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Abstract

Recent experimental progress has realized strong, efficient coupling of effective two level

systems to waveguides. We study the scattering of multimode photons from such emitters

coupled losslessly to the confined geometry of a one dimensional waveguide. We develop

novel techniques for describing the scattered state of both single and multi-photon

wavepackets and explore how such wavepackets interact with arrays of emitters coupled to

a one dimensional waveguide. Finally, we apply these techniques and analyze the capability

of two particular systems to act as a quantum conditional logic gate.
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Chapter 1

Background and Motivation

1.1 Motivation and experimental progress

Light-matter interactions are of fundamental interest, as this sub-field of physics

contains many interesting phenomena and underlies much of the technology that enables

rapid, long-distance communication. At one time, strong light-matter coupling was

primarily achieved through cavity quantum electrodynamics. In recent years, however,

there has been an extraordinary amount of experimental progress made in controlling and

confining single photons within waveguides and other one-dimensional structures. Various

media have been used to accomplish this task, including nanowires [1], photonic crystals

[2], and microwave waveguides. Additionally, aside from strongly coupling two level

systems to guided modes (with some strengths reaching the regime where a

Jaynes-Cummings Hamiltonian no longer applies [3]), high coupling efficiencies between the

quantum systems and the guided modes have been achieved in excess of 90% [4].

The highly confining geometry of the waveguide combined with strong, controllable

interactions between light and matter immediately suggests that such systems present a

rich opportunity to explore new nonclassical effects and build useful devices for quantum

information processing tasks. Both of these factors motivate the work presented here. We

will develop novel methods of approaching both the single and multi-photon scattering

problems to better understand and describe how photons interact with matter at the

fundamental level. Additionally, we will analyze how to use this interaction to construct a

quantum logical conditional phase (CPHASE) gate between two photons, where the

presence of a control photon imparts a phase of π on a target photon.

This is by no means the first work to study the scattering of photons from emitters in

one-dimensional geometries. Much of the earliest work was done by Shen and Fan using a

scattering matrix formalism [5]. Their approach involves calculating the scattering
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eigenstates of the Hamiltonian and has been successful in describing the scattering of single

photons from a number of scatterers [6] and two photons from two scatterers [7]. Other

authors have used a Lippmann-Schwinger formalism that amounts to finding the poles of a

Green’s function, each of which constitutes a particular path a photon can take [8]. Still

others have approached the few-photon scattering problem from the perspective of

counting all possible events and have developed diagrammatic approaches [9, 10]. Finally,

the authors of [11] derived (concurrently to our work in [12]) the scattering of N photons

from a single two level emitter (TLE) using a physical, time-domain approach. This last

solution appears to provide identical results and scalability to our technique presented later

in Chapter 3.

In this text we will primarily be concerned with describing the final, scattered state of

the photons after they interact with an array of effective two level systems. In considering

this, we are ignoring the rich entanglement that can arise between multiple atoms as a

result of the absorption and re-emission of photons. Such entanglement has been

considered in [13, 14], and much of the work by Baranger’s group (see [15]) explores photon

statistics as a function of time. The reason for ignoring such behavior is that we are,

ultimately, looking to analyze the system’s potential for functioning as a quantum logic

gate. In such a context, two photons will interact with some sort of quantized system and

leave to interfere with other photons at a later time in the computation. Thus, the

behavior of the system itself only matters insofar as it modifies the properties of the two

photons in the long time (scattering) limit.

We note that we will often use the term “atomic” to describe the system that the

photons interact with. We use this term out of convenience rather than necessity, as our

results are valid for any two level system that can be accurately described by a

Jaynes-Cummings Hamiltonian [16, 17]. Such a system could certainly consist of trapped

ions or cold atoms near a waveguide. It could also be accomplished by using

superconducting circuits, quantum dots, ring resonators, nitrogen vacancy centers in
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diamond, or anything else that has an effective two level structure. We will similarly treat

the term ’waveguide’ loosely. As mentioned above, there are many techniques used for

confining light propagation to one dimension. When we refer to a waveguide, we are

considering any system in which photons are constrained such that they can only

propagate in one dimension.

Finally, one of the most important aspects of this work is its treatment of photons as

wavepackets. Much of the research in quantum optics deals with single-mode photons, i.e.

photons defined by only one frequency. This idealized version of a photon can be very

useful and provide insight into many physical systems. It does not, however, describe

realistic photon sources, as a single photon will have a finite duration and uncertainty in its

frequency. These characteristics become especially important when considering photons as

carriers of quantum information. When a photon interacts with an atomic system the

frequency distribution comprising what we call the photon changes. If this change is

significant enough, when it moves on to another step in the computation and interferes

with a second photon they may not accurately perform the desired quantum information

task. Additionally, when multiple photons interact simultaneously with an atomic system

their wavefunctions can become highly entangled. Adding in this consideration has led to

the failure of certain proposals to build quantum logic gates (see [18] and [19]). Ultimately

this fact motivates the work here, as in Chapter 6 we will consider a system that passively

and deterministically acts as a CPHASE gate between two photons after accounting for the

effect of spectral entanglement.

1.2 Theoretical assumptions and general formalism

1.2.1 Field modes

All calculations that follow will make some basic assumptions about the systems in

question and the quantization of the electromagnetic fields. We will not present a rigorous

derivation of quantizing the electromagnetic field in general, leaving it to books, such as
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[17] to describe the process. We will, however, provide some background on how to

formally quantize the field in Appendix B, and we note a recent, interesting approach to

quantization in [20] that essentially posits the existence of traveling photon modes from

experimental results. Regardless of how the field is quantized, we will assume all photons

are confined to move in one dimension within a waveguide and that this field can be

accurately described by left and right traveling field modes.

The positive component of the electric field in the waveguide will have the form

E(+)
a (t, z) =

√
~ωF
2ε0

∫
dωe−i(ωF+ω)t+i(kF+ω/c)zâω

E
(+)
b (t, z) =

√
~ωF
2ε0

∫
dωe−i(ωF+ω)t−i(kF+ω/c)z b̂ω (1.1)

where âω and b̂ω are the annihilation operators for to photons travelling to the right

(corresponding to spatial dependence eiωz/c) or to the left (corresponding to spatial

dependence e−iωz/c) respectively. Frequencies are measured relative to ωF , the central

frequency of the incoming photon wavepacket. ω is the deviation from this frequency so

that at ω = 0 the field has the frequency of ωF . Following the lead of other authors, we are

also assuming that the bandwidth of the wavepacket is sufficiently narrow so that there is

no dispersion in the waveguide, that is ωF = ckf for all frequencies. As usual, c represents

the phase velocity of the photons in the waveguide and, with the aforementioned

assumption, will be equal to the group velocity. We will also assume that all systems are

lossless, that is all photons remain in the waveguide and all atoms emit only into the

guided photon modes. The photon annihilation operators âω and b̂ω have commutation

relationships

[âω, â
†
ω′ ] = [b̂ω, b̂

†
ω′ ] = δ(ω − ω′) [âω, b̂

†
ω′ ] = [b̂ω, â

†
ω′ ] = [âω, b̂ω′ ] = 0 (1.2)

As mentioned in the preceding section, we will be treating the photons as wavepackets.
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In the frequency basis a single photon is described by

|ψ〉 =

∫ ∞
−∞

dωf̃(ω)â†ω|0〉 (1.3)

Here the function f̃(ω) represents the frequency distribution of the photon pulse. Note

that the limits of integration run from −∞ to ∞: we are extending the lower limit from

−ωF to −∞ for mathematical convenience. Such an approximation is well justified because

we have assumed that the photons have a fairly narrow frequency spectrum. Combined

with the fact that they must exist somewhere, that is
∫
dω|f̃(ω)|2 = 1, the probability of

finding the frequency far from ωF (corresponding to a large ±|ω|) is vanishingly small,

allowing the extension of the limit of integration from −ωF to −∞. Additionally, while this

state is fundamentally a linear superposition of an infinite number of possible frequencies,

we will still describe it as a single photon due to the fact that one can construct a detector

to register a single click for this wavefunction.

With this description of a photon wavepacket, a two-photon state is given by

|ψ〉 =
1√
2

∫
dω1dω2f̃(ω1, ω2)â†ω1

â†ω2
|0〉 |ψ〉 =

∫
dω1dω2f̃(ω1, ω2)â†ω1

b̂†ω2
|0〉 (1.4)

Note that there is a coefficient of 1√
2

in front of the state containing two photons in the

same mode. This is a normalization factor that arises from the action of the photon

operators. Here the function f̃(ω1, ω2) describes the frequency spectrum of the wave packet

just as in the single photon case.

Throughout this paper we will also refer to a second set of photon modes, the standing

wave modes. These are superpositions of the travelling photon operators and are given by

ĉω =
âω + b̂ω√

2
d̂ω =

âω − b̂ω√
2

(1.5)

Aside from being a second mathematically convenient, orthogonal basis of photon modes,

these can also be directly excited by using a beamsplitter to transform traveling wave

modes into standing wave modes. An arrangement of such a setup is shown in Fig. 1.1.

Here an incoming travelling wave mode given by ĉin is transformed by the beamsplitter
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into the superposition of (â+ b̂)/
√

2. When the travelling wave modes â and b̂ arrive back

at the beamsplitter, they are transformed into ĉout = (a+ b)/
√

2. This is in the same mode

as ĉin but is travelling in the opposite direction. A similar transformation occurs for a

photon in the d̂in mode, but, due to a phase difference imparted by the beamsplitter,

photons in this mode will acquire a phase of π. Thus we have that d̂in = −d̂out.

Figure 1.1: A diagram showing how to excite the standing-wave modes in a waveguide.
Incoming travelling waves in the ĉ and d̂ modes are converted by the beamsplitter into
standing waves given by the operators (â + b̂)/

√
2 and (â − b̂)/

√
2, respectively. In the

absence of any scatterers in the waveguide, each incoming mode will leave in the same port
of the beamsplitter it entered, with an overall phase difference of π between them.

Finally, we will often refer to waveguides that are ‘unidirectional.’ This means that the

atom only interacts with one set of travelling modes and, as a result, photons will only

propagate in one direction. Such a feat can be accomplished in several ways. One is to add

a mirror at one end of a waveguide, place the atom very close to the mirror, and use

nonreciprocal elements to separate the incoming and outgoing photons. The mirror ensures

that all light leaves in the same way it entered, and if the atom is placed close to the mirror,

and at an integer number of wavelengths away, it will couple strongly to the field. We have

explored the field modes of this realization of a unidirectional waveguide in the appendix of

[12]. Another way is to create a system in which scatterers couple asymmetrically to

waveguide modes so that photons are only able to travel in one direction. An example of

this has been studied in [21], where atoms will emit photons of different polarizations in

6



different directions. Finally, using the standing wave modes and beamsplitter arrangement

in Fig. 1.1 along with a nonreciprocal element to separate incoming and outgoing photons

also allows one to create an effective unidirectional waveguide. This is because an atom

placed correctly in the waveguide will only interact with the ĉ or d̂ modes and the photon

will always leave the beamsplitter in the same port it entered.

The opposite of this is a bidirectional waveguide, which is a structure that does not

preferentially favor propagation in one direction or another and in which the scatterers

couple equally to both left- and right-travelling photon modes. Most of the work presented

here will focus on bidirectional waveguides, as they are far easier to construct.

1.2.2 Two level systems

The Hamiltonian for a single two level system interacting with the quantized waveguide

modes (in a suitable interaction picture) can be given by Eq. 1.6. This is a typical

Jaynes-Cummings interaction modified to account for the multimode nature of the

incoming photons.

HI =~g
[
eikF zj Â(t− zj/c) + e−ikF zj B̂(t+ zj/c)

]
e−iδtσ†j +H.c. (1.6)

Here δ = ωF − ωA is the difference between the central frequency of the incoming pulse and

the atom’s transition frequency, zj is the location of the atom along the waveguide,

σ†j = |e〉j〈g| represent the raising operator for the jth atom, and g is the coupling strength

between the atoms and the field. We are making the Wigner-Weisskopf approximation by

assuming that the photons are spectrally narrow enough that the coupling is proportional

to
√
ωA rather than

√
ωA + ω and thus is constant.

For compactness, we have introduced the field operators

Â(t) =
1√
2π

∫
dωe−iωtâω B̂(t) =

1√
2π

∫
dωe−iωtb̂ω (1.7)

which satisfy commutation relations [Â(t), Â†(t′)] = δ(t− t′) and [B̂(t), B̂†(t′)] = δ(t− t′).
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Additionally, as Â and B̂ represent different right-travelling and left-travelling photons

respectively they commute with one another.

One point to note is that, technically, this Hamiltonian represents an atom with an

infinite bandwidth. It has the same coupling for all input photons fields regardless of

whether they are on resonance or not. In our treatment, the bandwidth is enforced by the

finite width of the photon wavepackets seen in Eq. 1.3 and 1.4, as we will use functions

that are normalized to one and that decay sufficiently fast so that only frequencies close to

resonance will contribute to the overall solution.

Finally, while we will ultimately be concerned with describing only the state of the

photons in the long time limit, while obtaining solutions we will be working with the atomic

basis as well. As a result, we will be writing the total state of the atom-photon system in

terms of products of the form of Eq. 1.8, presented for a single photon and multiple atoms.

|ψ(t)〉 = |ψg(t)〉 ⊗ |G〉+
N∑
j=1

|ψj(t)〉 ⊗ |j〉 (1.8)

The state |G〉 = |g〉 ⊗ |g〉 . . .⊗ |g〉, is a tensor product of each atom being in the ground

state. Similarly, the state |j〉 = |g〉 ⊗ . . . |e〉 . . .⊗ |g〉 is a tensor product of the states of all

atoms being in the ground state and the jth atom being in the excited state. Each of these

states is associated with a corresponding photon wavefunction |ψj(t)〉 which, for a system

containing only one quantum of energy, can be written as

|ψg(t)〉 =

∫
dω
(
fa(t, ω)âω + fb(t, ω)b̂ω

)
|0〉 |ψj(t)〉 = fj(t)|0〉 (1.9)

where the state may have photons in both the â and b̂ modes. Ultimately it is these

functions, and particularly the function corresponding to the ground state of the atomic

system, that will describe the scattered state of an incoming photon wavepacket.
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1.3 Conditional quantum logic

In Chapters 2-5 we will develop and analyze photon scattering from two level systems

coupled losslessly to a 1-D waveguide. In Chapter 6 we will use the results to analyze how

one may use an array of atoms coupled to a waveguide to construct a quantum logic gate.

Quantum logic opens up new possibilities; the ability to perform logical operations on

superpositions of states, in principle, enables massive parallelization of computational

tasks. Additionally, the logic present in quantum mechanics allows for certain algorithms

to scale more efficiently than on a classical computer. These benefits have been practically

challenging to achieve, however, as measurement of the output provides only probabilistic

information about the final state of the computation. Quantum systems are incredibly

sensitive to noise, and quantum computation typically requires pure quantum systems in

which the experimenter has the maximum information allowed about the system. (See [22]

and [23] for more on quantum computation and quantum information). In order to address

the sensitivity issue, photons have been considered as carriers of quantum information.

They can preserve their quantum state over large distances as they can be confined to

materials where they interact weakly with their environment. Moreover, systems with

strong light-matter coupling at the single photon level have been experimentally realized.

This controllable interaction, along with the small timescale of photon processes, provides

an ideal medium for quantum information processing (QIP).

The challenge associated with using photons for QIP lies in engineering a robust way

for them to interact with one another. This is necessary for universal quantum

computation, which requires a set of single photon operations and at least one conditional

logic gate. The transformation we will be interested in is a conditional phase (or CPHASE)
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gate. In terms of logical quantum states, this transformation is given by

|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉

|1〉 ⊗ |0〉 → eiφ1|1〉 ⊗ |0〉

|0〉 ⊗ |1〉 → eiφ1|0〉 ⊗ |1〉

|1〉 ⊗ |1〉 → eiφ2|1〉 ⊗ |1〉 (1.10)

where the state |1〉 ⊗ |0〉 represents a two qubit state with one qubit (carrier of quantum

information) in the |1〉 and the other in the |0〉 state. An ideal CPHASE gate will impart a

conditional phase of π only when there are two photons present, given by φ2 − 2φ1 = π,

though in principle any phase difference between φ1 and φ2 would enable universal

quantum computation with photonic qubits. Such an operation requires nonlinear

photon-photon interactions; a linear process will simply give φ2 = 2φ1, leading to no useful

phase shift for computation.

Many methods have been proposed to achieve this operation between photons. Some,

such as [24–26], use active elements or atomic systems controlled by classical fields to

construct a CPHASE gate. This has the downside of being difficult to scale to large

numbers of gates, as each gate requires a significant amount of resources to construct.

Others, like that presented in [27], use only linear optics combined with destructive

measurements and post-selection of certain events. The issue with this approach is that it

successfully performs the desired operation in a probabilistic manner, requiring a

computation to be redone multiple times to arrive at a correct result.

Many other designs to construct a CPHASE gate rely on nonlinear crystals. In these

crystals, two photons can be absorbed simultaneously and re-emitted. Unfortunately, as

shown by J. Shapiro [18] and J. Gea-Banacloche [19], if the photons are considered to be

wavepackets rather than single-mode fields, the shape of the photons are significantly

distorted by the entanglement introduced in the interaction. This distortion poses a

problem for QIP tasks as, in later steps of the computation, photons which have interacted
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will interfere differently than photons that have not interacted. Both [18] and [19]

demonstrated that there is a fundamental trade-off between having a gate succeed at

performing the CPHASE operation and the amount of phase shift.

Some have considered using two level or three level systems as phase gates. In [28] the

authors pointed out that the nonlinearity present in the scattering of two photons from a V

system could be leveraged to construct a quantum conditional-phase (CPHASE) gate. The

difficulty that arises with this gate is that the entanglement created between the photons

again tends to destroy the gate operation. Removing it would require reflecting the

photons many, many times through the system to arrive at a phase shift of π. Additionally,

Nysteen et. al. [29] studied the ability of a single two level emitter to act as a conditional

phase gate. The highest operating fidelity they could accomplish was around 84%, again in

part due to the spectral entanglement created between the photons by their interaction

with the atom.

Recently, Brod and Combes [30] demonstrated that an array of approximately 20 atoms

in a particular 1-D unidirectional setup could perform the CPHASE operation passively

and deterministically, while preserving the spectral shape of the photons. Their work shows

that it should be possible, in principle, to passively remove the effects of entanglement

between the photons while still allowing them to interact. The challenge posed by their

system is again one of scaling: the system they propose, which we will describe in more

detail in Chapter 6, requires many non-reciprocal optical elements to ensure that photons

continue to travel in the same direction. This would be incredibly difficult to construct

experimentally without adding significant losses. We will show, however, that it is possible

to use a transparency window between pairs of atoms to construct a CPHASE gate that

works identically to the gate proposed in [30], but in a more experimentally achievable

setting.
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1.4 Entanglement

The final topic to address in this chapter is our working definition of entanglement. The

study of entanglement is a very illuminating and complicated field, but the majority of

entanglement measures (such as concurrence, three tangle, logarithmic negativity, etc.) do

not easily extend to describe multimode photon states. They are generally defined for

discrete quantum systems, such as the atomic basis introduced above.

The scattered states of photons will be entangled in two different senses; their spectral

distributions will have components that are non-separable, and the final state will be a

linear superposition of different terms. To see what we mean, consider the following

wavefunction and its spectral distribution f̃(ω1, ω2), which, in Section 3.4, will be shown to

be the scattered state of two counter-propagating photons from a single two level emitter

positioned at the origin.

|ψ〉 =

∫
dω1dω2f̃(ω1, ω2)â†ω1

â†ω2
|0〉 (1.11)

f̃(ω1, ω2) =
1√
2

[
t(ω1)f̃(ω1)t(ω2)f̃(ω2) + r(ω1)f̃(ω1)r(ω2)f̃(ω2) +

1

2
f̃ent(ω1, ω2)

]
(1.12)

This state is obviously entangled because it is a linear superposition of three different

components, t(ω1)f̃(ω1)t(ω2)f̃(ω2), r(ω1)f̃(ω1)r(ω2)f̃(ω2) and 1
2
f̃ent(ω1, ω2). The state is

also entangled as the final term 1
2
f̃ent(ω1, ω2) represents a non-separable, spectrally

entangled component of the wavefunction, whereas the first two can be separated into a

product of functions of ω1 and ω2. For multimode photons, separable states have a form

similar to Eq. 1.13a, where the two photon state can be expressed as a product of single

photon states. On the other hand, Eq. 1.13b represents a non-separable, and thus

entangled, state, provided that it is not possible to write the function f̃(ω1, ω2) in terms of
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functions of ω1 and ω2 separately.

|ψ〉 =
(∫

dω1f̃a(ω1)â†ω1
|0〉

)
⊗

(∫
dω2f̃b(ω2)b̂†ω2

|0〉
)

(1.13a)

|ψ〉 =

∫
dω1dω2f̃(ω1, ω2)â†ω1

b̂†ω2
|0〉 (1.13b)

In what follows it is this non-separable part of the wavefunction that we will refer to as

the entangled component of the wavefunction. We make this choice because the term arises

from an entangling process between two photons that correlates either their arrival times or

their frequencies. Additionally, it is this spectral, non-separable entangling term that leads

to the failure of many of the proposals to perform quantum logic operations between

photons and that is removed by the gate described in [30].

13



Chapter 2

Scattering of Single Photons From Many Atoms

2.1 Introduction

Single photon transport through materials has been extensively studied and, as of this

writing, is an ongoing area of research [5, 31–36]. As a result, this chapter will focus on

describing a new way to calculate single photon transmission coefficients, to explore the

effect of dipole-dipole interactions on photon transport properties, and to study one

particular transmission window that appears for a large number of unequally spaced atoms.

Note that many of these results have already been presented in [37], specifically Sections

2.3.1, 2.4.1, and 2.5. This chapter begins by following a derivation of the single photon

scattered state presented in [32]. After some analysis of this solution, we then connect it to

a solution derived by considering the scatterers as mirrors with frequency-dependent

transmission and reflection coefficients. Finally, we will use these approaches to analyze

photon transport properties through multiple atoms.

2.2 Exact N-atom solution

2.2.1 Calculation of the scattered state

We begin with solving the scattered state of a photon from a system consisting of N

identical atoms, at arbitrary positions, coupled to a 1-D waveguide supporting transport in

both directions, as illustrated in Fig. 2.1.
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Figure 2.1: A diagram of the system being considered. All photons are constrained to move
in one dimension in a waveguide coupled to an array of n atoms at arbitrary positions. In
what follows, z will denote the distance along a waveguide with z=0 being the location of
the center of the atomic array.

The interaction picture Hamiltonian for such a system is given by

H = ~g
N∑
j=1

(
φ̂j(t)e

−iδtσ†j + φ̂†je
iδtσj

)
(2.1)

where the operators σ†j and σj raise and lower the jth atom and φ̂j is a superposition of the

left and right traveling modes at position zj.

φ̂j(t) = eikF zj Â(t− zj/c) + e−ikF zj B̂(t+ zj/c) (2.2)

Â(t) is the same as Eq. 1.7. These combined operators have the commutator

[φ̂j(t), φ̂
†
k(t1)] = eikF (zj−zk)δ

(
t− t1 − zj−zk

c

)
+ e−ikF (zj−zk)δ

(
t− t1 +

zj−zk
c

)
. For a single

photon, the state of the system at any time in the interaction picture can be expressed by

Eq. 1.8, reproduced below.

|ψ(t)〉 = |ψg(t)〉 ⊗ |G〉+
N∑
j=1

|ψj(t)〉 ⊗ |j〉 (2.3)

Substituting this into the Schrödinger equation and exploiting the orthogonality of the

atomic basis yields differential equations for the photon states |ψg(t)〉 and |ψj(t)〉 of

˙|ψg(t)〉 = −ig
N∑
j=1

φ̂†je
iδt|ψj(t)〉 ˙|ψj(t)〉 = −igφ̂j(t)e−iδt|ψg(t)〉 (2.4)

At this step we can formally integrate the ground state as

|ψg(t)〉 = |ψI〉 − g2

∫ t

−∞
dt1

N∑
k=1

φ̂†k(t1)eiδt1|ψk(t1)〉 (2.5)
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and substitute it into the excited state. Note that |ψI〉 represents the initial state of the

photon field, and in this case is given by |ψI〉 =
∫
dωf̃(ω)

(
αâ†ω + βb̂†ω

)
|0〉 where f̃(ω) is a

normalized function describing the spectrum of the wavepacket and |α|2 + |β|2 = 1. This

describes a single photon that has (possibly) been sent down two different spatial modes by

a linear element such as a beamsplitter. We have chosen to write the initial state in this

form so that it will be easy to modify the final state to describe a photon incident from the

left or the right. We are also assuming that the atoms are all initially in their ground state.

The differential equation for the jth excited state then becomes

˙|ψj(t)〉 = −igφ̂j(t)e−iδt|ψI〉 − g2

N∑
k=1

∫ t

−∞
dt1φ̂j(t)φ̂

†
k(t1)e−iδ(t−t1)|ψj(t1)〉 (2.6)

Normal ordering the photon operators φ̂j and applying their commutator gives the

equation

˙|ψj(t)〉 = −igφ̂j(t)e−iδt|ψI〉 − g2
N∑
k=1

∫ t

−∞
dt1φ̂

†
k(t1)φ̂j(t)e

−iδ(t−t1)|ψj(t1)〉

−g2
N∑
k=1

∫ t

−∞
dt1

[
eikF (zj−zk)δ

(
t− t1 −

zj − zk
c

)
+ e−ikF (zj−zk)δ

(
t− t1 +

zj − zk
c

)]
e−iδ(t−t1)|ψj(t1)〉

(2.7)

With this, several terms in the expression will vanish. φ̂j(t)|ψk(t1)〉 = 0 as the field is in the

vacuum mode for this term. Additionally, as t ≥ t1, only delta functions where the position

term is negative will contribute. Note also that if j = k the delta function is only satisfied

at the upper limit of integration, adding an extra factor of 1/2 to this term. All this leads

to the differential equation

˙|ψj(t)〉 = −igφ̂j(t)e−iδt|ψI〉 − g2

N∑
k=1

ei(kF−δ)|zj−zk||ψk(t− |zj − zk|/c)〉 (2.8)

Here, following the work of [32], we transform to the Fourier domain. Doing so, |ψ̇j(t)〉

becomes

˙|ψj(t)〉 =
1√
2π

∫
dωe−iωt(−iω)|ψ̃j(ω)〉 (2.9)
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Similarly, the initial state can be written as

−igφ̂j(t)e−iδt|ψI〉 =
1√
2π

∫
dω′e−i(ω

′+δ)t
[
αei(kF+ω′/c)zj + βe−i(kF+ω′/c)zj

]
f̃(ω)

=
1√
2π

∫
dωe−iωt

[
αei(kF+(ω−δ)/c)zj + βe−i(kF+(ω−δ)/c)zj

]
f̃(ω − δ) (2.10)

where we have defined ω = ω′ + δ in this case. Transforming the last term of Eq. 2.8 to the

Fourier domain and removing all the integrals and factors of e−iωt from the equation, we

are left with

−iω|ψ̃j(ω)〉 =− ig
[
αei(kF+(ω−δ)/c)zj + βe−i(kF+(ω−δ)/c)zj

]
f̃(ω − δ)

− g2

N∑
k=1

ei(kF+(ω−δ)/c)|zi−zj ||ψ̃j(ω)〉 (2.11)

We now define a matrix |ψ̃e(ω)〉 of atomic states, a matrix θ̃(ω) containing the phase

terms (both given below), and a j × j matrix M̃(ω) that has elements

M̃j,k(ω − δ) = ei(kF+(ω−δ)/c)|zi−zj |.

|ψ̃e(ω)〉 =

 |ψ̃1(ω)〉
...

|ψ̃N(ω)〉

 θ̃(ω) =

ei(kF+ω/c)z1

...
ei(kF+ω/c)zN

 (2.12)

With these definitions Eq. 2.11 becomes

− iω|ψ̃e(ω)〉 = −ig
[
αθ̃(ω − δ) + βθ̃∗(ω − δ)

]
f̃(ω − δ)− g2M̃(ω − δ)|ψ̃e(ω)〉 (2.13)

In terms of the matrix state, the solution to this equation is

|ψ̃e(ω)〉 = −ig
[
g2M̃(ω − δ)− iωĨ

]−1[
αθ̃(ω − δ) + βθ̃∗(ω − δ)

]
f̃(ω − δ) (2.14)

Eq. 2.14 can be substituted into Eq. 2.5 after similarly translating the ground state to the

frequency domain. We are primarily concerned with the long time limit (t→∞) when the

photon has left the system and all atoms are in their ground state. This scattered state is

given by

|ψg(∞)〉 =

∫
dω
(
fa(ω)â†ω + fb(ω)b̂†ω

)
|0〉 (2.15)
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and the spectrum functions fa and fb describe the final state of the photon after

interacting with the system. This leads to scattered spectrum functions

fa(ω) = αf̃(ω)− g2θ̃∗T (ω)
[
g2M̃(ω)− i(ω + δ)Ĩ

]−1[
αθ̃(ω) + βθ̃∗(ω)

]
f̃(ω)

fb(ω) = βf̃(ω)− g2θ̃T (ω)
[
g2M̃(ω)− i(ω + δ)Ĩ

]−1[
αθ̃(ω) + βθ̃∗(ω)

]
f̃(ω) (2.16)

where θ̃T (ω) is the transpose of θ̃(ω).

From a computational perspective, it is useful to write this as a sum over the

eigenvalues of
[
g2M̃(ω)− i(ω + δ)Ĩ

]−1
. As the term containing (ω + δ) is already diagonal,

we diagonalize M̃ as M̃(ω) = P̃ (ω)D̃(ω)P̃−1(ω). Using the fact that

P̃ (ω)P̃−1(ω) = P̃−1(ω)P̃ (ω) = Ĩ, as it is made of normalized eigenvectors of M̃(ω), the

whole matrix inverse becomes

[
g2M̃(ω)− i(ω + δ)Ĩ

]−1
= P̃ (ω)

[
g2D̃(ω)− i(ω + δ)Ĩ

]−1
P̃−1(ω) (2.17)

As written, the inverse
[
g2D̃(ω)− i(ω + δ)Ĩ

]−1
is diagonal and will have nonzero

elements

1

g2λj(ω)− i(ω + δ)
(2.18)

where each λj(ω) is an eigenvalue of M̃(ω). Now the matrices can be converted to sums

over the different eigenvalues so that the final spectrum becomes

fa(ω) =

(
α− g2

N∑
i=1

∑N
j,k=1 e

−i(kF +ω/c)zj
[
αei(kF +ω/c)zk + βe−i(kF +ω/c)zk

]
P̃ [j, i](ω)P̃−1[i, k](ω)

g2λi(ω)− i(ω + δ)

)
f̃(ω)

fb(ω) =

(
β − g2

N∑
i=1

∑N
j,k=1 e

i(kF +ω/c)zj
[
αei(kF +ω/c)zk + βe−i(kF +ω/c)zk

]
P̃ [j, i](ω)P̃−1[i, k](ω)

g2λi(ω)− i(ω + δ)

)
f̃(ω)

(2.19)

where P̃ [j, i] refers to the j, ith element of P̃ .

Assuming that the photon begins in the Â mode (input in the waveguide from the left)
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α = 1, β = 0, and the output spectrum has the form

fa(ω) =

(
1− g2

N∑
i=1

∑N
j,k=1 e

−i(kF+ω/c)(zj−zk)P̃ [j, i](ω)P̃−1[i, k](ω)

g2λi(ω)− i(ω + δ)

)
f̃(ω) = t(ω)f̃(ω)

fb(ω) =

(
− g2

N∑
i=1

∑N
j,k=1 e

i(kF+ω/c)(zj+zk)P̃ [j, i](ω)P̃−1[i, k](ω)

g2λi(ω)− i(ω + δ)

)
f̃(ω) = r(ω)f̃(ω)

(2.20)

where t(ω) and r(ω) are frequency-dependent transmission coefficients with the property

that |t(ω)|2 + |r(ω)|2 = 1.

That the interaction can be described by two coefficients is a significant result that we

will use to develop alternative means of deriving the transmission and reflection coefficients

of the scattered photon. This occurs primarily because of the fact that the

Jaynes-Cummings Hamiltonian only contains energy-conserving terms and, while the

photon’s overall wavefunction can be modified by its interaction with the atom, each

individual frequency (i.e. âω) must be mapped to either the transmitted or reflected field.

2.3 Cavity solution

The fact that photon scattering from arrays of atoms can be described by

frequency-dependent transmission and reflection coefficients suggests that one could treat

the atom as a frequency-dependent beamsplitter and then apply techniques from classical

optics to deal with the scattering of the photons. Here we present two different ways of

conceptualizing what happens, the first by summing up all the possible events and the

second by treating the system as an array of cavities. We note that the idea behind these

methods underlies the transfer-matrix approach to photon scattering, which has been

presented for N scatterers in [6, 33].
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2.3.1 Summing events

The first technique presented is to sum a series of all possible reflection and

transmission events for a photon initially in the âω or b̂ω mode. By solving Eq. 2.19 for a

single atom with the photon in either the Â mode or the B̂ mode it can be shown that only

the reflection coefficient depends on the position of the scatterer. The coefficients are given

below

rR(z0) = −g
2e2i(kF+ω/c)z0

g2 − i(ω + δ)
rL(z0) = −g

2e−2i(kF+ω/c)z0

g2 − i(ω + δ)
t = − i(ω + δ)

g2 − i(ω + δ)
(2.21)

where rR and rL correspond to reflections from right-traveling left-traveling photons

respectively and t is the frequency-dependent transmission coefficient. These are related to

the final spectrum of the photons by

freflected(ω) = rR,L(z0)f̃(ω) ftransmitted(ω) = tf̃(ω) (2.22)

For the case of a pair of atoms centered at z = 0 and with separation d we will define

r = rR(−d/2) = rL(d/2) and r′ = rL(−d/2) = rR(d/2), as the symmetry in the position of

the two atoms makes the reflection and transmission coefficients symmetric as well.

Assuming that the photon is incident from the left, by summing up all reflection and

transmission coefficients we get that the total reflection coefficient is

r + t2r′ + t2r′
3

+ . . . = r +
t2r′

1− r′2
(2.23)

It is a simple matter from here to plug in the defined expressions in Eq. 2.21 to

demonstrate that the reflection coefficient is identical to fb from Eq. 2.20 for the same

atomic positions. Similarly, the overall transmission coefficient is

t2 + t2r′
2

+ . . . =
t2

1− r′2
(2.24)

and this yields precisely fa when Eq. 2.20 is again evaluated with two atoms.

The possibility to view the two atoms as a “cavity” helps to explain why the atomic

20



separation affects both the amplitude and phase of the reflected and transmitted fields (or

why it effectively changes the coupling and detuning of the system). Changing the

separation between atoms modifies which frequencies are in resonance with the cavity, thus

changing the transmitted and reflected spectra. “Atomic cavities,” that is, cavities where

the “mirrors” are atomic systems (generally consisting of more than two atoms), have been

studied for various uses by a number of authors [38–40]. Additionally, a “cavity” formed by

only two atoms has been studied by Gonzalez-Ballestero, Garcia-Vidal and Moreno in [41].

2.3.2 Coupled atomic cavities

Figure 2.2: The fields used to consider the system as a series of interactions.

The second technique presented is to envision an array of atoms as a series of coupled

cavities and to apply methods from classical optics to find the total reflected and

transmitted fields. To begin, we define left and right traveling fields inside each atomic

‘cavity’, as shown in Fig. 2.2. The fields in the jth cavity can then be connected to the

fields in the other cavities by the reflection and transmission coefficients defined in Eq. 2.21

via the recurrence relationships

ER
j = tER

j−1 + rR(zj)E
L
j

EL
j = tEL

j+1 + rL(zj+1)ER
j (2.25)

A photon initially in the Â mode (coming from the left) will have boundary conditions

ER
0 = 1 and EL

N = 0 and the reflected and transmitted fields are, respectively, given by EL
0

and ER
N . It is possible to write the solution to these two fields in terms of several matrices,
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though it is not presented here as the general form provides little insight. This method also

does give precisely the expected form for Eq. 2.20 for two atoms.

The real advantage of this method in finding the scattered state of a photon is that it

can much more easily deal with multiple, nonidentical atomic systems. The first method

presented in this chapter, solving the Schrödinger equation directly, becomes significantly

more complicated when the resonant energies of each of the scatterer is different. The

second method of summing transmission and reflection events becomes challenging when

dealing with more than two systems, as it requires dealing with multiple sums. This last

method provides the most generality, as one can network any number or type of systems,

provided the spectrum is only multiplied by a frequency-dependent reflection or

transmission coefficient.

2.4 The Markovian approximation

Before analyzing the transmitted and reflected spectra of a single photon from an array

of scatterers, we first explore a simplifying approximation. By using a coupling that is

constant in frequency in our Hamiltonian we are assuming that the pulse is spectrally

narrow enough that
√
ω + ckF ≈

√
ckF (1 + ω

2ckF
) ≈
√
ckF . This suggests that the frequency

component in exponential terms such as ei(kF+ω/c)zj may be too small to make a meaningful

contribution to the solution. While it is tempting to approximate the exponentials as

ei(kF+ω/c)zj ≈ eikF zj , the fact that the complex exponential is periodic means that for

certain values of zj,
ω
c
zj may be on the order of 2π or greater. When this is the case, a

small change in ω can lead to a significant change in the overall phase of the term. The

characteristic length for this depends on the spectral width of the pulse, which we will

represent as σω. If the pulse bandwidth is on the order of a GHz, for O(σωzj/c) ≈ 2π the

separation between atoms must be on the order of a meter. If the bandwidth is on the

order of a MHz, for this term to be of order 2π, zj ≈ 103m = 1km. For optical experiments

with closely spaced atoms (often on the order of µm) these terms will certainly vanish.
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Even for microwave experiments with a central frequency on the order of a GHz,

sufficiently narrow band photons can still require separation on the order of 100-1000m,

well beyond the length scale of most experiments.

