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ABSTRACT 
 
 
In this thesis, atomic coherence is used to enhance nonlinear optical processes in multi-level 

atoms. The multi-photon transitions are driven resonantly, and at the same time without 

absorptive losses, by using electromagnetically induced transparency (EIT), thereby allowing the 

study of χ(3) and χ(5) nonlinearities using weak driving fields. The coherently modified probe 

beam(s) and the atom-radiated signal fields arising from four- and six- wave- mixing (FWM and 

SWM) processes are measured in the spectral, temporal and spatial domains. 

 In a three-level ladder-type atomic system, multiple peaks having spectral asymmetries 

are observed in the EIT window as well as in the FWM signal waveforms due to the diverse 

multiplicities of the participating atomic states. Using phase control tailored in the frequency 

domain, we demonstrate all-optical methods to control these spectral waveforms and discuss 

applications involving waveform-shaping and metrology. For the EIT study we demonstrate a 

switching of multiple dark peaks into bright peaks via phase-control of interferences in the 

underlying dark-states. In the FWM study we demonstrate all-optical spectral line shape 

symmetrization, linewidth narrowing and bandwidth switching. 

 In a four-level inverted-Y-type atomic system, we drive and measure coexisting and 

phase-matched FWM and SWM signals. By using precision control of the relative phase and 

amplitude between these two processes of different nonlinear orders, we demonstrate phase 

coherence between them. First, a single-phase measurement is performed in the temporal and 

spatial domains, and the interferogram is used to measure the resonant frequency of the 5D5/2-

5P3/2 atomic transition in 85Rb. Second, the method is extended to realize a capacity for two-

phase measurement. In this case, the spectral bandwidth of the signal is modified in order to 



	  

	   	  

measure the phase-shift occurring in one Mach-Zehnder interferometer, while the intensity of the 

total signal waveform measures the phase-shift occurring in a second interferometer. 

 Finally, we demonstrate phase-dependent spatial fusion between two ultra-weak optical 

fields by using a strong coupling field to first convert the weak fields into bosonic dark-state 

polaritons, which are then steered into a common all-optical waveguide mode arising due to the 

coupling field’s intensity distribution and the resulting cross-Kerr refractive index gradient. 
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I. Introduction 

 

Much progress has been made in quantum and nonlinear optics to control the flow of 

electromagnetic radiation near optical frequencies, and to coherently manipulate its various 

degrees of freedom1-4. One of the main motivations for this effort is the fact that light is a highly 

desirable medium for communication and information processing, both optical and quantum. 

This is because, apart from its high speed and ability to travel vast distances without losing 

coherence, light can also carry quantum information in its various degrees of freedom making it 

a key ingredient in quantum-enhanced technologies. Due to its high frequency and short 

wavelength, it offers great temporal and spatial resolutions in measurements, standards and 

interferometry5. Many applications can be realized by gaining control over the various 

parameters of light such as its amplitude, phase, frequency, velocity, direction and polarization in 

the Fourier, temporal and spatial domains.  

However, controlling the flow of light is not trivial. It can propagate in vacuum, but 

unlike other particles with mass, charge, electric or magnetic moments, photons do not interact 

with each other in vacuum. Photons do couple with matter via the electromagnetic interaction, 

but this interaction is often accompanied by incoherent effects such as dissipation making 

storage and controlled flow difficult. Even when dissipation is small, there are other effects such 

as dispersion, diffraction and diffusion that have to be assessed. 

The interactions of light with matter, including the processes that are incoherent and 

detrimental to the controlled flow of light, and methods to overcome them, have been well 

investigated. To date, one of the most promising mediums for such coherent control seems to be 

multi-level atoms. The interaction between light and atoms increases exponentially near atomic 
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resonances. Due to the many available quantized transitions, multi-level atoms can interact 

strongly with disparate photons or light fields simultaneously, thereby serving as effective hosts 

for multi-photon interactions and higher-order nonlinear optical processes6-9. Using atomic 

coherence to attain dark states and electromagnetically induced transparency10-35 (EIT), it is 

possible to manipulate the flow of light such as to eliminate dissipation, drastically slow or 

increase its group velocity, store it, and suppress its transverse diffraction. Atomic coherence 

also facilitates dissipation-free resonant enhancement of multi-wave mixing processes36-65 

(MWM), in which multiple light waves are mixed together by the atomic nonlinearity and new 

waves are reradiated.  These new signal waves can be very useful since their degrees of freedom 

can be precisely controlled using all-optical means, and also because they contain information 

about the input waves. In these phenomena, quantum interference, both constructive and 

destructive, plays a crucial role66-88; much can be achieved by incorporating phase-control in the 

interaction of multi-level atoms and light waves. 

My research at the Quantum and Nonlinear Optics Laboratory at the University of 

Arkansas, Fayetteville has mainly involved investigating multi-wave mixing processes mediated 

by atomic coherence in multi-level atoms. A significant proportion of the attention has been 

given to phase-control in these processes. Experiments were conducted to observe phase-

dependent effects in the spectral, temporal as well as spatial domains and various interesting and 

potentially useful features were observed. This thesis describes the various experiments 

performed and the phenomena observed. Before going into the details, in this introductory 

section, in the simplest “layman” terms, a brief overview will be given of the basic concepts that 

will be discussed in the rest of the chapters of the thesis.  
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I.1 Dark states and electromagnetically induced transparency (EIT) 

 

Three-, four-, and in general multi- level atoms offer more degrees of freedom in the way we can 

alter the flow of a light beam compared to a two-level atomic system. In this section, the two-

level atom is first reviewed very briefly. Some important superposition of states occurring in 

multi-level atomic systems are discussed next, which will be referred to in the subsequent 

sections and chapters. 

 

I.1.A Two-level atom-field interaction 

 

Many textbooks and references have discussed the interaction between optical fields and 

two-level atoms1,4,89, which displays a vast array of interesting phenomena such as saturation, 

hole-burning, ac-Stark shifting and Autler-Townes splitting, Rabi flopping, spin echo, … We 

will not be discussing two-level systems in this thesis. We will summarize the basic features of 

these systems in this section, so as to supplement the subsequent discussions about three-and 

four-level systems. 

When a light wave with electric field E flows through a volume containing two-level 

atoms, it interacts with the atom’s electric dipole moments. This interaction is strongest for the 

Fourier components of the field near atomic resonance. Typically, two-level atoms incoherently 

scatter photons in all directions, decreasing the output intensity of the light in the original spatial 

mode. This attenuation of resonant light’s intensity occurs rather rapidly along the beam’s path; 

the intensity decays exponentially with the absorption length αL, where L is the geometric length 

and the absorption coefficient α depends primarily on the atomic density, the dipole transition 
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strength and the frequency detuning. The absorption line shape depends on several factors such 

as the natural linewidth of the excited atomic state, the thermal distribution of the atomic 

ensemble, collisions and the atomic time-of-flight. Accompanying this field attenuation is the 

field’s dispersion across atomic resonance, characterized by the dispersion coefficient β which is 

related to α via the Kramers-Kronig relations. Both α and β are succinctly contained in the 

atomic ensemble’s linear susceptibility χ(1), a complex quantity related to the macroscopic 

polarization via P = ε0χ
(1)E.  

The susceptibility can be modeled by using the 2 x 2 Hamiltonian and the density-matrix 

treatment. The field propagation can be calculated by using the atomic polarization and the 

Maxwell’s equations. Experimentally, the absorption can be determined directly by measuring 

the transmitted field at the output by a photodiode, and the dispersion can be measured by Mach-

Zehnder interferometry of the transmitted field with a free-space reference field.  

 

I.1.B Three-level atom-field interaction and dark states 

 

Single-photon electric dipole transitions can take place only between dipole-allowed atomic 

energy levels, and the two states of the two-level atom discussed above must have opposite 

parity. However, by using two-photon processes, photonic transitions can also be induced 

between dipole-forbidden energy levels that have the same parity. This allows, for instance, 

resonant transitions between two long-lived states (such as Raman configuration or between a 

ground state and high-lying states of same parity) using optical fields. The transition amplitudes 

of such two-photon processes are greatly enhanced when a third real energy level is used as an 

intermediary resonance111. Two-photon-resonant interactions resonantly enhanced by an 
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intermediate state comprise a very important class of processes in atomic and optical physics, 

and various three-level atomic configurations have been extensively investigated. Two such 

configurations, the so-called lambda-type and ladder-type systems, are shown in Fig. 1.  

 

 

 

 

 

 

(a)              (b) 

 

Fig. 1. Three-level (a) lambda-type and (b) ladder-type atomic level configurations. A two-

photon transition is driven between the levels |𝑎  and |𝑐  via the intermediate level |𝑏 , by two 

optical fields with Rabi frequencies Ωp and Ωc. All three energy levels are real. The wavy arrows 

represent radiative decay. 

 

The main utility of the three-level atomic system is that it allows for the coherent control 

of one light beam characterized by Ωp, typically weak, by using a stronger light beam 

characterized by Ωc to steer the atomic response. By manipulating the interference between the 

various quantum mechanical pathways existing in this two-photon three-level system, a rich 

variety of phenomena have been realized including that of dark states12-15, 23. In dark states, the 

interaction of the fields and the atoms prepare the resultant system in a quantum superposition of 

states which is decoupled from the fields, thus quenching absorption, increasing the beam 

|c>	  

|a>	  

|b>	  

Ωc	   Ωp	  

|a>	  

|b>	  

|c>	  

Ωc	  

Ωp	  
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transmissions and making the atomic medium appear dark. In Fig. 1, the system may be driven 

into two possible superpositions of the initial and final levels: 

|𝑁𝐶 =   
1
Ω Ω!|𝑎 − Ω!|𝑐  

 

|𝐶 =   
1
Ω Ω!|𝑐 + Ω!|𝑎  

 

where Ω =    Ω!! + Ω!!  is the effective total Rabi frequency. We remind that the Rabi 

frequency can be viewed as a measure of the coupling between the optical field’s electric field 

and the electric dipole moment of the atomic transition: Ω! = −   !!".!!
ħ

  and Ω! = −   !!".!!
ħ
  . 

Unlike the bright state |𝐶 , we see that the dark state |𝑁𝐶  is not coupled to the 

intermediate energy level |𝑏 , since  𝑁𝐶 𝑏  = 0. This implies that when the dark state is driven, 

the atomic population does not reside in state |𝑏 , and thus the radiative decay does not deplete 

the optical field from its original mode of propagation, as would happen in incoherent 

fluorescence scattering during two-level-atomic absorption. When the relative strengths of the 

beams satisfy Ωc >> Ωp , the dark state results in EIT, discussed in the next section. There is 

broad interest to be able to generate these superpositions at the single photon level for quantum 

applications, and in fact many experiments have already been demonstrated for few-photon EIT 

and even vacuum-induced transparency90. 
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I.1.C Electromagnetically induced transparency (EIT) 

 

While absorption across resonance in a two-level atom is a powerful spectroscopic tool and 

much effort has been spent in improving signal resolution and precision (for instance in atomic 

clocks), the attenuation of the field at resonance right when higher-order transition amplitudes 

get the biggest boost can be troublesome for other applications such as multi-photon transitions. 

EIT, initially observed in the works of Hansch10 as well as Harris11,12, helps to circumvent the 

linear absorption of light even as it propagates resonantly through a dense atomic medium which 

is otherwise absorbing and opaque in the absence of EIT. At EIT, which is attained when Ωc >> 

Ωp, the resonant atomic medium is transparent to the probe field even when the atomic 

population resides in the state |𝑎 . By suppressing linear absorption, EIT allows for better 

efficiency (signal output compared to the input energy) and resolution (signal strength compared 

to the line width, less background noise) in nonlinear wave mixing processes. 

 Along with the drastic modification of α, EIT also alters the dispersion strongly. The 

steep and normal dispersion across EIT resonance has been measured by Xiao et al16, and the 

accompanying reduction in the group velocity vg of the light has been measured by many groups, 

including the value of 17 m/s measured by Hau’s group in ultracold atoms22. A reduced vg also 

means a spatial compression of the light pulse, and several groups have managed to completely 

stop the pulse inside an atomic sample much smaller than the free-space pulse length, such that 

the stored pulse can be retrieved later without loss of coherence of initial information23-32. 

Coherent phase manipulation of the light pulse while it is stored amongst the atoms has also been 

demonstrated. These demonstrations are important steps towards the realization of quantum 

memory and information processing. 
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 To achieve EIT, one needs a three-level atomic medium as shown in Fig. 1, a weak probe 

beam and a strong coupling beam with the condition Ωc >> Ωp . In the Fourier domain, both one-

photon and two-photon resonances (TPR) should be satisfied.  Even when the atomic medium is 

a Doppler-broadened thermal ensemble, a judicious spatial arrangement of the two beams will 

allow for a Doppler-free EIT window. For instance, for the ladder–type (lambda-type) 

configuration, the sum-frequency (difference-frequency) of the two beams should correspond to 

the transition frequency between the two dipole-forbidden states being coupled, and the two 

beams should be counter-propagating (co-propagating) in order to satisfy TPR and to get a 

Doppler-free TPR resonance, respectively. The EIT profile in an inhomogeneously broadened 

ladder-type atomic medium has been solved analytically, and the following equation contains all 

the properties discussed in this paragraph17: 

 

𝜒 𝜐 𝑑𝜐 =

4𝑖𝜇!"!
𝜀!

𝛾!" − 𝑖Δν! − 𝑖
𝜔!
𝑐 𝑣 +

Ω!
!

4

𝛾!" − 𝑖 Δν! + Δν! −
𝑖 𝜔! − 𝜔! 𝑣

𝑐

𝑁 𝑣 𝑑𝑣 

Here, the intergration is performed over the atomic velocity groups 𝑣 in the thermal distribution 

N(𝑣). µ21 is the electric dipole moment of the probe-driven transition, ε0 is the vacuum 

permittivity, Ωc is the Rabi frequency of the coupling beam, ωp = 2πνp and ωc = 2πνc are the 

frequencies of the probe and coupling beams, and γ21 and γ31 are the natural linewidths of the 

transitions driven by the probe beam, and the sum of the probe and coupling beams, respectively. 

Δν1 and Δν2 are the frequency detunings of the probe beam and the coupling beam from their 

respective atomic transitions, respectively. 
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I.1.D Four-level atom-field interaction 

 

Even more coherent control can be exerted using four atomic levels instead of only three. Several 

four-level configurations have been investigated, some of the most popular being N, double-

lambda and inverted-Y. In the N-level atomic system, a third “control” beam can be used to 

modulate the three-level, two-beam EIT of the regular lambda scheme. The advantage of such a 

system is that drastic alterations to the EIT, as well as enhanced nonlinearities, can be achieved 

even when the control beam consists of only a few photons. The double-lambda scheme has been 

one of the most popular systems for investigating four-wave mixing processes, as it allows 

embedding an EIT resonance in one Raman transition, allowing FWM transition even at low 

light levels. 

 In this thesis, we have made several uses of the inverted-Y atomic configuration. In Ch. 

2, interference between various dark-states generated in this configuration are studied, and the 

consequences to the transparency experienced by the probe beam are described both theoretically 

and experimentally. In Ch. 5 and 6, we use this system to realize coexisting nonlinearities of 

different orders, and study their mutual interactions. The relative strengths, as well as the relative 

phases of such coexisting nonlinearities, are tuned via the parameters of the driving beings that 

couple the various states.  
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I.2 Enhanced nonlinearity in atomic media 

 

A plethora of nonlinear optical phenomena were discovered immediately following the 

birth of the laser in 1960, beginning with the observation of second harmonic generation91 in 

1961. To understand the lack of such observations in pre-laser era, one needs to consider the 

polarization of matter3,4: 

 

Pi = ε0χij
(1)Ej+ ε0χijk

(2)EjEk+ ε0χijkl
(3)EjEkEl+ … 

 

The material polarization P is the source term in Maxwell’s equations, which describe the 

propagation of electromagnetic radiation as well as its interaction with matter. Here, χ(n) are the 

various orders of the susceptibility, and the subscripts are the Cartesian components. Each higher 

order term of the susceptibility is several orders of magnitude weaker than the previous order. As 

a result, for weak optical fields, the linear polarization is dominant and it is difficult to observe 

phenomena arising from higher orders. As the field E becomes stronger, the linear polarization 

grows linearly with E, whereas the nth order of the polarization increases polynomially with E. 

As a result, higher-order effects of the polarization, despite the very weak susceptibility 

coefficients, start to become observable when the intensity becomes large. The optical intensities 

required for such observations were provided by lasers. 

Different orders of the polarization give rise to different effects, and different materials 

have been studied such as crystals, atoms and molecules. Depending on the symmetry of the 

constituent particles of the material medium, some orders of the nonlinearity can be vanishing. 
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Because alkali atoms are centro-symmetric, the even orders of the susceptibility are vanishing. In 

this thesis, all the investigations are done using thermal ensembles of rubidium atoms, for which 

the lowest non-vanishing orders of the electric susceptibility are χ(1), χ(3) and χ(5). In general, χ(n) 

is responsible for the mixing of  (n+1) waves. For instance, χ(3) enables four-wave mixing 

(FWM) and χ(5) enables six-wave mixing (SWM). Most of the subsequent chapters deal with 

these multi-wave-mixing (MWM) interactions; we will briefly discuss them below. 

 

I.2.A χ (3) and four-wave mixing (FWM) 

 

As a very basic definition, FWM is a process where four different waves interact 

coherently via a medium. These waves do not necessarily have to be electromagnetic; FWM with 

matter waves have also been demonstrated92-94. In this thesis, we deal with FWM of optical 

waves with atomic ensembles serving as wave-mixers. Various schemes have been used in 

generating FWM radiations from atomic ensembles. In these processes, the atomic nonlinearity 

interacts with four electromagnetic fields (distinguishable, for instance, by their directions, 

frequencies, or the atomic transitions that they drive). Out of these fields, some are externally 

applied upon the nonlinear medium by using laser sources, while some are generated by the 

medium; the generated field can be due to the parametric amplification of an initially vacuum 

mode, as well as the amplification of one of the external driving beams. Depending upon the 

atomic system and the geometry being used (such as ladder or double-lambda type systems, or 

the presence of a cavity mode), the number of external driving fields can range from three, two 

and even only one95.  
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In the FWM experiments described in this thesis, three external optical fields 𝐄𝐢 =

A!e!! !!!!𝐤𝐢!!!! 𝒆𝒊 + 𝒄. 𝒄. with i= 1, 2, 3 are incident on the atomic medium. Here A, ω, k, Φ 

and 𝒆  are the beam’s electric field amplitude, angular frequency, wavevector, phase, and 

polarization respectively. The waves couple with the third-order nonlinearity of the medium, and 

the resulting nonlinear polarization P(3) =χ(3) E1E2E3 serves as a source term in Maxwell’s 

equation, thus giving rise to a fourth field Ef = Afe!! !!!!𝐤𝐟!!!! . It is clear that the parameters of 

this new field are governed by the parameters of the incident fields: ωf = ∑ωi , kf = ∑ki, Φf = 

∑Φi.  These phase-matching conditions arise from the conservations of energy and momentum. 

Careful geometric alignment of the beams and detectors are critical during the experimental 

setup in order to satisfy these phase-matching criteria before the weak FWM signal can be 

observed. In addition, the polarization of the fields must satisfy conservation of angular 

momentum.  

EIT resonances are included in the parametric amplifiers in order to resonantly enhance 

the multi-photon transition amplitudes with suppressed losses for both driving and generated 

fields, as well as to attain low background noise and high resolution36-65. In the absence of these 

dark-states, the use of resonantly enhanced nonlinear transition amplitudes is also accompanied 

by resonantly enhanced absorption and losses. In order to overcome the losses, very high-

powered pulses typically have to be used, and such nonlinear optical processes can be quite 

inefficient. Such high-powered and spectrally broad driving pulses also give rise to power-

broadening effects, spurious transitions and background noises. The use of EIT, on the other 

hand, allows for resonantly enhanced multi-photon transitions with vanishing absorptive losses, 

thus making it possible to drive nonlinear optical processes with low-powered and spectrally 

narrow continuous-wave beams. Not only does this improve the efficiency of nonlinear optical 



13 

	  

conversion, but low-powered driving beams also mean small power-broadening and low 

background noises, giving rise to high signal-to-noise ratios. Furthermore, by carefully designing 

phase-matching geometries such as counterpropagating signal and driving beams with 

orthogonal polarizations, it is possible to have minimal background scattering at the location of 

the signal detector, thus enhancing the sensitivity and precision of the measurements. More 

details about EIT-enhanced FWM processes will be presented in chapter 3. Different 

experimental schemes are described in the subsequent chapters that enable enhanced nonlinear 

optical processes. 

Over the past decades, many interesting and important features have been demonstrated 

using EIT-assisted coherent FWM processes.  They have been used for maximally efficient 

frequency conversion at optical frequencies. They have proven to be efficient sources for 

squeezed radiation and correlated photons53-56. In certain schemes where the FWM signal gain is 

accompanied by an amplification of an initially weak probe field, the noises in the two amplified 

signals have shown to have classical as well as quantum correlations and even entanglement. 

Using the steep dispersion of a second EIT medium to reduce the speed of one of the correlated 

fields, a tunable temporal delay of the entanglement has also been demonstrated. Furthermore, 

the quantum correlations are shown to hold for different spatial modes contained within the 

spatial bandwidth of the FWM gain medium, thus opening the way for multimode quantum 

imaging, information processing and communication. Similar to the storage of a weak probe 

pulse in an EIT medium, a simultaneous photonic memory for FWM signal has also been 

demonstrated52,57. Thus coherently enhanced FWM processes constitute an active area of 

research with important prospects for future applications involving the generation, storage and 

manipulation of optical fields for classical as well as quantum applications. Most of the work 
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presented in the subsequent chapters were performed with the aim of contributing new 

perspectives and methods to this important field. 

 

I.2.B χ (5) and six-wave mixing (SWM) 

 

In some experiments presented in this thesis, we drive SWM transitions, which arise due to the 

fifth order nonlinearity, i.e. the term coupled to the χ(5) susceptibility. The method implemented 

in driving SWM is similar to the one used to drive the FWM transitions, i.e. a dark-state 

resonance is embedded in the transition pathway so that the weak nonlinear process can be 

driven resonantly and without absorptive losses. The difference is that now six optical fields are 

mixed instead of only four, thus increasing the number of resources (driving beams) required and 

the experimental complexities of additional phase-matching and beam alignment.  

