Our

findings include: (i) an original temperature-versus-growth angle phase diagram possessing

different structural states, (ii) a tuning of the Curie temperature, Tc, by more than 450K, (iii)

a minimal value of Tc being near room temperature, (iv) optimization of important physical

responses at room temperature, such as dielectric and piezoelectric coefficients, for some spe-

cific growth directions; (v) explanations of the origin of these features, including the finding

of a simple law correlating Tc with the growth direction. Items (i) clearly shows that the al-

ternative procedure equivalently offers a phase diagram possessing different structural states.

Items (ii)-(v) demonstrate the advantages of our proposed method by offering a rather “con-

tinuous” tuning of Tc (including near room temperature) and other properties (e.g., substantial

room-temperature dielectric and piezoelectric responses), which are obviously of technological
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importance.

For the dynamical properties of electrical vortices in ferroelectric nanocomposites, our

study shows that in addition to “usual” dielectric modes that are associated with the fluctuation

of the electrical polarization, novel toroidic modes, resulting from the electric toroidal moment

fluctuations, are also discovered in the THz regime. Some of these toroidic modes have the

same dynamics as the dielectric modes because of the inherent connection between electric

toroidal moment and individual electric dipoles. Strikingly, there is also one toroidic mode

whose dynamical characteristics significantly differ from those of dielectric modes, and that

softens via a square-root law when the temperature approaches Tt – implying that the toroidal

moment is the right (static and dynamical) order parameter to characterize the formation of

electric vortices. Our simulations further demonstrate that the dynamics of this toroidic mode

originates from the fluctuation of the azimuthal component of electric dipoles. This toroidal

mode can thus be thought as a pendulum associated with rotational displacements in contrast

to classical springs that are associated with polarization dynamics.

For the coupled magnetic orders in perovskites, we show that there is indeed a “universal”

law which has a quite simple analytic form that correlates explicitly coupled magnetic orders

with the oxygen octahedral rotations. First-principles calculations confirm its validity for any

tested structural paraelectric and even ferroelectric phase, and for any chosen direction of any

selected predominant magnetic vector. As what is predicted by our proposed law, (i) when anti-

phase oxygen octahedral tiltings only exist, a magnetization can be generated through its spin

canting by a predominant G-type AFM structure and may be maximized if the predominant G-

type AFM vector is perpendicular to the oxygen tiltings and vice versa; and for a given G vector,

the magnitude of the magnetization should be directly proportional to the magnitude of the anti-

phase tilting angle; (ii) when there is only in-phase oxygen octahedral tiltings, a magnetization

can be also created by a predominant C-type AFM structure and may be maximized if the

predominant C-type AFM vector is perpendicular to the oxygen tiltings and vice versa; (iii)

when only both anti-phase and in-phase oxygen octahedral tiltings exist, there is a possibility

that A-type, C-type, F-type and G-type magnetic orders can coexist in a structure and their

corresponding vectors lie along the directions imposed by our proposed universal law; (iv) for
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polar phase, the existence of the polarization has no effect on the directions of the coupled

magnetic orders, but does weakly alter the strength of the interaction parameter K.

For the electronic properties of electrical vortices in ferroelectric nanocomposites, our cal-

culations shows (i) undoubtedly that the original reason behind the reduction in critical voltage

in I-V curves experimentally measured across electrical vortices is extrinsic in nature, (ii) an in-

teresting electronic phenomena is further discovered and reported here, that is the temperature-

driven transition from a type-I to type-II band alignment when electrical vortices form inside

the nanocomposite, which has its potential in designing novel electronic devices, exploiting the

advantage of both types of alignments.
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[50] I. C. Infante, S. Lisenkov, B. Dupé, M. Bibes, S. Fusil, E. Jacquet, G. Geneste, S. Petit,
A. Courtial, J. Juraszek, L. Bellaiche, A. Barthélémy, and B Dkhil, Phys. Rev. Lett. 105,
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[103] H. Béa et al, Appl. Phys. Lett. 87, 072508 (2005); H. Béa et al, Philos. Mag. Lett. 87, 165
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