Despite the rather large separations required to achieve a regime where terms like ωzj/c

will significantly modify the spectral distribution of the photon, there has been much

interest in studying non-Markovian behavior. The validity of this approximation has been

considered in several papers, notably in [41] where the authors explore this question in

depth, and in [39, 40] where the non-Markovian properties are explored for particular

systems. As mentioned in [41], there is a further consideration; if the coupling is on the

order of the central frequency of the waveguide (g2 ≈ ckF in our formalism) then the

Markovian approximation is no longer valid. This is not typically a problem, as the

majority of atomic systems coupled to guided photon modes will have couplings on the

order of a MHz or GHz, whereas optical photons will have frequencies on the order of

500THz.

In what follows, we show the numerical agreement between the Markovian and

non-Markovian solutions, and visualize the difference between the two. To see how the

system responds to a single photon it is useful to define an intensity transmission

coefficient T (ω) = |t(ω)|2, where t(ω) is defined in Eq. 2.20. The utility of such a definition

is that it is independent of the choice of input pulse shape and describes the atomic

response to a monochromatic input. Note that in all figures we are choosing parameters

that optimize transmission. The choice of parameters will be justified in section 2.4.2, but

we present results here to show how well the Markovian approximation works for the

transmission window we will be studying.
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Figure 2.3: A comparison of the full intensity transmission coefficient T = |t(ω)|2 for N = 2
atoms as a function of dimensionless parameter ω/g2. The parameter σωzj/c represents the
scaling of the position between the atoms. In this plot δ = g2 and the atoms are spaced at
a distance d = 3π

4kF
. Percent error is between the Markovian and full solutions.

Figure 2.4: The same plots as Fig. 2.3 but with N = 12 atoms. The atoms have been
spaced to optimize transmission, as will be described in Fig. 2.12

Figure 2.5: The same plots as Fig. 2.3 but with N = 100 atoms. The atoms have been
spaced to optimize transmission, as will be described in Fig. 2.12

For a pulse of frequency bandwidth on the order of a GHz, a scaling factor of σωzj/c of

order 10−5 would translate to a separation of 3 micrometers between each atom. If the
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pulse is on the order of a MHz it would correspond to 3 mm between atoms, which is

significantly larger than many experimental setups for quantum objects. As can be seen in

these figures, the Markovian approximation and the full solution agree very well even as

the number of atoms becomes very large. When σωzj/c is of order 10−5 the percent error

between the exact and approximate terms is of order 1% or less in the region of high

transmission. For N = 100 atoms, it is clear that the Markov approximation does not

describe some of the periodic structure, but the magnitude of this difference becomes very

small when transmission is high. As such, overall transport properties of a photon will not

be significantly modified by ignoring Markovian effects.

This suggests that for spectrally narrow pulses interacting with quantum systems there

is no need to consider the full, non-Markovian solution even when dealing with many

atoms. Thus, in the following analysis we will make the Markovian approximation and

neglect terms on the order of σωzj/c. In practice, this means neglecting anything

multiplied by zj/c, as it will be too small to contribute meaningfully to the final solution.

2.4.1 Transport properties of one and two atoms

For a general arrangement of atoms it is impossible to derive an analytic solution for

the transmission and reflection coefficients in Eq. 2.19 due to the need to invert a matrix.

As such, we will present analytic results for the transmission properties of a single photon

through one and two atoms, describe general properties of the solution for N atoms, and

present some results for higher numbers of atomic systems. Note that in this section,

unless otherwise specified, we will assume that the photon is initially input from the left

(the âω mode).

From Eq. 2.21, in the Markovian approximation a single photon scattering off a single

atom from the left will have its spectra modified by

fa(ω) = tf̃(ω) = − i(ω + δ)

g2 − i(ω + δ)
f̃(ω) fb(ω) = rL(z0)f̃(ω) = − g2e2ikF z0

g2 − i(ω + δ)
f̃(ω) (2.26)

25



This formula has been extensively studied [5, 12, 42], but for the purposes of this work

it has two important properties. First, as mentioned before, the scattered state can be

described by frequency-dependent reflection and transmission coefficients. Within these

coefficients, the parameter g2 gives the strength of the coupling between the atom and the

waveguide photon modes and the parameter δ represents the detuning between the central

field of the photon and the atom’s transition frequency. Second, a reflected photon will

pick up a phase dependent on its position (and frequency when the Markovian

approximation cannot be applied).

We will analyze the behavior of this system using the intensity transmission coefficient

T (ω) = |t(ω)|2. Fig. 2.6 shows how this parameter changes with respect to dimensionless

variables ω/g2 and δ/g2. As expected, on resonance (δ = 0) transmission is zero and by

changing the detuning of the photon, the location of this zero point can be shifted.

Figure 2.6: A plot of single photon transmission through a single atom in terms of dimen-
sionless parameters ω/g2 and δ/g2. Note that detuning the photon from the atom merely
shifts the location of the transmission minima.

For two atoms centered at position z0 and separated by a distance d, the scattered

26



spectrum becomes

fa(ω) = t(ω)f̃(ω) = −1

2

[g2
(
1 + e−ikF d

)
+ i(ω + δ)

g2
(
1 + eikF d

)
− i(ω + δ)

+
g2
(
1− e−ikF d

)
+ i(ω + δ)

g2
(
1− eikF d

)
− i(ω + δ)

]
f̃(ω)

fb(ω) = r(ω)f̃(ω) = −1

2

[g2
(
1 + e−ikF d

)
+ i(ω + δ)

g2
(
1 + eikF d

)
− i(ω + δ)

−
g2
(
1− e−ikF d

)
+ i(ω + δ)

g2
(
1− eikF d

)
− i(ω + δ)

]
e2ikF z0 f̃(ω)

(2.27)

This is slightly different than the form we presented in [37] and that was presented by

others in [15, 32, 36, 41]. We have chosen to represent the scattered spectrum from two

atoms as above to connect it to the eigenvalues of M̃ , the λj(ω) terms in Eq. 2.20. As

pointed out in [33], a chain of N atoms will have collective coupling and detuning rates

given by the poles of Eq. 2.18. In the notation presented here, then, the effective coupling

rates of a system are given by Re[g2λj(ω)] and the effective detuning are δ − Im[g2λj(ω)].

Without the Markovian approximation this leads to an infinite number of poles, as λj(ω)

contains the periodic term eiωzj/c. When the Markovian approximation is applied the

periodic functions vanish, however, and the number of poles reduces to just N.

These poles can be clearly seen in the denominator of Eq. 2.27; the terms

g2Re[1± eikF d] and δ ± g2Im[eikF d] correspond to the two effective couplings and detunings

respectively. For two atoms, these factors represent the coupling of the system to the

different standing wave modes given by Eq. 1.5, provided the pair is centered at the origin.

As the traveling wave modes can be written as superpositions of the standing wave modes,

it comes as no surprise that the final spectrum can be written as above. Finally, for

comparison, we also give the same form presented in other works for the transmitted and

reflected spectra, where we define φ = kFd, as in the Markovian approximation all

positions act effectively as phases.

fa(ω) = − (ω + δ)2

(g2 − i(ω + δ))2 − g4e2iφ
f̃(ω)

f̃b(ω) = −g2e−iφ × (1 + e2iφ)(g2 − i(ω + δ))− 2g2e2iφ

(g2 − i(ω + δ))2 − g4e2iφ
f̃(ω) (2.28)

The addition of a second atom opens up new transmission possibilities as compared to a
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single atom. In agreement with other authors [15, 33, 43], we find that the intensity

transmission coefficient T (ω) for the two-atom system has the form of

T (ω) =
(ω + δ)4

(ω + δ)4 + 4g4 ((ω + δ) cos(kFd) + g2 sin(kFd))2 (2.29)

As noted by other authors [15, 33, 40], the presence of a second atom opens up a new

transmission window so that on resonance (ω = 0), unlike for a single atom, T (0) = 1. This

condition occurs when tan(kFd) = −δ/g2. At this point, the transmission coefficient

becomes

T (ω,− tan−1(δ/g2)) =
1

1 + 4g4ω2/(ω + δ)4
(2.30)

As can be seen in Fig. 2.7, when δ/g2 is small, the transmission window is narrow and

moderately asymmetric. As δ/g2 approaches 1 the window broadens and becomes

significantly less symmetric.

Figure 2.7: The transmission coefficient T (ω) for various δ/g2 as a function of dimensionless
variable ω/g2 with φ = kFd = π − arctan(δ/g2) (right) and φ = kFd = with ω = 0 (left).

In the limit when g2/σω � 1, provided the system is tuned to this transmission window,

the probability of reflection becomes virtually zero and the transmission coefficient

becomes approximately

t(ω) = Exp

{
iArg

[
− (ω + δ)2

(g2 − i(ω + δ))2 − g4e−2i arctan(δ/g2)

]}
(2.31)
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If g2/σω ≈ 1000 or greater this can be written simply as a phase.

t(ω) ≈ −e2i arctan(δ/g2)+2iωg2/δ (2.32)

This result is interesting, as it implies that two atoms can effectively provide a

frequency-dependent phase shift to a photon while not modifying its direction of

propagation. This behavior suggests that it may be useful for quantum information

processing, a question that we will explore in Chapter 6. We also note that this limit,

g2/σω � 1, corresponding to either strong coupling (g2 � 1) or a very narrow pulse

bandwidth (σω � 1) is commonly referred to as the adiabatic limit.

2.4.2 Transport properties of N atoms

In general, evaluating the transmission properties for N atoms at arbitrary positions is

an incredibly complicated task. There is one instance where the task becomes simple,

however; if all atoms are separated by a distance that is a multiple of one half of a

wavelength. This translates into a phase difference between atoms of kF |zi − zj| = nπ for

all pairs. When this condition is satisfied, all but one the eigenvalues of M̃ vanish. The

remaining eigenvalue leads to the reflection and transmission coefficients (in the Markovian

limit) of

t(ω) = − i(ω + δ)

Ng2 − i(ω + δ)
r(ω) = − Ng2

Ng2 − i(ω + δ)
(2.33)

This has the same form as 2.26, but with the coupling increased by a factor of N . Since

the atoms are spaced at a multiple of half a wavelength, they will all experience the same

magnitude of the electric field and thus act collectively. This result was also discovered in

[33].

We now focus on maximizing the transmission of a single photon through an array of N

atoms. The rationale behind this is that, as will be shown in Chapter 6, if a single photon

can transmit with unit probability, the inherent nonlinear nature of a two level emitter
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should enable the system to act as a passive, deterministic, phase gate for two

counter-propagating photons. Looking for high transmission, we first consider the case

where all atoms are identical and separated by the same distance d. With these conditions,

Tsoi and Law in [33] found that transmission maxima can be found by

cos(qπ/N) =
g2

δ
sin(kFd) + cos(kFd) (2.34)

as a function of N , where q is an integer that runs from 1 to N − 1. We will also consider

pairs of atoms, with each atom in the pair separated by a distance d = π−arctan(δ/g2)+2mπ
kF

and the centers of the pairs separated by a different distance, a = φa+2m′π
kF

. This is inspired

by the transmission window for a single pair; if a photon will transmit through a single pair

with high transmission, it is reasonable to suppose that it might transmit through multiple

pairs of atoms. We also note that in the Markovian approximation the factors of 2mπ in

the definitions of d and a will not contribute. As such, from this point forward we will refer

to φd = kFd as the phase difference between two atoms in a pair and φa = kFa as the phase

difference between any two other pairs. A visual representation of these distances is given

in Fig. 2.8.

Figure 2.8: A diagram of the system of pairs of atoms with the pair distances labeled with
φd corresponding to the distance between two atoms in a pair and φa between successive
pairs.

The first question we are concerned with answering is how the transmission window for

two atoms depends on the spacing between successive pairs. In order to answer this, we

first perform an analytic analysis of the transmission coefficient. As has been shown, a
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single pair exhibits high transmission when tan(φd) = −δ/g2. By treating a single pair as

an individual scatterer with reflection and transmission coefficient defined in Eq. 2.27 and

using the approach of Section 2.3.2, we derived an analytic form for two pairs (four atoms)

separated by a distance a = φa/kF . A plot of the reflection coefficient (R(ω) = |r(ω)|2) for

this system is given below.

Figure 2.9: A plot of the reflection coefficient of two pairs of atoms as a function of dimen-
sionless parameter ω/g2 and φa for δ/g2 = 1. The dotted line is given by Eq. 2.35

As can be seen, on resonance the photon is never reflected. The reflection coefficient

will also be zero when

φa = π − arctan

(
δ2(δ + ω)2 + g4(ω2 + 2δω − ω2)

2g2
(
δ3 + (g4 + δ2)ω

) )
(2.35)

In the adiabatic limit, the pulse will be spectrally narrow; to achieve a high transmission

probability, the reflection coefficient must be minimized near resonance. At this point

(when ω = 0), the φa that satisfies the above condition reduces to φa = π − arctan
(
g4−δ2

2g2δ

)
.

For the choice of δ/g2 = 1 this gives an optimal spacing of φa = π. That this choice

minimizes transmission in the adiabatic limit can be seen clearly in Fig. 2.10 where we

have calculated the reflection probability for a Gaussian pulse of f̃(ω) = e−ω
2/(4σ2

ω)√
σω
√

2π
. From
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this figure, where reflection probability is calculated with g2/σω = 100 (so the system is in

the adiabatic regime), φa = π leads to a minimum reflection probability for four atoms.

Interestingly, at φa = 2φd the reflection probability becomes quite high. This is likely due

to the fact that the phase difference between all atoms becomes the same and the system

becomes more like a Bragg mirror. This same choice of φa = π also minimizes the reflection

probability of larger numbers of atoms, provided that they have all been arranged into pairs

with phase φd between atoms in the pair and phase φa between centers of successive pairs.

Figure 2.10: A plot of the reflection probability as a function of φa for various numbers
of N atoms, assuming that the atoms are arranged into pairs with separation φd and that
each pair is separated by φa from its nearest neighbors. All calculations were done with
g2/σω = 100 and δ/g2 = 1 using a Gaussian input pulse.

Next, we consider how the reflection probability depends on the value of g2. In Fig.

2.11 we plot this quantity as a function of g2. Reflection probability peaks around g2 ≈ 1.

When the coupling is low the reflection probability is correspondingly low, as the photon

does not significantly interact with the atom. As g2 becomes very large the probability of

reflection becomes smaller and smaller and appears to be even lower for multiples of four

atoms. This is consistent with Fig. 2.9, as the feature corresponding to zero reflection is

centered around ω/g2 = 0. If σω � g2, it will be well within the window of low reflection

seen in Fig. 2.9 for four atoms.
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Figure 2.11: A plot of the reflection probability for a Gaussian initial state as a function of
g2/σω for various numbers of N atoms. For all curves δ/g2 = 1.

We can actually decrease the reflection probability further. As described above, for two

pairs the optimal difference in phase in the adiabatic limit is given by φa = π for δ/g2 = 1.

Using these parameters, we defined reflection and transmission coefficients for the

optimized four atom system. Using the methods of Section 2.3 we used these coefficients to

arrive at an analytic form for an array of eight atoms where the phase difference between

the two arrays of four atoms was undefined. We then optimized this spacing and defined

new reflection and transmission coefficients for the array of eight atoms. This process was

used twice more to analytically optimize the separation for up to thirty two atoms for

δ/g2 = 1. It turns out that with this process, the optimal spacing to reduce reflections

consists of a unit cell of four atoms. As depicted in Fig. 2.12, the cell consists of atoms

separated by φd, φd/3, and φd in that order. The closest atoms between each successive cell

are then also separated by φd.
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Figure 2.12: A diagram of the optimized position spacing for δ/g2 = 1 and N = 12 atoms.
The values given are for the phase differences between successive atoms. Note that all phases
can have a factor of 2mπ added to them and that for the parameters chosen φd = 3π/4.

In Fig. 2.13 we plot the reflection probability as a function of N . Here one can see that

the reflection probability remains small even though the number of atoms becomes large

whether one uses the optimized positions shown in Fig. 2.12 or uses an equal spacing of

φa = π between pairs. The optimal spacing spacing leads to a significantly lower reflection

probability than simply separating each pair by a phase of φa = π, however.

Figure 2.13: A plot of the reflection probability as a function of N atoms with φd = π −
arctan(δ/g2), δ/g2 = 1, and g2/σω = 100. The points labeled “Equal” correspond to pairs
that are evenly spaced at a distance of φa = π and the ones labeled “Optimized” correspond
to the optimal spacing described in the text.

Finally, in Fig. 2.14, we compare the reflection probability of the transmission maxima

given by Eq. 2.34 when all the atoms are separated by the same distance, the optimal

spacing of Fig. 2.12, and the equal pair spacing where all pairs are separated by φa = π.

When g2/σω becomes large, the reflection probability dramatically decreases for the
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optimized and π-pair cases as compared to the situation where all the atoms are

periodically spaced. As expected, the optimized spacing has a lower reflection probability.

Figure 2.14: A plot of the reflection probability as a function of g2/σω for different inter-
atomic distances. The points labeled “Equal” correspond to pairs that are evenly spaced at
a distance of φa = π, the ones labeled “Optimized” correspond to the optimal spacing shown
in Fig. 2.12, and the grey curves represent the different maxima given by Eq. 2.34 for an
array of equally spaced atoms.

From all of this it would appear that, at least for a photon that initially has a Gaussian

frequency distribution, if the positions between atoms are chosen carefully an array of

atoms may be able to function as a frequency-dependent phase shifter. To explore this, we

posit that, if the atoms have been placed using the optimal spacing or as pairs separated

by a phase of π, in the adiabatic limit of g2/σω � 1, the transmission coefficient for N

atoms should have an effective form of

t(ω) = Exp

{
N

2
iArg

[
− (ω + δ)2

(g2 − i(ω + δ))2 − g4e−2i arctan(δ/g2)

]}
(2.36)

This is simply the transmission coefficient that would result from a photon transmitting

through N/2 pairs of atoms, picking up a phase given by Eq. 2.31 at each site. To explore

the validity of this approximation, we plot the magnitude and phase the transmission

coefficient from the full solution in Eq. 2.20 for the optimized position spacing and a

pairwise spacing with a phase of π between each pair, along with the approximate form of

Eq. 2.36.
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Figure 2.15: The absolute value of the intensity transmission coefficient T = |t(ω)|2 (left
column) and phase of t(ω) (right column) for N = 12 atoms (top row) and N = 100 atoms
(bottom row). The curve labeled “Optimized” corresponds to the full solution to t(ω) when
the atoms have been spaced as given in Fig. 2.12, “π Pair” corresponds to the case where
each pair of atoms is separated by a phase of π, and “Approx” is the transmission coefficient
given in Eq. 2.36. For all plots δ/g2 = 1. Note that the limits of ω/g2 differ between the
left and right columns.

As can be seen from Fig. 2.15, the approximation presented in Eq. 2.36 is certainly

valid provided that the pulse is narrow enough in frequency. In terms of the bandwidth of

the incoming photon this translates into g2/σω > 10, as transmission is effectively 1 and

the phase is nearly identical for |ω/g2| < .1. This window is very narrow, however; if

ω/g2 < −.2 transmission becomes negligible. Additionally, it would appear that the

transmission profile from the optimal position described in this text is more square around

ω/g2 ∈ [−.1, .1] than the π pair case. The phase of all three calculations similarly matches

well in this region. Comparing the case where there are 12 atoms to the case where there

are 100 atoms it is clear that as the number of atoms increases the phase of the photon is

modified more.

It is worth noting that this high transmission window is also dependent on the value of
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δ/g2. If this ratio becomes small (say .1), the transmission window becomes incredibly

narrow. Increasing δ/g2 will broaden the transmission window, though as the photons

become more and more detuned from the atomic resonance their interaction with the atom

also becomes weaker. The most physically interesting regime is around δ/g2 ≈ 1, as such a

choice still allows for a nonzero interaction between the atoms and photon (seen most

clearly in the fact that transmission can vary significantly in Fig. 2.15) but still maintains

high transmission.

The behavior of an array of N atoms coupled to a one dimensional waveguide studied in

this section implies that, in the adiabatic regime, the system can be made to be effectively

unidirectional, in the sense that a single photon will transmit with near-unit probability,

with a nontrivial phase added based on the number of pairs of atoms. This will become

more important when we begin analyzing this system’s ability to function as a passive,

deterministic CPHASE gate in Chapter 6.

2.5 Dipole-dipole interactions

We now consider how the transmission spectra of a single photon can be modified by

the presence of exchange- (or Förster-) type interactions [44] between the atoms. In order

to deal with such a process, we introduce the interaction Hamiltonian

HA = ~∆
(
|eg〉〈ge|+ |ge〉〈eg|

)
(2.37)

where the term ∆ describes the strength of the interaction and the terms |eg〉 and |ge〉

correspond to the leftmost atom being in the excited state and the rightmost in the ground

state or vice versa. Such a Hamiltonian has been used to model the interaction between

neutral atoms [45–47] but can also describe other systems such as closely-spaced quantum

dots or superconducing circuits. We note that there was a recent paper by Cheng, Xu and

Agarwal [36] in which the authors study a model of the same form as Eq.2.37.

Additionally, Liao, Nha and Zubairy [34] recently have considered a model for the
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dipole-dipole interaction mediated by both the waveguide and non-waveguide modes. Their

model does not appear to be equivalent to the form of Eq. 2.37 but qualitatively shares

some features with our solution.

To derive the reflected and transmitted spectra of a single pair of atoms, it is most

convenient to solve the Schrödinger equation directly using the standing wave photon

modes and the atomic basis |±〉 = 1√
2

(
|eg〉 ± |ge〉

)
, as HA is diagonal in this basis. By

moving to a new interaction picture, the final scattered state can be found in the same

manner as Eq. 2.20. This gives transmitted spectra of

fa(ω) = −1

2

[g2
(
1 + e−iφd

)
+ i(ω + δ −∆)

g2
(
1 + eiφd

)
− i(ω + δ −∆)

+
g2
(
1− e−iφd

)
+ i(ω + δ + ∆)

g2
(
1− eiφd

)
− i(ω + δ + ∆)

]
f̃(ω)

fb(ω) = −1

2

[g2
(
1 + e−iφd

)
+ i(ω + δ −∆)

g2
(
1 + eiφd

)
− i(ω + δ −∆)

−
g2
(
1− e−iφd

)
+ i(ω + δ + ∆)

g2
(
1− eiφd

)
− i(ω + δ + ∆)

]
e2ikF z0 f̃(ω)

(2.38)

and thus a transmission coefficient of

T (ω, φ) =

(
1 +

4g4(∆ + (ω + δ) cos(φd) + g2 sin(φd))
2

(−∆2 − 2∆g2 sin(φd) + (ω + δ)2)2

)−1

(2.39)

where φd again refers to kFd, the phase acquired by a photon moving from one atom to the

next.

The presence of ∆ here opens up a new transmission window; for any non-zero value of

∆ it is possible to achieve unit transmission on resonance, provided that φd is chosen

appropriately. The condition on φd is

∆ + δ cosφd + g2 sinφd = 0 (2.40)

We note that this condition has also been derived in [36], where the transmission peak is

presented as an instance of Fano interference.

Fig. 2.16 plots T (ω) for δ = 0 and various values of ∆/g2 where φd = − arcsin(∆/g2)

has been chosen to satisfy the above condition to maximize transmission. We also plot how

T depends on φ at resonance (ω = 0).
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Figure 2.16: The transmission coefficient T (ω) for various ∆/g2 as a function of ω/g2 with
φ− arcsin(δ/g2) (right) and φ with ω = 0 (left). For both plots δ = 0.

The most striking aspect of 2.16 is that when ∆ = g2 and φd = 3π/2 (or ∆ = −g2 and

φ = π/2, if negative values of ∆ are possible) the transmission curve becomes spectrally

flat. This means that a single photon pulse will be entirely transmitted no matter what

shape. This is, of course, only true as long as the Markovian approximation holds.

Additionally, Fig. 2.16 shows that the dependence on φd is fairly broad, meaning that

near-unit transmission will occur with high probability even if the spacing between atoms

does not exactly match the condition given in Eq. 2.40.

The origin of this high transmission can be thought of as an example of quantum

interference. When φd = 3π/2 the incoming travelling-wave photon can be written as a

superposition of the standing wave photon modes, and will equally couple to both |+〉 and

|−〉. By also controlling ∆ so that it cancels out the g2eiφ terms in Eq. 2.16 the coupling

and detuning to each of the standing wave modes will be identical. This leads to perfect

transmission, as the Â mode is the sum of the standing wave modes, and no reflection as

the B̂ mode is the difference of these two identical processes. The final transmitted photon

pulse has the form

f̃a(ω) = −g
2 + i(ω + δ)

g2 − i(ω + δ)
f̃(ω) (2.41)

This spectrum is identical to that for a single photon scattering from an atom in a

unidirectional waveguide (where the photons are constrained so that they must propagate
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in one direction) or a standing-wave photon interacting with an atom (such as the setup

shown in Fig. 1.1), but in this context it appears in the bidirectional geometry. This result

is highly nontrivial, as it requires a second atom to work.

Furthermore, this behavior remains as the number of pairs of atoms increases. If N

atoms are arranged so that every pair of atoms is separated from each other pair by a

distance of at least several wavelengths, the exchange interaction will only occur between

the atoms in each pair. Then, using the same arguments as in Section 2.3.2, the

transmission coefficient for a photon passing through the entire system will be

t =
(
− g2+i(ω+δ)

g2−i(ω+δ)

)N/2
and the reflection coefficient will be rR = rL = 0 for every pair. This

leads to a transmitted spectrum of

f̃a(ω) =

(
− g2 + i(ω + δ)

g2 − i(ω + δ)

)N/2

f̃(ω) (2.42)

Note that the exponent is N/2, as each transmission coefficient arises from the photon

interacting with two atoms. This result suggests that by building a system with a strong

interaction, one can create unidirectional (or chiral) behavior in what would typically be a

bidirectional geometry.

2.6 Conclusions

In this chapter we explored different ways of looking at the scattering of a single photon

from an array of two level systems coupled to a one-dimensional waveguide. Following the

solution in [32], in Eq. 2.19 we presented the general transmission and reflection

coefficients for a single photon scattering from an array of N two level systems at arbitrary

positions. The most important feature of this solution is that the effect of the entire

scattering process can be accurately described by a frequency-dependent transmission and

reflection coefficient. Using this, we explored different approaches to the solution that treat

the system as an effective cavity created by atomic ‘mirrors’ and argued that these lead to

the same solution found using the method of [32].
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We also explored the transport properties of a system of one, two and N atoms. Here

we found that the presence of a second atom opened a transmission window when

tan(kFd) = −δ/g2. We explored the behavior of this transmission window as the number of

pairs of atoms increased and demonstrated that a single photon will transmit with very

high probability, provided that the atoms have been arranged appropriately. We will

explore this further in Chapters 4 and 5 as we will consider whether this window enables

high transmission for two photons. Finally, we found that if one includes the effect of

dipole-dipole interactions a pair, or array, of atoms is able to transmit a photon with unit

probability while the photon acquires a nontrivial, frequency-dependent phase. Again, we

will explore this window further with two photons in Chapter 4 and in Chapter 6 will show

how it can be leveraged to construct a conditional logic gate.
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Chapter 3

Scattering of Many Photons From One Atom: Space-time Description

3.1 Introduction

In this chapter we will pursue a different approach to the problem of photon scattering

by using a spacetime description of photons. For the most part, studies of scattered

photons describe the photons in terms of a wavepacket in either a frequency or position

basis. Authors publishing works in this vein use techniques such as the S-matrix approach

[5], finding scattering eigenstates [8, 48], input-output methods [49], Langevin equations of

motion [42], or direct integration of the Schrödinger equation [50, 51]. Here we will follow

the same procedure as the last two authors and solve the Schrödinger equation directly for

an N photon wavepacket interacting with a single two-level-emitter (TLE) at the origin.

The results and method presented in this chapter have been published in [12] and goes

beyond most other analytic treatments of multiphoton scattering, as we can accurately

describe the interaction of any number of photons with a single TLE. We also note that

our solutions appear to be identical to that derived concurrently to our work by Roulet et

al. in [11].

This chapter is organized as follows. We first demonstrate how to describe our system

in the time domain. We next present an analytic result for the scattering of an N-photon

wavepacket from a single TLE in a unidirectional waveguide. We convert the solution to a

bidirectional geometry and explore how the shape of the photon wavepacket is modified by

its interaction with a single TLE. Finally, we connect this to the work of other authors by

presenting our results in the frequency domain.

3.1.1 Introducing the time domain

The Hamiltonian presented in Eq. 2.1 is written in terms of time-dependant operators.

As such, we choose to quantize the field in terms of the Â(t) and B̂(t) operators, which
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correspond to creating a photon at time t in either the left-going or right-going modes of

the waveguide. Formally, these connect to the frequency basis by a Fourier transform,

given in Eq. 1.7 and reproduced below for Â(t).

Â(t) =
1√
2π

∫ ∞
−∞

dωe−iωtâω (3.1)

âω is the single-mode right-traveling field operator. As before, these operators satisfy

[âω, â
†
ω′ ] = δ(ω − ω′), which leads to the commutator of [Â(t), Â†(t′)] = δ(t− t′).

We now show that this choice of basis fully describes a multimode, multiphoton

wavefunction. The positive-frequency component of the electric field operator of a

traveling-wave, multimode, one-dimensional field (defined by Eq. 1.1) can be written as

E(+)(τ) = Ee−iωF τ
∫
e−iωτ âω = Ee−iωF τ

√
2π Â(τ) (3.2)

where τ = t± z/c, depending on the wave’s direction of travel, and E =
√
~ωF/2ε0. We

define ωF to be the central frequency of the field, and again assume that the bandwidth of

the photons is narrow enough that any dependence of E on ω is negligible.

For such a field it is well-known [52] that the probability to detect two photons at

different space-time points τ1 and τ2 is given by

P (τ1, τ2) ∝
∥∥E(+)(τ1)E(+)(τ2)|ψ〉

∥∥2 ∝
∥∥∥Â(τ1)Â(τ2)|ψ〉

∥∥∥2

(3.3)

Recall from Chapter 1 that in general a two-photon wavepacket is given by

|ψ〉 =
1√
2

∫ ∫
dω1dω2f̃(ω1, ω2)â†ω1

â†ω2
|0〉 (3.4)

Provided that the two photons are in the same mode we can, without loss of generality,

assume that f̃(ω1, ω2) is symmetric in ω1, ω2, as photons are indistinguishable. When the

photons are in different modes f̃(ω1, ω2) may not be symmetric in ω1 and ω2. As long as

both photons are guaranteed to be travelling in the same direction we can also assume that

the integral of |f̃ |2 is equal to 1.
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With all this, the action of Â(τa)Â(τb) on |ψ〉 can be shown to be

Â(τa)Â(τb)|ψ〉 =
√

2f(τa, τb)|0〉 (3.5)

where

f(t1, t2) =
1

2π

∫ ∫
e−i(ω1t1+ω2t2)f̃(ω1, ω2) dω1dω2 (3.6)

is the two-dimensional Fourier transform of f̃(ω1, ω2), the frequency distribution of the

photon wavepacket. As a result, P (τa, τb) of Eq. (3.3) is directly proportional to |f(τa, τb)|2.

This allows us to interpret f(τa, τb) as an effective “two-photon wavefunction” in the time

domain.

While it is certainly true that photons do not, strictly speaking, have wavefunctions in

the Schrödinger sense (as one cannot construct a position operator for them), thinking of

Eq. 3.3 as a wavefunction is a good approximation. In all of this work we, like most

treatments of quantum optics, are tacitly working in the coulomb gauge and assuming that

the electric field is purely transverse. This allows for an effective decoupling of the field

that is produced (the photon) from its source. Additionally, this sort of description of a

photon as having a wavefunction is consistent with experimental devices, as many kinds of

photo-detectors will measure the arrival time of a photon rather than its frequency [53].

Finally, f(t1, t2) clearly contains all the information on the state of the field, as it is

proportional to f̃(ω1, ω2) and its square is always normalized to 1, as is required by a

probability distribution.

3.2 General scattered state for a multi-photon pulse

Here we will derive the scattered wavefunction of an N-photon Fock state interacting

with a single two-level atom in a unidirectional, or “one-sided,” waveguide, meaning that

photons will only travel in one direction. While such a system is nontrivial to create (an

example of such a atom-waveguide system is given in [21]) the mathematics describing the
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interaction are much simpler and, as will be shown, the solution is identical for the

standing-wave modes of a bidirectional, or “two-sided” waveguide.

In the interaction picture, the Hamiltonian takes the form

H = −i~g
(
σ†Â(t)− σÂ†(t)

)
(3.7)

where we have defined σ† and σ to be the raising and lowering operators of the atom and

Â(t) to be the traveling-wave modes of the unidirectional waveguide. Note that here we

have dropped the subscript for the atom used in Eq. 2.1 (as there is only one).

Additionally, g is the frequency-independent coupling constant. In writing Eq. 3.7 we are

assuming that the central frequency of the field is equal to the atomic transition frequency

(i.e. δ = ωF − ωa = 0) and that the atom is located at the origin (z=0). In Chapter 4 we

will show how to account for significant detuning between the photon and the atom in the

time domain (this has already been taken into account in Chapter 2) and in Chapter 5 we

will generalize the approach to deal with systems that are not centered at the origin.

As the atom only has two levels, the total state of the system can be given, for any

time, by |ψ〉 = |ψe〉 ⊗ |e〉+ |ψg〉 ⊗ |g〉, where |e〉 and |g〉 represent the excited and ground

states of the atom and |ψe(t)〉 and |ψg(t)〉 correspond to the field states. We also define the

coupling constant Γ = g2/2 (which has dimensions of frequency) that is proportional to the

inverse of the interaction time. With this, the equations of motion from the Schrödinger

equation are

|ψ̇g(t)〉 =
√

2ΓÂ†(t)|ψe(t)〉 (3.8)

|ψ̇e(t)〉 = −
√

2ΓÂ(t)|ψg(t)〉 (3.9)

In the following derivation we will assume that the atom is initially in the ground state

and |ψI〉 is the initial photon wavefunction. We then integrate Eq. 3.8 to obtain

|ψg(t)〉 = |ψI〉+
√

2Γ

∫ t

−∞
dt1Â

†(t1)Â†(t)|ψe(t1)〉 (3.10)
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where Eq. 3.10 is then substituted into Eq. 3.9 to obtain

|ψ̇e(t)〉 = −2Γ

∫ t

−∞
dt1Â

†(t1)Â(t)|ψe(t)〉 −
√

2ΓÂ(t)|ψI〉 (3.11)

From here we normal order the operators Â†(t1)Â(t) and evaluate the resulting delta

function (noting that a factor of 1/2 appears as δ(t− t1) 6= 0 only at the upper limit of

integration). Doing so yields

|ψ̇e(t)〉 = −Γ|ψe(t)〉 − 2Γ

∫ t

−∞
dt1Â

†(t1)Â(t)|ψe(t)〉 −
√

2ΓÂ(t)|ψI〉 (3.12)

Eq. 3.12 can be solved using an integrating factor of eΓt and substituted into itself,

becoming

|ψe(t)〉 = −
√

2Γ

∫ t

−∞
dt1e

−Γ(t−t1)Â(t1)|ψI〉 − 2Γ

∫ t

−∞
dt1

∫ t1

−∞
dt2e

−Γ(t−t1)Â†(t2)Â(t1)|ψe(t2)〉

(3.13)

This represents the beginning of a recursive solution that will eventually truncate after

N − 1 iterations, where N is the number of photons in |ψI〉. The process leading to such a

solution is as follows; first, one must substitute Eq. 3.13 into itself. Next, one places all

photon operators in normal order using the commutator [A(t), A†(t′)] = δ(t− t′). If the

difference in the time indices is more than one, the term containing the delta function will

vanish due to the limits of integration.

As an example, consider substituting Eq. 3.13 into itself once. This will yield the

following expression;

+ 4Γ2

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4e

−Γ(t1−t2)−Γ(t3−t4)Â†(t2)Â(t1)Â†(t3)Â(t4)|ψe(t4)〉

(3.14)

Normal ordering the operators Â(t1)Â†(t3) will lead to an integral of the form∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4δ(t1 − t3)f(t1, t2, t3, t4) (3.15)
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This can be re-written in terms of step functions as∫ ∞
−∞

dt1dt2dt3dt4Θ(t− t1)Θ(t1 − t2)Θ(t2 − t3)Θ(t3 − t4)δ(t1 − t3)f(t1, t2, t3, t4) (3.16)

Integrating with respect to t3 yields the step functions

Θ(t− t1)Θ(t1 − t2)Θ(t2 − t1)Θ(t1 − t4). This restricts integration to the region where the

inequality t ≥ t1 ≥ t2 ≥ t1 is satisfied. This inequality will only be true at one point, where

t2 = t1. As such, when the t1 integral is evaluated it will yield zero and the entire term will

vanish. This cancellation will always occur provided that the time indices are separated by

more than one.