 In studies where nonlinear optics is performed at high optical intensities, χ(5) is often 

found useful in the generation of stable high-dimensional solitons138, 147. The reason is that its 

sign is opposite to that of χ(3), and it acts as a source of saturable nonlinearity, preventing 

collapse of a self-focusing beam which happens in a purely Kerr medium with χ(3). 

   

I.2.C Coexisting multi-wave-mixing (MWM) processes 

 

Due to the many available energy levels and transitions in a multi-level atom, the same atomic 

cloud can be used to drive multiple MWM processes simultaneously, for instance coexisting 

FWM processes, or coexisting FWM and SWM processes. These various processes typically 
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share some driving beams. In such coexisting systems, interesting mechanisms such as 

competition for energy, transfer of energy, varying gain thresholds at various atomic densities, 

correlations and anti-correlations in the signal amplitudes, have been measured47-51, 61-63. Besides 

energy dynamics, the phase-coherence between such processes is also an intriguing feature. 

In general, when a χ(5) process is driven, lower-order χ(3) subsystems are also driven. 

Since the lower order term is much stronger than the higher order term, for lower-intensity 

driving beams, the driven FWM signal remains very strong compared to the SWM signal. In 

order to observe the SWM signal, we implement methods where we can spatially isolate the 

signals and tune their transition amplitudes individually such that the FWM signal can be made 

equal to, or even weaker, than the SWM signal. In this process, while the relative amplitude of 

the two signals can be tuned via the strengths of the driving beams, the relative phase between 

the signals can also be tuned via the phase of the driving beams. We experimentally demonstrate 

that these coexisting signals are phase-coherent, which is a consequence of the underlying atomic 

coherence and the coherence of the driving laser fields.  

Such amplitude and phase control between coexisting nonlinearities is an invitation for 

new interferometric methods, which we discuss in the next section. 

 

I.3 Phase control 

 

In the previous sections, it was seen that the phase of the FWM and SWM signals depend on the 

phases of the input waves that are mixed in the nonlinear wave-mixing process. This property 

has two main implications. The first is that by using precision control for the relative phases of 

the input beams, the phase of the atom-radiated field can be precisely controlled. The second is 

that by measuring phase changes in the signal field, any unknown phase changes in one of the 
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input driving beams can be inferred. The first implication is useful in the generation of high-

resolution phase-modulated signals using all-optical methods. The second implication is the use 

of the atomic nonlinearity as a phase-sensitive interferometer for the input beams. Both of these 

features will be studied in chapters 4, 5 and 6. 

 In Ch. 4, we describe a method of external all-optical phase control for the Fourier-

domain waveform shaping of the atom-radiated field59. Here, a spectral-domain phase-evolution 

of the signal field is achieved by implementing precision control of the relative path length 

between the two frequency-swept driving beams. 

 When multiple nonlinear transitions are driven simultaneously using shared atomic levels 

and beams, it is possible to couple the nonlinearities so that they interfere. Phase control between 

the driving beams become even more important when the atom-radiated signal fields arising 

from the nonlinearities are phase-matched and spatially overlapped. Phase-control between 

coexisting χ(3) and χ(5) processes will be the subject of Ch. 5 and 6. In Ch. 5, using precision 

phase-control and interferometry, the phase-coherence between two nonlinearities of different 

orders is demonstrated58. Spatial as well as temporal interferences are measured between the 

overlapped FWM and SWM signals, and the temporal fringe period yields the resonant 

frequency of the 5D5/2-5P3/2 atomic transition in 85Rb. In Ch. 6, the capacity of coupled 

nonlinearities to measure multiple interferometers simultaneously is demonstrated65. 

In Ch. 7, we experimentally demonstrate the fusion of two in-phase optical fields having 

ultra-weak intensities. In order to steer the initially spatially separate weak beams towards each 

other, we utilize quantum coherence effects induced by a strong coupling beam in a three-level 

atomic medium. Once the weak fields are steered into the common all-optical waveguide, they 

show phase-dependent outcomes. In the case of fusion, the output intensity can be all-optically 
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tuned via the intensity of the coupling beam. When the fields are out-of-phase, they do not 

deflect like self-guided solitons do, but are instead confined tightly to the waveguide’s center, 

while the waveguide’s center itself remains dark. 

	  

I.4 Spectral, temporal and spatial waveforms 

 

In the various experiments discussed in the subsequent chapters, we will describe ideas, methods 

and measurements in three different domains: spectral, temporal and spatial. In this section, we 

will categorize the chapters with their associated domains. We note that while the setups of each 

experiment require carefully controlled parameters in all of the domains, such as appropriate 

spatial phase-matching, correct frequency detunings and temporally synchronized processes and 

measurements, the following categorization is mostly for the domain in which the final results 

are measured.  

We also note that most of the results presented in this thesis have already been published 

in peer-reviewed journals. As a result, the experimental results, figures and most of the 

descriptions of the methods presented in these chapters will be similar to the published articles. 

Below, we will also include references to the published articles corresponding to the results of 

the chapters. 

Chapters 2, 3 and 4 deal with spectral waveforms and the phase-control of such 

waveforms for the EIT window and FWM spectra in a mixed multi-level atomic system34, 64, 59.  

In Ch. 5, we use phase-control of FWM and SWM in the temporal and spatial domains, 

obtaining a spatial-temporal interferogram58.  

In Ch. 6, we design a method of two-phase interferometry by shaping the spectral 

waveform of coexisting FWM and SWM signals65.  
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In Ch. 7, a phase-dependent fusion between two weak optical fields is investigated in the 

spatial domain. The work presented in this chapter will be submitted for publication shortly. 

While the temporal and spatial evolutions of fields involved in nonlinear optical 

processes show interesting and important phenomena, we note that most of the measurements in 

this thesis are conducted in the spectral domain. We study, as well as manipulate, the spectral 

bandwidths of these processes to understand and develop useful features and novel applications. 

A possible future extension of these discussed works will be to investigate quantum correlations 

between multiple spectral modes of two coexisting parametrically amplified fields, in 

conjunction to their already demonstrated spatially multi-mode correlations54-56, thus vastly 

increasing the dimensionality for quantum information processing and communicating.	  
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II. Dark-state phase manipulation in EIT 

 

II.1. Introduction 
 

In the introductory section, we introduced electromagnetically induced transparency (EIT) in a 

purely three-level atomic medium. In realistic atoms, each of the three driven energy levels can 

have various sublevels and degeneracies, giving rise to complex features in the spectral 

waveform of the EIT window. By “EIT window”, we are referring to the spectral structure of the 

transparency that arises in the transmission of the probe beam as its frequency is being scanned 

across an absorbing line in the presence of a coupling beam whose frequency is held fixed at a 

neighboring dipole transition. Even though the probe beam’s absorption line is spectrally broad 

(~GHz) in a Doppler-broadened atomic ensemble, a careful alignment of the coupling beam can 

result in an EIT window that is Doppler-free (~MHz). In a lambda-type configuration, it is 

possible to find combinations of energy levels and light polarizations that result in the ideal 

three-level system to a very good approximation, apart from the ac-Stark shift induced by closely 

lying hf sub-levels in the intermediate state22. In this case, the EIT window consists of a single 

peak. The reason is that the two ground states being probed are the only two hyperfine (hf) levels 

of that fine structure, and there are no other closely lying hf levels in the vicinity.  

However, in a ladder-type configuration in which the upper excited state is one of the fine 

structures of the 5D state, there are many hf levels that lie very close in energy separation. 

Because the spectral separations between these levels are comparable to their linewidths, it is not 

possible to get a truly three-level resonance in the ladder-type configuration. Instead, we have 

many three-level systems lying close to each other and contributing to the resulting transparency 

of the probe beam. When the probe beam’s frequency is scanned across the absorption transition, 
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the sum-frequency with the coupling beam now comes into two-photon resonance (TPR) with 

multiple EIT transitions. We thus observe multiple peaks, unlike the single peak in the lambda-

type configuration. The number of peaks depends on the number of hf levels in the upper excited 

state that have allowed transitions satisfying the selection rules. 

We have observed that the EIT window in the transmission of the probe beam shows very 

dramatic changes depending on the probe beam’s ellipticity. At some polarizations, the multiple 

transparency peaks arising due to the many hf levels of the 5D state became highly resolvable. 

More importantly, for another particular value of the polarization, the transparency peaks 

switched to enhanced absorption peaks and the position of the multi-transparency peaks switched 

to different spectral locations. In this chapter, we will present the experimental results as well as 

a theoretical model based on the interference between dark-states to explain this intriguing 

phenomenon. 

 

II.2. Motivation 
 

Most studies in EIT use combinations of linearly and/ or circularly polarized fields interacting 

with three or four energy levels in the atomic media16-22. While some studies have extended 

considerations to the multi-Zeeman sublevels present in realistic atoms96-100, relatively fewer 

studies have considered the response of such multi-level systems in the presence of elliptically-

polarized light fields101-103. In such studies, typically the modulations of the EIT profiles are 

explained by considering the asymmetry in the numbers of EIT subsystems and strengths 

corresponding to different beam polarizations. These studies considered the intensity distribution 

of the field amongst its polarization components, but not the relative phase between these 
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components. Also, in doing so, all the Zeeman sublevels had to be considered; for the system we 

are considering, that amounts to 36 magnetic sublevels.  

We have measured the EIT spectral lineshape for all the polarization states for the probe 

beam in the ladder-type atomic configuration in a rubidium atomic vapor (Fig. 1a). In doing so, 

we have observed resonances that switch from dark (EIT) to bright (electromagnetically induced 

absorption, or EIA104,105), depending on the phase difference between the two circularly-

polarized components of the probe beam corresponding to different elliptical polarization states. 

We describe this behavior as arising due to the interference between multiple dark states 

switching from constructive to destructive, altering the atomic populations in the dark states. An 

analysis based on the aforementioned asymmetry in EIT subsystems is incapable of explaining 

such behavior because there exist cases where the beam intensities, and hence the EIT subsystem 

structures, are identical, but the overall transmission profiles differ drastically. Thus, it is crucial 

to account for the quantum interference effects induced by the phase in the beams. Furthermore, 

even though our system consists of a total of thirty-six participating magnetic sublevels (Fig. 1b), 

we can qualitatively discuss the phase-dependent switching behavior simply by considering the 

inverted-Y configuration which involves only four magnetic sublevels (Fig. 1c). Our theoretical 

model treating the quantum interference amongst the polarization-coupled dark states in such a 

four-level inverted-Y atomic system agrees with the experimental observations. Such a treatment 

has also allowed for a more transparent understanding of the system’s behavior. 

We have observed that the phase-dependent switching behavior also varies with 

frequency, which could make the system useful for selective switching between multiple 

frequency channels. In a system consisting of closely lying hf levels, this feature results in 

multiple transparency windows all of which display a switching as we tune the relative phase 



22 

	  

between the probe beam’s polarization components. By using appropriate combinations of 

phases and frequencies, one could create conditions such as AND and OR gates which could find 

applications in optical communication and quantum information processing. The fact that this 

phase-controlled switching can be achieved without changing the power of any of the beams 

could also prove beneficial in studies where it is undesirable to completely shut off a beam in 

order to switch a medium from dark to bright, as is routinely done in light storage and switching 

experiments24-29. 

 

II.3. Theoretical model 
  

II.3.A. Atomic system 
 

Our theoretical model consists of a four-level inverted-Y configuration as shown in Fig. 1(c). 

The two ground states |1> and |2> are the degenerate Zeeman sublevels corresponding to the 

magnetic quantum numbers mF = -1 and mF = +1, respectively, of a ground state hyperfine level. 

The states |3> and |4> are the mF’ = 0 and mF” = 0 Zeeman sublevels, respectively, of different 

excited states and belong to hyperfine levels between which the electric dipole transitions shown 

in the figure are allowed. Note that this four-level system is a sub-system of the larger thirty-six-

level system shown in Fig. 1(b), which displays all the magnetic sublevels in the three-level 

ladder-type configuration of fine-structures that is driven by the two optical fields (Fig. 1(a)). 
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Fig. 1(a) 

 

 

Fig. 1b 

Δp	  

Δc	  

Ωc,	  ωc	  	  	  	  	  	  
	  

87Rb	  

|3>	  

	  	  	  |4>	  

Ωp,	  ωp	  	  	  	  	  	  
	  

	  	  |1>	  



24 

	  

 

 

 

 

 

 

 

 

 

Fig. 1(c) 

 

Fig. 1. (a) Typical three-level ladder-type configuration used for EIT. (b) In realistic atoms used 

in an experiment, such as 87Rb, each of the three levels consist of a myriad of hyperfine and 

Zeeman sublevels, and need to be accounted for when the driving beams are not linearly 

polarized. (c) The simplified four-level inverted-Y configuration that we use in our theoretical 

model, which is sufficient for qualitatively explaining the experimental results. 

 

II.3.B. Elliptically polarized probe beam 
 

A single elliptically-polarized probe beam with frequency ωp is used to create electric dipole 

transitions between |1> and |3> and between |2> and |3> at the same time. The polarization of the 

probe beam can be controlled by using a quarter-wave plate (QWP). An initial vertically 

polarized probe beam with intensity Ip and electric field amplitude   𝐸! =
!!

!!!!!
  becomes 
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elliptically polarized after passing through the QWP that has been rotated by an angle θ. In the 

circularly-polarized basis, the polarized probe beam can be decomposed into 𝑬𝒑 = 𝑬!𝝈! +

𝑬!𝝈!, where  𝐄! = !!
!
(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃)𝑒!" and 𝐄! = !!

!
(𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃)𝑒!!". Here, 𝝈!and  𝝈!are 

the unit vectors of the right-hand circularly- (RHC) and left-hand circularly- (LHC) polarized 

basis, respectively. Besides changing the strengths of the electric field components, we notice 

that the QWP also introduces a phase difference of φ = 2θ between them (Fig. 2).  

 

 

 

 

 

Fig. 2(a) 
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Fig. 2(b) 

 

Fig. 2. (a) Decomposition of the probe field into its circularly polarized components after 

it has passed through a quarter wave plate (QWP). (b) Pictorial depiction of the field strengths 

(top graph), as well as the intensities (bottom graph), of the two circularly polarized components 

of the probe field after it has passed through a QWP rotated by an angle θ. Note that the black 

“LHC” and the red “RHC” traces correspond to the left- and right- hand-circular polarization 

components, respectively. 
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II.3.C Dark-state analysis 
 

Let the dipole moments between |1> and |3> be µ13 and |2> and |3> be µ23, and µ13= µ23 = µ0. 

Then, the Rabi frequencies become 𝛺! = − !!𝑬!

ħ
= 𝛺!(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃)𝑒!" and 𝛺! = − !!𝑬!

ħ
=

𝛺!(𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃)𝑒!!", where 𝛺! = − !!!!
ħ !

. Electric dipole transition between the states |3> and 

|4> is coupled by a linearly-polarized coupling beam with frequency ωc and Rabi frequency 

𝛺! = − !!".!!
ħ

, where µ34 is the dipole moment between |3> and |4> and 𝐸! =
!!

!!!!!
  is the 

electric field strength of the coupling beam with intensity Ic. The frequency detunings are Δp = 

ωp – ω31 = ωp – ω32 and Δc = ωc – ω43, where 𝜔!"!
!!!!!
ħ

,  𝜔!"!
!!!!!
ħ

 and 𝜔!"!
!!!!!
ħ

  are the 

transition frequencies between the energy levels |3> and |1>, |3> and |2> ,and |4> and |3>, 

respectively. We also assume that the coupling beam is much stronger than the probe beam, i.e. 

𝛺!<< 𝛺!. 

 Had our system consisted of only the levels |1>, |3> and |4> and the beams 𝛺!  and 

𝛺!   with 𝛺!>>𝛺!, then we would have expected to observe the usual EIT behavior associated 

with a ladder-type system17 with vanishing absorption at the two-photon resonant condition of Δp 

+ Δc = 0. We are now interested in understanding how the beam 𝛺! that has a controllable phase 

difference of φ = 2θ with respect to 𝛺! will modify the EIT profile. When 𝜃 = 0, we have 

φ = 0 and 𝑬! = 𝑬!, i.e. the probe beam is linearly polarized. When  𝜃 = !
!
 we have 𝑬!= 0, i.e., 

the probe beam is RHC polarized. Here, we expect optical pumping to populate the |2> level, so 

𝛺!and 𝛺! lead to no EIT phenomenon. When 0 < 𝜃 < !
!
, we have 0 < φ < !

!
 and when 

!
!
< 𝜃 < !

!
, we have !

!
< φ < 𝜋. We will specifically look for quantum interference phenomena 

that might switch from constructive to destructive while crossing φ = !
!
. As an example, we will 
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consider the pair of phases  φ = !
!
+ !

!
  and   !

!
− !

!
. We also note that in these two cases, the probe 

beam’s intensity distribution among its 𝝈!and  𝝈!components are the same (which correspond to 

QWP rotations of 𝜃 = !
!
  and   !

!
). The only difference between the two cases is then the phase 

between the two probe beam components. 

 The Hamiltonian of the system shown in Fig. 1 can be written as the matrix 

  

 H = −ħ

0 0 !!

!

∗
0

0 0 !!

!

∗
0

!!

!
!!

!
𝛥!

!!
!

∗

0 0 !!
!

𝛥! + 𝛥!

  . (1) 

 

Under the resonant conditions of Δp + Δc = 0 and Δp = 0, we identify three dark states, or non-

coupled states, that are decoupled from the state |3>: 

 

 |𝑁𝐶1 >  =    !!
!! !! !! !

|1 >-   !!

!! !! !! !
|4 > ≅ |1 > − !!

!!
|4 >, (2a) 

 |𝑁𝐶2 >  =    !!
!! !! !! !

|2 >-   !!

!! !! !! !
|4 > ≅ |2 > − !!

!!
|4 >, (2b) 

 |𝑁𝐶3 >  =    !!

!! !! !! ! |1 >-   !!

!! !! !! ! |2 > = !!

!!
|1 > − !!

!!
|2 >. (2c) 

 

In Eq. 2a and Eq. 2b, we have kept terms only to the first order in !!
!!

. Quantum mechanically, 

two paths that result in the same end product will interfere. The total dark state amplitude is then 

given by 

 |𝑁𝐶 >  =    |𝑁𝐶1 >   +|𝑁𝐶2 >   +|𝑁𝐶3 >,  
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 i.e., |𝑁𝐶 >  = 1+ !!

!!
|1 > +    (1− !!

!!
)|2 >   −    !

!!
𝛺! + 𝛺! |4 >. (3) 

 

We want to see how the populations of the atoms in the dark states will vary as the three 

non-coupled states interfere with each other. That is, we would like to find 𝑁𝐶(𝜃,φ) 𝜓 !, 

where   

 

 𝜓 >  = 𝑐! 1 > +𝑐! 2 > +𝑐! 3 > +𝑐!|4 >  (4) 

 

is the wavefunction of the atom in its bare-state basis. From Eq.3 and Eq.4, we get  

 

𝑁𝐶 𝜃,φ 𝜓 ! =    1+
𝛺!

𝛺!

!

𝜌!! + 1−
𝛺!

𝛺!

!

𝜌!! +
𝛺!

𝛺!
+
𝛺!

𝛺!

!

𝜌!! 

     

           +2𝑅𝑒{ 1+ !!

!!
1− !!

!!

∗
𝜌!" −

!
!!

𝛺! + 𝛺! ∗[ 1+ !!

!!
𝜌!" + 1− !!

!!
𝜌!"]} (5) 

 

where 𝜌!"= 𝑐!∗𝑐! are the elements of the density-matrix operator 𝜌.  

To find the density-matrix elements, we use the equations of motion for 𝜌!", i.e.  

 

 𝜌!" = !!
ħ
H,𝜌 !", (6) 

 

which yield the following equations: 
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 𝜌!" = −𝛾!"𝜌!" −
!
!
𝛺!𝜌!" +

!
!
𝛺! ∗𝜌!", (7a) 

\  𝜌!" = − 𝛾!" − 𝑖𝛥𝑝 𝜌!" +
!
!
𝛺!(𝜌!! − 𝜌!!)+

!
!
𝛺!𝜌!" +

!
!
𝛺! ∗𝜌!", (7b) 

 𝜌!" = − 𝛾!" − 𝑖𝛥𝑝 𝜌!" +
!
!
𝛺!(𝜌!! − 𝜌!!)+

!
!
𝛺!𝜌!" +

!
!
𝛺! ∗𝜌!", (7c) 

 𝜌!" = − 𝛾!" − 𝑖 𝛥𝑝 + 𝛥𝑐 𝜌!" +
!
!
𝛺!𝜌!" −

!
!
𝛺!𝜌!", (7d) 

 𝜌!" = − 𝛾!" − 𝑖 𝛥𝑝 + 𝛥𝑐 𝜌!" +
!
!
𝛺!𝜌!" −

!
!
𝛺!𝜌!", (7e) 

 𝜌!" = − 𝛾!" − 𝑖𝛥𝑐 𝜌!" +
!
!
𝛺!(𝜌!! − 𝜌!!)−

!
!
𝛺! ∗𝜌!" −

!
!
𝛺! ∗𝜌!". (7f) 

 

 In Eq.7, we have also introduced the decay rates 𝛾!"  between the levels |𝑖 > and |𝑗 >. 

Neglecting collisional broadening, we have 𝛾!" =
!
!
(𝛤! + 𝛤!), where 𝛤! is the natural decay rate of 

the level |𝑖 >.  

In the steady state when 𝜌!" = 0, we make the assumptions 𝜌!! = 𝜌!! = 0 under the 

weak probe field approximation17, which means 𝜌!! + 𝜌!! = 1. This assumption is valid since in 

the limit 𝛺! ≫ 𝛺!, most of the atoms are populated in the ground state levels12. Furthermore, we 

use 𝜌!! =
!
!
cos𝜃 − sin𝜃 ! and 𝜌!! =

!
!
cos𝜃 + sin𝜃 !. To justify these population 

distributions, we can consider two cases. First, when 𝜃 = 0, the probe beam is linearly polarized 

and its intensity is equally distributed amongst its 𝝈!and  𝝈!components. When the coupling 

fields are absent, we expect the two ground state levels to be equally populated, i.e. 𝜌!! = 𝜌!! =

!
!
. This population distribution would then be maintained when the probe beam is linearly 

polarized. Second, when the QWP is set to 𝜃 = !
!
, the probe beam is 𝝈!polarized. In this case, 

due to the optical pumping effect, 𝜌!! = 0 and 𝜌!! = 1. For other values of 𝜃, 𝜌!!and 𝜌!!depend 
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on the relative intensities of the 𝝈!and  𝝈! components of the probe beam. Taking 𝛺!<<  𝛺! , we 

then have 

 

 𝜌!" =
!!