The vanishing of all delta function terms means that under the integrals the photon

operators will effectively commute. Therefore, at the kth iteration there will be k lowering

operators acting on the initial state and |ψe〉. Once k = N all further iterations will yield

zero as there will be more lowering operators than excitations to remove. We present the

first few terms of the iteration below.

|ψe(t)〉 = −
√

2Γ

∫ t

−∞
dt1e

−Γ(t−t1)Â(t1)|ψI〉

+(2Γ)3/2

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3e

−Γ(t−t1)e−Γ(t2−t3)Â†(t2)Â(t1)A(t3)|ψI〉

−(2Γ)5/2

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4

∫ t4

−∞
dt5

e−Γ(t−t1)e−Γ(t2−t3)e−Γ(t4−t5)Â†(t2)Â†(t4)Â(t1)Â(t3)Â(t5)|ψI〉+ . . . (3.17)

The coefficient in front of the kth term is given by (2Γ)k+ 1
2 (−1)k+1 and each successive

term will add an extra Â†(tk)e
−Γ(tk−tk+1)Â(tk+1). This can in turn be used to write down

|ψe(t)〉 for an arbitrary |ψI〉.

We now substitute Eq. 3.17 into Eq. 3.10 and let t→∞ to find the scattered state of
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the photons after all interaction with the atom has ceased. This is given as

|ψg(∞)〉 = |ψI〉 − 2Γ

∫ ∞
−∞

dt1

∫ t1

−∞
dt2e

−Γ(t1−t2)Â†(t1)Â(t2)|ψI〉

+(2Γ)2

∫ ∞
−∞

dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4e

−Γ(t1−t2)e−Γ(t3−t4)Â†(t1)Â†(t3)Â(t2)Â(t4)|ψI〉

−(2Γ)3

∫ ∞
−∞

dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4

∫ t4

−∞
dt5

∫ t5

−∞
dt6

e−Γ(t1−t2)e−Γ(t3−t4)e−Γ(t5−t6)Â†(t1)Â†(t3)Â†(t5)Â(t2)Â(t3)Â(t6)|ψI〉+ . . .

(3.18)

As we will show in the next section, this equation allows one to easily obtain the

scattered state of the photons. We also note that Eq. 3.17 and Eq. 3.18 can be used to

obtain the evolution of the excited state of the atom and the field as a function of time by

not letting t→∞ in Eq. 3.18, though generally obtaining such results will require

numerical integration.

Additionally, while we are not considering the case of far-detuned photons here, as we

will show in Chapters 4 and 5, if the photon is significantly detuned from resonance the

solution will have exactly the same form as presented in Eq. 3.17 but with Γ ≡ g2/2− iδ,

where δ is the frequency difference between the atom and the incoming photon. This is

also the same form as the the effective coupling and detuning of a pair of atoms described

in Section 2.4.1.

3.2.1 The single photon case

Starting with Eq. 3.18 we first consider the scattering of a single photon from a single

emitter. In this case, the initial photon state has the form

|ψI〉 =

∫
dtf(t)Â†(t)|0〉 (3.19)

with f(t) describing the space-time profile of the photon as would be measured by a

photo-detector. Substituting this into Eq. 3.18, only the first two terms survive, as all
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other terms contain two or more lowering operators. This leads to

|ψg(∞)〉 = |ψI〉 − 2Γ

∫ ∞
−∞

dt1

∫ t1

−∞
dt2e

−Γ(t1−t2)Â†(t1)Â(t2)|ψI〉 (3.20)

Evaluating this expression gives a final, scattered state of

|ψg(∞)〉 =

∫
dtf(t)Â†(t)|0〉 − 2Γ

∫ ∞
−∞

dt

∫ t

−∞
dt1e

−Γ(t−t1)f(t1)Â†(t1)|ψ0〉 (3.21)

The spacetime profile fg(t) of the scattered state of the photon, related to the overall state

by |ψg(∞)〉 =
∫
dtfg(t)Â

†(t)|0〉, is then

fg(t) = f(t)− 2ΓGΓ(t) (3.22)

where we have defined the function GΓ as

GΓ(t) = e−Γt

∫ t

−∞
eΓt′f(t′)dt′ (3.23)

which, by the first term in Eq. 3.17 is (up to a factor of
√

2Γ) the single-photon excitation

probability amplitude. The expression in Eq. 3.22 then is simply the sum of the

probability amplitude that the photon does not interact with the atom (f(t)) with the

probability that the atom was excited. As we are working with a unidirectional waveguide

the photon is guaranteed to scatter into the same spatial mode, and this function

represents the distortion to the space-time profile caused by the interaction with the atom.

It is also worth noting that the frequency representation of this interaction is exactly

equal to Eq. 2.41, that is

F [fg(t)] =
1√
2π

∫ ∞
−∞

dteiωtfg(t) = −Γ + iω

Γ− iω
f̃(ω) (3.24)

In terms of frequency, a single atom in a unidirectional geometry will add a

frequency-dependent phase but not modify the overall distribution of the photon.
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3.2.2 The two photon case

We now turn our attention to the particular case where the initial state consists of only

two photons. In terms of the space-time description previously described, |ψI〉 can be

written as

|ψI〉 =
1√
2

∫ ∫
dt1dt2f(t1, t2)Â†(t1)Â†(t2)|0〉 (3.25)

where f(t1, t2) represents the space-time profile of the pulse as would be measured by a

photo-detector. Using this initial state in Eq. 3.18 yields

|ψg(∞)〉 =
1√
2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2f(t1, t2)Â†(t1)Â†(t2)|0〉

−2
√

2 Γ

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ t2

−∞
dt3e

−Γ(t2−t3)f(t1, t3)Â†(t1)Â†(t2)|0〉

+4
√

2 Γ2

∫ ∞
−∞

dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4e

−Γ(t1−t2)e−Γ(t3−t4)f(t2, t4)Â†(t1)Â†(t3)|0〉 (3.26)

Here, the first term corresponds to the photons not interacting with the atom at all, the

second to only one photon interacting with the atom, and the third to the case where both

photons interact with the atom. Because of these three separate processes, we express the

final scattered space-time profile in terms of fg(t1, t2) = f(t1, t2) + f1(t1, t2) + f2(t1, t2). For

a particular form of f , the component f1(t1, t2) is easy to evaluate, as it corresponds to a

single integral. It is given by

f1(t1, t2) = −2Γ

∫ t1

−∞
dt′e−Γ(t1−t′)f(t′, t2)− 2Γ

∫ t2

−∞
dt′e−Γ(t2−t′)f(t1, t

′) (3.27)

This result has a physically intuitive interpretation. It represents the process in which

one of the photons does not interact with the atom while the other photon is absorbed at t′

and emitted at a later time, with the separation in time being governed by the exponential

decay rate of Γ.

Note that this expression is explicitly symmetric in t1 and t2 while the integral in Eq.

3.26 is not. We have chosen to present it this way in order to highlight the fact that the
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final wavefunction must be symmetric. Physically, this arises because the two photons are

indistinguishable, as they are travelling in the same direction and have the same

polarization. Mathematically, it arises from the ambiguity in assigning variables under

integration. As an example of what we mean, consider that the total scattered state is

given by

|ψg〉 =
1√
2

∫
dtadtbfg(ta, tb)Â

†(ta)Â
†(tb)|0〉

=
1√
2

∫
dt1dt1

[
f(t1, t2) + f1(t1, t2) + f2(t1, t2)

]
Â†(t1)Â†(t2)|0〉 (3.28)

As the integration is over both variables, and all variables are matched with the same Â

photon mode, it is valid to assign t1 = ta or t2 = ta when comparing the profile functions.

As both choices are valid, the final state must exhibit this ambiguity, and therefore is

symmetric in its component variables. We note also that we can force the function to be

symmetric by simply using the fact that, if f1 is symmetric, then

f1(t1, t2) = 1/2
(
f1(t1, t2) + f1(t2, t1)

)
.

With this in mind, we consider the third and final term in the scattered state. To write

this in a meaningful way, we first convert the integral over t3 from
∫ t2
−∞ dt3 to∫∞

−∞ dt3Θ(t2 − t3). This allows us to extract only the functional form of f2, which can be

written (after symmetrizing the function) in terms of f1 as

f2(t1, t2) = −ΓΘ(t1 − t2)

∫ t1

t2

e−Γ(t1−t′)f1(t2, t
′) dt′ − ΓΘ(t2 − t1)

∫ t2

t1

e−Γ(t2−t′)f1(t1, t
′) dt′

(3.29)

As also described in [11], the form of f2 arises from the fact that two photons cannot be

absorbed at the same time by a system with only one excited state. To see how, consider

the first term multiplied by Θ(t1 − t2): this step function ensures that t1 ≥ t2. f2 then

represents the process where one photon is absorbed and emitted at t2, shown by the

function f1(t2, t
′). At a time t′ ≥ t2 (enforced by the limits on the integral) a second

photon is absorbed and is re-emitted at time t1.

We now consider a particular class of initial states; when the photons are identical and
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initially uncorrelated so that f(t1, t2) = f(t1)f(t2). With this, the above result for fg(t1, t2)

reduces to the relatively compact form of

f(t1, t2) =
(
f(t1)− 2ΓGΓ(t1)

)(
f(t2)− 2ΓGΓ(t2)

)
− 4Γ2e−Γ|t1−t2|G2

Γ(t<) (3.30)

where t< is the smallest of t1, t2. To derive this we performed an integration by parts in

Eq. 3.29 using u = Θ(t2 − t3) and v =
∫ t2
−∞ dt

′Θ(t1 − t′)e−Γ(t1−t2)f(t2, t4). Simplifying the

result and symmetrizing the final solution yields the above form of Eq. 3.30.

The first term in Eq. 3.30 is explicitly factorizable, meaning here that the wavepackets

of the two photons can be written as a product of the form |ψ〉 ⊗ |ψ〉. Practically, in this

formalism it means that the wavefunction can be written as a product of functions of the

form f(t1)f(t2). It is important to note here that the function f(t)− 2ΓGΓ(t) is exactly the

scattered state of a single photon, and the whole product state represents the two photons

interacting with the atom independently of one another.

The second term is a time- (or frequency-) entangled state. This has been described in

other literature as well, being called a “bound” state in [5] and a “nonlinear” term in [50].

The origin of the terminology of bound state is that, while the photons are travelling in the

same direction, the probability to detect both photons is limited by e−Γ|t1−t2|. This would

lead to an exponential decay in the probability to detect two photons separated by a

spacetime distance τ = t− z/c, just as what would be expected in the bound state found in

materials.

There has been a decent amount of research on two-photon bound states in different

systems [45, 54, 55] along with a recent experimental demonstration [56]. We will not use

the terminology of a bound state, however, as we will show that photons traveling in

opposite directions can also have their detection times correlated by the same function.

This is an entanglement effect and we will refer to it as such in the rest of our work,

defining the function

fent(t1, t2) ≡ −4Γ2 e−Γ|t1−t2|G2
Γ(t<) (3.31)

52



to represent the entangled component of the photons.

This entanglement ultimately arises from the inherent nonlinearity of the two level

emitter, that only one photon can be absorbed at a time. The particular form of fent

suggests, however, that it also can be explained as an example of stimulated emission or

stimulated absorption. As GΓ(t) is evaluated twice at the same time argument, it suggests

that the photons are only entangled when they excite the atom essentially simultaneously

at the earlier of the two times t1 and t2. They can be detected at different times due to the

finite lifetime of 1/Γ of the excited state providing some uncertainty as to when they are

emitted.

Additionally, we point out that one can view the two-photon state described by 3.31 as

an example of the time-entangled states considered by Franson [57]. Such states are in turn

similar to the Einstein-Podolsky-Rosen entangled states [58], where the properties that

become well-defined here (provided that Γ→∞) are the energy given by ω1 + ω2 (see Eq.

3.56 for details) and the separation in emission times t1 − t2.

3.2.3 Higher photon numbers and extensions

The solution in Eq. 3.18 is not limited to two photons; the recursive formalism can

clearly be continued N times to deal with a different |ψI〉. As this continues, the expression

quickly becomes cumbersome. As such, for clarity we will focus on states of N photons

that are factorizable. These are essentially multimode Fock states and are defined by

|N〉 =
1√
N !

(∫
dtf(t)Â†(t)

)N
|0〉 (3.32)

|N〉 has the property that Â(t)|N〉 =
√
N f(t)|N − 1〉, just as one would expect for a

Fock state. Unfortunately, it is not true that Â†|N〉 =
√
N + 1f(t)|N + 1〉. Using this
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particular state, we re-write Eq. 3.18 below.

|ψg(∞)〉 = |N〉 − 2Γ
√
N

∫ ∞
−∞

dt1GΓ(t1)Â†(t1)|N − 1〉

+(2Γ)2
√
N(N − 1)

∫ ∞
−∞

dt1

∫ t1

−∞
dt2

(
GΓ(t1)− eΓ(t1−t2)GΓ(t2)

)
GΓ(t2)Â†(t1)Â†(t2)|N − 2〉

−(2Γ)3
√
N(N − 1)(N − 2)

∫ ∞
−∞

dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

(
GΓ(t1)

−e−Γ(t1−t2)GΓ(t2)
)(
GΓ(t2)− e−Γ(t2−t3)GΓ(t3)

)
GΓ(t3)Â†(t1)Â†(t2)Â†(t3)|N − 3〉+ . . . (3.33)

With this, one can directly write the final state for any initial |N〉. We present an

explicit form for N = 3 in Eq. 3.34. Care must be taken to symmetrize the state properly

and, for brevity, we choose to leave our expression in the raw, asymmetric form.

f(t1, t2, t3) =

3∏
i=1

(f(ti)− 2ΓGΓ(ti))− (2Γ)2
3∑
i=1

f(ti)e
−Γ|tj−tk|G2

Γ(min(tj , tk))

+(2Γ)3
√

6
[
e−Γ(t2−t3)GΓ(t1)G2

Γ(t3)− e−Γ(t1−t3)GΓ(t2)G2
Γ(t3)

+ e−Γ(t1−t2)G2
Γ(t2)GΓ(t3)

]
Θ(t1 − t2)Θ(t2 − t3) (3.34)

In this expression, the first two terms clearly relate to the N = 2 case. The first arises

from three independent single-photon interactions, similar to the first term of Eq. 3.30.

The second gives the case where two photons interact with the atom and become entangled

as described by Eq. 3.31, while the third photon is a “spectator” and does not become

entangled. The final term describes the entanglement between all three photons produced

by the nonlinear nature of the emitter constraining the absorption times of each individual

photon.

3.3 Extending the two-photon solution to a bidirectional geometry

3.3.1 General formalism

We now return to studying the case of an incident two-photon, symmetric pulse, but

now consider a two-level-emitter coupled to both left- and right-traveling wave modes in a

waveguide. As such, we again map the operators Â(t) and B̂(t) to the different directions
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of propagation. As in Eq. 3.7, we will assume that the atom is at the origin. With these

two modes, the Hamiltonian becomes

H = −i~gσ+

(
A(t) +B(t)

)
+ i~gσ−

(
Â†(t) + B̂†(t)

)
(3.35)

By defining the time-domain standing wave operators Ĉ(t) = 1√
2

(
Â(t) + B̂(t)

)
and

D̂(t) = 1√
2

(
Â(t)− B̂(t)

)
(see Section 1.2.1 for more details on how to access the standing

wave modes) the Hamiltonian becomes

H = −i~g
√

2
(
σ+Ĉ(t)− σ−Ĉ†(t)

)
(3.36)

which is exactly the same in form as Eq. 3.7, excepting the factor of
√

2. As a result, by

defining Γ = g2 in the bidirectional geometry and writing a traveling field in terms of

standing wave modes, we can use the same general solution derived in Eq. 3.18, except

with Â being replaced by Ĉ.

With both directions of propagation being considered, a general wavepacket describing

an identical set of M left-traveling photons and N right-traveling photons is given by

|ψI〉 = |M,N〉 ≡ 1√
M !N !

(∫
dtf(t)Â†(t)

)M(∫
dtf(t)B̂†(t)

)N
|0, 0〉 (3.37)

where again f(t) describes the spacetime profile of the pulse, connected to the pulse’s

spectrum by f̃(ω) = 1√
2π

∫
dtf(t)eiωt. For future reference, we also note that the action of

Ĉ(t) on such a state is given by

Ĉ(t)|M,N〉 =
f(t)√

2

(√
M |M − 1, N〉+

√
N |M,N − 1〉

)
(3.38)

3.3.2 Two photons arriving from the same direction (M = 2, N = 0)

We first consider the case where the two photons are initially travelling to the right,

which in terms of Eq. 3.37 is given by |ψI〉 = |2, 0〉. By replacing the Â(t) operators in Eq.
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3.18 with Ĉ(t) operators and substituting this state into the equation we arrive at

|ψg(∞)〉 = |2, 0〉 − 2Γ

∫ ∞
−∞

dtGΓ(t)Ĉ†(t)|1, 0〉

+ 2
√

2Γ2

∫ ∞
−∞

dt

∫ t

−∞
dt′GΓ(t′)[GΓ(t)− eΓ(t′−t)GΓ(t′)]Ĉ†(t)Ĉ†(t′)|0, 0〉 (3.39)

for the final scattered state in terms of GΓ defined in Eq. 3.23.

From here, we convert the standing wave Ĉ operators back into traveling wave modes Â

and B̂ and collect the terms into the component where both photons are transmitted

(fa2,0), where both photons are reflected (fb2,0), and the “split” part where the photons end

up in different modes (fsplit2,0
). The corresponding spacetime probability amplitudes are

fa2,0(t1, t2) =
(
f(t1)− ΓGΓ(t1)

)(
f(t2)− ΓGΓ(t2)

)
+

1

4
fent(t1, t2)

fb2,0(t1, t2) = Γ2GΓ(t1)GΓ(t2) +
1

4
fent(t1, t2)

fsplit2,0
(t1, t2) = −

√
2 Γ
(
f(t1)− ΓGΓ(t1)

)
GΓ(t2) +

√
2

4
fent(t1, t2) (3.40)

Here we note that fa2,0 and fb2,0 are explicitly symmetric but fsplit2,0
is asymmetric, as

the operator product A†(t1)B†(t2) represents distinguishable modes and the reflected

photon (indexed by t2) may have a different shape than the transmitted one. This

component also has an extra factor of
√

2 due to the fact that it contains one photon in

each mode, and thus has a different normalization than the states with both photons

co-propagating (see Eq. 3.37 for the factors).

It turns out that the Fourier transform of f(t1)− ΓGΓ(t1) is t(ω)f̃(ω) = −i ω
Γ−iω f̃(ω)

and the Fourier transform of −Γ2GΓ(t1) is r(ω)f̃(ω) = − Γ
Γ−iω f̃(ω). These are identical to

the reflection and transmission coefficients defined in Eq. 2.21 for a single photon and

single atom, provided that the atom is at the origin (z = 0) and the photons are on

resonance (δ = 0). With this, the form of the wavefunction in Eq. 3.40 make intuitive

sense; the function fa2,0 consists of a term that gives the probability amplitude of both

photons being transmitted and the entanglement generated by their interaction with the

atom. Similarly, fb2,0 gives the result for both photons being reflected and being entangled
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by the atom. Finally fsplit2,0
describes one photon being transmitted and one being

reflected. We also point out that the entangled term fent appears in all three possible

outcomes. This is most interesting in the “split” case, as the two photons can be measured

at far separated points in space yet still have their detection times correlated.

Next, we present results for the properties of the scattered state. We will use two

different wavepackets. One is a Gaussian defined by

f(t) =
1√
T
√

2π
e−t

2/4T 2

(3.41)

For this pulse the function GΓ(t) is

GΓ(t) = 4

√
π

2

√
T eΓ2T 2

e−Γt

(
erf

(
t

2T
− ΓT

)
+ 1

)
(3.42)

The other pulse shape we will consider is a smooth “square” (or “flat-top”) pulse

defined by

f(t) =
1

2
√
N

(
erf
[
a(t− t0)

]
− erf

[
a(t− T − t0)

])
(3.43)

where the normalization factor N is

N =
1

a

√
2

π

(
e−a

2T 2/2 − 1
)

+ T erf

(
aT√

2

)
(3.44)

For this pulse, a (which will be 1 in what follows) describes the rate at which the pulse

rises and T describes the pulse’s approximate width. To more fairly compare the two

pulses we use the standard deviation as our measure of pulse width. For the Gaussian

pulse, the standard deviation is simply σt = T whereas for the “flat-top” pulse it is given

by σt ≡
[∫
dtf 2(t)t2

]1/2
. For T greater than about .5 this has the approximate form of

σt ' 0.283T − 0.098. As will be shown, using this to define a dimensionless coupling

parameter Γσt and dimensionless time variable ti/σt yields comparable results when

comparing the two pulses.
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The function GΓ for the flat top pulse has the analytic form

GΓ(t) =
f(t)

Γ
+

e−Γt

2Γ
√
N

(
eΓ(4a(t0+T )+Γ)/4a2

erfc

(
Γ

2a
− at+ t0 + T

)

− eΓ(4at0+Γ)/4a2

erfc

(
Γ

2a
− at+ t0

))
(3.45)

Regardless of the shape of the pulse, each of the functions in Eq. 3.40 gives the overall

probability of the respective scattering process. Fig. 3.1 describes the probabilities of each

process, plotted as a function of the dimensionless coupling Γσt.

Figure 3.1: The probabilities to find the two photons in the right-traveling modes, left-
traveling modes, or one left and one right mode, after interacting with the atom, as a
function of Γσt for the Gaussian pulse (solid line) and the flat top pulse (dashed line).

As can be seen, for large enough coupling (or equivalently a long enough pulse

duration) it becomes overwhelmingly likely that both photons will be reflected. In the

intermediate regime there is a maximum probability of .669 for the two photons to be split

equally among the two directions of the waveguide. If the coupling is small or the pulse is

short, photons are transmitted with probability approaching one.

We will also consider the specific way the pulses change shape as a result of their

interaction with the atom by looking at the photon detection probabilities given by |fa2,0 |2,

|fb2,0|2, and |fsplit2,0
|2. We first consider the modification of a Gaussian pulse as shown in
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Fig. 3.2. As can be seen, for small enough ΓT the transmitted and split scattering events

display a relatively large component delayed in time. For the split case, this delayed

component is primarily in the reflected photon. As ΓT increases (corresponding to a longer

pulse or stronger coupling) the delay becomes much less significant. In this limit, the

detection probability of the two reflected photons increases and is symmetrically delayed

relative to the initial pulse while the other two distributions become much narrower. When

ΓT is very large the transmitted and split possibilities have very strongly bunched peaks

corresponding primarily to the presence of fent in each of the states. The reflected

component strongly resembles the original pulse, but is missing a “slice” in the middle,

which indicates it is antibunched as fb2,0(τ, τ) = 0. This ‘missing’ component arises from

destructive interference between the components of the state.

We also plot the detection probabilities for the flat-top pulse in Fig. 3.3. While the

results for this initial pulse shape are similar to those seen in Fig. 3.2, the fact that it has

sharp edges leads to some differences. Aspects of the functions, such as those appearing in

Fig. 3.2d, are now at the trailing edge of the flat top pulse (see Fig. 3.3a or 3.3d).

Additionally, Fig. 3.3g shows a tendency to find the reflected photons to be detected near

the edges of the pulse, while Figs. 3.3h and 3.3k demonstrate that it is possible to find the

transmitted photon inside and the reflected photon near the edge of the pulse. (These

results are similar to the “edge effects” predicted for sharp square pulses in [50].)
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FIG. 6: Probabilities for detecting two photons in the A modes (both transmitted, leftmost column), B modes (both
reflected, rightmost column), or one in each (middle column, where the index ⌧a labels the reflected, and ⌧b the
transmitted, photon). � is as labeled. Note that the scale is not the same for each image, but the dotted circle
indicates in each case the area of the initial pulse.

As can be seen, for small �T , when the pulse is primarily transmitted or split, the two-photon detection probabilities
show a relatively large component that is delayed in time; for the split case, this is associated primarily with the
reflected photon. The delay becomes less significant as the coupling increases, or alternatively as the pulse becomes
longer (increasing �T ). As this happens, the detection probability for two reflected (B) photons, consisting of two

Figure 3.2: Detection probabilities for both photons being found in the Â mode (both
transmitted, leftmost column), B̂ mode (both reflected, rightmost column), or one in each
(middle column). ΓT is as labeled. The dotted circle gives the shape of the initial Gaussian
pulse.
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components symmetrically delayed relative to the original pulse, increases, while the other two distributions become
narrower. For very large �T , the split and transmitted modes exhibit very sharply bunched peaks, whereas the
probability of two reflected photons comes to resemble the original pulse, only with a thin “slice” cut out, which is
indicative of antibunching, as fb(⌧, ⌧) = 0. This is e↵ectively due to destructive interference between the entangled
and unentangled components of fb (compare Eqs. (29) and (20), with t1 = t2).

The corresponding probabilities for the flat-top pulse are plotted in Fig. 7.
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FIG. 7: The same as for figure 6, but for a smooth square pulse. Note that the dotted square corresponds to the area
of the initial pulse in all images.Figure 3.3: The same as for figure 6, but for a smooth square pulse. Note that the dotted

square corresponds to the area of the initial pulse in all images.
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3.3.3 Two photons arriving from opposite directions (M = 1, N = 1)

We also turn our attention to consider a pulse in which one photon comes from the

right and another from the left. We can express this initial state as

|1, 1〉 =

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 f(t1)f(t2)Â†(t1)B̂†(t2)|0, 0〉

=
1

2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 f(t1)f(t2)
(
Ĉ†(t1)Ĉ†(t2)− D̂†(t1)D̂†(t2)

)
|0, 0〉 (3.46)

As there are no cross-terms, this is relatively straightforward to evaluate: the final

result will involve the equivalent unidirectional result presented in Eq. 3.30 on the

component with Ĉ modes and will leave the D̂ mode component unchanged. In terms of

traveling-wave modes, this leads to the solution of

fa1,1(t1, t2) = fb1,1(t1, t2) =
1√
2

(
−ΓGΓ(t1)

(
f(t2)− ΓGΓ(t2)

)
−
(
f(t1)− ΓGΓ(t1)

)
ΓGΓ(t2) +

1

2
fent(t1, t2)

)
fsplit1,1

(t1, t2) =
(
f(t1)− ΓGΓ(t1)

)(
f(t2)− ΓGΓ(t2)

)
+ Γ2GΓ(t1)GΓ(t2) +

1

2
fent(t1, t2)

(3.47)

By comparing this with Eq. 3.40 one can see that the case when the two photons leave

in the same direction can be expressed as a sum of the two “split” processes in Eq. 3.40.

This makes physical sense, because for the two photons to be found in the same mode one

must be transmitted, one must be reflected, and both processes are indistinguishable. In

the same way the “split” case is the sum of the outcomes in Eq. 3.40 in which both

photons are transmitted or both photons are reflected. These observations are perhaps

easier to see by comparison with the frequency mode results, as shown in Eq. 3.59 the end

of this chapter.

We note that the addition of these processes occurs at the level of the probability

amplitudes so the actual probabilities of each event are not additive. This fact plays out in

Fig. 3.4, which details the likelihood of each event calculated using Eq. 3.47, where the

split mode probability is not simply equal to the sum of the other events.
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Figure 3.4: The probabilities of the various scattering possibilities for the initial state of Eq.
3.46 plotted as a function of Γσt for the Gaussian pulse (solid line) and the flat top pulse
(dashed line). Note that the probabilities for the two photons to end in the left and right
modes are equal and thus on top of one another in this plot.

Here we see that for both large and small Γσt the most probable event is that one

photon remains travelling in each direction. The peak probability for two photons to leave

in the same direction occurs at ΓT = .586 (for the Gaussian pulse) with a value of .444 for

each of fa1,1 or fb1,1 or .888 in total. It is interesting that while a single TLE can act like a

mirror on resonance (in the sense that it will reflect both photons) it does not act as a

perfect 50− 50 beamsplitter when the photons are incident from different directions. Such

a beamsplitter would scatter both photons in the same direction due to the

Hong-Ou-Mandel effect [59]. We note that Roulet et al. have shown that this kind of ideal

beamsplitter behavior is, in fact, exhibited for this system when the photon is detuned a

particular amount from the atomic resonance [60]. Finally, as before, the probability of

each event is similar regardless of the initial state of the pulses.

Just as for the co-propagating photons, we consider how the shape of the photon

wavepacket is modified by its interaction with the atom. Fig. 3.5 shows the two-photon

detection probabilities for a Gaussian pulse and Fig. 3.6 gives the same for a flat-top pulse.
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FIG. 11: Probabilities for detecting two photons in the A modes (both transmitted, leftmost column), B modes (both
reflected, rightmost column), or one in each (middle column). � is as labeled. Note that the scale is not the same for
each image, but the dotted circle indicates in each case the area of the initial pulse.

Looking at the Gaussian case first, we see that the e↵ect on the pulse for this case is very similar to that of the
M = 2, N = 0 case, with the primary di↵erence being the approximate “switching” of probabilities between the split
case and the sum of the other two. For small coupling, the split mode reproduces the incoming pulse. As � increases,
the two-reflected and two-transmitted probabilities become, for a while, the dominant processes, while the split mode
probability develops a shape similar to the transmitted pulse in Fig. 6d. In the large �T limit, on the other hand,

Figure 3.5: Detection probabilities for both photons being found in the Â mode (both
transmitted, leftmost column), B̂ mode (both reflected, rightmost column), or one in each
(middle column, where the index τa labels the reflected, and τb the transmitted, photon).
ΓT is as labeled. The dotted circle indicates in each case the area of the initial Gaussian
pulse.
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we again find two highly bunched probability distributions, this time for the two-reflected and two-transmitted cases,
and an antibunched one for the split case, although unlike in the previous subsection the latter does not go all the
way to zero at ⌧1 = ⌧2. (See the analytical results in the next subsection.)
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FIG. 12: The same as for figure 10, but for a smooth square pulse. Note that the dotted square corresponds to the
area of the initial pulse in all images.

The flat-top pulse results again show pronounced edge e↵ects, but now, because of the initial symmetry of the
problem, there is no di↵erence between the transmitted and the reflected photon.

Figure 3.6: The same as for figure 11, but for the flat-top pulse described in the text. Note
that the dotted square corresponds to the area of the initial pulse in all images.

Considering first the Gaussian pulse in Fig. 3.5, we can see that the pulse is modified in

a way similar to the M = 2, N = 0 case. The primary difference is that the shapes have

flipped between the split case and the other two. When the dimensionless coupling is small,
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the split pulse is effectively just the input state. As Γσt increases the two-reflected or

two-transmitted events become more likely while the shape of the split pulse is similar to

that in Fig. 3.2d. When Γσt is large the co-propagating events are again highly bunched

and the split case is antibunched, though in this case fsplit1,1
(τ, τ) 6= 0. The results for the

flat-top pulse again have the same edge effects but exhibit essentially the same behavior as

the Gaussian results.

3.3.4 Adiabatic approximation

By moving to the adiabatic limit, specifically when Γσt is large, we can greatly simplify

the above expressions. Physically, this limit corresponds to strong coupling (fast atomic

process) or a long pulse duration (large σt). In general, GΓ(t) can be written in terms of

derivatives of f(t) by integrating Eq. 3.23 by parts with dv = eΓt′dt′ and u = f (k)(t). This

leads to the following series:

GΓ(t) ≈
n∑
k=0

(−1)k

Γk+1
f (i)(t) (3.48)

For a simple pulse, like the Gaussian, we expect that each derivative with respect to t

will pull out a factor of 1/σt so that the kth term will effectively be multiplied by 1/(Γσt)
k.

In the strong coupling regime, then, we can neglect the higher order terms. Choosing to

keep only up to k = 1 we get

GΓ(t) ≈ f(t)

Γ
− f ′(t)

Γ2
(3.49)

With this, the entangled term of Eq. 3.31 becomes

fent(t1, t2) ≈ 4f(t<)e−Γ|t1−t2|
(

2f ′(t<)

Γ
− f(t<)

)
(3.50)
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For the M = 2, N = 0 case we can express Eqs. (3.40) as

fa2,0(t1, t2) ≈ fent(t1, t2)

4

fb2,0(t1, t2) ≈ f(t1)f(t2)− f(t1)f ′(t2)

Γ
− f(t2)f ′(t1)

Γ
+
fent(t1, t2)

4

fsplit2,0
(t1, t2) ≈ −f(t1)f ′(t2)

Γ
+
fent(t1, t2)

4
(3.51)

From this expression it is clear that when Γ becomes large the entangled component of

the wavefunction is responsible for the strong bunching effect in the transmitted and split

modes, to the point where Figs. 3.2j,k and 3.3j,k effectively consist only of the two photon

detection probability associated with this component of the wavefunction. In principle,

then, it is possible to isolate this highly entangled photon state by post-selecting events in

which both photons are detected in the transmitted modes.

Eq. 3.51 also shows how the reflected modes very closely replicate the initial pulse, as

the first term is simply the input spectrum and the other factors coming from the

entangled component will be small when Γ is large. This contribution from the entangled

state is the slice “missing” from the pulse in Fig. 3.2l and 3.3l. Additionally, from looking

at the form of fb2,0 in Eq. 3.51, it is clear that regardless of how large Γ becomes the pulse

will always be maximally antibunched (fb2,0 = 0) when t1 = t2, though the width of this

slice becomes smaller as Γ becomes larger.

In the same way, for M = 1, N = 1 we have the following approximate form for Eq.

3.47:

fa1,1(t1, t2) = fb1,1(t1, t2) ≈ 1√
2

[
−f(t1)f ′(t2)

Γ
− f(t2)f ′(t1)

Γ
+
fent(t1, t2)

2

]
fsplit1,1

(t1, t2) ≈ f(t1)f(t2)− f(t1)f ′(t2)

Γ
− f(t2)f ′(t1)

Γ
+
fent(t1, t2)

2
(3.52)

Here the bound state dominates the co-propagating modes and the split mode

reproduces the initial state with some of the state removed at t1 = t2. Note here that

because there is a factor of 1
2

instead of 1
4

on the fent term, fsplit1,1
(t1, t2) is prevented from

going to zero at t1 = t2.

67



3.4 Frequency-domain results

In this section we show how the result presented in Eq. 3.18 for the output spacetime

pulse can be written in terms of a frequency wavepacket as presented by other authors.

Starting with the unidirectional solution and taking the double Fourier transform over both

time indices leads to the final spectrum of

f̃uni(ω1, ω2) = f̃(ω1, ω2)− 2Γ
[ f̃(ω1, ω2)

Γ− iω1

+
f̃(ω1, ω2)

Γ− iω2

]
+

4Γ2f̃(ω1, ω2)

(Γ− iω1)(Γ− iω2)

−2Γ2

π

[ 1

Γ− iω1

+
1

Γ− iω2

] ∫ dωadωbf̃(ωa, ωb)δ(ω1 + ω2 − ωa − ωb)
(Γ− iωa)(Γ− iωb)

(3.53)

where f̃(ωa, ωb) = 1
2π

∫
dt1dt2e

iωat1+iωbt2f(t1, t2). In terms of the single photon

transmission and reflection coefficients defined in Eq. 2.21

tω = − iω

Γ− iω
rω = − Γ

Γ− iω
(3.54)

Eq. 3.53 becomes

f̃uni(ω1, ω2) =f̃(ω1, ω2)(rω1 + tω1)(rω2 + tω2)

− 2Γ2

π

[ 1

Γ− iω1

+
1

Γ− iω2

] ∫ dωadωbf̃(ωa, ωb)δ(ω1 + ω2 − ωa − ωb)
(Γ− iωa)(Γ− iωb)

(3.55)

Studying the integral component of Eq. 3.55 it becomes clear that in terms of

frequencies, the nonliterary of the two level system can be understood as a consequence of

energy conservation. Due to the uncertainty in arrival times of the photons, is is possible

for them to both be absorbed and re-emitted at virtually the same time. When this

happens, the delta function δ(ω1 + ω2 − ωa − ωb) constrains the energy of the process such

that the sum of the incoming frequencies ωa + ωb must equal the sum of the outgoing

frequencies ω1 + ω2. In principle any mapping of ωa, ωb → ω1, ω2 is valid, provided that the

delta function is satisfied. This process is constrained by the bandwidth of f(t), but will

still introduce significant distortions to the pulse because, while it conserves energy, it does

not preserve the energy of each individual photon and thus causes them to become
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spectrally entangled.

Eq. 3.55 is general for any sort of two-photon input state. If, instead, the state is

separable (f̃(ωa, ωb) = f̃(ωa)f̃(ωb)) the last term in (3.53) can be expressed as a

convolution:

f̃uni(ω1, ω2) = f̃(ω1)f̃(ω2)(rω1 + tω1)(rω2 + tω2)

− 2Γ2

π

[ 1

Γ− iω1

+
1

Γ− iω2

][( f̃(ω1 + ω2)

(Γ− i(ω1 + ω2))

)
∗

(
f̃(ω1 + ω2)

(Γ− i(ω1 + ω2))

)]
(3.56)

where the * gives the convolution between the functions inside the parentheses. This

notation is meant to suggest that the result of the convolution is a function of ω1 + ω2.

Note also that this convolution term is the Fourier transform of the entangled component

of the photon state.

In the bidirectional waveguide, Eq. 3.40 (an initial state of |2, 0〉) has a spectral

representation of

f̃a2,0(ω1, ω2) = tω1tω2 f̃(ω1)f̃(ω2) +
1

4
f̃ent(ω1, ω2)

f̃b2,0(ω1, ω2) = rω1rω2 f̃(ω1)f̃(ω2) +
1

4
f̃ent(ω1, ω2)

f̃split2,0
(ω1, ω2) = tω1rω2 f̃(ω1)f̃(ω2) +

1

4
f̃ent(ω1, ω2) (3.57)

where

f̃ent(ω1, ω2) = −2Γ2

π

[ 1

Γ− iω1

+
1

Γ− iω2

][( f̃(ω1 + ω2)

(Γ− i(ω1 + ω2))

)
∗

(
f̃(ω1 + ω2)

(Γ− i(ω1 + ω2))

)]
(3.58)

As can be seen, the ordering of the reflection and transmission coefficients exactly

matches which process must occur for photons to arrive in each of the final scattered

possibilities. We note that the equations as presented here have the same form as Eq. 22 in

[8].
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For two pulses coming from opposite directions, we have

f̃a1,1(ω1, ω2) = f̃b1,1(ω1, ω2) =
1√
2

(
(rω1tω2 + rω2tω1)f̃(ω1)f̃(ω2) +

1

2
f̃ent(ω1, ω2)

)
f̃split1,1

(ω1, ω2) = (rω1rω2 + tω2tω1)f̃(ω1)f̃(ω2) +
1

2
f̃ent(ω1, ω2) (3.59)

which again has the appropriate reflection and transmission coefficients to match the

scattering processes involved.

Finally, we present the explicit form of f̃ent for both the Gaussian and flat-top pulses

used above. For the Gaussian pulse we have

f̃ent = −
4Γ2T

√
2
π

(Γ− iω1)(Γ− iω2)
e−((1+i)Γ+ω1+ω2)((−1+i)Γ+ω1+ω2)T 2

erfc

[
T√
2

(2Γ− i(ω1 + ω2))

]
(3.60)

And for the flat-top pulse the entangled component in the spectral domain is

f̃ent(ω1, ω2) =
2Γe−(ω1+ω2)(2iΓ+ω1+ω2−4ia2t0)/4a2

πN (Γ− iω1)(Γ− iω2)(Γ− i(ω1 + ω2))

[
eΓ2/2a2

(
(1 + eiT (ω1+ω2))erfc

[2Γ− i(ω1 + ω2)

2
√

2a

]
−eΓT erfc

[2a2T + 2Γ− i(ω1 + ω2)

2
√

2a

]
+ e−ΓT +iT (ω1+ω2)

(
erfc

[2a2T − 2Γ + i(ω1 + ω2)

2
√

2a

]
− 2

))

− (2iΓ + ω1 + ω2)eiΓ(ω1+ω2)/2a2

ω1 + ω2

(
erf

(
2a2T − i(ω1 + ω2)

2
√

2a

)

−eiT (ω1+ω2)erf

(
2a2T + i(ω1 + ω2)

2
√

2a

)
+ i
(

1 + eiT (ω1+ω2)
)

erfi

(
ω1 + ω2

2
√

2a

))]
(3.61)

3.5 Conclusions

In this chapter we presented a technique to solve for the evolution of a quantized,

multimode field interacting with a two-level-emitter in a one-dimensional waveguide. We

studied in detail the scattered state of a two photon pulse and showed how the single

photon reflection and transmission coefficients appear in this state. Additionally, we have

shown how the “unidirectional” and “bidirectional” waveguides can be related to one

another for a single emitter. Finally we considered two specific input spectra and explored

how interaction with the emitter changes the spacetime profile of the output photons.
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Perhaps the most important conclusion from this chapter is that a two level system

functions as a nonlinear element, but that this nonliterary introduces a significant

distortion to the spacetime profile (and thus the spectrum) of the photons by bunching

them in time or entangling their individual spectra. This is the effect described in [19]

which poses a problem for using photons as carriers of quantum information, as after each

interaction with a quantum gate the photons will become more and more distorted and it

will become harder to predict exactly when they will arrive at a particular gate.

Additionally, this distortion changes how they will interfere and, depending on the

magnitude of the distortion, can destroy the gate operation.

71



Chapter 4

Scattering of Two Photons From Two Atoms

4.1 Introduction

In this chapter we will extend our results for a two photon pulse interacting with a

single two level emitter (TLE) to deal with the scattering of a two photon pulse from two

interacting emitters. We will show how to apply the Markovian approximation detailed in

Chapter 2 to the time domain solution presented in Chapter 3. Finally, we will explore the

transmission properties of the system and especially explore whether the conditions of high

transmission for single photons derived in Chapter 2 persist for two photons. Finally, we

note that the derivation of the final two-photon scattered state will rely heavily on the

standing wave modes introduced in Section 1.2.1. Most of the material in this chapter was

published in [37], though here we present a more detailed derivation of the solution.

4.2 Hamiltonian and setup

In terms of the variables given in Chapter 2 the atom-field interaction-picture

Hamiltonian we will be using is given below as

HA = ~g
[
φ̂1(t)e−iδt

(
|eg〉〈gg|+ |ee〉〈ge|

)
+ φ̂†2e

iδt
(
|ge〉〈gg|+ |ee〉〈eg|

)]
+H.C. (4.1)

where the operators φ̂j are again a superposition of the left and right traveling modes

φ̂j(t) = eikF zj Â(t− zj/c) + e−ikF zj B̂(t+ zj/c) (4.2)

Here |eg〉 represents the atomic state when the leftmost atom is excited and the

rightmost is in the ground state, |ge〉 represents when the rightmost atom is excited and

the leftmost is in the ground state, |ee〉 represents when both atoms are excited, and |gg〉

represents when both atoms are in their ground state. As there are only two atoms, we

have chosen to label each possible state individually rather than writing the atomic

operators as σ†j and σj as was done in Eq. 2.1 and Eq. 3.7. In this chapter we will be
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assuming that z1 = −d/2 and z2 = d/2 so that d represents the separation between the

atoms and that they are centered at the origin.

Additionally, we will also be using a Hamiltonian of the form

HI = ~∆
(
|eg〉〈ge|+ |ge〉〈eg|

)
+ ~β|ee〉〈ee| (4.3)

to describe the interaction between the two atoms. Here the term containing ∆ is the same

exchange- (or Förster-) type interaction presented in Eq. 2.37. The term proportional to β

gives a detuning of the doubly excited state (when both atoms are excited) due to a Van

der Walls interaction such as would be seen in two close Rydberg atoms.

At this point it is convenient to introduce the atomic superposition states and photon

operators

|±〉 =
|eg〉 ± |ge〉√

2
φ̂± =

φ1(t)± φ2(t)√
2

(4.4)

We note that the atomic |±〉 states are orthogonal and
[
φ̂±(ti), φ̂

†
∓(tj)

]
= 0. Using the

commutator from Chapter 2 for φ̂j we can show that

[
φ̂±(ti), φ̂

†
±(tj)

]
= 2δ

(
ti − tj

)
± eikF dδ

(
ti − tj − d/c

)
± e−ikF dδ

(
ti − tj + d/c

)
(4.5)

With these definitions, the Hamiltonian can be written as

H = ~ge−iδt
(
φ̂+(t)|+〉〈gg|+ φ̂+(t)|ee〉〈+|+ φ̂−(t)|−〉〈gg| − φ̂−(t)|ee〉〈−|

)
+H.C.

+~∆
(
|+〉〈+| − |−〉〈−|

)
+ ~β|ee〉〈ee| (4.6)

As the interaction component from HI is independent of time and diagonal in the atomic

|±〉 basis, we move to a second interaction picture with

H0 = ~∆
(
|+〉〈+| − |−〉〈−|

)
+ ~β|ee〉〈ee|. With this, we can write

ei
t
~H0 = |gg〉〈gg|+ ei∆t|+〉〈+|+ e−i∆t|−〉〈−|+ eiβt|ee〉〈ee| (4.7)

and, further defining δ± = δ ∓∆ and δ′± = δ ±∆− β, the transformed Hamiltonian (given
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by eit/~H0He−it/~H0) becomes

H = ~g
(
φ̂+(t)e−iδ

′
+t|ee〉〈+|+ φ̂+(t)e−iδ+t|+〉〈gg|+ φ̂−(t)e−iδ−t|−〉〈gg|− φ̂−(t)e−iδ

′
−t|ee〉〈−|

)
+H.C.

(4.8)

4.2.1 Solution and Markovian approximation

We now solve the Schrödinger equation. We will write the total state by

|ψ(t)〉 = |ψgg(t)〉 ⊗ |gg〉+ |ψ+(t)〉 ⊗ |+〉+ |ψ−(t)〉 ⊗ |−〉+ |ψee(t)〉 ⊗ |ee〉 (4.9)

where each component is separated by the number of photons in the state. Note that in

this derivation we will be only considering initial states with two photons, though the

process can be applied to deal with N photons in the same way as presented in Chapter 3.

Using this notation, we arrive at the following equations of motion for the field

components of the system.

˙|ψgg〉 = −ig
(
φ̂†+(t)e−iδ+t|ψ+〉+ φ̂†−(t)eiδ−t|ψ−〉

)
(4.10a)

˙|ψ+〉 = −ig
(
φ̂+(t)e−iδ+t|ψgg〉+ φ̂†+(t)e−iδ

′
+t|ψee〉

)
(4.10b)

˙|ψ−〉 = −ig
(
φ̂−(t)e−iδ−t|ψgg〉 − φ̂†−(t)e−iδ

′
−t|ψee〉

)
(4.10c)

˙|ψee〉 = −ig
(
φ̂+(t)eiδ

′
+t|ψ+〉 − φ̂−(t)eiδ

′
−t|ψ−〉

)
(4.10d)

For compactness, in what follows we will re-define the φ̂+ and φ̂− operators to include

the exponential detuning terms so that

φ̂+(ti)e
−iδ+ti → φ̂+,i φ̂+(ti)e

−iδ′+t → φ̂′+,i φ̂−(ti)e
−iδ′−ti → φ̂−,i φ̂−(ti)e

−iδ′+ti → φ̂′−,i

(4.11)

Next we formally integrate |ψgg〉, yielding

|ψgg(t)〉 = |ψI〉 − ig
∫ t

−∞

(
φ̂†+,1|ψ+(t1)〉+ φ̂†−,1|ψ−(t1)〉

)
(4.12)

We substitute this equation into the equations for ˙|ψ+(t)〉 and ˙|ψ−(t)〉 and normal order
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the operators. Doing so and evaluating all the delta functions produced by commuting

φ̂+,tφ̂
†
+,1 and φ̂−,tφ̂

†
−,1 leads to the differential equations

˙|ψ+(t)〉+ g2|ψ+(t)〉+ g2eikF d−iδ+d/c|ψ+(t− d/c)〉 =

−igφ̂+,t|ψI〉 − igφ̂′†+,t|ψee(t)〉 − g2

∫ t

−∞
dt1

(
φ̂†+,1φ̂+,t|ψ+(t1)〉+ φ̂†−,1φ̂+,t|ψ−(t1)〉

)
(4.13a)

˙|ψ−(t)〉+ g2|ψ−(t)〉 − g2eikF d−iδ−d/c|ψ−(t− d/c)〉 =

−igφ̂−,t|ψI〉+ igφ̂′†−,t|ψee(t)〉 − g2

∫ t

−∞
dt1

(
φ̂†+,1φ̂−,t|ψ+(t1)〉+ φ̂†−,1φ̂−,t|ψ−(t1)〉

)
(4.13b)

Note that there is no |ψ±(t+ d/c)〉 term, as the delta function is evaluated at a point

beyond the limits of integration (the integral over dtj is over [−∞, t] but the delta function

is defined for the point tj = t+ d/c). Eqs. 4.13a and 4.13b represent delay differential

equations that account for the time it takes for a photon to travel between atoms. These

are incredibly difficult to solve exactly, however, and are similar to Eq. 2.8. Fortunately, if

we make the Markovian approximation we can remove the time shift. This will be valid as

long as the timescale of the pulse is much much larger than the shift in time.

In Section 2.4 we demonstrated that the Markovian approximation works well provided

that σωd/c is small. This translates to a temporal pulse width of the order of σt ≈ 1/σω.

Then a pulse with frequency bandwidth on the order of a GHz will have a temporal width

on the order of a few nanoseconds. This is certainly an achievable result; this is typically

the timescale of atomic processes. If the atoms are separated on the order of a few µm, d/c

will be on the order of 10−14s, which represents a negligible shift compared to the duration

and thus can safely be ignored.

We will also simplify the phase term eikF d−iδ±d/c by assuming that terms on the order of

d/c will be too small to contribute. This is justified by the same scaling argument used in

the Markovian approximation. Realistically, both δ and ∆ will not likely be larger than a

few GHz or so. Values for the detunings caused by doubly excited atom-atom dipole energy

shifts (β) will be on the order of 10π MHz ([61]) or 50 Mhz ([62]). As this term is often
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larger than ∆, we can safely say that multiplying these terms by d/c will lead to a

negligible contribution in realistic system. If δ± is on the order of 1 GHz, we would have

δ±d/c ≈ 10−5 and thus eiδ±d/c ≈ 1.

With this approximation Eqs. 4.13a and 4.13b become

˙|ψ+(t)〉+ g2
(
1 + eikF d/c

)
|ψ+(t)〉 = −igφ̂+,t|ψI〉 − igφ̂′†+,t|ψee(t)〉

− g2

∫ t

−∞
dt1

(
φ̂†+,1φ̂+,t|ψ+(t1)〉+ φ̂†−,1φ̂+,t|ψ−(t1)〉

)
(4.14a)

˙|ψ−(t)〉+ g2
(
1− eikF d/c

)
|ψ−(t)〉 = −igφ̂−,t|ψI〉+ igφ̂′†−,t|ψee(t)〉

− g2

∫ t

−∞
dt1

(
φ̂†+,1φ̂−,t|ψ+(t1)〉+ φ̂†−,1φ̂−,t|ψ−(t1)〉

)
(4.14b)

We can formally integrate these first-order differential equations by using the

integrating factor g± = g2
(
1± eikF d/c

)
to obtain

|ψ+(t)〉 = −ig
∫ t

−∞
dt1e

−g+(t−t1)φ̂+,1|ψI〉 − ig
∫ t

−∞
dt1e

−g+(t−t1)φ̂′†+,1|ψee(t1)〉

−g2

∫ t

−∞
dt1e

−g+(t−t1)

∫ t1

−∞
dt2

(
φ̂†+,2φ̂+,1|ψ+(t2)〉+ φ̂†−,2φ̂+,1|ψ−(t2)〉

)
(4.15a)

|ψ−(t)〉 = −ig
∫ t

−∞
dt1e

−g−(t−t1)φ̂−,1|ψI〉+ ig

∫ t

−∞
dt1e

−g−(t−t1)φ̂′†−,1|ψee(t1)〉

−g2

∫ t

−∞
dt1e

−g−(t−t1)

∫ t1

−∞
dt2

(
φ̂†+,2φ̂−,1|ψ+(t2)〉+ φ̂†−,2φ̂−,1|ψ−(t2)〉

)
(4.15b)

Next, we substitute Eq. 4.15a and Eq. 4.15b into themselves. Ideally, only the first

term containing the initial photon state would contribute leading to a truncating series.

Provided that the system is Markovian and the pulse duration, σt, is much greater than

d/c this is what happens. To demonstrate how, consider one of the terms after Eq. 4.15a is

substituted into itself:∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4e

−g+(t1−t2)−GΓ+
(t3−t4)φ̂†+,2φ̂+,1φ̂

†
+,4φ̂+,3|ψ+(t4)〉 (4.16)

This can be re-written as a four-dimensional integral with limits of ±∞ in terms of step
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functions.∫ ∞
−∞

dt1dt2dt3dt4Θ(t−t1)Θ(t1−t2)Θ(t2−t3)Θ(t3−t4)e−g+(t1−t2)−GΓ+
(t3−t4)φ̂†+,2φ̂+,1φ̂

†
+,4φ̂+,3|ψ+(t4)〉

(4.17)

Normal ordering the operators yields three delta function terms, 2δ(t1 − t4),

e−ikF d−iδ+(t1−t4)δ(t1 − t4 − d/c), and eikF d−iδ+(t1−t4)δ(t1 − t4 − d/c).

The first of these, 2δ(t1 − t4), is nested too deep and will only be nonzero at one point

in the same manner as shown in Chapter 3. This arises from the fact that the integrals

constrain the variables to be t1 ≥ t2 ≥ t3 ≥ t4, but the delta function causes t4 = t1. Here

the t3 integral is then only nonzero at one point, when t3 = t2 = t1 at the upper limit, and

thus the integral is zero.

The last term, eikF d−iδ+(t1−t4)δ(t1 − t4 − d/c) is also zero, as the delta function is only

satisfied for t4 = t1 + d/c but the integral ordering again constrains t4 ≤ t1.

The middle term does provide a nonzero contribution. In the absence of the Markovian

approximation this term would prevent a truncating series from being possible to obtain.

Within the Markovian approximation, it will contribute very little to the overall solution

and therefore can be ignored. This delta function constrains the time variables so that

t1 ≥ t2 ≥ t3 ≥ t1 − d/c. In terms of t1, then, the maximum limits of integration of the t3

integral are [t1 − d/c, t1]. This represents a vanishingly small component of the

wavefunction as compared to the overall time scale of the pulse.

The net effect of this is that for any operators with time indices ti and tj, when

j − i > 1 the operators effectively commute. This effect can be derived in a simpler way by

noting that applying the Markovian approximation means approximating delay functions

as f(t± d/c) ≈ f(t). We did not make this approximation to the commutator of φ̂+ and

φ̂− (Eq. 4.5) initially, however, because the time ordering of the integrals causes any delta

function of the form δ(ti − tj + d/c) to evaluate to zero. Had we made a Markovian

approximation to all terms of Eq. 4.5, the solution would include the unphysical scenario

where the future state of the system could affect the present state.
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In the context of the time ordered integrals, we now define effective commutators for φ̂+

and φ̂− in the Markovian regime that only include the first two terms of Eq. 4.5.

[φ̂±(ti), φ̂
†
±(tj)] ≈ 2

(
1± eikF d

)
δ(ti − tj) (4.18)

Now, when we substitute Eq. 4.15a and 4.15b into themselves only the first integral

contributes. This follows from the fact that |ψ±〉 have only one photon each, and |ψee〉 has

none. One then arrives at

|ψ+(t)〉 = −ig
∫ t

−∞
dt1e

−g+(t−t1)φ̂+,1|ψI〉 − ig
∫ t

−∞
dt1e

−g+(t−t1)φ̂′†+,1|ψee(t1)〉

+ig3

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
e−g+(t−t1)

[
e−g+(t2−t3)φ̂†+,2φ̂+,1φ̂+,3 + e−g−(t2−t3)φ̂†−,2φ̂+,1φ̂−,3

]
|ψI〉

(4.19a)

|ψ−(t)〉 = −ig
∫ t

−∞
dt1e

−g−(t−t1)φ̂−,1|ψI〉+ ig

∫ t

−∞
dt1e

−g−(t−t1)φ̂′†−,1|ψee(t)〉

+ig3

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
e−g−(t−t1)

[
e−g+(t2−t3)φ̂†+,2φ̂−,1φ̂+,3 + e−g−(t2−t3)φ̂†−,2φ̂−,1φ̂−,3

]
|ψI〉

(4.19b)

The next step is to substitute Eq. 4.19a and Eq. 4.19b into Eq. 4.10d. Doing so, one

finds that the contribution of the triple integral terms of Eq. 4.19a and Eq. 4.19b vanish.

This is accomplished by moving the φ̂′+ or φ̂′− operators on the far left past the first

creation operator under the integral sign, which can be done because their indices differ by

more than one and thus they effectively commute. By putting the |ψee(t)〉 term in normal

order and making the same approximations as above, one obtains the differential equation

for the doubly excited state of

˙|ψee(t)〉+(g+ +g−)|ψee(t)〉 = −g2

∫ t

−∞
dt1

[
e−g+(t−t1)φ̂′+,tφ̂+,1−e−g−(t−t1)φ̂−,tφ̂−,1

]
|ψI〉 (4.20)

Defining an integrating factor of γ′ = g+ + g− = 2g2 the excited state can be written

exclusively in terms of the initial state |ψI〉.

|ψee(t)〉 = −g2

∫ t

−∞
dt1

∫ t1

−∞
dt2e

−γ′t+γ′t1
[
e−g+(t1−t2)φ̂′+,1φ̂+,2−e−g−(t1−t2)φ′−,1φ̂−,2

]
|ψI〉 (4.21)
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We now substitute this in to Eq. 4.19a and Eq. 4.19b to obtain explicit solutions for

|ψ±(t)〉. Note that these can be used to find the population of each of the |±〉 states (and

thus the atoms) as a function of time.

|ψ+(t)〉 = −ig
∫ t

−∞
dt1e

−g+(t−t1)φ̂+,1|ψI〉

+ig3

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3e

−g+(t−t1)
[
e−g+(t2−t3)

(
φ̂†+,2φ̂+,1φ̂+,3 + e−2g2(t1−t2)φ̂′†+,1φ̂

′
+,2φ̂+,3

)
+e−g−(t2−t3)

(
φ̂†−,2φ̂+,1φ̂−,3 − e−γ

′t1+γ′t2φ̂′†+,1φ̂−,2φ̂−,3
)]
|ψI〉

(4.22a)

|ψ−(t)〉 = −ig
∫ t

−∞
dt1e

−g−(t−t1)φ̂−,1|ψI〉

+ig3

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3e

−g−(t−t1)
[
e−g+(t2−t3)

(
φ̂†+,2φ̂−,1φ̂+,3 + e−2g2(t1−t2)φ̂′†−,1φ̂

′
+,2φ̂+,3

)
+e−g−(t2−t3)

(
φ̂†−,2φ̂−,1φ̂−,3 − e−γ

′t1+γ′t2φ̂′†−,1φ̂−,2φ̂−,3
)]
|ψI〉

(4.22b)

Finally, we substitute this into Eq. 4.10a to obtain an expression for |ψgg(t)〉 given a

two photon input pulse. We present the final solution after transforming back to φ̂+(t) and

φ̂−(t) to more explicitly show the presence of detuning, and define parameters

Γ+ = g+ − iδ+ = g2
(
1 + eikF d

)
− i(δ −∆)

Γ− = g− − iδ− = g2
(
1− eikF d

)
− i(δ + ∆)

γ = γ′ − i(δ′+ + δ′−) = 2g2 − i(2δ − β) (4.23)

where the Γ± terms are identical to the effective coupling and detuning of Eq. 2.27 for two

atoms. The real component of γ describes the coupling and the imaginary component of γ

detuning between the |±〉 states and the |ee〉 state.
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We now arrive at Eq. 31 in [37]

|ψg(t)〉 = |ψI〉 − g2

∫ t

−∞
dt1

∫ t1

−∞
dt2

(
e−Γ+(t1−t2)φ̂†+(t1)φ̂+(t2) + e−Γ−(t1−t2)φ̂†−(t1)φ̂−(t2)

)
|ψI〉

+ g4

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4[

e−Γ+(t1−t2)φ̂†+(t1)
(
e−Γ+(t3−t4)φ̂†+(t3)φ̂+(t4) + e−Γ−(t3−t4)φ̂†−(t3)φ̂−(t4)

)
φ̂+(t2)

+ e−Γ−(t1−t2)φ̂†−(t1)
(
e−Γ+(t3−t4)φ̂†+(t3)φ̂+(t4) + e−Γ−(t3−t4)φ̂†−(t3)φ̂−(t4)

)
φ̂−(t2)

]
|ψI〉

+ g4

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4

(
e−Γ+(t1−t2)φ̂†+(t1)φ̂†+(t2)− e−Γ−(t1−t2)φ̂†−(t1)φ̂†−(t2)

)
× e−(2g2−i(2δ−β))(t2−t3)

(
e−Γ+(t3−t4)φ̂+(t3)φ̂+(t4)− e−Γ−(t3−t4)φ̂−(t3)φ̂−(t4)

)
|ψI〉

(4.24)

While Eq. 4.24 appears to be complex, it has a very physical structure; it contains all

the possible scattering channels for two photons. The structure is similar to that presented

in Eq. 3.18 for a single atom (and derived in [12]), as the first three terms represent the

same scattering events. The term |ψI〉 corresponds to the event where neither photon is

absorbed. The double-integral terms correspond to the case where only one photon

interacts with one of the |±〉 modes. The first four-fold integral term represents the

possibility that both photons have interacted with the system and may interact with any

combination of the |±〉 atomic states. Finally, the second four-fold integral term in Eq.

4.24 represents a new scattering process that corresponds to both photons being absorbed

simultaneously. Interestingly, as we will show, this contribution is entangled in the same

way as the photons that interacted with a single atom despite the fact that it arises from

the two photons being absorbed simultaneously.

We also note that, in the same way as the solution given in Chapter 3, this can be used

to explore the time evolution of the atomic populations and field states. In what follows we

will only consider the case where t→∞ corresponding to the scattered photons.

The final step of this derivation is to apply the Markovian approximation to the φ̂

operators, as they also contain time delays. Defining the standing wave mode operators
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equivalent to Â and B̂ (as done in Section 3.3.1) as

Ĉ(t) =
Â(t) + B̂(t)√

2
D̂(t) =

Â(t)− B̂(t)√
2

(4.25)

we find that the φ̂+ and φ̂− operators can be written in terms of Ĉ and D̂ by

φ̂+(t) = eikF d/2Ĉ(t− d/2c) + e−ikF d/2Ĉ(t+ d/2c)

φ̂−(t) = eikF d/2D̂(t− z/2c)− e−ikF d/2D̂(t+ z/2c) (4.26)

Within the Markovian approximation one can neglect the time delays in these functions so

that

φ̂+(t) ≈ 2 cos
(
kFd/2

)
Ĉ(t) φ̂−(t) ≈ −i2 sin

(
kFd/2

)
D̂(t) (4.27)

In order to consider why it is safe to make this approximation at this step, consider the

following action of φ̂+ on initial state of the form

|ψI〉 = |M,N〉 ≡ 1√
M !N !

(∫
dtf0(t)Ĉ†(t)

)M(∫
dtf0(t)D̂†(t)

)N
|0, 0〉 (4.28)

When the lowering operator acts on this state we have

φ̂+(t)|M,N〉 =
1√
M

(
eikF d/2f(t− d/2c) + e−ikF d/2f(t+ d/2c)

)
|M − 1, N〉 (4.29)

In the Markovian approximation this becomes

φ̂+(t)|M,N〉 ≈ 2 cos(kFd/2)f(t)|M − 1, N〉. The reason that we can safely approximate the

operators as in Eq. 4.26 at this point in the solution is that the operators are in normal

order and will not commute any more. As seen previously, when they commute the time

ordering of the integrals ensures that only the past action of the system can affect the

system at the present time t. Mathematically, this came about because one of the delta

functions from the commutator (corresponding to e−ikF d/2Ĉ(t+ d/2c) in Eq. 4.26 above)

was always zero. When the φ̂ operators act on the initial state, however, there is no time

ordering and both terms can contribute.

We now define auxiliary terms Γc = Re[Γ+] = 2g2 cos2
(
kFd/2

)
and
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Γs = Re[Γ−] = 2g2 sin2
(
kFd/2

)
so that we can write the entire expression in Eq. 4.24 in

terms of the Ĉ and D̂ operators. In deriving Γc and Γs we have used the trig identities

2 sin(θ/2) = 1− cos(θ) and 2 cos(θ/2) = 1 + cos(θ). This becomes

|ψg(t)〉 = |ψI〉 − 2

∫ t

−∞
dt1

∫ t1

−∞
dt2

(
Γce
−Γ+(t1−t2)Ĉ†(t1)Ĉ(t2) + Γse

−Γ−(t1−t2)D̂†(t1)D̂(t2)
)
|ψI〉

+ 4

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4[

Γce
−Γ+(t1−t2)Ĉ†(t1)

(
Γce
−Γ+(t3−t4)Ĉ†(t3)Ĉ(t4) + Γse

−Γ−(t3−t4)D̂†(t3)D̂(t4)
)
Ĉ(t2)

+ Γse
−Γ−(t1−t2)D̂†(t1)

(
Γce
−Γ+(t3−t4)Ĉ†(t3)Ĉ(t4) + Γse

−Γ−(t3−t4)D̂†(t3)D̂(t4)
)
D̂(t2)

]
|ψI〉

+ 4

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4

(
Γce
−Γ+(t1−t2)Ĉ†(t1)Ĉ†(t2)− Γse

−Γ−(t1−t2)D̂†(t1)D̂†(t2)
)

× e−(2g2−i(2δ−β))(t2−t3)
(

Γce
−Γ+(t3−t4)Ĉ(t3)Ĉ(t4)− Γse

−Γ−(t3−t4)D̂(t3)D̂(t4)
)
|ψI〉

(4.30)

By comparing the structure of this equation to the form of the solution for a single

atom given in Eq. 3.18 it is immediately clear that the coupling to the |±〉 modes is given

by Re[Γ±] and the detuning is given by Im[Γ±]. The doubly excited state is also detuned,

but by 2δ − β. We show the level structure with detunings and transitions labeled below in

Fig. 4.1.

Figure 4.1: A level diagram of the two atoms in the |±〉 basis. Transitions with couplings
and photon operators are presented along with the detunings of each of the states.
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4.3 Particular solutions

We now move on to describing particular input states, and we will specifically study the

case where the initial states are separable as in Chapter 3. We will start by considering the

scattered state if the photons are initially in the standing wave modes, and then describe

the solution for travelling waves. Note that at this point the quantity kFd appears

exclusively in trig functions or complex exponentials. This is a consequence of the

Markovian approximation; the phase acquired when a photon travels between the atoms

contributes to the final solution, but the time delay is too small to modify the state.

Because kFd has been reduced to a phase, in our analysis of the scattered state of the

photons we will define the phase term φ ≡ kFd just as in Section 2.4.

4.3.1 Scattering of a single photon

We present results for the single photon to show that the solution is the same as the

frequency domain solution derived in Section 2.4.1. In the time domain, solving the single

photon case is relatively trivial. As there is only one photon in the initial state, only the

first integral term in Eq. 4.30 will contribute. Writing again Eq. 3.23

GΓi(t) = e−Γit

∫ t

−∞
dt′eΓit

′
f(t′) (4.31)

the space-time profile for a scattered photon initially in the Ĉ mode with initial wavepacket

f(t) is

fc(t) = f(t)− 2ΓcGΓ+(t) (4.32)

If the photon is initially in the D̂ mode we will have

fd(t) = f(t)− 2ΓsGΓ−(t) (4.33)

Taking the Fourier transform of these functions gives the frequency spectra of the
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scattered photon as

f̃c(ω) = −
Γ∗+ + iω

Γ+ − iω
f̃(ω) f̃d(ω) = −

Γ∗− + iω

Γ− − iω
f̃(ω) (4.34)

We point this out as these have the same form as the individual terms of Eq. 2.27, as we

can write Γ± = g2
(
1± eiφ

)
− iδ.

If a photon is initially in the Â mode its initial state can be written in terms of a

superposition of the Ĉ and D̂ modes by

|ψI〉 =

∫
dtf(t)Â†(t)|0〉 =

1√
2

∫
dtf(t)

(
Ĉ†(t) + D̂†(t)

)
|0〉 (4.35)

Using Eqs. 4.32 and 4.33 to transform the state and then re-writing the expression in

terms of traveling waves, we have that the transmitted (τ) and reflected (ρ) photons have

space-time profiles given by

τ(t) = f(t)− ΓcGΓ+(t)− ΓsGΓ−(t) ρ(t) = −ΓcGΓ+(t) + ΓsGΓ−(t) (4.36)

The Fourier transform of these functions are again identical to the reflection and

transmission spectra given in Eq. 2.27. Finally, we present the transmission probabilities of

the photon for various values of ∆, δ, g, and φ in order to give some sense of what is

possible. The transmission window given in Eq. 2.40 can be seen in the regions of high

transmission found in Fig. 4.2 b-c when ∆ 6= 0 or δ 6= 0. These transmission probabilities

were calculated for a square pulse shape of

f(t) =
1√
2T

(
Θ(t+ T )−Θ(t− T )

)
(4.37)

In all calculations we have set T =
√

3 so that the standard deviation of the pulse,

σt =
∫
dtf 2(t)t2 = T 2/3, equals one.
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Figure 4.2: Transmission of a square pulse of duration σt through the two-atom “cavity”
system, as a function of φ and g2σt, for the values of δσt and ∆σt shown.

4.3.2 Two-photon standing wave solutions

To analyze the standing wave solutions, we first consider the case where both photons

begin in the Ĉ standing wave mode. The initial state will then have the form

|ψI〉 =
1√
2

∫
dt1dt2f(t1)f(t2)Ĉ†(t1)Ĉ†(t2)|0〉 (4.38)

In this case many of the terms in Eq. 4.30 vanish and the two photons will either both

end up in the Ĉ modes or in the D̂ modes. This last possibility is due to the fact that if

both photons are absorbed at once, the atoms are able to decay into either the Ĉ or D̂
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modes. By comparison with the single atom solution in Eq. 3.18 (and Eq. 8 in [12]), we

can write down the two-photon wavefunction for the final state in the time domain. We

also define a function similar to GΓ± to describe the contribution of the doubly excited

state to the space-time profile. This is

EΓ±(t) =

∫ t

−∞
dt′e−(2g2−i(2δ−β))(t−t′)f(t′)GΓ±(t′) (4.39)

EΓ± is directly related to the double excitation probability in the same way that GΓ± is

related to the single-photon excitation probability. To see how, consider that for two

photons we can write the doubly-excited component of the wavefunction as

|ψee(t)〉 = ψe(t)|0〉 because there are no photons remaining in the field. Plugging this into

Eq. 4.21 we arrive at

ψe(t) = −e−i(2δ+β)t
√

2 g2 cos2(φ/2)EΓ+(t) (4.40)

We get a similar result if both photons are initially in the D̂ modes (changing the

cosine to a sine, and EΓ+ to EΓ−). From here, the probability of the atoms being in this

state is given by

〈ψee(t)|ψee(t)〉 = |ψe(t)|2 = 2g4 cos4(φ/2)|EΓ+(t)|2 (4.41)

And thus one can see that Eq. 4.39 is effectively the probability amplitude for the atomic

state |ee〉.

With all this, we can write the total scattered photon state for the initial state in Eq.

4.38 as

|ψ〉 =
1√
2

∫
dt1dt2

(
fcc(t1, t2)Ĉ†(t1)Ĉ†(t2) + fdd(t1, t2)D̂†(t1)D̂†(t2)

)
|0〉 (4.42)

and we will have the following for the component corresponding to both photons being
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scattered in the Ĉ mode

fcc(t1, t2) =
(
f(t1)− 2ΓcGΓ+(t1)

) (
f(t2)− 2ΓcGΓ+(t2)

)
− 4Γ2

ce
−Γ+|t1−t2|

(
G2

Γ+
(t<)− EΓ+(t<)

)
(4.43)

Here, t< is the smaller of t1 and t2. The first term in Eq. 4.43 represents the two

photons interacting independently with the two-atom system. The second term is the

entangled state where the first part is identical in form to that derived in Chapter 3 for a

single atom and the second part (containing E) is the contribution from the doubly excited

state.

In the same way, the component of the two-photon wavefunction corresponding to the

case where both photons exit in the D̂ mode is constructed of just the two-photon,

two-atom term and is

fdd(t1, t2) = 4ΓcΓse
−Γ−|t1−t2|EΓ+(t<) (4.44)

Provided that the standing wave modes are being accessed as described in Section 1.2.1,

where a beamsplitter is used to transform travelling wave photons to standing wave

photons, we have a situation where two unentangled photons can enter one port of the

beamsplitter (the Ĉ mode) and leave in the other port (the D̂ mode) in an entangled (i.e.

non-separable) state. It would be convenient if there was a combination of parameters that

would ensure that this swapping occurred with unit probability, as the system could be

used deterministically to generate entangled states or to discriminate between one and two

photon pulses. Unfortunately, the best that we have found for the norm of Eq. 4.44 is

approximately .593 for a square pulse. This occurs around g2σt = .91, φ = 3π/2, and

∆ = g2 for δ = β = 0. This system is similar to the two-photon discriminator proposed by

Witthaut and co-workers [63], which we analyzed in [12]. In fact, when using the same

square pulse shape, their device succeeds with a maximum success probability of 0.584 to

separate a two photon and a single photon state in a single pass.

87



Generally speaking, evaluating the function EΓ±(t) is challenging, though an analytic

expression can be obtained for a square pulse and a lowering exponential pulse. We instead

consider the adiabatic limit, that is when the product g2σt � 1, with σt being the standard

deviation of the initial pulse shape f(t). This is also the nearly monochromatic limit, as a

long pulse in time (or space) corresponds to a very narrow frequency bandwidth. As shown

in Eq. 3.49, GΓ± ' f(t)/Γ± to first order. Using this we can approximate EΓ± to first order

by

EΓ±(t) ' 1

γΓ±
f 2(t) (4.45)

The factors in the denominator come from the conditions for 1- and 2- photon

resonance. By choosing φ = 3π/2, which maximizes the factor ΓcΓs and sets |Γ+| = |Γ−|,

we find that further choosing β = 2δ and g2 = δ + ∆ will maximize the norm of EΓ+ and

also maximize the norm of fdd. It is, however, impossible to satisfy both conditions at the

same time unless the atoms are able to interact (i.e. ∆ 6= 0 and β 6= 0). When these

conditions are met, the entangled state Eq. 4.44 has the approximate form of

2e−g
2|t1−t2|f 2(t<) multiplied by a phase, and is about 1/2 of the magnitude of the G2

Γ+
term

for the same choice of parameters.