!![! !!"!!"# ! !! !
!{!!"!!(!"!!")}

  
. [!
!
cos𝜃 − sin𝜃 !] , (8a) 

 

  𝜌!" =
!!

!![! !!"!!"# ! !! !
!{!!"!!(!"!!")}

  
. [!
!
cos𝜃 + sin𝜃 !] , (8b) 

 

 𝜌!" =
!

!!!"
𝛺! ∗𝜌!" − 𝛺!𝜌!"∗ , (8c) 

 

 𝜌!" =
!!!

! !!"!!(!"!!")
𝜌!", (8d) 

 

 𝜌!" =
!!!

! !!"!!(!"!!")
𝜌!", (8e) 

 

 𝜌!" ≅ 0. (8f) 

 

 

II.3.D. Theoretical results 
 

We are now ready to evaluate 𝑁𝐶 𝜃,φ 𝜓 !, i.e. the populations of the atoms in the dark 

states . As mentioned earlier, two special phases, φ = !
!
+ !

!
  and !

!
− !

!
, will be considered. 

Figure 3 shows the dark-state population (DSP) for these two states of the probe beam 
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polarizations as a function of the probe beam’s frequency detuning. The DSP for the case of the 

linearly-polarized probe beam, i.e. φ = 0, is also shown in the figure for reference. For all the 

theoretical figures, we have used the following values for the parameters in Eq. 5 and Eq. 8: 

𝛺! = 0.8×2𝜋  𝑀𝐻𝑧, 𝛺! = 10×2𝜋  𝑀𝐻𝑧, 𝛾!" = 𝛾!" = 6×2𝜋  𝑀𝐻𝑧, 

𝛾!" = 𝛾!" = 1×2𝜋  𝑀𝐻𝑧,  𝛾!" = 0.05×2𝜋  𝑀𝐻𝑧, and  𝛥𝑐 = 0. 

 

 

 

 

 

Fig. 3. Variations of the dark-state population over probe beam detuning, corresponding to three 

different phases (dotted: = 0 ; dashed: 𝜑 = !
!
+ !

!
 ; solid:  𝜑 = !

!
− !

!
 ). Negative values signify 

the transition of a dark state to an enhanced absorption state.  
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Since the dark states do not absorb the incident fields, the DSP profiles shown in Fig. 3 

resemble the intensity profiles of the transmitted probe beam for the corresponding phases. In the 

figure, negative values of DSP signify a transition of a dark (EIT) state to an enhanced absorbing 

(EIA) state. We see that near Δp = 0, the regular EIT peak corresponding to the linearly-polarized 

probe beam gets modulated as the phase is altered to !
!
+ !

!
  or   !

!
− !

!
. For the first phase, the 

overall DSP profile decreases. For the latter phase, the region becomes absorbing on one side of 

Δp = 0 and transparent on the other side. We reiterate that in these two cases, the beam powers 

are identical. Depending on whether the phase is greater than or less than !
!
, the interference 

between the various non-coupled states involved in the Hamiltonian (Eq. 1) changes from 

constructive to destructive. This behavior is characterized by the interference between the 

coherence terms 𝜌!",𝜌!"  and  𝜌!" in Eq. 5. When this interference is destructive, a dark (EIT) 

region switches to a bright or enhanced absorbing (EIA) region. 

In polarization-sensitive EIT experiments, the sub-Doppler EIT resonances 

corresponding to the hyperfine levels near the excited state |4> become increasingly 

resolvable72,73,96. Due to their proximity to one another, the modulation in one window affects 

that of the other. In order to describe the overall behavior of the atomic system, it is necessary to 

include the contributions due to each of these closely-lying hyperfine levels. In Fig. 4, we have 

included contributions due to three resonances arising from such excited-state hyperfine levels. 

We have also accounted for Doppler-broadening effects typical in such hot atomic systems17. 
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Fig.	  4. Theoretical profiles of the dark-state populations when there are three closely lying hf 

levels in the upper excited state. The two traces are obtained for different phases between the 

probe beam components (dashed : 𝜑 = !
!
+ !

!
 ; solid:  𝜑 = !

!
− !

!
 ). 
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II.4. Experimental observations 
 

II.4.A. Experimental setup 
  

The switching of multiple transparency windows due to phase-coupled dark states has been 

experimentally observed in hot 87Rb atomic vapor. In Fig. 1(c), the two ground states |1> and |2> 

correspond to the degenerate Zeeman sublevels with magnetic quantum numbers mF = -1 and mF 

= +1, respectively, of the 5s1/2 F = 2 hyperfine level. The state |3> is the mF’ = 0 Zeeman sublevel 

of the 5p3/2 F’ = 3 hyperfine level, while the state |4> is the mF” = 0 Zeeman sublevel of the 5d3/2 

F” = 2 hyperfine level. 

The experimental setup is shown in Fig. 5. A horizontally-polarized coupling beam with 

wavelength 𝜆! = 776  𝑛𝑚 and power 40 mW is directed into a rubidium atomic vapor cell 

maintained at a temperature of 60 °C. The vapor cell is wrapped in a µ-metal shield to reduce the 

effect of magnetic fields due to the earth and the surrounding electronic equipment, in order to 

minimize the shifts of the Zeeman sublevels within each hyperfine level. There is a region inside 

the atomic vapor cell where a probe beam, which is scanned around the wavelength of 

𝜆! = 780  𝑛𝑚 and has a power of 7 mW, overlaps with the counter-propagating coupling beam 

at a small angle. Before entering the vapor cell, the probe beam passes through a half-wave plate 

(HWP) followed by a QWP. The HWP makes the probe beam vertically polarized. The QWP is 

rotated by an angle θ to control the polarization of the incoming vertically-polarized probe beam. 

After passing through the QWP, components of the probe beam in the  𝝈!and  𝝈! basis become 

  𝐄! = !!
!
(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃)𝑒!" and 𝐄! = !!

!
(𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃)𝑒!!" , respectively. The transmitted 

probe beam is measured by detector D1. 
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Fig. 5. Experimental setup. HWP: half-wave plate; QWP: quarter-wave plate. Coupling beam is 

horizontally polarized and the incident probe beam is vertically polarized. 

 

II.4.B. Experimental results 
 

The transmitted profile of the probe beam includes the usual Doppler-broadened D2 absorption 

lines for 87Rb, corresponding to the lower transitions in Fig.1. Due to the strong counter-

propagating coupling beam which drives the upper transition in Fig.1, we observe three sub-

Doppler EIT regions within the broad absorption dip. These three EIT regions correspond to the 

F” = 3, 2 and 1 hyperfine levels of the 5D3/2 level18,19. As the QWP was rotated by an angle θ 

introducing a phase of φ = 2θ between the 𝝈!and  𝝈! components of the probe beam, we 

observed that the EIT regions display varying behaviors. These variations are shown in Fig. 6.  

In the vicinity of the resonance Δp + Δc = 0, the EIT profiles shown in Fig. 6 

corresponding to the phases φ = !
!
+ α! and φ = !

!
− α!, for α! =  !

!
  and  α! =   

!
!
  , appear to be 

reflections about the absorption profile in that region when 𝛺!=0. (The two profiles (a) and (g) 

are the same because in both cases, the probe beam is linearly polarized.) In the theoretical 

model, we expect a vanishing EIT behavior for a 𝝈!probe beam. The profile shown in Fig. 6 (d) 

shows some EIT behavior because when we consider all the Zeeman sublevels in the relevant 
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D1 

	  QWP	    

Rb	  atomic	  
vapor	  cell 

Probe	  
	  beam 

Coupling	  
beam	  



37 

	  

87Rb hyperfine levels, there exists a transition that couples the optically-pumped ground state 

Zeeman sublevel (mF= +2) due to the  𝝈!probe beam to the excited states (via F’ = 3, mF’ = +3). 

The inverted-Y type system shown in Fig. 1 (c) is not intended to treat cascade-type branches 

that involve the magnetic sublevels mF’ = ± 3 of the 5p3/2 level. These branches are the only ones 

that are active in the cases of circularly-polarized probe beams, and the phase-induced 

interference phenomena that we are treating are absent in this case. 

 

Fig. 6. Experimental observation of the dark-to-bright switching at three resonances (dashed 

lines) when φ is at (a) 0 ; (b)  !
!
− !

!
 ; (c) !

!
− !

!
 ; (d)  !

!
 ; (e) !

!
+ !

!
 ; (f)  !

!
+ !

!
 ; (g)  𝜋. Profiles have 

been shifted along the vertical axis for better visualization. F1, F2 and F3 denote positions for 

considering conditions of AND and OR operations. 

 

CONTROL OF MULTITRANSPARENCY WINDOWS VIA . . . PHYSICAL REVIEW A 81, 023830 (2010)
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FIG. 5. (Color online) Experimental observation of the dark-to-
bright switching at three resonances (dashed lines) when ϕ is at
(a) 0, (b) π

2 − π
3 , (c) π

2 − π
6 , (d) π

2 , (e) π
2 + π

6 , (f) π
2 + π

3 , (g) π .
Profiles have been shifted along the vertical axis for better visualiza-
tion. F1, F2, and F3 denote positions for considering conditions of
AND and OR operations.

In the vicinity of the resonance #p + #c = 0, the EIT
profiles shown in Fig. 5 corresponding to the phases ϕ =
π
2 + αi and ϕ = π

2 − αi , for α1 = π
3 and α2 = π

6 , appear to
be reflections about the absorption profile in that region when
%c = 0. [The profiles (a) and (g) are the same because in both
cases the probe beam is linearly polarized.] In the theoretical
model, we expect a vanishing EIT behavior for a σ̂+ probe
beam. The profile shown in Fig. 5(d) shows some EIT behavior
because when we consider all the Zeeman sublevels in the
relevant 87Rb hyperfine levels, there exists a transition that
couples the optically pumped ground-state Zeeman sublevel
(mF = +2) due to the σ̂+ probe beam to the excited states
(via F ′ = 3, m′

F = +3). The inverted-Y-type system shown
in Fig. 1 is not intended to treat cascade-type branches that
involve the magnetic sublevels m′

F = ±3 of the 5p3/2 level.
These branches are the only ones that are active in the cases
of circularly polarized probe beams, and the phase-induced
interference phenomena that we are treating are absent in this
case.

While numerous hyperfine levels and Zeeman sublevels
are involved in the actual experiment, we have qualitatively
identified the cause of the dark-to-bright switching to be the
interference between the noncoupled states in a four-level
inverted-Y system. Our theoretical results for the dark-state
populations shown in Fig. 3 are in close agreement with
the corresponding experimental observations for the probe
beam transmission, that is, the profiles illustrated in Figs. 5(c)
and 5(e). Several inverted-Y subsystems exist in the actual
atom-field Hamiltonian because the fields create electric dipole
transitions from mF = −2, −1, 0, 1, and 2 of 5s1/2, F = 2, to
5p3/2, F ′ = 1, 2, and 3 and 5d3/2, F ′′ = 0, 1, 2, and 3. Figure 1
shows only one of those subsystems, and its treatment seems
to be sufficient to understand the qualitative behavior of the
multiple dark states in such atomic systems. By applying the
preceding model to all the occurring inverted-Y subsystems
and adding the results together with appropriate weight factors
(due to different Clebsch-Gordan coefficients) to get the total
DSP distribution, we could further improve the relative heights
of the three resonances.

In Fig. 5, we see that for a given phase, the atomic medium
can be transparent (“on”) or enhanced-absorbing (“off”) at
various frequency bands. As the phase is varied, the behaviors
at these bands switch simultaneously. This allows for the
possibility of handling switching conditions such as AND and
OR that might find applications in optical communication and
quantum computation. For instance, by switching between the
systems shown in Figs. 5(c) and 5(e), we could implement
an AND-type condition for signals at frequencies F1 and
F2 or an OR-type condition for signals at frequencies F1
and F3. The fact that all the field strengths and intensities
remain identical during the switching process might also be of
practical importance.

IV. CONCLUSION

By using only two fields and an atomic medium, we have
identified an adiabatic process that allows us to control the
transparency of the medium at multiple frequencies simulta-
neously. We achieved this by altering a single parameter, that
is, the phase difference between the two circularly polarized
components of one of the fields. We explained the process by
treating the quantum interference between multiple dark states,
and our model agrees with the experimental observations.
This demonstrated multiple dark/bright state switching could
find applications in optical communication and quantum
information processing.
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 While numerous hyperfine levels and Zeeman sublevels are involved in the actual 

experiment, we have qualitatively identified the cause of the dark-to-bright switching to be the 

interference between the non-coupled states in a four-level inverted-Y system. Our theoretical 

results for the dark state populations shown in Fig. 4 are in close agreement with the 

corresponding experimental observations for the probe beam transmission, i.e. the profiles Figs. 

6 (c) and (e). Several inverted-Y subsystems exist in the actual atom-field Hamiltonian because 

the fields create electric dipole transitions from mF = -2, -1, 0, 1, 2 of 5S1/2, F = 2 to 5P3/2, F’= 1, 

2, 3 and 5D3/2, F” = 0, 1, 2, 3. Figure 1 shows only one of those subsystems, and its treatment 

seems to be sufficient to understand the qualitative behavior of the multiple dark states in such 

atomic systems. By applying the above model to all the occurring inverted-Y subsystems and 

adding the results together with appropriate weight factors (due to different Clebsch-Gordan 

coefficients) to get the total DSP distribution, we could further improve the relative heights of 

the three resonances. 

In Fig. 6, we see that for a given phase, the atomic medium can be transparent (“on”) or 

enhanced-absorbing (“off”) at various frequency bands. As the phase is varied, the behaviors at 

these bands switch simultaneously. This allows for the possibility of handling switching 

conditions such as AND and OR that might find applications in optical communication and 

quantum computation. For instance, by switching between the systems shown in Figs. 6 (c) and 

(e), we could implement an AND type condition for signals at frequencies F1 and F2, or an OR 

type condition for signals at frequencies F1 and F3. The fact that all the field strengths and 

intensities remain identical during the switching process might also be of practical importance. 
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II.5. Conclusion 
 

By using only two fields and an atomic medium, we have identified an adiabatic process that 

allows us to control the transparency of the medium at multiple frequencies simultaneously. We 

achieved this by altering a single parameter, i.e. the phase difference between the two circularly-

polarized components of one of the fields.  Such fields correspond to different elliptical 

polarization states, and are generated by using a quarter-wave plate. We explained the process by 

treating the quantum interference between multiple dark states, and our model agrees with the 

experimental observations. Even though a realistic atom comprises of thirty-six magnetic sub-

levels, by using the dark-state analysis, we were able to explain the qualitative features by using 

a simple model comprising of four magnetic sub-levels. This demonstrated multiple dark/ bright 

state switching at various spectral positions could find applications in optical communication and 

quantum information processing. 
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III. FWM between the excited states of a ladder-type system 

 

III.1. Introduction 
 

In the previous chapter, we discussed EIT in a ladder-type configuration comprising of the 5S, 

5P and 5D states. In this chapter, we will discuss the generation of resonantly enhanced FWM 

radiation between the hyperfine structures of the 5D and 5P states in the ladder-type atomic 

configuration. In contrast to previous FWM studies where the FWM radiation is generated 

between the first excited state and the ground state, the radiation presented here is between two 

excited states and several new properties are observed. The spectral-domain properties of the 

radiation are characterized, and the underlying mechanisms discussed. 

 First, we will give a very general description of FWM processes enhanced by atomic 

coherence and EIT, and discuss the motivations and advantages of this enhancement method. We 

will describe some systems that are popular in the literature. This discussion will give this thesis 

a measure of self-sufficiency, since all subsequent chapters will utilize EIT-enhanced MWM 

processes. Second, we will focus on the specific atomic system that is being studied in this 

particular experiment. Here, we will present the experimentally observed spectra, and 

qualitatively discuss the underlying mechanisms responsible for the observed effects. We will 

discuss why multi-photon transitions in this atomic system reveal more complex spectral features 

compared to traditional FWM studies between a ground state and an excited state. Finally, we 

will end the chapter with some concluding remarks. 
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III.2. General overview of FWM enhancement using atomic coherence and EIT 
 

Traditionally, nonlinear optical phenomena were observed at large optical intensities. In fact, the 

term “nonlinear” in nonlinear optics describes the dependence of such phenomena on terms vary 

polynomially in the electric field of the radiation. Large optical intensities were required because 

the higher order terms of the material medium’s susceptibilities are typically orders of magnitude 

weaker than the lower-order terms. Moreover, when driving the higher order terms of the 

nonlinear polarization, the lower orders are also driven, in particular the first order term that 

gives rise to absorption. To drive the weak nonlinearities while at the same time overcome these 

absorptive losses, fields with very high intensities were used, typically short pulses. The 

absorptive losses thus give rise to inefficiencies in the process of searching for nonlinear effects. 

Furthermore, the large intensity gives rise to power-broadening effects. High-intensity pulses, 

which are temporally short and spectrally broad, can also drive many spurious transitions. All of 

these features can give rise to large background scattering noises. In summary, nonlinear optical 

processes relying on large driving beam powers can be inefficient as well as have bad signal-to-

noise ratios. In order to minimize absorptive losses, many studies also use off-resonance driving 

beams; but nonlinearities also become weaker away from resonance, thus further raising the 

demands on the intensity of the optical field driving the process. Nonetheless, these methods are 

still of great importance in phenomena that utilize intense pulses, such as in solitons and pulse 

transmission in fibers. 

 The use of atomic coherence in multi-level atoms to drive nonlinear optical processes 

circumvents the aforementioned drawbacks.  First, EIT, which is a two-photon coherent 

phenomenon arising in three-level atomic systems, annihilates absorption even at resonance. The 

lack of absorptive losses at resonance has several consequences. First, a lower driving beam 
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intensity is now required to overcome the threshold for nonlinear gain since absorption is not 

depleting the input. Second, the nonlinear transitions can be driven resonantly without absorptive 

losses and scattering noise, thus allowing for the maximum possible efficiency of generation as 

well as good signal-to-noise (SNR) ratio. Third, at EIT, not only is the resonant medium 

transparent to the driving beam but also transparent to the nonlinearly generated signal fields, 

thus enhancing efficiency and SNR. Fourth, since now weak fields can be used to drive the 

atomic coherences, cw beams with small intensities and very narrow spectral bandwidths can be 

used. These beams cause minimal power-broadening, and do not drive unwanted atomic 

transitions at other frequencies. Finally, resonantly driven atomic coherences have amplitudes 

that are much larger than the off-resonant amplitudes, and are very effective source terms in 

Maxwell’s equation giving rise to bright coherent signal radiations. These atomic coherences can 

be controlled with great precision. The coherence of these nonlinearly generated signals, in 

particular their phase control, will be a feature discussed in great detail in the subsequent 

chapters. 

 In the FWM experiments discussed in the thesis, including in this chapter, a three-photon 

resonance drives atomic coherence in Rb vapor, which then acts as a source of radiation of the 

fourth field in “completing” the FWM process/ transition. The parameters of the fourth field are 

constrained by the conservation of energy, momentum and angular momentum in the FWM 

process and can thus be precisely controlled by tuning the parameters of the three driving beams. 

The trick then is to embed, within the three-photon driven resonance, an EIT transition, thereby 

allowing the FWM process to be resonantly driven by weak (typically a few milliwatts) driving 

beams. 
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Resonantly enhanced multi-wave mixing processes have been investigated in many 

multi-level atomic configurations. In each configuration, different beam geometries and phase-

matching conditions have been identified in order to utilize Doppler-free EIT resonances even in 

the presence of high-density atomic vapors having Doppler broadening; consequently, these 

atomic coherence enhanced FWM radiations can also have Doppler-free narrow spectral 

linewidths, in addition to a very narrow spatial bandwidth (unidirectionality). Typically, the 

FWM radiations have been generated between the ground state of the atom and the first excited 

state. One of the most popularly studied processes has been the generation of Stokes and anti-

Stokes signals in a double-lambda atomic configuration. Here, a strong coupling beam and a 

weak probe beam form a lambda-type EIT configuration, driving a strong atomic coherence 

between the two ground state hyperfine levels. The difference frequency of these two beams 

matches the spectral separation of these two energy levels. A third driving beam, which could be 

an additional beam or the same coupling beam used twice, then couples one of the ground states 

to another excited state, which can be real or virtual. This third field mixes with the spin 

coherence between the ground states, and generates a Stokes or anti-Stokes field, depending 

upon whether it’s frequency is smaller or larger than the driving field. In this process, this fourth 

field is amplified from an initially vacuum mode, and the weak probe beam in the initial EIT 

configuration is also amplified. Classical correlations as well as quantum correlations and 

entanglement have been verified between the noise fluctuations of these two amplified signals. 

 FWM process has been investigated in the ladder-type configuration too. In this case, the 

two-photon EIT resonance is driven at the sum-frequency of the probe and coupling beams, and 

the atomic coherence is driven between the 5S and the 5D states, with the 5P level serving as the 

intermediate level. When a third beam driving the transition between 5D and 5P is then impinged 
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upon the two-photon spin excitation, the resulting mixing radiates the FWM signal between the 

5P and 5S states. FWM between the ground state and first excited state of the ladder-type 

configuration has been investigated, as well as in relation to other coexisting MWM processes in 

which the ladder-type system is a sub-system of a larger system such as the inverted-Y or Y-type 

systems. 