The two terms can be made to be of the same order, however. For example, choosing

kFa = 2nπ makes Γs = 0, which causes Eq. 4.44 to vanish and makes it possible to set

Γ+ = 2g2. When this happens the entangled component of Eq. 4.43 will approximately

vanish. We note that this approximate cancellation requires both that the product of the

coupling and the pulse duration g2σt must be large (so that the approximate forms for GΓ+

and EΓ+ can be used) and that β = 2δ and δ = ∆ (which if δ = 0 can be satisfied in the

absence of atom-atom interactions). This result is somewhat interesting because, even

though in this regime the atoms are interacting only with the Ĉ standing wave mode, there

are still two photons in the system and thus the vanishing of the nonlinear terms is

nontrivial: it suggests that it is possible to use the nonlinearity introduced by the presence
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of the second atom to negate the entanglement generated by the individual atoms.

4.3.3 Travelling wave solutions

Two photons arriving from the same direction

If we consider the initial, separable state where both photons are in the Â mode

(travelling to the right) |ψI〉 will be

|ψI〉 =
1√
2

∫
dt1dt2f(t1)f(t2)Â†(t1)Â†(t2)|0〉 (4.46)

From here, we use the fact that the defininton of the Ĉ and D̂ operators can be inverted to

give

Â(t) =
1√
2

(
Ĉ(t) + D̂(t)

)
B̂(t) =

1√
2

(
Ĉ(t)− D̂(t)

)
(4.47)

With this, we convert the initial state to a standing wave mode description and use Eq.

4.30 to determine how the state changes. Finally, we convert back to a travelling wave

mode basis and collect terms corresponding to each of the three possible scattering

outcomes; when both photons are transmitted, both photons are reflected, or they are

“split” and one is transmitted while the other is reflected. We will use the single photon

reflection and transmission functions defined in Eq. 4.36 to write the components of the

total scattered wavefunction as

faa(t1, t2) =τ(t1)τ(t2) + f+
G2,aa(t1, t2) + f+

E,aa(t1, t2) (4.48a)

fbb(t1, t2) =ρ(t1)ρ(t2) + f−G2,aa(t1, t2) + f+
E,aa(t1, t2) (4.48b)

fab(t1, t2) =τ(t1)ρ(t2) + fG2,ab(t1, t2) + f−E,aa(t1, t2) (4.48c)
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The nonlinear components, f±G2,aa, fG2,ab, and f+
E,aa are given by

f±E,aa(t1, t2) =
(
Γce
−Γ+|t1−t2| ± Γse

−Γ−|t1−t2|
) (

ΓcEΓ+(t<) + ΓsEΓ−(t<)
)

f±G2,aa(t1, t2) =−
(
ΓcGΓ+(t<)± ΓsGΓ−(t<)

) (
Γce
−Γ+|t1−t2|GΓ+(t<)± Γse

−Γ−|t1−t2|GΓ−(t<)
)

fG2,ab(t1, t2) =−
(
ΓcGΓ+(t<)− sgn(t1 − t2)ΓsGΓ−(t<)

)
×
(
Γce
−Γ+|t1−t2|GΓ+(t<) + sgn(t1 − t2)Γse

−Γ−|t1−t2|GΓ−(t<)
)

(4.49)

Here, unlike the scattered state from the single atoms in Eq. 3.40, all three scattering

possibilities have different entangled components. In general, the components related to

the doubly excited state will interfere with the single-atom nonlinear effects, with the effect

most pronounced around φ = nπ when the atoms are coupled to only one of the standing

wave modes (i.e. one of Γc or Γs is zero). This may be useful for applications where extra

entanglement is to be avoided.

The nonlinear effects become large when the coupling to both the |+〉 and |−〉 states is

of equal strength, requiring φ = (n+ 1
2
)π. As discussed above, it is possible to have G2

Γ±
on

the order of 2EΓ± , so no cancellation will generally occur between the single- and two-atom

terms. In this new geometry some of the terms can cancel individually. For example, when

Γ+ = Γ−, by choosing the appropriate ∆, it can be true that f−E,aa = f−G2,aa = fG2,ab = 0.

Regardless of the value of ∆, the terms will cancel approximately provided that Γc = Γs.

Perhaps the biggest effect of the nonlinear terms can be seen when they cause

something to happen that would not otherwise occur if the atomic response was purely

linear. These can be seen most prominently along the high transmission regions presented

in Fig. 4.2. Here, the entangled term from the doubly excited state strongly reduces the

transmission probability. This is perhaps to be expected, as these regions of high

transmission occur near resonances of the system, which in turn increase the size of the

nonlinear terms, as suggested by Eq. 4.45.

We present an example of this in Fig. 4.3, where we show the norm of faa, fbb, and fab

for a square pulse shape. We have chosen to work with a square pulse in this section
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because it is possible to obtain an analytic form for EΓ± and because the transmission

properties of a single atom appear to be largely independent of the pulse shape for g2 ≈ σt.

The pulse shape we are considering is

f(t) =
1√
2T

(
Θ(t+ T )−Θ(t− T )

)
(4.50)

and it has auxiliary functions

GΓ(t) =
1√
2TΓ

[(
1− e−Γ(t+T )

)
Θ(t+ T )−

(
1− e−Γ(t−T )

)
Θ(t− T )

]
(4.51)

EΓ(t) = Θ(t+ T )Θ(T − t) eγt

2T (γ − Γ)

( 1

Γ

(
1− e−Γ(t+T )

)
− 1

γ

(
1− e−γ(t+T )

))
+Θ(t− T )

eγT

2T (γ − Γ)

( 1

Γ

(
1− e−2ΓT

)
− 1

γ

(
1− e−2γT

))
(4.52)

Note that when β, δ, and ∆ are zero, γ − Γ will also be zero. At this point the function is

equal to

EΓ(t) = −Θ(t+T )Θ(T−t) e
−ΓT

2TΓ2

(
Γ(t+T )+1−eΓ(t+T )

)
−Θ(t−T )

e−ΓT

2TΓ2

(
2ΓT+1−e2ΓT

)
(4.53)

In Fig. 4.3 we have chosen the detunings to fit the transmission window that appears

when ∆ = −g2 sinφ for δ = 0 as given by Eq. 2.40. Additionally, we have chosen g to

maximize the contribution of the nonlinear terms. Small values of g2σt lead to a small

modification of the photon wavepacket by the atom, whereas for large values the timescale

of the interaction is short and the modification of the pulse shape is constrained by

e−Γ|t1−t2|. From the single photon analysis in Section 2.5, we expect that at φ = 3π/2 the

system should transmit with near unit probability (that is both photons should be in the Â

mode). This effect can be seen in the solid black curve in Fig. 4.3, representing the linear

solution, which itself is a product of two single-photon interactions (or alternatively Eq.

4.48 where the entangled components have been removed).

The full solution, however, has a relatively large reflection probability. To understand

where it comes from, consider that when φ = 3π/2 we have that Γ+ = Γ− and Γc = Γs. As
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a result, for any combination of t1 and t2, f±G2,aa(t1, t2) = fG2,ab(t1, t2) = 0. This ensures

that any deviation from the linear terms at this point is exclusively due to the double

excitation entangled term f+
E,aa(t1, t2).

Figure 4.3: Probabilities of two-photon reflection, one reflection and one transmission, and
two-photon transmission for an initial state with both photons in the Â mode (travelling
to the right) and with a square pulse shape of duration T =

√
3. Other parameters are

∆ = g2| sin(kFa)|, δ = β = 0, and g2σt = 1. The red, constant line gives the probability of
each event for a single atom. The blue, dashed line shows the full solution and the solid,
black line shows the contribution of just the linear terms.

Finally, in Fig. 4.4 we present the probability that both photons are transmitted as a

function of both the dimensionless coupling parameter g2σt and φ for the same parameters

as in Fig. 4.2. As can be seen, in the absence of atomic interactions or detuning, the phase

difference between the atoms due to their separation matters little; as g2σt increases the

probability that both photons remain in the initial mode decreases. When detuning is

present the shape of the plot is nearly identical in form to that seen for a single photon in

Fig. 4.2, though the transmission probability of Fig. 4.4c is less than one at φ = 3π/2 and

g2σt = 10 due to the contribution from the doubly excited state as described above.
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Figure 4.4: The probability that both photons are transmitted as a function of g2σt and φ.
For all plots β = 0 and the other parameters are a) δ = ∆ = 0, b) δ = 10σt, ∆ = 0, c)
∆ = 10σt, δ = 0.

Two photons arriving from opposite directions

When the photons are initially counter-propagating, that is they are moving in opposite

directions, identical, and uncorrelated, the initial state will be of the form

|ψI〉 =

∫ ∫
dt1dt2f(t1)f(t2)Â†(t1)B̂†(t2)|0〉 (4.54)

The calculation to arrive at the final scattered wavefunction is somewhat more involved

in this case, but the process is the same, where we convert the initial state to the Ĉ and D̂
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modes, evaluate Eq. 4.30, and then convert the final solution back to the travelling wave

modes. In the end, the final result is

faa(t1, t2) = fbb(t1, t2) =
1√
2

[
τ(t1)ρ(t2) + τ(t2)ρ(t1)

]
+
√

2f+
ent,ab(t1, t2)

fab(t1, t2) = τ(t1)τ(t2) + ρ(t1)ρ(t2) + 2f−ent,ab(t1, t2) (4.55)

where we have written these in terms of the reflection and transmission functions defined in

Eq. 4.36. We also have once again introduced another nonlinear term, given below.

f±ent,ab =−
(
Γ2
ce
−Γ+|t1−t2|GΓ+(t<)2 ∓ Γ2

se
−Γ−|t1−t2|GΓ−(t<)2

)
+
(
Γce
−Γ+|t1−t2| ± Γse

−Γ−|t1−t2|
) (

ΓcEΓ+(t<)− ΓsEΓ−(t<)
)

(4.56)

As discussed in the “split” solution for the single atom in Chapter 3, there is a factor of

1/
√

2 between the co- and counter-propagating components of the scattered photon state

that arises from a difference in the normalization of the two states.

Looking at the linear components of Eq. 4.56 one can see that the split outcome fab

will approach one when the single-photon case exhibits unit transmission or reflection.

This is potentially useful for applications in quantum information processing, as it suggests

that the photons may be able to interact with the atoms and remain in their respective

modes. This allows for highly controllable interactions that, as we will see, can in principle

be used to implement conditional quantum logic between photons.

Because of this application, the rest of our analysis will focus on the scattered

wavefunction of the two photons when the system is tuned to the two windows of high

transmission given in Chapter 2, tan(φ) = −δ/g2 and sin(φ) = −∆/g2. These windows can

be seen in Fig. 4.5, where we present the probability that both photons will remain in the

split modes. Note that the transmission windows described can be clearly seen, just as in

the single photon case. If the central frequency of the photon is on resonance and there are

no direct atom-atom interactions, changing the spacing between the atoms has little effect

on the scattering of the photons, with the coupling being the more important parameter.
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Adding detunings or interactions, however, the position of the atoms can have very

pronounced effects on the transmission properties of the system. In all cases, though, when

g2σt is large or small it is most likely that both photons will remain in their original modes.

Figure 4.5: The probability that the photons are scattered into different modes as a function
of g2σt and φ. For all plots β = 0 and the other parameters are a) δ = ∆ = 0, b) δ = 10σt,
∆ = 0, c) ∆ = 10σt, δ = 0.

We will start with the most interesting result; when φ = 3π/2, δ = 0, and ∆ = g2, both

counter-propagating photons will be transmitted with unit probability regardless of the

pulse shape. From our analysis of the single photon case, we have shown that when these

two conditions have been met ρ(t) = 0 and thus the linear components of faa and fbb vanish,

while the linear component of fab is proportional to just τ(t). To understand what happens
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to the entangled component, recall that for these parameters Γ+ = Γ− = Γc = Γs = g2. As

a result, the function f+
ent,ab will always be zero, and thus faa = fbb = 0. This leads to the

remarkable result that, while the photons will transmit with unit probability (which we

show in Fig. 4.6), the nonlinear contribution to the wavepacket is nonzero and the final

state will be at least partially entangled. With the aforementioned choices of φ, δ, and ∆

we have that the only nonzero component of the wavefunction is given by

fab(t1, t2) = (f(t1)− 2g2Gg2(t1))(f(t2)− 2g2Gg2(t2))− 4g2e−g
2|t1−t2|Gg2(t<)2 (4.57)

This is identical to the single atom, unidirectional (or standing wave) result given in

Eq. 3.30, provided that Γ→ g2. The fact that this result is the same is highly nontrivial,

as here the modification appears in a bidirectional geometry. Because the photons are

travelling in opposite directions they can easily be routed before and after interacting with

the atoms. Additionally, considering this state in the frequency domain shows that this is

the same transformation that would be experienced by a two-photon wavepacket incident

on a three-level atom in the “V” configuration where each photon couples to one of the two

transitions (for examples, see [28, 30, 64]). This itself is not surprising, as a V system has a

level structure that is isomorphic to the levels presented here, specifically the transitions

between |gg〉 and |±〉), provided that the state |ee〉 is not accessed. This appears to be the

case here, as the scattered state does not contain any entanglement due to interacting with

|ee〉. This is also a very important result for this work, as we will show in Chapter 6 that

this scattering process can be used to create a conditional-phase (CPHASE) gate between

the two photons that would, in principle, enable quantum logic (see Section 1.3 for a

description of a CPHASE gate).
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Figure 4.6: Probabilities of both photons leaving in the same direction (left) or in opposite
directions (right), when the photons are initially counter-propagating. Values are calculated
for a square pulse of duration T =

√
3, for the parameters ∆ = g2| sin(kFa)|, δ = β = 0, and

g2σt = 1. The dotted (constant) line shows the corresponding probabilities for a single atom.
The dashed line shows the result of including all the terms in the wavefunction, whereas the
solid line shows only the contribution of the linear terms.

Realizing this interaction experimentally may be challenging, however; it clearly

requires fairly large, precise interactions between the atoms (∆ = g2) and a particular

separation (φ = 3π/2). As such, we also analyze the other transmission window that occurs

when ∆ = 0, namely the one seen in Fig. 4.5 when δ = −g2 tanφ. At this point one has

Γ± =
g2

cosφ
eiφ (1± cosφ)

Γc
Γ+

=
Γs
Γ−

= e−iφ cosφ (4.58)

The equivalence shown in the last line implies that under the adiabatic (or long-pulse)

approximation made in Chapter 3 (G± ' f/Γ±) and above in Eq. 4.45, both the

single-photon reflection coefficient ρ(t) (Eq. 4.36) and the dobubly-excited state

contribution to f+
ent,ab (Eq. 4.56) will approximately vanish. Note that this limit requires

that both δ and g2 be large so that each of Γ+ and Γ− will also be large. Under this

approximation, the total scattered state from Eq. 4.55 reduces to

faa(t1, t2) = fbb(t1, t2)

' −
√

2 cos2 φ e−2iφ
(
e−Γ+|t1−t2| − e−Γ−|t1−t2|

)
f 2(t<)

fab(t1, t2) ' e−4iφf(t1)f(t2)

− 2 cos2 φ e−2iφ
(
e−Γ+|t1−t2| + e−Γ−|t1−t2|

)
f 2(t<) (4.59)
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This demonstrates that in this limit the probability for the photons to leave in the same

direction can become very small and, as such, the photons will pass through each other.

We show this transmission window in Fig. 4.7. This term still has a nonvanishing nonlinear

component, however, and is similar in form to that seen in Eq. 4.57. This suggests that

one may also be able to exploit this transmission window to construct a CPHASE gate in

the same style as the one proposed by Brod and Combes. We have already shown in

Chapter 2 that for a single photon it is entirely possible to tune an array of atoms so that

the photon will transmit with near-unit probability and experience a phase proportional to

transmitting thorough a number of two-atom sites. In Chapter 5 we will explore how two

photons transmit through multiple sites and in Chapter 6 we will combine everything to

study how well one can build a phase gate using this transmission window.

Figure 4.7: Probabilities of both photons leaving in the same direction (left) or in opposite
directions (right), when the photons are initially counter-propagating. Values are calculated
for a square pulse of duration T =

√
3, for the parameters δσt = 10, ∆σt = βσt = 0, and

g2σt = 5. The dotted (constant) line shows the corresponding probabilities for a single atom.
The dashed line shows the result of including all the terms in the wavefunction, whereas the
solid line shows only the contribution of the linear terms.

4.4 Conclusions

In this chapter we extended the time-domain approach of Chapter 3 to two atoms and

explored single- and two-photon scattering of photons from two level systems coupled to a

lossless waveguide. We demonstrated how to apply the Markov approximation in the time

domain. We analytically and numerically studied the photon transport properties and
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nonlinear interactions and explored the effects of direct atom-atom interactions. Most

importantly, we found that the transmission windows described in Chapter 2 for single

photons are also present for two photons, though the agreement is especially good for

photons coming from opposite directions. We explored these regions analytically and found

that there is good reason to expect that they can be used to implement a CPHASE gate

between two photons.
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Chapter 5

Scattering of Two Photons From Many Atoms

5.1 Introduction

In Chapter 4 we found that two photons will transmit with high probability from a

system consisting of two atoms. Here we will extend the time-domain solution first

presented in Chapter 3 to deal with N, non-interacting atoms. We will use this to analyze

whether the same atomic spacing presented in Chapter 2 enables high two-photon

transmission. Additionally, we will ultimately use the solutions presented here in Chapter 6

to evaluate the effectiveness of a heuristic model of two photon transport.

5.1.1 Extending the syntax to many atoms and arbitrary positions

Figure 5.1: A diagram of the system being considered. All photons are constrained to
move in 1-D in a waveguide that is coupled to an array of n atoms at arbitrary positions. z
will denote the distance along a waveguide with z=0 being the location of the center of the
atomic array.

In what follows we will be considering a system of the form as in Fig. 5.1 consisting of

N, non-interacting atoms each with positions given by zj. Due to the fact that we are

allowing for arbitrary positions the symmetric atomic states |±〉 used in Chapter 4 will no

longer couple to one standing wave mode. As such, there is no advantage in moving to the

|±〉 basis. The Hamiltonian that describes this system is

H = ~g
N∑
j=1

[
φ̂j(t)e

−iδtσ†j + φ̂†j(t)e
iδtσj

]
(5.1)
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where the atomic operators σ†j and σj raise or lower the jth atom and and the field

operators are identical to that used in Eq. 2.1. The field operator is reproduced below.

φ̂j(t) = eikF zj Â
(
t− zj

c

)
+ eikF zj B̂

(
t+

zj
c

)
(5.2)

This operator commutes with relationship

[φ̂j(t), φ̂
†
k(t1)] = eikF (zj−zk)δ

(
t− t1 −

zj − zk
c

)
+ e−ikF (zj−zk)δ

(
t− t1 +

zj − zk
c

)
(5.3)

Before moving on to solving the equations, it is important to note how the Markovian

approximation will play a role. Similar to what was seen in Chapter 4, the commutator of

φ̂j will be found in the context of terms like∫ t

−∞
dt1[φ̂j(t), φ̂

†
k(t1)]e−iδt+iδt1|ψ(t1)〉 (5.4)

Here, the limits of integration constrain the solution so that only the delta function

coupled with the positive phase term will survive. Noting that in the Markovian

approximation |ψ(t− zj/c)〉 ≈ |ψ(t)〉 and that terms that go as zjδ/c ≈ 0 we can

approximate the above integral as∫ t

−∞
dt1[φ̂j(t), φ̂

†
k(t1)]e−iδt+iδt1 |ψ(t1)〉 ≈ eikF |zj−zk||ψ(t)〉 (5.5)

For compactness, we will define θj,k = eikF |zj−zk|. This means that, within the

Markovian approximation, the commutator for the field operators has the effective form of

[φ̂j(t), φ̂
†
k(t1)] = 2θj,kδ(t− t1) (5.6)

The factor of 2 has been included to account for the fact that δ(t− t1) will only be satisfied

at the upper limit of integration (adding a factor of 1/2 when evaluated) whereas

δ(t− t1 − ε) will be fully satisfied.
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5.2 Solving the Schrödinger equation

To solve for the final scattered photon state, we will express the system’s total state as

|ψ(t)〉 = |ψ2,0(t)〉+ |ψ1,1(t)〉+ |ψ0,2(t)〉 (5.7)

where the first index refers to the number of photons and the second refers to the number of

excited atoms. Each of these terms contains both atom and photon states. In what follows

we will use the same procedure developed in Chapter 3 where we normal order all photon

operators to arrive at a truncated series solution in terms of photon number. Because of

this, the number of photons matters more than the specific states that are excited.

We will also define the operator ĥ(t) =
∑N

j=1 φ̂j(t)e
−iδtσ†j so that, from the above

Hamiltonian (Eq. 5.1), the equations of motion have the compact form of

|ψ̇2,0〉 = −igĥ†(t)|ψ1,1(t)〉 (5.8a)

|ψ̇1,1〉 = −igĥ(t)|ψ2,0(t)〉 − igĥ†(t)|ψ0,2(t)〉 (5.8b)

|ψ̇0,2〉 = −igĥ(t)|ψ1,1(t)〉 (5.8c)

Following the method we integrate Eq. 5.8a and substitute it into Eq. 5.8b to get

|ψ̇1,1〉 = −igĥ(t)|G〉|ψI〉 − igĥ†(t)|ψ0,2(t)〉 − g2

∫ t

−∞
dt1ĥ(t)ĥ†(t1)|ψ1,1(t1)〉 (5.9)

Note we are assuming that the initial state contains two photons and no atomic

excitations, expressed by |ψI〉 ⊗ |G〉 where |G〉 = |g1〉 ⊗ |g2〉....⊗ |gn〉 and |ψI〉 is the initial

photon state. At this point we normal order the photon operators in ĥ(t)ĥ†(t1).

Commuting only the photon components gives the following expression.

ĥ(t)ĥ†(t1) =
N∑

j,k=1

(
2δ(t− t1)θj,k + φ̂†k(t1)φ̂j(t)

)
σ†jσke

−iδt+iδt1 (5.10)
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Placing this into the equation for |ψ1,1(t)〉 and evaluating the delta function we get

|ψ̇1,1〉 =− g2

N∑
j,k=1

θj,kσ
†
jσk|ψ1,1(t)〉 − igĥ(t)|G〉|ψI〉 − igĥ†(t)|ψ0,2(t)〉

− g2

∫ t

−∞
dt1

N∑
j,k=1

φ̂†k(t1)φ̂j(t)σ
†
jσke

−iδ(t−t1)|ψ1,1(t1)〉 (5.11)

From here, we define an integrating factor Γ̂ = g2
∑N

j,k=1 θj,kσ
†
jσk. As there is no time

dependence on the atomic operators, this can be used to arrive at the solution

|ψ1,1〉 =− ig
∫ t

−∞
dt1e

−Γ̂(t−t1)ĥ(t)|G〉|ψI〉 − ig
∫ t

−∞
dt1e

−Γ̂(t−t1)h†(t1)|ψ0,2(t1)〉

− g2

∫ t

−∞
dt1e

−Γ̂(t−t1)

∫ t1

−∞
dt2

N∑
j,k=1

φ̂†k(t2)φ̂j(t1)σ†jσke
−iδ(t1−t2)|ψ1,1(t2)〉 (5.12)

We now substitute |ψ1,1(t)〉 into itself. While e−Γ̂(t−t1) is an operator, it consists of only

atomic operators. Thus the photon components of all parts of the sums in ĥ will commute

with this element. In addition, due to the nature of the time ordering, photon operators

with time indices that differ by more than one will commute. This is due to the Markov

approximation made earlier and is justified more thoroughly in Section 4.2.1.

This will cause the component of the substituted term containing |ψ0,2(t)〉 to vanish, as

each component of the sum will contain a photon lowering operator of some form acting on

a state with no photons. The term with |ψ1,1(t)〉 will similarly vanish. This term will have

operators (without the integrals) of the form

e−Γ̂(t−t1)φ̂†j(t2)φ̂j(t1)e−Γ̂(t2−t3)φ̂†l (t4)φ̂m(t3)|ψ1,1(t)〉 (5.13)

As the photon operators φ̂j(t1) and φ̂†l (t4) differ by more than one time index they will

commute cleanly under the Markov approximation. Thus, every term will have two photon

lowering operators acting on |ψ1,1(t4)〉, a state with only one photon, causing the term to

vanish. The initial state has two photons so it will not vanish under iteration. Eq. 5.11
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then becomes

|ψ1,1(t)〉 = −ig
∫ t

−∞
dt1e

−Γ̂(t−t1)ĥ(t)|G〉|ψI〉 − ig
∫ t

−∞
dt1e

−Γ̂(t−t1)ĥ†(t1)|ψ0,2(t1)〉

+ ig3

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3e

−Γ̂(t−t1)

N∑
j,k=1

φ̂†k(t2)φ̂j(t1)σ†jσke
−iδ(t1−t2)e−Γ̂(t2−t3)ĥ(t3)|G〉|ψI〉

(5.14)

As this is in terms of just the initial state and |ψ0,2(t)〉 we can substitute it into Eq.

5.8c. Doing so will kill the triple integral term, as ĥ(t) contains photon lowering operators

that will commute with φ̂†(t2). The differential equation for the state when both photons

have been absorbed is then

|ψ̇0,2〉 = −g2

∫ t

−∞
dt1ĥ(t)e−Γ̂(t−t1)ĥ(t)|G〉|ψI〉 − g2

∫ t

−∞
dt1ĥ(t)e−Γ̂(t−t1)ĥ†(t1)|ψ0,2(t1)〉 (5.15)

When normal ordering the photon operators in |ψ0,2(t1)〉 one must be careful to

remember that there is an exponential term between the two. Fortunately, the fact that

photon operators commute to give a delta function removes the effect of the exponential, in

part because evaluating the delta function of δ(ti − tj) from the commutator of the photon

operators will lead to e−Γ̂(ti−tj) → e0 = 1. After working out the algebra by expanding each

operator (including the matrix exponent) in terms of a sum and commuting the photon

terms, it can be shown that the whole expression reduces to

|ψ̇0,2〉 = −γ̂|ψ0,2(t)〉 − g2

∫ t

−∞
dt1ĥ(t)e−Γ̂(t−t1)ĥ(t)|G〉|ψI〉 (5.16)

Where we have defined

γ̂ = g2

N∑
j,k,l,m=1

eikF |zj−zk|δl,m(1− δj,l)(1− δk,m)σ†jσ
†
l σkσm (5.17)

Using an integrating factor of γ̂ Eq. 5.15 becomes

|ψ0,2(t)〉 = −g2

∫ t

−∞
dt1

∫ t1

−∞
dt2e

−γ̂(t−t1)ĥ(t1)e−Γ̂(t1−t2)ĥ(t2)|G〉|ψI〉 (5.18)

Putting this all together we can finally write the ground state as a function of time by
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substituting all these equations into the equation for |ψ2,0(t)〉 and multiplying both sides by

〈G| to obtain states with no atoms excited. Doing so yields

|ψg(t)〉 =|ψI〉 − g2

∫ t

−∞
dt1

∫ t1

−∞
dt2〈G|ĥ†(t1)e−Γ̂(t1−t2)ĥ(t2)|G〉|ψI〉

+ g4

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t2

−∞
dt4

[

〈G|ĥ†(t1)e−Γ̂(t1−t2)

N∑
j,k=1

φ̂†k(t3)φ̂j(t2)σ†jσke
−Γ̂(t3−t4)ĥ(t4)|G〉|ψI〉

+ 〈G|ĥ†(t1)e−Γ̂(t1−t2)ĥ†(t2)e−γ̂(t2−t3)ĥ(t3)e−Γ̂(t3−t4)ĥ(t4)|G〉|ψI〉

]
(5.19)

While certainly unwieldy and more complicated than the previous solutions for a single

atom (Eq. 3.26) and for two atoms (Eq. 4.30), it has a similar physical structure that

describes all the different possible scattering events. Each term deals with a different

possibility for photon scattering and mirrors the process described in Section 4.2.1. The

first term in Eq. 5.19 represents the probability that no interaction occurs. The second

(the double-integral term) represents the probability that only one of the two photons will

interact with any atoms. The process here is that one photon is absorbed at any time

(ĥ1(t2)), may be instantly emitted and re-absorbed by any number of atoms (e−Γ̂(t1−t2)),

and then is emitted back into the waveguide at a later time (ĥ†1(t1)). The third term (first

quadruple-integral term) involves a photon being absorbed at one time, (possibly)

transferring to another atom, then being re-emitted at a time before a second photon is

absorbed. This second photon can then be transferred to any other atom and then be

emitted back into the waveguide. Finally, the last term (second quadruple-integral term)

involves a photon being absorbed and (potentially) hopping to a different atom. A second

photon is then absorbed. After this, one of the two photons may move to a different atom

(e−γ̂(t2−t3)) and then they are both emitted.

As before, we note that this solution is time-dependent and, in principle, can be used to

obtain the evolution of the field state and atomic populations as a function of time. We
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will explain how to evaluate the operators in the exponents in the scattering limit of

t→∞. Ultimately, normal ordering the atomic operators will lead to a closed form that

sums over all possible scattering terms and is relatively straightforward to evaluate.

5.3 Simplifying the general expression

5.3.1 Single photon term

Equation 5.19 can be converted into a computable form by re-writing the exponential

terms e−Γ̂(ti−tj) as a matrix. As given, such terms are an exponential of atomic operators

and effectively describe all the possible paths that a photon could take after being

absorbed at once site to be emitted at a separate site, along with all the possible phases

that will be accrued from this hopping. Unfortunately, the number of possible paths to go

from one atom to another is virtually infinite, as the Markovian approximation allows for

instantaneous transfer of photons. Casting this infinite sum of possible events as a matrix

and diagonalizing it provides a numerically tractable way to calculate the final scattered

state.

To accomplish this, we define an atomic identity operator over all single-atom excited

states as

N1 =
N∑
j=1

|j〉〈j| (5.20)

This can be re-written as a unitary operator N1 = U †1U1, with

U1 =

 〈1|...
〈N |

 (5.21)

While this is not a true identity, when acting on any state with only a single atomic

excitation it will preserve the state. As each e−Γ̂(ti−tj) will act on the space of single atom

excitations, the N̂1 operator will thus preserve the state of the system. The point of
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defining such an operator is that we can express the exponential as

e−Γ̂(t1−t2) = U †1e
−U1Γ̂U†1 (t1−t2)U1 (5.22)

where the matrix product A = U Γ̂U †1 contains no operators, only the θj,k phase factors and

g2. The matrix product gives

UΓU † = g2

 〈1|...
〈N |

 ·∑
j,k=1

θj,kσ
†
jσk · [|1〉 · · · |N〉] = g2M (5.23)

From the above, it is clear that each element of M will be simply

Mi,j = 〈i|
∑
m,n=1

θm,nσ
†
mσn|j〉 = g2θi,j (5.24)

This matrix can then be diagonalized as M = PDP−1 and the exponent can finally be

written without operators as

e−Γ̂(t1−t2) = U †1Pe
−g2D1(t1−t2)P−1U1 (5.25)

While this process is certainly unwieldy, it is easy to develop code to automatically

calculate U1, P , and D1 for an arbitrary number of atomic pairs. Unfortunately, matrix

diagonalization is not a problem with a tractable solution for an arbitrary n× n matrix. As

such, the specifics of D1 will depend on the parameters of the system and the number of

pairs being considered and a numerical approach is required.

Regardless of the computational complexity of diagonalizing M , the final matrix

exponential must have the (effective) form

e−Γ̂(t1−t2) =
N∑

j,k=1

Cj,k(t1 − t2)|j〉〈k| (5.26)

We can further specify the coefficients Cj,k(t1 − t2) by noting that this can be written as

Cj,k(t1 − t2) =
N∑
i=1

Pj,iP
−1
i,k e

−g2λi(t1−t2) (5.27)

where each λi is an eigenvalue of M . The notation Pj,i refers to the j, ith matrix element of
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P . The advantage of writing the coefficients this way is that is draws out the exponents

that define the different effective couplings and detunings for the system, allowing for the

final state to be written in terms of f(t), GΓ(t), and EΓ(t) as defined in Eq. 3.23 and Eq.

4.39.

Using the above definitions we can begin writing the different components of Eq. 5.19

in terms of the eigenvalues of the exponentials. Starting with the single photon interaction

term and defining Γi = g2λi − iδ;

−g2

∫ t

−∞
dt1

∫ t1

−∞
dt2〈G|ĥ†(t1)e−Γ̂(t1−t2)ĥ(t2)|G〉|ψI〉

= −g2

∫ t

−∞
dt1

∫ t1

−∞
dt2

N∑
i=1

N∑
j,k=1

Pj,iP
−1
i,k e

−Γi(t1−t2)φ̂†j(t1)φ̂k(t2)|ψI〉 (5.28)

This has the same form as Eq. 2.19, where the transmitted and reflected spectra of a single

photon can be written in terms of the eigenvalues of a matrix describing the phases accrued

by transferring from one atom to another.

5.3.2 Two-photon term: successive atomic excitations

Using the same analysis as in the single photon term with U1, the first two-photon term

in Eq. 5.19 can be written in terms of the eigenvalues of M as

g4

∫ ∞
−∞

dt1dt2dt3dt4θ(t1 − t2)θ(t2 − t3)θ(t3 − t4)
N∑

p,q=1

N∑
j,k=1

Pj,pP
−1
p,k e

−Γp(t1−t2)

×
N∑
l,m

Pl,qP
−1
q,me

−Γq(t3−t4)φ̂†j(t1)φ̂†l (t3)φ̂k(t2)φ̂m(t4)|ψI〉 (5.29)

Following the example given in Chapter 3, we integrate the t2 integral by parts in order

to separate the entangled and non-entangled components of the scattered state. This is

done by defining u = θ(t2 − t3) and v =
∫ t2
−∞ dtθ(t1 − t)e

−Γp(t1−t)φ̂k(t2). Further defining an

operator Ĝk,Γi(t1) =
∫ t1
−∞ dt2e

−Γi(t1−t2)φ̂k(t2) for compactness, we integrate one of the terms
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in Eq. 5.29.∫ ∞
−∞

dt2θ(t1−t2)θ(t2−t3)e−Γp(t1−t2)φk(t2) = θ(t1−t3)
[
Ĝk,ΓP (t1)−e−Γp(t1−t3)Ĝk,Γp(t3)

]
(5.30)

Placing this into the entire sum of Eq. 5.29, we arrive at

g4

∫ ∞
−∞

dt1dt3θ(t1 − t3)
N∑

p,q=1

N∑
j,k,l,m=1

Pj,pP
−1
p,kPl,qP

−1
q,mφ̂

†
j(t1)φ̂†l (t3)

[
Ĝk,Γp(t1)

−e−Γp(t1−t3)Ĝk,Γp(t3)
]
Ĝm,Γq(t3)|ψI〉 (5.31)

This has the same structure as Eq. 3.29 (though presented in a different form here) and

contains terms that describe the event where both photons are absorbed successively. It

also contains the entanglement that arises from the fact that the two photons cannot excite

the same atom at the same time.

5.3.3 Two-photon term: simultaneous atomic excitations

The remaining term is by far the most difficult to evaluate. This is due to the fact that

for N atoms there are nC2 different possible ways for two photons to be absorbed. In order

to keep track of these states (note that |j〉|k〉 = |k〉|j〉), we will define an effective identity

operator and matrix for γ, in a similar way to Γ. These are given by

N2 =
N−1∑
j=1

N∑
k=1+j

|j〉|k〉〈j|〈k| =
nC2∑
j=1

|2j〉〈2j| = U †2U2 U2 =

 〈1|〈2|
...

〈N − 1|〈N |

 =

 〈21|
...

〈2nC2|

 (5.32)

We have introduced the notation |2j〉 = |j[1]〉|j[2]〉 to reduce the double sum to a single

sum over all the possible unique combinations of states. Here, j[1] = l and j[2] = m

represents the numbering of a unique atomic state of the form |l〉|m〉. The index j

corresponds to the jth element of a list containing all possible doubly excited states. In our

code we have chosen to create this list by letting the l index run from 1 to N − 1 and the

m index run from l to N . With this labeling of the states, U2γ̂U
†
2 = M2 will have elements

〈l|〈m|U2γ̂U
†
2 |r〉|s〉 = θl,sδm,r + θl,rδm,s + θm,sδl,r + θm,rδl,s (5.33)
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This allows us to express the exponential in terms of this manifold of states. We will

also define the operator

Êj,k,γr,Γq ,(t2) =

∫ t2

−∞
dt3e

−γr(t2−t3)φ̂j(t3)Ĝk,Γq(t3) (5.34)

and define M2 = QD2Q
−1 so that 〈2j|U2e

−γ(t2−t3)U−1
2 |2k〉 =

∑
nC2

i=1 e
−γi(t2−t3)Qj,iQ

−1
i,k , where

each γi = g2λi − 2iδ and λi is an eigenvalue of M2. This leads to a sum of the form

g4

∫ ∞
−∞

dt1dt2

N∑
p,q=1

nC2∑
r=1

nC2∑
k,l=1

N∑
j,m=1

θ(t1 − t2)e−Γp(t1−t2)Qk,rQ
−1
r,l φ̂

†
j(t1)

×
(
Pj,pP

−1
p,k[1]φ̂

†
k[2](t2) + Pj,pP

−1
p,k[2]φ̂

†
k[1](t2)

)
×
(
Pl[1],qP

−1
q,mÊl[2],m,γr,Γq ,(t2) + Pl[2],qP

−1
q,mÊl[1],m,γr,Γq ,(t2)

)
|ψI〉 (5.35)

This expression contains all possible ways that two photons may be simultaneously

absorbed before being re-emitted.

5.3.4 Final state

With the above general forms it is possible to write the overall scattered state in terms

of computable matrices. This has the form

|ψg(∞)〉 = |ψI〉 − g2

∫ ∞

−∞
dt1

N∑

i=1

N∑

j,k=1

Pj,iP
−1
i,k φ̂

†
j(t1)Ĝk,Γi

(t1)|ψI〉

+g4

∫ ∞

−∞
dt1dt2θ(t1 − t2)

N∑

p,q=1

N∑

j,k,l,m=1

Pj,pP
−1
p,kPl,qP

−1
q,mφ̂

†
j(t1)φ̂†l (t3)

[
Ĝk,Γp (t1)− e−Γp(t1−t2)Ĝk,Γp (t2)

]
Ĝm,Γq (t2)|ψI〉

+g4

∫ ∞

−∞
dt1dt2θ(t1 − t2)

N∑

p,q=1

nC2∑

r=1

nC2∑

k,l=1

N∑

j,m=1

e−Γp(t1−t2)Qk,rQ
−1
r,l φ̂

†
j(t1)

(
Pj,pP

−1
p,k[1]

φ̂†
k[2]

(t2) + Pj,pP
−1
p,k[2]

φ̂†
k[1]

(t2)
)

×
(
Pl[1],qP

−1
q,mÊl[2],m,γr,Γq,(t2) + Pl[2],qP

−1
q,mÊl[1],m,γr,Γq,(t2)

)
|ψI〉

(5.36)

This again has the same effective structure as the scattered state derived in Chapter 4

for two atoms. There is one term describing the possibility where neither photon interacts

with the atoms, one that describes a single photon interaction, one that describes two

photons interacting successively, and one that describes both photons being absorbed

simultaneously. The primary advantage of this expression over Eq. 5.19 is that here, the
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state is written exclusively in terms of photon operators and that Ĝ and Ê will reproduce

Eq. 3.23 (GΓ(t)) and Eq. 4.39 (EΓ(t)) for an initially unentangled state.

5.4 Two unentangled counter-propagating photons

At this point we will finally specify the form of |ψI〉. We will assume that the two

photons are identical, unentangled, and counter-propagating so that the initial state is

given by

|ψI〉 =

∫
dt1dt2f(t1)f(t2)Â†(t1)B̂†(t2)|0〉 (5.37)

In terms of the different possible modes, the final scattered state is given by

|ψg(∞)〉 =

∫
dt1dt2

( 1√
2
faa(t1, t2)Â†(t1)Â†(t2)|0〉

+
1√
2
fbb(t1, t2)B̂†(t1)B̂†(t2)|0〉+ fab(t1, t2)Â†(t1)B̂†(t2)|0〉

)
(5.38)

As explained in Chapter 3 as well, when equating this to the scattered photon solution

there is an ambiguity as to which variable corresponds to which in the co-propagating case.

For example, the term containing only two A photons will have the form of∫
dt1dt2fA,A(t1, t2)Â†(t1)Â†(t2)|0〉 =

∫
dtadtbfScattered(ta, tb)Â

†(ta)Â
†(tb)|0〉 (5.39)

As both functions are integrating over both variables, it is impossible to say whether

ta → t1 or ta → t2. Thus, the scattered state derived above must be made to be symmetric

in its time variables by fScattered(ta, tb) = 1
2

(
fScattered(ta, tb) + fScattered(tb, ta)

)
to account for

this.

To simplify the final expression we will define the sums

Σ±a,±bi =
N∑

j,k=1

Pj,iP
−1
i,k e

ikF (±azj±bzk) (5.40)
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χ±a,±bp,q,r =
nC2∑
k,l=1

N∑
j,m=1

Qk,rQ
−1
r,l ê
±aikF zj

(
Pj,pP

−1
p,k[1]e

±bikF zk[2] + Pj,pP
−1
p,k[2]e

±bikF zk[1]

)
×
(
Pl[1],qP

−1
q,m

(
eikF (−zl[2]+zm) + eikF (zl[2]−zm)

)
+ Pl[2],qP

−1
q,m

(
eikF (−zl[1]+zm) + eikF (zl[1]−zm)

))
(5.41)

and note also that, as explained in more detail in Chapter 4, in the Markovian

approximation when no longer commuting, the φ̂ operators take the form

φ̂j =
(
eikF zj Â(t) + e−ikF zj B̂(t)

)
(5.42)

Putting all this together for the co-propagating scattered photons leads to the temporal

profiles of

fa,a(t1, t2) = 1/
√

2

{
− g2

N∑

i=1

Σ−,−i

(
GΓi

(t1)f(t2) +GΓi
(t2)f(t1)

)
+ g4

N∑

p,q=1

(
Σ−,+p Σ−,−q + Σ−,−p Σ−,+q

)
GΓp (t1)GΓq (t2)

−g4
N∑

p,q=1

(
Σ−,+p Σ−,−q + Σ−,−p Σ−,+q

)[
θ(t1 − t2)e−Γp(t1−t2)GΓp (t2)GΓq (t2) + θ(t2 − t1)e−Γp(t2−t1)GΓp (t1)GΓq (t1)

]

+g4
N∑

p,q=1

nC2∑

r=1

χ−,−p,q,r

[
θ(t1 − t2)e−Γp(t1−t2)Eγr,Γq (t2) + θ(t2 − t1)e−Γp(t2−t1)Eγr,Γq (t1)

]}

(5.43)

fb,b(t1, t2) = 1/
√

2

{
− g2

N∑

i=1

Σ+,+
i

(
GΓi

(t1)f(t2) +GΓi
(t2)f(t1)

)
+ g4

N∑

p,q=1

(
Σ+,−
p Σ+,+

q + Σ+,+
p Σ+,−

q

)
GΓp (t1)GΓq (t2)

−g4
N∑

p,q=1

(
Σ+,−
p Σ+,+

q + Σ+,+
p Σ+,−

q

)[
θ(t1 − t2)e−Γp(t1−t2)GΓp (t2)GΓq (t2) + θ(t2 − t1)e−Γp(t2−t1)GΓp (t1)GΓq (t1)

]

+g4
N∑

p,q=1

nC2∑

r=1

χ+,+
p,q,r

[
θ(t1 − t2)e−Γp(t1−t2)Eγr,Γq (t2) + θ(t2 − t1)e−Γp(t2−t1)Eγr,Γq (t1)

]}

(5.44)

In order to write down the split mode, as detailed in Chapter 3, the time indices must

be dealt with in a different way. Instead of symmetrizing the state, we match the indices

that go with each mode. In the scattered state, there are terms that go as φ̂†j(t1)φ̂†k(t2)

which will contain operators with indices Â†(t1)B̂†(t2) and Â†(t2)B̂†(t1). The final form of

the scattered state only maps t1 to the Â mode and t2 to the B̂ mode, however. As such,

we must flip time indices so that the final state maps t1 and t2 to the correct modes. Doing
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so give the final state of

fa,b(t1, t2) = f(t1)f(t2)− g2
N∑

i=1

(
Σ−,+i GΓi

(t1)f(t2) + Σ+,−
i GΓi

(t2)f(t1)
)

+g4
N∑

p,q=1

(
Σ−,+p Σ+,−

q + Σ−,−p Σ+,+
q

)[
θ(t1 − t2)GΓp (t1)GΓq (t2) + θ(t2 − t1)GΓp (t2)GΓq (t1)

]

−g4
N∑

p,q=1

(
Σ−,+p Σ+,−

q + Σ−,−p Σ+,+
q

)[
θ(t1 − t2)e−Γp(t1−t2)GΓp (t2)GΓq (t2) + θ(t2 − t1)e−Γp(t2−t1)GΓp (t1)GΓq (t1)

]

+g4
N∑

p,q=1

nC2∑

r=1

[
χ−,+p,q,rθ(t1 − t2)e−Γp(t1−t2)Eγr,Γq (t2) + χ+,−

p,q,rθ(t2 − t1)e−Γp(t2−t1)Eγr,Γq (t1)
]

(5.45)

While these expressions are incredibly complicated, because the functions are related to

eigenvalues of two matrices is is possible to write code that can calculate all the necessary

coefficients. Doing so, in Fig. 5.2 we present a plot of the probability that two

counter-propagating photons will either remain in their respective mode or will end up in

the same mode. In this calculation we have used an initially unentangled state where both

photons have a space-time profile of a square pulse, given in Eq. 4.37. Additionally, the

atoms are positioned to take advantage of the optimal spacing condition presented in

Chapter 2 and shown in Fig. 2.12. With this, it is clear that two photons will still transmit

through the system with high probability, just as was found in Chapter 4 for two

counter-propagating photons.

Figure 5.2: The norm of the spectral components fa,a and the sum of fa,a + fb,b as a
function of g2σt for N=2, 4, and 8 atoms. Here we have set the spacing to match the optimal
position found in Chapter 2 to maximize single photon transmission. Additionally, we have
set δ/g2 = 1.

This result is encouraging, as it suggests that an array of non-interacting atoms may be
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able to perform quantum logical tasks between two photons. We will explore this

possibility further in Chapter 6, leaving the extension of the time domain result of Chapter

3 to an arbitrary number of atoms as the main point here.

5.5 Conclusions

In this chapter we extended the time-domain solution presented in Chapter 3 to deal

with an array of N non-interacting atoms placed at arbitrary positions along a 1-D

waveguide. We demonstrated how the general solution has the same basic form as Eq. 3.18

and Eq. 4.30 where the terms that appear correspond to each possible scattering process.

We converted the general solution of Eq. 5.19 into a form that lends itself to efficient

computation and found the probability amplitudes for the scattered state of two

counter-propagating photons. Finally, using the parameters derived in Chapter 2 for

optimal photon transmission in the absence of direct atom-atom interactions, we plotted

the probability that the photons will remain in their respective mode or be scattered in the

same mode. We found that a transmission window does indeed exist for two

counter-propagating photons and multiple atoms in the adiabatic limit with positions

optimized as in Chapter 2, and that as the system approaches this limit of g2σt � 1 the

probability that the photons will be in the same mode decreases dramatically. This

conclusion is important for Chapter 6, where we will use the solution presented in Eq. 5.45

to analyze whether this transmission window can be used to construct a CPHASE gate.
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Chapter 6

Conditional Quantum Logic With Photons

6.1 Introduction

In this chapter we will analyze how well the transmission windows explored in Chapter

4 for two photons can be used to construct a CPHASE gate for conditional quantum logic

using the same general structure described by Brod and Combes in [30]. In their work,

Brod and Combes consider an array of atomic sites given by Fig. 6.1. Each site consists of

a two level system coupled to a 1-D waveguide, where the direction of propagation is

enforced by a mirror at the end of the waveguide and circulators separate photons entering

and exiting the waveguide to enforce unidirectional photon propagation. This ad hoc

structure was chosen to model an effective Kerr nonlinearity, which was the focus of their

companion paper with Gea-Banacloche in [64]. What they discovered was that, as two

counter-propagating photons transmitted through the system, they acquired a phase shift

of π and, for a large number of sites, they left the system spectrally unentangled. This is

exactly what would be required for a passive, deterministic CPHASE gate between two

photons. As detailed in [64], this spontaneous disentanglement is a consequence of the fact

that the system conserves both energy (in that the photons do not change their frequency)

and momentum (in part because they continue in the same direction after the interaction).

This interaction does not leave the photons untouched, however; their spectra will still

be modified as though they had both independently transmitted through the system. To

mitigate this, Brod and Combes assume that in any quantum computation all photons

undergo this same distortion so that any unique phase imparted by a gate due to the

presence of two photons may be detected. We will adopt this same convention as well,

comparing the spectrum of two counter-propagating photons to the wavefunction that

would result if the two photons interacted with the system completely independently of one

another.
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Figure 6.1: A diagram of the structure proposed in [64] to create a CPHASE gate between
two photons. In their proposal, photons are routed between pairs of interacting atoms.
Circulators and half waveguides ensure that photons will always travel in the same direction.

The gate proposed in [30] works best in the limit that the Kerr interaction strength

becomes infinite. In this limit, each pair of closely spaced atoms in Fig. 6.1 reduces to a

two level system, as only one atom can be excited at a given time. We will show how

networking an array of pairs of two level systems leads to the same effect, that spectral

entanglement between counter-propagating photons is reduced and that a nontrivial phase

shift can be acquired between the photons. In section 6.2 we will show that the

transmission window that occurs when atomic pairs are able to interact, detailed in

sections 2.5 and 4.3.3, can be used to construct a passive, deterministic CPHASE gate that

matches the operating parameters presented in [30]. In the second section, we will explore

how one can alternatively use the non-interacting transmission windows (Sections 2.42 and

5.4), when tan(kFd) = −δ/g2, to preform conditional quantum logic with

counter-propagating photons.
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6.2 Constructing a phase gate using interacting atomic pairs

6.2.1 Introduction and setup

In Chapter 4 we demonstrated that two counter-propagating photons scattering from a

pair of interacting atoms are able to be absorbed by the atoms, and thus indirectly interact

with one another, while being re-emitted into their respective modes. This requires that

the condition sin(kFd) = −∆/g2 is satisfied. Such effective unidirectional behavior, in

principle, allows for an ideal realization of the gate proposed by Brod and Combes [30, 64].

There is one other complication to address, however; in Chapter 4, the behavior of the

photons was derived for a pair of atoms centered at the origin. If the atoms are not

centered at the origin the situation changes somewhat. In this case, the operators φ̂±(t)

from Eq. 4.4 become

φ̂±(t)→ Φ̂±(t) =
1√
2

(
eikF (z0−d/2)Â

(
t− z0 − d/2

c

)
+ eikF (zj+d/2)Â

(
t− z0 + d/2

c

)
+ e−ikF (z0−d/2)B̂

(
t+

z0 − d/2
c

)
+ e−ikF (z0+d/2)B̂

(
t+

z0 + d/2

c

))
(6.1)

It turns out that even when the atoms are off center, the commutation relationship

presented in Eq. 4.5 still holds; that is

[
Φ̂±(ti), Φ̂

†
±(tj)

]
= 2δ

(
ti − tj

)
± eikF dδ

(
ti − tj − d/c

)
± e−ikF dδ

(
ti − tj + d/c

)
(6.2)

As a result of this, if the atomic pair is not centered at the origin we can follow the

same process and approximations made in Chapter 4 to derive the scattered state of two

photons from the system of two atoms. Eq. 4.24 will still describe the scattering, except

with φ̂± → Φ̂±. If we make the same Markovian approximation for the operators Φ̂± with

respect to the separation between the atoms in the pair, that is t± d/c ≈ t, and we use the

fact that to achieve unit transmission for counter propagating photons with atomic

interactions (Eq. 4.57) it must be true that ∆/g2 = 1, δ = 0, and kFd = 3π/2, the
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operators will take the form

Φ̂+ = −
(
eikF z0Â

(
t− z0/c

)
+ e−ikF z0B̂

(
t+ z0/c

))
Φ̂− = −i

(
eikF z0Â

(
t− z0/c

)
− e−ikF z0B̂

(
t+ z0/c

))
(6.3)

Further using the fact that when the system has been tuned to this transmission

window Γ+ = Γ− = g2 (as kFd = 3π/2 and ∆ = g2) we end up with a final scattered state

of two counter-propagating photons from two interacting atoms centered at position z0 of

|ψg(t)〉 = |ψI〉

−2g2

∫ t

−∞
dt1

∫ t1

−∞
dt2e

−g2(t1−t2)
(
Â†
(
t1 − z0/c

)
Â
(
t2 − z0/c

)
+ B̂†

(
t1 + z0/c

)
B̂
(
t2 + z0/c

))
|ψI〉

+4g4

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4e

−g2(t1−t2)e−g
2(t3−t4)[

Â†
(
t1 − z0/c

)
B̂†
(
t3 + z0/c

)
Â
(
t2 − z0/c

)
B̂
(
t4 − z0/c

)
+ B̂†

(
t1 − z0/c

)
Â†
(
t3 + z0/c

)
B̂
(
t2 − z0/c

)
Â
(
t4 − z0/c

)]
|ψI〉 (6.4)

Note that the contribution from the doubly excited state has vanished. This is a

consequence of the form of Φ̂± given in Eq. 6.3. With these choices of parameters, the

doubly excited component of the wavefunction will only contain lowering operators of the

form Â
(
t3 − z0/c

)
Â
(
t4 − z0/c

)
and B̂

(
t3 + z0/c

)
B̂
(
t4 + z0/c

)
. When acting on an initial

state containing counter-propagating photons this will yield zero.

Next, we transform the time variables in Eq. 6.4 from ti to τi ± z0/c, where the sign of

the position is determined by the sign of the time shift in the operators. For example, if

Â†
(
t1 − z0/c

)
, t1 → τ1 + z0/c so that the time component in the operators will simply be
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one of τi. Performing this transformation for all the variables yields

|ψg(t)〉 = |ψI〉 − 2g2

∫ t−z0/c

−∞
dτ1

∫ τ1

−∞
dτ2e

−g2(τ1−τ2)Â†(τ1)Â(τ2)|ψI〉

− 2g2

∫ t+z0/c

−∞
dτ1

∫ τ1

−∞
dτ2e

−g2(τ1−τ2)B̂†(τ1)B̂(τ2)|ψI〉

+ 4g4

∫ t−z0/c

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2+2z0/c

−∞
dτ3

∫ τ3

−∞
dτ4e

−g2(τ1−τ2)e−g
2(τ3−τ4)Â†(τ1)B̂†(τ3)Â(τ2)B̂(τ4)|ψI〉

+ 4g4

∫ t+z0/c

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2−2z0/c

−∞
dτ3

∫ τ3

−∞
dτ4e

−g2(τ1−τ2)e−g
2(τ3−τ4)B̂†(τ1)Â†(τ3)B̂(τ2)Â(τ4)|ψI〉

(6.5)

We now consider the final state of the photons if the initial state has the form

|ψI〉 =

∫
dtadtbfA(ta)fB(tb)Â

†(ta)B̂
†(tb)|0〉 (6.6)

where the photons are initially unentangled (meaning the space-time wavefunction can be

written as a product of the A and B modes separately) but they may have different pulse

shapes. In this case, we can follow the same process as before to obtain the final scattered

state (t→∞) of

f̃g(t1, t2) =
(
fA(t1)− 2g2GA

g2(t1)
)(
fB(t2)− 2g2GB

g2(t2)
)

−4g4

[
θ
(
t1− t2 + 2z0/c

)
e−2g2(t1−t2+2z0/c)GA

g2(t2 − 2z0/c)G
B
g2(t2)

+ θ
(
t2− t1 − 2z0/c

)
e−2g2(t2−t1−2z0/c)GA

g2(t1)GB
g2(t1 + 2z0/c)

]
(6.7)

where we have defined GA
g2(t) =

∫ t
−∞ dt

′e−g
2(t−t′)fA(t′) and GB

g2(t) =
∫ t
−∞ dt

′e−g
2(t−t′)fB(t′).

In the limit where z0 → 0 we recover exactly the form presented in Eq. 3.30 for two

photons scattering from a single two level emitter in a unidirectional geometry. If, on the

other hand, z0/c� σt the terms GA
Γ (t2 − 2z0/c)G

B
Γ (t2) and GA

Γ (t1)GB
Γ (t1 + 2z0/c) will

vanish, as the overlap between the two functions will be effectively zero (which is opposite

of what we are trying to achieve). This makes physical sense; the term describes

entanglement generated by the limitation that a two level system can only absorb one

photon at a time. Such an effect only occurs when the two photons can interact with the
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atom at the same time. If the system is off center (defined as the point where the two

photons maximally overlap) one photon may interact before the other. If this off-center

distance is large enough that one photon has a chance to complete its interaction with the

atom before the second one arrives, then this term should go to zero, as there is no

opportunity for the photons to become entangled. In this case the scattering process

consists only of two independent scattering events, and this is exactly what is described

above for z0/c→∞. Regardless of the strength of the interaction or the placement of the

system, it is true that no matter where the two-atom system is located it will preserve

photon number in each mode for two counter-propagating photons.

6.2.2 Phase gate design and operation

We will now consider what happens if one couples N of these interacting pairs to a

single waveguide. In this analysis we assume that each pair couples identically to the

waveguide and that they have all been tuned to the transmission window sin(φ) = −∆/g2.

We are further assuming that the pairs of atoms are separated sufficiently far so that the

dipole-dipole interaction is negligible between atoms in different pairs. The functional form

of such an interaction is given in [36] and, to a good approximation goes as 1
z3 . Thus, a

separation between atoms in nearby pairs of around 10 times the spacing between atoms

within a pair would lead to an inter-pair interaction strength that is 1000 times less than

the strength between atoms within the same pair. Thus this inter-pair separation can

safely be ignored.

In order to describe this system of N pairs of atoms, we will work in the frequency

domain. We choose to make this shift as it is much easier to describe the transmission of a

single photon through many scatterers in this domain, since each successive interaction

merely multiplies the pulse by t(ω), the single photon transmission coefficient. The

frequency spectrum of the two-photon wavefunction given in Eq. 6.7 representing the
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scattering of two photons from a single pair of atoms is

f̃g(ω1, ω2) =

(
g2 + iω1

g2 − iω1

)
f̃A(ω1)

(
g2 + iω2

g2 − iω2

)
f̃B(ω2)

− 2g2

π

∫ ∞
−∞

dωadωb

(
e2i(ωa−ω1)z0/c

g2 − iω1
+
e−2i(ωb−ω2)z0/c

g2 − iω2

)
δ(ω1 + ω2 − ωa − ωb)f̃A(ωa)f̃B(ωb)

(g2 − iωa)(g2 − iωb)

(6.8)

In the end, the state of two photons scattering through an array of pairs of atoms, as

with everything in quantum mechanics, will be a sum of all the possible events. Because

the two photons will always remain in their respective modes they can only both interact

at one of the pairs in the system. When passing through the other pairs, the spectrum of

each photon will be modified independently. The final state will thus be a sum over the

interaction at each of the pairs in the system.

To derive this, we first consider how the spectrum of the photons would be modified if

they only interacted with the jth pair in an array consisting of N pairs. The rightmost pair

is numbered as 1 and the leftmost pair is numbered as N. Prior to reaching the jth pair, the

right-propagating (âω1) photon will have transmitted through j − 1 sites and the

left-propagating photon (b̂ω2) will have transmitted through N − j sites. From the

expression given in Eq. 2.42 this will lead to an initial spectrum of f̃A(ω) = t(ω)j−1f̃(ω)

and f̃B(ω) = t(ω)N−j f̃(ω), as the reflection coefficient for each pair is zero. After the two

photons interact at the jth site, their combined spectrum will be given by Eq. 6.8, except

with f̃A and f̃B replaced by the expressions given. After they interact, the right-going

photon will continue on to transmit through N − j sites and the left-going photon will

transmit through j − 1 sites. Each site will cause the spectrum to be multiplied by t(ω)

again so that the spectrum after the interaction will become

f̃g(ω − 1, ω2)→ t(ω1)N−jt(ω2)j−1f̃g(ω1, ω2). If we add up all the interactions at each
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possible site, the total spectrum of the two photons will be given by

f̃g(ω1, ω2) =t(ω1)N t(ω2)N f̃(ω1)f̃(ω2)− 2g2

π

∫ ∞
−∞

dωadωb

N∑
j=1

t(ω1)N−jt(ω2)j−1t(ωa)
j−1t(ωb)

N−j

×

(
e2i(ωa−ω1)zj/c

g2 − iω1
+
e−2i(ωb−ω2)zj/c

g2 − iω2

)
δ(ω1 + ω2 − ωa − ωb)f̃(ωa)f̃(ωb)

(g2 − iωa)(g2 − iωb)

(6.9)

This is identical in form to the scattered spectrum presented by Brod and Combes in

[64] for two counter-propagating photons in the limit that the interaction they propose is

infinitely strong. This suggests that we should arrive at virtually the same results as

presented in Fig. 3 a) of [64], albeit presented in a different form, that a state containing

two photons will experience a phase shift of π with unit fidelity.

In studying the fidelity of the CPHASE operation with this system we adopt a slightly

different definition of fidelity than that presented in [30] and [64]. In their papers, Brod

and Combes use an ‘average gate fidelity’ that, as its name suggests, provides the

probability that the proposed gate will function as desired for any arbitrary input state.

From a computational standpoint this is a very good measure of a gate’s performance. We

are, however, interested in a more stringent condition; measuring how much the pulse is

distorted, as this is the physical cause of the failure of many CPHASE gate proposals. Due

to this, we quantify fidelity as the overlap between the final scattered state and a target

two photon state. This is defined as

√
Feiφ = 〈Target|ψg(∞)〉 (6.10)

where the quantity F provides insight into the extent to which the two pulses have the

same shape and the phase φ is the useful phase for computation described in Chapter 1.

Using this definition, in Fig. 6.2 we plot the fidelity of a Gaussian pulse (defined by the

Fourier transform of the spectrum given in Eq. 3.41) in the limit where any ωzj/c ≈ 0 (i.e.

the sites are close enough that we can ignore any time delays between the sites). In effect

we are assuming the system is Markovian. The target state for these plots is the spectrum
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that would result if two photons transmitted through the system and did not interact with

one another, but acquired a phase shift of π, given by

|Target〉 = −
∫
dω1dω2t(ω1)N t(ω2)N f̃(ω1)f̃(ω2)â†ω1

b̂†ω2
|0〉 (6.11)

As can be seen from Fig. 6.2, as the number of sites increases the fidelity of the

operation approaches one, which corresponds to a useful computational phase of π and a

two-photon pulse shape that exactly matches |Target〉. This is what is required for a

passive, deterministic CPHASE gate and is virtually the same result as presented in Fig. 3

a) of [64] as expected.

Figure 6.2: The fidelity of the proposed CPHASE gate for various N pairs of atoms as a
function of g2/σω. A value of 1 corresponds to ideal gate operation.

In Fig. 6.3 we plot the infidelity (|1−
√
F|) of our proposal to realize a CPHASE gate

and compare it to the infidelity predicted by Brod and Combes in [64] (black dots) using

their definition of average fidelity. Their number is always lower, implying a better gate

operation. This difference arises from the definitions of fidelity. In the gate design presented

here and in [30], the logical state states |0, 0〉, |1, 0〉, and |0, 1〉 will always transform

perfectly as we are both assuming that all photons are forced to undergo the same

single-photon distortion at each computational step. Thus, the average gate fidelity will be

higher than what is being measured here, the fidelity of just the operation |1, 1〉 → −|1, 1〉.
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We find that the fidelity of the operation scales at the same rate to that presented in

[64]. In their work, Brod and Combes found that, for a unidirectional waveguide and a

coupling constant of g2 = 1 (γ in their paper), the maximum fidelity occurs when the

spectral pulse width σω is approximately σω = .350N−.81, with N being the number of sites

(the pairs of atoms in our case). In order to relate this to the dimensionless parameter

g2/σω used in our work, we note that, because we are working in a bidirectional geometry,

our coupling constant relates to theirs by g2 = γ
2
. With this, we have that for our system,

the optimal fidelity should occur when g2/σω = 1.43N .81. This is represented in Fig. 6.3 by

the dashed vertical lines. As can be seen from the plot, this fit does match the points of

maximum fidelity very well.

Figure 6.3: The infidelity of the proposed CPHASE gate for various N pairs of atoms as a
function of g2/σω. The dashed lines represent the optimum system parameters predicted by
the fit of σmax in Fig. 3 b) of [30] and the black dots represent the infidelity calculated in
[30] for the parameters which maximize the fidelity of their gate.

Next, in Fig. 6.4 we consider the effect of including a nonzero separation between the

pairs of atoms for N = 12 sites. Here, σωz/c represents the scaling of the phase factors

appearing in Eq. 6.9 and is related to the time required to travel between pairs of atoms.

As one would expect, when the separation between each site becomes close to the order of

the pulse width (i.e. σωz0/c ≈ 1) the fidelity of the operation decreases dramatically. This

has an intuitive physical explanation, for if the sites become separated on the order of a
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pulse width the photons will only interact at a some of the sites. In this limit, the array

will act like a system containing fewer pairs of atoms. Additionally, there is virtually no

difference between the case when σωz/c = 0 and when σωz/c = 10−5. This is also

consistent with the rest of the work here, as this parameter effectively determines whether

the system is Markovian or not. If σωz/c ≈ 10−5, a pulse width σω ≈ 1 GHz requires a

spacing between pairs of z ≈ 10µm. For a more narrow band photon, σω ≈ 1 MHz, for

σωz/c to be on the order of 10−5 the atomic pairs can be separated by about a centimeter.

This suggests that, at least for spectrally narrow photons, the proposed CPHASE gate can

have a relatively large length.

Figure 6.4: The difference between the calculated fidelity and the expected fidelity for a
Gaussian pulse with various values of separation between atoms z0/c/σt. N = 12 for all
curves.

6.2.3 Visualization of the spectra and explanation of operation

It is also useful to visualize how the entanglement generated by the atom is reduced as

the number of sites in the phase gate increases. In Figs. 6.5-6.8 we present the full

spectrum of the scattered two photon pulse given by Eq. 6.9 for an initially unentangled

two photon state where each photon begins with a Gaussian wavepacket. We also plot the

spectrum of an ‘ideal’ pulse, that is a two photon wavepacket given by |Target〉, as defined

in Eq. 6.11.
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Figure 6.5: The spectrum of the pulse for N=1 site. The top row represents the full
spectrum of the pulse from Eq. 6.9 and the bottom row represents the ideal pulse. The
columns correspond to the absolute value of the spectrum, the real part, and the imaginary
part respectively.
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Figure 6.6: The same figure as Fig. 6.5 for N=3 sites.

Figure 6.7: The same figure as Fig. 6.5 for N=5 sites.

127



Figure 6.8: The same figure as Fig. 6.5 for N=20 sites.

In these plots, the effect of the entangling term can be observed in the broadening that

appears along the line ω1 = −ω2. Clearly, for a single site this is a highly nontrivial effect

that significantly distorts the shape of the scattered photons and thus leads to a poor

fidelity with respect to the ideal pulse. Interestingly, however, the scattered photons

already have acquired a phase of π, evidenced by the fact that the general shape of the real

and imaginary components match the ideal state. As the number of sites (pairs of atoms)

increases, however, this spectral broadening decreases. By the time N = 20 the exact and

ideal pulses look nearly identical and numerically the fidelity is very close to 1, though there

is still some residual entanglement present (seen in the faint features along ω1 = −ω2).

This also clearly demonstrates a limit on the operation of this particular phase gate; a

single photon will have its spectrum modified by a nontrivial phase. In the ideal case, the

absolute value of the pulse in frequency space is the same regardless of the number of

interaction sites in the gate. The phase changes significantly, however, as seen in the
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oscillations of the real and imaginary components of the spectrum. As mentioned

previously, this issue can easily be rectified by ensuring that at each step of the

computation all photons have passed through the same number of these arrays of atoms.

Ensuring this happens does increase the number of waveguide-atom structures that must

be built; for example, as seen in Fig. 6.9, if one were to use the usual dual-rail scheme for

quantum computation (where a qubit is encoded into one of two spatial modes) a CPHASE

gate would require three of such atom-waveguide systems in order to modify all photons

correctly.

Figure 6.9: A simple schematic of how one would be able to construct a CPHASE gate
between two photons using a series of interacting atoms coupled to a one-dimensional waveg-
uide. Here the spatial mode and direction of the photons encodes the logical values of |0〉 and
|1〉. Note that a nonreciprocal element would need to be placed on each side of the central
waveguide to ensure that photons going in different directions can be correctly routed.

This requirement does not detract from the fact that the gate works, however, and that

it is possible for two photons to interact and effectively remain unentangled after the

interaction. Additionally, our proposed system should be significantly easier to scale and

build on a chip than the somewhat ad hoc system proposed by Brod and Combes in [64].

Moreover, we have shown that the desired gate operation is robust with respect to a

realistic separation of nanoscale structures. This success also leads to a second important

conclusion; any array of two level systems in which the scatterers couple to the guided

modes in such a way that photons travelling in either direction will remain in their
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respective modes can function as a passive, deterministic quantum logic gate for

counter-propagating photons. This is especially encouraging given the recent experimental

work in creating chiral coupling of two level systems to waveguide modes (such as detailed

in [21]), as such systems are isomorphic to the atomic chain presented here, but typically

have the added benefit of marking photons moving in different directions with different

polarizations. Because polarization allows for easier routing and separation of photons,

such systems seem to be ideal candidates to realize quantum logic with photons and create

interesting, nonclassical photon-photon interactions.

Finally, we present why the entanglement generated by the nonlineary of each

individual two level system vanishes when two photons pass through an array of atoms. As

pointed out by Gea-Banacloche in [64], the reason for the reduction in entanglement seen

in Fig. 6.5 is that, in the limit of large N and large g2σt, the sum in 6.9 approximates a

delta function. Using the same approximations presented in Section VII of [64] this comes

about as follows.

In the adiabatic limit it will be true that g2σt = g2/σω � 1. Thus we can follow the

approximation given in Eq. 63 of [64] to write

t(ω) ≈ e
2i ω
g2 (6.12)

With this, the sum over all transmission coefficients in 6.9 will, in the limit of large N

become a delta function of the form

N∑
j=1

t(ω1)N−jt(ω2)j−1t(ωa)
j−1t(ωb)

N−j ≈ g2πδ(ωa−ωb−ω1+ω2)
N∑
j=1

e
iN−1

g2
(ω1+ω2+ωa+ωb) (6.13)

As discussed in [30], this delta function represents momentum conservation and arises

from the fact that the photons are moving in opposite directions and must remain moving

in opposite directions. In a sense, the two photons are measuring one another by the fact

that they must interact at only one site. The combination of all these measurements

ensures that momentum is conserved. We then combine the delta function in Eq. 6.13 with
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the delta function in Eq. 6.9 to arrive at

δ(ωa − ωb − ω1 + ω2)δ(ωa + ωb − ω1 − ω2) =
1

2
δ(ωa − ω1)δ(ωb − ω2) (6.14)

Integrating over ωa and ωb the final, total spectrum becomes

f̃g(ω1, ω2) = t(ω1)N t(ω2)N f̃A(ω1)f̃B(ω2)

(
1− g6e

− 2i
g2

(ω1+ω2)

(g2 − iω1)(g2 − iω2)

[ 1

g2 − iω1

+
1

g2 − iω2

])
(6.15)

Similar to Eq. 66 of [64] this state is a linear superposition of separable (i.e. spectrally

unentangled) states such as described in Section 1.4. It is still an entangled state, but the

non-separable term primarily responsible for the distortion in the wavefunction (related to

fent of Eq. 3.31) has vanished. From here, it is easy to show that in the adiabatic limit of a

spectrally narrow pulse (i.e. a long duration) this reduces to a completely unentangled

product state of the two photons. To see this, we assume the bandwidth of the pulse is

sufficiently small so that the terms g2 − iω ≈ g2. Then Eq. 6.15 becomes

f̃g(ω1, ω2) = −t(ω1)N t(ω2)N f̃A(ω1)f̃B(ω2) (6.16)

which is exactly the ideal pulse shape with a phase shift of π as desired. This is the same

result seen in [64] and thus our proposal to realize the gate designed by Brod and Combes

behaves the same in the adiabatic and large N limit. Moreover, the gate operation is

similarly independent of the shape of the incoming photons.

6.3 Constructing a phase gate with non-interacting atomic pairs

6.3.1 Phase gate design and operation

We now turn our attention to the transmission window described in Chapters 2, 4 and 5

for an array of non-interacting atoms coupled to a waveguide. In Chapter 2, and

particularly in Fig. 2.13, we demonstrated that in the large g2/σω limit, when a system of

atoms is tuned so that the separation between atoms in a given pair is given by
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kFd = π − arctan(δ/g2) and the spacing between pairs is chosen appropriately, a single

photon will transmit through the system with virtually unit probability and acquire a

phase proportional to the number of pairs. This phase is given by Eq. 2.36 and is

reproduced below.

t(ω) = Exp

{
iArg

[
− (ω + δ)2

(g2 − i(ω + δ))2 − g4e−2i arctan(δ/g2)

]}
(6.17)

We have also shown in Fig. 5.2 that in the same large g2σt = g2/σω limit, two photons

will transmit through an array of atoms with high probability. With this, we posit that the

final, scattered state of two photons will have the same form as Eq. 6.9, but with t(ω)

replaced by Eq. 6.17 and the interaction when both photons are at the same site being

described by fa,b(t1, t2) from Eq. 4.55. Just as in the previous section, we will transform

Eq. 4.55 to the frequency domain to more easily add up all the possible scattering events.