 

III.3. Overview of the current experiment 
  

In the aforementioned studies, the FWM signals were generated at the transition frequency 

between the 5P and the 5S states of Rb. In this current chapter, we describe a study in which 

FWM radiation is generated at the transition between the 5D and 5P excited states (Fig. 1a), and 

study it in the frequency domain. Atomic coherence and EIT mechanism are implemented, 

allowing the amplification to occur using low-power CW beams. We have investigated the 

spectral response of the generated waveform to the various contributing parameters, such as the 

spectroscopic properties (and multi-level structures) of the atomic energy levels, the vicinity of 

the laser frequencies to the various atomic resonances, and the powers of the driving beams. We 

consider their contributions to the properties of the generated radiations (such as the efficiency, 

line shape and linewidth) and discuss the optimum conditions suitable for this process. The 

generated radiation, containing high-resolution narrow-linewidth spectroscopic information, is 

background-free. These features can make this process desirable over other spectroscopic 

methods relying on two-photon fluorescence where the signals are typically very weak since the 

photons are scattered in all spatial directions and in any given detection direction, the 

background noise can be of comparable intensity with the signal. An energy level configuration 

similar to the current work was studied in the time domain in Ref. 106. Analytical solutions to  
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Fig. 1. (a) Simplified three-level ladder-type configuration in 85Rb that is 

coherently driven in the FWM process; |g>, |i> and |e> stand for the ground, 

intermediate and excited states, respectively. E1, E1ʹ′  and E2 are external driving 

beams from laser sources, while Ef is the atom-radiated FWM signal that is 

parametrically amplified from the vacuum mode. (b) Schematic of the 

experimental configuration showing the directions and polarizations of the four 

fields. (c)-(f) Realistic energy level diagram showing the hyperfine (hf) levels of 

each driven state, as well as the incoherent decay channels (wavy arrows) 

between various combinations of driven hf levels: [f, fʹ′, fʹ′ʹ′] = (c) [3, 2, 2], (d) [3, 

3, 4], (e) [3, 4, 3], and (f) [3, 4, 4]. The single-resonance decay channels are 

drawn first, followed by the double-resonance decay channels. The number of 
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single-resonance and double-resonance optical pumping channels is different in 

the various cases. The spacings between the energy levels are not drawn to scale. 

 

the system were derived in Ref. [107] with approximations such as very weak driving beams and 

small hyperfine coupling, both of which are different from our current experimental conditions. 

In Fig. 1a, we have only shown the closed three-level atomic system consisting of the fine 

structures being driven by the laser beams. In reality, each of these structures consists of a 

myriad of hyperfine (hf) levels due to coupling with the nuclear magnetic moment, most of 

which can radiatively decay to energy levels not being driven in the FWM process, making this a 

mixed system (i.e. consisting of closed as well as open sub-systems.) How open a driven sub-

system is depends on the selection rules for the associated hf levels. The hf levels f, fʹ′ and fʹ′ʹ′ of 

the ground, intermediate and excited states, respectively, as well as the various decay channels 

associated with four different three-level subsystems, are shown in Fig. 1 (c-f). In each diagram, 

the decay channels of the single-photon transition are drawn first, followed by the decay 

channels due to the two-photon process. From these examples, it can be seen that some FWM 

subsystems have more decay channels than the others, and that various channels exist via which 

the atomic population gets optically pumped into the undriven ground state f = 2. The single-

photon transition f = 3 → fʹ′ = 4 is closed, whereas f = 3 → fʹ′= 2, 3 can also radiatively decay to f 

= 2. A peculiar feature of the ladder-type configuration consisting of multiple sublevels is the so-

called double resonance optical pumping (DROP) effect108. Beacause of DROP, even when the 

single-photon transition is closed, the two-photon process opens various optical pumping 

channels as shown in Fig. 1 (e-f). The 5D state also has decay channels via the 6P state, which 

are not shown in Fig. 1. 
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 Furthermore, due to the close proximity of the hf energies in the 5D and 5P states, many 

subsystems are simultaneously resonant for a given pair of driving beam frequencies. The hf 

levels further consist of varying numbers of Zeeman sublevels with different transition strengths. 

As will be shown below, the multi-level nature as well as the fact that most of the driven 

subsystems can radiatively decay and lose population to the environment have important 

consequences to the Fourier-domain waveforms of the atom-radiated coherent FWM signal 

including the line shape and efficiency at various spectral positions, giving rise to a rich array of 

spectra. Accurately reproducing the line shapes analytically or numerically thus involves the 

bookkeeping of all the subsystem parameters, and is beyond the scope of this current 

experimental work. The intention of this current work is to illuminate the experimentally 

observed properties of this interesting FWM system and to qualitatively assess the underlying 

causes of the most important features. 

 

III.4. Experimental method 
 

The energy level configuration and the experimental geometry are shown in Fig. 1. The probe 

beam E1 (frequency ω1, wavelength λ1, wave vector k1) is generated by a CW diode laser DL. 

The wavelength λ1 is scanned around 780 nm in order to probe the Doppler-broadened spectral 

bandwidth of the 85Rb isotope’s D2 transition. The vapor cell is 5 cm long, and is magnetically 

shielded and heated to 60o C. The transmitted probe beam intensity is monitored by a photodiode 

PD. A strong beam E2 (frequency ω2, wavelength λ2, wave vector k2) from a CW Ti-Sapphire 

laser is aligned to counterpropagate with E1. The wavelength of E2 is fixed but can be tuned 

around 776.158 nm, the wavelength of the upper transition in the cascade scheme. When both 
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one-photon resonance and two-photon resonance (TPR) are satisfied, the coupling beam renders 

the atomic medium transparent for the probe beam by virtue of EIT. Even though the D2 

absorption line is Doppler broadened in the hot atomic medium, the two-beam 

counterpropagating geometry allows the two-photon EIT process to be basically Doppler-free for 

the cascade configuration17. When the probe beam’s frequency detuning is larger than the 

Doppler-broadened linewidth of the D2 transition, the single photon absorption is vanishingly 

small. Here, when the strong coupling beam is present satisfying TPR, we no longer have EIT. 

Instead, a direct two-photon transition is driven between |g> and |e> resulting in a two-photon 

absorption (TPA) peak. This Doppler-free TPA resonance has a much narrower linewidth than 

the Doppler-broadened D2 line’s absorption linewidth, and the TPA depth can be tuned via the 

coupling beam’s intensity. For intermediate frequency detunings lying between the EIT and TPA 

regimes, both stepwise (via |i>) and direct transitions from |g> to |e> are driven. At these 

frequency detunings, we observe a convolution of EIT and TPA in the transmission of the probe 

beam. The analytical solution showing the evolution of the TPR from EIT to TPA as the 

intermediate frequency detuning is increased can be found in Ref. 17.  

The output of the diode laser DL is split to create a third beam E1ʹ′  (frequency ω1, wavelength 

λ1, wave vector k1ʹ′) that intersects with E1 and E2 inside the vapor cell at a small angle of θ 

(typically 0.4o) with k1. The polarizations and powers of the beams can be altered independently. 

The third-order nonlinearity of the atomic medium, made efficient by the induced resonant 

coherences, leads to the generation of a new FWM radiation Ef ∝  χ(3)E1ʹ′E2E1 which 

counterpropagates with E1ʹ′  (due to conservation of linear momentum satisfying kf = k2 + k1 - 

k1ʹ′) but has the frequency of E2 (due to conservation of energy satisfying ωf = ω2 + ω1- ω1ʹ′). In 

the EIT regime, the FWM process is enhanced because the transitions can be driven near the 
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atomic resonances, while dissipation from |i> as well as |e> are vanishingly small. This allows 

the χ(3) nonlinear optical process to be driven and measured at low intensities. In the TPA 

regime, the dissipation from |i> is small due to the large intermediate frequency detuning. Here, 

when only E1 and E2 are present but E1ʹ′  is absent, the TPR coherence between |g> and |e> 

radiatively decays causing incoherent fluorescence scattering. The presence of E1ʹ′  stimulates 

coherent FWM radiation in the phase-matched direction. As will be shown below, the spectral 

linewidth of the FWM radiation is similar to the TPA linewidth, governed basically by the 

linewidth of the |e> state. 

By appropriate choices of the polarizations of the driving beams, the polarization of the 

FWM signal Ef is made to be orthogonal to that of E1ʹ′ . This allows for an effective isolation of 

the weak signal Ef using a polarization beam splitter, and is monitored with an avalanche 

photodiode APD. The voltage measurements of PD and APD are monitored simultaneously 

using a multi-channel oscilloscope, along with a reference Fabry-Perot cavity signal used for 

frequency calibration of the scanned DL output. 

 

III.5. Experimental observations and discussions 
 

Figure 2 shows the line-shapes of the generated FWM signal at various frequency detunings of 

the intermediate resonance, Δ1, where Δ1 = ω1 – ωig, with ωig being the transition frequency 

between the ground state and the first excited state. The Doppler-broadened absorption profile of 

the probe beam is also shown in the figure for reference, and gives information about the spectral 

position of the intermediate resonance used in the two-photon and FWM processes. Here, the 

absorption and FWM signals correspond to the f = 3 ground state of the 85Rb isotope. We note 
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that while the intermediate-state detuning is different in each signal, all of them are two-photon-

resonant (TPR); that is, the signal occurs only when Δ1 + Δ2 = 0, where Δ2 = ω2 – ωei and ωei is 

the transition frequency between the two excited states in the cascade configuration. As a result, 

even though the absorption profile is Doppler-broadened for the heated atomic ensemble, the 

generated FWM radiation has a line-shape that is Doppler-free. For convenience, the cases Δ1 < 

0 , Δ1 = 0 and Δ1 > 0 will be referred to as “red-detuned”, “zero-detuned” and “blue-detuned”, 

respectively.  

 In obtaining the four signals shown in Fig. 2, the only experimental parameter being varied is 

the value of ω2, which causes TPR to occur at different values of Δ1 as ω1 is being scanned. 

Except for their spectral positions, occurring at 500 MHz intervals, all the other experimental 

conditions, such as the vapor cell temperature (60 °C), beam powers (P1 = 7.4 mW, P1ʹ′ = 11.6 

mW and P2 = 40 mW) and beam geometry (θ = 0.4°), are identical. The importance of the 

intermediate frequency detuning is evident in the line shape, linewidth and efficiency of the 

FWM process. Far from intermediate state resonance, the signal has a narrow linewidth. As the 

condition Δ1 = 0 is approached, the signal’s linewidth becomes broader and the line shape 

becomes significantly convoluted. In the region slightly red-detuned from center, the FWM 

signal intensity also sharply decreases, experiencing a local minima.  
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Fig.2. FWM signal line shape, linewidth and efficiency at four different 

intermediate frequency detunings, placed at intervals of 500 MHz. All other 

experimental parameters are constant in the four cases. The Doppler-broadened 

absorption linewidth of the corresponding ground state (hf = 3 of 85Rb, 5S1/2) is 

also shown for reference. 
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FWM signals occurring at 100 MHz intervals are presented in Fig. 3a, showing the 

frequency-detuning dependent trends in more detail. All other experimental parameters are the 

same as those used in Fig. 2. At each spectral position, the signal is a convolution of a sharp 

“right” peak and a broad “left” peak. Each pair of dots connected by a line corresponds to the 

maximum intensities of the sharp and broad peaks occurring within a signal at a given detuning. 

Below, we will discuss the dependence of the FWM signal’s (1) linewidth, (2) line shape and (3) 

efficiency upon the driving beam parameters as well as upon the internal structure of the atoms, 

and also (4) consider the dual role of the driving beam E1ʹ′ . 

 

III.5.A. Linewidth variations 
 

Towards the center of the Doppler-broadened linewidth, as the condition Δ1 = 0 is approached, 

power-related effects, such as power broadening and AT splitting of the atomic energy levels, 

become dominant15. These effects are also revealed in the broadening and splitting of the FWM 

signal in the zero-detuned region. For large powers of E1 and E1ʹ′ , when Δ1 = 0 is satisfied, the 

signal occurs at the AT-satellites20 of the energy levels. There is a decrease in signal intensity in 

the spectral region occurring between the power-broadened AT satellites; that is, the signal 

maximum is displaced around Δ1+Δ2 = 0. When |Δ1| >> 0 as in the edges of the Doppler-

broadened absorption linewidth and outside it, the EIT evolves into a two-photon-absorption 

(TPA)17 having a narrow linewidth since power broadening is substantially reduced.  Here the 

signal occurs within the linewidth of the TPA resonance and the signal maxima occurs at Δ1+Δ2 

= 0. In particular, the power- broadening or splitting of the intermediate level is minimal in this 

two-photon resonant condition, and the linewidth of the FWM signal is mainly limited by the  
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(b)	  
 

 

 

Fig. 3. TPR FWM signals corresponding to different values of Δ1, separated 

by100 MHz each. The energy levels driven are |g> = 5S1/2, hf =3,  |i> = 5P3/2 and 

|e> = 5D3/2. At each value of the frequency detuning, the FWM signal is a 

convolution of a sharp, strong peak and a broad, weak peak, the maximum 

intensities of which are denoted by a blue square and a red dot, respectively. Each 

of the two signal peak trends are connected by lines to aid the eye. The two peak 
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values corresponding to a given convolution at a given frequency detuning are 

connected by a solid black line. The horizontal (vertical) dotted lines identify the 

intensities (intermediate frequency detunings) of the maximas and minimas of the 

signal convolution’s two peaks. (a) P1 = 7.4 mW, P1ʹ′ = 11.6 mW, P2 = 38 mW (b) 

P1 = 3 mW, P1ʹ′ = 4 mW, P2 = 55 mW. Note the change of scale in the intensity 

axes. 

 

linewidth of the upper-excited state. At intermediate detunings |Δ1| > 0, the probe beam 

experiences a convolution of EIT and TPA effects, and the generated FWM signal also displays 

the contributions due to these two mechanisms. Here, both direct two-photon transition from |g> 

to |e>, as well as stepwise transitions via |i> exist; the direct two-photon transition’s linewidth is 

narrower as it depends on the relatively long-lived 5D state (natural linewidth 0.97 MHz), 

whereas the stepwise transition is broader because it also depends on the 5P state (natural 

linewidth 6 MHz). 

 

III.5.B. Line shape asymmetries 
 

In order to understand the asymmetries in the spectral line-shape of the generated FWM 

radiation, one needs to consider the multi-level structure of the atoms as shown in Fig. 1 (c-f). 

For different values of ω2, different hf levels of the intermediate state are closest to satisfy TPR 

and contribute to the FWM process most effectively. The hf levels of the upper excited state are 

sufficiently close and lie within the power-broadened linewidth of the intermediate level, and all 

contribute to the TPR, whereas the intermediate state hf levels are further apart and dispersed 
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within the Doppler-broadened absorption window. The hf levels have varying multiplicities and 

disparate transition strengths; it is these spectroscopic characteristics of the atomic energy levels 

that contribute to the sharp asymmetries in the signal line-shape. 

The TPR effects involving fʹ′ = 4 has the biggest contribution to the convoluted FWM line-

shape, due to its large multiplicity and larger Clebsch-Gordon coefficients. More importantly, as 

shown in Fig. 1, the FWM pathways involving fʹ′ = 4 have the fewest decay channels. This is 

why the signal generation (Fig. 2 and Fig. 3) is strongest in the blue-detuned region of the 

Doppler width, as this is where the fʹ′ = 4 level lies. This is also why the sharp peak lies towards 

the right edge of each signal convolution for the chosen spin levels in this configuration. The 

effects of the branching ratios of the energy levels in the ladder-type system have been analyzed 

by Noh and Moon109, showing signal convolutions due to the presence of closed and open 

subsystems. 

To make these facts more evident, we have also generated signals by using other spin-levels 

having different constraints. First, in Fig. 4 (a-b), we change |g> to the other ground state hf level 

2, while using the same |i> and |e> fine structures as used for Fig. 3. Here, we observe that the 

position of the sharp peak within the signal convolution occurs at the red-detuned side. Also, the 

position within the Doppler width where signal intensity is at a maximum, is in the red-detuned 

region. These changes occur because here, it is the transition f = 2 → fʹ′ = 1 that is closed. Next, 

we use the same |g> and |i> as that used in Fig. 3, but change the upper excited state |e> to the 

other fine structure of 5D, i.e. 5D5/2 (Fig. 4 (c-d)). Here, similar to Fig. 3, the maximum signal 

intensity occurs in the blue-detuned region of the Doppler-width since the transition f = 3 → fʹ′ = 

4 is closed. However, in this case, the maximum peak within the signal convolution occurs in the 

red-detuned side. This change occurs because the energies of the hf levels in 5D5/2 are inverted; 
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that is, in this fine structure, the hf levels with higher values have lower energies110. This causes 

the contribution to the FWM signal from the higher fʹ′ʹ′ levels, which have allowed transitions 

from fʹ′ = 4 of |i> as well as larger Zeeman multiplicities, to shift to the lower-energy side of the 

signal convolution. This is in contrast to Fig. 3, where |e> corresponded to 5D3/2 in which the hf 

levels are not inverted. The stronger FWM signal intensity observed when |e> is 5D5/2 may be 

attributed to it having fewer decay channels; while 5D3/2 can decay to both J = 3/2 and 1/2 of the 

5P and 6P levels, the 5D5/2 fine structure can decay only to J = 3/2, due to selection rules. From 

Fig. 3 and 4, it is clear that the FWM efficiency is largest at frequency detunings where the 

single-resonance and double-resonance optical pumping effects are the weakest. 

III.5.C. Variations in the FWM signal efficiency 
 

At high beam powers for the lower transitions, saturation effects begin to occur, reducing the 

FWM efficiency. The associated power-broadening effects also contribute to the reduction of the 

maximum signal intensity. The minima in the signal intensity towards the red-detuned region 

deserves some attention. The decrease is the largest when the powers of E1 and E1ʹ′  are large. For 

instance, as shown in Fig. 3a for the conditions of P1 = 7.4 mW, P1ʹ′ = 11.6 mW, P2 = 38 mW, the 

percent decrease is 1030% (480%) for the strong (weak) peak of the FWM signal convolution. 

When the beam powers are changed to P1 = 3 mW and P1ʹ′ = 4 mW, the percent decrease is only 

230% (180%) for the strong (weak) peak (Fig. 3b). These values remained constant as P2 was 

changed from 20 mW to 60 mW. We note that the hf levels 2 and 3 of the intermediate state lie 

in the red detuned region of the Doppler-broadened linewidth, as can be observed from 

saturation absorbtion spectroscopy. At high powers of E1 and E1ʹ′ , these hf levels are power-  
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Fig. 4. (The meanings of the dots, squares and lines in (b) and (d) are the same as 

in Fig. 3.) The beam powers are P1 = 7.4 mW, P1ʹ′ = 11.6 mW, P2 = 38 mW. (a) 

and (b) The ground state used is hf = 2 of 85Rb, 5S1/2, with |i> = 5P3/2 and |e> = 

5D3/2. (c) and (d) The ground state hf = 3 of 85Rb, 5S1/2 is used with |i> = 5P3/2, 

but with |e> = 5D5/2 and ω2 = 775.978 nm, where the hf levels are inverted. Note 

the change of scale in the intensity axes. In (a) and (c), the FWM transitions with 

the least number of decay channels are shown. 
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broadened and there is a significant overlap between them. When Δ1 lies in this overlapped 

region, the contributions of these hf levels to the total two-photon transition amplitude becomes 

comparable in strength but with opposite signs. The sign of the individual phases has 

contributions from the signs of the dispersions due to the opposite detunings. Such destructive 

interference due to multiple intermediate states111-113 causes the total transition amplitude to 

decrease, suppressing the FWM efficiency. Moreover, in the high intensity regime of the ground-

state coupling beams driving to f’ = 2 or 3, the atomic population gets optically pumped out of 

the system to the f = 2 ground state as shown in Fig. 1 (c-d), leading to reduced signal 

generation. 

III.5.D. Dual role of the driving beam E1ʹ′  
 

Finally, we note the dual role of the coupling beam E1ʹ′  in this configuration. As a stimulant to 

the FWM process, it gains a photon whenever a photon is generated in the FWM signal, as 

shown in Fig. 1a. However, because it has access to the ground state population, E1ʹ′  also 

contributes to the depletion of the ground state population into incoherent channels, which 

becomes especially important at large beam powers. Also, because both E1 and E1ʹ′  have  

access to the ground state population, the coherences induced by these two beams between |g> 

and |i> are both significant. A mismatch between the strengths of these two coherences is 

detrimental to the FWM efficiency43,46. As a result, increasing P1ʹ′ indefinitely does not help the 

FWM efficiency. In fact, increasing the strength of the coherence due to E1ʹ′  beyond the 
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Fig. 6. Dependence of the FWM signal strength on the power P1ʹ′ at three different 

values of Δ1 within the Doppler-broadened D2 absorption linewidth. The powers 

of the other two beams are held fixed at P1 = 3 mW and P2 = 22 mW. The three 

chosen values of Δ1, also shown in the inset, correspond to where (i) signal 

maxima occurs at the blue detuned region (blue dots), (ii) signal maxima occurs at 

the red detuned region (red triangles), and (iii) signal minima occurs towards the 

center-red detuned region (black squares). The EIT peak visible in the inset 

corresponds to case (iii). The three signal trends are connected by lines to aid the 

eye. 
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coherence due to E1 begins to extinguish the FWM intensity. The rates of initial growth and 

subsequent extinction of the FWM radiation with increasing P1ʹ′ is different at different values of 

Δ1, and is shown in Fig. 6. This behavior distinguishes this FWM process from the traditional 

cascade FWM configuration in which the signal is generated in the lower transition with two 

coupling beams in the upper transition and one probe beam in the lower transition. There, as the 

coupling beam intensity is increased, the FWM intensity grows until it reaches a maximum value 

where it remains constant, and signal extinction does not occur. 

III.5. Summary 
 

The vacuum mode between the upper excited states in a ladder-type configuration is 

parametrically amplified using atomic coherence mechanisms to enhance the third-order 

nonlinear response, and studied in the frequency domain. The generated radiation is background 

free, and its Doppler-free spectral waveform contains high-resolution information about the 

spectroscopic properties of the atomic energy levels. The line-shape, linewidth and intensity of 

the generated FWM radiation are determined by various factors such as the beam powers and 

associated power-broadening effects, the multilevel nature of the atoms and selection rules, the 

frequency detunings, the destructive interference effects due to contributions by multiple 

intermediate states, and the dual role of one of the coupling beams. The new radiation could find 

use in FWM-based applications, and the method can be used to improve procedures using two-

photon fluorescence that typically have weak signals and large background noises. 
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IV. Interferometric control of spectral profiles of parametrically-amplified waves  

 

IV.1. Introduction 
 

In the previous two chapters, we demonstrated the spectral features of EIT as well as FWM 

radiation in the ladder-type configuration. It was seen that the spectral waveforms of the FWM 

signals have asymmetries due to the disparate transition amplitudes, multiplicities and decay 

channels of the nearly-overlapping energy levels. Effects related to the powers of the driving 

fields, such as power–broadening and Autler-Townes splitting of the energy levels, also have 

significant contributions to the generated signal waveforms. As a reminder, some examples of 

such asymmetries relevant for this chapter are shown in Fig. 1. In applications utilizing the full 

spectral bandwidth of these signals, for instance in multimode (multiplexed) communication or 

imaging, it will be advantageous to be able to control the spectral profiles externally, instead of 

relying solely on the waveform imparted by the atomic parameters. 

In this chapter, we demonstrate a new method that allows external all-optical control over 

the waveforms of such EIT-assisted parametrically-amplified radiations. The method lies in 

modulating the phase of the generated signal across its bandwidth.  The phase modulation can be 

measured by mixing the signal with a degenerate local oscillator (LO). The intensity profile of 

the resultant waveform can be tailored by controlling the frequency detunings and the rate of 

phase evolution between the driving beams. As will be demonstrated below, such external 

control paves the way for phenomena such as linewidth-narrowing, line shape symmetrization 

and spectral bandwidth-switching. We envisage that such control will be necessary in future 

applications that implement FWM radiations, such as optical communication and information 

processing. EIT-assisted FWM processes have already demonstrated to be efficient sources for 
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squeezed radiation and correlated photons, with demonstrated capacities for tunable 

entanglement, photonic memory and spatially multimode quantum applications. Such multimode 

applications can also be extended to the frequency domain, utilizing the spectral bandwidths of 

the signals. Thus it would be advantageous to have external all-optical control over their spectral 

waveforms. The phase sensitivity of the background-free FWM signal will also be an avenue for 

metrology and other interferometric applications. In these applications, the quantum properties 

inherent in the radiations that are parametrically amplified from the vacuum mode might make 

using them advantageous over using traditional radiation sources. 

 

Fig. 1. Examples of FWM spectra at various intermediate frequencies in two ladder-type 

systems. Line shape asymmetries arise due to the different multiplicities and spectroscopic 

natures of the hyperfine levels that are involved while driving the three fine structures.  



65 

	  

IV.2. Experimental method 
	  
The method utilizes the sensitivity of the FWM signal’s phase to the driving beam’s phases in 

the closed atomic contour being driven in the parametric amplification process. By making the 

phase difference between the driving beams evolve as their frequency is scanned, we impart the 

phase evolution to the generated signal across its bandwidth. For the waveform control being 

considered here, the phase difference between the driving beams has to evolve in the frequency 

domain, and a time-domain phase evolution will not suffice.  

The signal is obtained by a FWM process that parametrically amplifies the vacuum mode 

between the two excited states in three-level ladder-type configuration in rubidium vapor (Fig. 

1). The atomic system driven in this experiment is similar to the one in Chapter 3, but several 

modifications are made to the beams and to the detection method: the beam polarizations are 

altered so that the frequency-degenerate beams now have linear polarizations lying in the same 

plane for interference; phase control has been added to a beam pair in a gross- and fine-tunable 

unbalanced arm Mach-Zehnder configuration; and the detection method now involves a local 

oscillator mixed with the FWM signal.  

The two beams 𝐄𝟏 = A!e!!(!!!!𝐤𝟏!!!!) and 𝐄𝟏′ = A!′e!!(!!!!𝐤𝟏
! !!!!!), generated from 

the same diode laser DL1 (wavelength λ1 = 2π/|k1| = 2π/|k1ʹ′ | = 780 nm, frequency ω1 = 2πν1), 

cross at a small angle (θ = 0.4°) inside the magnetically shielded vapor cell at a temperature of 

60 °C (Fig. 1b). Here, Ai and |ki| =2π/λi are the amplitude and wave vector or the field Ei, 

respectively. A function generator scans ν1 across the Doppler-broadened width of the lower 

transition of the cascade configuration at a rate of R ≈ 1GHz / ms, resulting in a continuous-wave 

(cw)-output (linewidth 1 MHz) with a slowly varying frequency Δν1(t) = Rt. The path length 

difference L = L1ʹ′– L1, where L1ʹ′ (L1) is the distance E1ʹ′  (E1) traverses between DL1 and the  
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Fig. 2. Atomic configuration (inset) and experimental setup. FG = function generator, LD1 = 

laser diode 1, (P)BS = (polarization) beam splitter cube, HWP = half-wave-plate, PD1 = 

photodiode 1 (detects the transmitted E1), APD = avalanche photodiode (detects Ef + ELO). The 

population density wave is discussed in the text. 

 

beam-crossing region, can be altered with nanometer precision using a translation stage. A strong 

pumping beam 𝐄𝟐 = A!e!!(!!!!𝐤𝟐!!!!) is generated from a Ti: Sapphire laser source 

(wavelength λ2= 2π/|k2| = 775.978 nm, frequency ω2 = 2πν2) and aligned to overlap and counter-

propagate with E1 inside the vapor cell. The cw-beam E2 has a fixed wavelength (linewidth 0.75 

MHz) corresponding to the upper transition of the ladder-type configuration. The Gaussian beam 

areas are approximately 1.1 sq. mm. (E1 and E1ʹ′) and 1.45 sq. mm. (E2) in the interaction region. 

E1 and E1ʹ′  have the same linear polarization, which is orthogonal to the polarization of E2. The 
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new radiation generated in the FWM process, 𝐄𝐟 = A!e!!(!!!!𝐤𝐟!!!!) ∝ χ ! 𝐄𝟏! ∗𝐄𝟐𝐄𝟏 , has 

frequency ωf  = ω2 + ω1  – ω1ʹ′= ω2, wave vector kf = k2 + k1 – k1ʹ′  = – k1ʹ′  , phase Φf  = Φ2 + Φ1  

– Φ1ʹ′, and polarization similar to that of E2. The third-order of the nonlinear susceptibility, χ ! , 

comprises of all the detuning factors and dipole moment strengths. Depending on the two-photon 

detuning, the FWM gain has two different scattering mechanisms, which we will describe first 

before discussing the phase-modulation process. 

When the two counter-propagating beams E1 and E2 satisfy the two-photon resonance 

(TPR) condition between the ground state and the upper-excited state of the cascade 

configuration, an EIT coherence is established whose linewidth is basically Doppler-free even 

though the absorption width of the lower transition is Doppler-broadened. At EIT coherence, 

absorption of the fields is suppressed even with all the atoms in the ground state, while the 

nonlinearity that gives rise to FWM is enhanced. E1ʹ′  induces stimulated emission in the phase-

matched direction kf, resulting in the FWM signal Ef1. The waveform of this signal is governed 

not only by the TPR features including power-broadening and Autler-Townes splitting, but also 

by the various closely lying hf sublevels of the excited state that lie within the EIT linewidth. 

Since the hf levels have different multiplicities and transition strengths, their contributions to the 

generated signal vary in strength, inducing asymmetries in the generated waveform (Fig. 1 and 

6(a)). The powers of the driving beams P1, P1ʹ′ and P2 are optimized to maximize Ef1’s peak 

strength. Depending on the frequency detunings, these power values can be quite different. 

The two beams E1 and E1ʹ′  form a spatial intensity grating with a spatial period of Λ = 

λ1/sin(θ/2). Simultaneously scanning the frequencies of the near-infrared (~ 384 THz) beams by 

a few gigahertz has a negligible effect on Λ. Outside the EIT linewidth, the intensity grating will 

result in a population-density grating114 which, as the frequency is scanned, is hosted by different 



68 

	  

atomic velocity classes within the Doppler-broadened absorption bandwidth.  Part of the upper 

coupling beam scatters off this spatial grating in the phase-matched direction. Since TPR is not 

satisfied in this case, the scattering is very inefficient and a local oscillator (LO) is needed to 

observe this scattered field. To distinguish it from the TPR-enhanced radiation Ef1, in which case 

all the atoms are in the ground state and no population-density grating is formed but the signal is 

enhanced due to EIT coherence, we call this signal Ef2. 

 

 

 

 

Fig. 3. Pictorial representation of the static spatial intensity grating due to the two optical 

fields, and the values of the physical parameters in this experiment. 
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Fig. 4. Population density grating that occurs when the optical intensity grating is formed 

in a volume of resonant atoms, and the grating-scattered FWM signal. 

 

 In order to add phase modulation to the spectral waveform of the FWM signal, we make 

the phase difference between the grating beams E1ʹ′  and E1, ΔΦ1, evolve as their frequency ν1 is 

swept. We achieve this control by setting a Mach-Zehnder interferometer with unbalanced arms 

for the frequency-swept beams, so that ΔΦ1 = 2πc-1 (LΔν1). The spectral period in which ΔΦ1 

evolves by 2π is Γ(Hz) = cL-1. This phase information ΔΦ1(ν1) propagates to the FWM signal 

phase, yielding Φf(ν1) = Φ2 + Φ1 – Φ1ʹ′=  Φ2 - ΔΦ1(ν1). The modulated phase of the scattered 

wave Ef2 is measured by homodyning with a LO field 𝐄𝐋𝐎 = A!"e!!(!!!!𝐤𝐟!!!!"), which is 

obtained by attenuating the unscattered field E2 (Fig. 2b). We note that while Φf(ν1) evolves 

linearly with ν1, the phase difference between E2 and the derived ELO, Φ0 = Φ2 - ΦLO, does not 

evolve and is a constant across ν1. The resulting signal intensity I ∝ |Ef + ELO|2 = A!! + A!"! +
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2A!A!"cos  (Φ! − ΔΦ!(ν!)) thus contains fringes as ν1 is scanned across the signal’s bandwidth, 

the properties of which can be controlled via L and the frequency detunings. Depending on the 

frequency detunings, the modulations are seen in Ef = Ef1 or Ef = Ef2. 

 In the grating picture, a phase-evolution between E1ʹ′  and E1 results in a moving grating, 

which in turn implies the conversion of the static population-density grating into a population-

density wave (PDW). The PDW has a speed v = ΛΩ = (λ1/sin(θ/2))( c-1RL), with wavelength 

Λ=λ1/sin(θ/2) and frequency Ω = c-1RL. The scattered FWM signal, which initially had a 

frequency ω! when the grating was static, is now frequency-shifted by Ω and the new frequency 

is ω!  ± Ω, where the sign depends on the signs of R and L. Thus, when mixing this signal with a 

LO at frequency ω!, a beat-signal is observed at frequency Ω. Using the relation Δν1(t) = Rt, we 

see that in the time period Ω-1, the frequency has scanned the spectral width  Δν1(Ω-1) = RΩ-1 = 

R (c-1RL)-1 = cL-1. This value is precisely the spectral period Γ(Hz) = cL-1 of the precious 

paragraph, thus showing the equivalence of this time-domain heterodyne picture with that 

spectral-domain homodyne picture. 

 

Fig. 5. Pictorial description of the population density wave (PDW), and the equations for the 

various parameters. 
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IV.3. Experimental results 
 

The top trace in Fig. 6 (measured by the APD) shows the spectral regions supporting Ef1 (Fig. 

6a) and Ef2 (Fig. 6b) as ν1 is scanned across the Doppler-broadened bandwidth with L = 3.2 m. 

The input beam powers are P1= 2.8 mW, P1ʹ′= 9.6 mW and P2 = 25 mW. The transmission of E1 

after passing through the vapor cell, as measured by PD1, is also shown for reference (lower blue 

trace), showing the TPR’s spectral position. It is clear that while Ef1 is limited within the 

linewidth of the Doppler-free TPR, Ef2 is hosted by the entire Doppler-broadened absorption 

bandwidth with an amplitude that becomes weaker with increasing separation from the TPR. The 

peaks repeat as ν1 scans a frequency interval of Γ = cL-1 = 0.094 GHz, which is the spectral  

 

Fig. 6. The top and bottom (blue) traces correspond to measurements by the APD and PD1, 

respectively. Here, L=3.2 m (Γ=0.094GHz). (a) At TPR, a Doppler-free FWM signal Ef1 is 

observed. (b) Outside TPR, Ef2 is hosted by the Doppler-broadened bandwidth. 
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period of ΔΦ1. (Equivalently, in the time domain, the beat signal has a temporal period of Ω-1 = 

cR-1L-1 = 0.12 ms, resulting from the frequency-shift imparted by the PDW with Λ = 220 µm, Ω 

= 8.2 kHz, and v = 1.64 m/s).  

We can cause a spectral translation of the Ef peaks by fine-tuning the relative phase offset 

between the ground state beams; for instance, changing L by λ1/2 causes a π phase-shift in ΔΦ1, 

translating the peaks by Γ/2. A π phase-shift in ΔΦ1 can also be incurred by a half-wave retarder 

placed in the path of E1 or E1ʹ′ . Such a phase-induced shift of signal peaks gives rise to different 

phenomena for different values of Γ, as will be shown below. 

 

IV.3.A. Linewidth narrowing 
  

As a first example, we consider a case where a spectral translation of the phase alters the 

linewidth of the resultant signal, as shown in Fig. 7. Here, Γ has been increased by reducing L to 

1.73 m (from 3.2m as used in Fig. 6). The Doppler-free EIT window in the Doppler-broadened 

absorption profile of E1 (lower trace) shows the spectral position of the TPR that is used for Ef1 

generation in both the APD traces (a) and (b). All the other experimental parameters, including 

the beam powers (P1 = 8 mW, P1ʹ′ = 8.5 mW and P2 = 46.5 mW), frequency detunings, cell 

temperature and beam geometry are the same in traces (a) and (b); the only difference is a π-

phase shift of ΔΦ1, which is achieved by a change in L by 400 nm ≈ λ1/2. In this particular 

example, a spectral translation of ΔΦ1 by Γ/2 alters the spectral positions of the constructive and 

destructive interferences, causing the linewidth of Ef1 in (a) to decrease by a factor of 2.5 in (b). 

The result can be compared to intra-cavity linewidth-narrowing processes 117, 118, except here, the 

narrowing is achieved in a cavity-less configuration.  
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Fig. 7. The top and bottom (blue) traces correspond to measurements by the APD and PD1, 

respectively. Here, L=1.73m (Γ=0.173 GHz). A π-phase shift of ΔΦ1 causes Φf  to spectrally 

translate, causing the linewidth of Ef1 in (a) to decrease, in this particular example, by a factor of 

2.5 in (b).  

 

IV.3.B. Line shape symmetrization 
 

As a second example, we illustrate the phenomena of line shape symmetrization (Fig. 8). When 

the TPR is placed at the blue-detuned edge of the Doppler-broadened absorption profile, the 

signal Ef1 is highly asymmetric (Fig. 8((i))). The asymmetry arises due to the closely-lying 
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hyperfine levels in the 5D5/2 state partaking in the FWM process, each of which have different 

multiplicities and transition strength amplitudes. The stronger gain at smaller detuning occurs 

because of the inversion of the hyperfine levels in this upper excited state. Here, controlling the 

spectral phase offset of Ef with respect to ELO can be used to symmetrize the resultant lineshape 

(Fig. 8((ii)). The path length difference has been reduced to L = 0.1 m, where Γ is comparable to 

the Doppler-broadened absorption bandwidth.  

 

 

Fig. 8. The top and bottom (blue) traces correspond to measurements by the APD and PD1, 

respectively. Here, L=0.1 m (Γ=3 GHz). The TPR is placed at the blue-detuned edge of the 

Doppler-broadened absorption profile. Here, a π-phase shift of ΔΦ1 causes the highly 

asymmetric Ef1 signal in (i) to be symmetric in (ii).  
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IV.3.C. Spectral bandwidth switching 
 

At certain frequency detunings, this phenomenon becomes even more drastic. In Fig. 9 the TPR 

is placed at the center of the Doppler-broadened absorption profile (lower trace), as is shown by 

the EIT window’s spectral position. The signal linewidth is much broader here due to power-

broadening of the intermediate energy level. Here, we observe a phase-induced switching of the 

resultant signal from one spectral bandwidth (i) to another (ii). A π-phase shift in ΔΦ1 shifts the 

position of the signal centroid in the frequency domain by 160 MHz. Such a high-resolution 

phase-sensitive optical switch integrating χ(3) nonlinearities can be useful in optical and quantum 

communication and computation, and complements the sensitive switching of intensity from one 

spatial channel to another as was demonstrated in Ref. 115. The novelty of the current method is 

that the switching is achieved in the spectral domain, and without any alterations to the input 

beam intensities, directions or frequency detunings; the visibility contrast of nearly 1 is achieved 

solely via relative-phase control between the driving beams. 
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Fig. 9. The top and bottom (blue) traces correspond to measurements by the APD and PD1, 

respectively. Here, L=0.1 m (Γ=3 GHz). The TPR is placed at the center of the Doppler-

broadened absorption profile. Here, a π-phase shift in ΔΦ1 shifts the position of the signal 

centroid in (i) by 160 MHz in (ii). 

 

IV.4. Conclusions and outlook 
 

In summary, we have experimentally demonstrated an all-optical phase-modulation of a 

parametrically-amplified waveform across its bandwidth. The interference between the FWM 

field and a degenerate LO enables a shaping of the resultant signal waveform, allowing for tasks 
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such as line shape symmetrization, linewidth-narrowing and bandwidth switching. Instead of 

pre-defining the phase to control the waveforms, we can also use the system to sense motion by 

incorporating target mirrors in the paths of the beams E1 and E1ʹ′ . Slight motions can then be 

measured from the drastic changes in the interference pattern. Such motion sensitivity, and the 

fact that FWM is an ideal source of squeezed radiation reducing quantum noise in interferometric 

measurements116, could make this method a powerful tool in metrological applications. One 

feature we have not mentioned in this thesis is that the spectral phase evolution is also very 

sensitive to the velocity of the translational stage, if it is moving, due to additional phase 

evolution. Depending on the sign of the velocity, the fringe density can either increase or 

decrease. Thus this method can be used to measure not only changes in path-length, but also the 

velocity of moving mirrors. Correspodingly, a controlled motion of the mirror can be used to 

change the fringe density by large amounts much quicker than it will be possible by varying L. 

This will be useful if the information content is to be encoded in the number of fringes that 

appear within the FWM signal’s total gain bandwidth. 
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V. Spatial and temporal interferences between FWM and SWM 

 

V.1. Introduction 
 

In the previous two chapters, we discussed FWM in a ladder-type atomic system. In this chapter, 

we extend the study of multi-wave mixing processes in multi-level atoms to higher order 

nonlinearities. Specifically, we will use a four-level inverted-Y atomic system to drive a six-

wave mixing (SWM) process, which has its origins in the fifth order term of the nonlinear 

polarization that is coupled to χ(5). Here also, dark-state resonance will be used to enhance the 

multi-wave mixing process, thus allowing the measurement of the SWM signal using weak mW-

level continuous-wave driving beams. Furthermore, in the same four-level atomic system, we 

will show the coexistence of this SWM process with another FWM process. By carefully 

aligning the beam geometries, we can choose to phase-match these two nonlinear processes so 

that the two atom-radiated signals occupy the same spatial mode, and can be measured in the 

same photodiode. Our experimental design also allows us to control the relative phase and 

amplitude between these two signals, and in fact we can even make the SWM signal stronger 

than the FWM signal. By making the two signals equal in strength and varying the relative phase 

between them, we can measure their interference via the resulting output intensity. Through the 

variation in visibility of the intensity in the spatial and temporal domains, we verified the 

coherence between these processes arising from different orders of the atomic nonlinearity. The 

temporal evolution of the fringes also allowed us to measure the resonant frequency of the 5D5/2-

5P3/2 transition in 85Rb, the host atom. 

 In this chapter, first, we will describe the experimental method. We will describe the 

phase-matching geometries that allow us to control the output modes of the two signals and 
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make them overlapping. We will also carefully describe how we can control the relative phase 

and relative amplitude between these two signals, and discuss the detection scheme for 

measuring temporal and spatial interferences. We will then present the experimental results. We 

will show the spatial-temporal interferograms, and the use of the temporal phase evolution to 

measure the resonant frequency of the 5D5/2 -5P3/2 in 85Rb. 

We note that this chapter deals with a single-phase measurement process. We later 

extended this system to allow the coexisting and phase-coherent nonlinearities to measure two 

phases simultaneously, which will be discussed in the next chapter. 

 

V.2. Experimental setup 
 

V.2.A. Atomic system and phase-matching beam geometry 
 

Our atomic system and experimental arrangement are shown in Fig. 1. The atomic system 

consists of a four-level inverted-Y type configuration in 85Rb atoms, comprising of the states 

5S1/2 F = 2 (|𝑎 ), 5S1/2 F = 3 (|𝑑 ), 5P3/2 (|𝑏  ) and 5D5/2 (|𝑐 ). The atomic vapor cell, which is 5 

cm long, is magnetically shielded and heated to 60° C. We coherently drive the third- and fifth-

order nonlinearities in this atomic medium using 5 external driving beams E1, E2, E2ʹ′ , E3 and 

E3ʹ′ , where 𝐄𝐢 = A!e!! !!!!𝐤𝐢!!!! , Ai are the field amplitudes, ωi are the frequencies and ki are 

the wavevectors. The pair of driving beams E2, E2ʹ′  originates from the same narrow-linewidth 

cw diode laser LS2, and are thus phase-coherent. Similarly, the pair of driving beams E3, E3ʹ′  

originates from the same narrow-linewidth cw Ti-Sapphire laser LS3, and are thus phase-

coherent. The probe beam E1 originates from yet another narrow-linewidth cw diode laser LS1.  
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The beam frequencies ω1, ω2 and ω3 are tuned to the atomic transition frequencies ωba, 

ωcb and ωbd with frequency detunings Δω1 = ω1 - ωba, Δω2 = ω2 - ωcb and Δω3 = ω3 – ωbd, 

respectively, where ωij = (Ej – Ei)/ћ with Ei the energy of the atomic level |𝑖 . ω1 and ω2 are held 

fixed, while ω1 is swept across the Doppler-broadened spectral bandwidth of the |𝑏   → |𝑎  

transition. Once the nonlinearities have been optimized, ω1 is also changed from scanning mode 

to a fixed mode to study spatial and temporal phase coherence of the signal fields. The weak 

probe beam E1, travelling along the z direction, counter-propagates with the rest of the driving 

beams at small angles. Beam E2 travels along the –z direction. At any plane transverse to the 

probe beam’s direction, the driving beams pass through the four corners of a square with E3' 

furthest to E2. Each side of the square subtends an angle of 0.3° at the center of the vapor cell, 

where all beams intersect. The utility of this “square-box” configuration will be discussed more 

later. At the intersection region, the powers of the Gaussian beams E1, E2, E2', E3, E3' are 

approximately 3 mW, 40 mW, 4 mW, 67 mW, 67 mW respectively. A computer-controlled 

nanometer-precision translational stage is placed in the path of E2' for phase modulation. 