Using this heuristic model, the final scattered spectrum of two, counter-propagating

photons from an array of N pairs of non-interacting atoms positioned using the optimal

spacing defined in Chapter 2 should be approximately

f̃a,b(ω1,ω2) = t(ω1)N t(ω2)N f̃(ω1)f̃(ω2)

+ cos(φ)2e−2iφ

∫
dωadωbδ(ω1 + ω2 − ωa − ωb)

N∑
j=1

t(ω1)N−jt(ωb)
N−jt(ω2)j−1t(ωa)j−1f̃(ωa)f̃(ωb){

Γ+

π

( 1

Γ+ − iω1
+

1

Γ+ − iω2

)[( Γ+

Γ+ − iωb
− Γ−

Γ− − iωb

) 1

γ − i(ωa + ωb)
− Γ+

(Γ+ − iωa)(Γ+ − iωb)

]

+
Γ−
π

( 1

Γ− − iω1
+

1

Γ− − iω2

)[( Γ−
Γ− − iωb

− Γ+

Γ+ − iωb

) 1

γ − i(ωa + ωb)
− Γ−

(Γ− − iωa)(Γ− − iωb)

]}

(6.18)

where the terms Γ+, Γ−, and γ are defined in Eq. 4.23.

In fact, the terms related to the doubly excited state (the ones multiplying terms with

γ) do not contribute to the overall result. This is due to the term
(

Γ+

Γ+−iωb
− Γ−

Γ−−iωb

)
which,

as Γ± is large, will be approximately zero. Because of this we will remove this term and use
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Eq. 6.19 to model the final, scattered state of two counter-propagating photons.

f̃a,b(ω1,ω2) = t(ω1)N t(ω2)N f̃(ω1)f̃(ω2)

−cos(φ)2

π
e−2iφ

∫
dωadωbδ(ω1 + ω2 − ωa − ωb)

N∑
j=1

t(ω1)N−jt(ωb)
N−jt(ω2)j−1t(ωa)j−1f̃(ωa)f̃(ωb)

×

[( 1

Γ+ − iω1
+

1

Γ+ − iω2

) Γ2
+

(Γ+ − iωa)(Γ+ − iωb)
+
( 1

Γ− − iω1
+

1

Γ− − iω2

) Γ2
−

(Γ− − iωa)(Γ− − iωb)

]

(6.19)

We first demonstrate that this approximation is valid in the adiabatic limit for a

Gaussian pulse for up to N = 4 pairs of atoms. We have chosen to use a Gaussian pulse as

it is the same pulse used to calculate reflection and transmission probabilities in Chapter 2

and is commonly used in other works (such as [64]). In Fig. 6.10 we plot the fidelity for a

pulse with time and frequency profiles given by

f(t) =
e−t

2/4σt√
σt
√

2π
f̃(ω) =

e−ω
2/4σω√

σω
√

2π
(6.20)

Fidelity is compared to the target state

|Target〉 =

∫
dω1dω2t(ω1)N t(ω2)N f̃(ω1)f̃(ω2)â†ω1

b̂†ω2
|0〉 (6.21)

where the transmission coefficients are given by Eq. 6.17, N refers to the number of pairs

of atoms, and the target differs from Eq. 6.11 in that we have not included any phase. As

we will see later, the phase that arises from using the optimal position spacing from

Chapter 2 and setting δ/g2 = 1 is not π but rather π/2. Looking at Fig. 6.10, it is clear

that in the adiabatic limit the calculated fidelity and phase is virtually identical, regardless

of whether the full solution of Eq. 5.45 or the heuristic approximation of Eq. 6.19 is used.

Note that, due to the nature of the Fourier transform, when relating the frequency and

time results the parameters have been re-scaled so that σt = 1
2σω

. Additionally, in

calculating the solution from Eq. 6.19 we used a third order adiabatic approximation of GΓ

(as g2σt > 30), given by the k=3 solution to Eq. 3.48, to derive an analytic form of EΓ for

the Gaussian pulse to more efficiently compute the solution.
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Figure 6.10: The infidelity (left) and the useful phase shift (right) predicted by the Marko-
vian solution presented in Eq. 5.45 (light color, circle marker) and the heuristic solution
presented in Eq. 6.19 (dark color, square marker) for 1, 2 and 4 pairs of atoms for two
counter-propagating photons with initial pulse shapes defined by Eq. 6.20. Note that the
two curves are directly on top of each other due to the high numerical agreement. We have
set δ/g2 = 1 in this calculation and in the Markovian calculation used the optimized spacing
derived in Chapter 2.

While it would be nice continue to show that the approximation of the scattered state

continues to be valid for larger numbers of atoms, the computational time required to go

past 4 sites in the Markovian solution of Eq. 5.45 becomes prohibitively expensive. There

is, however, no reason to expect that the approximation ceases to be valid for a larger

system. As was seen in Fig. 2.10, the reflection probability is always very small for large

g2/σω. As such, the magnitude of any terms that are left out of the heuristic solution

should be incredibly small and contribute little to the overall scattered state. To stay

within a regime that this high single- and two-photon transmission should hold true we will

restrict ourselves to exploring how the gate functions in the region of g2/σω ∈ [30, 200].

The upper limit here is chosen to limit the total number of sites needed to achieve unit

fidelity, as will be shown soon.

We now begin to study how an array of N pairs of non-interacting atoms, spaced as

described in Fig. 2.12, can function as a CPHASE gate. Following the previous analysis of

the array of interacting atoms, in Fig. 6.11 we first plot the fidelity and useful phase of the

final scattered state as compared to the target state in Eq. 6.21.
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Figure 6.11: The fidelity and phase difference between φ and π/2 of Eq. 6.19 compared to
Eq. 6.21 for various N pairs of atoms and g2/σω.

Immediately, one notices that the gate functions; it is possible for two photons to

acquire a phase shift of π/2 with near-unit fidelity. While this is not the ideal phase of π,

due to the difference in the structure of the atom-photon interaction, it represents a

nontrivial phase that would enable universal quantum computation. The maximum phase

in Fig. 6.11 occurs when g2/σω = 1.34N .871. These points of maximum phase also

correspond to high fidelity, though in actuality the fidelity calculated around these points is

slightly greater than 1, with a maximum of 1.002. A fidelity larger than one implies that

the norm of the state is also greater than one. This is perhaps not surprising; the

approximation of the single photon transmission coefficient in Eq. 6.17 assumes unit

transmission, but, as was shown in Chapter 2, there is still a small probability of reflection.

The fact that we are ignoring this is most likely is causing fidelity to be greater than one,

but as it is a small deviation there is no reason to suspect that removing the assumption of

unit single-photon transmission would significantly affect the gate operation. It would

seem, then, that for this gate to function two conditions must be satisfied; the system must

be in the adiabatic limit of g2/σω � 1 and the number of sites must be approximately

N = g2/σω.
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6.3.2 Visualization of the spectra and limits on operation

As a result of the fact that the approximation required to use Eq. 6.19 requires g2/σω

to be large it is difficult to make a one-to-one comparison with the previous gate design

using interacting pairs of atoms. In section 6.2, the system works exactly; that is, there is

no probability that the two photons will be reflected. As such, we were able to consider all

values of g2/σω and explore small numbers of sites in which the gate functions well.

For the array of non-interacting atoms being considered here, we cannot explore this

transition, as it would require computing the fidelity from Eq. 5.45 for large numbers of

atoms, a task that would take far too long and that would undercut the utility of making

the approximations in Eq. 6.19. Instead, we will consider what happens as the number of

pairs of atoms is varied for g2/σω = 50 when δ/g2 = 1. These values have been chosen to

ensure that the system can be considered to be adiabatic and so that the useful phase will

be approximately π/2.

In Fig. 6.12 we plot the phase and fidelity of the proposed CPHASE gate as a function

of N . For this gate, as the number of sites increases the fidelity is initially high, decreases

around N = 12, and recovers in the limit when g2/σω ≈ N . The phase begins low and, as

the number of pairs increases, it climbs to eventually reach the ideal phase of π/2.

Moreover, we find that as the number of pairs of atoms continues to increase the phase and

fidelity saturates, just as shown in Fig. 4 of [30].
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Figure 6.12: This figure shows how for a fixed g2/σω = 50 the phase (blue squares) and
fidelity (red circles) of the gate as a function of the number of pairs of atoms, N .

We can explore the shape of the spectrum as we did in 6.2.3. In Figs. 6.13-6.16 we plot

the spectrum of the scattered photons, given by Eq. 6.19, and the spectrum of the target

state eiπ/2|Target〉 where again |Target〉 is given by Eq. 6.21.

Figure 6.13: The spectrum of the pulse for N=1 site when g2/σω = 50. The top row
represents the full spectrum of the pulse from Eq. 6.19 and the bottom row represents
the ideal pulse described in the text. The columns correspond to the absolute value of the
spectrum, the real part, and the imaginary part respectively.
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Figure 6.14: The same figure as Fig. 6.13 for N=12 sites where fidelity is minimized in Fig.
6.12

Figure 6.15: The same figure as Fig. 6.13 for N=50 sites.
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Figure 6.16: The same figure as Fig. 6.13 for N=100 sites.

Here, with one site it is clear that the fidelity is good because the photons are

transmitted and have virtually the same shape as the ideal state. The phase is low,

however, as can be seen by the fact that the real and imaginary components of the full and

ideal states are swapped. This makes sense; from Fig. 6.10 it is clear that a single site

provides a very low phase shift and allows photons to transmit with high probability. As

the number of sites increases, the entangled component actually becomes larger. At

N = 12 sites in Fig. 6.14, where the fidelity in Fig. 6.12 is minimized, it is clear that the

photons are highly entangled as it is likely to find them along the line ω1 = −ω2. Only

when the number of sites becomes larger does this entanglement vanish, similar to the

process seen in 6.2.3.

From all this it is clear that an array of non-interacting atoms should be able to

function as a passive, deterministic CPHASE gate between two photons in a similar

manner as an array of interacting atoms. This gate design has one further complication not
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present in the design of [64]; the incoming photons must be spectrally narrow enough that

they reside entirely inside the transmission windows presented in Fig. 2.15. If the spectrum

of the photons is Gaussian this is not a problem, as the Gaussian function decays very

rapidly. If the spectrum is something broader, such as a Lorentzian, a significant amount of

the pulse may be outside the transmission window and could be reflected. As the number

of pairs required for the gate to function well is large (on the order of 30) this translates

into a potentially catastrophic error. Indeed, comparing the phase and fidelity of a

Lorentzian pulse in the same way as Fig. 6.10 reveals that as the number of sites increases

the difference between the approximate spectrum of Eq. 6.19 and the full solution of Eq.

5.45 becomes significantly greater, to the point where it is not possible to achieve a

near-perfect CPHASE operation.

The reason this happens can be seen in Figs. 6.17 and 6.18. Here we have plotted the

folded cumulative distribution of a Gaussian spectrum, given by Eq. 6.20, and a Lorentzian

spectrum, given by

f̃(ω) =

√
Ω√

2π(Ω/2− iω)
(6.22)

where Ω is the width of the Lorentzian (as a Lorentzian does not truly have a standard

deviation) and is related to the standard deviation of the temporal shape of the pulse

(which is a decreasing exponential function) by Ω = 1√
2σt

. This pulse has a very physical

origin; it is the frequency representation of a single two level system decaying.

For the spectral functions defined here the folded cumulative distribution is given by

FCDF (ω) = Θ(−ω)

∫ ω

−∞
dω|f̃(ω)|2 + Θ(ω)

∫ ∞
ω

dω|f̃(ω)|2 (6.23)

When ω < 0 it gives the probability that the photon will be found at a frequency less than

ω and when ω > 0 it gives the probability that the photon will be found at a frequency

greater than ω. This is a useful figure of merit because it provides a sense of how much of

the photon resides outside of the transmission window. As can be seen in Fig. 6.17 when
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the system is in the adiabatic regime (g2/σω > 30) if the photon has a Gaussian

distribution virtually all of the photon will be contained within the transmission window.

When g2/σω = 30 the probability of finding the photon beyond the transmission window

(ω/g2 < .2) is on the order of 10−9. As this parameter increases, the probability of

reflection becomes vanishingly small.

Figure 6.17: A comparison of the folded cumulative distribution of an incoming Gaussian
pulse to the transmission coefficient for N = 6 pairs (right) and N = 50 pairs (left). The
solid black line is the intensity transmission coefficient calculated from Eq. 2.20 for 2N
atoms. Note that the choice of N pairs gives the same transmission coefficient presented in
Fig. 2.15 using the optimal spacing presented in Chapter 2.

This does not hold true for a Lorentzian, however. Even when the system is in the

adiabatic regime there is still a significant probability that the photon will be found outside

the transmission window. At ω/g2 = .2 and with g2/Ω = 30, the probability of finding the

photon outside the transmission window (i.e. at a frequency of ω/g2 < .2) is about .0265.

While this represents only 2% of the overall photon, this error compounds with two

photons as they have a large chance to interact at multiple sites, leading to the ultimate

failure of the gate and the breakdown of the approximation given in Eq. 6.19.
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Figure 6.18: The same as Fig. 6.17 but with a Lorentzian incoming pulse.

Thus if one were to construct a CPHASE gate using a series of non-interacting atoms

coupled to a 1-D waveguide one would need to ensure that the photons are narrow enough

in frequency to properly transmit through the system. This represents a departure from

the gate designed using the interacting transmission window where, similar to [30], the gate

operates regardless of the distribution of the incoming pulse. This departure is a

consequence of the fact that the transmission in Eq. 6.19 is only approximately one for a

narrow range of frequencies. Any incoming photon pulse may have a component outside

this window, however, and thus for two photons to transmit they both must be made to fit

inside this narrow feature. On the other hand, Eq. 6.9 has a theoretically infinite

bandwidth; thus there is no chance that a photon of any frequency, no matter how far

detuned or whatever shape, will be reflected.

There are several ways to circumvent this complication. Different processes of creating

narrow-band single photons will produce different spectral distributions. Choosing an

appropriate source would be one way to ensure that the photons fit within the transmission

window of the system. It would also be possible to add a band-pass filter to select only the

frequencies that will transmit with near unit probability. This would add undesirable losses

into the system and make any computation dependent on the final detection of a photon.

These errors should be relatively small, though, as for the Lorentzian only about 2% of the

pulse would be lost, and this would be a one-time event occurring at the beginning of a

computation. Finally it may be possible to use pulse-shaping techniques (such as in [65]) to
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force the incoming photons to be narrow in frequency or have a Gaussian shape. Again,

this would add in extra losses, especially since pulse shaping typically requires nonlinear

elements, but once the photons have been appropriately shaped they will transmit through

the system and not experience further errors.

6.4 Conclusions

In this chapter we combined elements from all the previous chapters to demonstrate

that the nonlinearity present in arrays of two level systems is able to be used for quantum

computation. We have successfully shown that an array of such emitters coupled losslessly

to a one-dimensional waveguide can successfully perform a passive, deterministic CPHASE

operation between two photons. This is significant, as it shows that there is not a

theoretical roadblock to performing quantum logic with photonic qubits. That is not to

say, of course, that the systems proposed to perform a CPHASE operation would be easy

to build; both transmission windows used to build a gate in this chapter require precise

alignment of the emitters and a large number (on the order of 20 or more) to be successfully

coupled losslessly to a waveguide. Additionally, the better performing design requires that

the emitters be placed close enough that there is a strong, direct dipole-dipole interaction.

We also demonstrated that the design presented in Section 6.2 functions identically to

the gate proposed by Brod and Combes in [30] and [64]. We extended our model to

consider the effect of travel time between sites and were able to show that if the system is

small enough that the Markovian approximation holds the distance between sites matters

little. The fact that our proposal works in the same way as the Brod and Combes proposal

also suggests that any array of two level systems that preserve photon number for

counter-propagating pulses will be able to function as a CPHASE gate, including chiral

waveguides or systems that can take advantage of different polarizations. Finally, we

presented results that suggest an array of non-interacting atoms should also be able to

perform a passive, deterministic CPHASE operation between two photons. This design is
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limited by the fact that the photons must be spectrally narrow enough, but may be

significantly easier to construct as it does not rely on enforcing unidirectional behavior by

ensuring strong, finely-tuned interactions between two level systems.

144



Chapter 7

Conclusions and Future Work

In this text we studied in depth an array of two level systems coupled losslessly to a

one-dimensional waveguide structure. In doing so, we accomplished three main tasks; we

developed an approach to photon scattering in the time domain that allows for efficient

computation of the scattered state of multiphoton pulses, identified and explored

transmission windows that appear due to quantum interference between the scattering of

photons from multiple atoms, and demonstrated that the nonlinearity present in arrays of

two level systems is able to be used for quantum computation.

Using the approach demonstrated in [32], in Chapter 2 we explored the exact scattered

state of a single photon from an array of arbitrarily positioned two level systems coupled to

a waveguide. In agreement with other authors, we found that the final frequency

distribution of the photon scattered by a single atom is accurately described by a

frequency-dependent transmission and reflection coefficient and that this description allows

one to treat the system of atoms as an array of cavities. Using techniques from quantum

optics we derived the same transmission and reflection coefficients. We also found, again in

agreement with other works, that the scattering of a single photon is modified significantly

by the number of two level emitters coupled to the waveguide. By increasing the number of

atoms we explored two different transmission windows, appearing either when the atoms

are able to interact via a direct dipole-dipole energy transfer or when they are not able to

interact but are placed so that quantum interference preferentially favors transmission over

reflection. In Chapters 4 and 5 we continued to explore the non-interacting transmission

window and were able to demonstrate that two counter-propagating photons will transmit

through (i.e remain in their respective modes) an array of atoms with near-unit probability.

In dealing with the multiphoton wavefunction, we developed a novel, time-domain

approach to multiphoton scattering, identical to that published in [11] concurrently with

our publication [12]. In this approach, the normal ordering of photon creation and

145



annihilation operators ensures that one can write a final expression for the scattered state

of the photons in terms of a finite series, given in Eq. 3.18. In using this solution to study

the scattering of two photons from a single two level system, we explored the origin of

entanglement between the photons and were able to show that, due to the fact that a

single emitter can only absorb one photon at a time, the arrival times of photons, as

measured by a photo-detector, will be correlated. In Chapter 4 we extended this approach

to describe the scattered state of two photons from two atoms, where the atoms can be

placed an arbitrary distance apart. We explored how control of the atomic position changes

the transport properties for co-propagating, counter-propagating, and standing wave mode

photons. We found that the addition of a second atom leads to interesting possibilities of

isolating entangled terms, reducing the overall entanglement between the photons, and in

creating regions of very high transmission. We also demonstrated that the same

transmission windows studied in Chapter 2 for a single photon are also present for two

atoms. Finally, in Chapter 5 we considered the case of two photons scattering from an

array of N atoms and arrived at a solution for two counter-propagating photons scattering

from an array of N atoms. We used this solution to show that the non-interacting

transmission window studied in Section 2.4.2 is also present for two photons transmitting

through up to 8 atoms.

The generality of the solution presented in Eq. 5.19 immediately suggests a direction

for future work; exploring how multiple atoms modify the transport and entanglement

properties of two photons. In Chapter 4 we demonstrated that the addition of a second

atom dramatically changes the properties of the scattered photons; it is likely that adding

more atoms will similarly create new nonclassical states of light and provide even greater

control over the properties of the scattered photons. Additionally, using the process in Eq.

3.18, we can in principle extend the solutions in Eq. 4.30 and Eq. 5.19 to deal with initial

states that contain more than two photons. This is a largely-unexplored area of photon

scattering and this approach provides an intuitive, analytic way to study entanglement and
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photon transport of multiphoton pulses.

Finally, we applied the results and methods developed in Chapters 2 through 5 to

design and evaluate a conditional phase gate between two counter-propagating photons

inspired by the gate presented in [30]. We were able to demonstrate in Section 6.1 that

pairs of interacting two level systems coupled to a waveguide are indeed able to function as

a CPHASE gate between two counter-propagating photons, and that the gate operates in

the same manner as that proposed in [30]. By creating a heuristic model and

demonstrating numerical agreement with the full solution of Chapter 5, we argued that an

array of non-interacting atoms should also be able to function as a conditional logic gate

between two photons, provided that the frequency distribution of the photons is sufficiently

narrow and the system is tuned to the non-interacting transmission windows studied in

Chapters 2, 4 and 5.

It is significant that the nonlinearity present in two level systems coupled to a

waveguide can be used to perform quantum information processing tasks. Our study

suggests an experimental way to realize a passive, deterministic quantum logic gate

between photonic qubits that does not suffer from the theoretical limitations of many gate

proposals. Additionally, the general nature of the equations implies that any array of two

level systems losslessly coupled to a waveguide would be capable of producing the desired

effect. The downside, of course, is that constructing the arrays of atoms proposed in this

work would require incredibly precise engineering of either dipole-dipole interactions or

placement of the emitters. Additionally, achieving true, lossless operation is difficult. If the

losses at each site were of the order of 1%, with 15 sites (as was shown to be needed for

achieving a fidelity of around .01 in Fig. 6.3) the total photon loss could be on the order of

15% at each step of the computation. This suggests a direction for further work;

quantifying the effect of losses in the system and finding ways to mitigate them from a

fundamental perspective, without resorting to post-selecting events where photons are

detected. Another direction for future work is to better evaluate the numerical agreement
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between the heuristic model of Eq. 6.19 and the full solution of Eq. 5.45. While the results

presented here suggest that the approximate form given in Eq. 6.19 is good, more work can

be done to demonstrate that this agreement holds for a larger number of atoms than was

presented in Fig. 6.10. Finally, in studying the ability of an array of non-interacting atoms

to function as a CPHASE gate, we assumed that δ/g2 = 1. Changing this parameter

should enable one to change the value of the phase imparted by the gate and characterizing

this effect would provide insight into the gate’s functionality.
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Appendix A

Dynamics of the Single-Photon, Two-Atom Interaction

As was mentioned in previous chapters, the solutions presented in the time domain for

the interaction between photons and atoms are not restricted to the scattering limit. Here

we show how to consider the dynamics of the system by modifying the solution for the

scattering of a single photon from two atoms, given in Eq. 4.36, to instead explore the

spacetime profile of the pulse during the interaction. To do so, we first assume the

interaction begins at t = 0 rather than t = −∞. The photon state as a function of time is

then given by

|ψg(t)〉 = |ψ0〉 − 2Γc

∫ t

0

dt1

∫ t1

0

dt2e
−Γ+(t1−t2)Ĉ†(t1)Ĉ(t2)|ψ0〉

− 2Γs

∫ t

0

dt1

∫ t1

0

dt2e
−Γ−(t1−t2)D̂†(t1)D̂(t2)|ψ0〉 (A.1)

From here integrals of the form
∫ t1

0
dt2e

−Γi(t1−t2)f(t2 − τ0) must be evaluated, where τ0

represents the initial spacetime position of the pulse. The solution to this is nearly

identical to that of GΓi(t) provided that τ0 is sufficiently far away from the origin. To show

this, consider that with the change of variables τ = t2 − τ0 we can express G as

GΓ(t1) =e−Γt1

∫ t1

0

dt2e
Γt2f(t2 − τ0)

=e−Γt1

∫ t1−τ0

0

dτeΓ(τ+τ0)f(τ)

≈e−Γ(t1−τ0)

∫ t1−τ0

−∞
dτeΓτf(τ) = G(t1 − τ0) (A.2)

Using this and writing the Ĉ and D̂ standing-wave mode operators in terms of

travelling wave operators yields the following time-dependent pulse. Note that the

definitions of fA and fB are slightly different than given in Eq. 4.36, as the limits of
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integration on the initial state will be different than the interaction components.

|ψg(t)〉 = |ψ0〉+

∫ t

0

dt1
[
fA(t1)A†(t1) + fB(t1)B†(t1)

]
|0〉

fA(t1) = −ΓcGΓ+(t1 − τ0)− ΓsGΓ−(t1 − τ0)

fB(t1) = −ΓcGΓ+(t1 − τ0) + ΓsGΓ−(t1 − τ0) (A.3)

To explore the intensity of the field as a function of position and time we introduce the

field operator E(+)(z, t)

E(+)(z, t) =

∫
dω

[
e−iω(t−z/c)+ikF (z−ct)aω + e−iω(t+z/c)−ikF (z+ct)bω

]
=
√

2π
[
eikF (z−ct)A(t− z/c) + e−ikF (z+ct)B(t+ z/c)

]
(A.4)

The intensity is given by 〈ψg|E(−)(z, t)E(+)(z, t)|ψg〉, with E(−)(z, t) being the complex

conjugate of E(+)(z, t). To evaluate this, first the action of E(+)(z, t)|ψg〉 must be found.

Commuting all the operators, this becomes

E(+)(z, t)|ψg(t)〉 = E(+)(z, t)|ψ0〉+
√

2π

∫ t

0

dt1
[
eikF (z−ct)A(t− z/c) + e−ikF (z+ct)B(t+ z/c)

]
[
fA(t1)A†(t1) + fB(t1)B†(t1)

]
|0〉

=
√

2π

∫ ∞
−∞

dt1f(t1)eikF (z−ct)δ
(
t1 − (t− z/c)

)
+
√

2π

∫ t

0

dt1
[
fA(t1)eikF (z−ct)δ

(
t1 − (t− z/c)

)
+ fB(t1)e−ikF (z+ct)δ

(
t1 − (t+ z/c)

)]
|0〉

=
√

2π
[
f(t− z/c)eikF (z−ct)Θ(t− z/c)

+fA(t− z/c)eikF (z−ct)Θ(t− z/c)Θ(z/c) + fB(t+ z/c)e−ikF (z+ct)Θ(t+ z/c)Θ(−z/c)
]
|0〉

(A.5)

As 〈ψg|E(−)(z, t) will simply be the complex conjugate of the above function, and there
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are no remaining operators, the intensity as a function of position and time is

〈ψg|E(−)(z, t)E(+)(z, t)|ψg〉 =

2π
∣∣∣eikF (z−ct)(f(t− z/c)Θ(t− z/c) + fA(t− z/c)Θ(t− z/c)Θ(z/c)

)
+e−ikF (z+ct)fB(t+ z/c)Θ(t+ z/c)Θ(−z/c)

∣∣∣2 (A.6)

In order to ensure that the interaction will happen after time t = 0, the initial state is

centered around the position −5σt to ensure that it is sufficiently far away from the atoms.

Before plotting the pulse as a function of position, we also solve the excitation

probability of the |ψ±〉 states. These are given from Eqs. 4.22a and 4.22b, after using the

fact that the initial state has only one photon and applying the Markovian approximation

to the operators, by the functions below.

|ψ+(t)〉 = −i
√

2Γc

∫ t

0

dt1e
−Γ+(t−t1)Ĉ(t1)|ψI〉 = −i

√
ΓcGΓ+(t− τ0) (A.7)

|ψ−(t)〉 = −
√

2Γs

∫ t

0

dt1e
−Γ−(t−t1)D̂(t1)|ψg(t1)〉 = −

√
ΓsGΓ−(t− τ0) (A.8)

This makes sense physically, as we have shown previously that the function GΓ is

related to the atomic excitation probability. With this, the probability to find the atoms in

either of the superposition states becomes

〈ψ+|ψ+〉 = Γc

∣∣∣GΓ+(t− τ0)
∣∣∣2 〈ψ−|ψ−〉 = Γs

∣∣∣GΓ−(t− τ0)
∣∣∣2 (A.9)

We also desire the probability for the photon to be in the field state. This is given as

〈ψg|ψg〉 = 1− Γc

∣∣∣GΓ+(t− τ0)
∣∣∣2 − Γs

∣∣∣GΓ−(t− τ0)
∣∣∣2 (A.10)

Below are figures for the position and respective probabilities as a function of time for

the case when the photon is on resonance (δ = 0) and there are no atomic interactions

(∆ = 0). For these figures, kF has been set to 1014 to model what would happen for an

optical photon and the initial pulse shape has been chosen to be Gaussian.
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(a) (b) (c)

(d) (e) (f)

Figure A.1: The position of the photons and excitation probabilities of the atoms as a
function of time. Here δ = ∆ = 0 and kF z = 2π for all plots. The rightmost column
corresponds to g2σt = .1, the middle column to g2σt = 1, and the leftmost column to
g2σt = 10. In the bottom plots, the blue curve is the excitation probability of the |+〉 state,
the yellow dashed curve is the excitation probability of the |−〉 state, that the red curve is
the probability that neither atom is excited.

The first set of figures in Fig. A.1 correspond to the case where the atoms are

positioned so that only the |+〉 state is coupled to the waveguide. As can be seen, as the

coupling increases the pair of atoms acts more like a mirror, as was seen for a single photon

interacting with a single atom. Additionally, the probability that the atomic state |+〉 is

excited is generally small.

157



(a) (b) (c)

(d) (e) (f)

Figure A.2: The position of the photons and excitation probabilities of the atoms as a
function of time. Here δ = 0, ∆ = g2 and kF z = 3π/2 for all plots. The rightmost column
corresponds to g2σt = .1, the middle column to g2σt = 1, and the leftmost column to
g2σt = 10. In the bottom plots, the blue curve is the excitation probability of the |+〉 state,
the yellow dashed curve is the excitation probability of the |−〉 state, that the red curve is
the probability that neither atom is excited.

When the atoms are able to interact by a dipole-dipole interaction (given by Eq. 2.37)

and the system is tuned to the transmission window described in Section 2.5, the entire

photon is transmitted with unit probability. This can be seen in Fig. A.2, where the

photon pulse is always found to transmit. For low couplings, however, the photon may be

significantly delayed with respect to its original path. Additionally, as Γ+ = Γ− when the

system is tuned to this particular transmission window, both the |+〉 and |−〉 states

experience the same probability to be excited, and in the case when g2σt = 1 it becomes

significantly more likely that the photon will be absorbed when compared to Fig. A.1.
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(a) (b) (c)

(d) (e) (f)

Figure A.3: The position of the photons and excitation probabilities of the atoms as a
function of time. Here δ = g2, ∆ = 0 and kF z = 3π/4 for all plots. The rightmost column
corresponds to g2σt = .1, the middle column to g2σt = 1, and the leftmost column to
g2σt = 10. In the bottom plots, the blue curve is the excitation probability of the |+〉 state,
the yellow dashed curve is the excitation probability of the |−〉 state, that the red curve is
the probability that neither atom is excited.

Finally, we present results for a system tuned to the non-interacting transmission

window that occurs when tan(kF z) = −δ/g2. Here, the photon is generally transmitted,

but the pulse remains distorted for higher values of g2σt than compared to the final pulse

in Fig. A.2. Each of the states |±〉 now couple differently to the photon modes, and as

such the excitation probability of the two is also different.

In summary, we presented how to modify the time domain approach to explore system

dynamics. We used this to present visualizations of the single photon transmission

windows shown in Section 4.3.1.
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Appendix B

Operation of a Single Site Atom-Cavity Phase Gate

B.1 Introduction

In this appendix we explore a related question to the main topic of photon scattering

from an array of two level systems in a waveguide; how well can a single site function as a

CPHASE gate? In exploring this, we will specifically consider a single three-level atom in

the V configuration, contained within a cavity, where each level of the atom is accessed by

photons with different polarizations. The motivation for studying this particular system is

threefold; first, the addition of the cavity, in principle, allows the two photons to interact

multiple times with the atom which could reduce the number of sites required to build a

logic gate in the style of Brod and Combes [30]. Second, in the appropriate limit, this

system behaves identically to a single two level emitter coupled to a waveguide. Thus, in

studying the atom-cavity system we can also show that a single emitter cannot be used to

construct a high-fidelity, passive CPHASE gate. Finally, it provides a different method of

approaching the scattering problem and gives some background on how to quantize field

modes. Rather than using the time domain and looking for commuting operators we will

use the Laplace transform to directly solve the scattered state of a multiphoton pulse. The

work in this appendix was presented in the summer of 2017 at DAMOP in Sacramento.

Note also that [66] similarly solves for the scattering of two photons from a cavity.

B.2 Solving for the scattered state

B.2.1 Hamiltonian and operator action

As mentioned in the introduction, in this appendix we will be studying the scattering of

two counter-propagating photons with different polarizations from a three-level system

inside a cavity. A diagram of this system is given in Fig. B.1, where as before â and b̂

modes represent right and left travelling wave photons and the subscripts h or v denote the
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polarization of the photon.

Figure B.1: A diagram of the atom-cavity system being considered here, where a three level
V system, with the levels accessed by different polarizations, is embedded inside a cavity
which itself is in some structure that only allows photons to travel in one dimension outside
the cavity.

In order to appropriately describe the photon inside the cavity, we use the cavity

quasimode operator derived in [67]. This operator describes the quantized field inside a

cavity of length l embedded in a much larger cavity of length L. We will ultimately let

L→∞ to model the field modes in free space. In all this, we will be assuming that photons

outside the cavity may only transmit in one dimension, enforced by a waveguide, fiber, or

other structure. For a cavity with mirrors M1 and M2 with corresponding transmission (ti)

and reflection (ri) coefficients, the field that the atom experiences is given by

cos(k0z)
∑
k

√
2κc
L

κ− i(ck + ∆)

(
τ1ak + τ2bk

)
(B.1)

In this equation, k0 is the wavenumber of the atomic transition, ck = Ωk − Ω0 (where

Ωk = ck) is the frequency spacing from the center of the incoming wavepacket Ω0,

∆ = Ω0 − Ωc is the detuning between the center of the pulse and the cavity frequency, κ is

the cavity loss rate (given by κ = t1+t2
4

c
l
), l is the length of the cavity, and L the

quantization length. τi = ti√
t21+t22

is a factor that determines the coupling to each of the

modes based on the mirrors involved, and it has the property that τ 2
1 + τ 2

2 = 1. In deriving

this equation, we make the usual quantum optics assumptions that the reflectivity of the

mirrors is close to 1, that the quantity c/l is on the order of optical wavelengths, and that
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detunings are sufficiently small.

With these modes, the Hamiltonian describing the interaction between the atom and

cavity is

H = ~g cos(k0z)

√
2κc

L

[∑
k

e−i(ck+δh)t τ1ak,h + τ2bk,h
κ− i(ck + ∆)

|H〉〈g|

+
∑
k

e−i(ck+δv)t τ1ak,v + τ2bk,v
κ− i(ck + ∆)

|V 〉〈g|
]

+H.C. (B.2)

Here δh,v represents the detuning of the photon pulse from one of the atomic transitions, g

is the coupling constant to the atom, |H〉 is the excited state arising from interacting with

the horizontally polarized light, |V 〉 is the the excited state from the vertically polarized

light, and |g〉 is the ground state. The general solution to this equation is rather

complicated, as various combinations of ak,i and bk,i lead to many terms corresponding to

all the possible scattering channels. In addition, the two standing wave mode operators

defined by 1√
2
(τ1ak,i ± τ2bk,i) are not orthogonal, but rather commute with

τ2
1−τ2

2

2
δ(k − k′).

In order to make the problem more tractable, we further assume that the mirrors are

identical (τ1 = τ2 = τ). This allows us to write the Hamiltonian in terms of standing wave

operators ĉk,i = 1√
2
(ak,i + bk,i).

Lastly, the general wavefunction for the system as a function of time is

|ψ(t)〉 =
∑
k1

fk1,h(t)ĉ
†
k1,v
|0〉|H〉+

∑
k2

fk2,v(t)ĉ
†
k2,h
|0〉|V 〉+

∑
k1,k2

fk1,k2,g(t)ĉ
†
k1,h

ĉ†k2,v
|0〉|g〉 (B.3)

B.3 General two photon solution

Unlike in previous chapters, before solving the Schrödinger equation we will assume

that the initial state only contains two photons, one in each of the standing wave

polarizations ĉk,h and ĉk,v. We make this assumption because, using the beamsplitter

arrangement of Fig. 1.1, the two photons will leave the same port they enter the

beamsplitter with unit probability. Thus they can be routed in different directions after the

scattering event. As we are considering the system’s ability to function as a quantum logic
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gate, it is very useful to study a configuration that preserves photon number. Moreover, as

the d̂ standing wave modes do not interact with the atom-cavity system (since they do not

appear in Eq. B.2 when τ1 = τ2), a solution of the ĉ modes will ultimately allow one to find

the solution for travelling wave photons in a similar manner as described in Section 3.3.

Solving the Schrödinger equation with such an input state gives the following series of

differential equations for the photon coefficients.