 

 

 

 

 

 

Fig. 1(a) 
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Fig. 1(b) 

 

 

 

 

 

 

 

Fig. 1(c) 

Fig. 1. (a) Atomic configuration and (b) top-view of the complete experimental setup. (c) 

Three-dimensional beam arrangement in the interaction region inside the vapor cell. 
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 Due to this counter-propagating beam geometry, and the condition Ω1 << Ω2, the 

coupling beam E2 opens a Doppler-free EIT window for the probe beam E1 in the ladder-type 

subsystem (TPR frequency = ω1 + ω2). However, in the lambda-type subsystem (TPR frequency 

= ω1 – ω3), the counter-propagating geometry of the beam E3 does not satisfy the phase-matching 

condition necessary for a Doppler-free EIT window for E1. The single ladder-type EIT window 

for E1 due to E2 is used to enhance two nonlinear processes: one FWM, and one SWM. 

The FWM signal is generated by mixing the field E2' with the ladder-type EIT coherence 

in the three-level sub-system as shown in Fig. 2(a), giving rise to the signal field 

 

𝑬𝒇 = A!e!! !!!!𝐤𝐟!!!! ∝ 𝜒(!)(𝑬𝟐′)∗𝑬𝟐𝑬𝟏. 

 

Here, the third-order of the nonlinear susceptibility, χ(3), is related to the density matrix element 

𝜌!"(!) for the perturbative chain 𝜌!!(!)   
!!   𝜌!"(!)   

!!   𝜌!"(!)
!!!!   𝜌!"(!)  . It comprises of the 

frequency detuning factors, relaxation rates, dipole moment strengths, atomic density, and beam 

Rabi frequencies: 

 

𝜒(!) =
−𝑖𝜇!"!𝜇!"!𝑁

𝜀!ℏ!𝑑!𝑑! 𝑑! +
Ω! + Ω!! !

𝑑!

    . 

 

𝜇!" is the electric dipole moment of the transition  |𝑖   → |𝑗 , N is the atomic density, 𝑑! = Γ!" +

𝑖∆!, 𝑑! = Γ!" + 𝑖(∆! + ∆!) and 𝑑! = Γ!" + 𝑖(∆! − ∆!), where Γ!" is the relaxation rate for the 

|𝑖   → |𝑗  transition. Note that the dressing effects due to the presence of the strong fields E3 and 

E3' are also included in the susceptibility. The resulting FWM signal field Ef has wave vector kf 
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= k1 + k2 – k2' and frequency ωf = ω1 + ω2 – ω2' = ω1, and is measured at the avalanche photo-

diode APD1  

In generating the SWM signal, which utilizes the same EIT window supporting the FWM 

process, the field E2' is blocked (Fig. 2(b)). Instead, the field E2 is used twice, and the SWM 

pathway is completed by using E3 and E3' to drive transitions between the energy levels |b> and 

|d>.  The SWM signal field is  

 

𝑬𝒔 = A!e!! !!!!𝐤𝐬!!!! ∝ 𝜒(!)𝑬𝟑 𝑬𝟑! ∗(𝑬𝟐)∗𝑬𝟐𝑬𝒑 

 

where the fifth-order of the susptibility, χ(5), is related to the density matrix element 𝜌!"(!) for 

the perturbative chain 𝜌!!(!)   
!!   𝜌!"(!)   

!!   𝜌!"(!)
!!!   𝜌!"(!)   

!!!!   𝜌!"(!)   
!!   𝜌!"

(!)
, or the 

identical 𝜌!!(!)   
!!   𝜌!"(!)   

!!!!   𝜌!"(!)
!!   𝜌!"(!)   

!!   𝜌!"(!)   
!!!   𝜌!"

(!)
: 

 

𝜒(!) =
2𝑖𝜇!"!𝜇!"!𝜇!"!𝑁
𝜀!ℏ!𝑑!

!𝑑!𝑑!
 

 

The resulting SWM signal field Ef has wave vector ks = k1 + k2 – k2 + k3 – k3' = k1 + k3 – k3' 

and frequency ωs = ω1 + ω2 – ω2 + ω3 – ω3' = ω1, and is measured at APD2. 

At the line-center of the Doppler- broadened transition from |a> to |b>, due to a large 

ground-state population, only these EIT-supported signals, and the weak resonant probe beam 

E1, experience negligible absorption, and all other signal fields have a vanishing transmission. 

For instance, in Fig. 2(b), there is another SWM channel corresponding to a blocked E2 and 

unblocked  E2' used twice. However, because Ω2' <<  Ω2, this SWM is negligible. We limit our 
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treatment only to the two dominant signal fields which spectrally coexist at the line center, 

denoted by Ec = Ef + Es.  

 

 

 

 

 

 

 

 

 

 

(a)        (b)   

 

 

Fig. 2. The two sub-systems of the parent atomic configuration that are used to generate 

the (a) FWM signal and the (b) SWM signal, in the phase-matching directions that are discussed 

in the text. Each subsystem is attained when selected beams are blocked from the parent 

configuration, as shown by the thick X-marks. When none of the beams are blocked, both the 

sub-systems are driven simultaneously and we have coexisting FWM and SWM radiation. 
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We will now explain the rational for the chosen experimental geometry, and the various 

“knobs” that we have in this setup for controlling the relative direction, amplitude and phase 

between the two signal fields. 

 

V.2.B. Controlling the relative direction between Es and Ef 
 

From our arrangement, it is clear that the generated FWM and SWM signals have the same 

frequency, ωf = ωs = ω1. Without the “square-box” geometry, however, their directions are not 

necessarily identical. Let 𝜃! be the angle between beams E2 and E2ʹ′ , whose wavelengths are λ2 = 

775.98 nm. Similarly, let 𝜃! be the angle between beams E3 and E3ʹ′ , whose wavelengths are λ3 = 

780.24 nm. The phase-matching conditions and the beam geometry implies that the FWM and 

SWM signals, whose wavelengths are λf = λs = λ1 = 780.23 nm, are radiated at angles very close 

to 𝜃! and 𝜃!from the direction of E1, respectively.  

 For the two signals Ef and Es to have significant spatial overlap, the following two 

conditions have to be satisfied experimentally: 

(i) 𝜃! = 𝜃!  

(ii) 𝒌𝟐 − 𝒌𝟐
! ∥    (𝒌𝟑 − 𝒌𝟑

!).  

If these two conditions are not met, then the two nonlinear signals are spatially separated and 

can be measured using two different APD’s. During such alignment, the study of these two 

signals can be performed individually and simultaneously, and features such as competition for 

beam energies and energy transfer between the two processes can be measured. We can also use 

this alignment to optimize the driving beam amplitudes and frequencies in order to attain the 

desired levels of signal enhancement for each nonlinear process. 
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 The purpose of the current experiment is to test the phase-coherence between these two 

signals, for which it is desirable to make the two signals spatially overlapped so that the resulting 

interference pattern due to 𝑬𝒇 + 𝑬𝒔
!
 can be measured. To have the two signal fields radiate in 

the same direction, we need to satisfy the above two conditions. In the square box configuration, 

both conditions are satisfied, i.e. the two angles 𝜃! =   𝜃! ≡ 𝜃, and 𝒌𝟐 − 𝒌𝟐
! is parallel to 

𝒌𝟑 − 𝒌𝟑
!.   Thus, the two signals are nearly overlapped, and can be measured at one site. We use 

a beam splitter and measure the resulting intensity using an APD and a charge-coupled device 

(CCD) camera simultaneously 

In the square-box configuration, the net phase-mismatch between the two signals is 

∆𝒌 =   𝒌𝒇 − 𝒌𝒔 = 𝒌𝟐 − 𝒌𝟐
! − 𝒌𝟑 − 𝒌𝟑

! .  For the small value of 𝜃!   that is used, we have the 

approximate relation 𝒌𝒊 − 𝒌𝒊
! ≈   𝑘!𝜃! for each 𝑖 = 2, 3. Using 𝒌𝟐 = !!

!!
 and 𝒌𝟑 = !!

!!
, the net 

phase mismatch is then ∆𝑘 ≈ !! !!!!! !  
!!!!

 . Due to the near coincidence of the two wavelengths λ2 

and λ3, and the small angle, the net phase mismatch is minimal. Nonetheless, due to the small, 

non-zero phase mismatch, we expect to measure a spatial interference pattern with a spatial 

period of !!
∆𝒌
  ≈ 3.3 mm in a plane transverse to the signal propagation direction. In order to 

understand the non-zero phase-mismatch even when the two angles 𝜃!and  𝜃!are equal, it is 

helpful to imagine two (angularly) similar triangles with different side lengths (corresponding to 

wave-vector magnitudes). The difference in length of the shortest side of each triangle 

corresponds to the net phase mismatch, which is clearly nonzero for different-sized triangles 

even if they are angularly similar. 
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V.2.C. Controlling the relative amplitude between Es and Ef 
 

As we mentioned in the introductory chapter, the fifth-order of the nonlinear polarization is 

orders of magnitude weaker than the third-order nonlinearity. The special design of our setup 

allows us to tune the relative strength between the third-order and fifth-order transition 

amplitudes, so that the SWM signal can be made equal in strength, or even stronger, than the 

FWM signal. This feature of generating coexisting FWM and SWM signals in the same phase-

matched direction and with equal amplitudes has allowed us to measure their interference fringes 

with good visibility and utilize their phase-coherence. 

 Our relative-amplitude control knob is the driving beam E2ʹ′ . In order to understand this 

feature, we note that E2ʹ′  is involved only in the FWM transition pathway, and not in the SWM 

transition pathway. (The other two beams used to drive the FWM process, E1 and E2, are also 

shared by the SWM process.) Since only the FWM signal depends on the strength of E2ʹ′ , we 

vary the power of this beam, P2ʹ′, to tune the FWM signal gain independently of the SWM signal 

gain. First, we block E2ʹ′  and tune the frequency detunings and powers of the remaining beams to 

maximize the SWM signal. Next, we block the driving beams E3 and E3ʹ′  to stop the SWM 

process, and turn on the beam E2ʹ′ . At first, when this beam has a high power, the FWM signal 

strength is much stronger than the SWM signal strength. We then gradually decrease P2ʹ′ until the 

FWM signal intensity decreases and becomes of the same magnitude as the SWM signal. If we 

further reduce P2ʹ′, the FWM strength keeps getting weaker and we are in a regime where the 

SWM process is stronger than the coexisting FWM process. 

 While optimizing the values of the beam frequencies and powers, the probe beam E1’s 

frequency ω1 is in the scanning mode. Once the FWM signal strength is optimized to be roughly 
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equal to the SWM strength and 𝑨𝒔
𝑨𝒇
  ≈ 1, the spectra of the two signals, and the common EIT 

window, look like the traces presented in Fig. 3. Once these conditions are found, ω1 is held 

fixed at the spectral value where the signals have maximum gain, after which we proceed to test 

phase-coherence between the signals, as described in the next section. 

 

V.2.D. Controlling the time delay between E2 and E2ʹ′  
 

Once we find the conditions for 𝐴! = 𝐴! ≡ 𝐴! and stop scanning the probe frequency, we have 

two monochromatic signals having the same frequency impinging on the APD as well as on the 

CCD. This corresponds to a homodyne interferometry with two phase-matched nonlinear optical 

signals, and the resulting photocurrents depend on the relative phase difference between these 

two signals. In our setup, we hold the phase of the SWM signal fixed and scan the phase of the 

FWM with respect to the SWM signal’s phase. So in as sense, the SWM acts like a LO to 

measure the beating with the FWM.  

In order to vary this relative phase ΔΦ, we again note that the driving beam E2ʹ′  is 

involved only in the FWM process. The SWM process does not involve the field E2ʹ′ ; instead, it 

uses the field E2 twice, whose phase contributions cancel each other due to the term (E2*)E2. 

Thus, only the phase of the FWM signal is dependent on the phase of E2ʹ′ , as it involves the term 

(E2ʹ′*)E2. By scanning the relative phase between E2ʹ′  and E2, we thus also modulate the phase of 

Ef with respect to Ef, ΔΦ. We placed a computer-controlled nanometer-precision translation 

stage in the path of E2ʹ′ , in order to vary the time-delay between the beams and E2 and E2ʹ′ . A 

LabView program was made to automate the stage motion and data acquisition. As we scan the 

time delay between these two beams, we expect to see a temporal evolution of the resulting 
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intensity with a temporal period of !!
!!

. Since 𝜔! is tuned to the resonant frequency 𝜔!"  of the 

5D5/2-5P3/2 transition in 85Rb, the expected temporal period is !!
!!"

=  2.427 fs. 

 

V.3. Experimental results 
  

As discussed in the experimental section, the probe beam is initially in the frequency-scanned 

mode for optimizing the spectra of the two signals. Here, the intermediate frequency detuning is 

indicated by the spectral position of the Doppler-free EIT window within the Doppler-broadened 

D2 absorption line. Since Ef and Es are enhanced by this EIT window, these signals temporally 

and spectrally overlap. The two signals are optimized for equal field strengths. When both of the 

signals are phase-matched to overlap spatially, to measure the strength of an individual signal, 

we have to null the other signal (otherwise interference modulates the resultant signal.) To 

measure only the SWM signal, we block the driving beam E2ʹ′ . To measure only the FWM 

signal, we block the beams E3 and E3ʹ′ . In each case, if any one of the remaining beams is 

blocked, then the signal completely disappears, verifying that the generated signal is indeed due 

a SWM or a FWM process. An example showing the measured traces, for the condition where 

the SWM signal is slightly stronger than the FWM signal, is presented in Fig. 3. 
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Fig. 3. An example of a measurement in which the SWM signal is slightly stronger than the 

FWM signal. These traces are taken when the probe beam’s frequency is in the scanned mode. 

The overlap of the two signals with the common EIT window is evident. 

 

V.3.A. Spatial and temporal interference between FWM and SWM 
	  
Once the signal strengths are optimized to be identical, the frequency of the probe beam is held 

fixed at the spectral value yielding the maximum gain. The interference of the resulting 

overlapped monochromatic signal fields, when both of them are present simultaneously, is then 

measured using a CCD camera. We observe a spatial interference pattern form in the overlapped 

region of the two Gaussian-profile signal fields. The concentric regions of dark- and bright- 

fringes can be described by the transverse coordinate r from the center. This spatial interference 
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pattern arises due to the non-zero spatial phase-mismatch that was discussed earlier. In order to 

observe the temporal interference, we scan the time delay τ between the two driving beams E2 

and E2ʹ′ . As τ is scanned, we observe the spatial interference pattern evolve. The measured three-

dimensional spatial-temporal interferogram is shown in Fig. 4(a). Note that the dark and bright 

fringes along the radial coordinate evolve periodically as the temporal coordinate is scanned. The 

corresponding theoretical simulation is shown in Fig 4(b). The parameters used for the 

simulation are temporal frequency 2.427 fs-1 and spatial frequency 1.9 mm-1. In Fig. 4(c), we 

show a two-dimensional cross-section taken at a fixed radial position r = 0. This figure shows the 

temporal evolution of the fringes, and the measured oscillation period is 2.588 fs. In Fig. 4(d), 

we show a two-dimensional cross-section taken at a fixed temporal instance τ = 0. This shows 

the spatial variation of the intensity, corresponding to an oscillation with spatial period of 3.3 

mm. 
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(a) (b) 

 

 

  (c)                           (d) 

Fig. 4. (a) Experimentally measured and (b) theoretically simulated three-dimensional spatial-

temporal interferograms for the overlapped FWM and SWM signals. Two-dimensional cross-

section showing (c) temporal evolution of the intensity, measured at r=0 (d) radial evolution of 

the intensity, measured at τ=0. The square dots are measured points, and the solid curves are 

theoretical fits. 
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V.3.B. Measurement of transition frequency between 5D5/2-5P3/2 in 85Rb 
 

As discussed earlier, the temporal evolution of the measured interferogram will allow us to 

measure the resonant frequency for the 5D5/2-5P3/2 transition in 85Rb. To measure this value, data 

was taken for a much longer temporal-delay duration (50 ps), a section of which is shown in Fig. 

5(a). Again, the two-dimensional cross-section in the temporal plane, i.e. at a fixed transverse 

position of r = 0, is taken (Fig. 5(b)). A fit of these temporal fringes yields a temporal period of 

2.588 fs. A Fourier-transformation of the data taken for the entire 50 ps interval is shown in Fig. 

5(c), from which the fringe modulation frequency is determined to be 2.427 ± 0.004 fs-1. This 

corresponds to the resonant frequency for the 5D5/2-5P3/2 transition in 85Rb, which we have 

measured using the interference between coexisting FWM and SWM signals, each of which 

involves the measured transition within their multi-transition pathways. We remind that in 

generating the observed interference signals, we have used driving beams coming from three 

different laser sources. These results clearly demonstrate the underlying atomic coherence 

responsible for each multi-wave mixing process, as well as the phase-coherence between two 

wave-mixing processes arising from different orders of the nonlinear polarization. 
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Fig. 5. Spatial-temporal interferogram measured for a much longer temporal duration (50 ps). (a) 

A small segment of the three-dimensional measurement, and (b) the corresponding two-

dimensional cross-section in the temporal plane. (b) Fourier spectrum of the beat signal 

measured for the entire 50 ps duration. 

 

 

 

 

and SWM signals was generated with three independent
laser sources. Second, by adjusting the power of the E0

2
beam, the relative strengths of the FWM and SWM signals
can be easily adjusted. In the case of making ES ! EF

(letting E0
2 ! E2 in power), Eq. (1) can serve as a hetero-

dyne detection method to determine the ratio of high-order
nonlinear susceptibilities (!ð5Þ=!ð3Þ). Since !ð3Þ can be
easily measured [19], the !ð5Þ coefficient in such atomic
medium can then be determined. The subtle phase coher-
ence control of ’3 þ ’ ¼ 2n" and ð2nþ 1=2Þ" can be
employed to yield the real and imaginary parts of !ð5Þ,
respectively. Third, the technique used here can be easily
transferred to solid materials, in which EIT and FWM
processes can be easily obtained. Fourth, with controlled
FWM and SWM processes and their enhanced efficiencies
via atomic coherence and the opened EIT window, three-
photon entanglement or correlated triplet photons [14] can
be generated for testing fundamental quantum mechanics
and quantum information processing [14,15].

In summary, efficient FWM and SWM processes have
been shown to coexist in the four-level inverted-Y atomic
system. By adjusting the intensity and time delay of one of
the coupling beams (E0

2), the relative strength and spatio-
temporal interferences between the FWM and SWM chan-
nels can be controlled. The generated spatiotemporal

interferogram in femtosecond time scale can be used to
determine the optical transition frequency with a Doppler-
free precision. Such manipulations of high-order nonlinear
optical processes and their interplays in multilevel atomic
systems can have potential applications in coherence quan-
tum control, nonlinear optical spectroscopy, stabilization
and compression of high-intensity optical pulses in such
efficient cubic-quintic nonlinear media, precision measure-
ments, and quantum information processing.
Funding support in part by the National Science
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(London) 416, 233 (2002).

[14] J.M. Wen, S. G. Du, Y. P. Zhang, M. Xiao, and M.H.
Rubin, Phys. Rev. A 77, 033816 (2008).

[15] V. Boyer, A.M. Marino, R. C. Pooser, and P.D. Lett,
Science 321, 544 (2008).

[16] J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Phys.
Rev. A 51, 576 (1995).

[17] R.W. Boyd, Nonlinear Optics (Academic Press, New
York, 1992).

[18] B. Anderson, Y. P. Zhang, U. Khadka, and Min Xiao, Opt.
Lett. 33, 2029 (2008).

[19] H. Wang, D. Goorskey, and M. Xiao, Phys. Rev. Lett. 87,
073601 (2001).

-20 -10 0 10 20

(a)

r (
m

m
)

τ (fs) 

2.3 2.4 2.5
0.0

0.5

1.0

F
ou

rie
r 

S
pe

ct
ra

l D
en

si
ty

 

(c)

ω2 (fs-1)

-1.5

-0.5

0

0.5

1

-1

-20 -10 0 10 20
0.0

0.5

1.0 (b)

I(
τ,

r )

τ (fs)

FIG. 4 (color online). (a) The spatiotemporal interferogram
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V.4. Conclusion 
 

Coexisting FWM and SWM pathways were driven in a four-level atomic system. A method to 

tune the relative directions, amplitudes and phases between the two radiated signals was 

described and experimentally demonstrated. When the amplitudes of the two signals were made 

equal and spatially overlapped, the measurement yielded a spatial interference pattern at a CCD 

camera. When the time-delay between two of the driving beams was then delayed, a temporal 

evolution of the interference pattern was observed. The parameters of the complete three-

dimensional spatial-temporal interferogram were in close agreement with the values predicted by 

the values of the wave-vector mismatch between the two signals, as well as the resonant 

frequency of the atomic transition that was driven by the time-delayed beam pair. In summary, 

various intriguing features pertaining to phase-control of atomic coherence were demonstrated. 
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VI. Measurement of two independent phase-shifts using coupled parametric amplifiers  
 

VI.1. Introduction 
 

In most interferometric methods, the phase-difference between one pair of optical fields 

modulates the intensity of the resultant output field, and the output field contains one phase-

difference information. Recently, much attention has been given in utilizing quantum and 

nonlinear optical processes to enhance various aspects of the measurement of this information, 

for instance in improving the resolution and precision. However, we find a lack of studies geared 

towards increasing the information capacity itself. 

In this chapter, we utilize atomic nonlinearity to enhance an interferometer’s information 

capacity. More specifically, we encode two independent phase-shifts in the measurable intensity 

of the interferometer’s output field. The phases can be readily resolved simultaneously using a 

single intensity detector. We have achieved this by coupling the two phase informations to two 

different continuous-variable parameters in the spectral waveform of the output field. We 

achieve this by utilizing coexisting nonlinearities in a cloud of alkali atoms to simultaneously 

perform multiplicative as well as additive mixing of multiple optical fields. Besides being a 

novel conceptual feat, this added dimensionality of information could potentially improve the 

channel-capacity in optical communication. The work presented in this chapter is closely related 

to the results of chapters 4 and 5. In a sense, this work involves a synergy between the spectral 

phase evolution of chapter 4 and the phase-coherence between coexisting nonlinearities of 

chapter 5, delivering a novel interferometric feat in the process.  
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 First, a discussion of interferometry, the motivation for the current work, and an overview 

of the new method are discussed. Next, details of the experimental setup and the theoretical 

description of the physical system and the predicted results are explained. The experimental 

observations of the two- phase measurement are presented next. Finally, we summarize the work 

and discuss the possible applications and outlook. 

 

VI.2. Motivation and overview of the new method 
 

VI.2.A Overview of interferometry 
 

Interferometry has had a very rich history in science, both in fundamental research and practical 

applications2,5. The interference between two optical fields lies at the heart of many applications 

in metrology, including in the measurement of length. When the wavelengths of the two fields 

are identical, there are measurement schemes in which the identical wavelengths are static, as 

well as scanned with time. In the first scheme, the measurement is performed at a single position 

in frequency space. Changes in the optical path length in one arm will alter the output field 

intensity. Examples include the traditional Mach-Zehnder and Michelson interferometers, and 

some state-of-the-art applications using this scheme include the measurement of minute space 

dilations arising from general relativistic effects119. In this scheme, one can measure changes in 

the relative path length difference between the two arms of the interferometer, but not the 

absolute path length difference between them. 

 In the second scheme, which is a variant of the Mach-Zehnder interferometer, the 

wavelength of the two fields probing the interferometer’s arms is scanned in time, and 

measurement is performed along a spectral line120. The reference arm’s length is made different 
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from the test arm’s length, so that the phase-difference between the two beams evolves linearly 

along the spectral range being scanned. As a result, the output intensity of the interferometer will 

consist of fringes in frequency space. Here, changes in the path length of the test arm will alter 

the phase of the fringes. In addition to the fringe phase, which measures changes in the relative 

path length difference between the two arms of the interferometer, the fringe period (i.e. the 

spectral separation between two fringe maxima) measures the absolute path length difference 

between these two arms. This scheme has been popularly labeled “absolute distance 

interferometry” and has been utilized, for instance, in ATLAS, the largest particle detector of the 

Large Hadron Collider (LHC) project at CERN120. 

 In the schemes described above, the optical fields undergo only linear transformations, 

namely that of propagation along the interferometer’s arms, and transmission, reflection and 

additive mixing at beam splitters, before being measured by an intensity detector. There also 

exist interferometric schemes that use nonlinearities and multiplicative wave-mixing elements in 

order to process the field phases. Nonlinear wave-mixing processes such as two-photon 

absorption123 and four-wave mixing122-125 as well as closed-loop atomic interferometers74-76 have 

been considered, and features such as the interference between multiple quantum transition 

amplitudes, squeezing and the parametric amplification within the interferometer have been 

utilized for enhancing sensitivity, resolution and visibility. Quantum interferometry is an active 

field of research, and exotic states of light are being tested as interferometric probes126-128. 

 All of the schemes described above involve a single-phase measurement; that is, from the 

output field, one can extract information about changes occurring in the phase difference 

between one pair of optical fields. To our knowledge, there is no interferometer that can measure 

more than one phase difference in a single measurement. By a single measurement, we mean a 
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measurement performed in a single spatial window (i.e. one detector) within a single temporal 

window (i.e. simultaneously).  

 

VI.2.B. Overview of the current contribution 
 

In this chapter, we demonstrate a novel scheme showing the possibility of two-phase 

interferometry. The scheme is capable of processing the phase-differences of two independent 

pairs of optical fields in parallel and encoding them in separate continuous-variable parameters 

(phase and brightness) of a single output signal field that can be directly decoupled in a single 

intensity measurement. The key lies in merging ideas from both of the schemes described above; 

i.e. we shape the output signal’s spectral bandwidth into fringes so that the fringe phase measures 

changes in one interferometer, while the fringe intensity measures changes in a second 

interferometer. The use of such capacity is twofold. First, it can be used to measure the phase-

difference information of multiple interferometers in a single measurement. Second, it can be 

used to generate signals with increased phase-sensitive information encoded per channel. 

In order to encode four optical field phases (i.e. two phase differences) in the intensity of 

one output field in a readily distinguishable way, we mix the fields in a nonlinear medium 

capable of effective phase-sensitive parametric amplification. We couple the two field pairs 

probing the two interferometers to two coexisting and coupled quantum nonlinear pathways in an 

atomic medium, the details of which will be described in the experimental section below. The 

individual amplifiers, which act as multiplicative wave mixers, are additively coupled via 

identical phase-matching so that their relative phase alters the resultant signal intensity even 

without using an external local oscillator; this relative phase is sensitive to one of the 

interferometers. The second interferometer causes identical spectral-domain fringes in both of 
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the amplifier’s responses, and its phase shift is measured by a spectral translation of these 

fringes. Dark-state resonances are included in the parametric amplifiers in order to resonantly 

enhance the multi-photon transition amplitudes with suppressed losses for both driving and 

generated fields, as well as to attain low background noise and high resolution. The motivations 

for embedding dark-state resonances in the nonlinear transitions have already been discussed in 

the previous chapters of this thesis. We will first describe the experimental scheme and derive 

the equations, after which we will discuss the observations and results. 

 

VI.3. Experimental setup 
 

Our experimental scheme is shown in Fig. 1. The atomic configuration used for generating the 

coexisting and phase-matched nonlinearities is the same as the one used in the previous chapter. 

However, more phase manipulation will be added, several new terms and concepts are 

introduced, and some notations have been modified to match this work. For these reasons, and 

for self-consistency of this chapter, we will describe all the essential terms and concepts briefly 

here, even if they had been introduced in the previous two chapters. As a result, certain parts of 

this section will be repetitions of the previous two chapters, but these will be necessary since this 

work is, in a sense, a synergy of those two. 

 We coherently drive the third- and fifth-order nonlinearities in an inverted-Y energy 

level configuration in rubidium atomic vapour, which is magnetically shielded and heated to 75° 

C. The driven nonlinearities are coupled by sharing common atomic transitions and driving 

beams (Ei, Ei'; i = 1, 2, 3) to radiate four-wave mixing (FWM) and six-wave mixing (SWM) 

signals in the same phase-matched mode (direction km, frequency ωm). An APD placed in the   

 



101 

	  

 

 

 

 

 

 

 

(a) Atomic configuration 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Experimental setup 
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(c) Three-dimensional geometry of beam alignment inside the vapor cell 

 

 

Figure 1. Atomic configuration and experimental setup. (a) Here, |a> and |d> 

are the hyperfine levels 2 and 3 of the 5S1/2 ground state, respectively; |b> and |c> 

correspond to the excited states 5P3/2 and 5D5/2, respectively. (b) (BS = 50/50 

beam splitter, PBS = polarization beam splitter cube, BB = beam block, PZM = 

piezo-actuated mirror, M = rigid mirror, APD = avalanche photodiode). Here all 

the beams are shown in the same plane to visually “unfold” the MZ 

interferometers. (c) In the actual setup, E2' and E3' lie in a plane that crosses the 

plane containing Ep, E2 and E3 inside the rubidium vapour cell. Em comprises of 

all the atom-radiated signal fields that are phase-matched to reach the APD, and 

counterpropagates with E2'. 
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 phase-matched direction measures the intensity of the resultant multi-wave-mixing signals. The 

pair of driving beams 𝐄𝐢 = A!e!! !!!!𝐤𝐢!!!!  and 𝐄𝐢′ = A!′e!! !!!!𝐤𝐢!!!!!!  originate from the 

same narrow-linewidth continuous wave (cw) laser source LSi (i =1, 2, 3), and are thus phase-

coherent. A! and A!′ are the field amplitudes. The beam frequencies ω2 and ω3 are held fixed at 

the atomic transition frequencies ωcb and ωdb, respectively, while the frequency ω1 is swept 

across the Doppler-broadened spectral bandwidth of the ωba transition with frequency detuning 

Δω1 = ω1 - ωba (where ωjk = (Ek – Ej)/ћ with Ek the energy of the atomic level |k>). The weak 

probe beam Ep = E1+E1', travelling along the z direction, counter-propagates with the rest of the 

driving beams at small angles. Beam E2 travels along the –z direction. At any plane transverse to 

the probe beam’s direction, the driving beams pass through the four corners of a square with E3' 

furthest to E2. Each side of the square subtends an angle of 0.35° at the center of the vapor cell, 

where all beams intersect. At the intersection region, the powers and diameters of the Gaussian 

beams E1, E1', E2, E2', E3, E3' are approximately 3 mW, 3 mW, 30 mW, 4 mW, 65 mW, 65 mW 

and 0.5 mm, 0.6 mm, 1.3 mm, 1.4 mm, 0.7 mm, 0.6 mm, respectively. 

 As discussed in the previous chapter, the ladder-type EIT coherence enhances the FWM 

signal Ef (phase-matching wave-vector kf = k1 + k2 – k2' ≡ km and frequency ωf = ω1 + ω2 – ω2' 

= ω1) and SWM signal Es (phase-matching wave-vector ks = k1 + k2 – k2 + k3 – k3' ≡ km and 

frequency ωs = ω1 + ω2 – ω2 + ω3 – ω3' = ω1). At the line-center of the Doppler- broadened 

transition from |a> to |b>, due to a large ground-state population, only these EIT-supported 

signals experience negligible absorption, and all other signal fields have a vanishing 

transmission. In most of what follows, we limit our treatment to these two signal fields which 

spectrally coexist at the line center, denoted by Ec = Ef + Es.  
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 Before interacting with the atomic medium, the driving beams are made to probe three 

Mach-Zehnder interferometers MZ1, MZ2, and MZ3. The optical path length difference ΔLi 

between the two arms of MZi, and the resulting phase difference ΔΦi, is probed by the pair of 

beams Ei, Ei' (i = 1, 2, 3). ΔL3 is held fixed, whereas ΔΦ1 and ΔΦ2 are the variables to be 

measured, or alternately, the parameters that can be controllably designed to phase-modulate the 

phase-matched signals resulting in Ec. Here, we discuss the measurement process. 

 In order to measure the two phases ΔΦ1 and ΔΦ2 in a single spatial-temporal reading of 

the signal field’s intensity |Ec|2, we decouple the effects of the two phases to two different 

continuous-variable (CV) parameters in the spectral waveform of the measurable signal 

intensity: the phase and amplitude of the intensity fringes, respectively. The fringes are generated 

in the spectral domain by modifying MZ1 into a frequency-swept interferometer with unbalanced 

arms. The resultant probe beam then becomes  

 

𝐄𝐩 =
𝐄𝟏!𝐄𝟏!

!
= !!

!
e!!(!!!!𝐤𝟏!) 1+ e!!!"!(!!  ,  !!!) , 

 

where A1 = A1' are the field amplitudes and  

 

ΔΦ1(ω1, ΔL1) = Γ-1ω1 + k1 ΔL1.  

 

We have defined Γ (2πHz) = c ΔL1
-1 to be the spectral period in which ΔΦ1 evolves by 2π. For a 

fixed but finite Γ, this setup causes the phase difference ΔΦ1 to evolve linearly in the spectral 

domain as the probe beam frequency ω1 is swept across the atomic resonance linewidth. When 
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ΔL1  ≈ 107 λ1, a small change in the position of the mirror PZ1 (typically a fraction of λ1) has a 

negligible effect on Γ, and basically modulates only the second term of ΔΦ1(ω1, ΔL1). 

 As will be shown below, this phase-information encoded in the output of MZ1 propagates 

through several orders of quantum nonlinear pathways in the phase-coherently driven medium, 

and is reproduced in both the FWM and SWM signals amplified by the coupled χ(3) and χ(5) 

processes. First, we focus on the FWM signal field 𝑬𝒇 = 𝜂!𝜒(!)(𝑬𝟐′)∗𝑬𝟐𝑬𝒑, where the product 

of the third-order susceptibility was described in the previous chapter. The phase differences in 

the two interferometers MZ1 and MZ2 are encoded in the field envelope of this signal: 

 

𝑬𝒇 = 𝐴!e!!(!!!  !  !!!)e!!!!!(!!!) 1+ 𝑒!!!"!(!!  ,  !!!) , 

 

where  

𝐴! = 𝜂!𝜒(!)
  A!′A!A!

2
 

 

is a real amplitude. Note that we have replaced (A2')* by A2', as the amplitude of the beam is 

held fixed and does not oscillate, and we also assume no depletion for the strong driving beam. 

Next, in the SWM channel, which utilizes the same EIT window supporting the FWM process, 

the field E2' is blocked. Instead, the field E2 is used twice, and the SWM pathway is completed 

by using E3 and E3' to drive transitions between the energy levels |b> and |d>.  The SWM signal 

field is  

𝑬𝒔 = 𝜂!𝜒(!)𝑬𝟑 𝑬𝟑! ∗(𝑬𝟐)∗𝑬𝟐𝑬𝒑 = 𝐴!e!!(!!!  !  !!!)e!!!!!(!!!) 1+ 𝑒!!!"!(!!  ,  !!!) ,  

where  
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𝐴! = 𝜂!𝜒(!)
A!  A!′ A! !A!

2
 

is a real amplitude. The phase of E2 has no contribution to the field in this pathway.  

 

VI.4. Two-phase measurement results 
	  
	  

VI.4.A. Theoretical derivation and expected results 
 

When Ef (or Es) is observed individually, the phase ΔΦ2(ΔL2) (or ΔΦ3(ΔL3)) arising from MZ2 

(or MZ3) does not have an observable effect on the intensity. However, it is obvious that the 

phase ΔΦ1(ΔL1, ω1) arising from MZ1 will cause identical oscillations in the intensities of the 

FWM and SWM signals across their spectral bandwidths, even without the use of an additional 

LO. When the two EIT-coupled spectrally coexisting signals are also phase-matched (kf = ks = 

km) and polarization-matched, all of which are achieved by our specially-designed beam 

geometry, they interfere. Since E2' contributes only to Ef, we can tune the strength of this driving 

field to attain identical strengths for Ef and Es. The resultant amplified signal field at the line 

center becomes  

Ec = Ef + Es  

     = 𝐀𝐜   e!!!!!(!!!) 1+ e!!!"!(!!  ,  !!!) +   e!!!!!(!!!) 1+ e!!!"!(!!  ,  !!!) ,  

 

where Ac is the complex field 𝐀𝐜 = A!e!!(!!!  !  !!!) with real amplitude A! = A! = A!. The path 

length difference ΔL3 in MZ3 is held fixed at ΔΦ3 = 0, thereby reducing the signal’s dependence 

to the two variable phases ΔΦ1 and ΔΦ2. The resulting signal intensity within the EIT-supported 

spectral bandwidth at the line center would thus be  
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Ic = (Ic0/4){ 1+ cos[ΔΦ1(ω1, ΔL1)]} { 1+ cos[ΔΦ2(ΔL2)]}               (1(a)) 

   = (Ic0/4){ 1+ cos[ Γ-1ω1 + k1* ΔL1]} { 1+ cos[k2* ΔL2]}            (1(b)) 

 

where Ic0 is the maximum fringe brightness (amplitude) occurring at ΔΦ1 = 0 and ΔΦ2 = 0. The 

linear dependence of ΔΦ1 with ω1 causes intensity fringes across the spectral bandwidth of the 

signal with spectral period Γ (2π Hz). Any additional phase change in  ΔΦ1 , for instance due to a 

small shift in PZ1 or any other phase shifting element placed in MZ1, will result in a translation of 

the intensity fringes in the spectral domain spanned by ω1 (figure 2(a)). The phase change can 

then be inferred from the spectral displacement, i.e. the spectral-domain phase shift, of the 

fringes. A change in ΔΦ2, on the other hand, would alter the brightness of each fringe without 

altering their spectral positions (figure 2(b)). Equation 1 thus shows the main result of this work, 

namely the resolvable coupling of two different phase differences to two different continuous-

variable parameters of a single intensity measurement. 

For the beam geometry being considered, the Doppler-broadened FWM signal ED driven 

by Ep, E3 and E3' in the lambda-type subsystem also travels along km (kD = k1 + k3 – k3' ≡ km ). 

However, since it is not supported by EIT, it is completely absorbed at the line center, and occurs 

only at the wings of this Doppler-broadened transition. That is, ED is spectrally isolated, and 

does not coexist with Ec = Ef + Es. Since ED is proportional to the product E3(E3ʹ′)* Ep, it is also 

affected by the modulation in ΔΦ1. Due to the large spectral bandwidth of this signal, it might be 

useful to utilize it in conjunction with the EIT-bandwidth-limited signal Ec for measuring ΔΦ1. 

However, unlike Ic, this signal’s intensity ID does not contain the information of two phases, 

which is the primary objective of this work.   
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                   (a) 

 

(b) 

 

Figure 2. Theoretical plots for the signal intensity Ic. (a) Three-dimensional 

space spanned by Ic, ∆𝜔! Γ   and ∆Φ! 2𝜋  with ∆Φ!  held fixed (b) Three-

dimensional space spanned by Ic, ∆𝜔! Γ  and ∆Φ! 2𝜋 with ∆Φ! held fixed. In the 
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grayscale intensity representation of Ic, white = bright fringe and black = dark 

fringe. Any phase-difference modulation in the interferometer MZ1 (MZ2) is 

measurable as a phase-shift (amplitude-modulation) of the intensity fringes 

occurring when frequency is scanned. 

 

VI.4.B Experimental observations 
 

Figures 3 and 4 show the photocurrents measured by the APD for various frequency detunings 

and phases, when ΔL1 = 7.84 m (Γ = 2π x 38 MHz). In figure 3((i)), the left box corresponds to 

the spectral bandwidth supported by the ladder-type EIT coherence, and shows the resultant 

intensity of the coexisting Doppler-free signals, Ic. In this spectral bandwidth, occurring at the 

line-center of the |a> à |b> transition, the other signals that are not EIT-supported vanish. The 

right box corresponds to the spectral region towards the blue-detuned wing of the Doppler-

broadened transition, where the spectrally broad FWM signal ED becomes measurable due to 

reduced absorption. The phase modulation in MZ1 is evident in all cases. By keeping all other 

experimental parameters identical but shifting PZ1 to alter ΔL1 by λ1/2, creating a π phase-shift 

between the MZ1 beams, we observe a spectral translation of the fringes by Γ/2 (figure 3(ii)), 

while the amplitude of the peaks and envelope remain fixed.  When ΔΦ2 is altered, the spectral 

positions of the intensity fringes remain unchanged. However, in the spectral region containing 

the two coexisting signals, ΔΦ2 modulates the amplitude of the fringes. Figure 4 shows Ic for 

three different values of PZ2, corresponding to variations in the MZ2’s phase ΔΦ2.  
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Figure 3. Observations for a varying ΔΦ1. Experimental traces (black, solid) 

and theoretical fits (red, dashed) of the parametrically amplified signals. The left 

and right boxes highlight the spectral regions that amplify Ec and ED 

(corresponding to the center and the blue-detuned regions of the Doppler-

broadened D2 transition), respectively. When ΔΦ1 is increased by π, the fringes in 

the upper trace (i) spectrally translate by Γ/2 in the lower trace (ii). The two blue 

vertical dashed lines are guides to the eyes for two spectrally fixed positions. All 

other parameters, including ΔΦ2, are held fixed. 

 



111 

	  

 

(a)    

 

(b) 

Figure 4. Observations for a varying ΔΦ2. Experimental traces (a) and 

theoretical plots (b), showing Ic for three different values of ΔΦ2: (i) 0 (ii) π/3 (iii) 

π/2. All other parameters, including ΔΦ1, are held fixed. Here, it is the brightness 

of the fringes that changes. The spectral region corresponds to the left box shown 

in Fig. 3. 
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VI.5. Conclusions and outlook 
 

In conclusion, we have demonstrated a scheme for measuring the phase differences in two 

different Mach-Zehnder interferometers MZ1 and MZ2 in a single measurement of the signal 

intensity. The key lies in using a spectrally broad measurement in order to have two continuous-

variable observables in the intensity: the phase and the brightness of the spectral-domain fringes. 

The two phases to be measured are then coupled to the two observables, respectively. To our 

knowledge, this is the first demonstration of identifying relative changes in two pairs of optical 

path lengths in a single intensity measurement, and might be useful in increasing the spatial 

dimensions being probed in interferometric measurements, for instance in the Laser 

Interferometer Gravitational-Wave Observatory (LIGO)119. Having phase-sensitive control over 

two continuous-variable intensity parameters also increases the information capacity per 

channel129, which might be useful in optical and quantum communication. In particular, if one 

set of information is carried by the amplitude of the fringes (via amplitude-modulation), a second 

set of information can now be simultaneously and separately encoded in the phase of the fringes 

(via phase-modulation). Another advantage of the scheme is that an external local oscillator (LO) 

is not needed while measuring the multiple phases. The coexisting fields that are parametrically 

amplified in the phase-matched mode sufficiently produce the necessary interference and 

intensity variations at the detector. The lack of need for a LO could make the method valuable in 

multi-party, long-distance communication of phase-modulated signals. 
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VII. Phase-dependent spatial fusion of two weak optical fields 

 

VII.1. Introduction 
 

 

It is well known that two optical fields that are spatially apart can interact with each other in a 

nonlinear optical medium, and that the interaction can be tuned via the relative phase between 

the fields130-138. This effect has been demonstrated commonly in soliton collision experiments 

where, depending on the relative phase between the solitons, different outcomes are achieved 

such as fusion and repulsion. These experimental observations were made in photorefractive 

crystals as well as atomic vapors, which have different (quadratic and cubic) nonlinearities, 

respectively. In these experimental demonstrations, the solitons are achieved when the laser 

beams self-waveguide themselves. The underlying mechanism of self-waveguiding is self-

focusing, which is a nonlinear effect arising due to an intensity-dependent refractive index n(I); 

because of the beam’s Gaussian intensity distribution, n(I) causes a lensing effect for the beam as 

it propagates through the nonlinear medium, thus overcoming the natural tendency of the beam 

to diverge139-141. The conditions for stability of solitons of different dimensions have been 

extensively investigated142-143. The self-induced nonlinearities require the beams to have large 

intensities, and often high-powered pulses with very narrow temporal and spatial widths are 

used. In a two-soliton interaction, the interference between the two fields causes the intensity in 

the region between them to vary with their relative phase difference. For instance for the in-

phase case, constructive interference enhances the intensity and the nonlinear refractive index in 
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this region, thus steering both solitons to this region and resulting in their fusion. Such phase-

dependent outcomes for two beams that have an initial spatial separation can be important in 

constructing all-optical gates and switches, as shown in the schematic in Fig. 1. Recently, 

theoretical studies have predicted the generation of stable ultra-weak intensity solitons and their 

collisions in three- and four- level quantized systems144-151, where the all-optical wave guiding is 

achieved via quantum coherence effects induced by additional strong coupling beams. 

 In this chapter, we experimentally demonstrate the phase-dependent interactions between 

two spatially separate optical fields having very weak intensities. In this case, the underlying 

mechanism is a waveguide that is induced by quantum coherence effects due to the presence of a 

strong coupling beam which is initially partially overlapped with both of the weak signal fields. 