∑
k1

ḟk1,h(t)ĉ†k1,v
|0〉 = −2igτ cos(k0z)

√
κc

L

∑
k

ĉk,h
κ− i(ck + ∆h)

e−i(ck+δh)t
∑
k1,k2

fk1,k2,g(t)ĉ
†
k1,v

ĉ†k2,h
|0〉

(B.4a)∑
k2

ḟk2,v(t)ĉ
†
k2,h
|0〉 = −2igτ cos(k0z)

√
κc

L

∑
k

ĉk,v
κ− i(ck + ∆v)

e−i(ck+δv)t
∑
k1,k2

fk1,k2,g(t)ĉ
†
k1,v

ĉ†k2,h
|0〉

(B.4b)

∑
k1,k2

ḟk1,k2,g(t)ĉ
†
k1,v

ĉ†k2,h
|0〉 = −2igτ cos(k0z)

√
κc

L

∑
k

[
ĉ†k,h

κ+ i(ck + ∆h)
ei(ck+δh)t

∑
k1

fk1,h(t)ĉ†k1,v
|0〉

+
ĉ†k,v

κ+ i(ck + ∆v)
ei(ck+δv)t

∑
k2

fk2,v(t)ĉ
†
k2,h
|0〉

]

(B.4c)

In order to describe photons leaving the cavity into free space (or a continuum of

guided modes), we assume that the quantization length L is infinite. This transforms the

sums over k to integrals in ω by the transformation
∑

k →
L

2πc

∫
dω. Each of the

coefficients in front of τ1ak,h + τ2bk,h in Eq. B.2 will go as fk → fω
√

2πc/L. The net effect

of this transformation is to remove the dependence on L in the equations and leave behind
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a factor of 2π. The transformed versions of the differential equations are∫
dω1ḟh(ω1, t)ĉ

†
ω1,v|0〉 = −2igτ cos(k0z)

√
κ

2π

∫
dω

ĉω,h
κ− i(ω + ∆h)

e−i(ω+δh)t∫
dω1dω2fg(ω1, ω2, t)ĉ

†
ω1,v ĉ

†
ω2,h
|0〉 (B.5a)∫

dω2ḟv(ω2, t)ĉ
†
ω2,h
|0〉 = −2igτ cos(k0z)

√
κ

2π

∫
dω

ĉω,v
κ− i(ω + ∆v)

e−i(ω+δv)t∫
dω1dω2fg(ω1, ω2, t)ĉ

†
ω1,v ĉ

†
ω2,h
|0〉 (B.5b)∫

dω1dω2ḟg(ω1, ω2, t)ĉ
†
ω1,v ĉ

†
ω2,h
|0〉 = −2igτ cos(k0z)

√
κ

2π∫
dω

[
ĉ†ω,h

κ+ i(ω + ∆h)
ei(ω+δh)t

∫
dω1fh(ω1, t)ĉ

†
ω1,v|0〉

+
ĉ†ω,v

κ+ i(ω + ∆v)
ei(ω+δv)t

∫
dω2fv(ω2, t)ĉ

†
ω2,h
|0〉

]
(B.5c)

The ĉ operators commute between the horizontal and vertical polarizations, and have

commutation relations [ĉωi,h/v, ĉ
†
ωj ,h/v

] = δ(ωi − ωj). Normal ordering the equations and

matching coefficients for each ĉω,h/v operator give the main differential equations for the

same spectral components of the wavefunction as described in Section 3.4 for a single atom.

ḟh(ω1, t) = −2igτ cos(k0z)

√
κ

2π

∫
dω

e−i(ω+δh)t

κ− i(ω + ∆h)
fg(ω1, ω, t) (B.6a)

ḟv(ω2, t) = −2igτ cos(k0z)

√
κ

2π

∫
dω

e−i(ω+δv)t

κ− i(ω + ∆v)
fg(ω,ω2, t) (B.6b)

ḟg(ω1, ω2, t) = −2igτ cos(k0z)

√
κ

2π

[
ei(ω2+δh)t

κ+ i(ω2 + ∆h)
fh(ω1, t) +

ei(ω1+δv)t

κ+ i(ω1 + ∆v)
fv(ω2, t)

]
(B.6c)

In order to obtain a solution for the long time limit of fg(ω1, ω2,∞), we choose to use

the Laplace transform to remove the derivative. The Laplace transform is also

advantageous because the scattering limit (t→∞) is equivalent to the limit s→ 0. The

useful relations for the Laplace transform we will use are

L[ḟ(t)] = sF (s)− f(0) lim
t→∞

fgg(ω1, t) = lim
s→0

sF (ω1, s)

L[

∫ t

0

dt′f(t′)] =
F (s)

s
L[eatf(t)] = F (s− a) (B.7)

These transformations are defined for the traditional Laplace transform
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(L =
∫∞

0
dte−st) and the bilateral Laplace transform (L =

∫∞
−∞ dte

−st), meaning that the

initial state can either be defined with t0 = 0 or t0 = −∞, though, as will be shown, an

initial state of t0 = 0 is necessary to obtain an analytic solution.

After applying the Laplace transform to Eqs. B.6a-B.6c, we get, with

γ ≡ 2gτ cos(k0z)
√

κ
2π

,

sFh(ω1, s) = fh(ω1, t0)− iγ
∫
dω
Fg(ω1, ω, s+ i(ω + δh)

κ− i(ω + ∆h)
(B.8a)

sFv(ω2, s) = fv(ω2, t0)− iγ
∫
dω
Fg(ω,ω2, s+ i(ω + δv)

κ− i(ω + ∆v)
(B.8b)

sFg(ω1, ω2, s) = fg(ω1, ω2, t0)− iγ

[
Fh(ω1, s− i(ω2 + δh)

κ+ i(ω2 + ∆h)
+
Fv(ω2, s− i(ω1 + δv))

κ+ i(ω1 + ∆v)

]
(B.8c)

Provided that the atom is initially in the ground state fh(ω1, t0) = fv(ω2, t0) = 0. From

here, we may either substitute the excited states into the ground state, or substitute the

ground state into the excited states. The advantage of substituting the excited states into

the ground state is that the system of equations reduces to one integral equation of Fg. The

advantage of substituting the ground state into the excited state is that when solving for

the ground state, terms such as α + i(ω + β) will appear more quickly in the s→∞ limit.

Both cases lead to the same integral equation, however, and as such we choose to substitute

into the ground state as it is perhaps a more natural path to obtaining a solution.

We also introduce the further assumptions that the detunings between the cavity and

atomic transitions are equal (∆h = ∆v = ∆), that the photons are detuned symmetrically

(δh = δv = δ), and that the initial photon pulse contains two identically shaped,

uncorrelated photons so that fg(ω1, ω2, t0) = fg(ω2, ω1, t0) = f(ω1)f(ω2). This is not a

necessary assumption to solve the problem but it will simplify the solution from a series of

two coupled equations to a single integral equation, as the entire system is symmetric.

Additionally, we are ultimately looking to quantify how much the system distorts just such

an input state. With these assumptions, the excited state functions are substituted into
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the ground state, leading to

sFg(ω1, ω2, s) = fg(ω1, ω2, t0)− γ2

∫
dω(

κ− i(ω + ∆)
)[ Fg(ω1, ω, s+ i(ω − ω2)(

s− i(ω2 + δ)
)(
κ+ i(ω2 + ∆)

)
+

Fg(ω, ω2, s+ i(ω − ω1)(
s− i(ω1 + δ)

)(
κ+ i(ω1 + ∆)

)]
(B.9)

To ensure that the variables in Fg are consistent, it is convenient to make the

transformation of ω1 → ωa and ω2 → ωb, along with the transformation

s→ s+ i(ωa + ωb − ω1 − ω2). This relegates ω1 and ω2 to being dummy variables that do

not contribute to the integral and preserves the form of the terms in the s component of

Fg. The new equation is then

(
s+ i(ωa + ωb − ω1 − ω2)

)
Fg
(
ωa, ωb, s+ i(ωa + ωb − ω1 − ωb)

)
= fg(ωa, ωb, t0)

−γ2

∫
dω(

κ− i(ω + ∆)
)[ Fg

(
ωa, ω, s+ i(ω + ωa − ω1 − ω2)

)(
s+ i(ωa − ω1 − ω2 − δ)

)(
κ+ i(ωb + ∆)

)
+

Fg
(
ω, ωb, s+ i(ω + ωb − ω1 − ω2)

)(
s− i(ωb − ω1 − ω2 − δ)

)(
κ+ i(ωa + ∆)

)] (B.10)

It is clear that the function Fg
(
ωa, ωb, s+ i(ωa + ωb − ω1 − ωb)

)
appears on both sides of

the equation with one of its indices integrated. From here, to simplify the expression, we

define several functions

d0(ω′, ω′′) =
1

s+ i(ω′ + ω′′ − ω1 − ω2)
(B.11a)

dδ(ω
′) =

−γ2

s+ i(ω′ − ω1 − ω2 − δ)
(B.11b)

K(ω′) =
1

κ− i(ω′ + ∆)
(B.11c)

α(ω′) =

∫
dωK(ω)Fg

(
ω′, ω, s+ i(ω + ω′ − ω1 − ω2)

)
(B.11d)
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and write the integral as

Fg
(
ωa, ωb, s+ i(ωa + ωb − ω1 − ωb)

)
=

d0(ωa, ωb)fg(ωa, ωb, t0) + d0(ωa, ωb)dδ(ωa)K
∗(ωb)α(ωa) + d0(ωa, ωb)dδ(ωb)K

∗(ωa)α(ωb)

(B.12)

By substituting Eq. B.12 into Eq. B.11d one obtains an integral expression for α of the

form

α(ωa) =

∫
dωK(ω)d0(ωa, ω)fg(ωa, ω, t0)

+ α(ωa)dδ(ωa)

∫
dωK(ω)K∗(ω)d0(ωa, ω) +K∗(ωa)

∫
dωK(ω)d0(ωa, ω)dδ(ω)α(ω)

(B.13)

The term K(ω)K∗(ω) will effectively act as a delta function for ω → −∆− iκ when

being integrated along with functions that contain poles in only the upper half plane. This

is due to the residue theorem, as
∮
f(ξ)dξ = 2πi

∑
k Res(f, zk) and the residue of a simple

pole is given by limz→zk(z − zk)f(z) for a curve that has a winding number of -1

(counterclockwise). If integrating over a curve in the lower half plane, one must take care

to flip the limits of integration of the real component so that it corresponds to the desired

part. Terms that go as β − iω (with Re[β] > 0) will have a pole in the lower half plane,

whereas terms that go as β + iω will have poles in the upper half plane. This reduces the

third term to

α(ωa)dδ(ωa)

∫
dωK(ω)K∗(ω)d0(ωa, ω) =

π

κ
α(ωa)dδ(ωa)d0(ωa,−∆− iκ) (B.14)

Moving this term to the left side and solving for α(ωa) again gives

α(ωa) = H(ωa)F0(ωa) +H(ωa)K
∗(ωa)

∫
dωK(ω)d0(ωa, ω)dδ(ω)α(ω) (B.15)
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where we define

H(ωa) =
κ
(
s+ i(ωa − ω1 − ω2 − δ)

)(
s+ κ+ i(ωa − ω1 − ω2 −∆)

)
πγ2 + κ

(
s+ i(ωa − ω1 − ω2 − δ)

)(
s+ κ+ i(ωa − ω1 − ω2 −∆)

(B.16a)

F0(ωa) =

∫
dωK(ω)d0(ωa, ω)fg(ωa, ω, t0) (B.16b)

The presence of the ωa index in the kernel of the integral on the left side of Eq. B.15

significantly complicates the solution. A closed form can be obtained, however, by

multiplying both sides by K(ωa)d0(ω′, ωa)dδ(ωa) and integrating over ωa. This will lead to

an integral of
∫
dωaK(ωa)K

∗(ωa)H(ωa)d0(ω′, ωa)dδ(ωa). Again, the K(ωa)K
∗(ωa) term will

act as a delta function, provided that none of the other functions involved in the integral

have poles in the lower half plane. This is obviously true for dδ and d0, but demonstrating

it analytically for H(ω) is very challenging due to the presence of a square root term with

complex components. It is, however, very easy to check numerically: running over one

million random combinations of the parameters in question (with s = 0 in anticipation of

the final solution), there were no poles found in the lower half plane or on the real axis. It

would appear, then, that this function also has only poles in the upper half plane. In the

case where δ = ∆ = 0 this condition is trivially satisfied.

Now, evaluating the integral so that ωa → −∆− iκ, we get∫
dωaK(ωa)d0(ω′, ωa)dδ(ωa)α(ωa) =

∫
dωaK(ωa)d0(ω′, ωa)dδ(ωa)H(ωa)F0(ωa)

+
π

κ
d0(ω′,−∆− iκ)H(−∆− iκ)dδ(−∆− iκ)

∫
dωK(ω)d0(−∆− iκ, ω)dδ(ω)α(ω) (B.17)

As ω′ is unbound, we can set it to equal −∆− iκ. In this way it is possible to obtain a

closed form for
∫
dωK(ω)d0(−∆− iκ, ω)dδ(ω)α(ω). Solving such an expression gives∫

dωK(ω)d0(−∆− iκ, ω)dδ(ω)α(ω) =[
1− π

κ
d0(−∆− iκ,−∆− iκ)H(−∆− iκ)dδ(−∆− iκ)

]−1

×
∫
dωaK(ωa)d0(−∆− iκ, ωa)dδ(ωa)H(ωa)F0(ωa) (B.18)

This can then be substituted into B.17 which in turn can be substituted back into B.15
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to arrive at the form of α.

α(ωa) = H(ωa)F0(ωa) +H(ωa)K∗(ωa)

∫
dωK(ω)d0(ωa, ω)dδ(ω)H(ω)F0(ω)

+
πχ

κ
H(ωa)K∗(ωa)d0(ωa,−∆− iκ)H(−∆− iκ)dδ(−∆− iκ)

∫
dωK(ω)d0(−∆− iκ, ω)dδ(ω)H(ω)F0(ω)

(B.19)

With

χ =
[
1− π

κ
d0(−∆− iκ,−∆− iκ)H(−∆− iκ)dδ(−∆− iκ)

]−1

(B.20)

While complicated, α is completely written in terms of the initial ground state and a

number of integral functions.

To more explicitly evaluate the integrals in the scattering limit we let s→ 0. In order

to do this, we make two assumptions regarding the initial state following the procedure in

[68]. First, that fg(ω1, ω2, 0) is analytic everywhere in the upper half of the complex plane,

which is true of most probability distributions. Second, that the pulse vanishes for times

t < 0. This is mathematically impossible to achieve for any smooth pulse (though it is

certainly possible for a square pulse). Physically, however, the long tails of pulses such as a

Gaussian do not contribute significantly to the overall interaction and they can be safely

ignored. Recall that we have also assumed that the initial photon state is separable. As

long as the pulse is peaked sufficiently far to the right of t = 0 (for example 3 standard

deviations) we can safely define the initial state for a single photon as

f0(ω) = fg(ω, 0) =

∫ ∞
0

eiωtf̃g(t− µ, 0) (B.21)

where µ is the time offset and µ >> σ for the pulse. When cast in this form it is clear that

any complex ω = R(cosφ+ i sinφ) will vanish for φ ∈ [0, π] as R→∞, as the real

component of the exponential will go as e−R sinφ, ensuring that the function f0(ω) will

vanish exponentially fast in the upper half plane (as sin(φ) ∈ [0, 1] for φ ∈ [0, π]).
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With this in hand, an integral of the form found in F0 becomes

F0(ωa) = f0(ωa)

∫
dω

f0(ω)(
κ− i(ω + ∆)

)(
s+ i(ω + ωa − ω1 − ω − 2)

)
=

2πf0(ωa)f0(ω1 + ω2 − ωa + is)

κ− i(ω1 + ω2 − ωa + ∆ + is)
(B.22)

by use of the residue theorem. The term
(
κ− i(ω + ∆)

)−1
will have a pole in the lower half

plane and the term
(
s+ i(ω + ωa − ω1 − ω − 2)

)−1
a pole in the upper. Again, the above

solution is valid provided that f0 is analytic everywhere in the upper half plane (has no

poles).

Unfortunately, it is not possible to solve the two photon interaction term exactly via

the previous method due to the presence of a −ω in the numerator. This term, after

simplifying, is given as

∫
dωK(ω)d0(ωa, ω)dδ(ω)H(ω)F0(ω) =

−2γ2κπ

∫
dω

f0(ω1 + ω2 − ω + is)f0(ω)

(ω + ωa − ω1 − ω2 − is)(ω + ∆ + iκ)
(
πγ2 + κ(s− i(δ + ω1 + ω2 − ω))(s+ κ− i(ω1 + ω2 − ω + ∆))

) (B.23)

Defining x = η − ω with η = ω1+ω2

2
and λ± as the roots of

πγ2 + κ(s− i(δ + ω1 + ω2 − ω))(s+ κ− i(ω1 + ω2 − ω + ∆)), so that this term can be

expressed as −κ(ω − 2η − λ−)(ω − 2η − λ+), we can use a partial fraction decomposition to

rewrite the integral as a sum of four integrals given by

2πγ2(I1(ωa) + I2(ωa) + I3(ωa) + I4(ωa)). Each of the Ij(ωa) functions are given as

I1(ωa) =

∫ ∞
−∞

dx
f0(η − x)f0(η + x+ is)

(x−∆− η + iκ)(∆ + 2η + λ− + iκ)(∆ + 2η + λ+ + iκ)(∆ + 2η + iκ− ωa + is)

(B.24a)

I2(ωa) = −
∫ ∞
−∞

dx
f0(η − x)f0(η + x+ is)

(x+ η − ωa + is)(∆ + 2η + iκ− ωa + is)(−λ− − ωa + is)(−λ+ − ωa + is)

(B.24b)

I3(ωa) = −
∫ ∞
−∞

dx
f0(η − x)f0(η + x+ is)

(x+ η + λ−)(∆ + 2η + λ− + iκ)(λ− − λ+)(λ− + ωa − is)
(B.24c)

I4(ωa) = −
∫ ∞
−∞

dx
f0(η − x)f0(η + x+ is)

(x+ η + λ+)(∆ + 2η + λ+ + iκ)(λ+ − λ−)(λ+ + ωa − is)
(B.24d)

In the s→ 0 limit I2 will have a pole on the real axis for real ωa. This integral can be
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written in terms of a Cauchy principal value integral using the identity

lim
ε→0

1

x− y − iε
= PV

1

x− y
+ iπδ(x− y) (B.25)

Combining all these things, letting s→ 0, transforming to the original variables, and

simplifying everything greatly using mathematica, the total solution for the scattered state

of the two photons (from Eq. B.12) can be written as follows in Eq. B.27. In writing this,

we also introduced the effective coupling to the atom Γ, defined by γ2 = Γκ/π, so that

Γ = 2τ 2 cos2(k0z)g2. This is to more clearly show the effect of κ independent of the

coupling strength of the atom. The presence of τ in the coupling constant is still related to

the transmission coefficients of the mirrors.

h̃(ω) = Γ− i(δ + ω)
(
κ− i(ω + ∆)

)
(B.26a)

h̃2(ω1, ω2) = h̃(ω1) + h̃(ω2) + 2
(
κ− i(ω1 + ∆)

)(
κ− i(ω2 + ∆)

)
(B.26b)

fg(ω1, ω2,∞) =

[
f0(ω1)− 2Γκ

f0(ω1)(
κ+ i(ω1 + ∆)

)
h̃(ω1)

][
f0(ω2)− 2Γκ

f0(ω2)(
κ+ i(ω2 + ∆)

)
h̃(ω2)

]

+
2Γ3κ2

[
h̃(ω1) + h̃(ω2)

][
κ− i(ω1 + ∆) + κ− i(ω2 + ∆)

]

π
(
κ+ i(ω1 + ∆)

)(
κ+ i(ω2 + ∆)

)
h̃(ω1)h̃(ω2)h̃2(ω1, ω2)

[
I1(−∆− iκ) + I2(−∆− iκ) + I3(−∆− iκ) + I4(−∆− iκ)

]

−
2Γ2κ2

π
(
κ+ i(ω1 + ∆)

)(
κ+ i(ω2 + ∆)

)
h̃(ω1)h̃(ω2)

[
h̃(ω1)

(
κ− i(ω2 + ∆)

)(
I1(ω1) + PV

[
I2(ω1)

]
+ I3(ω1) + I4(ω1)

)

+h̃(ω2)
(
κ− i(ω1 + ∆)

)(
I1(ω2) + PV

[
I2(ω2)

]
+ I3(ω2) + I4(ω2)

)]

(B.27)

After all the transformations, λ± found in the integrals becomes

λ± =
1

2

[
δ + ∆ + iκ±

√
4Γ + (∆− δ + iκ)2

]
(B.28)

Finally, there is one remaining element to this solution. As given, Eq. B.27 describes

the pulse in terms of the modes inside the cavity. Translating to the modes outside the

cavity requires multiplying the solution by

(
κ+i(ω1+∆)

)(
κ+i(ω1+∆)

)(
κ−i(ω1+∆)

)(
κ−i(ω1+∆)

) , as given in Eq. 36 and

45 in Ref. [67]. For clarity of notation we will write the integral sums as

ITotal(ωa) = I1(ωa) + I2(ωa) + I3(ωa) + I4(ωa) and

PV [ITotal(ωa)] = I1(ωa) + PV
[
I2(ωa)

]
+ I3(ωa) + I4(ωa). Any value of ωa in ITotal will be a
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function of ω1 and ω2. Adding this term and simplifying we arrive at the following concise

expression (with k̃(ω) = κ− i(ω + ∆)):

fg(ω1, ω2,∞) = f0(ω1)
h∗(ω1)

h(ω1)
f0(ω2)

h∗(ω2)

h(ω2)
− 2Γ2κ2

π

[
PV [ITotal(ω1)]

h̃(ω2)k̃(ω1)
+
PV [ITotal(ω2)]

h̃(ω1)k̃(ω2)

]

+
2Γ3κ2

π
(
h̃(ω1) + h̃(ω2) + 2k̃(ω1)k̃(ω2)

)[ 1

h̃(ω1)
+

1

h̃(ω2)

][ 1

k̃(ω1)
+

1

k̃(ω2)

]
ITotal(−∆− iκ)

(B.29)

From here, solutions can be obtained for specific pulse shapes by evaluating the various

components of ITotal with s→ 0. This has a similar form to Eq. 3.56 in that it consists of a

separable component and a (rather complicated) spectral entanglement term that is a

function of ω1 + ω2.

B.3.1 General single photon solution

Before describing the solution of the final state for different initial wavepackets, it is

useful to determine the single photon solution for comparison with previous works and to

explain the structure of Eq. B.29. Due to the nature of the level structure considered here,

it is impossible for a photon to swap polarizations by interacting with the atom-cavity

system. As such, the system reduces to a single two level atom for each of the

polarizations. Starting from Eqs. B.5a-B.5c we note that a single photon will have the

same differential equations, with the exception of there being only one frequency argument

in the ground state and no frequency arguments in the excited state. Taking into account

that only one of the polarization states will contribute we can write

ḟh,v(t) = −iγ
∫
dω
fg(ω, t)e

−i(ω+δ)t

κ− i(ω + ∆)
(B.30a)

ḟg(ω, t) = −iγ fh,v(t)e
i(ω+δ)t

κ+ i(ω + ∆)
(B.30b)
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Performing the Laplace transform as before yields

sFh,v(t) = −iγ
∫
dω
Fg
(
ω, s+ i(ω + δ)

)
κ− i(ω + ∆)

(B.31a)

sFg(ω, s) = fg(ω, t0)− iγ
Fh,v

(
s− i(ω + δ)

)
κ+ i(ω + ∆)

(B.31b)

Substituting the excited state into the ground state yields an integral equation of

sFg(ω, s) = fg(ω, t0)− γ2

∫
dω′

Fg

(
ω′,s+iω′

)
κ−i(ω′+∆)(

κ+ i(ω + ∆)
)(
s− i(ω + δ)

) (B.32)

Using the transformation of ω → ωa and s→ s+ i(ωa − ω) gives a closed form for Fg.

Fg
(
ωa, s+ i(ωa − ω)

)
=

fg(ωa, t0)

s+ i(ωa − ω)
− γ2

∫
dω′

Fg

(
ω′,s+i(ω′−ω)

)
κ−i(ω′+∆)(

κ+ i(ωa + ∆)
)(
s− i(ω + δ)

)(
s+ i(ωa − ω)

)
(B.33)

As can be seen, this is now an integral equation for Fg
(
ωa, s+ i(ωa − ω)

)
. From here we

define β =
∫
dω′

Fg

(
ω′,s+i(ω′−ω)

)
κ−i(ω′+∆)

. This is constant in ωa and thus a direct solution of the

integral equation is readily achievable. We can write

β =

∫
dω′

fg(ω
′, t0)(

κ− i(ω′ + ∆)
)(
s+ i(ω′ − ω)

)
−γ2

∫
dω′

β(
κ+ i(ω′ + ∆)

)(
κ− i(ω′ + ∆)

)(
s− i(ω + δ)

)(
s+ i(ω′ − ω)

) (B.34)

Defining F0(ω) =
∫
dω′ fg(ω′,t0)(

κ−i(ω′+∆)
)(
s+i(ω′−ω)

) the solution for β is

β =
κ
(
s− i(ω + δ)

)(
s+ κ− i(ω + ∆)

)
F0(ω)

πγ2 + κ
(
s− i(ω + δ)

)(
s+ κ− i(ω + ∆)

) (B.35)

Transforming back to the original variables, the overall solution for the single photon’s

scattered state is

sFg(ω, s) = fg(ω, t0)− γ2κ

(
s+ κ− i(ω + ∆)

)
F0(ω)(

κ+ i(ω + ∆)
)(
πγ2 + κ

(
s− i(ω + δ)

)(
s+ κ− i(ω + ∆)

))
(B.36)

By noting that this has effectively the same form as the term dδ(ωa)K
∗(ωb)H(ωa)F0(ωa)
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found in the two photon solution we can see that this will take the form of

fg(ω,∞) = −f0(ω)
h̃∗(ω)

h̃(ω)
= −

Γ + i(ω + δ)
(
κ+ i(ω + ∆)

)
Γ− i(ω + δ)

(
κ− i(ω + ∆)

) (B.37)

after making the same transformations back to the original variables, to Γ, and to the field

modes outside of the cavity. This solution is identical in form to Eq. 46 in [67] which also

describes the interaction between a single photon pulse and an atom in a cavity.

B.3.2 Resonances and limiting cases

The fact that the first term in Eq. B.29 represents two, independent single photon

interactions suggests that the roots of the function h̃(ω) may provide insight into the

system’s behavior and possible limits of interest. This function describes each photon’s

interaction with a combined atom-cavity system. As given in Eq. B.26a, h̃(ω) has roots

λ± =
1

2

[
δ + ∆ + iκ±

√
4Γ + (∆− δ + iκ)2

]
(B.38)

The real and imaginary components of these roots are rather complicated, but they

amount to two couplings and detunings just as was found for the real and imaginary

eigenvalues of Eq. 2.18. The imaginary component will correspond to the strength of the

interaction and the real component will correspond to the detuning of the interaction. This

can be seen from comparing (ω −Re[λ±]− iIm[λ±]) = −i
(
Im[λ±] + i(ω −Re[λ±])

)
to the

form for a single photon interaction in Eq. 2.27.

In the case where δ = ∆ = 0 (the atom and cavity are at the same resonance and the

pulse is tuned to this resonance) this reduces to

λ± = −iκ
2
±
√

Γ− κ2

4
(B.39)

If Γ > κ2/4, the square root will be real and the system will effectively consist of two

interactions with strength κ/2 and detunings ±
√

Γ− κ2

4
. If Γ < κ2/4 the term will become

imaginary and it will lead to two on-resonance interactions with different coupling

strengths. Here κ governs the strength of the overall interaction and Γ the amount the
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photons interact with each resonance. This can be seen in in Fig. B.2 where we plot how

the coupling and detuning change with both κ and Γ.

Another interesting case occurs when δ = ∆, i.e. the photons are detuned from the

atom by the same amount they are detuned from the cavity. Then the two roots in Eq.

B.38 reduce to

λ± = −iκ
2

+ δ ±
√

Γ− κ2

4
(B.40)

If the system is further tuned so that δ =
√

Γ− κ2

4
, the two roots have the same coupling

strength of κ
2

but one root will be detuned off resonance (provided that Γ− κ2

/
4 > 0 so that

δ is real). This can also be seen in Fig. B.2. Both behaviors lead to two limiting cases

when the atom-cavity system reduces to a single two level system, the ‘bad cavity’ and

‘good cavity’ limits.

(a) (b)

Figure B.2: a)The real and imaginary components of the coupling of the two atom-cavity
resonances as a function of κ with Γ = 4 and δ = ∆ = 0. This corresponds to the ‘bad
cavity limit’ where one of the two couplings (imaginary component) becomes so large its
corresponding process occurs too quickly to contribute to the scattering process. b) The
same components of λ± as a) when δ = ∆ =

√
Γ− κ2/4. This corresponds to the ‘good

cavity limit’ when one of the two resonances becomes too far detuned (real component) to
contribute.
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Bad cavity limit

The first limit occurs when the photons are on resonance and κ >> Γ and κ >> 1/σt

(with σt representing the temporal width of the pulse) while the ratio Γ/κ remains on the

order of 1/σt. This limit corresponds to an incredibly leaky cavity and thus is the ‘bad

cavity’ limit, as when κ→∞ the cavity should vanish, leaving only the bare atom.

Provided that κ >> Γ and κ >> 1/σt, we can write the square root in Eq. B.38 as

iκ
√

1− 4Γ/κ2. The two roots are then λ1 = iγ′ and λ2 = i(κ− γ′) ≈ iκ. In the limit of

large κ (or alternatively a very long pulse) the interaction time of this first resonance will

be so short it will not affect the shape of the photons. Mathematically, the bad cavity limit

consists of the case where κ→∞ while Γ/κ remains finite. Defining γ′ = Γ/κ the single

photon term becomes

fg(ω,∞) = −f0(ω)
γ′ + iω

γ′ − iω
(B.41)

This has the same form as the single photon scattering off of a unidirectional waveguide

and also agrees with Eq. 48 in [67].

The two photon state similarly reproduces the solution for an atom in a waveguide.

The term appearing in Eq. B.29 given by

+ 2Γ3κ2

π
(
h̃(ω1)+h̃(ω2)+2k̃(ω1)k̃(ω2)

)[ 1
h̃(ω1)

+ 1
h̃(ω2)

][
1

k̃(ω1)
+ 1

k̃(ω2)

]
ITotal(−∆− iκ) will vanish. This can

be easily seen by the fact that the term goes as Γ′3O(κ)ITotal(−∆− iκ). Expressing ITotal

in its original form we have

ITotal =

lim
s→0
−κ f0(ω1 + ω2 − ω + is)f0(ω)

(ω + ωa − ω1 − ω2 − is)(ω + ∆ + iκ)
(
πγ2 + κ(s− i(δ + ω1 + ω2 − ω))(s+ κ− i(ω1 + ω2 − ω + ∆))

)
(B.42)

From this it is clear that ITotal goes as O(κ−2). When ωa = −∆− iκ this will add

another order of κ to the denominator. As the entire term goes as O(κ−1), when κ→∞

this will certainly vanish. This has been confirmed by formally taking the limit as well.

The other two photon term will be preserved. This can again be seen by considering the
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orders of κ present in the calculation. The factors Γ2κ2

h̃(ωi)κ̃(ωj)
go as Γ′2O(κ2). For ωa = ω1,2

ITotal will go as O(κ−2) and the overall order is O(κ0). In order to solve this, we apply the

given limit to each of the integral terms present in PV [ITotal(ω)] and simplify. The only

surviving terms come from the integral of I2 and I3. The solution from I2 is

PV

∫
dx

2iγ2f0(η + x)f0(η − x)

π(γ′ − iω1)(γ′ − iω2)

( 1

x+ η − ω1

+
1

x+ η − ω2

)
(B.43)

The first integral term will vanish, however, because η = (ω1 + ω2)/2. Rewriting the

terms with x we get f0(η − x)f0(η + x)
(

1
x+(ω1+ω2)/2

− 1
−x+(ω1+ω2)/2

)
. The integral is

symmetric over a transformation of x→ −x, and making this transformation will lead to

these terms canceling out. The solution from I3 is then

−
∫
dω

4iγ′2f0(η + x)f0(η − x)

π(γ′ − iω1)(x+ η + iγ′)(γ′ − iω2)
(B.44)

It is not immediately obvious that this represents the same integral as found in Eq.

3.56, but it can be shown to be equivalent. Writing Eq. 3.56 in terms of x and η we have

−2γ′2

π

( 1

γ′ − iω1

+
1

γ′ − iω2

) ∫
dx
( if0(η − x)f0(η + x)

2(γ′ − iη)(iγ′ + x+ η)
+

if0(η − x)f0(η + x)

2(γ′ − iη)(iγ′ + η − x)

)
(B.45)

Again the integrals are identical with respect to the transformation x→ −x. Making

this transformation to the second term and finding a common denominator gives the exact

same result as the cavity solution presented above.

Good cavity limit

The other limit of interest is the ‘good cavity’ limit. When δ =
√

Γ− κ2

4
, the two roots

become λ+ = − iκ
2

+ 2δ and λ− = −iκ/2. With Γ >> κ2 and Γ >> 1/T the interaction

corresponding to λ+ will not affect the photons as it will be too far detuned. When this

happens, the entire system also behaves as a single two level atom.

Formally this limit consists of setting δ = ∆ =
√

Γ− κ2/4 and Γ→∞. Then the single
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photon term transforms to

fg(ω,∞) = −f0(ω)
κ′ + iω

κ′ − iω
(B.46)

with κ′ = κ/2. Taking the same limit for the two photon state we arrive at the exact same

integral solutions as given in the bad cavity limit, except with γ′ substituted with κ′.

B.4 Phase gate operation

B.4.1 Maximum phase and fidelity

As in Chapter 6 we are primarily concerned with evaluating whether two

counter-propagating photons will be able to transmit through this system and interact in

such a way that they acquire a nontrivial phase of π between them. In order to evaluate

this, we will again measure fidelity as in Eq. 6.10, where the fidelity of the two photon

scattering event is compared to two, independent single photon scattering events. We will

plot the fidelity for an initial two photon state where the photons either have a Lorentzian

(Eq. 6.22) or a Gaussian (Eq. 6.20) distribution and are initially uncorrelated.

We will also use the definition of average gate fidelity given in the supplementary

material of [30] for comparison with their results. The average gate fidelity in some

respects gives a better picture of the operation of the gate, although it does tend to

artificially increase the numerical value of the fidelity because, as described in Chapter 6, it

includes operations that will always succeed (such as |0〉 ⊗ |0〉 → |0〉 ⊗ |0〉). This measure

of fidelity quantifies, on average, how likely it is that a particular gate will succeed.

When both photons are guaranteed to be found in a particular spatial mode (like in

this case here where the photons are initially in standing wave modes) the average fidelity

for a gate to impart a phase of θ is given by

F (θ) =
1

10

(
6 + 3Re[eiθ

√
Feiφ] + |

√
Feiφ|2

)
(B.47)

where
√
F and φ are the fidelity and phase given by Eq. 6.10. Note that an average fidelity
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of .4 corresponds to a pulse that remains unchanged with no phase shift (F = 1) and an

average fidelity of .6 corresponds to no overlap whatsoever. The useful regime is anything

above .6, which corresponds to a state with a nonzero fidelity for the two photon operation

and some amount of useful phase for computation.

In Figs. B.3 and B.4 we plot the fidelity (Eq. 6.10) and average gate fidelity (Eq. B.47)

for random values of the pulse width, γ, Γ, κ, ∆, and δ. We chose to plot random values

rather than scan over parameters because the parameter space is large. Plotting the phase

and fidelity in this way provides insight into what is possible with the gate.

(a) (b)

Figure B.3: The fidelity and phase of the two photon scattered state compared to two single
photon interactions. In both plots, the distance from the origin represents the fidelity, the
phase is given by the polar angle, color represents the corresponding average gate fidelity,
and random values have been chosen for all physical parameters. a) represents a state where
the photons are initially Gaussian and b) represents a state where the photons are initially
Lorentzian.
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(a) (b)

Figure B.4: The average gate fidelity of the two photon scattered state compared to two
single photon interactions. In both plots color represents the fidelity (

√
F) of the two photon

operation, and random values have been chosen for all physical parameters. a) represents a
state where the photons are initially Gaussian and b) represents a state where the photons
are initially Lorentzian.

As can be seen in these plots, if the photons initially have a Gaussian profile the

atom-cavity system (and thus also a single two level atom) is able to impart some useful

phase with a nonzero fidelity. It is possible to achieve an average gate fidelity of around

.785, which very closely matches the maximum obtained by [30] of .781 for a single

interaction site. If the photons initially have a Lorentzian profile, however, the single-pass

fidelity and phase is effectively zero. It is possible for two photons to interact and maintain

high fidelity (Fig. B.3 b) but no useful phase shift is produced. It is actually impossible in

a single pass for these photons to pick up a phase of π; in Fig. B.3 b no combination of

parameters provides a phase of π and in Fig. B.4 b the average fidelity never rises above .6.

It is also curious that the envelope of the average fidelity plot is effectively the same

between the Gaussian and Lorentzian distributions but with a different peak and width.

This suggests that there may be some sort of scaling law at work between different initial

pulse shapes. Additionally, the fact that this behaves better for a Gaussian implies that it

may be possible to use pulse shaping techniques to create an initial state that would
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further maximize fidelity.

With the exception of a very particular pulse, then, it would seem that it is impossible

to build a phase gate with just one two or three-level system, unless one is willing to accept

significant errors in the computation. As this three-level system encompasses a single two

level system, the results presented here also show that a single site is unable to function

well as a CPHASE gate. This agrees with the data shown in Fig. 6.3, and the calculated

fidelities are on the order of that presented in the analysis of [29] for a single two level

system’s ability to function as a CPHASE gate.

B.5 Conclusions

In this appendix we demonstrated how to find the scattered state of two

counter-propagating photons scattering from a single three-level system in a cavity. In

doing so, we provided an illustration of a different means of solving for the scattered state,

working entirely in the frequency domain and using complex integration with the Laplace

transform to arrive at a solution. We explored different limits of the system and were able

to show that in two particular cases it approximates a single, two level system. We also

demonstrated that the final solution in Eq. B.29 has a similar form to Eq. 3.56 where the

final scattered wavefunction of two photons is a sum of an entangling process and two,

independent interactions with the system. Finally, we explored the system’s ability to

function as a quantum CPHASE gate. We found that it performs essentially the same as a

single two level system (though it is slightly better) and is on its own unable to impart a

phase of π with high fidelity. We also demonstrated that the shape of the pulse considered

can have a dramatic affect on the functioning of a phase gate, a point that has not been

adequately addressed in the literature on the subject.
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