By relying on the cross-Kerr effect, we relax the requirement for the two signal fields themselves 

to have large intensities. First, we will describe the experimental setup and the mechanism of the 

coupling-beam-induced waveguide. We will then show that once both the weak signal beams are 

steered into the waveguide, the resulting interaction between them can be controlled via the 

relative phase-difference between them. The interaction shown in Fig. 1 is demonstrated between 

these two weak beams; in addition, we also show that in this system, there are more tunable 

parameters compared to the scheme that uses two high-powered self-focusing fields. 
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Fig. 1. Schematics of phase-dependent spatial interactions between two optical fields inside a 

nonlinear optical medium (green shaded region). The two fields propagate along z, and have an 

initial separation along x. The output state depends on the relative phase ΔΦ between the two 

fields. 

 

VII.2. Experimental setup 
	  
 

The experimental setup and the atomic system are shown in Fig. 2. Two weak probe 

beams E1 and E1' are derived from the same diode laser. The output of the diode laser is first fed 

into a single-mode polarization maintaining fiber (not shown in figure) for mode-cleaning. The 

strong coupling beam Ec is from a Ti:Sa ring laser. All three beams are continuous-wave (cw), 

nearly collimated, and have Gaussian spatial profiles. Beams E1 and E1' are nearly collinear with 

a vertical separation between their centroids and negligible overlap. The beam Ec 

counterpropagates with E1 and E1', such that Ec’s centroid is in the middle of the centroids of E1 

and E1', and Ec has overlap with both E1 and E1'. That is, beams E1 and E1' lie on the opposite 

sides of counterpropagating beam Ec, and the centroids of the three beams lie in the x-z plane. E1 

and E1' are linearly polarized in the plane containing them, while Ec has a linear polarization 
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orthogonal to E1 and E1'. The strengths of E1 and E1' can be controlled independently by the 

various half-wave plates and polarization beam-splitters, and together by the neutral density 

attenuator wheel. One of the mirrors M2 in the path of E1' is piezo-actuated, allowing control of 

the relative phase ΔΦ1 between E1 and E1'. Another mirror on E1' s path (not shown in figure) is 

placed on a micro-meter translational stage, such that the relative separation between the fields 

can be easily tuned.  

 

 

 

 

 

(a) 
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(b) 

 

Fig. 2. (a) Experimental setup. Att = variable neutral-density attenuator wheel, (P)BS = 

(polarizing) beam splitting cube, H = half-wave plate, CYL = cylindrical lens, CCD = charge-

coupled device camera, PD = fast photodiode, M = mirror. (b) Atomic system. 

 

Various lenses (not shown in the figure) are used to control the widths and collimations 

of the fields. The average width of the coupling beam inside the vapor cell is wc= 156 µm. The 

widths of the probe beams at the entrance of the vapor cell are w1 = 133 µm and w1'=148 µm, 

and the distance between their centers is 120 µm. When propagating in free space, these beams 

slowly diverge and by the time they travel 325 mm to the charge coupled device camera CCD2, 

where they are imaged without using a lens, their widths are w1 = 670 µm and w1' = 600 µm. In 

order to prevent the overlap of these probe beams at CCD2, they are aligned with a small angle 

between them so that at CCD2, the separation between their centers is larger than their widths 

(Fig. 3(a) and 4(a)).  

The three fields pass through a Rb vapor cell that is heated to 95 °C by a heating coil. 

The vapor cell is 7.5 cm long, and 3.5 cm of the cell’s central portion is accessible for 
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fluorescence imaging. The fields E1 and E1' are nearly resonant with the D2 transition (~780.23 

nm). They have a frequency detuning of Δν1 = 400 MHz towards the blue side of the F=3 → F’ = 

4 transition of 85Rb isotope. The coupling beam Ec is tuned to the transition 5P3/2 → 5D5/2 

(~775.98 nm), and its frequency detuning Δν2 can be tuned with a resolution of 10 MHz. The 

transverse spatial profiles (x-y dimension) of the transmitted probe beams are imaged at CCD2, 

which is 25 cm away from the Rb cell’s exit. Due to the counter-propagating geometry, there is 

no scattering of the strong coupling beam on the camera. The transmitted field E1 is also 

monitored by a photodiode for spectral characterization. 

When the camera is placed at position CCD1, it takes images of the x-z dimension of the 

beams inside the vapor cell via fluorescence from the side of the Rb cell. The fluorescence is 

imaged onto CCD1 by two cylindrical lenses CYLx and CYLz with focal lengths 10 cm each, 

which are positioned such that the x- and z- dimensions are magnified by factors of 4 and ¼ at 

CCD1, respectively. This way, a significant axial length of the beams within the vapor cell 

(almost 25 mm) can be imaged in a single image while still maintaining a good resolution of the 

transverse (x) dimension (about 1 mm), at the 7.04 mm x 5.28 mm CCD surface. This 

circumvents the need to take several axial images and patching them together per image for high 

resolution. Spherical lenses cannot provide this feature, since they magnify or demagnify both 

dimensions equally. CYLx, CYLz and CCD1 are each placed in three-dimensional micrometer-

precision stages with translational and rotational degrees of freedom to facilitate the imaging 

process. Furthermore, the beams E1 and E1' are linearly polarized in the x-z plane so as to 

maximize the dipole-scattered radiation pattern at CCD1. 
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VII.3. Discussion of the physical mechanism 
	  

In the three-level ladder-type atomic medium, a strong coupling beam alters the absorption and 

dispersion of a weak probe beam via quantum coherence. When both one-photon and two-photon 

resonances (TPR) are met, the atomic medium is rendered transparent for the probe beam by 

virtue of EIT. Within the spectral window of EIT, the transmission of the probe beam increases, 

and it also experiences a rapidly varying refractive index. The value of the refractive index can 

be controlled by the coupling beam’s intensity Ic and the two-photon detuning. The modified 

absorption and refractive index of the probe beam in this three-level Doppler-broadened atomic 

medium are given by the imaginary and real parts, respectively, of the complex susceptibility χ 

shown in Chapter 1. 

The dependence of the susceptibility on Ωc
2 and the Gaussian spatial distribution of Ic, 

means that the weak probe beam can experience a spatially varying refractive index, which can 

in turn give rise to lensing and waveguiding behaviors. Such cross-Kerr induced focusing and 

defocusing for perfectly overlapped probe and coupling beams in the ladder-type configuration 

with counterpropagating geometry was reported in Ref. 19. The variation of absorption and 

refractive index as a function of the coupling beam’s intensity in and EIT medium have been 

well characterized before, including in the ladder-type configuration16, 17, 19. 

 In our setup the coupling beam Ec, which is on the order of 105 more intense than the 

probe beams, has a rapidly varying spatial profile. The probe beams are placed at the opposite 

wings of this intensity distribution. When the probe beam is tuned to the blue of the D2 

resonance, a positive (negative) two-photon-detuning results in a positive (negative) value for the 

refractive index n(Ic). When Δν2 is positive with a value that is smaller than the power-broadened 

linewidth of the EIT window, the 400 nW probe beams experience enhanced transmission as 
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well as a spatially varying refractive index that increases with Ic. The probe beams, initially lying 

at the edges of the coupling beam, are thus now steered into the center of the all-optical 

waveguide formed by the optical volume of the coupling beam. 

A theoretical description is currently underway. The model will consist of describing 

dark-state polaritons in a medium having a transversely varying refractive index. We will 

describe the modifications in the phase-fronts of the dark-state polaritons as they propagate in the 

spatially dispersive medium. Once the change in the directions of the two polaritons is described 

by the wave equations, and both of them are steered into a common spatial volume, the resulting 

fusion will then be allowed due to the bosonic nature of these quasi-particles23. 

 

VII.4. Experimental results 
 

Once the two weak fields are steered inside this common waveguide, the interaction between 

them becomes dependent on their relative phase difference ΔΦ1. When ΔΦ1 = 0, the two fields 

fuse and the intensity in the central region of the waveguide is maximum (Fig. 3(b)). When ΔΦ1 

= π, the two fields interfere destructively and the central region of the waveguide remains dark 

(Fig. 3(c)). This is equivalent to the interaction of Fig. 1, which was previously experimentally 

demonstrated between two strong self-guided beams, and now demonstrated between two ultra-

weak beams using quantum coherence. Furthermore, the output state in the current case has more 

tunability. For the in-phase fusion case (Fig. 3(b)), the output intensity of the central bright 

component can be all-optically tuned via the intensity of the coupling beam (Fig. 3(d)). This is 

because in this system we not only modify the refractive index, but the transparency of the 

medium itself. In the previous demonstrations of two-beam fusion using self-induced 

nonlinearities, the output intensity cannot be tuned since the fusion is critically dependent not 
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only on the relative phase, but also on the signal beam intensities themselves which cannot be 

reduced otherwise the self-induced nonlinearity will disappear. One-dimensional cross-sections 

of the transverse images are presented in Fig. 4. The asymmetry in the out-of-phase case is 

mostly due to small imperfections in beam alignment and collimation. 

 

(a)                                                         (b) 

 

 

(c)                                                         (d) 

 

Fig. 3. Two-dimensional transverse images taken by CCD2 when two-photon detuning is nearly 

resonant. Cell temperature = 95 °C, Δν1 = +300 MHz, Δν2  = +10 MHz. Beam powers are 
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measured before Rb cell. P1 = P1’ = 400 nW. (a) P2 = 0 mW, (b) P2 = 115 mW, ΔΦ1 = 0, (c) P2 = 

115 mW, ΔΦ1 = π, (d) Peak intensity of the central fused component when ΔΦ1 = 0 (conditions 

similar to Fig. 3 (b)) as a function of the coupling beam’s power P2.  

 

 

(a)                                                         (b) 

 

 

(c)                                                         (d) 

 

Fig. 4. (a), (b) and (c) are the one-dimensional cross-sections taken along x for a fixed value y = 

2.75mm from the 2-D images shown in Fig. 3 (a), (b) and (c) respectively. In (d), (i), (ii) and (iii) 

are the one-dimensional cross-sections taken along y for a fixed value x = 2.38 mm from the 2-D 

images shown in Fig. 3 (a), (c) and (b) respectively. 
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Another novel feature of this system is that for the out-of-phase case, the two signal 

beams do not spatially deflect away; instead, due to the attractive central potential induced by the 

coupling beam, both beams are guided tightly to the central axis, while the axis itself remains 

dark due to destructive interference. This opens the room for generating dark vortices with 

enhanced depth. This feature is possible because in this system, the strength of the attraction is 

controlled externally by the frequency detuning and intensity of the coupling beam, and not by 

the intensities of the signal fields themselves. 

For large two-photon detunings (Δν2 = ± 250 MHz) the effects of EIT disappear and the 

transmission of the resonant probe beams through the vapor cell decreases sharply. In this case, 

we imaged the incoherent fluorescence signal through one side of the vapor cell. In order to 

increase fluorescence signal for imaging, the probe beam’s powers were increased to 400 µW 

each. Even in these large-detuned cases, the spatially varying refractive index due to Ic presents 

itself as an attractive or a repulsive potential acting on the weak probe fields. The paths of the 

two resonant probe beams in the absence of the coupling beam are shown in the image taken by 

CCD1 in Fig. 5 (a). The beams look overlapped because in the region between, the intensities 

due to the fluorescence caused by each beam add up. Note the different scales of the x- and z- 

dimensions. For a positive (negative) Δν1, we observe that a positive (negative) Δν2 pulls both 

probe beams towards the wave-guide center (Fig. 5b) while a negative (positive) Δν2 pushes the 

weak beams further apart (Fig. 5c). Transverse cross-sections of each image at a fixed 

longitudinal position are shown in Fig. 5d. While the enhancement and decrease of the resultant 

intensity in the central axis is apparent from these images and traces, the contrast is degraded due 

to the large frequency detuning and thus weaker atomic coherence, and also due to background 

scattering by the windows of the vapor cell. On the other hand, this noise would have been 
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overwhelming had we used the lambda-type atomic configuration, since in this case the strong 

coupling beam also has access to the ground state atoms and causes single resonance 

fluorescence. One of the main motivations for using the ladder-type scheme is that the strong  

 

        (a)        (b) 

 

            (c)        (d)  

 

Fig. 5. Longitudinal images taken by CCD1 when two-photon detuning is off-resonant. Cell 

temperature = 95 °C, Δν1 = +400 MHz. Beam powers are measured before Rb cell. P1 = P1’ = 

400 µW. Note the different scaling of the axes: x is in µm but z is in cm, achieved by the 

specially designed imaging. (a) P2 = 0 mW, (b) P2 = 90 mW, Δν2 = + 250 MHz, attractive (c) P2 

= 90 mW, Δν2 = - 250 MHz, repulsive. In (d), (i), (ii) and (iii) are the one-dimensional cross-
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sections taken along x (at z = 2.35 cm) from the 2-D images shown in (a), (b) and (c) 

respectively. 

 

coupling beam drives the transition between two excited states which have no atomic population 

in equilibrium, and thus does not contribute to fluorescence unless the probe beam is present. As 

a result, the measurable image signal-to-noise ratio is much higher in this atomic configuration. 

 

VII.5. Conclusions and outlook 
 

We have thus utilized quantum coherence induced by a strong coupling beam in a three-level 

atomic system to observe spatial interactions between two ultra-weak beams, for resonance as 

well as off-resonance of the two-photon frequency detuning. In the on-resonance case, the 

enhanced transmission due to EIT allowed us to measure the transverse profile of the interacting 

probe beams in the far-field, in which case we observed phase-dependent interactions akin to 

soliton fusion and repulsion. In the off-resonance case, where incoherent scattering is large, we 

observed side-ways fluorescence images and observed the dependence of the interaction between 

the two weak beams depending on the TPR frequency detuning. We have shown that this system 

has a large set of tunable parameters (single-photon and two-photon frequency detunings, 

coupling beam’s power, relative phase between the probe beams), and that it allows all-optical 

switching and routing of ultra-weak beams, as well as interaction between them. Furthermore, 

since EIT is a natural test bed for slow light as well as stored light22-30, it will be useful to extend 

this system to study quantum memory and quantum logic gates involving two ultra-weak fields 

having phase-dependent spatial interactions. 
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VIII. Conclusions and outlooks 

 

In this thesis, we have described various studies in which atomic coherence was used to enhance 

nonlinear optical processes. A wide parameter space traversing the spatial, temporal and spectral 

domains was investigated. In each case, attention was paid to phenomena that are sensitive to the 

phases in the driven atomic coherences, and methods were developed to use all-optical phase-

control to manipulate the nonlinear atomic response and, alternately, to use the nonlinear atomic 

response to measure the phases in the driving optical fields. 

 In chapter 1, we provided a basic introduction to the concepts necessary for 

understanding atomic coherence enhanced nonlinear optical processes in multi-level atoms. We 

described two-, three- and four-level atomic systems and some important features such as dark-

states and EIT that enhance nonlinear-optical wave-mixing processes by allowing dissipation-

free resonant transitions. We discussed FWM and SWM processes facilitated by EIT, and then 

introduced some phase-sensitive results that will be discussed in the rest of the chapters. 

 In chapter 2, we described experimental observations of multiple EIT spectral windows 

in a ladder-type atomic system that became resolvable when the probe beam was elliptically 

polarized. The multiple peaks arise because the uppermost excited state is comprised of several 

hf levels that are closely lying in energy. Furthermore, the multiple transparency peaks switched 

when the phase in the elliptically polarized beam was varied.  To account for this phase-sensitive 

switching phenomenon, we developed a theoretical model treating the interference between dark-

states in a four-level sub-system. The theoretical results were in qualitative agreement with the 
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experimental observations. Various possible applications exist for such phase-sensitive switching 

of multiple transparency window across frequency, such as AND and OR logic gates. 

 In the work described in chapter 3, a coherent FWM transition was driven in a ladder-

type configuration, such that the initial vacuum mode between the upper excited states was 

parametrically amplified giving rise to the measured FWM radiation signal at that transition 

frequency. Here again, the FWM signal consisted of spectrally asymmetric multiple peaks. We 

experimentally characterized this radiation by varying many parameters, and identified the 

underlying causes for each spectral feature. Unlike FWM radiation driven between the ground 

state and the first excited state, this FWM system showed more complex one-photon and two-

photon decay channels, making it an interestingly mixed system. These spectrally varying decay 

channels, along with the diverse multiplicities of the participating energy levels and the 

associated transition strengths, were studied in order to understand FWM between the 5D and 5P 

fine structures, and also to find the optimum conditions for using this system for practical 

applications. 

 The atomic parameters govern the spectral waveform of the generated FWM signal, often 

imparting spectral asymmetries. In chapter 4, we developed an all-optical interferometric method 

to gain external control over the spectral waveform of the coherent FWM signal. The key lies in 

modulating the relative phase between the two frequency-swept driving beams as their frequency 

is scanned. In the closed atomic contour being driven, this spectral phase evolution is then 

propagated to the optical phase of the parametrically amplified signal. By controlling the rate of 

the spectral phase evolution and the frequency detunings, we demonstrated some waveform-

control applications such as linewidth narrowing, line shape symmetrization and all-optical 

bandwidth switching. The important feature of this method is that drastic changes in the signal 
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waveform can be achieved without altering beam powers, beam directions, or atomic densities. 

Instead, only a phase-shift between the driving beams is enough, making the process desirable 

for situations demanding thermodynamic adiabaticity. In chemical reactions involving several 

multi-photon transitions in close spectral proximity, the phase-controlled waveform shaping 

methods could also be useful in selectively switching transitions on and off (bandwidth 

switching example), or tuning the relative transition strengths between the various transitions 

(line shape symmetrization example).  Moreover, the relative phase at optical frequencies can be 

controlled with a greater precision and resolution than other parameters, and it is gratifying that 

the system response is very sensitive to this highly controllable parameter. Finally, while we 

have discussed controlling the signal waveform by precision control of the input relative phase, 

the converse process will also be useful for interferometric applications. That is, if one of the 

driving beams has passed through an unknown phase-varying element, the FWM signal phase 

yields a measurement of the unknown phase. In light of the fact that FWM processes are ideal for 

quadrature-noise squeezing, this process deserves further study in measuring interferometric 

phase-shifts beyond the shot-noise limit. Also, testing the quantum correlation between different 

spectral mode pairs (spectral-domain fringes) of the amplified fields would augment the studies 

where correlations between spatial mode pairs have been demonstrated54-56. 

 In chapter 5, we described an experiment in which two coexisting MWM transitions were 

driven simultaneously in the same atomic cloud. One transition was a FWM process, while the 

other transition was a SWM process. We demonstrated techniques to control: the relative 

strengths between these two coexisting processes such that they could be made of equal 

magnitudes; the directions between the two amplified signal fields so as to overlap them in the 

same spatial mode; and the relative phase between them so that their phase coherence could be 
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measured. By precision control of the time-delay between two frequency-degenerate driving 

fields, the relative phase between the FWM and SWM signals was varied and the resulting 

temporal beat signal monitored. In this way, the resonant frequency of the atomic transition that 

was driven by the time-delayed fields, i.e. the 5D5/2 - 5P3/2 transition in 85Rb, which is in the 

femtosecond time scale, was measured. The high contrast of the interference signals 

demonstrated the phase-coherence between these two coexisting χ(3) and χ(5) processes. Besides 

high-resolution spectroscopy of optical transitions, such amplitude- and phase-tunability between 

processes of different nonlinear orders will also be important in various avenues, in particular in 

the study of generating high-dimensional stable solitons. The ability to coherently control four- 

and six- photon transitions and selectively tune their nonlinear transition amplitudes will also be 

important in the coherent control of chemical reactions. 

 The work described in chapter 6 dealt with increasing the interferometric capacity of an 

interferometer. In this method, the output of the interferometer has a spectral bandwidth with a 

spectrally evolving phase.  This spectral phase is sensitive to one Mach-Zehnder interferometer, 

while the intensity of the signal envelope is sensitive to a second Mach-Zehnder interferometer. 

In this way, unlike traditional interferometers that can measure the phase difference between one 

pair of optical fields, this interferometer can measure the phase difference between two pairs of 

optical fields in parallel. The underlying mechanism involves coherently mixing all the optical 

fields probing the various arms of the interferometers in one atomic cloud, which then processes 

the various phases and encodes them in the resulting atom-radiated signal field. The method is a 

synergy of the spectral-phase-evolution method of chapter 4 and the coexisting and coherent 

parametric amplifiers of chapter 5.  
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This enhanced phase-processing dimensionality could be useful in various future 

applications. It could be useful when one has to measure space dilations in two orthogonal spatial 

planes synchronously, for instance to measure complex gravitational waveforms. The advantage 

of using this interferometer as opposed to using two independent orthogonal Mach-Zehnder 

interferometers is that the latter scheme will require an intermediary clock to synchronize the two 

phase measurements, which can itself be affected by the unknown space-time dilations being 

measured, thus contributing to systematic errors. In our two-phase measurement scheme, on the 

other hand, the two phases are coupled in the same output optical field simultaneously by the 

atomic nonlinearity and no post-processing temporal synchronization is necessary. Besides being 

useful for measuring unknown phase-shifts, this system can also be useful for optical 

communication in generating optical signals with enhanced information capacity. In particular, 

by precisely controlling the phases of all the driving beams, we can simultaneously encode two 

sets of information in the coherent atom-radiated signal, one of which can be amplitude-

modulated and the other phase-modulated. 

In the experiment described in chapter 7, we explored the possibility of phase-sensitive 

fusion and repulsion between two optical beams at ultralow intensities. Such studies have been 

important in soliton collisions, which are typically driven at high intensities, and recently much 

theoretical interest has been given to observing such collisions between weak optical fields by 

utilizing atomic coherence. Our experiment’s motivation was to observe these interesting 

features. By steering two weak optical fields towards each other by using atomic coherence due 

to a common strong coupling beam, we were able to observe different phase-dependent spatial 

outcomes between the weak optical fields. When the two fields were in phase, they fused and 

enhanced the intensity in the central spatial mode. When they were out of phase, the central 
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spatial mode remained dark while the fields propagated close to this mode due to the attractive 

nature of the induced atomic coherence. Some of the potential applications for this study are all-

optical beam-combination of ultra-weak fields, phase-sensitive gates for multi-port beam routing 

and optical information processing. An immediate and interesting task, which we are currently 

doing, is to complete the theoretical model of the process being investigated. The model consists 

of the transversely varying propagation of dark-state polaritons23, whose bosonic quasi-particle 

nature allows them to occupy the same spatial mode and fuse. 
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